1
|
DeWitt JT, Jimenez-Tovar D, Mazumder A, Haricharan S. Advances in diagnostic and therapeutic applications of mismatch repair loss in cancer. DNA Repair (Amst) 2025; 147:103822. [PMID: 40068557 DOI: 10.1016/j.dnarep.2025.103822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025]
Abstract
Mismatch repair (MMR) is a highly conserved, fundamental DNA damage repair pathway that maintains genomic fidelity during cell replication. MMR dysregulation contributes to tumor formation by promoting genomic instability thereby increasing the frequency of potentially oncogenic mutational events. Therefore, MMR dysregulation, in its tumor suppressor role, is largely studied in the context of genomic instability and associated response to immune checkpoint blockade therapies. However, a growing body of literature suggests that the impact of MMR dysregulation on tumor phenotypes is more nuanced than a concerted impact on genomic stability. Rather, loss of individual MMR genes promotes distinct cancer-relevant biological phenotypes, and these phenotypes are further modulated by the tissue of tumor origin. Here, we explore relevant literature and review the prognostic and predictive significance of these non-canonical discoveries.
Collapse
Affiliation(s)
- J T DeWitt
- Dept of Biology, San Diego State University, San Diego, CA, USA; Cancer Biology and Signaling Program, UCSD Moores Cancer Center, San Diego, CA, USA
| | - D Jimenez-Tovar
- Dept of Biology, San Diego State University, San Diego, CA, USA
| | - A Mazumder
- Dept of Biology, San Diego State University, San Diego, CA, USA
| | - S Haricharan
- Dept of Biology, San Diego State University, San Diego, CA, USA; Cancer Biology and Signaling Program, UCSD Moores Cancer Center, San Diego, CA, USA.
| |
Collapse
|
2
|
Zhang H, Yang F, Xu Y, Zhao S, Jiang YZ, Shao ZM, Xiao Y. Multimodal integration using a machine learning approach facilitates risk stratification in HR+/HER2- breast cancer. Cell Rep Med 2025; 6:101924. [PMID: 39848244 PMCID: PMC11866502 DOI: 10.1016/j.xcrm.2024.101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/11/2024] [Accepted: 12/27/2024] [Indexed: 01/25/2025]
Abstract
Hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) breast cancer is the most common type of breast cancer, with continuous recurrence remaining an important clinical issue. Current relapse predictive models in HR+/HER2- breast cancer patients still have limitations. The integration of multidimensional data represents a promising alternative for predicting relapse. In this study, we leverage our multi-omics cohort comprising 579 HR+/HER2- breast cancer patients (200 patients with complete data across 7 modalities) and develop a machine-learning-based model, namely CIMPTGV, which integrates clinical information, immunohistochemistry, metabolomics, pathomics, transcriptomics, genomics, and copy number variations to predict recurrence risk of HR+/HER2- breast cancer. This model achieves concordance indices (C-indices) of 0.871 and 0.869 in the train and test sets, respectively. The risk population predicted by the CIMPTGV model encompasses those identified by single-modality models. Feature analysis reveals that synergistic and complementary effects exist in different modalities. Simultaneously, we develop a simplified model with a mean area under the curve (AUC) of 0.840, presenting a useful approach for clinical applications.
Collapse
Affiliation(s)
- Hang Zhang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R.China
| | - Fan Yang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R.China
| | - Ying Xu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R.China
| | - Shen Zhao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R.China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R.China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R.China.
| | - Yi Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R.China.
| |
Collapse
|
3
|
Fusco C, Di Rella F, Liotti A, Colamatteo A, Ferrara AL, Gigantino V, Collina F, Esposito E, Donzelli I, Porcellini A, Feola A, Micillo T, Perna F, Garziano F, Maniscalco GT, Varricchi G, Mottola M, Zuccarelli B, De Simone B, di Bonito M, Matarese G, Accurso A, Pontillo M, Russo D, Insabato L, Spaziano A, Cantone I, Pezone A, De Rosa V. CD4 +FOXP3Exon2 + regulatory T cell frequency predicts breast cancer prognosis and survival. SCIENCE ADVANCES 2025; 11:eadr7934. [PMID: 39813341 PMCID: PMC11734725 DOI: 10.1126/sciadv.adr7934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
CD4+FOXP3+ regulatory T cells (Tregs) suppress immune responses to tumors, and their accumulation in the tumor microenvironment (TME) correlates with poor clinical outcome in several cancers, including breast cancer (BC). However, the properties of intratumoral Tregs remain largely unknown. Here, we found that a functionally distinct subpopulation of Tregs, expressing the FOXP3 Exon2 splicing variants, is prominent in patients with hormone receptor-positive BC with poor prognosis. Notably, a comprehensive examination of the TCGA validated FOXP3E2 as an independent prognostic marker in all other BC subtypes. We found that FOXP3E2 expression underlies BCs with defective mismatch repair and a stem-like signature and highlights pathways involved in tumor survival. Last, we found that the TME induces FOXP3E2 through the CXCL12/CXCR4 axis and confirmed the higher immunosuppressive capacity of FOXP3E2+ Tregs derived from patients with BC. Our study suggests that FOXP3E2+ Tregs might be used as an independent biomarker to predict BC prognosis and survival and to develop super-targeted immunotherapies.
Collapse
Affiliation(s)
- Clorinda Fusco
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Francesca Di Rella
- Oncologia Clinica Sperimentale di Senologia, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, Napoli, Italy
| | - Antonietta Liotti
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “G. Salvatore”, IEOS-CNR, Napoli, Italy
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Alessandra Colamatteo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Anne Lise Ferrara
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Vincenzo Gigantino
- Unità di Anatomia Patologica, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, Napoli, Italy
| | - Francesca Collina
- Unità di Anatomia Patologica, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, Napoli, Italy
| | - Emanuela Esposito
- Chirurgia Oncologica di Senologia, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, Napoli, Italy
| | - Ivana Donzelli
- Chirurgia Oncologica di Senologia, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, Napoli, Italy
| | - Antonio Porcellini
- Dipartimento di Biologia, Complesso Universitario di Monte Sant’Angelo, Università di Napoli “Federico II”, Napoli 80126, Italy
| | - Antonia Feola
- Dipartimento di Biologia, Complesso Universitario di Monte Sant’Angelo, Università di Napoli “Federico II”, Napoli 80126, Italy
| | - Teresa Micillo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Francesco Perna
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Federica Garziano
- U.O.C Biochimica Clinica Azienda Ospedaliera Specialistica dei Colli Monaldi-Cotugno-C.T.O. Presidio Monaldi, Napoli, Italy
| | - Giorgia Teresa Maniscalco
- Clinica Neurologica e Unità Stroke, Centro Sclerosi Multipla, Ospedale “A.Cardarelli”, Napoli 80131, Italy
| | - Gilda Varricchi
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “G. Salvatore”, IEOS-CNR, Napoli, Italy
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Maria Mottola
- U.O.C Medicina Trasfusionale, Azienda Ospedaliera Specialistica dei Colli, Napoli 80131, Italy
| | - Bruno Zuccarelli
- U.O.C Medicina Trasfusionale, Azienda Ospedaliera Specialistica dei Colli, Napoli 80131, Italy
| | - Bruna De Simone
- Dipartimento di Sanità Pubblica, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Maurizio di Bonito
- Unità di Anatomia Patologica, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, Napoli, Italy
| | - Giuseppe Matarese
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “G. Salvatore”, IEOS-CNR, Napoli, Italy
| | - Antonello Accurso
- Dipartimento di Chirurgia Generale, Oncologica, Bariatrica e Metabolica, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Martina Pontillo
- Dipartimento di Chirurgia Generale, Oncologica, Bariatrica e Metabolica, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Daniela Russo
- Unità di Anatomia Patologica, Dipartimento di Scienze Biomediche Avanzate, Facoltà di Medicina, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Luigi Insabato
- Unità di Anatomia Patologica, Dipartimento di Scienze Biomediche Avanzate, Facoltà di Medicina, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Alessandra Spaziano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Irene Cantone
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “G. Salvatore”, IEOS-CNR, Napoli, Italy
| | - Antonio Pezone
- Dipartimento di Biologia, Complesso Universitario di Monte Sant’Angelo, Università di Napoli “Federico II”, Napoli 80126, Italy
| | - Veronica De Rosa
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “G. Salvatore”, IEOS-CNR, Napoli, Italy
| |
Collapse
|
4
|
DeWitt JT, Raghunathan M, Haricharan S. Nonrepair functions of DNA mismatch repair proteins: new avenues for precision oncology. Trends Cancer 2025; 11:49-61. [PMID: 39490324 DOI: 10.1016/j.trecan.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024]
Abstract
DNA damage repair (DDR) proteins are well recognized as guardians of the genome that are frequently lost during malignant transformation of normal cells across cancer types. To date, their tumor suppressor functions have been generally regarded as a consequence of their roles in maintaining genomic stability: more genomic instability increases the risk of oncogenic transformation events. However, recent discoveries centering around DNA mismatch repair (MMR) proteins suggest a broader impact of the loss of DDR proteins on cellular processes beyond genomic instability. Here, we explore the clinical implications of nonrepair roles for DDR proteins, using the growing evidence supporting roles for DNA MMR proteins in cell cycle and apoptosis regulation, metabolic function, the cellular secretome, and immunomodulation.
Collapse
Affiliation(s)
- Jerry Tyler DeWitt
- Department of Biology, San Diego State University, San Diego, CA, USA; Cancer Biology and Signaling Program, UCSD Moores Cancer Center, San Diego, CA, USA
| | - Megha Raghunathan
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Svasti Haricharan
- Department of Biology, San Diego State University, San Diego, CA, USA; Cancer Biology and Signaling Program, UCSD Moores Cancer Center, San Diego, CA, USA.
| |
Collapse
|
5
|
Lee JH. Targeting the ATM pathway in cancer: Opportunities, challenges and personalized therapeutic strategies. Cancer Treat Rev 2024; 129:102808. [PMID: 39106770 DOI: 10.1016/j.ctrv.2024.102808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
Ataxia telangiectasia mutated (ATM) kinase plays a pivotal role in orchestrating the DNA damage response, maintaining genomic stability, and regulating various cellular processes. This review provides a comprehensive analysis of ATM's structure, activation mechanisms, and various functions in cancer development, progression, and treatment. I discuss ATM's dual nature as both a tumor suppressor and potential promoter of cancer cell survival in certain contexts. The article explores the complex signaling pathways mediated by ATM, its interactions with other DNA repair mechanisms, and its influence on cell cycle checkpoints, apoptosis, and metabolism. I examine the clinical implications of ATM alterations, including their impact on cancer predisposition, prognosis, and treatment response. The review highlights recent advances in ATM-targeted therapies, discussing ongoing clinical trials of ATM inhibitors and their potential in combination with other treatment modalities. I also address the challenges in developing effective biomarkers for ATM activity and patient selection strategies for personalized cancer therapy. Finally, I outline future research directions, emphasizing the need for refined biomarker development, optimized combination therapies, and strategies to overcome potential resistance mechanisms. This comprehensive overview underscores the critical importance of ATM in cancer biology and its emerging potential as a therapeutic target in precision oncology.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
6
|
Antonarelli G, Taurelli Salimbeni B, Marra A, Esposito A, Locatelli MA, Trapani D, Pescia C, Fusco N, Curigliano G, Criscitiello C. The CDK4/6 inhibitors biomarker landscape: The most relevant biomarkers of response or resistance for further research and potential clinical utility. Crit Rev Oncol Hematol 2023; 192:104148. [PMID: 37783318 DOI: 10.1016/j.critrevonc.2023.104148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023] Open
Abstract
Cyclin-Dependent Kinase 4/6 inhibitors (CDK4/6is) in combination with Endocrine Therapy (ET) represent the standard frontline therapy for patients with Hormone Receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative metastatic Breast Cancer (mBC). Clinical activity and efficacy of CDK4/6is-based therapies have been proven both in the endocrine sensitive and resistant settings. Therapy resistance eventually underpins clinical progression to any CDK4/6is-based therapies, yet there is a lack of validated molecular biomarkers predictive of either intrinsic or acquired resistance to CDK4/6is in clinical practice. As the "post-CDK4/6is" landscape for the management of HR-positive/HER2-negative mBC is rapidly evolving with the introduction of novel therapies, there is an urgent need for the definition of clinically relevant molecular biomarkers of intrinsic/acquired resistance mechanisms to CDK4/6is. This narrative review outlines the role of currently approved CDK4/6is-based therapies, describes the most relevant molecular biomarkers of CDK4/6is-resistance, and ultimately provides a perspective on the clinical and research scenario.
