1
|
Kuang VH, Skoven CS, Arvin S, Fitting LM, Drasbek KR, Hansen B, Orlowski D, Sørensen JCH. A large animal model for focal stroke: Photothrombotic lesion in the cortex of Danish Landrace pigs. J Neurosci Methods 2025; 418:110408. [PMID: 40010647 DOI: 10.1016/j.jneumeth.2025.110408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND Preclinical rodent models have been crucial for studying stroke pathophysiology. However, the limited success of translating these ischemic stroke models to human trials highlights their shortcomings. To address this, we developed a large animal porcine stroke model using Rose Bengal (RB) for photothrombotic ischemic lesioning. NEW METHOD Four Danish Landrace pigs (4-6 months old, 36-40 kg) were used in this proof-of-concept study. RB (20 mg/kg) was infused via a central venous catheter, and lesion sites in the motor and visual cortices were targeted using MRI, a stereotactic frame, and fiducial markers. Surgical access was achieved through burr holes, followed by green light exposure through the dura onto the neocortex for 30 mins. After recovery, the pigs underwent motor behavior assessment, euthanasia, and histological and MRI analyses. RESULTS Post-stroke, significant motor deficits were observed. Three pigs were hemiparetic and immobile, while one showed reduced exploratory behavior (42 % post-stroke vs. 81 % pre-stroke) and peripheral sniffing (∼0 % vs. 9 %). Histological analysis revealed ischemic changes, including nuclear shrinkage, pyknosis, and infarct zones with blood clots. Lesion size ranged from 1 mm² to 18 mm². Ex vivo diffusion MRI showed increased mean kurtosis in three pigs, confirming microstructural changes. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS The model produced behavioral and histological characteristics in pigs, which have gyrencephalic brains, large intracranial vessel diameters, and a high white-to-gray matter ratio, similar to those observed in other animals and traditional models. This model can produce a reproducible isolated cortical lesion using stereotactic coordinates and/or 3D imaging.
Collapse
Affiliation(s)
- V H Kuang
- Department of Neurosurgery, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - C S Skoven
- Center for Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark.
| | - S Arvin
- Department of Neurosurgery, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - L M Fitting
- Department of Neurosurgery, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - K R Drasbek
- Center for Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark.
| | - B Hansen
- Center for Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark.
| | - D Orlowski
- Department of Neurosurgery, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - J C H Sørensen
- Department of Neurosurgery, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
2
|
Irisa K, Shichita T. Neural repair mechanisms after ischemic stroke. Inflamm Regen 2025; 45:7. [PMID: 40098163 PMCID: PMC11912631 DOI: 10.1186/s41232-025-00372-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
Ischemic stroke triggers inflammation that promotes neuronal injury, leading to disruption of neural circuits and exacerbated neurological deficits in patients. Immune cells contribute to not only the acute inflammatory responses but also the chronic neural repair. During the post-stroke recovery, reparative immune cells support the neural circuit reorganization that occurs around the infarct region to connect broad brain areas. This review highlights the time-dependent changes of neuro-immune interactions and reorganization of neural circuits after ischemic brain injury. Understanding the molecular mechanisms involving immune cells in acute inflammation, subsequent neural repair, and neuronal circuit reorganization that compensate for the lost brain function is indispensable to establish treatment strategies for stroke patients.
Collapse
Affiliation(s)
- Koshi Irisa
- Department of Neuroinflammation and Repair, Medical Research Laboratory, Institute of Science Tokyo, Bunkyo-Ku, Tokyo, 113-8510, Japan.
| | - Takashi Shichita
- Department of Neuroinflammation and Repair, Medical Research Laboratory, Institute of Science Tokyo, Bunkyo-Ku, Tokyo, 113-8510, Japan
| |
Collapse
|
3
|
Zhou Z, Bai Y, Gu X, Ren H, Xi W, Wang Y, Bian L, Liu X, Shen L, Xiang X, Huang W, Luo Z, Han B, Yao H. Membrane Associated RNA-Containing Vesicles Regulate Cortical Astrocytic Microdomain Calcium Transients in Awake Ischemic Stroke Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404391. [PMID: 39444078 PMCID: PMC11633488 DOI: 10.1002/advs.202404391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/01/2024] [Indexed: 10/25/2024]
Abstract
Astrocytic processes minutely regulate neuronal activity via tripartite synaptic structures. The precision-tuning of the function of astrocytic processes is garnering increasing attention because of its significance in promoting brain repair following ischemic stroke. Microdomain calcium (Ca2+) transients in astrocytic processes are pivotal for the functional regulation of these processes. However, the understanding of the alterations and regulatory mechanism of microdomain Ca2+ transients during stroke remains limited. In the present study, a fast high-resolution, miniaturized two-photon microscopy is used to show that the levels of astrocytic microdomain Ca2+ transients are significantly reduced in the peri-infarct area of awake ischemic stroke mice. This finding correlated with the behavioral deficits shown by these mice under freely-moving conditions. Mitochondrial Ca2+ activity is an important factor driving the microdomain Ca2+ transients. DEAD Box 1 (DDX1) bound to circSCMH1 (a circular RNA involved in vascular post-stroke repair) facilitates the formation of membrane-associated RNA-containing vesicles (MARVs) and enhances the activity of astrocytic microdomain Ca2+ transients, thereby promoting behavioral recovery. These results show that targeting astrocytic microdomain Ca2+ transients is a potential therapeutic approach in stroke intervention.
