1
|
Aalinkeel R, Quigg RJ, Alexander J. The complement system and kidney cancer: pathogenesis to clinical applications. J Clin Invest 2025; 135:e188351. [PMID: 40309765 PMCID: PMC12043091 DOI: 10.1172/jci188351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Kidney cancer poses unique clinical challenges because of its resistance to conventional treatments and its tendency to metastasize. The kidney is particularly susceptible to dysfunction of the complement system, an immune network that tumors often exploit. Recent discoveries have highlighted that the complement system not only plays a crucial role in immune surveillance and defense in the circulatory system, but also functions intracellularly and autonomously. This concept has shifted the focus of investigation toward understanding how complement proteins influence cancer progression by regulating the tumor microenvironment (TME), cell signaling, proliferation, metabolism, and the immune response. With the complement system and its inhibitors emerging as a promising new class of immunotherapeutics and potential complement-targeted treatments advancing through development pipelines and clinical trials, this Review provides a timely examination of how harnessing the complement system could lead to effective tumor treatments and how to strategically combine complement inhibitors with other cancer treatments, offering renewed hope in the fight against kidney cancer.
Collapse
|
2
|
Garlanda C, Dambra M, Magrini E. Interplay between the complement system and other immune pathways in the tumor microenvironment. Semin Immunol 2025; 78:101951. [PMID: 40209638 DOI: 10.1016/j.smim.2025.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
Tumor growth and spread are sustained by the tumor microenvironment. Inflammatory cells and pathways have a fundamental role in the tumor microenvironment, driving or conditioning the functional activation of other leukocyte subsets and favoring evasion of anti-tumor immunity. One of the inflammatory pathways contributing to cancer-related inflammation is the complement system. Complement has long been considered an immune mechanism associated with immunosurveillance. More recently it emerged as a tumor promoting pathway, due to direct effects on cancer cells or indirect effects via immunosuppression driven by myeloid cells. The role of complement in cancer is complex and ambiguous, and depends on the tumor type and stage, as well as other factors including oncogenic drivers, leukocyte infiltration, interactions with other tumor microenvironment components or tumor cells. Other factors of complexity include the source of complement molecules, its canonical or non-canonical extracellular functions, its potential intracellular activation, and the interaction with other systems, such as the coagulation or the microbiome. Preclinical studies generally demonstrate the involvement of complement activation in smouldering inflammation in cancer and promotion of an immunosuppressive environment. These studies paved the way for clinical trials aimed at enhancing the potential of immunotherapy, in particular by targeting complement-dependent myeloid-sustained immunosuppression. However, the complex role of complement in cancer and the multiplicity of complement players may represent stumbling blocks and account for failures of clinical trials, and suggest that further studies are required to identify patient subsets who may benefit from specific complement molecule targeting in combination with conventional therapies or immunotherapy. Here, we will discuss the anti- or pro-tumor role of complement activation in cancer, focusing on the interactions of complement with immune cells within the tumor microenvironment, in particular the myeloid compartment. Furthermore, we will examine the potential of complement targeting in cancer treatment, particularly in the context of macrophage reprogramming.
Collapse
Affiliation(s)
- Cecilia Garlanda
- Department of Biomedical Sciences, Humanitas University, Milan, Pieve Emanuele 20072, Italy; IRCCS, Humanitas Research Hospital, Milan, Rozzano 20089, Italy.
| | - Monica Dambra
- IRCCS, Humanitas Research Hospital, Milan, Rozzano 20089, Italy
| | - Elena Magrini
- IRCCS, Humanitas Research Hospital, Milan, Rozzano 20089, Italy
| |
Collapse
|
3
|
Tang Y, Chen L, Xiao Y, Ran Q, Li Z, Chen M. Clinical Significance of Complement and Coagulation Cascades Genes for Patients With Acute Lymphoblastic Leukemia. Int J Lab Hematol 2025; 47:266-275. [PMID: 39523585 DOI: 10.1111/ijlh.14392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/03/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Acute lymphoblastic leukemia (ALL) is the second most common acute leukemia in adults and the 5-year survival remains low. METHODS We analyzed the gene expression profiles of the complement and coagulation cascades pathway (CCCP) in 998 bone marrow (BM) and 122 peripheral blood (PB) samples of ALL patients and healthy individuals obtained from the TCGA database and evaluated their clinical significance in terms of being diagnostic and prognostic biomarkers. RESULTS We identified 18 CCCP genes (SERPINA1, C5AR1, F5, CD55, PLAUR, C3AR1, THBD, CD59, PLAU, VWF, CFD, F13A1, C1QA, C1QB, C1QC, A2M, SERPINE1 and CR2) differentially expressed in the BM samples of ALL patients compared to healthy individuals. The expression levels of CD55, F13A1 and CR2 in BM were linked with the overall survival of ALL patients. While in PB only 11 CCCP genes (e.g., SERPINA1, C5AR1, F5, PLAUR, C3AR1, THBD, CFD, F13A1, C1QA, SERPINE1, and CR2) were differentially expressed and F13A1 was significantly associated with ALL patient survival. Machine learning enabled us to predict ALL using the CCCP genes and the accuracy can reach 0.9701 and 0.9167 using the BM and PB, respectively. Furthermore, using single-cell RNA sequencing, we found that the differential expression of CCCP genes was found with diversity in the BM-derived immune cells of ALL patients. CONCLUSION Our findings suggest that the CCCP genes may play a key role in the progression of ALL and can be used as potential therapeutic targets and diagnostic markers.
Collapse
Affiliation(s)
- Yuting Tang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
- Laboratory of Precision Medicine, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Li Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
- Laboratory of Precision Medicine, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Laboratory Medicine Center, Department of Blood Transfusion, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yanni Xiao
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Laboratory Medicine Center, Department of Blood Transfusion, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Qian Ran
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Laboratory Medicine Center, Department of Blood Transfusion, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zhongjun Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
- Laboratory of Precision Medicine, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Laboratory Medicine Center, Department of Blood Transfusion, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Maoshan Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
- Laboratory of Precision Medicine, Department of Blood Transfusion, Laboratory Medicine Center, the Second Affiliated Hospital, Army Medical University, Chongqing, China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Laboratory Medicine Center, Department of Blood Transfusion, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
4
|
El-Shemi AG, Alqurashi A, Abdulrahman JA, Alzahrani HD, Almwalad KS, Felfilan HH, Alomiri WS, Aloufi JA, Madkhali GH, Maqliyah SA, Alshahrani JB, Kamal HT, Daghistani SH, Refaat B, Minshawi F. IL-10-Directed Cancer Immunotherapy: Preclinical Advances, Clinical Insights, and Future Perspectives. Cancers (Basel) 2025; 17:1012. [PMID: 40149345 PMCID: PMC11940594 DOI: 10.3390/cancers17061012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Interleukin-10 (IL-10) is a dimeric cytokine encoded by the IL-10 gene on chromosome 1 [...].
Collapse
Affiliation(s)
- Adel G. El-Shemi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | | | - Jihan Abdullah Abdulrahman
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Hanin Dhaifallah Alzahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Khawlah Saad Almwalad
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Hadeel Hisham Felfilan
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Wahaj Saud Alomiri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Jana Ahmed Aloufi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Ghadeer Hassn Madkhali
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
- Department of Hematology, Dr. Sulaiman Al-Habib Medical Diagnostic Laboratory, Olaya District, Riyadh 12234-3785, Saudi Arabia
| | - Sarah Adel Maqliyah
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
- Department of Blood Bank and Laboratory, Saudi German Hospital, Makkah 24242, Saudi Arabia
| | - Jood Bandar Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Huda Taj Kamal
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Sawsan Hazim Daghistani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Bassem Refaat
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Faisal Minshawi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| |
Collapse
|
5
|
Ajona D, Cragg MS, Pio R. The complement system in clinical oncology: Applications, limitations and challenges. Semin Immunol 2025; 77:101921. [PMID: 39700788 DOI: 10.1016/j.smim.2024.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
The complement system, a key component of innate immunity, is involved in seemingly contradictory aspects of tumor progression and cancer therapy. It can act as an immune effector against cancer and modulate the antitumor activity of certain therapeutic antibodies, but it can also contribute to a tumor-promoting microenvironment. Understanding this dual role should lead to the development of better therapeutic tools, strategies for cancer treatment and biomarkers for the clinical management of cancer patients. Here, we review recent advances in the understanding of the role of complement in cancer, focusing on how these findings are being translated into the clinic. We highlight the activity of therapeutic agents that modulate the complement system, as well as combination therapies that integrate complement modulation with existing therapies. We conclude that the role of complement activation in cancer is a rapidly evolving field with the potential to translate findings into new therapeutic strategies and clinically useful biomarkers.
Collapse
Affiliation(s)
- Daniel Ajona
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ruben Pio
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
6
|
Saxena R, Gottlin EB, Campa MJ, He YW, Patz EF. Complement regulators as novel targets for anti-cancer therapy: A comprehensive review. Semin Immunol 2025; 77:101931. [PMID: 39826189 DOI: 10.1016/j.smim.2025.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/04/2025] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
Cancer remains a formidable global health challenge requiring the continued exploration of innovative therapeutic approaches. While traditional treatment strategies including surgery, chemotherapy, and radiation therapy have had some success, primarily in early-stage disease, the quest for more targeted, personalized, safer, and effective therapies remains an ongoing pursuit. Over the past decade, significant advances in the field of tumor immunology have dramatically shifted a focus towards immunotherapy, although the ability to harness and coopt the immune system to treat cancer is still just beginning to be realized. One important area that has yet to be fully explored is the complement system, an integral part of innate immunity that has gathered attention recently as a source of potential targets for anti-cancer therapy. The complement system has a complex and context dependent role in cancer biology in that it not only contributes to immune surveillance but also may promote tumor progression. Complement regulators, including CD46, CD55, CD59, and complement factor H, exercise defined control over complement activation, and have also been acknowledged for their role in the tumor microenvironment. This review explores the intricate role of complement regulators in cancer development and progression, examining their potential as therapeutic targets, current strategies, challenges, and the evolving landscape of clinical research.
Collapse
Affiliation(s)
- Ruchi Saxena
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Elizabeth B Gottlin
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael J Campa
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - You-Wen He
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Edward F Patz
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
7
|
Choi H, Hwang W. Anesthetic Approaches and Their Impact on Cancer Recurrence and Metastasis: A Comprehensive Review. Cancers (Basel) 2024; 16:4269. [PMID: 39766169 PMCID: PMC11674873 DOI: 10.3390/cancers16244269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/10/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer recurrence and metastasis remain critical challenges following surgical resection, influenced by complex perioperative mechanisms. This review explores how surgical stress triggers systemic changes, such as neuroendocrine responses, immune suppression, and inflammation, which promote the dissemination of residual cancer cells and circulating tumor cells. Key mechanisms, such as epithelial-mesenchymal transition and angiogenesis, further enhance metastasis, while hypoxia-inducible factors and inflammatory responses create a microenvironment conducive to tumor progression. Anesthetic agents and techniques modulate these mechanisms in distinct ways. Inhaled anesthetics, such as sevoflurane, may suppress immune function by increasing catecholamines and cytokines, thereby promoting cancer progression. In contrast, propofol-based total intravenous anesthesia mitigates stress responses and preserves natural killer cell activity, supporting immune function. Opioids suppress immune surveillance and promote angiogenesis through the activation of the mu-opioid receptor. Opioid-sparing strategies using NSAIDs show potential in preserving immune function and reducing recurrence risk. Regional anesthesia offers benefits by reducing systemic stress and immune suppression, though the clinical outcomes remain inconsistent. Additionally, dexmedetomidine and ketamine exhibit dual effects, both enhancing and inhibiting tumor progression depending on the dosage and context. This review emphasizes the importance of individualized anesthetic strategies to optimize long-term cancer outcomes. While retrospective studies suggest potential benefits of propofol-based total intravenous anesthesia and regional anesthesia, further large-scale trials are essential to establish the definitive role of anesthetic management in cancer recurrence and survival.