Collapse
Affiliation(s)
- Gabriele Antonarelli
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy; Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan, Italy
| | - Beatrice Taurelli Salimbeni
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan, Italy
| | - Antonio Marra
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan, Italy
| | - Angela Esposito
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan, Italy
| | - Marzia Adelia Locatelli
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan, Italy
| | - Dario Trapani
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy; Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan, Italy
| | - Carlo Pescia
- Division of Pathology, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Nicola Fusco
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy; Division of Pathology, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Giuseppe Curigliano
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy; Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan, Italy
| | - Carmen Criscitiello
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy; Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan, Italy.
| |
Collapse
|
7
|
Gou X, Kim BJ, Anurag M, Lei JT, Young MN, Holt MV, Fandino D, Vollert CT, Singh P, Alzubi MA, Malovannaya A, Dobrolecki LE, Lewis MT, Li S, Foulds CE, Ellis MJ. Kinome Reprogramming Is a Targetable Vulnerability in ESR1 Fusion-Driven Breast Cancer. Cancer Res 2023; 83:3237-3251. [PMID: 37071495 PMCID: PMC10543968 DOI: 10.1158/0008-5472.can-22-3484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/20/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023]
Abstract
Transcriptionally active ESR1 fusions (ESR1-TAF) are a potent cause of breast cancer endocrine therapy (ET) resistance. ESR1-TAFs are not directly druggable because the C-terminal estrogen/anti-estrogen-binding domain is replaced with translocated in-frame partner gene sequences that confer constitutive transactivation. To discover alternative treatments, a mass spectrometry (MS)-based kinase inhibitor pulldown assay (KIPA) was deployed to identify druggable kinases that are upregulated by diverse ESR1-TAFs. Subsequent explorations of drug sensitivity validated RET kinase as a common therapeutic vulnerability despite remarkable ESR1-TAF C-terminal sequence and structural diversity. Organoids and xenografts from a pan-ET-resistant patient-derived xenograft model that harbors the ESR1-e6>YAP1 TAF were concordantly inhibited by the selective RET inhibitor pralsetinib to a similar extent as the CDK4/6 inhibitor palbociclib. Together, these findings provide preclinical rationale for clinical evaluation of RET inhibition for the treatment of ESR1-TAF-driven ET-resistant breast cancer. SIGNIFICANCE Kinome analysis of ESR1 translocated and mutated breast tumors using drug bead-based mass spectrometry followed by drug-sensitivity studies nominates RET as a therapeutic target. See related commentary by Wu and Subbiah, p. 3159.
Collapse
Affiliation(s)
- Xuxu Gou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston Texas
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Beom-Jun Kim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Meenakshi Anurag
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Jonathan T. Lei
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Meggie N. Young
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Matthew V. Holt
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Diana Fandino
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Craig T. Vollert
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Employee of Adrienne Helis Malvin Medical Research Foundation, New Orleans, Los Angeles
| | - Purba Singh
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Mohammad A. Alzubi
- Employee of Adrienne Helis Malvin Medical Research Foundation, New Orleans, Los Angeles
| | - Anna Malovannaya
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Lacey E. Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Michael T. Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Radiology, Baylor College of Medicine, Houston, Texas
| | - Shunqiang Li
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Charles E. Foulds
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Matthew J. Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
8
|
Mesquita A, Ferro A, Machado JC, Schmitt F. Next-Generation Sequencing of Breast Cancer in the Neoadjuvant Setting. Pathobiology 2023; 91:114-120. [PMID: 37660687 DOI: 10.1159/000533810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
INTRODUCTION Many patients with locally advanced breast cancer are proposed to neoadjuvant chemotherapy (NAT) before surgery. Only some of them achieve a pathological complete response (pCR). The determination of gene somatic alterations using next-generation sequencing (NGS) in the non-pCR tumors is important, in order to identify potential opportunities of treatment for the patients, if targeted therapies are available. METHODS Breast cancer tissue samples of 31 patients, collected before NAT, were analyzed by NGS using the Oncomine™ Comprehensive Assay Plus (OCA-Plus) panel. RESULTS Twelve patients achieved pCR after NAT. ERBB2 gene alterations were the most frequent in this cohort of pCR patients, followed by BRCA 1 and 2, MYC, TP53, PIK3CA, and MET alterations. Tumors that did not achieve a pCR were mainly triple negative. In this subgroup some BRCA 1 and 2 and PIK3CA gene alterations were identified, as well as TP53 mutations. The NGS panel employed in this study also allowed for the determination of tumor mutation burden (TMB). CONCLUSION This study showcases the significance of employing comprehensive genomic testing in breast cancer cases, primarily due to the scarcity of specific target assays. The detection of somatic mutations, coupled with the availability of targeted therapies, holds promise as a potential therapeutic avenue to enhance tumor response rates during NAT, or as a complementary treatment following surgery. Moreover, evaluating the TMB in non-pCR samples could serve as a valuable criterion for selecting patients suitable for immunotherapy. Further exploration through clinical trials is imperative to investigate these prospects.
Collapse
Affiliation(s)
- Alexandra Mesquita
- Medical Oncology Department, Local Health Unit Matosinhos, Matosinhos, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, Porto, Portugal
| | - Anabela Ferro
- Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação Em Saúde (i3S), Porto, Portugal
| | - José Carlos Machado
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação Em Saúde (i3S), Porto, Portugal
| | - Fernando Schmitt
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, Porto, Portugal
- CINTESIS@RISE, Health Research Network, Porto, Portugal
| |
Collapse
|
9
|
Franchina M, Pizzimenti C, Fiorentino V, Martini M, Ricciardi GRR, Silvestris N, Ieni A, Tuccari G. Low and Ultra-Low HER2 in Human Breast Cancer: An Effort to Define New Neoplastic Subtypes. Int J Mol Sci 2023; 24:12795. [PMID: 37628975 PMCID: PMC10454084 DOI: 10.3390/ijms241612795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
HER2-low and ultra-low breast cancer (BC) have been recently proposed as new subcategories of HER2 BC, supporting a re-consideration of immunohistochemical negative scores of 0, 1+ and the 2+/in situ hybridization (ISH) negative phenotype. In the present review, we outline the criteria needed to exactly distinguish HER2-low and ultra-low BC. Recent clinical trials have demonstrated significant clinical benefits of novel HER2 directing antibody-drug conjugates (ADCs) in treating these groups of tumors. In particular, trastuzumab-deruxtecan (T-Dxd), a HER2-directing ADC, has been recently approved by the US Food and Drug Administration as the first targeted therapy to treat HER2-low BC. Furthermore, ongoing trials, such as the DESTINY-Breast06 trial, are currently evaluating ADCs in patients with HER2-ultra low BC. Finally, we hope that new guidelines may help to codify HER2-low and ultra-low BC, increasing our knowledge of tumor biology and improving a targetable new therapeutical treatment.
Collapse
Affiliation(s)
- Mariausilia Franchina
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Pathology, University of Messina, 98125 Messina, Italy; (M.F.); (V.F.); (M.M.); (N.S.); (A.I.)
| | - Cristina Pizzimenti
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy;
| | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Pathology, University of Messina, 98125 Messina, Italy; (M.F.); (V.F.); (M.M.); (N.S.); (A.I.)
| | - Maurizio Martini
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Pathology, University of Messina, 98125 Messina, Italy; (M.F.); (V.F.); (M.M.); (N.S.); (A.I.)
| | | | - Nicola Silvestris
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Pathology, University of Messina, 98125 Messina, Italy; (M.F.); (V.F.); (M.M.); (N.S.); (A.I.)
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Pathology, University of Messina, 98125 Messina, Italy; (M.F.); (V.F.); (M.M.); (N.S.); (A.I.)
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Pathology, University of Messina, 98125 Messina, Italy; (M.F.); (V.F.); (M.M.); (N.S.); (A.I.)
| |
Collapse
|
10
|
Shirman Y, Lubovsky S, Shai A. HER2-Low Breast Cancer: Current Landscape and Future Prospects. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:605-616. [PMID: 37600670 PMCID: PMC10439285 DOI: 10.2147/bctt.s366122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023]
Abstract
More than 50% of breast cancers are currently defined as "Human epidermal growth factor receptor 2 (HER2) low breast cancer (BC)", with HER2 immunohistochemistry (IHC) scores of +1 or +2 with a negative fluorescence in situ hybridization (FISH) test. In most studies that compared the clinical and biological characteristics of HER2-low BC with HER2-negative BC, HER2-low was not associated with unique clinical and molecular characteristics, and it seems that the importance of HER2 in these tumors is being a docking site for the antibody portion of antibody drug conjugates (ADCs). Current pathological methods may underestimate the proportion of BCs that express low levels of HER2 due to analytical limitations and tumor heterogeneity. In this review we summarize and contextualize the most recent literature on HER2-low breast cancers, including clinical and translational studies We also review the challenges of assessing low HER2 expression in BC and discuss the current and future therapeutic landscape for these tumors.
Collapse
Affiliation(s)
- Yelena Shirman
- Division of Oncology, Rambam Health Care Campus, Haifa, Israel
| | | | - Ayelet Shai
- Division of Oncology, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
11
|
Oropeza E, Seker S, Carrel S, Mazumder A, Lozano D, Jimenez A, VandenHeuvel SN, Noltensmeyer DA, Punturi NB, Lei JT, Lim B, Waltz SE, Raghavan SA, Bainbridge MN, Haricharan S. Molecular portraits of cell cycle checkpoint kinases in cancer evolution, progression, and treatment responsiveness. SCIENCE ADVANCES 2023; 9:eadf2860. [PMID: 37390209 PMCID: PMC10313178 DOI: 10.1126/sciadv.adf2860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/26/2023] [Indexed: 07/02/2023]
Abstract
Cell cycle dysregulation is prerequisite for cancer formation. However, it is unknown whether the mode of dysregulation affects disease characteristics. Here, we conduct comprehensive analyses of cell cycle checkpoint dysregulation using patient data and experimental investigations. We find that ATM mutation predisposes the diagnosis of primary estrogen receptor (ER)+/human epidermal growth factor (HER)2- cancer in older women. Conversely, CHK2 dysregulation induces formation of metastatic, premenopausal ER+/HER2- breast cancer (P = 0.001) that is treatment-resistant (HR = 6.15, P = 0.01). Lastly, while mutations in ATR alone are rare, ATR/TP53 co-mutation is 12-fold enriched over expected in ER+/HER2- disease (P = 0.002) and associates with metastatic progression (HR = 2.01, P = 0.006). Concordantly, ATR dysregulation induces metastatic phenotypes in TP53 mutant, not wild-type, cells. Overall, we identify mode of cell cycle dysregulation as a distinct event that determines subtype, metastatic potential, and treatment responsiveness, providing rationale for reconsidering diagnostic classification through the lens of the mode of cell cycle dysregulation..
Collapse
Affiliation(s)
- Elena Oropeza
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sinem Seker
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sabrina Carrel
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Aloran Mazumder
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Daniel Lozano
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Athena Jimenez
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | | | - Nindo B. Punturi
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jonathan T. Lei
- Lester and Sue Smith Breast Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Bora Lim
- Lester and Sue Smith Breast Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Oncology/Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Susan E. Waltz
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
- Research Service, Cincinnati Veteran's Affairs Medical Center, 3200 Vine St., Cincinnati, OH, USA
| | | | | | - Svasti Haricharan
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
12
|
Metaxas GI, Tsiambas E, Marinopoulos S, Adamopoulou M, Spyropoulou D, Falidas E, Davris D, Manaios L, Fotiades P, Mastronikoli S, Peschos D, Dimitrakakis C. DNA Mismatch Repair System Imbalances in Breast Adenocarcinoma. CANCER DIAGNOSIS & PROGNOSIS 2023; 3:169-174. [PMID: 36875308 PMCID: PMC9949550 DOI: 10.21873/cdp.10197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/28/2022] [Indexed: 03/07/2023]
Abstract
DNA mismatch repair system (MMR) is considered a leading genetic mechanism in stabilizing DNA structure and maintaining its function. DNA MMR is a highly conserved system in bacteria, prokaryotic, and eukaryotic cells, and provides the highest protection to DNA by repairing micro-structural alterations. DNA MMR proteins are involved in the detection and repair of intra-nucleotide base-to-base errors inside the complementary DNA strand recognizing the recently synthesized strand from the parental template. During DNA replication, a spectrum of errors including base insertion, deletion, and miss-incorporation negatively affect the molecule's structure and its functional stability. A broad spectrum of genomic alterations such as promoter hyper methylation, mutation, and loss of heterozygosity (LOH) in MMR genes including predominantly hMLH1, hMSH2, hMSH3, hMSH6, hPMS1, and hPMS2 lead to their loss of base-to-base error repairing procedure. Microsatellite instability (MSI) refers to the DNA MMR gene alterations that are observed in a variety of malignancies of different histological origins. In the current review, we present the role of DNA MMR deficiency in breast adenocarcinoma, a leading cancer-based cause of death in females worldwide.
Collapse
Affiliation(s)
- Georgios I Metaxas
- Breast Unit, 1st Department of Obstetrics and Gynaecology, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Spyridon Marinopoulos
- Breast Unit, 1st Department of Obstetrics and Gynaecology, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Adamopoulou
- Department of Education, Molecular Lab, Deere American College of Greece (AGC), Athens, Greece
| | - Despoina Spyropoulou
- Department of Radiation Oncology, Medical School, University of Patras, Patras, Greece
| | | | - Dimitrios Davris
- Department of Surgery, Halkida General Hospital, Halkida, Greece
| | - Loukas Manaios
- Department of Surgery, Bioclinic Medical Center, Athens, Greece
| | | | | | - Dimitrios Peschos
- Department of Physiology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Constantine Dimitrakakis
- Breast Unit, 1st Department of Obstetrics and Gynaecology, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
13
|
[Therapeutic strategies for the treatment of endocrine resistant hormone receptor positive advanced breast cancer]. Bull Cancer 2023; 110:69-87. [PMID: 36307325 DOI: 10.1016/j.bulcan.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022]
Abstract
HR+ breast cancers are defined by the prominence of signaling pathways dependent on the estrogen receptor. Endocrine therapy is the standard treatment for these advanced diseases. Resistance to these treatments, called hormone resistance, appears invariably with biological mechanisms that have led to the development of therapeutic opportunities. An exhaustive literature review was carried out concerning the biology of the hormone resistance pathways, the therapeutic options before the era of CDK4/6 inhibitors, the rise of CDK4/6 inhibitors and the therapeutic prospects in a situation of hormone resistance. Various biological abnormalities have been identified in the mechanisms of hormone resistance such as changes in the estrogen receptor, mutations in the ESR1 gene, aberrant activation of the PI3K pathway or cell cycle deregulations. Historical strategies for circumventing this hormone resistance have been based on hormonal manipulation, on the development of new endocrine therapy such as fulvestrant (selective estrogen receptor inhibitor, SERD), on combinations of treatments such as everolimus, a mTOR inhibitor. This strategy combining endocrine therapy and targeted therapy has led to the development of combinations with CDK4/6 inhibitors which have now become a standard treatment in the hormone resistance phase. The future of this therapeutic era remains to be written with new combinations of hormone therapy and targeted therapy such as PI3K inhibitors or even with the positioning of new SERDs in clinical development.