Collapse
Affiliation(s)
- Zhongqiu Zhou
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Ying Bai
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Xiaochun Gu
- Jiangsu Key Laboratory of Molecular and Functional ImagingDepartment of RadiologyZhongda HospitalMedical School of Southeast UniversityNanjing210009China
| | - Hui Ren
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Wen Xi
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Yu Wang
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Liang Bian
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Xue Liu
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Ling Shen
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Xianyuan Xiang
- Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Wenhui Huang
- Department of Molecular PhysiologyCenter for Integrative Physiology and Molecular MedicineUniversity of Saarland66421HomburgGermany
| | - Zhuojuan Luo
- The Key Laboratory of Developmental Genes and Human DiseaseSchool of Life Science and TechnologySoutheast UniversityNanjing210096China
| | - Bing Han
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Honghong Yao
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
- Co‐innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Institute of Life SciencesKey Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjing210096China
| |
Collapse
|
4
|
Wang J, Li Y, Qi L, Mamtilahun M, Liu C, Liu Z, Shi R, Wu S, Yang GY. Advanced rehabilitation in ischaemic stroke research. Stroke Vasc Neurol 2024; 9:328-343. [PMID: 37788912 PMCID: PMC11420926 DOI: 10.1136/svn-2022-002285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/20/2023] [Indexed: 10/05/2023] Open
Abstract
At present, due to the rapid progress of treatment technology in the acute phase of ischaemic stroke, the mortality of patients has been greatly reduced but the number of disabled survivors is increasing, and most of them are elderly patients. Physicians and rehabilitation therapists pay attention to develop all kinds of therapist techniques including physical therapy techniques, robot-assisted technology and artificial intelligence technology, and study the molecular, cellular or synergistic mechanisms of rehabilitation therapies to promote the effect of rehabilitation therapy. Here, we discussed different animal and in vitro models of ischaemic stroke for rehabilitation studies; the compound concept and technology of neurological rehabilitation; all kinds of biological mechanisms of physical therapy; the significance, assessment and efficacy of neurological rehabilitation; the application of brain-computer interface, rehabilitation robotic and non-invasive brain stimulation technology in stroke rehabilitation.
Collapse
Affiliation(s)
- Jixian Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medical, Shanghai, China
| | - Yongfang Li
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medical, Shanghai, China
| | - Lin Qi
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Muyassar Mamtilahun
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chang Liu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ze Liu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Rubing Shi
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shengju Wu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Cullins MJ, Connor NP. Differential impact of unilateral stroke on the bihemispheric motor cortex representation of the jaw and tongue muscles in young and aged rats. Front Neurol 2024; 15:1332916. [PMID: 38572491 PMCID: PMC10987714 DOI: 10.3389/fneur.2024.1332916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Dysphagia commonly occurs after stroke, yet the mechanisms of post-stroke corticobulbar plasticity are not well understood. While cortical activity associated with swallowing actions is bihemispheric, prior research has suggested that plasticity of the intact cortex may drive recovery of swallowing after unilateral stroke. Age may be an important factor as it is an independent predictor of dysphagia after stroke and neuroplasticity may be reduced with age. Based on previous clinical studies, we hypothesized that cranial muscle activating volumes may be expanded in the intact hemisphere and would contribute to swallowing function. We also hypothesized that older age would be associated with limited map expansion and reduced function. As such, our goal was to determine the impact of stroke and age on corticobulbar plasticity by examining the jaw and tongue muscle activating volumes within the bilateral sensorimotor cortices. Methods Using the middle cerebral artery occlusion rat stroke model, intracortical microstimulation (ICMS) was used to map regions of sensorimotor cortex that activate tongue and jaw muscles in both hemispheres. Young adult (7 months) and aged (30 months) male F344 × BN rats underwent a stroke or sham-control surgery, followed by ICMS mapping 8 weeks later. Videofluoroscopy was used to assess oral-motor functions. Results Increased activating volume of the sensorimotor cortex within the intact hemisphere was found only for jaw muscles, whereas significant stroke-related differences in tongue activating cortical volume were limited to the infarcted hemisphere. These stroke-related differences were correlated with infarct size, such that larger infarcts were associated with increased jaw representation in the intact hemisphere and decreased tongue representation in the infarcted hemisphere. We found that both age and stroke were independently associated with swallowing differences, weight loss, and increased corticomotor thresholds. Laterality of tongue and jaw representations in the sham-control group revealed variability between individuals and between muscles within individuals. Conclusion Our findings suggest the role of the intact and infarcted hemispheres in the recovery of oral motor function may differ between the tongue and jaw muscles, which may have important implications for rehabilitation, especially hemisphere-specific neuromodulatory approaches. This study addressed the natural course of recovery after stroke; future work should expand to focus on rehabilitation.