Collapse
Affiliation(s)
| | - Wonjung Hwang
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
8
|
Huh J, Hwang W. The Role of Anesthetic Management in Lung Cancer Recurrence and Metastasis: A Comprehensive Review. J Clin Med 2024; 13:6681. [PMID: 39597826 PMCID: PMC11594908 DOI: 10.3390/jcm13226681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Lung cancer remains a leading cause of cancer-related mortality worldwide. Although surgical treatment is a primary approach, residual cancer cells and surgery-induced pathophysiological changes may promote cancer recurrence and metastasis. Anesthetic agents and techniques have recently been shown to potentially impact these processes by modulating surgical stress responses, immune function, inflammatory pathways, and the tumor microenvironment. Anesthetics can influence immune-modulating cytokines, induce pro-inflammatory factors such as HIF-1α, and alter natural-killer cell activity, affecting cancer cell survival and spread. Preclinical studies suggest volatile anesthetics may promote tumor progression by triggering pro-inflammatory signaling, while propofol shows potential antitumor properties through immune-preserving effects and reductions in IL-6 and other inflammatory markers. Additionally, opioids are known to suppress immune responses and stimulate pathways that may support cancer cell proliferation, whereas regional anesthesia may reduce these risks by decreasing the need for systemic opioids and volatile agents. Despite these findings, clinical data remain inconclusive, with studies showing mixed outcomes across patient populations. Current clinical trials, including comparisons of volatile agents with propofol-based total intravenous anesthesia, aim to provide clarity but highlight the need for further investigation. Large-scale, well-designed studies are essential to validate the true impact of anesthetic choice on cancer recurrence and to optimize perioperative strategies that support long-term oncologic outcomes for lung cancer patients.
Collapse
Affiliation(s)
| | - Wonjung Hwang
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
9
|
O'Brien RM, Meltzer S, Buckley CE, Heeran AB, Nugent TS, Donlon NE, Reynolds JV, Ree AH, Redalen KR, Hafeez A, O'Ríordáin DS, Hannon RA, Neary P, Kalbassi R, Mehigan BJ, McCormick PH, Dunne C, Kelly ME, Larkin JO, O'Sullivan J, Lysaght J, Lynam-Lennon N. Complement is increased in treatment resistant rectal cancer and modulates radioresistance. Cancer Lett 2024; 604:217253. [PMID: 39278399 DOI: 10.1016/j.canlet.2024.217253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Resistance to neoadjuvant chemoradiation therapy (neo-CRT) is a significant clinical problem in the treatment of locally advanced rectal cancer. Identification of novel therapeutic targets and biomarkers predicting therapeutic response is required to improve patient outcomes. Increasing evidence supports a role for the complement system in resistance to anti-cancer therapy. In this study, increased expression of complement effectors C3 and C5 and increased production of anaphylatoxins, C3a and C5a, was observed in radioresistant rectal cancer cells. Modulation of the central complement effector, C3, was demonstrated to functionally alter the radioresponse, with C3 overexpression significantly enhancing radioresistance, whilst C3 inhibition significantly increased sensitivity to a clinically-relevant dose of radiation. Inhibition of C3 was demonstrated to increase DNA damage and alter cell cycle distribution, mediating a shift towards a radiosensitive cell cycle phenotype suggesting a role for C3 in reprogramming of the tumoural radioresponse. Expression of the complement effectors C3 and C5 was significantly increased in human rectal tumour tissue, as was expression of CFB, a component of the alternative pathway of activation. Elevated levels of C3a and C5b-9 in pre-treatment sera from rectal cancer patients was associated with subsequent poor responses to neo-CRT and poorer survival. Together these data demonstrate a role for complement in the radioresistance of rectal cancer and identify key complement components as potential biomarkers predicting response to neo-CRT and outcome in rectal cancer.
Collapse
Affiliation(s)
- Rebecca M O'Brien
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland; Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| | - Sebastian Meltzer
- Department of Oncology, Akershus University Hospital, 1478 Lørenskog, Norway.
| | - Croí E Buckley
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| | - Aisling B Heeran
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| | - Timothy S Nugent
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland; Department of Surgery, Beacon Hospital, Dublin, Ireland.
| | - Noel E Donlon
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland; Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland; Department of Surgery, Beacon Hospital, Dublin, Ireland; Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James's Hospital, Dublin, Ireland.
| | - John V Reynolds
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| | - Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, 1478 Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Kathrine Røe Redalen
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | - Adnan Hafeez
- Department of Surgery, Beacon Hospital, Dublin, Ireland.
| | | | | | - Paul Neary
- Department of Surgery, Beacon Hospital, Dublin, Ireland.
| | - Reza Kalbassi
- Department of Surgery, Beacon Hospital, Dublin, Ireland.
| | - Brian J Mehigan
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland; Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James's Hospital, Dublin, Ireland.
| | - Paul H McCormick
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland; Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James's Hospital, Dublin, Ireland.
| | - Cara Dunne
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland; Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James's Hospital, Dublin, Ireland.
| | - Michael E Kelly
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland; Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James's Hospital, Dublin, Ireland.
| | - John O Larkin
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland; Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James's Hospital, Dublin, Ireland.
| | - Jacintha O'Sullivan
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| | - Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| | - Niamh Lynam-Lennon
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
10
|
Liu G, He X, Zhao G, Lu Z. Complement regulation in tumor immune evasion. Semin Immunol 2024; 76:101912. [PMID: 39579520 DOI: 10.1016/j.smim.2024.101912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
The complement system plays crucial roles in both innate and adaptive immune responses, facilitating the elimination of pathogens such as microorganisms and damaged cells, including cancer cells. It is tightly regulated and integrated with cell-mediated immunity. In the tumor microenvironment, the complement system performs both immune and nonimmune functions in tumor and immune cells through pathways that depend on or are independent of complement activation, thereby promoting immune evasion and tumor progression.
Collapse
Affiliation(s)
- Guijun Liu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou, Zhejiang 310029, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang 310029, China
| | - Xuxiao He
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou, Zhejiang 310029, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang 310029, China
| | - Gaoxiang Zhao
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266061, China
| | - Zhimin Lu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou, Zhejiang 310029, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang 310029, China.
| |
Collapse
|
11
|
Wang Y, Xu L, Ling L, Yao M, Shi S, Yu C, Li Y, Shen J, Jiang H, Xie C. Unraveling the CDK9/PP2A/ERK Network in Transcriptional Pause Release and Complement Activation in KRAS-mutant Cancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404926. [PMID: 39254172 PMCID: PMC11538672 DOI: 10.1002/advs.202404926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/15/2024] [Indexed: 09/11/2024]
Abstract
Selective inhibition of the transcription elongation factor (P-TEFb) complex represents a promising approach in cancer therapy, yet CDK9 inhibitors (CDK9i) are currently limited primarily to certain hematological malignancies. Herein, while initial responses to CDK9-targeted therapies are observed in vitro across various KRAS-mutant cancer types, their efficacy is far from satisfactory in nude mouse xenograft models. Mechanistically, CDK9 inhibition leads to compensatory activation of ERK-MYC signaling, accompanied by the recovery of proto-oncogenes, upregulation of immediate early genes (IEGs), stimulation of the complement C1r-C3-C3a cascade, and induction of tumor immunosuppression. The "paradoxical" regulation of PP2Ac activity involving the CDK9/Src interplay contributes to ERK phosphorylation and pause-release of RNA polymerase II (Pol II). Co-targeting of CDK9 and KRAS/MAPK signaling pathways eliminates ERK-MYC activation and prevents feedback activation mediated by receptor tyrosine kinases, leading to more effective control of KRAS-mutant cancers and overcoming KRASi resistance. Moreover, modulating the tumor microenvironment (TME) by complement system intervention enhances the response to CDK9i and potently suppresses tumor growth. Overall, the preclinical investigations establish a robust framework for conducting clinical trials employing KRASi/SOS1i/MEKi or immunomodifiers in combination with CDK9i to simultaneously target cancer cells and their crosstalk with the TME, thereby yielding improved responses in KRAS-mutant patients.
Collapse
Affiliation(s)
- Yafang Wang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University393 Middle Huaxia RoadShanghai201210P. R. China
| | - Lansong Xu
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University393 Middle Huaxia RoadShanghai201210P. R. China
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital)Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Lijun Ling
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University393 Middle Huaxia RoadShanghai201210P. R. China
| | - Mingyue Yao
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University393 Middle Huaxia RoadShanghai201210P. R. China
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital)Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
- Lingang LaboratoryShanghai200031P. R. China
| | - Shangxuan Shi
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University393 Middle Huaxia RoadShanghai201210P. R. China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210P. R. China
| | - Chengcheng Yu
- Lingang LaboratoryShanghai200031P. R. China
- Drug Discovery and Development CenterShanghai Institute of Materia MedicaChinese Academy of Sciences555 Zuchongzhi RoadShanghai201203P. R. China
| | | | - Jie Shen
- Department of PharmacyThe SATCM Third Grade Laboratory of Traditional Chinese Medicine PreparationsShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203P. R. China
| | - Hualiang Jiang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University393 Middle Huaxia RoadShanghai201210P. R. China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210P. R. China
- Drug Discovery and Development CenterShanghai Institute of Materia MedicaChinese Academy of Sciences555 Zuchongzhi RoadShanghai201203P. R. China
| | - Chengying Xie
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University393 Middle Huaxia RoadShanghai201210P. R. China
- Lingang LaboratoryShanghai200031P. R. China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210P. R. China
| |
Collapse
|
12
|
Merle NS, Roumenina LT. The complement system as a target in cancer immunotherapy. Eur J Immunol 2024; 54:e2350820. [PMID: 38996361 DOI: 10.1002/eji.202350820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Malignant cells are part of a complex network within the tumor microenvironment, where their interaction with host cells and soluble mediators, including complement components, is pivotal. The complement system, known for its role in immune defense and homeostasis, exhibits a dual effect on cancer progression. This dichotomy arises from its antitumoral opsonophagocytosis and cytotoxicity versus its protumoral chronic inflammation mediated by the C5a/C5aR1 axis, influencing antitumor T-cell responses. Recent studies have revealed distinct co-expression patterns of complement genes in various cancer types, correlating with prognosis. Notably, some cancers exhibit co-regulated overexpression of complement genes associated with poor prognosis, while others show favorable outcomes. However, significant intra-patient heterogeneity further complicates this classification. Moreover, the involvement of locally produced and intracellular complement proteins adds complexity to the tumor microenvironment dynamics. This review highlights the unique interplay of complement components within different cancers and patient cohorts, showing that "one size does not fit all", for complement in cancer. It summarizes the clinical trials for complement targeting in cancer, emphasizing the need for tailored therapeutic approaches. By elucidating the mechanistic basis of complement's context-dependent role, this review aims to facilitate the development of personalized cancer therapies, ultimately improving patient care and outcomes.
Collapse
Affiliation(s)
- Nicolas S Merle
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
| | - Lubka T Roumenina
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
| |
Collapse
|
13
|
Qiu GH, Yu B, Ma M. G protein-coupled receptor-mediated signaling of immunomodulation in tumor progression. FASEB J 2024; 38:e23829. [PMID: 39017658 DOI: 10.1096/fj.202400458r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/07/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
G protein-coupled receptors (GPCRs) are essential contributors to tumor growth and metastasis due to their roles in immune cell regulation. Therefore, GPCRs are potential targets for cancer immunotherapy. Here, we discuss the current understanding of the roles of GPCRs and their signaling pathways in tumor progression from an immunocellular perspective. Additionally, we focus on the roles of GPCRs in regulating immune checkpoint proteins involved in immune evasion. Finally, we review the progress of clinical trials of GPCR-targeted drugs for cancer treatment, which may be combined with immunotherapy to improve treatment efficacy. This expanded understanding of the role of GPCRs may shed light on the mechanisms underlying tumor progression and provide a novel perspective on cancer immunotherapy.
Collapse
Affiliation(s)
- Guang-Hong Qiu
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| | - Bin Yu
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| | - Mei Ma
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| |
Collapse
|
14
|
Chuang L, Qifeng J, Shaolei Y. The tumor immune microenvironment and T-cell-related immunotherapies in colorectal cancer. Discov Oncol 2024; 15:244. [PMID: 38918278 PMCID: PMC11199466 DOI: 10.1007/s12672-024-01117-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024] Open
Abstract
The tumor microenvironment includes a complex network of immune T-cell subsets that play important roles in colorectal cancer (CRC) progression and are key elements of CRC immunotherapy. T cells develop and migrate within tumors, recognizing tumor-specific antigens to regulate immune surveillance. Current immunotherapies are divided into the following main categories based on the regulatory role of T-cell subsets in the tumor immune microenvironment (TIME): cytokines, monoclonal antibodies, peptide vaccines, CAR-T cells and more. This review describes the composition of the tumor immune microenvironment in colorectal cancer and the involvement of T cells in the pathogenesis and progression of CRC as well as current T-cell-related immunotherapies. Further studies on CRC-specific tumor antigens, the gene regulation of T cells, and the regulation of immune activity are needed.