Collapse
|
14
|
Hu T, Pan C, Zhang T, Ni M, Wang W, Zhang S, Chen Y, Wang J, Fang Q. Nrf2 overexpression increases the resistance of acute myeloid leukemia to cytarabine by inhibiting replication factor C4. Cancer Gene Ther 2022; 29:1773-1790. [PMID: 35840666 PMCID: PMC9663296 DOI: 10.1038/s41417-022-00501-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023]
Abstract
Drug resistance is a key factor in the treatment failure of acute myeloid leukemia (AML). Nuclear factor E2-related factor 2 (Nrf2) plays a crucial role in tumor chemotherapy resistance. However, the potential mechanism of Nrf2 regulating DNA mismatch repair (MMR) pathway to mediate gene-instability drug resistance in AML is still unclear. Here, it was found that Nrf2 expression was closely related to the disease progression of AML as well as highly expressed in AML patients with poor prognostic gene mutations. Meanwhile, it was also found that the expression of Nrf2 was significantly negatively correlated with DNA MMR gene replication factor C4 (RFC4) in AML. CHIP analysis combined with luciferase reporter gene results further showed that Nrf2 may inhibit the expression of RFC4 by its interaction with the RFC4 promoter. In vitro and vivo experiments showed that the overexpression of Nrf2 decreased the killing effect of chemotherapy drug cytarabine (Ara-C) on leukemia cells and inhibited the expression of RFC4. Mechanistically, The result that Nrf2-RFC4 axis mediated AML genetic instability drug resistance might be received by activating the JNK/NF-κB signaling pathway. Taken together, these findings may provide a new idea for improving AML drug resistance.
Collapse
Affiliation(s)
- Tianzhen Hu
- College of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chengyun Pan
- Department of Haematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guiyang, Guizhou, China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Tianzhuo Zhang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ming Ni
- Department of Haematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guiyang, Guizhou, China
| | - Weili Wang
- Department of Haematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guiyang, Guizhou, China
| | - Siyu Zhang
- College of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ying Chen
- Department of Haematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guiyang, Guizhou, China
| | - Jishi Wang
- Department of Haematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guiyang, Guizhou, China.
| | - Qin Fang
- pharmacy department, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
15
|
Li CL, Moi SH, Lin HS, Hou MF, Chen FM, Shih SL, Kan JY, Kao CN, Wu YC, Kao LC, Chen YH, Lee YC, Chiang CP. Comprehensive Transcriptomic and Proteomic Analyses Identify a Candidate Gene Set in Cross-Resistance for Endocrine Therapy in Breast Cancer. Int J Mol Sci 2022; 23:ijms231810539. [PMID: 36142451 PMCID: PMC9501051 DOI: 10.3390/ijms231810539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Endocrine therapy (ET) of selective estrogen receptor modulators (SERMs), selective estrogen receptor downregulators (SERDs), and aromatase inhibitors (AIs) has been used as the gold standard treatment for hormone-receptor-positive (HR+) breast cancer. Despite its clinical benefits, approximately 30% of patients develop ET resistance, which remains a major clinical challenge in patients with HR+ breast cancer. The mechanisms of ET resistance mainly focus on mutations in the ER and related pathways; however, other targets still exist from ligand-independent ER reactivation. Moreover, mutations in the ER that confer resistance to SERMs or AIs seldom appear in SERDs. To date, little research has been conducted to identify a critical target that appears in both SERMs/SERDs and AIs. In this study, we conducted comprehensive transcriptomic and proteomic analyses from two cohorts of The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) to identify the critical targets for both SERMs/SERDs and AIs of ET resistance. From a treatment response cohort with treatment response for the initial ET regimen and an endocrine therapy cohort with survival outcomes, we identified candidate gene sets that appeared in both SERMs/SERDs and AIs of ET resistance. The candidate gene sets successfully differentiated progress/resistant groups (PD) from complete response groups (CR) and were significantly correlated with survival outcomes in both cohorts. In summary, this study provides valuable clinical implications for the critical roles played by candidate gene sets in the diagnosis, mechanism, and therapeutic strategy for both SERMs/SERDs and AIs of ET resistance for the future.
Collapse
Affiliation(s)
- Chung-Liang Li
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Sin-Hua Moi
- Center of Cancer Program Development, E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Huei-Shan Lin
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Fang-Ming Chen
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Shen-Liang Shih
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Jung-Yu Kan
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Chieh-Ni Kao
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Yi-Chia Wu
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Surgery, Division of Plastic Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Li-Chun Kao
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Ying-Hsuan Chen
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Yi-Chen Lee
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Chih-Po Chiang
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan
- Correspondence: or ; Tel.: +886-7-312-1101 (ext. 2260)
| |
Collapse
|
16
|
Functions of Breast Cancer Predisposition Genes: Implications for Clinical Management. Int J Mol Sci 2022; 23:ijms23137481. [PMID: 35806485 PMCID: PMC9267387 DOI: 10.3390/ijms23137481] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Approximately 5–10% of all breast cancer (BC) cases are caused by germline pathogenic variants (GPVs) in various cancer predisposition genes (CPGs). The most common contributors to hereditary BC are BRCA1 and BRCA2, which are associated with hereditary breast and ovarian cancer (HBOC). ATM, BARD1, CHEK2, PALB2, RAD51C, and RAD51D have also been recognized as CPGs with a high to moderate risk of BC. Primary and secondary cancer prevention strategies have been established for HBOC patients; however, optimal preventive strategies for most hereditary BCs have not yet been established. Most BC-associated CPGs participate in DNA damage repair pathways and cell cycle checkpoint mechanisms, and function jointly in such cascades; therefore, a fundamental understanding of the disease drivers in such cascades can facilitate the accurate estimation of the genetic risk of developing BC and the selection of appropriate preventive and therapeutic strategies to manage hereditary BCs. Herein, we review the functions of key BC-associated CPGs and strategies for the clinical management in individuals harboring the GPVs of such genes.
Collapse
|
17
|
Rampioni Vinciguerra GL, Sonego M, Segatto I, Dall’Acqua A, Vecchione A, Baldassarre G, Belletti B. CDK4/6 Inhibitors in Combination Therapies: Better in Company Than Alone: A Mini Review. Front Oncol 2022; 12:891580. [PMID: 35712501 PMCID: PMC9197541 DOI: 10.3389/fonc.2022.891580] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022] Open
Abstract
The cyclin D-CDK4/6 complexes play a pivotal role in controlling the cell cycle. Deregulation in cyclin D-CDK4/6 pathway has been described in many types of cancer and it invariably leads to uncontrolled cell proliferation. Many efforts have been made to develop a target therapy able to inhibit CDK4/6 activity. To date, three selective CDK4/6 small inhibitors have been introduced in the clinic for the treatment of hormone positive advanced breast cancer patients, following the impressive results obtained in phase III clinical trials. However, since their approval, clinical evidences have demonstrated that about 30% of breast cancer is intrinsically resistant to CDK4/6 inhibitors and that prolonged treatment eventually leads to acquired resistance in many patients. So, on one hand, clinical and preclinical studies fully support to go beyond breast cancer and expand the use of CDK4/6 inhibitors in other tumor types; on the other hand, the question of primary and secondary resistance has to be taken into account, since it is now very clear that neoplastic cells rapidly develop adaptive strategies under treatment, eventually resulting in disease progression. Resistance mechanisms so far discovered involve both cell-cycle and non-cell-cycle related escape strategies. Full understanding is yet to be achieved but many different pathways that, if targeted, may lead to reversion of the resistant phenotype, have been already elucidated. Here, we aim to summarize the knowledge in this field, focusing on predictive biomarkers, to recognize intrinsically resistant tumors, and therapeutic strategies, to overcome acquired resistance.
Collapse
Affiliation(s)
- Gian Luca Rampioni Vinciguerra
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Maura Sonego
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Ilenia Segatto
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Alessandra Dall’Acqua
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant’Andrea Hospital, University of Rome “Sapienza”, Rome, Italy
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
- *Correspondence: Barbara Belletti,
| |
Collapse
|
18
|
Kasugai Y, Kohmoto T, Taniyama Y, Koyanagi YN, Usui Y, Iwase M, Oze I, Yamaguchi R, Ito H, Imoto I, Matsuo K. Association between germline pathogenic variants and breast cancer risk in Japanese women: The HERPACC study. Cancer Sci 2022; 113:1451-1462. [PMID: 35218119 PMCID: PMC8990868 DOI: 10.1111/cas.15312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 12/24/2022] Open
Abstract
Approximately 5%-10% of breast cancers are hereditary, caused by germline pathogenic variants (GPVs) in breast cancer predisposition genes. To date, most studies of the prevalence of GPVs and risk of breast cancer for each gene based on cases and noncancer controls have been conducted in Europe and the United States, and little information from Japanese populations is available. Furthermore, no studies considered confounding by established environmental factors and single-nucleotide polymorphisms (SNPs) identified in genome-wide association studies (GWAS) together in GPV evaluation. To evaluate the association between GPVs in nine established breast cancer predisposition genes including BRCA1/2 and breast cancer risk in Japanese women comprehensively, we conducted a case-control study within the Hospital-based Epidemiologic Research Program at Aichi Cancer Center (629 cases and 1153 controls). The associations between GPVs and the risk of breast cancer were assessed by odds ratios (OR) and 95% confidence intervals (CI) using logistic regression models adjusted for potential confounders. A total of 25 GPVs were detected among all cases (4.0%: 95% CI: 2.6-5.9), whereas four individuals carried GPVs in all controls (0.4%). The OR for breast cancer by all GPVs and by GPVs in BRCA1/2 was 12.2 (4.4-34.0, p = 1.74E-06) and 16.0 (4.2-60.9, p = 5.03E-0.5), respectively. A potential confounding with GPVs was observed for the GWAS-identified SNPs, whereas not for established environmental risk factors. In conclusion, GPVs increase the risk of breast cancer in Japanese women regardless of environmental factors and GWAS-identified SNPs. Future studies investigating interactions with environment and SNPs are warranted.
Collapse
Grants
- Aichi Cancer Center Joint Research Project on Priority Areas
- Grant-in-Aid for the Third Term Comprehensive 10-year Strategy for Cancer Control from the Ministry of Health, Labour and Welfare of Japan
- JP15ck0106177 AMED
- JP21ck0106553 AMED
- Cancer BioBank Aichi
- 17015018 Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, Culture and Technology of Japan
- 221S0001 Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, Culture and Technology of Japan
- JP16H06277(CoBiA) Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, Culture and Technology of Japan
- JP18H03045 Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, Culture and Technology of Japan
- AMED
- Grants‐in‐Aid for Scientific Research from the Ministry of Education, Science, Sports, Culture and Technology of Japan
Collapse
Affiliation(s)
- Yumiko Kasugai
- Division of Cancer Epidemiology and PreventionAichi Cancer Center Research InstituteNagoyaJapan
- Department of Cancer EpidemiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Tomohiro Kohmoto
- Division of Cancer Systems BiologyAichi Cancer Center Research InstituteNagoyaJapan
- Department of Human GeneticsGraduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Yukari Taniyama
- Division of Cancer Information and ControlAichi Cancer Center Research InstituteNagoyaJapan
| | - Yuriko N. Koyanagi
- Division of Cancer Information and ControlAichi Cancer Center Research InstituteNagoyaJapan
| | - Yoshiaki Usui
- Division of Cancer Information and ControlAichi Cancer Center Research InstituteNagoyaJapan
- Laboratory for Genotyping DevelopmentRIKEN Center for Integrative Medical SciencesYokohamaJapan
| | - Madoka Iwase
- Division of Cancer Epidemiology and PreventionAichi Cancer Center Research InstituteNagoyaJapan
| | - Isao Oze
- Division of Cancer Epidemiology and PreventionAichi Cancer Center Research InstituteNagoyaJapan
| | - Rui Yamaguchi
- Division of Cancer Systems BiologyAichi Cancer Center Research InstituteNagoyaJapan
| | - Hidemi Ito
- Division of Cancer Information and ControlAichi Cancer Center Research InstituteNagoyaJapan
| | - Issei Imoto
- Aichi Cancer Center Research InstituteNagoyaJapan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and PreventionAichi Cancer Center Research InstituteNagoyaJapan
- Department of Cancer EpidemiologyNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
19
|
Venetis K, Crimini E, Sajjadi E, Corti C, Guerini-Rocco E, Viale G, Curigliano G, Criscitiello C, Fusco N. HER2 Low, Ultra-low, and Novel Complementary Biomarkers: Expanding the Spectrum of HER2 Positivity in Breast Cancer. Front Mol Biosci 2022; 9:834651. [PMID: 35372498 PMCID: PMC8965450 DOI: 10.3389/fmolb.2022.834651] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/21/2022] [Indexed: 12/16/2022] Open
Abstract
HER2 status in breast cancer is assessed to select patients eligible for targeted therapy with anti-HER2 therapies. According to the American Society of Clinical Oncology (ASCO) and College of American Pathologists (CAP), the HER2 test positivity is defined by protein overexpression (score 3+) at immunohistochemistry (IHC) and/or gene amplification at in situ hybridization (ISH). The introduction of novel anti-HER2 compounds, however, is changing this paradigm because some breast cancers with lower levels of protein expression (i.e. score 1+/2+ with no gene amplification) benefited from HER2 antibody-drug conjugates (ADC). Recently, a potential for HER2 targeting in HER2 "ultra-low" (i.e. score 0 with incomplete and faint staining in ≤10% of tumor cells) and MutL-deficient estrogen receptor (estrogen receptor)-positive/HER2-negative breast cancers has been highlighted. All these novel findings are transforming the traditional dichotomy of HER2 status and have dramatically raised the expectations in this field. Still, a more aware HER2 status assessment coupled with the comprehensive characterization of the clinical and molecular features of these tumors is required. Here, we seek to provide an overview of the current state of HER2 targeting in breast cancers beyond the canonical HER2 positivity and to discuss the practical implications for pathologists and oncologists.