Collapse
Affiliation(s)
- Miranda J. Cullins
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
| | - Nadine P. Connor
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
6
|
Gendosz de Carrillo D, Kocikowska O, Rak M, Krzan A, Student S, Jędrzejowska-Szypułka H, Pawletko K, Lasek-Bal A. The Relevance of Reperfusion Stroke Therapy for miR-9-3p and miR-9-5p Expression in Acute Stroke-A Preliminary Study. Int J Mol Sci 2024; 25:2766. [PMID: 38474013 DOI: 10.3390/ijms25052766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Reperfusion stroke therapy is a modern treatment that involves thrombolysis and the mechanical removal of thrombus from the extracranial and/or cerebral arteries, thereby increasing penumbra reperfusion. After reperfusion therapy, 46% of patients are able to live independently 3 months after stroke onset. MicroRNAs (miRNAs) are essential regulators in the development of cerebral ischemia/reperfusion injury and the efficacy of the applied treatment. The first aim of this study was to examine the change in serum miRNA levels via next-generation sequencing (NGS) 10 days after the onset of acute stroke and reperfusion treatment. Next, the predictive values of the bioinformatics analysis of miRNA gene targets for the assessment of brain ischemic response to reperfusion treatment were explored. Human serum samples were collected from patients on days 1 and 10 after stroke onset and reperfusion treatment. The samples were subjected to NGS and then validated using qRT-PCR. Differentially expressed miRNAs (DEmiRNAs) were used for enrichment analysis. Hsa-miR-9-3p and hsa-miR-9-5p expression were downregulated on day 10 compared to reperfusion treatment on day 1 after stroke. The functional analysis of miRNA target genes revealed a strong association between the identified miRNA and stroke-related biological processes related to neuroregeneration signaling pathways. Hsa-miR-9-3p and hsa-miR-9-5p are potential candidates for the further exploration of reperfusion treatment efficacy in stroke patients.
Collapse
Affiliation(s)
- Daria Gendosz de Carrillo
- Department of Physiology, Faculty of Medicine, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
- Department of Histology and Cell Pathology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
| | - Olga Kocikowska
- Department of Physiology, Faculty of Medicine, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
- Department of Engineering and Systems Biology, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Małgorzata Rak
- Department of Physiology, Faculty of Medicine, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
| | - Aleksandra Krzan
- Department of Neurology, School of Health Sciences, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
- Department of Neurology, Upper-Silesian Medical Center of the Silesian Medical University, 40-752 Katowice, Poland
| | - Sebastian Student
- Department of Engineering and Systems Biology, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Halina Jędrzejowska-Szypułka
- Department of Physiology, Faculty of Medicine, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
| | - Katarzyna Pawletko
- Department of Physiology, Faculty of Medicine, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
- Department for Experimental Medicine, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
| | - Anetta Lasek-Bal
- Department of Neurology, School of Health Sciences, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
- Department of Neurology, Upper-Silesian Medical Center of the Silesian Medical University, 40-752 Katowice, Poland
| |
Collapse
|
7
|
Wang Y, Huynh AT, Bao S, Buchanan JJ, Wright DL, Lei Y. Memory consolidation of sequence learning and dynamic adaptation during wakefulness. Cereb Cortex 2024; 34:bhad507. [PMID: 38185987 DOI: 10.1093/cercor/bhad507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
Motor learning involves acquiring new movement sequences and adapting motor commands to novel conditions. Labile motor memories, acquired through sequence learning and dynamic adaptation, undergo a consolidation process during wakefulness after initial training. This process stabilizes the new memories, leading to long-term memory formation. However, it remains unclear if the consolidation processes underlying sequence learning and dynamic adaptation are independent and if distinct neural regions underpin memory consolidation associated with sequence learning and dynamic adaptation. Here, we first demonstrated that the initially labile memories formed during sequence learning and dynamic adaptation were stabilized against interference through time-dependent consolidation processes occurring during wakefulness. Furthermore, we found that sequence learning memory was not disrupted when immediately followed by dynamic adaptation and vice versa, indicating distinct mechanisms for sequence learning and dynamic adaptation consolidation. Finally, by applying patterned transcranial magnetic stimulation to selectively disrupt the activity in the primary motor (M1) or sensory (S1) cortices immediately after sequence learning or dynamic adaptation, we found that sequence learning consolidation depended on M1 but not S1, while dynamic adaptation consolidation relied on S1 but not M1. For the first time in a single experimental framework, this study revealed distinct neural underpinnings for sequence learning and dynamic adaptation consolidation during wakefulness, with significant implications for motor skill enhancement and rehabilitation.