Collapse
Affiliation(s)
- Liu Chuang
- Hanan Branch of the Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Guogoli Street, Nangang District, Harbin, China
| | - Ju Qifeng
- The First Affiliated Hospital Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Shaolei
- Hanan Branch of the Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Guogoli Street, Nangang District, Harbin, China.
| |
Collapse
|
15
|
Jiang C, Zhang S, Jiang L, Chen Z, Chen H, Huang J, Tang J, Luo X, Yang G, Liu J, Chi H. Precision unveiled: Synergistic genomic landscapes in breast cancer-Integrating single-cell analysis and decoding drug toxicity for elite prognostication and tailored therapeutics. ENVIRONMENTAL TOXICOLOGY 2024; 39:3448-3472. [PMID: 38450906 DOI: 10.1002/tox.24205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Globally, breast cancer, with diverse subtypes and prognoses, necessitates tailored therapies for enhanced survival rates. A key focus is glutamine metabolism, governed by select genes. This study explored genes associated with T cells and linked them to glutamine metabolism to construct a prognostic staging index for breast cancer patients for more precise medical treatment. METHODS Two frameworks, T-cell related genes (TRG) and glutamine metabolism (GM), stratified breast cancer patients. TRG analysis identified key genes via hdWGCNA and machine learning. T-cell communication and spatial transcriptomics emphasized TRG's clinical value. GM was defined using Cox analyses and the Lasso algorithm. Scores categorized patients as TRG_high+GM_high (HH), TRG_high+GM_low (HL), TRG_low+GM_high (LH), or TRG_low+GM_low (LL). Similarities between HL and LH birthed a "Mixed" class and the TRG_GM classifier. This classifier illuminated gene variations, immune profiles, mutations, and drug responses. RESULTS Utilizing a composite of two distinct criteria, we devised a typification index termed TRG_GM classifier, which exhibited robust prognostic potential for breast cancer patients. Our analysis elucidated distinct immunological attributes across the classifiers. Moreover, by scrutinizing the genetic variations across groups, we illuminated their unique genetic profiles. Insights into drug sensitivity further underscored avenues for tailored therapeutic interventions. CONCLUSION Utilizing TRG and GM, a robust TRG_GM classifier was developed, integrating clinical indicators to create an accurate predictive diagnostic map. Analysis of enrichment disparities, immune responses, and mutation patterns across different subtypes yields crucial subtype-specific characteristics essential for prognostic assessment, clinical decision-making, and personalized therapies. Further exploration is warranted into multiple fusions between metrics to uncover prognostic presentations across various dimensions.
Collapse
Affiliation(s)
- Chenglu Jiang
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Shengke Zhang
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Lai Jiang
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Zipei Chen
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Haiqing Chen
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Jinbang Huang
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Jingyi Tang
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Xiufang Luo
- Geriatric department, Dazhou Central Hospital, Dazhou, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, Ohio, USA
| | - Jie Liu
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Hao Chi
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
16
|
Sun J, Li X, Wang Q, Chen P, Zhao L, Gao Y. Proteomic profiling and biomarker discovery for predicting the response to PD-1 inhibitor immunotherapy in gastric cancer patients. Front Pharmacol 2024; 15:1349459. [PMID: 38881867 PMCID: PMC11176556 DOI: 10.3389/fphar.2024.1349459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Background: Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment; however, a significant proportion of gastric cancer (GC) patients do not respond to this therapy. Consequently, there is an urgent need to elucidate the mechanisms underlying resistance to ICIs and identify robust biomarkers capable of predicting the response to ICIs at treatment initiation. Methods: In this study, we collected GC tissues from 28 patients prior to the administration of anti-programmed death 1 (PD-1) immunotherapy and conducted protein quantification using high-resolution mass spectrometry (MS). Subsequently, we analyzed differences in protein expression, pathways, and the tumor microenvironment (TME) between responders and non-responders. Furthermore, we explored the potential of these differences as predictive indicators. Finally, using machine learning algorithms, we screened for biomarkers and constructed a predictive model. Results: Our proteomics-based analysis revealed that low activity in the complement and coagulation cascades pathway (CCCP) and a high abundance of activated CD8 T cells are positive signals corresponding to ICIs. By using machine learning, we successfully identified a set of 10 protein biomarkers, and the constructed model demonstrated excellent performance in predicting the response in an independent validation set (N = 14; area under the curve [AUC] = 0.959). Conclusion: In summary, our proteomic analyses unveiled unique potential biomarkers for predicting the response to PD-1 inhibitor immunotherapy in GC patients, which may provide the impetus for precision immunotherapy.
Collapse
Affiliation(s)
- Jiangang Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaojing Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qian Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Longfei Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yongshun Gao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
17
|
Ryan AT, Kim M, Lim K. Immune Cell Migration to Cancer. Cells 2024; 13:844. [PMID: 38786066 PMCID: PMC11120175 DOI: 10.3390/cells13100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Immune cell migration is required for the development of an effective and robust immune response. This elegant process is regulated by both cellular and environmental factors, with variables such as immune cell state, anatomical location, and disease state that govern differences in migration patterns. In all cases, a major factor is the expression of cell surface receptors and their cognate ligands. Rapid adaptation to environmental conditions partly depends on intrinsic cellular immune factors that affect a cell's ability to adjust to new environment. In this review, we discuss both myeloid and lymphoid cells and outline key determinants that govern immune cell migration, including molecules required for immune cell adhesion, modes of migration, chemotaxis, and specific chemokine signaling. Furthermore, we summarize tumor-specific elements that contribute to immune cell trafficking to cancer, while also exploring microenvironment factors that can alter these cellular dynamics within the tumor in both a pro and antitumor fashion. Specifically, we highlight the importance of the secretome in these later aspects. This review considers a myriad of factors that impact immune cell trajectory in cancer. We aim to highlight the immunotherapeutic targets that can be harnessed to achieve controlled immune trafficking to and within tumors.
Collapse
Affiliation(s)
- Allison T. Ryan
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (A.T.R.); (M.K.)
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (A.T.R.); (M.K.)
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Kihong Lim
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (A.T.R.); (M.K.)
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
18
|
Pei Y, Cui X, Wang Y. Regulation of IL-10 expression and function by JAK-STAT in CD8 + T cells. Int Immunopharmacol 2024; 128:111563. [PMID: 38246002 DOI: 10.1016/j.intimp.2024.111563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
IL-10 is a pleiotropic cytokine that plays a significant role in antiviral and antitumor immunity. Potent CD8+ T cells express IL-10 after stimulation by strong TCR signaling, which promotes the killing effect of CD8+ T cells. However, the regulation of IL-10 expression in CD8+ T cells and its signaling pathway to enhance CD8+ T cell function are largely unknown. In this study, we investigated the JAK-STAT signaling molecules that regulate IL-10 expression in CD8+ T cells and the JAK-STAT signaling pathway that IL-10 enhances the function of CD8+ T cells through its receptor, using small molecule inhibitors and CRISPR-Cas9 gene editing. Our findings provide new insights and a theoretical basis for the immunotherapy of tumors.
Collapse
Affiliation(s)
- Yu Pei
- Life Science Institute, Jinzhou Medical University, Jinzhou, China; Department of Clinical Laboratory, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiuping Cui
- Life Science Institute, Jinzhou Medical University, Jinzhou, China
| | - Yu Wang
- Life Science Institute, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
19
|
Saxena R, Gottlin EB, Campa MJ, Bushey RT, Guo J, Patz EF, He YW. Complement factor H: a novel innate immune checkpoint in cancer immunotherapy. Front Cell Dev Biol 2024; 12:1302490. [PMID: 38389705 PMCID: PMC10883309 DOI: 10.3389/fcell.2024.1302490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024] Open
Abstract
The elimination of cancer cells critically depends on the immune system. However, cancers have evolved a variety of defense mechanisms to evade immune monitoring, leading to tumor progression. Complement factor H (CFH), predominately known for its function in inhibiting the alternative pathway of the complement system, has recently been identified as an important innate immunological checkpoint in cancer. CFH-mediated immunosuppression enhances tumor cells' ability to avoid immune recognition and produce an immunosuppressive tumor microenvironment. This review explores the molecular underpinnings, interactions with immune cells, clinical consequences, and therapeutic possibilities of CFH as an innate immune checkpoint in cancer control. The difficulties and opportunities of using CFH as a target in cancer immunotherapy are also explored.
Collapse
Affiliation(s)
- Ruchi Saxena
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States
| | - Elizabeth B Gottlin
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
| | - Michael J Campa
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
| | - Ryan T Bushey
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
| | - Jian Guo
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States
| | - Edward F Patz
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, United States
| | - You-Wen He
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
20
|
Luan X, Lei T, Fang J, Liu X, Fu H, Li Y, Chu W, Jiang P, Tong C, Qi H, Fu Y. Blockade of C5a receptor unleashes tumor-associated macrophage antitumor response and enhances CXCL9-dependent CD8 + T cell activity. Mol Ther 2024; 32:469-489. [PMID: 38098230 PMCID: PMC10861991 DOI: 10.1016/j.ymthe.2023.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/17/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023] Open
Abstract
Macrophages play a crucial role in shaping the immune state within the tumor microenvironment (TME) and are often influenced by tumors to hinder antitumor immunity. However, the underlying mechanisms are still elusive. Here, we observed abnormal expression of complement 5a receptor (C5aR) in human ovarian cancer (OC), and identified high levels of C5aR expression on tumor-associated macrophages (TAMs), which led to the polarization of TAMs toward an immunosuppressive phenotype. C5aR knockout or inhibitor treatment restored TAM antitumor response and attenuated tumor progression. Mechanistically, C5aR deficiency reprogrammed macrophages from a protumor state to an antitumor state, associating with the upregulation of immune response and stimulation pathways, which in turn resulted in the enhanced antitumor response of cytotoxic T cells in a manner dependent on chemokine (C-X-C motif) ligand 9 (CXCL9). The pharmacological inhibition of C5aR also improved the efficacy of immune checkpoint blockade therapy. In patients, C5aR expression associated with CXCL9 production and infiltration of CD8+ T cells, and a high C5aR level predicted poor clinical outcomes and worse benefits from anti-PD-1 therapy. Thus, our study sheds light on the mechanisms underlying the modulation of TAM antitumor immune response by the C5a-C5aR axis and highlights the potential of targeting C5aR for clinical applications.
Collapse
Affiliation(s)
- Xiaojin Luan
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ting Lei
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jie Fang
- Department of Gynecology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu, China
| | - Xue Liu
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Huijia Fu
- Department of Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yiran Li
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Chu
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Jiang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chao Tong
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Hongbo Qi
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China.
| | - Yong Fu
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
21
|
Ostrowska-Lesko M, Rajtak A, Moreno-Bueno G, Bobinski M. Scientific and clinical relevance of non-cellular tumor microenvironment components in ovarian cancer chemotherapy resistance. Biochim Biophys Acta Rev Cancer 2024; 1879:189036. [PMID: 38042260 DOI: 10.1016/j.bbcan.2023.189036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
The tumor microenvironment (TME) components play a crucial role in cancer cells' resistance to chemotherapeutic agents. This phenomenon is exceptionally fundamental in patients with ovarian cancer (OvCa), whose outcome depends mainly on their response to chemotherapy. Until now, most reports have focused on the role of cellular components of the TME, while less attention has been paid to the stroma and other non-cellular elements of the TME, which may play an essential role in the therapy resistance. Inhibiting these components could help define new therapeutic targets and potentially restore chemosensitivity. The aim of the present article is both to summarize the knowledge about non-cellular components of the TME in the development of OvCa chemoresistance and to suggest targeting of non-cellular elements of the TME as a valuable strategy to overcome chemoresistance and to develop new therapeutic strategies in OvCA patients.