Collapse
Affiliation(s)
- Konstantinos Venetis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Edoardo Crimini
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development for Innovative Therapy, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Elham Sajjadi
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Chiara Corti
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development for Innovative Therapy, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Elena Guerini-Rocco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuseppe Viale
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development for Innovative Therapy, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Carmen Criscitiello
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development for Innovative Therapy, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
20
|
Mazumder A, Jimenez A, Ellsworth RE, Freedland SJ, George S, Bainbridge MN, Haricharan S. The DNA damage repair landscape in Black women with breast cancer. Ther Adv Med Oncol 2022; 14:17588359221075458. [PMID: 35154416 PMCID: PMC8829704 DOI: 10.1177/17588359221075458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/06/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Estrogen receptor positive (ER+) breast cancer is one of the most commonly diagnosed malignancies in women irrespective of their race or ethnicity. While Black women with ER+ breast cancer are 42% more likely to die of their disease than White women, molecular mechanisms underlying this disparate outcome are understudied. Recent studies identify DNA damage repair (DDR) genes as a new class of endocrine therapy resistance driver that contributes to poor survival among ER+ breast cancer patients. Here, we systematically analyze DDR regulation in the tumors and normal breast of Black women and its impact on survival outcome. METHOD Mutation and up/downregulation of 104 DDR genes in breast tumor and normal samples from Black patients relative to White counterparts was assessed. For DDR genes that were differently regulated in the tumor samples from Black women in multiple datasets associations with survival outcome were tested. RESULTS Overall, Black patient tumors upregulate or downregulate RNA levels of a wide array of single strand break repair (SSBR) genes relative to their white counterparts and uniformly upregulate double strand break repair (DSBR) genes. This DSBR upregulation was also detectable in samples of normal breast tissue from Black women. Eight candidate DDR genes were reproducibly differently regulated in tumors from Black women and associated with poor survival. A unique DDR signature comprised of simultaneous upregulation of homologous recombination gene expression and downregulation of SSBR genes was enriched in Black patients. This signature associated with cell cycle dysregulation (p < 0.001), a hallmark of endocrine therapy resistance, and concordantly, with significantly worse survival outcomes in all datasets analyzed (hazard ratio of 9.5, p < 0.001). CONCLUSION These results constitute the first systematic analysis of DDR regulation in Black women and provide strong rationale for refining biomarker profiles to ensure precision medicine for underserved populations.
Collapse
Affiliation(s)
- Aloran Mazumder
- Aging, Cancer and Immuno-oncology Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Athena Jimenez
- Aging, Cancer and Immuno-oncology Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Rachel E. Ellsworth
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Stephen J. Freedland
- Division of Urology, Department of Surgery and the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Section of Urology, Durham VA Medical Center, Durham, NC, USA
| | - Sophia George
- Division of Gynecologic Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | | |
Collapse
|
21
|
Asghar US, Kanani R, Roylance R, Mittnacht S. Systematic Review of Molecular Biomarkers Predictive of Resistance to CDK4/6 Inhibition in Metastatic Breast Cancer. JCO Precis Oncol 2022; 6:e2100002. [PMID: 35005994 PMCID: PMC8769124 DOI: 10.1200/po.21.00002] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 08/30/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors have revolutionized the treatment of hormone-positive metastatic breast cancers (mBCs). They are currently established as standard therapies in combination with endocrine therapy as first- and second-line systemic treatment options for both endocrine-sensitive and endocrine-resistant mBC populations. In the first-line metastatic setting, the median progression-free survival for the three currently approved CDK4/6 inhibitors, palbociclib, ribociclib, and abemaciclib, with aromatase inhibitors is greater than 2 years (palbociclib 27.6 months; ribociclib 25.3 months; and abemaciclib 28.18 months). Although CDK4/6 inhibitors have significant clinical benefits and enable physicians to delay starting chemotherapy, they are expensive and can be associated with drug toxicities. Here, we have performed a systemic review of the reported molecular markers predictive of drug response including intrinsic and acquired resistance for CDK4/6 inhibition in mBC. The rapidly emerging molecular landscape is captured through next-generation sequencing of breast cancers (DNA with or without RNA), liquid biopsies (circulating tumor DNA), and protein analyses. Individual molecular candidates with robust and reliable evidence are discussed in more depth.
Collapse
Affiliation(s)
- Uzma S. Asghar
- Breast Unit, Royal Marsden Hospital, Sutton, United Kingdom
- Croydon University Hospital, Thornton Heath, United Kingdom
- Concr LTD, Babraham Research Campus Limited, Babraham Research Campus, Cambridge, United Kingdom
- Cohort Innovation Space, Southport, QLD, Australia
| | - Ruhi Kanani
- University College London Hospital, London, United Kingdom
| | - Rebecca Roylance
- NIHR Biomedical Research Centre UCLH/UCL, and Breast Unit, University College London Hospital, London, United Kingdom
| | - Sibylle Mittnacht
- UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
22
|
Scheidemann ER, Shajahan-Haq AN. Resistance to CDK4/6 Inhibitors in Estrogen Receptor-Positive Breast Cancer. Int J Mol Sci 2021; 22:12292. [PMID: 34830174 PMCID: PMC8625090 DOI: 10.3390/ijms222212292] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Estrogen receptor-positive (ER+) breast cancer is the most common form of breast cancer. Antiestrogens were the first therapy aimed at treating this subtype, but resistance to these warranted the development of a new treatment option. CDK4/6 inhibitors address this problem by halting cell cycle progression in ER+ cells, and have proven to be successful in the clinic. Unfortunately, both intrinsic and acquired resistance to CDK4/6 inhibitors are common. Numerous mechanisms of how resistance occurs have been identified to date, including the activation of prominent growth signaling pathways, the loss of tumor-suppressive genes, and noncanonical cell cycle function. Many of these have been successfully targeted and demonstrate the ability to overcome resistance to CDK4/6 inhibitors in preclinical and clinical trials. Future studies should focus on the development of biomarkers so that patients likely to be resistant to CDK4/6 inhibition can initially be given alternative methods of treatment.
Collapse
Affiliation(s)
| | - Ayesha N. Shajahan-Haq
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA;
| |
Collapse
|
23
|
Castaneda CA, Castillo M, Bernabe LA, Sanchez J, Torres E, Suarez N, Tello K, Fuentes H, Dunstan J, De La Cruz M, Cotrina JM, Abugattas J, Guerra H, Gomez HL. A biomarker study in Peruvian males with breast cancer. World J Clin Oncol 2021; 12:926-934. [PMID: 34733614 PMCID: PMC8546657 DOI: 10.5306/wjco.v12.i10.926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/25/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Breast cancer (BC) frequency in males is extremely low and tumor features vary from its female counterpart. Breast cancer clinical and pathological features differ by race in women. Tumor infiltrating lymphocyte (TIL) levels, mismatch repair (MMR) protein loss, androgen receptor (AR) expression, and PIK3CA gene mutations are predictive biomarkers of response to biological therapy in female BC. There is limited information about clinical and pathological features as well as predictive biomarkers in males of non-Caucasian races with BC.
AIM To investigate clinicopathological features and biomarkers of BC tumors in males and their prognostic value in Peruvian population.
METHODS This study looked at a single-institution series of 54 Peruvian males with invasive BC who were diagnosed from Jan 2004 to June 2018. Standard pathological features, TIL levels, MMR proteins, AR immunohistochemistry staining, and PIK3CA gene mutations were prospectively evaluated in cases with available paraffin material. Percentage of AR and estrogen receptor (ER) positive cells was additionally calculated by software after slide scanning. Statistical analyses included association tests, intraclass correlation test and Kaplan Meier overall survival curves.
RESULTS The median age was 63 years and most cases were ER-positive (85.7%), HER2 negative (87.2%), Luminal-A phenotype (60%) and clinical stage II (41.5%) among our male breast tumors. Median TIL was 10% and higher levels tended to be associated with Luminal-B phenotype and higher grade. AR-positive was found in 85.3% and was correlated with ER (intraclass index of 0.835, P < 0.001). Loss of MMR proteins was found in 15.4% and PIK3CA mutation (H1047R) in 14.3% (belonged to the Luminal-A phenotype). Loss of MMR proteins was associated with AR-negative (P = 0.018) but not with ER (P = 0.43) or TIL (P = 0.84). Early stages (P < 0.001) and lower grade (P = 0.006) were associated with longer overall survival. ER status, phenotype, AR status, TIL level, MMR protein loss nor PIK3CA mutation was not associated with survival (P > 0.05).
CONCLUSION Male BC is usually ER and AR positive, and Luminal-A. MMR loss and PIK3CA mutations are infrequent. Stage and grade predicted overall survival in our South American country population.
Collapse
Affiliation(s)
- Carlos A Castaneda
- Faculty of Health Sciences, Universidad Cientifica del Sur, Lima 15067, Peru
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Miluska Castillo
- Department of Research, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Luis A Bernabe
- Department of Research, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Joselyn Sanchez
- Department of Research, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Ebert Torres
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Nancy Suarez
- Department of Research, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Katherine Tello
- Department of Research, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Hugo Fuentes
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Jorge Dunstan
- Department of Breast Cancer Surgery, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Miguel De La Cruz
- Department of Breast Cancer Surgery, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Jose Manuel Cotrina
- Department of Breast Cancer Surgery, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Julio Abugattas
- Department of Breast Cancer Surgery, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Henry Guerra
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Henry L Gomez
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| |
Collapse
|
24
|
Dal Berto M, Dos Santos GT, Dos Santos AV, Silva AO, Vargas JE, Alves RJV, Barbisan F, da Cruz IBM, Bica CG. Molecular markers associated with the outcome of tamoxifen treatment in estrogen receptor-positive breast cancer patients: scoping review and in silico analysis. Discov Oncol 2021; 12:37. [PMID: 35201456 PMCID: PMC8777552 DOI: 10.1007/s12672-021-00432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
Tamoxifen (TMX) is used as adjuvant therapy for estrogen receptor-positive (ER+) breast cancer cases due to its affinity and inhibitory effects. However, about 30% of cases show drug resistance, resulting in recurrence and metastasis, the leading causes of death. A literature review can help to elucidate the main cellular processes involved in TMX resistance. A scoping review was performed to find clinical studies investigating the association of expression of molecular markers profiles with long-term outcomes in ER+ patients treated with TMX. In silico analysis was performed to assess the interrelationship among the selected markers, evaluating the joint involvement with the biological processes. Forty-five studies were selected according to the inclusion and exclusion criteria. After clustering and gene ontology analysis, 23 molecular markers were significantly associated, forming three clusters of strong correlation with cell cycle regulation, signal transduction of proliferative stimuli, and hormone response involved in morphogenesis and differentiation of mammary gland. Also, it was found that overexpression of markers in selected clusters is a significant indicator of poor overall survival. The proposed review offered a better understanding of independent data from the literature, revealing an integrative network of markers involved in cellular processes that could modulate the response of TMX. Analysis of these mechanisms and their molecular components could improve the effectiveness of TMX.
Collapse
Affiliation(s)
- Maiquidieli Dal Berto
- Laboratory of Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 245,Sarmento Leite street, Porto Alegre, RS, 90050-170, Brazil
| | - Giovana Tavares Dos Santos
- Laboratory of Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 245,Sarmento Leite street, Porto Alegre, RS, 90050-170, Brazil
| | - Aniúsca Vieira Dos Santos
- Laboratory of Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 245,Sarmento Leite street, Porto Alegre, RS, 90050-170, Brazil
| | - Andrew Oliveira Silva
- Laboratory of Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 245,Sarmento Leite street, Porto Alegre, RS, 90050-170, Brazil
| | - José Eduardo Vargas
- Institute of Biological Sciences, University of Passo Fundo (UPF), 285, Brazil Avenue, Passo Fundo, RS, 99052-900, Brazil
| | - Rafael José Vargas Alves
- Department of Clinical Medicine, Federal University of Health Sciences of Porto Alegre (UFCSPA), 245, Sarmento Leite street, Porto Alegre, RS, 90050-170, Brazil
| | - Fernanda Barbisan
- Graduate Program in Gerontology, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | | | - Claudia Giuliano Bica
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 245, Sarmento Leite street., Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
25
|
Mazumder A, Shiao S, Haricharan S. HER2 Activation and Endocrine Treatment Resistance in HER2-negative Breast Cancer. Endocrinology 2021; 162:6329618. [PMID: 34320193 PMCID: PMC8379900 DOI: 10.1210/endocr/bqab153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 11/19/2022]
Abstract
The lethality of estrogen receptor alpha positive (ER+) breast cancer, which is often considered to have better prognosis than other subtypes, is defined by resistance to the standard of care endocrine treatment. Relapse and metastasis are inevitable in almost every patient whose cancer is resistant to endocrine treatment. Therefore, understanding the underlying causes of treatment resistance remains an important biological and clinical focus of research in this area. Growth factor receptor pathway activation, specifically HER2 activation, has been identified as 1 mechanism of endocrine treatment resistance across a range of experimental model systems. However, clinical trials conducted to test whether targeting HER2 benefits patients with endocrine treatment-resistant ER+ breast cancer have consistently and disappointingly shown mixed results. One reason for the failure of these clinical trials could be the complexity of crosstalk between ER, HER2, and other growth factor receptors and the fluidity of HER2 activation in these cells, which makes it challenging to identify stratifiers for this targeted intervention. In the absence of stratifiers that can be assayed at diagnosis to allow prospective tailoring of HER2 inhibition to the right patients, clinical trials will continue to disappoint. To understand stratifiers, it is important that the field invests in key understudied areas of research including characterization of the tumor secretome and receptor activation in response to endocrine treatment, and mapping the ER-HER2 growth factor network in the normal and developing mammary gland. Understanding these mechanisms further is critical to improving outcomes for the hard-to-treat endocrine treatment-resistant ER+ breast cancer cohort.