Collapse
Affiliation(s)
- Yiyu Wang
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - Angelina T Huynh
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - Shancheng Bao
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - John J Buchanan
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - David L Wright
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - Yuming Lei
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
8
|
Qi Y, Xu Y, Wang H, Wang Q, Li M, Han B, Liu H. Network Reorganization for Neurophysiological and Behavioral Recovery Following Stroke. Cent Nerv Syst Agents Med Chem 2024; 24:117-128. [PMID: 38299298 DOI: 10.2174/0118715249277597231226064144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/15/2023] [Accepted: 12/06/2023] [Indexed: 02/02/2024]
Abstract
Stroke continues to be the main cause of motor disability worldwide. While rehabilitation has been promised to improve recovery after stroke, efficacy in clinical trials has been mixed. We need to understand the cortical recombination framework to understand how biomarkers for neurophysiological reorganized neurotechnologies alter network activity. Here, we summarize the principles of the movement network, including the current evidence of changes in the connections and function of encephalic regions, recovery from stroke and the therapeutic effects of rehabilitation. Overall, improvements or therapeutic effects in limb motor control following stroke are correlated with the effects of interhemispheric competition or compensatory models of the motor supplementary cortex. This review suggests that future research should focus on cross-regional communication and provide fundamental insights into further treatment and rehabilitation for post-stroke patients.
Collapse
Affiliation(s)
- Yuan Qi
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing CN, China
| | - Yujie Xu
- Chengde Medical College Affiliated Hospital, Chengde, Hebei, CN, China
| | - Huailu Wang
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing CN, China
| | - Qiujia Wang
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing CN, China
| | - Meijie Li
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing CN, China
| | - Bo Han
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing CN, China
| | - Haijie Liu
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing CN, China
| |
Collapse
|
9
|
Wang C, Lin C, Zhao Y, Samantzis M, Sedlak P, Sah P, Balbi M. 40-Hz optogenetic stimulation rescues functional synaptic plasticity after stroke. Cell Rep 2023; 42:113475. [PMID: 37979173 DOI: 10.1016/j.celrep.2023.113475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023] Open
Abstract
Evoked brain oscillations in the gamma range have been shown to assist in stroke recovery. However, the causal relationship between evoked oscillations and neuroprotection is not well understood. We have used optogenetic stimulation to investigate how evoked gamma oscillations modulate cortical dynamics in the acute phase after stroke. Our results reveal that stimulation at 40 Hz drives activity in interneurons at the stimulation frequency and phase-locked activity in principal neurons at a lower frequency, leading to increased cross-frequency coupling. In addition, 40-Hz stimulation after stroke enhances interregional communication. These effects are observed up to 24 h after stimulation. Our stimulation protocol also rescues functional synaptic plasticity 24 h after stroke and leads to an upregulation of plasticity genes and a downregulation of cell death genes. Together these results suggest that restoration of cortical dynamics may confer neuroprotection after stroke.
Collapse
Affiliation(s)
- Cong Wang
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4067, Australia; Engineering Research Centre of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai 201203, China
| | - Caixia Lin
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Yue Zhao
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Centre, Shanghai 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Montana Samantzis
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Petra Sedlak
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Matilde Balbi
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4067, Australia.
| |
Collapse
|
10
|
Fahrenthold BK, Cavanaugh MR, Tamhankar M, Lam BL, Feldon SE, Johnson BA, Huxlin KR. Training in cortically-blind fields confers patient-specific benefit against retinal thinning after occipital stroke. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.19.23298260. [PMID: 38196617 PMCID: PMC10775322 DOI: 10.1101/2023.12.19.23298260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Purpose Damage to the adult primary visual cortex (V1) causes vision loss in the contralateral hemifield, initiating a process of trans-synaptic retrograde degeneration (TRD). Here, we examined retinal correlates of TRD using a new metric to account for global changes in inner retinal thickness, and asked if perceptual training in the intact or blind field impacts its progression. Methods We performed a meta-analysis of optical coherence tomography (OCT) data in 48 participants with unilateral V1 stroke and homonymous visual defects, who completed clinical trial NCT03350919. After measuring the thickness of the macular ganglion cell and inner plexiform layers (GCL-IPL), and the peripapillary retinal nerve fiber layer (RNFL), we computed individual laterality indices (LI) at baseline and after ~6 months of daily motion discrimination training in the intact- or blind-field. Increasingly positive LI denoted greater layer thinning in retinal regions affected versus unaffected by the cortical damage. Results Pre-training, the affected GCL-IPL and RNFL were thinner than their unaffected counterparts, generating LI values positively correlated with time since stroke. Participants trained in their intact-field exhibited increased LIGCL-IPL. Those trained in their blind-field had no significant change in LIGCL-IPL. LIRNFL did not change in either group. Conclusions Relative shrinkage of the affected versus unaffected macular GCL-IPL can be reliably measured at an individual level and increases with time post-V1 stroke. Relative thinning progressed during intact-field training, but appeared to be halted by training within the blind field, suggesting a potentially neuroprotective effect of this simple behavioral intervention.