Collapse
Affiliation(s)
- Marta Ostrowska-Lesko
- Chair and Department of Toxicology, Medical University of Lublin, 8b Jaczewskiego Street, 20-090 Lublin, Poland.
| | - Alicja Rajtak
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Poland
| | - Gema Moreno-Bueno
- Biochemistry Department, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Sols-Morreale' (IIBm-CISC), Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Spain; Fundación MD Anderson Internacional (FMDA), Spain.
| | - Marcin Bobinski
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Poland.
| |
Collapse
|
22
|
Meri S, Magrini E, Mantovani A, Garlanda C. The Yin Yang of Complement and Cancer. Cancer Immunol Res 2023; 11:1578-1588. [PMID: 37902610 DOI: 10.1158/2326-6066.cir-23-0399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 10/31/2023]
Abstract
Cancer-related inflammation is a crucial component of the tumor microenvironment (TME). Complement activation occurs in cancer and supports the development of an inflammatory microenvironment. Complement has traditionally been considered a mechanism of immune resistance against cancer, and its activation is known to contribute to the cytolytic effects of antibody-based immunotherapeutic treatments. However, several studies have recently revealed that complement activation may exert protumoral functions by sustaining cancer-related inflammation and immunosuppression through different molecular mechanisms, targeting both the TME and cancer cells. These new discoveries have revealed that complement manipulation can be considered a new strategy for cancer therapies. Here we summarize our current understanding of the mechanisms by which the different elements of the complement system exert antitumor or protumor functions, both in preclinical studies and in human tumorigenesis. Complement components can serve as disease biomarkers for cancer stratification and prognosis and be exploited for tumor treatment.
Collapse
Affiliation(s)
- Seppo Meri
- Department of Bacteriology and Immunology and Translational Immunology Research Program, University and University Hospital of Helsinki, Helsinki, Finland
| | | | - Alberto Mantovani
- IRCCS-Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Cecilia Garlanda
- IRCCS-Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
23
|
de Souza Teixeira AA, Biondo L, Silveira LS, Lima EA, Diniz TA, Lira FS, Seelaender M, Rosa Neto JC. Exercise training induces alteration of clock genes and myokines expression in tumor-bearing mice. Cell Biochem Funct 2023; 41:1383-1394. [PMID: 37877577 DOI: 10.1002/cbf.3872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023]
Abstract
To investigate the impact of different exercise training schedules (following a fixed schedule or at random times of the day) on clock genes and myokine expression patterns in the skeletal muscle of tumor-bearing mice. Mice were divided into three groups: tumor (LLC), tumor + exercise training (LLC + T) always performed at the same time of the day (ZT2) and exercise training at random times of the day (ZTAlt). Mice were inoculated subcutaneously with Lewis lung carcinoma cells. The gastrocnemius muscle was dissected and the clock gene expression (Clock/Per1/Per2/Per3/Rev-Erbα/GAPDH) was investigated by quantitative reverse transcription polymerase chain reaction with SYBR® Green. Myokine content in muscle (tumour necrosis factor alpha/IL-10/IL-4) was assessed by enzyme-linked immunosorbent assay. At the end of the protocol, the trained groups showed a reduction in total weight, when compared to Lewis lung carcinoma. Tumor weight was lower in the LLC + T (ZTAlt), when compared to LLC. Clock gene mRNA expression showed a significant increase for ZT20 in the groups that performed physical exercise at LLC + T (ZTAlt), when compared with LLC. The Per family showed increased mRNA expression in ZT4 in both trained mice groups, when compared with LLC. LLC + T (ZTAlt) presented reduction of the expression of anti-inflammatory myokines (Il-10/IL-4) during the night, compared with LLC + T(ZT2). Exercise training is able to induce marked modification of clock gene expression and of the production of myokines, in a way that is dependent on schedule exercise training strategy. Taken together, the results show that exercise is a potent Zeitgeber and may thus contribute to change clock genes expression and myokines that are able to reduce the tumor weight.
Collapse
Affiliation(s)
- Alexandre Abilio de Souza Teixeira
- Department of Cell and Developmental Biology, Immunometabolism Research Group, Institute of Biomedical Sciences, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Luana Biondo
- Department of Cell and Developmental Biology, Immunometabolism Research Group, Institute of Biomedical Sciences, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Loreana Sanches Silveira
- Department of Cell and Developmental Biology, Immunometabolism Research Group, Institute of Biomedical Sciences, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Edson A Lima
- Department of Cell and Developmental Biology, Immunometabolism Research Group, Institute of Biomedical Sciences, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Tiego A Diniz
- Department of Cell and Developmental Biology, Immunometabolism Research Group, Institute of Biomedical Sciences, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Fabio Santos Lira
- Department of Physical Education, Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Universidade Estadual Paulista (UNESP), Presidente Prudente, São Paulo, Brazil
- CIDAF, University of Coimbra, Coimbra, Portugal
| | - Marilia Seelaender
- Department of Surgery and LIM26 HC-USP, Cancer Metabolism Research Group, University of São Paulo, São Paulo, Brazil
| | - José Cesar Rosa Neto
- Department of Cell and Developmental Biology, Immunometabolism Research Group, Institute of Biomedical Sciences, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| |
Collapse
|
24
|
Gong Z, He Y, Mi X, Li C, Sun X, Wang G, Li L, Han Y, Xu C, Wang W, Cai S, Wang L, Liu Z. Complement and coagulation cascades pathway-related signature as a predictor of immunotherapy in metastatic urothelial cancer. Aging (Albany NY) 2023; 15:9479-9498. [PMID: 37747262 PMCID: PMC10564431 DOI: 10.18632/aging.205022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have shown efficacy in patients with metastatic urothelial cancer (mUC), however, only a small subset of patients could benefit from ICIs. Identifying predictive biomarkers of ICIs in patients with mUC is clinical meaningful for patient stratification and administration. METHODS Clinical and transcriptomic data of mUC patients treated with ICIs from mUC cohort (IMvigor210 study) was utilized to explore the predictive biomarkers. LASSO Cox regression was performed to construct a predictive model. The predictive model was trained and tested in the mUC cohort, and then exploratively tested in clear cell renal cell carcinoma (ccRCC) and melanoma cohorts in which patients also received ICIs regimens. RESULTS The differentially expressed genes (DEGs) in complement and coagulation cascades pathway (CCCP) were mainly enriched in non-responders of ICIs in the mUC cohort. A CCCP risk score was constructed based on the DEGs in CCCP. Patients with a low-risk score were more responsive to ICIs and had better overall survival (OS) than those with a high-risk score in the training set (HR, 0.38; 95%CI, 0.27-0.53, P<0.001) and the test set (HR, 0.34; 95%CI, 0.17-0.71, P=0.003). The association between the CCCP risk score and OS remained significant in the multivariable cox regression by adjusting PD-L1 expression and TMB (P<0.05). In addition, there was no difference for OS in the bladder cancer patients without ICIs (TCGA-BLCA cohort, HR, 0.76, 95%CI, 0.49-1.18, P=0.22), suggesting a predictive but not prognostic effect of the risk score. For the exploratory analysis, consistent results were observed that low-risk group showed superior OS in ccRCC cohort (HR, 0.52, 95%CI, 0.37-0.75, P<0.001) and melanoma cohort (HR, 0.27, 95%CI, 0.12-0.62, P=0.001). CONCLUSIONS Our study showed that the CCCP risk score is an independent biomarker that predicts the efficacy of ICIs in mUC patients. The patients with a low-risk score tend to have a better response to ICIs and a longer life time probably due to the immune-activated TME. Further studies are needed to validate the clinical utility of the seven-gene signature.
Collapse
Affiliation(s)
- Zheng Gong
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110001, China
| | - Yuming He
- Burning Rock Biotech, Guangzhou 510300, China
| | - Xiao Mi
- Burning Rock Biotech, Guangzhou 510300, China
| | | | - Xiaoran Sun
- Burning Rock Biotech, Guangzhou 510300, China
| | | | - Leo Li
- Burning Rock Biotech, Guangzhou 510300, China
| | - Yusheng Han
- Burning Rock Biotech, Guangzhou 510300, China
| | - Chunwei Xu
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Wenxian Wang
- Department of Clinical Trial, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Shangli Cai
- Burning Rock Biotech, Guangzhou 510300, China
| | - Liang Wang
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Zhongyuan Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
25
|
Wang X, Hao Y, Chen J, Ding P, Lv X, Zhou D, Li L, Li L, Xu Y, Zhu Y, Zhang W, Chen L, Liao T, He X, Ji QH, Hu W. Nuclear complement C3b promotes paclitaxel resistance by assembling the SIN3A/HDAC1/2 complex in non-small cell lung cancer. Cell Death Dis 2023; 14:351. [PMID: 37291119 PMCID: PMC10250389 DOI: 10.1038/s41419-023-05869-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/12/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
In addition to the classical role as a serum effector system of innate immunity, accumulating evidence suggests that intracellular complement components have indispensable functions in immune defense, T cell homeostasis, and tumor cell proliferation and metastasis. Here, we revealed that complement component 3 (C3) is remarkably upregulated in paclitaxel (PTX)-resistant non-small cell lung cancer (NSCLC) cells and that knockdown of C3 promoted PTX-induced cell apoptosis, sensitizing resistant cells to PTX therapy. Ectopic C3 decreased PTX-induced apoptosis and induced resistance to PTX treatment in original NSCLC cells. Interestingly, C3b, the activated fragment of C3, was found to translocate into the nucleus and physically associate with the HDAC1/2-containing SIN3A complex to repress the expression of GADD45A, which plays an important role in cell growth inhibition and apoptosis induction. Importantly, C3 downregulated GADD45A by enhancing the binding of the SIN3A complex with the promoter of GADD45A, thus decreasing the H3Ac level to compress chromatin around the GADD45A locus. Subsequently, ectopic GADD45A promoted PTX-induced cell apoptosis, sensitizing resistant cells to PTX therapy, and insufficiency of GADD45A in original cancer cells induced resistance to PTX treatment. These findings identify a previously unknown nucleus location and oncogenic property for C3 in chemotherapy and provide a potential therapeutic opportunity to overcome PTX resistance.
Collapse
Affiliation(s)
- Xiaochao Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yan Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jianfeng Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, Guangzhou, Guangdong, 510060, China
| | - Peipei Ding
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xinyue Lv
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Danlei Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ling Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Luying Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yanqing Xu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yumeng Zhu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wei Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lu Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tian Liao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Qing-Hai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
26
|
Ou L, Liu S, Wang H, Guo Y, Guan L, Shen L, Luo R, Elder DE, Huang AC, Karakousis G, Miura J, Mitchell T, Schuchter L, Amaravadi R, Flowers A, Mou H, Yi F, Guo W, Ko J, Chen Q, Tian B, Herlyn M, Xu X. Patient-derived melanoma organoid models facilitate the assessment of immunotherapies. EBioMedicine 2023; 92:104614. [PMID: 37229906 PMCID: PMC10277922 DOI: 10.1016/j.ebiom.2023.104614] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Only a minority of melanoma patients experience durable responses to immunotherapies due to inter- and intra-tumoral heterogeneity in melanoma. As a result, there is a pressing need for suitable preclinical models to investigate resistance mechanisms and enhance treatment efficacy. METHODS Here, we report two different methods for generating melanoma patient-derived organoids (MPDOs), one is embedded in collagen gel, and the other is inlaid in Matrigel. MPDOs in Matrigel are used for assessing the therapeutic effects of anti-PD-1 antibodies (αPD-1), autochthonous tumor infiltrating lymphocytes (TILs), and small molecule compounds. MPDOs in collagen gel are used for evaluating the chemotaxis and migratory capacity of TILs. FINDING The MPDOs in collagen gel and Matrigel have similar morphology and immune cell composition to their parental melanoma tissues. MPDOs show inter- and intra-tumoral heterogeneity and contain diverse immune cells such as CD4+, CD8+ T, Treg, CD14+ monocytic, CD15+, and CD11b+ myeloid cells. The tumor microenvironment (TME) in MPDOs is highly immunosuppressive, and the lymphoid and myeloid lineages express similar levels of PD-1, PD-L1, and CTLA-4 as their parental melanoma tissues. Anti-PD-1 antibodies (αPD-1) reinvigorate CD8+ T cells and induce melanoma cell death in the MPDOs. TILs expanded by IL-2 and αPD-1 show significantly lower expression of TIM-3, better migratory capacity and infiltration of autochthonous MPDOs, and more effective killing of melanoma cells than TILs expanded by IL-2 alone or IL-2 with αCD3. A small molecule screen discovers that Navitoclax increases the cytotoxicity of TIL therapy. INTERPRETATION MPDOs may be used to test immune checkpoint inhibitors and cellular and targeted therapies. FUNDING This work was supported by the NIH grants CA114046, CA261608, CA258113, and the Tara Miller Melanoma Foundation.