Collapse
Affiliation(s)
- Aloran Mazumder
- Aging and Cancer Immuno-oncology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Stephen Shiao
- Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Svasti Haricharan
- Aging and Cancer Immuno-oncology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- Correspondence: Svasti Haricharan, PhD, Sanford Burnham Prebys, 10901 N Torrey Pines Rd, La Jolla, CA, USA.
| |
Collapse
|
26
|
De Angelis C, Fu X, Cataldo ML, Nardone A, Pereira R, Veeraraghavan J, Nanda S, Qin L, Sethunath V, Wang T, Hilsenbeck SG, Benelli M, Migliaccio I, Guarducci C, Malorni L, Litchfield LM, Liu J, Donaldson J, Selenica P, Brown DN, Weigelt B, Reis-Filho JS, Park BH, Hurvitz SA, Slamon DJ, Rimawi MF, Jansen VM, Jeselsohn R, Osborne CK, Schiff R. Activation of the IFN Signaling Pathway is Associated with Resistance to CDK4/6 Inhibitors and Immune Checkpoint Activation in ER-Positive Breast Cancer. Clin Cancer Res 2021; 27:4870-4882. [PMID: 33536276 PMCID: PMC8628647 DOI: 10.1158/1078-0432.ccr-19-4191] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 12/05/2020] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Cyclin-dependent kinase 4 (CDK4) and CDK6 inhibitors (CDK4/6i) are highly effective against estrogen receptor-positive (ER+)/HER2- breast cancer; however, intrinsic and acquired resistance is common. Elucidating the molecular features of sensitivity and resistance to CDK4/6i may lead to identification of predictive biomarkers and novel therapeutic targets, paving the way toward improving patient outcomes. EXPERIMENTAL DESIGN Parental breast cancer cells and their endocrine-resistant derivatives (EndoR) were used. Derivatives with acquired resistance to palbociclib (PalboR) were generated from parental and estrogen deprivation-resistant MCF7 and T47D cells. Transcriptomic and proteomic analyses were performed in palbociclib-sensitive and PalboR lines. Gene expression data from CDK4/6i neoadjuvant trials and publicly available datasets were interrogated for correlations of gene signatures and patient outcomes. RESULTS Parental and EndoR breast cancer lines showed varying degrees of sensitivity to palbociclib. Transcriptomic analysis of these cell lines identified an association between high IFN signaling and reduced CDK4/6i sensitivity; thus an "IFN-related palbociclib-resistance Signature" (IRPS) was derived. In two neoadjuvant trials of CDK4/6i plus endocrine therapy, IRPS and other IFN-related signatures were highly enriched in patients with tumors exhibiting intrinsic resistance to CDK4/6i. PalboR derivatives displayed dramatic activation of IFN/STAT1 signaling compared with their short-term treated or untreated counterparts. In primary ER+/HER2- tumors, the IRPS score was significantly higher in lumB than lumA subtype and correlated with increased gene expression of immune checkpoints, endocrine resistance, and poor prognosis. CONCLUSIONS Aberrant IFN signaling is associated with intrinsic resistance to CDK4/6i. Experimentally, acquired resistance to palbociclib is associated with activation of the IFN pathway, warranting additional studies to clarify its involvement in resistance to CDK4/6i.
Collapse
Affiliation(s)
- Carmine De Angelis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA,Department of Medicine, Baylor College of Medicine, Houston, TX, USA,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA,Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Xiaoyong Fu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA,University of California, Los Angeles, Los Angeles, CA, USA
| | - Maria Letizia Cataldo
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA,Department of Medicine, Baylor College of Medicine, Houston, TX, USA,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA,Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Agostina Nardone
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Resel Pereira
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA,Department of Medicine, Baylor College of Medicine, Houston, TX, USA,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jamunarani Veeraraghavan
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA,Department of Medicine, Baylor College of Medicine, Houston, TX, USA,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Sarmistha Nanda
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA,Department of Medicine, Baylor College of Medicine, Houston, TX, USA,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Lanfang Qin
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA,Department of Medicine, Baylor College of Medicine, Houston, TX, USA,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Vidyalakshmi Sethunath
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA,Department of Medicine, Baylor College of Medicine, Houston, TX, USA,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Tao Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA,Department of Medicine, Baylor College of Medicine, Houston, TX, USA,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Susan G. Hilsenbeck
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Matteo Benelli
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Prato, Italy
| | - Ilenia Migliaccio
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Prato, Italy,,“Sandro Pitigliani” Medical Oncology Department, Hospital of Prato, Prato, Italy
| | - Cristina Guarducci
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA,“Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Prato, Italy
| | - Luca Malorni
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Prato, Italy,,“Sandro Pitigliani” Medical Oncology Department, Hospital of Prato, Prato, Italy
| | | | | | - Joshua Donaldson
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pier Selenica
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David N. Brown
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S. Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ben H. Park
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Mothaffar F. Rimawi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA,Department of Medicine, Baylor College of Medicine, Houston, TX, USA,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | | - Rinath Jeselsohn
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - C. Kent Osborne
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA,Department of Medicine, Baylor College of Medicine, Houston, TX, USA,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Rachel Schiff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas. .,Department of Medicine, Baylor College of Medicine, Houston, Texas.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
27
|
Punturi NB, Seker S, Devarakonda V, Mazumder A, Kalra R, Chen CH, Li S, Primeau T, Ellis MJ, Kavuri SM, Haricharan S. Mismatch repair deficiency predicts response to HER2 blockade in HER2-negative breast cancer. Nat Commun 2021; 12:2940. [PMID: 34011995 PMCID: PMC8134423 DOI: 10.1038/s41467-021-23271-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/22/2021] [Indexed: 01/02/2023] Open
Abstract
Resistance to endocrine treatment occurs in ~30% of ER+ breast cancer patients resulting in ~40,000 deaths/year in the USA. Preclinical studies strongly implicate activation of growth factor receptor, HER2 in endocrine treatment resistance. However, clinical trials of pan-HER inhibitors in ER+/HER2- patients have disappointed, likely due to a lack of predictive biomarkers. Here we demonstrate that loss of mismatch repair activates HER2 after endocrine treatment in ER+/HER2- breast cancer cells by protecting HER2 from protein trafficking. Additionally, HER2 activation is indispensable for endocrine treatment resistance in MutL- cells. Consequently, inhibiting HER2 restores sensitivity to endocrine treatment. Patient data from multiple clinical datasets supports an association between MutL loss, HER2 upregulation, and sensitivity to HER inhibitors in ER+/HER2- patients. These results provide strong rationale for MutL loss as a first-in-class predictive marker of sensitivity to combinatorial treatment with endocrine intervention and HER inhibitors in endocrine treatment-resistant ER+/HER2- breast cancer patients.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Cell Line, Tumor
- DNA Mismatch Repair/drug effects
- DNA Mismatch Repair/genetics
- Drug Resistance, Neoplasm/genetics
- Female
- Gene Knockdown Techniques
- Humans
- MCF-7 Cells
- Mice
- Mice, Nude
- Mice, SCID
- MutL Protein Homolog 1/genetics
- MutL Protein Homolog 1/metabolism
- MutL Proteins/genetics
- MutL Proteins/metabolism
- Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptors, Estrogen/metabolism
- Signal Transduction
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Nindo B Punturi
- Tumor Microenvironment and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sinem Seker
- Tumor Microenvironment and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Vaishnavi Devarakonda
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Aloran Mazumder
- Tumor Microenvironment and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Rashi Kalra
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Ching Hui Chen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Shunqiang Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Tina Primeau
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Shyam M Kavuri
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Svasti Haricharan
- Tumor Microenvironment and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
28
|
Sajjadi E, Venetis K, Piciotti R, Invernizzi M, Guerini-Rocco E, Haricharan S, Fusco N. Mismatch repair-deficient hormone receptor-positive breast cancers: Biology and pathological characterization. Cancer Cell Int 2021; 21:266. [PMID: 34001143 PMCID: PMC8130151 DOI: 10.1186/s12935-021-01976-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022] Open
Abstract
The clinical outcome of patients with a diagnosis of hormone receptor (HR)+ breast cancer has improved remarkably since the arrival of endocrine therapy. Yet, resistance to standard treatments is a major clinical challenge for breast cancer specialists and a life-threatening condition for the patients. In breast cancer, mismatch repair (MMR) status assessment has been demonstrated to be clinically relevant not only in terms of screening for inherited conditions such as Lynch syndrome, but also for prognostication, selection for immunotherapy, and early identification of therapy resistance. Peculiar traits characterize the MMR biology in HR+ breast cancers compared to other cancer types. In these tumors, MMR genetic alterations are relatively rare, occurring in ~3 % of cases. On the other hand, modifications at the protein level can be observed also in the absence of gene alterations and vice versa. In HR+ breast cancers, the prognostic role of MMR deficiency has been confirmed by several studies, but its predictive value remains a matter of controversy. The characterization of MMR status in these patients is troubled by the lack of tumor-specific guidelines and/or companion diagnostic tests. For this reason, precise identification of MMR-deficient breast cancers can be problematic. A deeper understanding of the MMR biology and clinical actionability in HR+ breast cancer may light the path to effective tumor-specific diagnostic tools. For a precise MMR status profiling, the specific strengths and limitations of the available technologies should be taken into consideration. This article aims at providing a comprehensive overview of the current state of knowledge of MMR alterations in HR+ breast cancer. The available armamentarium for MMR testing in these tumors is also examined along with possible strategies for a tailored pathological characterization.
Collapse
Affiliation(s)
- Elham Sajjadi
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Konstantinos Venetis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Roberto Piciotti
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Marco Invernizzi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Viale Piazza D'Armi, 1, 28100, Novara, Italy
| | - Elena Guerini-Rocco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Svasti Haricharan
- Department of Tumor Microenvironment and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, 92037, La Jolla, CA, USA
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy.
| |
Collapse
|
29
|
Stucci LS, Internò V, Tucci M, Perrone M, Mannavola F, Palmirotta R, Porta C. The ATM Gene in Breast Cancer: Its Relevance in Clinical Practice. Genes (Basel) 2021; 12:727. [PMID: 34068084 PMCID: PMC8152746 DOI: 10.3390/genes12050727] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
Molecular alterations of the Ataxia-telangiectasia (AT) gene are frequently detected in breast cancer (BC), with an incidence ranging up to 40%. The mutated form, the Ataxia-telangiectasia mutated (ATM) gene, is involved in cell cycle control, apoptosis, oxidative stress, and telomere maintenance, and its role as a risk factor for cancer development is well established. Recent studies have confirmed that some variants of ATM are associated with an increased risk of BC development and a worse prognosis. Thus, many patients harboring ATM mutations develop intermediate- and high-grade disease, and there is a higher rate of lymph node metastatic involvement. The evidence concerning a correlation of ATM gene mutations and the efficacy of therapeutic strategies in BC management are controversial. In fact, ATM mutations may sensitize cancer cells to platinum-derived drugs, as BRCA1/2 mutations do, whereas their implications in objective responses to hormonal therapy or target-based agents are not well defined. Herein, we conducted a review of the role of ATM gene mutations in BC development, prognosis, and different treatment strategies.
Collapse
Affiliation(s)
- Luigia Stefania Stucci
- Division of Medical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, A.O.U. Consorziale Policlinico di Bari, 70121 Bari, Italy; (V.I.); (M.T.); (M.P.); (F.M.); (C.P.)
| | - Valeria Internò
- Division of Medical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, A.O.U. Consorziale Policlinico di Bari, 70121 Bari, Italy; (V.I.); (M.T.); (M.P.); (F.M.); (C.P.)
| | - Marco Tucci
- Division of Medical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, A.O.U. Consorziale Policlinico di Bari, 70121 Bari, Italy; (V.I.); (M.T.); (M.P.); (F.M.); (C.P.)