Collapse
Affiliation(s)
- Berkeley K. Fahrenthold
- Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Matthew R. Cavanaugh
- Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Madhura Tamhankar
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Byron L. Lam
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Steven E. Feldon
- Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Brent A. Johnson
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA
| | - Krystel R. Huxlin
- Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, NY, USA
| |
Collapse
|
11
|
Lee J, Lee E, Bashir S, Kim GJ, Ohn SH, Jung KI, Yoo WK. Compensatory Hyperactivity of the Ipsilesional Red Nucleus in a Patient With Somatosensory Cortex Damage: A Case Report. BRAIN & NEUROREHABILITATION 2023; 16:e33. [PMID: 38047094 PMCID: PMC10689868 DOI: 10.12786/bn.2023.16.e33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 12/05/2023] Open
Abstract
This case study describes a patient who experienced motor recovery and involuntary movements following damage to the right primary somatosensory cortex caused by an intracranial hemorrhage. The patient initially suffered from paralysis in her left arm and leg, but exhibited significant motor recovery later, accompanied by multiple episodes of ballistic movement during the recovery process. A diffusion tensor imaging analysis was performed to investigate changes in sensorimotor-related brain areas in the patient. The patient had higher fractional anisotropy and lower mean diffusivity values in the ipsilesional red nucleus (RN) than age-matched controls. We assume that hyperactivity of the ipsilesional RN might play a role in motor recovery after damage to the primary somatosensory cortex, potentially through its involvement in sensorimotor integration. Our findings demonstrated the potential for adaptive changes in the ipsilesional RN following damage to the primary somatosensory cortex.
Collapse
Affiliation(s)
- Jeongeun Lee
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Eunjee Lee
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Gyu Jin Kim
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Suk Hoon Ohn
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Kwang-Ik Jung
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| |
Collapse
|
12
|
Marquez-Ortiz RA, Tesic V, Hernandez DR, Akhter B, Aich N, Boudreaux PM, Clemons GA, Wu CYC, Lin HW, Rodgers KM. Neuroimmune Support of Neuronal Regeneration and Neuroplasticity following Cerebral Ischemia in Juvenile Mice. Brain Sci 2023; 13:1337. [PMID: 37759938 PMCID: PMC10526826 DOI: 10.3390/brainsci13091337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Ischemic damage to the brain and loss of neurons contribute to functional disabilities in many stroke survivors. Recovery of neuroplasticity is critical to restoration of function and improved quality of life. Stroke and neurological deficits occur in both adults and children, and yet it is well documented that the developing brain has remarkable plasticity which promotes increased post-ischemic functional recovery compared with adults. However, the mechanisms underlying post-stroke recovery in the young brain have not been fully explored. We observed opposing responses to experimental cerebral ischemia in juvenile and adult mice, with substantial neural regeneration and enhanced neuroplasticity detected in the juvenile brain that was not found in adults. We demonstrate strikingly different stroke-induced neuroimmune responses that are deleterious in adults and protective in juveniles, supporting neural regeneration and plasticity. Understanding age-related differences in neuronal repair and regeneration, restoration of neural network function, and neuroimmune signaling in the stroke-injured brain may offer new insights for the development of novel therapeutic strategies for stroke rehabilitation.
Collapse
Affiliation(s)
- Ricaurte A. Marquez-Ortiz
- Department of Cellular Biology and Anatomy, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA (B.A.)
| | - Vesna Tesic
- Department of Neurology, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA
| | - Daniel R. Hernandez
- Department of Cellular Biology and Anatomy, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA (B.A.)
| | - Bilkis Akhter
- Department of Cellular Biology and Anatomy, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA (B.A.)
| | - Nibedita Aich
- Department of Cellular Biology and Anatomy, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA (B.A.)
| | - Porter M. Boudreaux
- Department of Cellular Biology and Anatomy, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA (B.A.)
| | - Garrett A. Clemons
- Department of Cellular Biology and Anatomy, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA (B.A.)
| | - Celeste Yin-Chieh Wu
- Department of Neurology, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA
| | - Hung Wen Lin
- Department of Cellular Biology and Anatomy, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA (B.A.)
- Department of Neurology, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA
| | - Krista M. Rodgers
- Department of Cellular Biology and Anatomy, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA (B.A.)