Collapse
Affiliation(s)
- Lingling Ou
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Shujing Liu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Huaishan Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yeye Guo
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lei Guan
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Longbin Shen
- The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Ruhui Luo
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - David E Elder
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alexander C Huang
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Giorgos Karakousis
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Miura
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tara Mitchell
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lynn Schuchter
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ravi Amaravadi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ahron Flowers
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Haiwei Mou
- The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Fan Yi
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jina Ko
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qing Chen
- The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Bin Tian
- The Wistar Institute, Philadelphia, PA, 19104, USA
| | | | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
27
|
Hanna J, Ah-Pine F, Boina C, Bedoui Y, Gasque P, Septembre-Malaterre A. Deciphering the Role of the Anaphylatoxin C3a: A Key Function in Modulating the Tumor Microenvironment. Cancers (Basel) 2023; 15:cancers15112986. [PMID: 37296948 DOI: 10.3390/cancers15112986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The complement system plays a crucial role in cancer development. Our study investigated the role of C3a anaphylatoxin on the tumor microenvironment. Our models consisted of mesenchymal stem cells (MSC-like, 3T3-L1), macrophages (Raw 264.7 Blue, (RB)) and tumor cells (melanoma B16/F0). Recombinant mouse (Mo) C3a (rC3a) was produced in CHO cells transfected with a Mo-IL10-signal peptide-Mo C3a plasmid construct. The effects of rC3a, IFN-γ, TGF-β1, and LPS were tested on the expression of C3, C3aR, PI3K, cytokines, chemokines, transcription factors, antioxidant defense mechanisms, angiogenesis and macrophage polarization (M1/M2). 3T3-L1 expressed the highest levels of C3, while C3aR was expressed more by RB. Interestingly, expression of C3/3T3-L1 and C3aR/RB was markedly upregulated by IFN-γ. rC3a was found to upregulate the expression of anti-inflammatory cytokines (IL-10) on 3T3-L1 and TGF-β1 on RB. rC3a also upregulated the expression of pro-inflammatory cytokines in RB. The expression of CCL-5 increased in 3T3-L1 in response to rC3a. On RB, rC3a did not alter M1/M2 polarization but upregulated the expression of antioxidant defense genes, HO-1, and VEGF. C3/C3a produced mainly by MSC may play a critical role in TME remodeling by stimulating both anti-inflammatory and proangiogenic activities of tumor stromal cells.
Collapse
Affiliation(s)
- Jolimar Hanna
- Unité de Recherche EPI (Études Pharmaco-Immunologiques), Université de La Réunion, Allée des Topazes, 97405 Saint-Denis, France
- Laboratoire d'Immunologie Clinique et Expérimentale OI (LICE OI), CHU de La Réunion, Allée des Topazes, 97405 Saint-Denis, France
| | - Franck Ah-Pine
- Unité de Recherche EPI (Études Pharmaco-Immunologiques), Université de La Réunion, Allée des Topazes, 97405 Saint-Denis, France
- Service d'Anatomie et Cytologie Pathologiques, CHU de La Réunion, Avenue François Mitterrand BP450, 97448 Saint-Pierre, France
| | - Chailas Boina
- Unité de Recherche EPI (Études Pharmaco-Immunologiques), Université de La Réunion, Allée des Topazes, 97405 Saint-Denis, France
- Laboratoire d'Immunologie Clinique et Expérimentale OI (LICE OI), CHU de La Réunion, Allée des Topazes, 97405 Saint-Denis, France
| | - Yosra Bedoui
- Unité de Recherche EPI (Études Pharmaco-Immunologiques), Université de La Réunion, Allée des Topazes, 97405 Saint-Denis, France
- Service d'Anatomie et Cytologie Pathologiques, CHU de La Réunion, Avenue François Mitterrand BP450, 97448 Saint-Pierre, France
| | - Philippe Gasque
- Unité de Recherche EPI (Études Pharmaco-Immunologiques), Université de La Réunion, Allée des Topazes, 97405 Saint-Denis, France
- Laboratoire d'Immunologie Clinique et Expérimentale OI (LICE OI), CHU de La Réunion, Allée des Topazes, 97405 Saint-Denis, France
| | - Axelle Septembre-Malaterre
- Unité de Recherche EPI (Études Pharmaco-Immunologiques), Université de La Réunion, Allée des Topazes, 97405 Saint-Denis, France
- Laboratoire d'Immunologie Clinique et Expérimentale OI (LICE OI), CHU de La Réunion, Allée des Topazes, 97405 Saint-Denis, France
| |
Collapse
|
28
|
Segal BH, Giridharan T, Suzuki S, Khan ANH, Zsiros E, Emmons TR, Yaffe MB, Gankema AAF, Hoogeboom M, Goetschalckx I, Matlung HL, Kuijpers TW. Neutrophil interactions with T cells, platelets, endothelial cells, and of course tumor cells. Immunol Rev 2023; 314:13-35. [PMID: 36527200 PMCID: PMC10174640 DOI: 10.1111/imr.13178] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neutrophils sense microbes and host inflammatory mediators, and traffic to sites of infection where they direct a broad armamentarium of antimicrobial products against pathogens. Neutrophils are also activated by damage-associated molecular patterns (DAMPs), which are products of cellular injury that stimulate the innate immune system through pathways that are similar to those activated by microbes. Neutrophils and platelets become activated by injury, and cluster and cross-signal to each other with the cumulative effect of driving antimicrobial defense and hemostasis. In addition, neutrophil extracellular traps are extracellular chromatin and granular constituents that are generated in response to microbial and damage motifs and are pro-thrombotic and injurious. Although neutrophils can worsen tissue injury, neutrophils may also have a role in facilitating wound repair following injury. A central theme of this review relates to how critical functions of neutrophils that evolved to respond to infection and damage modulate the tumor microenvironment (TME) in ways that can promote or limit tumor progression. Neutrophils are reprogrammed by the TME, and, in turn, can cross-signal to tumor cells and reshape the immune landscape of tumors. Importantly, promising new therapeutic strategies have been developed to target neutrophil recruitment and function to make cancer immunotherapy more effective.
Collapse
Affiliation(s)
- Brahm H Segal
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Thejaswini Giridharan
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Sora Suzuki
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Anm Nazmul H Khan
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Emese Zsiros
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Tiffany R Emmons
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Michael B Yaffe
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Angela A F Gankema
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark Hoogeboom
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Ines Goetschalckx
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Hanke L Matlung
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, Emma Children's Hospital Amsterdam University Medical Center (Amsterdam UMC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Wang J, Zhang S, Wang Y, Zhu Y, Xu X, Guo J. Alternative Complement Pathway Signature Determines Immunosuppression and Resistance to Immunotherapy Plus Tyrosine Kinase Inhibitor Combinations in Renal Cell Carcinoma. Urol Oncol 2023; 41:51.e13-51.e23. [PMID: 36328922 DOI: 10.1016/j.urolonc.2022.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/19/2022] [Accepted: 09/11/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Latest guidelines recommended immunotherapy (IO) plus tyrosine kinase inhibitor (TKI) combination as standard first-line therapy in renal cell carcinoma (RCC), with no predictive biomarker being applied. Complement system shapes tumor microenvironment, which may influence TKI+IO benefit. METHODS Two cohorts from our institute and 2 external cohorts were enrolled. RNA-sequencing was performed for each sample, and alternative complement pathway signature (ACPS) was defined by single sample gene set enrichment analysis. Immune infiltration and function were assessed by immunohistochemistry and flow cytometry. RESULTS Under TKI+IO therapy, ACPS was elevated in non-responders (P<0.01), and high-ACPS predicted lower response rate and shorter progression-free survival (P=0.040). Moreover, TKI+IO, rather than TKI monotherapy, may benefit patients of low-ACPS combined with SETD2-wild type (HR=0.55, P<0.001). In RCC, ACPS was associated with increased tumor-infiltrating T cells (Spearman's ρ=0.50, P=0.001). However, in high-ACPS samples, CD8+ T cells revealed an exhausted phenotype with decreased GZMB (P<0.001) and increased PD1 (P=0.008) expression. Elevated PD1 expression in high-ACPS samples was confirmed by immunohistochemistry (P=0.046). Besides, macrophage infiltration was increased in high-ACPS samples (P=0.045), along with suppressive cytokines. CONCLUSIONS Under TKI+IO, high-ACPS was linked to immunosuppression and treatment resistance. ACPS might be used as a biomarker for better treatment strategy between TKI+IO or TKI monotherapy.
Collapse
Affiliation(s)
- Jiajun Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sihong Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Wang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai,China
| | - Yanjun Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xianglai Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
30
|
Wu X, Srinivasan P, Basu M, Zhang P, Saruwatari M, Thommandru B, Jacobi A, Behlke M, Sandler A. Tumor Apolipoprotein E is a key checkpoint blocking anti-tumor immunity in mouse melanoma. Front Immunol 2022; 13:991790. [PMID: 36341364 PMCID: PMC9626815 DOI: 10.3389/fimmu.2022.991790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
Immunotherapy is a key modality in the treatment of cancer, but many tumors remain immune resistant. The classic mouse model of B16-F10 melanoma is immune resistant even in the face of checkpoint inhibition. Apolipoprotein E (apoE), a known immune suppressant is strikingly elevated in many human tumors, but its role in cancer immunology is not defined. We investigated the role of apoE in the immune micro-environment using a mouse melanoma model. We demonstrate that ApoE is -highly expressed in wild-type B16-F10 melanoma and serum levels progressively increase as tumors grow. The conditioned media from wild type ApoE secreting melanoma cells suppress T-cell activation in vitro while this suppressive effect is absent in conditioned media from ApoE knock out tumor cells. Mechanistically, apoE induces IL-10 secreting dendritic cells and stimulates T-cell apoptosis and arrest partially via the lrp8 receptor. Ablating ApoE in mice inoculated with tumor cells enabled tumor cell rejection and was associated with induction of immune pathway activation and immune cell infiltration. Tumor secreted apoE appears to be a potent immune cell checkpoint and targeting apoE is associated with enhanced tumor immunity in the mouse melanoma model.
Collapse
Affiliation(s)
- Xiaofang Wu
- The Joseph E. Robert Jr. Center for Surgical Care and The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, George Washington University, Washington, DC, United States
| | - Priya Srinivasan
- The Joseph E. Robert Jr. Center for Surgical Care and The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, George Washington University, Washington, DC, United States
| | - Mousumi Basu
- The Joseph E. Robert Jr. Center for Surgical Care and The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, George Washington University, Washington, DC, United States
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Michele Saruwatari
- The Joseph E. Robert Jr. Center for Surgical Care and The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, George Washington University, Washington, DC, United States
| | | | - Ashley Jacobi
- Integrated DNA Technologies, Inc., Coralville, IA, United States
| | - Mark Behlke
- Integrated DNA Technologies, Inc., Coralville, IA, United States
| | - Anthony Sandler
- The Joseph E. Robert Jr. Center for Surgical Care and The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, George Washington University, Washington, DC, United States
- *Correspondence: Anthony Sandler,
| |
Collapse
|
31
|
Shao F, Gao Y, Wang W, He H, Xiao L, Geng X, Xia Y, Guo D, Fang J, He J, Lu Z. Silencing EGFR-upregulated expression of CD55 and CD59 activates the complement system and sensitizes lung cancer to checkpoint blockade. NATURE CANCER 2022; 3:1192-1210. [PMID: 36271172 DOI: 10.1038/s43018-022-00444-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The complement system is a critical immune component, yet its role in tumor immune evasion and CD8+ T cell activation is not clearly defined. Here, we demonstrate that epidermal growth factor receptor (EGFR)/Wnt signaling induces β-catenin-mediated long noncoding RNA (lncRNA) LINC00973 expression to sponge CD55-targeting miR-216b and CD59-targeting miR-150. The consequently upregulated CD55/CD59 expression suppresses the complement system and cytokine secretion required for CD8+ T cell activation. CD55/CD59-neutralizing antibody treatment or mutation of the LINC00973 promoter activates the complement and CD8+ T cells, inhibiting tumor growth. Importantly, combined anti-CD55/CD59 and anti-programmed death 1 (anti-PD-1) antibody treatments elicit a synergistic tumor-inhibiting effect. In addition, CD55/CD59 levels are inversely correlated with infiltration of M1 macrophages and CD8+ T cells in human lung cancer specimens and predict patient outcome. These findings underscore the critical role of EGFR/Wnt/β-catenin-upregulated CD55/CD59 expression in inhibiting the complement and CD8+ T cell activation for tumor immune evasion and immune checkpoint blockade resistance and identify a potential combination therapy to overcome these effects.