- National Cancer Research Center, Tumori Institute IRCCS Giovanni Paolo II, 70121 Bari, Italy
| | - Martina Perrone
- Division of Medical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, A.O.U. Consorziale Policlinico di Bari, 70121 Bari, Italy; (V.I.); (M.T.); (M.P.); (F.M.); (C.P.)
| | - Francesco Mannavola
- Division of Medical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, A.O.U. Consorziale Policlinico di Bari, 70121 Bari, Italy; (V.I.); (M.T.); (M.P.); (F.M.); (C.P.)
| | - Raffaele Palmirotta
- Interdisciplinary Department of Medicine, Section of Sciences and Technologies of Laboratory Medicine, University of Bari, 70121 Bari, Italy;
| | - Camillo Porta
- Division of Medical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, A.O.U. Consorziale Policlinico di Bari, 70121 Bari, Italy; (V.I.); (M.T.); (M.P.); (F.M.); (C.P.)
| |
Collapse
|
30
|
A novel Lnc408 maintains breast cancer stem cell stemness by recruiting SP3 to suppress CBY1 transcription and increasing nuclear β-catenin levels. Cell Death Dis 2021; 12:437. [PMID: 33934099 PMCID: PMC8088435 DOI: 10.1038/s41419-021-03708-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/26/2022]
Abstract
Tumor initiation, development, and relapse may be closely associated with cancer stem cells (CSCs). The complicated mechanisms underlying the maintenance of CSCs are keeping in illustration. Long noncoding RNAs (lncRNAs), due to their multifunction in various biological processes, have been indicated to play a crucial role in CSC renewal and stemness maintenance. Using lncRNA array, we identified a novel lncRNA (named lnc408) in epithelial-mesenchymal transition-related breast CSCs (BCSCs). The lnc408 is high expressed in BCSCs in vitro and in vivo. The enhanced lnc408 is critical to BCSC characteristics and tumorigenesis. Lnc408 can recruit transcript factor SP3 to CBY1 promoter to serve as an inhibitor in CBY1 transcription in BCSCs. The high expressed CBY1 in non-BCSC interacts with 14-3-3 and β-catenin to form a ternary complex, which leads a translocation of the ternary complex into cytoplasm from nucleus and degradation of β-catenin in phosphorylation-dependent pattern. The lnc408-mediated decrease of CBY1 in BCSCs impairs the formation of 14-3-3/β-catenin/CBY1 complex, and keeps β-catenin in nucleus to promote CSC-associated CD44, SOX2, Nanog, Klf4, and c-Myc expressions and contributes to mammosphere formation; however, restoration of CBY1 expression in tumor cells reduces BCSC and its enrichment, thus lnc408 plays an essential role in maintenance of BCSC stemness. In shortly, these findings highlight that the novel lnc408 functions as an oncogenic factor by recruiting SP3 to inhibit CBY1 expression and β-catenin accumulation in nucleus to maintain stemness properties of BCSCs. Lnc408-CBY1-β-catenin signaling axis might serve as a new diagnostic and therapeutic target for breast cancer.
Collapse
|
31
|
Yuan Y, Xiao WW, Xie WH, Li RZ, Gao YH. Prognostic value of ubiquitin E2 UBE2W and its correlation with tumor-infiltrating immune cells in breast cancer. BMC Cancer 2021; 21:479. [PMID: 33931024 PMCID: PMC8086329 DOI: 10.1186/s12885-021-08234-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022] Open
Abstract
Background Ubiquitin-conjugating enzyme E2W (UBE2W) is a protein-coding gene that has an important role in ubiquitination and may be vital in the repair of DNA damage. However, studies on the prognostic value of UBE2W and its correlation with tumor-infiltrating immune cells in multiple cancers have not been addressed. Methods We investigated UBE2W expression in the Oncomine database, the Tumor Immune Estimation Resource (TIMER), TNMplot database. Then, the clinical prognostic value of UBE2W was analyzed via online public databases. Meanwhile, we explored the correlation between UBE2W and DNA repair associate genes expression and DNA methyltransferase expression by TIMER and Gene Expression Profiling Interactive Analysis (GEPIA). By using the same method, the correlation between UBE2W and tumor-infiltrating immune cells was explored. Genomic Profiles of UBE2W in breast cancer (BRCA) were accessed in cBioPortal (v3.5.0). Functional proteins associated network was analyzed by STRING database (v11.0). Results UBE2W was abnormally expressed and significantly correlated with mismatch repair (MMR) gene mutation levels, DNA methyltransferase, and BRCA1/2 expression in breast cancer. High expression of UBE2W may promote the tumor immunosuppression and metastasis, induce endocrine therapy resistance and deteriorate outcomes of patients with breast cancer. These findings suggest that UBE2W could be a potential biomarker of prognosis and tumor-infiltrating immune cells. Besides, RBX1 may be a new E3 that was regulated by UBE2W. Conclusions Ubiquitin E2 UBE2W is a potential prognostic biomarker and is correlated with immune infiltration in BRCA. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08234-4.
Collapse
Affiliation(s)
- Yan Yuan
- State Key laboratory of Oncology in South China, Collaborative innovation Center for cancer Medicine, Guangzhou, P. R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Wei-Wei Xiao
- State Key laboratory of Oncology in South China, Collaborative innovation Center for cancer Medicine, Guangzhou, P. R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Wei-Hao Xie
- State Key laboratory of Oncology in South China, Collaborative innovation Center for cancer Medicine, Guangzhou, P. R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Rong-Zhen Li
- State Key laboratory of Oncology in South China, Collaborative innovation Center for cancer Medicine, Guangzhou, P. R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yuan-Hong Gao
- State Key laboratory of Oncology in South China, Collaborative innovation Center for cancer Medicine, Guangzhou, P. R. China. .,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| |
Collapse
|
32
|
Anurag M, Zhu M, Huang C, Vasaikar S, Wang J, Hoog J, Burugu S, Gao D, Suman V, Zhang XH, Zhang B, Nielsen T, Ellis MJ. Immune Checkpoint Profiles in Luminal B Breast Cancer (Alliance). J Natl Cancer Inst 2021; 112:737-746. [PMID: 31665365 DOI: 10.1093/jnci/djz213] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 09/12/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Unlike estrogen receptor (ER)-negative breast cancer, ER-positive breast cancer outcome is less influenced by lymphocyte content, indicating the presence of immune tolerance mechanisms that may be specific to this disease subset. METHODS A supervised analysis of microarray data from the ACOSOG Z1031 (Alliance) neoadjuvant aromatase inhibitor (AI) trial identified upregulated genes in Luminal (Lum) B breast cancers that correlated with AI-resistant tumor proliferation (percentage of Ki67-positive cancer nuclei, Pearson r > 0.4) (33 cases Ki67 > 10% on AI) vs LumB breast cancers that were more AI sensitive (33 cases Ki67 < 10% on AI). Overrepresentation analysis was performed using WebGestalt. All statistical tests were two-sided. RESULTS Thirty candidate genes positively correlated (r ≥ 0.4) with AI-resistant proliferation in LumB and were upregulated greater than twofold. Gene ontologies identified that the targetable immune checkpoint (IC) components IDO1, LAG3, and PD1 were overrepresented resistance candidates (P ≤ .001). High IDO1 mRNA was associated with poor prognosis in LumB disease (Molecular Taxonomy of Breast Cancer International Consortium, hazard ratio = 1.43, 95% confidence interval = 1.04 to 1.98, P = .03). IDO1 also statistically significantly correlated with STAT1 at protein level in LumB disease (Pearson r = 0.74). As a composite immune tolerance signature, expression of IFN-γ/STAT1 pathway components was associated with higher baseline Ki67, lower estrogen, and progesterone receptor mRNA levels and worse disease-specific survival (P = .002). In a tissue microarray analysis, IDO1 was observed in stromal cells and tumor-associated macrophages, with a higher incidence in LumB cases. Furthermore, IDO1 expression was associated with a macrophage mRNA signature (M1 by CIBERSORT Pearson r = 0.62 ) and by tissue microarray analysis. CONCLUSIONS Targetable IC components are upregulated in the majority of endocrine therapy-resistant LumB cases. Our findings provide rationale for IC inhibition in poor-outcome ER-positive breast cancer.
Collapse
MESH Headings
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antineoplastic Agents, Hormonal/therapeutic use
- Aromatase Inhibitors/therapeutic use
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/immunology
- Cell Proliferation/physiology
- Drug Resistance, Neoplasm
- Female
- Humans
- Immune Tolerance
- Indoleamine-Pyrrole 2,3,-Dioxygenase/biosynthesis
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Interferon-gamma/metabolism
- Letrozole/therapeutic use
- Prognosis
- Programmed Cell Death 1 Receptor/biosynthesis
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/immunology
- STAT1 Transcription Factor/metabolism
- Signal Transduction
- Tissue Array Analysis
- Transcriptome
- Up-Regulation
- Lymphocyte Activation Gene 3 Protein
Collapse
|
33
|
Coarfa C, Grimm SL, Rajapakshe K, Perera D, Lu HY, Wang X, Christensen KR, Mo Q, Edwards DP, Huang S. Reverse-Phase Protein Array: Technology, Application, Data Processing, and Integration. J Biomol Tech 2021; 32:15-29. [PMID: 34025221 DOI: 10.7171/jbt.21-3202-001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reverse-phase protein array (RPPA) is a high-throughput antibody-based targeted proteomics platform that can quantify hundreds of proteins in thousands of samples derived from tissue or cell lysates, serum, plasma, or other body fluids. Protein samples are robotically arrayed as microspots on nitrocellulose-coated glass slides. Each slide is probed with a specific antibody that can detect levels of total protein expression or post-translational modifications, such as phosphorylation as a measure of protein activity. Here we describe workflow protocols and software tools that we have developed and optimized for RPPA in a core facility setting that includes sample preparation, microarray mapping and printing of protein samples, antibody labeling, slide scanning, image analysis, data normalization and quality control, data reporting, statistical analysis, and management of data. Our RPPA platform currently analyzes ∼240 validated antibodies that primarily detect proteins in signaling pathways and cellular processes that are important in cancer biology. This is a robust technology that has proven to be of value for both validation and discovery proteomic research and integration with other omics data sets.
Collapse
Affiliation(s)
- Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA; and.,Advanced Technology Cores/Office of Research, Baylor College of Medicine, Houston, Texas, USA
| | - Sandra L Grimm
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Dimuthu Perera
- Advanced Technology Cores/Office of Research, Baylor College of Medicine, Houston, Texas, USA
| | - Hsin-Yi Lu
- Advanced Technology Cores/Office of Research, Baylor College of Medicine, Houston, Texas, USA
| | - Xuan Wang
- Advanced Technology Cores/Office of Research, Baylor College of Medicine, Houston, Texas, USA
| | - Kurt R Christensen
- Advanced Technology Cores/Office of Research, Baylor College of Medicine, Houston, Texas, USA
| | - Qianxing Mo
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA; and
| | - Dean P Edwards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA; and.,Advanced Technology Cores/Office of Research, Baylor College of Medicine, Houston, Texas, USA
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA; and.,Advanced Technology Cores/Office of Research, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
34
|
Voutsadakis IA. High Tumor Mutation Burden and Other Immunotherapy Response Predictors in Breast Cancers: Associations and Therapeutic Opportunities. Target Oncol 2021; 15:127-138. [PMID: 31741177 DOI: 10.1007/s11523-019-00689-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The recent development of effective immunotherapies with immune checkpoint inhibitors for the treatment of cancer has rekindled the interest for the immune system and its activation for an anti-cancer response. At the same time, it has become evident that not all types of cancers respond equally to these treatments, and even within the same tumor type only a subset of patients derive clinical benefit. Biomarkers predictive of response to immunotherapy have been sought and in certain occasions incorporated in the indication for treatment. These include expression of PD-L1 and defects in DNA mismatch repair (MMR). OBJECTIVE Tumor mutation burden (TMB) has been associated with response to immune checkpoint inhibitors. The current investigation examines TMB as a biomarker of response to immunotherapy in breast cancer. PATIENTS AND METHODS Publicly available data from the breast cancer study of The Cancer Genome Atlas (TCGA) and the METABRIC study were analyzed. Parameters examined included the TMB and specific mutations that may impact on TMB. In addition, correlations with breast cancer sub-types were investigated. RESULTS The percentage of breast cancers with high TMB (more than 192 mutations per sample) was low (3.5-4.6%) in luminal and triple-negative cancers and higher (14.1%) in the HER2-positive subset. Almost all cancers with high TMB had defects in MMR proteins or the replicative polymerases POLE and POLD1. CONCLUSIONS Small sub-sets of breast cancers with high TMB exist and may present an opportunity for effective immunotherapeutic targeting.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, 750 Great Northern Road, Sault Ste Marie, ON, P6B 0A8, Canada. .,Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, ON, Canada.
| |
Collapse
|
35
|
Coarfa C, Grimm SL, Rajapakshe K, Perera D, Lu HY, Wang X, Christensen KR, Mo Q, Edwards DP, Huang S. Reverse-Phase Protein Array: Technology, Application, Data Processing, and Integration. J Biomol Tech 2021:jbt.2021-3202-001. [PMID: 33584151 DOI: 10.7171/jbt.2021-3202-001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Reverse-phase protein array (RPPA) is a high-throughput antibody-based targeted proteomics platform that can quantify hundreds of proteins in thousands of samples derived from tissue or cell lysates, serum, plasma, or other body fluids. Protein samples are robotically arrayed as microspots on nitrocellulose-coated glass slides. Each slide is probed with a specific antibody that can detect levels of total protein expression or post-translational modifications, such as phosphorylation as a measure of protein activity. Here we describe workflow protocols and software tools that we have developed and optimized for RPPA in a core facility setting that includes sample preparation, microarray mapping and printing of protein samples, antibody labeling, slide scanning, image analysis, data normalization and quality control, data reporting, statistical analysis, and management of data. Our RPPA platform currently analyzes ∼240 validated antibodies that primarily detect proteins in signaling pathways and cellular processes that are important in cancer biology. This is a robust technology that has proven to be of value for both validation and discovery proteomic research and integration with other omics data sets.