- Department of Neurology, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA
| |
Collapse
|
13
|
Faraji J, Metz GAS. Toward reframing brain-social dynamics: current assumptions and future challenges. Front Psychiatry 2023; 14:1211442. [PMID: 37484686 PMCID: PMC10359502 DOI: 10.3389/fpsyt.2023.1211442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Evolutionary analyses suggest that the human social brain and sociality appeared together. The two fundamental tools that accelerated the concurrent emergence of the social brain and sociality include learning and plasticity. The prevailing core idea is that the primate brain and the cortex in particular became reorganised over the course of evolution to facilitate dynamic adaptation to ongoing changes in physical and social environments. Encouraged by computational or survival demands or even by instinctual drives for living in social groups, the brain eventually learned how to learn from social experience via its massive plastic capacity. A fundamental framework for modeling these orchestrated dynamic responses is that social plasticity relies upon neuroplasticity. In the present article, we first provide a glimpse into the concepts of plasticity, experience, with emphasis on social experience. We then acknowledge and integrate the current theoretical concepts to highlight five key intertwined assumptions within social neuroscience that underlie empirical approaches for explaining the brain-social dynamics. We suggest that this epistemological view provides key insights into the ontology of current conceptual frameworks driving future research to successfully deal with new challenges and possible caveats in favour of the formulation of novel assumptions. In the light of contemporary societal challenges, such as global pandemics, natural disasters, violent conflict, and other human tragedies, discovering the mechanisms of social brain plasticity will provide new approaches to support adaptive brain plasticity and social resilience.
Collapse
|
14
|
Vasquez B, Campos B, Cao A, Theint AT, Zeiger W. High-Sensitivity Intrinsic Optical Signal Imaging Through Flexible, Low-Cost Adaptations of an Upright Microscope. eNeuro 2023; 10:ENEURO.0046-23.2023. [PMID: 37550064 PMCID: PMC10408783 DOI: 10.1523/eneuro.0046-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 08/09/2023] Open
Abstract
Intrinsic optical signal imaging (IOSI) is a staple technique in modern neuroscience. Pioneered >30 years ago, IOSI allows macroscopic mapping of neuronal activity throughout the cortex. The technique has been used to study sensory processing and experience-dependent plasticity, and is often used as an adjunctive procedure to localize cortical areas for subsequent targeting by other imaging or physiology techniques. Despite the ubiquity of IOSI in neuroscience, there are few commercially available turn-key IOSI systems. As a result, investigators have typically resorted to building their own imaging systems. Over the years, simplified systems built either as dedicated rigs or incorporated into existing microscope platforms have been developed. Here we present a straightforward set of adaptations that can be applied to any standard upright microscope, using readily available, inexpensive, commercial parts for illumination, optics, and signal detection, that enables high-sensitivity IOSI. Using these adaptations, we are able to readily map sensory-evoked signals across the somatosensory and visual cortex, including single-whisker barrel cortical activity maps in mice. We show that these IOSI maps are highly reproducible across animals and can be used to study plasticity mechanisms in the somatosensory cortex. We also provide open-source applications to control illumination and analyze raw data to generate activity maps. We anticipate that these resources will be useful for neuroscience investigators looking to add IOSI capabilities to an existing microscope in the laboratory on a budget.
Collapse
Affiliation(s)
- Brenda Vasquez
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Baruc Campos
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Ashley Cao
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Aye Theint Theint
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - William Zeiger
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
15
|
Hayley P, Tuchek C, Dalla S, Borrell J, Murphy MD, Nudo RJ, Guggenmos DJ. Post-ischemic reorganization of sensory responses in cerebral cortex. Front Neurosci 2023; 17:1151309. [PMID: 37332854 PMCID: PMC10272353 DOI: 10.3389/fnins.2023.1151309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Sensorimotor integration is critical for generating skilled, volitional movements. While stroke tends to impact motor function, there are also often associated sensory deficits that contribute to overall behavioral deficits. Because many of the cortico-cortical projections participating in the generation of volitional movement either target or pass-through primary motor cortex (in rats, caudal forelimb area; CFA), any damage to CFA can lead to a subsequent disruption in information flow. As a result, the loss of sensory feedback is thought to contribute to motor dysfunction even when sensory areas are spared from injury. Previous research has suggested that the restoration of sensorimotor integration through reorganization or de novo neuronal connections is important for restoring function. Our goal was to determine if there was crosstalk between sensorimotor cortical areas with recovery from a primary motor cortex injury. First, we investigated if peripheral sensory stimulation would evoke responses in the rostral forelimb area (RFA), a rodent homologue to premotor cortex. We then sought to identify whether intracortical microstimulation-evoked activity in RFA would reciprocally modify the sensory response. Methods We used seven rats with an ischemic lesion of CFA. Four weeks after injury, the rats' forepaw was mechanically stimulated under anesthesia and neural activity was recorded in the cortex. In a subset of trials, a small intracortical stimulation pulse was delivered in RFA either individually or paired with peripheral sensory stimulation. Results Our results point to post-ischemic connectivity between premotor and sensory cortex that may be related to functional recovery. Premotor recruitment during the sensory response was seen with a peak in spiking within RFA after the peripheral solenoid stimulation despite the damage to CFA. Furthermore, stimulation in RFA modulated and disrupted the sensory response in sensory cortex. Discussion The presence of a sensory response in RFA and the sensitivity of S1 to modulation by intracortical stimulation provides additional evidence for functional connectivity between premotor and somatosensory cortex. The strength of the modulatory effect may be related to the extent of the injury and the subsequent reshaping of cortical connections in response to network disruption.