Collapse
Affiliation(s)
- Fei Shao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- The Affiliated Hospital of Qingdao University, Qingdao University, and Qingdao Cancer Institute, Qingdao, China
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Wei Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiyan He
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Liwei Xiao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Geng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Xia
- Department of Neuro-Oncology, Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dong Guo
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Fang
- The Affiliated Hospital of Qingdao University, Qingdao University, and Qingdao Cancer Institute, Qingdao, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Neuro-Oncology, Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
32
|
Yuan M, Liu L, Wang C, Zhang Y, Zhang J. The Complement System: A Potential Therapeutic Target in Liver Cancer. Life (Basel) 2022; 12:life12101532. [PMID: 36294966 PMCID: PMC9604633 DOI: 10.3390/life12101532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Liver cancer is the sixth most common cancer and the fourth most fatal cancer in the world. Immunotherapy has already achieved modest results in the treatment of liver cancer. Meanwhile, the novel and optimal combinatorial strategies need further research. The complement system, which consists of mediators, receptors, cofactors and regulators, acts as the connection between innate and adaptive immunity. Recent studies demonstrate that complement system can influence tumor progression by regulating the tumor microenvironment, tumor cells, and cancer stem cells in liver cancer. Our review concentrates on the potential role of the complement system in cancer treatment, which is a promising strategy for killing tumor cells by the activation of complement components. Conclusions: Our review demonstrates that complement components and regulators might function as biomarkers and therapeutic targets for liver cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Meng Yuan
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Li Liu
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
| | - Chenlin Wang
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Yan Zhang
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
- Correspondence: (Y.Z.); (J.Z.)
| | - Jiandong Zhang
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
- Correspondence: (Y.Z.); (J.Z.)
| |
Collapse
|
33
|
Beach C, MacLean D, Majorova D, Arnold JN, Olcina MM. The effects of radiation therapy on the macrophage response in cancer. Front Oncol 2022; 12:1020606. [PMID: 36249052 PMCID: PMC9559862 DOI: 10.3389/fonc.2022.1020606] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022] Open
Abstract
The efficacy of radiotherapy, a mainstay of cancer treatment, is strongly influenced by both cellular and non-cellular features of the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are a heterogeneous population within the TME and their prevalence significantly correlates with patient prognosis in a range of cancers. Macrophages display intrinsic radio-resistance and radiotherapy can influence TAM recruitment and phenotype. However, whether radiotherapy alone can effectively "reprogram" TAMs to display anti-tumor phenotypes appears conflicting. Here, we discuss the effect of radiation on macrophage recruitment and plasticity in cancer, while emphasizing the role of specific TME components which may compromise the tumor response to radiation and influence macrophage function. In particular, this review will focus on soluble factors (cytokines, chemokines and components of the complement system) as well as physical changes to the TME. Since the macrophage response has the potential to influence radiotherapy outcomes this population may represent a drug target for improving treatment. An enhanced understanding of components of the TME impacting radiation-induced TAM recruitment and function may help consider the scope for future therapeutic avenues to target this plastic and pervasive population.
Collapse
Affiliation(s)
- Callum Beach
- Department of Oncology, Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - David MacLean
- Department of Oncology, Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Dominika Majorova
- Department of Oncology, Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - James N. Arnold
- School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Monica M. Olcina
- Department of Oncology, Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom,*Correspondence: Monica M. Olcina,
| |
Collapse
|
34
|
Senent Y, Tavira B, Pio R, Ajona D. The complement system as a regulator of tumor-promoting activities mediated by myeloid-derived suppressor cells. Cancer Lett 2022; 549:215900. [PMID: 36087681 DOI: 10.1016/j.canlet.2022.215900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
Tumor progression relies on the interaction between tumor cells and their surrounding tumor microenvironment (TME), which also influences therapeutic responses. The complement system, an essential part of innate immunity, has been traditionally considered an effector arm against tumors. However, established tumors co-opt complement-mediated immune responses in the TME to support chronic inflammation, activate cancer-related signaling pathways and hamper antitumor immune responses. In this context, myeloid-derived suppressor cells (MDSCs), a heterogeneous population of myeloid progenitors with immunosuppressive functions, are recognized as major mediators of tumor-associated complement activities. This review focuses on the impact of complement activation within the TME, with a special emphasis on MDSC functions and the involvement of the C5a/C5aR1 axis. We also discuss the translation of these findings into therapeutic advances based on complement inhibition.
Collapse
Affiliation(s)
- Yaiza Senent
- Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain; Cancer Center University of Navarra (CCUN), Pamplona, Spain; University of Navarra, School of Sciences, Department of Biochemistry and Genetics, Pamplona, Spain
| | - Beatriz Tavira
- Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain; Cancer Center University of Navarra (CCUN), Pamplona, Spain; University of Navarra, School of Medicine, Department of Pathology, Anatomy and Physiology, Pamplona, Spain
| | - Ruben Pio
- Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain; Cancer Center University of Navarra (CCUN), Pamplona, Spain; University of Navarra, School of Sciences, Department of Biochemistry and Genetics, Pamplona, Spain; Navarra Institute for Health Research (IdISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Daniel Ajona
- Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain; Cancer Center University of Navarra (CCUN), Pamplona, Spain; University of Navarra, School of Sciences, Department of Biochemistry and Genetics, Pamplona, Spain; Navarra Institute for Health Research (IdISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
35
|
Krieg C, Weber LM, Fosso B, Marzano M, Hardiman G, Olcina MM, Domingo E, El Aidy S, Mallah K, Robinson MD, Guglietta S. Complement downregulation promotes an inflammatory signature that renders colorectal cancer susceptible to immunotherapy. J Immunother Cancer 2022; 10:e004717. [PMID: 36137652 PMCID: PMC9511657 DOI: 10.1136/jitc-2022-004717] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND AND AIMS The role of inflammatory immune responses in colorectal cancer (CRC) development and response to therapy is a matter of intense debate. While inflammation is a known driver of CRC, inflammatory immune infiltrates are a positive prognostic factor in CRC and predispose to response to immune checkpoint blockade (ICB) therapy. Unfortunately, over 85% of CRC cases are primarily unresponsive to ICB due to the absence of an immune infiltrate, and even the cases that show an initial immune infiltration can become refractory to ICB. The identification of therapy supportive immune responses in the field has been partially hindered by the sparsity of suitable mouse models to recapitulate the human disease. In this study, we aimed to understand how the dysregulation of the complement anaphylatoxin C3a receptor (C3aR), observed in subsets of patients with CRC, affects the immune responses, the development of CRC, and response to ICB therapy. METHODS We use a comprehensive approach encompassing analysis of publicly available human CRC datasets, inflammation-driven and newly generated spontaneous mouse models of CRC, and multiplatform high-dimensional analysis of immune responses using microbiota sequencing, RNA sequencing, and mass cytometry. RESULTS We found that patients' regulation of the complement C3aR is associated with epigenetic modifications. Specifically, downregulation of C3ar1 in human CRC promotes a tumor microenvironment characterized by the accumulation of innate and adaptive immune cells that support antitumor immunity. In addition, in vivo studies in our newly generated mouse model revealed that the lack of C3a in the colon activates a microbiota-mediated proinflammatory program which promotes the development of tumors with an immune signature that renders them responsive to the ICB therapy. CONCLUSIONS Our findings reveal that C3aR may act as a previously unrecognized checkpoint to enhance antitumor immunity in CRC. C3aR can thus be exploited to overcome ICB resistance in a larger group of patients with CRC.
Collapse
Affiliation(s)
- Carsten Krieg
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- Hollings Cancer Center Charleston, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lukas M Weber
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Bruno Fosso
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Marinella Marzano
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Gary Hardiman
- School of Biological Sciences and Institute for Global Food Security, Queens University of Belfast, Belfast, UK
| | - Monica M Olcina
- Institute of Radiation Oncology, Medical Research Council Oxford Institute for Radiation Oncology, Oxford, UK
| | - Enric Domingo
- Institute of Radiation Oncology, Medical Research Council Oxford Institute for Radiation Oncology, Oxford, UK
| | - Sahar El Aidy
- Host-microbe Metabolic Interactions, Microbiology, University of Groningen, Groningen, The Netherlands
| | - Khalil Mallah
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Mark D Robinson
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Silvia Guglietta
- Hollings Cancer Center Charleston, Medical University of South Carolina, Charleston, South Carolina, USA
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
36
|
Pei Y, Xiang Z, Wen K, Tu CR, Wang X, Zhang Y, Mu X, Liu Y, Tu W. CD137 Costimulation Enhances the Antitumor Activity of Vγ9Vδ2-T Cells in IL-10-Mediated Immunosuppressive Tumor Microenvironment. Front Immunol 2022; 13:872122. [PMID: 35784354 PMCID: PMC9247142 DOI: 10.3389/fimmu.2022.872122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
Although γδ-T cell-based tumor immunotherapy using phosphoantigens to boost γδ-T cell immunity has shown success in some cancer patients, the clinical application is limited due to the rapid exhaustion of Vγ9Vδ2-T cells caused by repetitive stimulation from phosphoantigens and the profoundly immunosuppressive tumor microenvironment (TME). In this study, using a cell culture medium containing human and viral interleukin-10 (hIL-10 and vIL-10) secreted from EBV-transformed lymphoblastoid B cell lines (EBV-LCL) to mimic the immunosuppressive TEM, we found that the antitumor activity of Vγ9Vδ2-T cells was highly suppressed by endogenous hIL-10 and vIL-10 within the TME. CD137 costimulation could provide an anti-exhaustion signal to mitigate the suppressive effects of IL-10 in TME by suppressing IL-10R1 expression on Vγ9Vδ2-T cells. CD137 costimulation also improved the compromised antitumor activity of Vγ9Vδ2-T cells in TME with high levels of IL-10 in Rag2-/- γc-/- mice. In humanized mice, CD137 costimulation boosted the therapeutic effects of aminobisphosphonate pamidronate against EBV-induced lymphoma. Our study offers a novel approach to overcoming the obstacle of the hIL-10 and vIL-10-mediated immunosuppressive microenvironment by costimulating CD137 and enhancing the efficacy of γδ-T cell-based tumor therapy.
Collapse
Affiliation(s)
- Yujun Pei
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Zheng Xiang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Kun Wen
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chloe Ran Tu
- Computational and Systems Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xiwei Wang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yanmei Zhang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiaofeng Mu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yinping Liu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Wenwei Tu,
| |
Collapse
|
37
|
Ye H, Pan J, Cai X, Yin Z, Li L, Gong E, Xu C, Zheng H, Cao Z, Chen E, Qian J. IL‑10/IL‑10 receptor 1 pathway promotes the viability and collagen synthesis of pulmonary fibroblasts originated from interstitial pneumonia tissues. Exp Ther Med 2022; 24:518. [PMID: 35837039 PMCID: PMC9257754 DOI: 10.3892/etm.2022.11445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/04/2021] [Indexed: 11/07/2022] Open
Abstract
Interstitial pneumonia is a pulmonary interstitial inflammatory and fibrosis disease with a variety of causes that causes respiratory disorders and threatens the lives of patients. The present study aimed to investigate the expression of interleukin (IL)-10 in peripheral blood of patients with interstitial pneumonia and its biological functions in pulmonary fibroblasts. A total of 42 patients with idiopathic pulmonary fibrosis (IPF) and 20 healthy subjects were included. ELISA was used to determine IL-10 concentration in serum from the patients and healthy subjects. Primary fibroblasts were isolated from lung tissue successfully and determined by morphology. The CCK-8 assay was performed to determine the effect of IL-10 expression on cell viability. Western blotting was used to determine COL1a1, COL1a2 and IL-10R1 protein expression. Flow cytometry was used for cell cycle analysis and to determine the number of IL-10+ cells. Expression of IL-10 in serum from IPF patients was higher compared to that from healthy subjects. IL-10 promoted the viability and collagen synthesis and secretion of MRC-5 cells and primary pulmonary fibroblasts. IL-10 and IL-10 receptor (R) 1 served regulatory roles in the viability and collagen synthesis of MRC-5 cells. The ratio of peripheral mononuclear lymphocytes with positive expression of IL-10 was elevated in peripheral blood from patients with IPF. The present study demonstrated that IL-10 expression in peripheral blood of patients with IPF is increased significantly compared with healthy subjects. Activation of the IL-10/IL-10R1 signaling pathway promoted the viability and collagen synthesis and secretion of pulmonary fibroblasts, leading to pulmonary fibrosis. The present study provided experimental basis for further understanding the development mechanism of pulmonary fibrosis.