Collapse
Affiliation(s)
- Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA; and
- Advanced Technology Cores/Office of Research, Baylor College of Medicine, Houston, Texas, USA
| | - Sandra L Grimm
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Dimuthu Perera
- Advanced Technology Cores/Office of Research, Baylor College of Medicine, Houston, Texas, USA
| | - Hsin-Yi Lu
- Advanced Technology Cores/Office of Research, Baylor College of Medicine, Houston, Texas, USA
| | - Xuan Wang
- Advanced Technology Cores/Office of Research, Baylor College of Medicine, Houston, Texas, USA
| | - Kurt R Christensen
- Advanced Technology Cores/Office of Research, Baylor College of Medicine, Houston, Texas, USA
| | - Qianxing Mo
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA; and
| | - Dean P Edwards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA; and
- Advanced Technology Cores/Office of Research, Baylor College of Medicine, Houston, Texas, USA
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA; and
- Advanced Technology Cores/Office of Research, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
36
|
Krug K, Jaehnig EJ, Satpathy S, Blumenberg L, Karpova A, Anurag M, Miles G, Mertins P, Geffen Y, Tang LC, Heiman DI, Cao S, Maruvka YE, Lei JT, Huang C, Kothadia RB, Colaprico A, Birger C, Wang J, Dou Y, Wen B, Shi Z, Liao Y, Wiznerowicz M, Wyczalkowski MA, Chen XS, Kennedy JJ, Paulovich AG, Thiagarajan M, Kinsinger CR, Hiltke T, Boja ES, Mesri M, Robles AI, Rodriguez H, Westbrook TF, Ding L, Getz G, Clauser KR, Fenyö D, Ruggles KV, Zhang B, Mani DR, Carr SA, Ellis MJ, Gillette MA. Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy. Cell 2020; 183:1436-1456.e31. [PMID: 33212010 PMCID: PMC8077737 DOI: 10.1016/j.cell.2020.10.036] [Citation(s) in RCA: 312] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/14/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023]
Abstract
The integration of mass spectrometry-based proteomics with next-generation DNA and RNA sequencing profiles tumors more comprehensively. Here this "proteogenomics" approach was applied to 122 treatment-naive primary breast cancers accrued to preserve post-translational modifications, including protein phosphorylation and acetylation. Proteogenomics challenged standard breast cancer diagnoses, provided detailed analysis of the ERBB2 amplicon, defined tumor subsets that could benefit from immune checkpoint therapy, and allowed more accurate assessment of Rb status for prediction of CDK4/6 inhibitor responsiveness. Phosphoproteomics profiles uncovered novel associations between tumor suppressor loss and targetable kinases. Acetylproteome analysis highlighted acetylation on key nuclear proteins involved in the DNA damage response and revealed cross-talk between cytoplasmic and mitochondrial acetylation and metabolism. Our results underscore the potential of proteogenomics for clinical investigation of breast cancer through more accurate annotation of targetable pathways and biological features of this remarkably heterogeneous malignancy.
Collapse
Affiliation(s)
- Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Eric J Jaehnig
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Lili Blumenberg
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Alla Karpova
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Meenakshi Anurag
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - George Miles
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Philipp Mertins
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Max Delbrück Center for Molecular Medicine in the Helmholtz Society and Berlin Institute of Health, Berlin, Germany
| | - Yifat Geffen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Lauren C Tang
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - David I Heiman
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Song Cao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Yosef E Maruvka
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Jonathan T Lei
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chen Huang
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ramani B Kothadia
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Antonio Colaprico
- Division of Biostatistics, Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Chet Birger
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Jarey Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Human Genetics, and Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yongchao Dou
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhiao Shi
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuxing Liao
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maciej Wiznerowicz
- Poznan University of Medical Sciences, Poznań 61-701, Poland; International Institute for Molecular Oncology, 60-203 Poznań, Poland
| | - Matthew A Wyczalkowski
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Xi Steven Chen
- Division of Biostatistics, Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jacob J Kennedy
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Amanda G Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Thomas F Westbrook
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Human Genetics, and Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Li Ding
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02114, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Kelly V Ruggles
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
37
|
Li Z, Zou W, Zhang J, Zhang Y, Xu Q, Li S, Chen C. Mechanisms of CDK4/6 Inhibitor Resistance in Luminal Breast Cancer. Front Pharmacol 2020; 11:580251. [PMID: 33364954 PMCID: PMC7751736 DOI: 10.3389/fphar.2020.580251] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022] Open
Abstract
As a new-generation CDK inhibitor, a CDK4/6 inhibitor combined with endocrine therapy has been successful in the treatment of advanced estrogen receptor-positive (ER+) breast cancer. Although there has been overall progress in the treatment of cancer, drug resistance is an emerging cause for breast cancer-related death. Overcoming CDK4/6 resistance is an urgent problem. Overactivation of the cyclin-CDK-Rb axis related to uncontrolled cell proliferation is the main cause of CDK4/6 inhibitor resistance; however, the underlying mechanisms need to be clarified further. We review various resistance mechanisms of CDK4/6 inhibitors in luminal breast cancer. The cell signaling pathways involved in therapy resistance are divided into two groups: upstream response mechanisms and downstream bypass mechanisms. Finally, we discuss possible strategies to overcome CDK4/6 inhibitor resistance and identify novel resistance targets for future clinical application.
Collapse
Affiliation(s)
- Zhen Li
- Department of the Third Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei Zou
- Queen Mary Institute, Nanchang University, Nanchang, China
| | - Ji Zhang
- Department of the Third Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunjiao Zhang
- Kunming Medical University Haiyuan College, Kunming, China
| | - Qi Xu
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas, Austin, TX, United States
| | - Siyuan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Institute of Translation Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
38
|
Classical and Non-Classical Progesterone Signaling in Breast Cancers. Cancers (Basel) 2020; 12:cancers12092440. [PMID: 32867363 PMCID: PMC7563480 DOI: 10.3390/cancers12092440] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Much emphasis is placed on estrogen (E2) and estrogen receptor (ER) signaling as most research is focused on understanding E2 and ER’s ability to enhance proliferative signals in breast cancers. Progesterone (P4) is important for normal mammary gland development, function and menstrual control. However, P4 and its receptors (PRs) in breast cancer etiology continue to be understudied and its role in breast cancer remains controversial. The Women’s Health Initiative (WHI) clinical trial clearly demonstrated the importance of progestogens in breast cancer development. P4 has historically been associated with classical-signaling through nuclear receptors, however non-classical P4 signaling via membrane receptors has been described. Progestogens have the ability to bind to nuclear and membrane receptors and studies have demonstrated that both can promote breast cancer cell proliferation and breast tumor growth. In this review, we attempt to understand the classical and non-classical signaling role of P4 in breast cancers because both nuclear and membrane receptors could become viable therapeutic options for breast cancer patients.
Collapse
|
39
|
Anurag M, Ellis MJ. Response to Jézéquel, Patsouris, Guette, et al. J Natl Cancer Inst 2020; 112:865. [DOI: 10.1093/jnci/djaa038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
40
|
Stewart DJ, Bosse D, Robinson A, Ong M, Fung-Kee-Fung M, Brule S, Hilton JF, Ocana A. Potential insights from population kinetic assessment of progression-free survival curves. Crit Rev Oncol Hematol 2020; 153:103039. [PMID: 32622319 DOI: 10.1016/j.critrevonc.2020.103039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/26/2022] Open
Abstract
Progression-free survival (PFS) curves follow first order kinetics on exponential decay nonlinear regression analysis (EDNLRA). Some exhibit 1-phase-decay, some have 2-phase-decay, some are convex. We digitized, performed EDNLRA and generated log-linear plots for 887 published PFS curves for incurable solid tumors treated with various systemic therapies. Proportion of curves fitting 2-phase-decay varied by therapy (p < 0.0001). For 13 therapies, >64 % of PFS curves had 2-phase-decay. This included epidermal growth factor receptor inhibitors in unselected lung cancer patients (some with, some without mutations), immune checkpoint inhibitors, interferon, breast cancer hormonal therapies, and selected others, suggesting 2 distinct, potentially identifiable subpopulations with differing progression rates. For 22 other therapies, <25 % of PFS curves had 2-phase-decay. Only 1 therapy was in the mid-range. Small cell lung and colon carcinomas were particularly likely to yield highly convex curves (p < 0.006), probably from discontinuation of effective therapies. PFS curve shape may yield biological and clinical insights.
Collapse
Affiliation(s)
| | | | | | - Michael Ong
- University of Ottawa, Ottawa, ON, United States
| | | | | | | | - Alberto Ocana
- Experimental Therapeutics Unit, Hospital Clínico San Carlos, and CIBERONC, Madrid, Spain
| |
Collapse
|
41
|
Liu K, Zheng M, Lu R, Du J, Zhao Q, Li Z, Li Y, Zhang S. The role of CDC25C in cell cycle regulation and clinical cancer therapy: a systematic review. Cancer Cell Int 2020; 20:213. [PMID: 32518522 PMCID: PMC7268735 DOI: 10.1186/s12935-020-01304-w] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 05/28/2020] [Indexed: 12/24/2022] Open
Abstract
One of the most prominent features of tumor cells is uncontrolled cell proliferation caused by an abnormal cell cycle, and the abnormal expression of cell cycle-related proteins gives tumor cells their invasive, metastatic, drug-resistance, and anti-apoptotic abilities. Recently, an increasing number of cell cycle-associated proteins have become the candidate biomarkers for early diagnosis of malignant tumors and potential targets for cancer therapies. As an important cell cycle regulatory protein, Cell Division Cycle 25C (CDC25C) participates in regulating G2/M progression and in mediating DNA damage repair. CDC25C is a cyclin of the specific phosphatase family that activates the cyclin B1/CDK1 complex in cells for entering mitosis and regulates G2/M progression and plays an important role in checkpoint protein regulation in case of DNA damage, which can ensure accurate DNA information transmission to the daughter cells. The regulation of CDC25C in the cell cycle is affected by multiple signaling pathways, such as cyclin B1/CDK1, PLK1/Aurora A, ATR/CHK1, ATM/CHK2, CHK2/ERK, Wee1/Myt1, p53/Pin1, and ASK1/JNK-/38. Recently, it has evident that changes in the expression of CDC25C are closely related to tumorigenesis and tumor development and can be used as a potential target for cancer treatment. This review summarizes the role of CDC25C phosphatase in regulating cell cycle. Based on the role of CDC25 family proteins in the development of tumors, it will become a hot target for a new generation of cancer treatments.
Collapse
Affiliation(s)
- Kai Liu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People’s Republic of China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People’s Republic of China
| | - Rui Lu
- Department of Pathology, Tianjin Nankai Hospital, Tianjin, People’s Republic of China
| | - Jiaxing Du
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People’s Republic of China
| | - Qi Zhao
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People’s Republic of China
| | - Zugui Li
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People’s Republic of China
| | - Yuwei Li
- Departments of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121 People’s Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People’s Republic of China
| |
Collapse
|
42
|
Abstract
The estrogen receptor positive (ER+) subset is the dominant contributor to global deaths from breast cancer which now exceeds 500,000 deaths annually. Lethality is driven by endocrine resistance, which has been shown to be associated with high mutational rates and extreme subclonal diversity. Treatment forces subclonal selection until the patient eventually succumbs to metastatic treatment-resistant disease. Recently, we have been addressing several questions related to this process: What is the cause of the increased mutation rate in lethal ER+ breast cancer? Why is endocrine therapy resistance related to mutational load? What are the functions of the somatic mutations that are eventually selected in the treatment resistant and metastatic clones? These questions have provoked new mechanistic hypotheses that link resistance to endocrine agents to: (1) Specific defects in single strand break repair are associated with increased mortality from ER+ breast cancer [1,2]; (2) Loss/mutations of certain single strand break repair proteins that disrupt estrogen-regulated cell cycle control through the ATM, CHK2, CDK4 axis [1,2] thereby directly coupling endocrine therapy resistance to specific DNA repair defects; (3) Acquired mutations that drive metastasis include the generation of in-frame ESR1 gene fusions that activate epithelial-to-mesenchymal transition (EMT) driven metastasis as well as endocrine drug-resistant proliferation [3].
Collapse
|
43
|
Hanker AB, Sudhan DR, Arteaga CL. Overcoming Endocrine Resistance in Breast Cancer. Cancer Cell 2020; 37:496-513. [PMID: 32289273 PMCID: PMC7169993 DOI: 10.1016/j.ccell.2020.03.009] [Citation(s) in RCA: 530] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
Estrogen receptor-positive (ER+) breast cancer is the most common breast cancer subtype. Treatment of ER+ breast cancer comprises interventions that suppress estrogen production and/or target the ER directly (overall labeled as endocrine therapy). While endocrine therapy has considerably reduced recurrence and mortality from breast cancer, de novo and acquired resistance to this treatment remains a major challenge. An increasing number of mechanisms of endocrine resistance have been reported, including somatic alterations, epigenetic changes, and changes in the tumor microenvironment. Here, we review recent advances in delineating mechanisms of resistance to endocrine therapies and potential strategies to overcome such resistance.
Collapse
Affiliation(s)
- Ariella B Hanker
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Dhivya R Sudhan
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Carlos L Arteaga
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
44
|
Ansari N, Shahrabi S, Khosravi A, Shirzad R, Rezaeean H. Prognostic Significance of CHEK2 Mutation in Progression of Breast Cancer. Lab Med 2019; 50:e36-e41. [PMID: 31220302 DOI: 10.1093/labmed/lmz009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Breast cancer (BC) is one of the most common cancers among women; genetic mutations reflect the development of this disease. Mutations in cell signaling factors can be the main cause of BC development. In this study, we focused on mutations in checkpoint kinase 2 (CHEK2) and their impact as a prognostic factor in the pathogenesis of BC. CHEK2 is controlled in cell signaling pathways through the influence of upstream genes. Also, several downstream genes are regulated by CHEK2. In addition, mutations in CHEK2 lead to resistance of BC cells to chemotherapy and metastasis of cancer cells to other parts of the body. Finally, detection of mutations in CHEK2 can be used as a prognostic factor for patient response to treatment and for targeting downstream molecules of CHEK2 that are involved in the proliferation of breast tumor cells. Mutations such as c.1100delC and I157T can distinguish which patients are susceptible to metastasis.