Collapse
Affiliation(s)
- P. Hayley
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - C. Tuchek
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS, United States
| | - S. Dalla
- University of Kansas, School of Medicine Wichita, Kansas City, KS, United States
| | - J. Borrell
- Bioengineering Program, University of Kansas, Lawrence, KS, United States
| | - M. D. Murphy
- Bioengineering Program, University of Kansas, Lawrence, KS, United States
| | - R. J. Nudo
- Department of Rehabilitation Medicine and the Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS, United States
| | - D. J. Guggenmos
- Department of Rehabilitation Medicine and the Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
16
|
Sunil S, Jiang J, Shah S, Kura S, Kilic K, Erdener SE, Ayata C, Devor A, Boas DA. Neurovascular coupling is preserved in chronic stroke recovery after targeted photothrombosis. Neuroimage Clin 2023; 38:103377. [PMID: 36948140 PMCID: PMC10034641 DOI: 10.1016/j.nicl.2023.103377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Functional neuroimaging, which measures hemodynamic responses to brain activity, has great potential for monitoring recovery in stroke patients and guiding rehabilitation during recovery. However, hemodynamic responses after stroke are almost always altered relative to responses in healthy subjects and it is still unclear if these alterations reflect the underlying brain physiology or if the alterations are purely due to vascular injury. In other words, we do not know the effect of stroke on neurovascular coupling and are therefore limited in our ability to use functional neuroimaging to accurately interpret stroke pathophysiology. To address this challenge, we simultaneously captured neural activity, through fluorescence calcium imaging, and hemodynamics, through intrinsic optical signal imaging, during longitudinal stroke recovery. Our data suggest that neurovascular coupling was preserved in the chronic phase of recovery (2 weeks and 4 weeks post-stoke) and resembled pre-stroke neurovascular coupling. This indicates that functional neuroimaging faithfully represents the underlying neural activity in chronic stroke. Further, neurovascular coupling in the sub-acute phase of stroke recovery was predictive of long-term behavioral outcomes. Stroke also resulted in increases in global brain oscillations, which showed distinct patterns between neural activity and hemodynamics. Increased neural excitability in the contralesional hemisphere was associated with increased contralesional intrahemispheric connectivity. Additionally, sub-acute increases in hemodynamic oscillations were associated with improved sensorimotor outcomes. Collectively, these results support the use of hemodynamic measures of brain activity post-stroke for predicting functional and behavioral outcomes.
Collapse
Affiliation(s)
- Smrithi Sunil
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| | - John Jiang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Shashwat Shah
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Sreekanth Kura
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Kivilcim Kilic
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Sefik Evren Erdener
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Cenk Ayata
- Departments of Neurology and Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Anna Devor
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David A Boas
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
17
|
Post-Ischemic Reorganization of Sensory Responses in Cerebral Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524583. [PMID: 36711682 PMCID: PMC9882270 DOI: 10.1101/2023.01.18.524583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Sensorimotor integration is critical for generating skilled, volitional movements. While stroke tends to impact motor function, there are also often associated sensory deficits that contribute to overall behavioral deficits. Because many of the cortico-cortical projections participating in the generation of volitional movement either target or pass-through primary motor cortex (in rats, caudal forelimb area; CFA), any damage to CFA can lead to a subsequent disruption in information flow. As a result, the loss of sensory feedback is thought to contribute to motor dysfunction even when sensory areas are spared from injury. Previous research has suggested that the restoration of sensorimotor integration through reorganization or de novo neuronal connections is important for restoring function. Our goal was to determine if there was crosstalk between sensorimotor cortical areas with recovery from a primary motor cortex injury. First, we investigated if peripheral sensory stimulation would evoke responses in the rostral forelimb area (RFA), a rodent homologue to premotor cortex. We then sought to identify whether intracortical microstimulation-evoked activity in RFA would reciprocally modify the sensory response. We used seven rats with an ischemic lesion of CFA. Four weeks after injury, the rats' forepaw was mechanically stimulated under anesthesia and neural activity was recorded in the cortex. In a subset of trials, a small intracortical stimulation pulse was delivered in RFA either individually or paired with peripheral sensory stimulation. Our results point to post-ischemic connectivity between premotor and sensory cortex that may be related to functional recovery. Premotor recruitment during the sensory response was seen with a peak in spiking within RFA after the peripheral solenoid stimulation despite the damage to CFA. Furthermore, stimulation evoked activity in RFA modulated and disrupted the sensory response in sensory cortex, providing additional evidence for the transmission of premotor activity to sensory cortex and the sensitivity of sensory cortex to premotor cortex's influence. The strength of the modulatory effect may be related to the extent of the injury and the subsequent reshaping of cortical connections in response to network disruption.