Collapse
Affiliation(s)
- Hong Ye
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Jiongwei Pan
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Xiaoping Cai
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Zhangyong Yin
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Lu Li
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Enhui Gong
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Cunlai Xu
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Hao Zheng
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Zhuo Cao
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| | - Enguo Chen
- Department of Respiratory and Critical Care Medicine, Sir Run Run Shaw Hospital, Affiliated to Zhejiang University School of Medicine, Hangzhou, Zheijang 310016, P.R. China
| | - Junfeng Qian
- Respiratory Department, The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospital, Lishui, Zheijang 323000, P.R. China
| |
Collapse
|
38
|
Gil Del Alcazar CR, Trinh A, Alečković M, Rojas Jimenez E, Harper NW, Oliphant MU, Xie S, Krop ED, Lulseged B, Murphy KC, Keenan TE, Van Allen EM, Tolaney SM, Freeman GJ, Dillon DA, Muthuswamy SK, Polyak K. Insights into Immune Escape During Tumor Evolution and Response to Immunotherapy Using a Rat Model of Breast Cancer. Cancer Immunol Res 2022; 10:680-697. [PMID: 35446942 PMCID: PMC9177779 DOI: 10.1158/2326-6066.cir-21-0804] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/25/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022]
Abstract
Animal models are critical for the preclinical validation of cancer immunotherapies. Unfortunately, mouse breast cancer models do not faithfully reproduce the molecular subtypes and immune environment of the human disease. In particular, there are no good murine models of estrogen receptor-positive (ER+) breast cancer, the predominant subtype in patients. Here, we show that Nitroso-N-methylurea-induced mammary tumors in outbred Sprague-Dawley rats recapitulate the heterogeneity for mutational profiles, ER expression, and immune evasive mechanisms observed in human breast cancer. We demonstrate the utility of this model for preclinical studies by dissecting mechanisms of response to immunotherapy using combination TGFBR inhibition and PD-L1 blockade. Short-term treatment of early-stage tumors induced durable responses. Gene expression profiling and spatial mapping classified tumors as inflammatory and noninflammatory, and identified IFNγ, T-cell receptor (TCR), and B-cell receptor (BCR) signaling, CD74/MHC II, and epithelium-interacting CD8+ T cells as markers of response, whereas the complement system, M2 macrophage phenotype, and translation in mitochondria were associated with resistance. We found that the expression of CD74 correlated with leukocyte fraction and TCR diversity in human breast cancer. We identified a subset of rat ER+ tumors marked by expression of antigen-processing genes that had an active immune environment and responded to treatment. A gene signature characteristic of these tumors predicted disease-free survival in patients with ER+ Luminal A breast cancer and overall survival in patients with metastatic breast cancer receiving anti-PD-L1 therapy. We demonstrate the usefulness of this preclinical model for immunotherapy and suggest examination to expand immunotherapy to a subset of patients with ER+ disease. See related Spotlight by Roussos Torres, p. 672.
Collapse
Affiliation(s)
- Carlos R. Gil Del Alcazar
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Anne Trinh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Maša Alečković
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Ernesto Rojas Jimenez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Nicholas W. Harper
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Michael U.J. Oliphant
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Shanshan Xie
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Ethan D. Krop
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Bethlehem Lulseged
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Katherine C. Murphy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Tanya E. Keenan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- The Broad Institute, Cambridge, Massachusetts
| | - Eliezer M. Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- The Broad Institute, Cambridge, Massachusetts
| | - Sara M. Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- The Broad Institute, Cambridge, Massachusetts
| | - Gordon J. Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Deborah A. Dillon
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Senthil K. Muthuswamy
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- The Broad Institute, Cambridge, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts
| |
Collapse
|
39
|
Janneh AH, Ogretmen B. Targeting Sphingolipid Metabolism as a Therapeutic Strategy in Cancer Treatment. Cancers (Basel) 2022; 14:2183. [PMID: 35565311 PMCID: PMC9104917 DOI: 10.3390/cancers14092183] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Sphingolipids are bioactive molecules that have key roles in regulating tumor cell death and survival through, in part, the functional roles of ceramide accumulation and sphingosine-1-phosphate (S1P) production, respectively. Mechanistic studies using cell lines, mouse models, or human tumors have revealed crucial roles of sphingolipid metabolic signaling in regulating tumor progression in response to anticancer therapy. Specifically, studies to understand ceramide and S1P production pathways with their downstream targets have provided novel therapeutic strategies for cancer treatment. In this review, we present recent evidence of the critical roles of sphingolipids and their metabolic enzymes in regulating tumor progression via mechanisms involving cell death or survival. The roles of S1P in enabling tumor growth/metastasis and conferring cancer resistance to existing therapeutics are also highlighted. Additionally, using the publicly available transcriptomic database, we assess the prognostic values of key sphingolipid enzymes on the overall survival of patients with different malignancies and present studies that highlight their clinical implications for anticancer treatment.
Collapse
Affiliation(s)
| | - Besim Ogretmen
- Hollings Cancer Center, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
40
|
Tsao LC, Crosby EJ, Trotter TN, Wei J, Wang T, Yang X, Summers AN, Lei G, Rabiola CA, Chodosh LA, Muller WJ, Lyerly HK, Hartman ZC. Trastuzumab/Pertuzumab combination therapy stimulates anti-tumor responses through complement-dependent cytotoxicity and phagocytosis. JCI Insight 2022; 7:155636. [PMID: 35167491 PMCID: PMC8986081 DOI: 10.1172/jci.insight.155636] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
Standard-of-care treatment for advanced HER2+ breast cancers (BC) is comprised of two HER2-specific monoclonal antibodies (mAb), Trastuzumab (T) and Pertuzumab (P) with chemotherapy. While this combination (T+P) is highly effective, its synergistic mechanism of action (MOA) is not completely known. Initial studies had demonstrated that Pertuzumab suppressed HER2 hetero-dimerization as the potential therapeutic MOA, thus the improved outcome associated with the T+P combination MOA compared to Trastuzumab alone has been widely reported as being due to Pertuzumab-mediated suppression of HER2 signaling in combination with Trastuzumab-mediated induction of anti-tumor immunity. Unraveling this MOA may be critical to extend this combination strategy to other antigens or other cancers, as well as improving this current treatment modality. Using novel murine and human versions of Pertuzumab, we found it induced both Antibody-Dependent-Cellular-Phagocytosis (ADCP) by tumor-associated macrophages and suppression of HER2 oncogenic signaling. Most significantly, we identified that only T+P combination therapy, but not when either antibody used in isolation, allows for the activation of the classical complement pathway, resulting in both direct complement-dependent cytotoxicity (CDC) as well as complement-dependent cellular phagocytosis (CDCP) of HER2+ BC cells. Notably, we show that tumor expression of C1q was positively associated with survival outcome in HER2+ BC patients, whereas expression of complement regulators CD55 and CD59 were inversely correlated, suggesting the importance of complement activity in clinical outcomes. Accordingly, inhibition of C1 activity in mice abolished the synergistic therapeutic activity of T+P therapy, whereas knockdown of CD55 and CD59 expression enhanced T+P efficacy. In summary, our study identifies classical complement activation as a significant anti-tumor MOA for T+P therapy that may be functionally enhanced to augment therapeutic efficacy in the clinic.
Collapse
Affiliation(s)
- Li-Chung Tsao
- Department of Surgery, Duke University, Durham, United States of America
| | - Erika J Crosby
- Department of Surgery, Duke University, Durham, United States of America
| | - Timothy N Trotter
- Department of Surgery, Duke University, Durham, United States of America
| | - Junping Wei
- Department of Surgery, Duke University, Durham, United States of America
| | - Tao Wang
- Department of Surgery, Duke University, Durham, United States of America
| | - Xiao Yang
- Department of Surgery, Duke University, Durham, United States of America
| | - Amanda N Summers
- Department of Surgery, Duke University, Durham, United States of America
| | - Gangjun Lei
- Department of Surgery, Duke University, Durham, United States of America
| | | | - Lewis A Chodosh
- Department of Cancer Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, United States of America
| | | | - Herbert Kim Lyerly
- Department of Surgery, Duke University, Durham, United States of America
| | - Zachary C Hartman
- Department of Surgery, Duke University, Durham, United States of America
| |
Collapse
|
41
|
Nandagopal S, Li CG, Xu Y, Sodji QH, Graves EE, Giaccia AJ. C3aR Signaling Inhibits NK-cell Infiltration into the Tumor Microenvironment in Mouse Models. Cancer Immunol Res 2022; 10:245-258. [PMID: 34819308 PMCID: PMC9351714 DOI: 10.1158/2326-6066.cir-21-0435] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/29/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022]
Abstract
Many solid tumors have low levels of cytotoxic CD56dim natural killer (NK) cells, suggesting that CD56dim NK-cell exclusion from the tumor microenvironment (TME) contributes to the decreased response rate of immunotherapy. Complement component 3a (C3a) is known for its tumor-promoting and immunosuppressive roles in solid tumors. Previous reports have implicated the involvement of the C3a receptor (C3aR) in immune cell trafficking into the TME. C3aR is predominantly expressed on the surface of activated cytotoxic NK cells, but a specific role for C3aR in NK-cell biology has not been investigated. Because solid tumors generate elevated C3a and have decreased NK-cell infiltration, we hypothesized that C3aR might play a role in cytotoxic NK-cell recruitment into the TME. Our results indicate that blocking C3aR signaling in NK cells increased NK-cell infiltration into the TME in mouse models and led to tumor regression. Because the critical lymphocyte trafficking integrin LFA-1 orchestrates the migration of activated NK cells, we wanted to gain insight into the interaction between C3aR signaling and LFA-1. Our results demonstrated that direct interaction between C3aR and LFA-1, which led to a high-affinity LFA-1 conformation, decreased NK-cell infiltration into the TME. We propose that approaches to enhance cytotoxic NK-cell infiltration into the TME, through either disrupting C3a and C3aR interaction or inhibiting the formation of high-affinity LFA-1, represent a new strategy to improve the efficiency of immunotherapy for cancer treatment.
Collapse
Affiliation(s)
- Saravanan Nandagopal
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Caiyun G Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Yu Xu
- Department of Bioengineering, Stanford, California
| | - Quaovi H Sodji
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Edward E Graves
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California.
- MRC/CRUK Oxford Institute for Radiation Oncology and Gray Laboratory, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
42
|
Talaat IM, Elemam NM, Saber-Ayad M. Complement System: An Immunotherapy Target in Colorectal Cancer. Front Immunol 2022; 13:810993. [PMID: 35173724 PMCID: PMC8841337 DOI: 10.3389/fimmu.2022.810993] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/14/2022] [Indexed: 12/26/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor and the second most fatal cancer worldwide. Several parts of the immune system contribute to fighting cancer including the innate complement system. The complement system is composed of several players, namely component molecules, regulators and receptors. In this review, we discuss the complement system activation in cancer specifically CRC and highlight the possible interactions between the complement system and the various TME components. Additionally, the role of the complement system in tumor immunity of CRC is reviewed. Hence, such work could provide a framework for researchers to further understand the role of the complement system in CRC and explore the potential therapies targeting complement activation in solid tumors such as CRC.
Collapse
Affiliation(s)
- Iman M. Talaat
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Noha Mousaad Elemam
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
43
|
Abstract
Tumorigenesis has long been linked to the evasion of the immune system and the uncontrolled proliferation of transformed cells. The complement system, a major arm of innate immunity, is a key factor in the progression of cancer because many of its components have critical regulatory roles in the tumor microenvironment. For example, complement anaphylatoxins directly and indirectly inhibit antitumor T-cell responses in primary and metastatic sites, enhance proliferation of tumor cells, and promote metastasis and tumor angiogenesis. Many recent studies have provided evidence that cancer is able to hijack the immunoregulatory components of the complement system which fundamentally are tasked with protecting the body against abnormal cells and pathogens. Indeed, recent evidence shows that many types of cancer use C1q receptors (C1qRs) to promote tumor growth and progression. More importantly, most cancer cells express both C1q and its major receptors (gC1qR and cC1qR) on their surface which are essential for cell proliferation and survival. In this review, we discuss the ability of cancer to control and manipulate the complement system in the tumor microenvironment and identify possible therapeutic targets, including C1q and gC1qR.