Collapse
Affiliation(s)
- Narges Ansari
- Isfahan Bone Metabolic Disorders Research Center, Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeid Shahrabi
- Department of Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Khosravi
- Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Reza Shirzad
- Research Center of Thalassemia & Hemoglobinopathy, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Rezaeean
- Research Center of Thalassemia & Hemoglobinopathy, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
45
|
Anurag M, Haricharan S, Ellis MJ. CDK4/6 Inhibitor Biomarker Research: Are We Barking Up the Wrong Tree? Clin Cancer Res 2019; 26:3-5. [PMID: 31690650 DOI: 10.1158/1078-0432.ccr-19-3119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/17/2019] [Accepted: 11/01/2019] [Indexed: 11/16/2022]
Abstract
CDK4/6 inhibitors have emerged as a significant advance for the treatment of patients with advanced estrogen receptor-positive breast cancer. However, the identification of predictive markers that optimize their use is proving harder than expected. In this commentary we advocate for unbiased discovery and a collaborative approach across trials.See related article by Finn et al., p. 110.
Collapse
Affiliation(s)
- Meenakshi Anurag
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Svasti Haricharan
- Tumor Microenvironment and Cancer Immunology, Sanford Burnham Prebys, La Jolla, California
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
46
|
Cheng AS, Leung SCY, Gao D, Burugu S, Anurag M, Ellis MJ, Nielsen TO. Mismatch repair protein loss in breast cancer: clinicopathological associations in a large British Columbia cohort. Breast Cancer Res Treat 2019; 179:3-10. [PMID: 31522348 PMCID: PMC6985067 DOI: 10.1007/s10549-019-05438-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022]
Abstract
Purpose Alterations to mismatch repair (MMR) pathways are a known cause of cancer, particularly colorectal and endometrial carcinomas. Recently, checkpoint inhibitors have been approved for use in MMR-deficient cancers of any type (Prasad et al. in JAMA Oncol 4:157–158, 2018). Functional studies in breast cancer have shown associations between MMR loss, resistance to aromatase inhibitors and sensitivity to palbociclib (Haricharan et al. in Cancer Discov 7:1168–1183, 2017). Herein, we investigate the clinical meaning of MMR deficiency in breast cancer by immunohistochemical assessment of MSH2, MSH6, MLH1 and PMS2 on a large series of breast cancers linked to detailed biomarker and long-term outcome data. Methods Cases were classified as MMR intact when all four markers expressed nuclear reactivity, but MMR-deficient when at least one of the four biomarkers displayed loss of nuclear staining in the presence of positive internal stromal controls on the tissue microarray core. Results Among the 1635 cases with interpretable staining, we identified 31 (1.9%) as MMR-deficient. In our cohort, MMR deficiency was present across all major breast cancer subtypes, and was associated with high-grade, low-progesterone receptor expression and high tumor-infiltrating lymphocyte counts. MMR deficiency is significantly associated with inferior overall (HR 2.29, 95% CI 1.02–5.17, p = 0.040) and disease-specific survival (HR 2.71, 95% CI 1.00–7.35, p = 0.042) in the 431 estrogen receptor-positive patients who were uniformly treated with tamoxifen as their sole adjuvant systemic therapy. Conclusion Overall, this study supports the concept that breast cancer patients with MMR deficiency as assessed by immunohistochemistry may be good candidates for alternative treatment approaches such as immune checkpoint or CDK4 inhibitors. Electronic supplementary material The online version of this article (10.1007/s10549-019-05438-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Angela S Cheng
- Genetic Pathology Evaluation Centre and University of British Columbia, Vancouver, BC, Canada
| | - Samuel C Y Leung
- Genetic Pathology Evaluation Centre and University of British Columbia, Vancouver, BC, Canada
| | - Dongxia Gao
- Genetic Pathology Evaluation Centre and University of British Columbia, Vancouver, BC, Canada
| | - Samantha Burugu
- Genetic Pathology Evaluation Centre and University of British Columbia, Vancouver, BC, Canada
| | | | | | - Torsten O Nielsen
- Genetic Pathology Evaluation Centre and University of British Columbia, Vancouver, BC, Canada. .,Anatomical Pathology JPN1401 Vancouver Hospital, 855 West 12th Avenue, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
47
|
Morigi C. Highlights of the 16th St Gallen International Breast Cancer Conference, Vienna, Austria, 20-23 March 2019: personalised treatments for patients with early breast cancer. Ecancermedicalscience 2019; 13:924. [PMID: 31281421 PMCID: PMC6546258 DOI: 10.3332/ecancer.2019.924] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Indexed: 12/15/2022] Open
Abstract
The 16th St Gallen International Breast Cancer Conference took place in Vienna for the third time, from 20–23 March 2019. More than 3000 people from all over the world were invited to take part in this important bi-annual critical review of the ‘state of the art’ in the primary care of breast cancer (BC), independent of political and industrial pressure, with the aim to integrate the most recent research data and most important developments in BC therapies since St Gallen International Breast Cancer Conference 2017, with the ultimate goal of drawing up a consensus for the current optimal treatment and prevention of BC. This year, the St Gallen Breast Cancer Award was won by Monica Morrow (Memorial Sloan Kettering Cancer Center, USA) for her extraordinary contribution in research and practise development in the treatment of BC. She opened the session with the lecture ‘Will surgery be a part of BC treatment in the future?’ Improved systemic therapy has decreased BC mortality and increased pathologic complete response (pCR) rates after neoadjuvant chemotherapy (NACT). Improved imaging and increased screening uptake have led to detect smaller cancers. These factors have highlighted two possible scenarios to omit surgery: for patients with small low-grade ductal carcinoma in situ (DCIS) and for those who have received NACT and had a clinical and radiological complete response. However, considering that 7%–20% of `low-risk’ DCIS patients have co-existing invasive cancer at diagnosis, that surgery has become progressively less morbid and less toxic than some systemic therapies with a lower cost-effectiveness ratio, and that identification of pathologic complete response (pCR) without surgery requires more intensive imaging follow-up (more biopsies, higher cost and more anxiety for the patient), surgery still appears to be an essential treatment for BC. The Umberto Veronesi Memorial Award went to Lesley Fallowfield (Brighton and Sussex Medical School, UK) for her important research and activity in the field of the development of patient outcome, of better communication skills and quality of life for women. In her lecture, she remarked on the importance of improving BC personalised treatments, especially through co-operation between scientists, always considering the whole woman and not just her breast disease. This award was given by Paolo Veronesi, after a moving introduction which culminated with the following words of Professor Umberto Veronesi: ‘It is not possible to take care of the people’s bodies without taking care of their mind. My duty, the duty of all doctors, is to listen and be part of the emotions of those we treat every day’.
Collapse
Affiliation(s)
- Consuelo Morigi
- Division of Senology, IRCCS European Institute of Oncology, 20141 Milan, Italy
| |
Collapse
|
48
|
Duso BA, Ferraro E, Mazzarella L, Dagostim Jeremias C, Curigliano G. An analysis of available biomarker data for targeting cyclin-dependent kinases 4 and 6 (CDK4/6) in breast cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1604136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Bruno Achutti Duso
- Division of Early Drug Development, Istituto Europeo di Oncologia, IRCCS, Milano, Italy
- Department of Oncology and Hematology, University of Milano, Milan, Italy
| | - Emanuela Ferraro
- Division of Early Drug Development, Istituto Europeo di Oncologia, IRCCS, Milano, Italy
- Department of Oncology and Hematology, University of Milano, Milan, Italy
| | - Luca Mazzarella
- Division of Early Drug Development, Istituto Europeo di Oncologia, IRCCS, Milano, Italy
- Department of Oncology and Hematology, University of Milano, Milan, Italy
| | - Camila Dagostim Jeremias
- Division of Early Drug Development, Istituto Europeo di Oncologia, IRCCS, Milano, Italy
- Department of Oncology and Hematology, University of Milano, Milan, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development, Istituto Europeo di Oncologia, IRCCS, Milano, Italy
- Department of Oncology and Hematology, University of Milano, Milan, Italy
| |
Collapse
|
49
|
Schuster EF, Gellert P, Segal CV, López-Knowles E, Buus R, Cheang MCU, Morden J, Robertson J, Bliss JM, Smith I, Dowsett M. Genomic Instability and TP53 Genomic Alterations Associate With Poor Antiproliferative Response and Intrinsic Resistance to Aromatase Inhibitor Treatment. JCO Precis Oncol 2019; 3:1800286. [PMID: 32914010 PMCID: PMC7446335 DOI: 10.1200/po.18.00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2019] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Although aromatase inhibitor (AI) treatment is effective in estrogen receptor-positive postmenopausal breast cancer, resistance is common and incompletely explained. Genomic instability, as measured by somatic copy number alterations (SCNAs), is important in breast cancer development and prognosis. SCNAs to specific genes may drive intrinsic resistance, or high genomic instability may drive tumor heterogeneity, which allows differential response across tumors and surviving cells to evolve resistance to treatment rapidly. We therefore evaluated the relationship between SCNAs and intrinsic resistance to treatment as measured by a poor antiproliferative response. PATIENTS AND METHODS SCNAs were determined by single nucleotide polymorphism array in baseline and surgery core-cuts from 73 postmenopausal patients randomly assigned to receive 2 weeks of preoperative AI or no AI in the Perioperative Endocrine Therapy-Individualizing Care (POETIC) trial. Fifty-six samples from the AI group included 28 poor responders (PrRs, less than 60% reduction in protein encoded by the MKI67 gene [Ki-67]) and 28 good responders (GdRs, greater than 75% reduction in Ki-67). Exome sequencing was available for 72 pairs of samples. RESULTS Genomic instability correlated with Ki-67 expression at both baseline (P < .001) and surgery (P < .001) and was higher in PrRs (P = .048). The SCNA with the largest difference between GdRs and PrRs was loss of heterozygosity observed at 17p (false discovery rate, 0.08), which includes TP53. Nine of 28 PrRs had loss of wild-type TP53 as a result of mutations and loss of heterozygosity compared with three of 28 GdRs. In PrRs, somatic alterations of TP53 were associated with higher genomic instability, higher baseline Ki-67, and greater resistance to AI treatment compared with wild-type TP53. CONCLUSION We observed that primary tumors with high genomic instability have an intrinsic resistance to AI treatment and do not require additional evolution to develop resistance to estrogen deprivation therapy.
Collapse
Affiliation(s)
- Eugene F. Schuster
- The Institute of Cancer Research, London, United Kingdom
- Royal Marsden Hospital, London, United Kingdom
- Eugene F. Schuster, PhD, The Institute of Cancer Research, 237 Fulham Rd, London SW3 6JB, United Kingdom; e-mail:
| | - Pascal Gellert
- The Institute of Cancer Research, London, United Kingdom
- Royal Marsden Hospital, London, United Kingdom
| | - Corrinne V. Segal
- The Institute of Cancer Research, London, United Kingdom
- Royal Marsden Hospital, London, United Kingdom
| | - Elena López-Knowles
- The Institute of Cancer Research, London, United Kingdom
- Royal Marsden Hospital, London, United Kingdom
| | - Richard Buus
- The Institute of Cancer Research, London, United Kingdom
- Royal Marsden Hospital, London, United Kingdom
| | | | - James Morden
- The Institute of Cancer Research, London, United Kingdom
| | | | | | - Ian Smith
- Royal Marsden Hospital, London, United Kingdom
| | - Mitch Dowsett
- The Institute of Cancer Research, London, United Kingdom
- Royal Marsden Hospital, London, United Kingdom
| | | |
Collapse
|
50
|
Wu M, Pang JS, Sun Q, Huang Y, Hou JY, Chen G, Zeng JJ, Feng ZB. The clinical significance of CHEK1 in breast cancer: a high-throughput data analysis and immunohistochemical study. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1-20. [PMID: 31933717 PMCID: PMC6944032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/26/2018] [Indexed: 06/10/2023]
Abstract
Breast cancer (BC) is a kind of malignant cancer that seriously threatens women's health. Research scientists have found that BC occurs as the result of multiple effects of the external environment and internal genetic changes. Cell cycle checkpoint kinase 1 (CHEK1) is a crucial speed limit point in the cell cycle. Alterations of CHEK1 have been found in various tumors but are rarely reported or verified in BC. By mining database information, a large amount of mRNA and protein data was collected and meta-analyzed. Also, in-house immunohistochemistry was carried out to validate the results of the CHEK1 expression levels. Relative clinical features of BC patients were calculated with the CHEK1 expression levels to determine their diagnostic value. The mRNA levels of CHEK1 were higher in 1,089 cases of BC tissues than in 291 cases of non-BC tissues. We observed that the mRNA levels of CHEK1 are related to the clinical stages of BC patients (P = 0.008) and are also significant for overall survival (HR = 1.6, P = 0.0081). Using the immunohistochemistry method, we calculated and confirmed, using Fisher's exact test (P < 0.001), that a high-level CHEK1 protein is exhibited in BC tissues. Overexpressed CHEK1 mRNA promotes the occurrence of BC. Also, up-regulated CHEK1 could serve as an independent risk biomarker in BC patients' prognoses.
Collapse
Affiliation(s)
- Mei Wu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Jin-Shu Pang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Qi Sun
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Yu Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi University of Traditional Chinese MedicineNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Jia-Yin Hou
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Jing-Jing Zeng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Zhen-Bo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| |
Collapse
|