Collapse
Affiliation(s)
- Danyaal Ain
- The Department of Medicine, Stony Brook University, 100 Nicholls Road, Stony Brook, NY 11794-8161, USA
| | - Talha Shaikh
- The Department of Medicine, Stony Brook University, 100 Nicholls Road, Stony Brook, NY 11794-8161, USA
| | - Samantha Manimala
- The Department of Medicine, Stony Brook University, 100 Nicholls Road, Stony Brook, NY 11794-8161, USA
| | - Berhane Ghebrehiwet
- The Department of Medicine, Stony Brook University, 100 Nicholls Road, Stony Brook, NY 11794-8161, USA
| |
Collapse
|
44
|
Gamaleldin M, Moussa M, Eldin Imbaby S. Role of interleukin-10 (1082G/A) and splicing factor 3B subunit 1 (2098A/G) gene polymorphisms in chronic lymphocytic leukemia. JOURNAL OF APPLIED HEMATOLOGY 2022. [DOI: 10.4103/joah.joah_93_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
45
|
Lisowska KA, Storoniak H, Dębska-Ślizień A. T cell subpopulations and cytokine levels in hemodialysis patients. Hum Immunol 2021; 83:134-143. [PMID: 34802797 DOI: 10.1016/j.humimm.2021.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/23/2021] [Accepted: 11/08/2021] [Indexed: 12/19/2022]
Abstract
HD patients have impaired adaptive immune responses, which might depend on the primary cause of chronic kidney disease (CKD). We analyzed percentages of T cells subpopulations with the expression of CD69, CD25, CD95, and HLA-DR antigens in HD patients to determine the status of T cell activation. Also, we determined serum levels of cytokines: IL12p70, TNF, IL-10, IL-6, IL-1β, IL-8. HD patients had increased percentages of CD4+CD25+, CD4+CD69+, CD4+HLA-DR+, CD8+CD69+, and CD8+HLA-DR+ cells compared to healthy people. Also, their IL-6 and IL-8 serum levels were higher. Changes in T cell subpopulations were seen in patients with diabetic nephropathy (DN) or ischemic nephropathy (IN) but not with glomerulonephritis (GN). HD patients dialyzed for more than six months had a lower percentage of CD4+CD69+, CD8+HLA-DR+, CD8+CD95+ cells, higher IL-12p70 levels, and lower IL-8 levels. Our results show that HD treatment and CKD cause influence T cell activation status.
Collapse
Affiliation(s)
- Katarzyna A Lisowska
- Department of Pathophysiology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland.
| | - Hanna Storoniak
- Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Alicja Dębska-Ślizień
- Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
46
|
Functional Identification of Complement Factor D and Analysis of Its Expression during GCRV Infection in Grass Carp ( Ctenopharyngodon idella). Int J Mol Sci 2021; 22:ijms222112011. [PMID: 34769442 PMCID: PMC8584590 DOI: 10.3390/ijms222112011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Complement factor D (Df) is a serine protease well known for activating the alternative pathway (AP) in mammals by promoting the cleavage of complement component 3 (C3), thus becoming involved in innate defense. In teleost fish, however, the functional mechanisms of Df in the AP and against pathogen infection are far from clear. In the present study, we cloned and characterized the Df gene, CiDf, from grass carp (Ctenopharyngodon idella) and analyzed its function in promoting C3 cleavage and expression changes after grass carp reovirus (GCRV) infection. The open reading frame of CiDf was found to be 753 bp, encoding 250 amino acids with a molecular mass of 27.06 kDa. CiDf harbors a conserved Tryp_SPc domain, with three conserved residues representing the catalytic triad and three conserved binding sites in the substrate specificity pocket. Pairwise alignment showed that CiDf shares the highest identity (96%) and similarity (98%) with Df from Anabarilius grahami. Phylogenetic analysis indicated that CiDf and other fish Dfs formed a distinct evolutionary branch. Similar to most Dfs from other vertebrates, the CiDf gene structure is characterized by four introns and five exons. The incubation of recombinant CiDf protein with grass carp serum significantly increased the C3b content, demonstrating the conserved function of CiDf in the AP in promoting C3 cleavage, similar to Dfs in mammals. CiDf mRNA expression was widely detected in various tissues and levels were relatively higher in the liver, spleen, and intestine of grass carp. During GCRV infection over a 168-hour period, a high level of CiDf mRNA expression in the liver, spleen, and intestine was maintained at 144 and 168 h, suggesting AP activity at the late stage of GCRV infection. Collectively, the above results reveal the conserved structure and function of CiDf and its distinct expression patterns after GCRV infection, which provide a key basis for studying the roles of Df and AP during GCRV infection in the grass carp C. idella.
Collapse
|
47
|
Tipping the balance: intricate roles of the complement system in disease and therapy. Semin Immunopathol 2021; 43:757-771. [PMID: 34698894 PMCID: PMC8547127 DOI: 10.1007/s00281-021-00892-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022]
Abstract
The ability of the complement system to rapidly and broadly react to microbial intruders, apoptotic cells and other threats by inducing forceful elimination responses is indispensable for its role as host defense and surveillance system. However, the danger sensing versatility of complement may come at a steep price for patients suffering from various immune, inflammatory, age-related, or biomaterial-induced conditions. Misguided recognition of cell debris or transplants, excessive activation by microbial or damaged host cells, autoimmune events, and dysregulation of the complement response may all induce effector functions that damage rather than protect host tissue. Although complement has long been associated with disease, the prevalence, impact and complexity of complement’s involvement in pathological processes is only now becoming fully recognized. While complement rarely constitutes the sole driver of disease, it acts as initiator, contributor, and/or exacerbator in numerous disorders. Identifying the factors that tip complement’s balance from protective to damaging effects in a particular disease continues to prove challenging. Fortunately, however, molecular insight into complement functions, improved disease models, and growing clinical experience has led to a greatly improved understanding of complement’s pathological side. The identification of novel complement-mediated indications and the clinical availability of the first therapeutic complement inhibitors has also sparked a renewed interest in developing complement-targeted drugs, which meanwhile led to new approvals and promising candidates in late-stage evaluation. More than a century after its description, complement now has truly reached the clinic and the recent developments hold great promise for diagnosis and therapy alike.
Collapse
|
48
|
Batool Z, Hu G, Huang X, Wu Y, Fu X, Cai Z, Huang X, Ma M. Dietary therapeutic treatment of renal carcinoma cell lines by down-regulating cFlip, Mcl-1, Bcl-XL and STAT3 gene expression under the influence of up-regulated Bax and intrinsic apoptotic pathway. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Chamseddine AN, Assi T, Mir O, Chouaib S. Modulating tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors: A TAM-pting approach. Pharmacol Ther 2021; 231:107986. [PMID: 34481812 DOI: 10.1016/j.pharmthera.2021.107986] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophages (TAM) plasticity and diversity are both essential hallmarks of the monocyte-macrophage lineage and the tumor-derived inflammation. TAM exemplify the perfect adaptable cell with dynamic phenotypic modifications that reflect changes in their functional polarization status. Under several tumor microenvironment (TME)-related cues, TAM shift their polarization, hence promoting or halting cancer progression. Immune checkpoint inhibitors (ICI) displayed unprecedented clinical responses in various refractory cancers; but only approximately a third of patients experienced durable responses. It is, therefore, crucial to enhance the response rate of immunotherapy. Several mechanisms of resistance to ICI have been elucidated including TAM role with its essential immunosuppressive functions that reduce both anti-tumor immunity and the subsequent ICI efficacy. In the past few years, thorough research has led to a better understanding of TAM biology and innovative approaches can now be adapted through targeting macrophages' recruitment axis as well as TAM activation and polarization status within the TME. Some of these therapeutic strategies are currently being evaluated in several clinical trials in association with ICI agents. This combination between TAM modulation and ICI allows targeting TAM intrinsic immunosuppressive functions and tumor-promoting factors as well as overcoming ICI resistance. Hence, such strategies, with a better understanding of the mechanisms driving TAM modulation, may have the potential to optimize ICI efficacy.
Collapse
Affiliation(s)
- Ali N Chamseddine
- Department of Medical Oncology, Gustave Roussy, F-94805, Villejuif, France; Department of Biostatistics and Epidemiology, CESP INSERM U1018, OncoStat, Gustave Roussy, F-94805, Villejuif, France.
| | - Tarek Assi
- Department of Medical Oncology, Gustave Roussy, F-94805, Villejuif, France
| | - Olivier Mir
- Department of Medical Oncology, Gustave Roussy, F-94805, Villejuif, France; Department of Pharmacology, Gustave Roussy, F-94805, Villejuif, France; Department of Ambulatory Care, Gustave Roussy, F-94805, Villejuif, France
| | - Salem Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, F-94805, Villejuif, France
| |
Collapse
|
50
|
Shimazaki R, Takano S, Satoh M, Takada M, Miyahara Y, Sasaki K, Yoshitomi H, Kagawa S, Furukawa K, Takayashiki T, Kuboki S, Sogawa K, Motohashi S, Nomura F, Miyazaki M, Ohtsuka M. Complement factor B regulates cellular senescence and is associated with poor prognosis in pancreatic cancer. Cell Oncol (Dordr) 2021; 44:937-950. [PMID: 34075561 PMCID: PMC8338870 DOI: 10.1007/s13402-021-00614-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/19/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The interplay between cancer cells and stromal components, including soluble mediators released from cancer cells, contributes to the progression of pancreatic ductal adenocarcinoma (PDAC). Here, we set out to identify key secreted proteins involved in PDAC progression. METHODS We performed secretome analyses of culture media of mouse pancreatic intraepithelial neoplasia (PanIN) and PDAC cells using Stable Isotope Labeling by Amino acid in Cell culture (SILAC) with click chemistry and liquid chromatography-mass spectrometry (LC-MS/MS). The results obtained were verified in primary PDAC tissue samples and cell line models. RESULTS Complement factor B (CFB) was identified as one of the robustly upregulated proteins, and found to exhibit elevated expression in PDAC cells compared to PanIN cells. Endogenous CFB knockdown by a specific siRNA dramatically decreased the proliferation of PDAC cells, PANC-1 and MIA PaCa-II. CFB knockdown induced increases in the number of senescence-associated-β-galactosidase (SA-β-gal) positive cells exhibiting p21 expression upregulation, which promotes cellular senescence with cyclinD1 accumulation. Furthermore, CFB knockdown facilitated downregulation of proliferating cell nuclear antigen and led to cell cycle arrest in the G1 phase in PDAC cells. Using immunohistochemistry, we found that high stromal CFB expression was associated with unfavorable clinical outcomes with hematogenous dissemination after surgery in human PDAC patients. Despite the presence of enriched CD8+ tumor infiltrating lymphocytes in the PDAC tumor microenvironments, patients with a high stromal CFB expression exhibited a significantly poorer prognosis compared to those with a low stromal CFB expression. Immunofluorescence staining revealed a correlation between stromal CFB expression in the tumor microenvironment and an enrichment of immunosuppressive regulatory T-cells (Tregs), myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). We also found that high stromal CFB expression showed a positive correlation with high CD8+/Foxp3+ Tregs populations in PDAC tissues. CONCLUSIONS Our data indicate that CFB, a key secreted protein, promotes proliferation by preventing cellular senescence and is associated with immunological tumor promotion in PDAC. These findings suggest that CFB may be a potential target for the treatment of PDAC.
Collapse
Affiliation(s)
- Reiri Shimazaki
- Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-shi, Chiba, 260- 8677, Japan
| | - Shigetsugu Takano
- Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-shi, Chiba, 260- 8677, Japan.
| | - Mamoru Satoh
- Division of Clinical Mass Spectrometry, Chiba University Hospital, Chiba, 260-8677, Japan
| | - Mamoru Takada
- Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-shi, Chiba, 260- 8677, Japan
| | - Yoji Miyahara
- Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-shi, Chiba, 260- 8677, Japan
| | - Kosuke Sasaki
- Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-shi, Chiba, 260- 8677, Japan
| | - Hideyuki Yoshitomi
- Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-shi, Chiba, 260- 8677, Japan
| | - Shingo Kagawa
- Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-shi, Chiba, 260- 8677, Japan
| | - Katsunori Furukawa
- Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-shi, Chiba, 260- 8677, Japan
| | - Tsukasa Takayashiki
- Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-shi, Chiba, 260- 8677, Japan
| | - Satoshi Kuboki
- Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-shi, Chiba, 260- 8677, Japan
| | - Kazuyuki Sogawa
- Department of Biochemistry, School of Life and Environmental Science, Azabu University, 252-5201, Kanagawa, Japan
| | - Shinichiro Motohashi
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, 260-8677, Chiba, Japan
| | - Fumio Nomura
- Division of Clinical Mass Spectrometry, Chiba University Hospital, Chiba, 260-8677, Japan
| | - Masaru Miyazaki
- Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-shi, Chiba, 260- 8677, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-shi, Chiba, 260- 8677, Japan
| |
Collapse
|