Collapse
|
18
|
Padawer-Curry JA, Bowen RM, Jarang A, Wang X, Lee JM, Bauer AQ. Wide-Field Optical Imaging in Mouse Models of Ischemic Stroke. Methods Mol Biol 2023; 2616:113-151. [PMID: 36715932 DOI: 10.1007/978-1-0716-2926-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Functional neuroimaging is a powerful tool for evaluating how local and global brain circuits evolve after focal ischemia and how these changes relate to functional recovery. For example, acutely after stroke, changes in functional brain organization relate to initial deficit and are predictive of recovery potential. During recovery, the reemergence and restoration of connections lost due to stroke correlate with recovery of function. Thus, information gleaned from functional neuroimaging can be used as a proxy for behavior and inform on the efficacy of interventional strategies designed to affect plasticity mechanisms after injury. And because these findings are consistently observed across species, bridge measurements can be made in animal models to enrich findings in human stroke populations. In mice, genetic engineering techniques have provided several new opportunities for extending optical neuroimaging methods to more direct measures of neuronal activity. These developments are especially useful in the context of stroke where neurovascular coupling can be altered, potentially limiting imaging measures based on hemodynamic activity alone. This chapter is designed to give an overview of functional wide-field optical imaging (WFOI) for applications in rodent models of stroke, primarily in the mouse. The goal is to provide a protocol for laboratories that want to incorporate an affordable functional neuroimaging assay into their current research thrusts, but perhaps lack the background knowledge or equipment for developing a new arm of research in their lab. Within, we offer a comprehensive guide developing and applying WFOI technology with the hope of facilitating accessibility of neuroimaging technology to other researchers in the stroke field.
Collapse
Affiliation(s)
- Jonah A Padawer-Curry
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Imaging Science PhD Program, Washington University in St. Louis, St. Louis, MO, USA
| | - Ryan M Bowen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Anmol Jarang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Xiaodan Wang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jin-Moo Lee
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Adam Q Bauer
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA.
- Imaging Science PhD Program, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
19
|
Restoring After Central Nervous System Injuries: Neural Mechanisms and Translational Applications of Motor Recovery. Neurosci Bull 2022; 38:1569-1587. [DOI: 10.1007/s12264-022-00959-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/29/2022] [Indexed: 11/06/2022] Open
Abstract
AbstractCentral nervous system (CNS) injuries, including stroke, traumatic brain injury, and spinal cord injury, are leading causes of long-term disability. It is estimated that more than half of the survivors of severe unilateral injury are unable to use the denervated limb. Previous studies have focused on neuroprotective interventions in the affected hemisphere to limit brain lesions and neurorepair measures to promote recovery. However, the ability to increase plasticity in the injured brain is restricted and difficult to improve. Therefore, over several decades, researchers have been prompted to enhance the compensation by the unaffected hemisphere. Animal experiments have revealed that regrowth of ipsilateral descending fibers from the unaffected hemisphere to denervated motor neurons plays a significant role in the restoration of motor function. In addition, several clinical treatments have been designed to restore ipsilateral motor control, including brain stimulation, nerve transfer surgery, and brain–computer interface systems. Here, we comprehensively review the neural mechanisms as well as translational applications of ipsilateral motor control upon rehabilitation after CNS injuries.
Collapse
|
20
|
Hirohata T, Kitano T, Saeki C, Baba K, Yoshida F, Kurihara T, Harada K, Saito S, Mochizuki H, Shimodozono M. Quantitative behavioral evaluation of a non-human primate stroke model using a new monitoring system. Front Neurosci 2022; 16:964928. [PMID: 36117634 PMCID: PMC9475201 DOI: 10.3389/fnins.2022.964928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background Recently, the common marmoset (Callithrix jacchus) has attracted significant interest as a non-human primate stroke model. Functional impairment in non-human primate stroke models should be evaluated quantitatively and successively after stroke, but conventional observational assessments of behavior cannot fully fit this purpose. In this paper, we report a behavioral analysis using MarmoDetector, a three-dimensional motion analysis, in an ischemic stroke model using photosensitive dye, along with an observational behavioral assessment and imaging examination. Methods Ischemic stroke was induced in the left hemisphere of three marmosets. Cerebral infarction was induced by intravenous injection of rose bengal and irradiation with green light. The following day, the success of the procedure was confirmed by magnetic resonance imaging (MRI). The distance traveled, speed, activity time, and jumps/climbs were observed for 28 days after stroke using MarmoDetector. We also assessed the marmosets’ specific movements and postural abnormalities using conventional neurological scores. Results Magnetic resonance imaging diffusion-weighted and T2-weighted images showed hyperintense signals, indicating cerebral infarction in all three marmosets. MarmoDetector data showed that the both indices immediately after stroke onset and gradually improved over weeks. Neurological scores were the worst immediately after stroke and did not recover to pre-infarction levels during the observation period (28 days). A significant correlation was observed between MarmoDetector data and conventional neurological scores. Conclusion In this study, we showed that MarmoDetector can quantitatively evaluate behavioral changes in the acute to subacute phases stroke models. This technique can be practical for research on the pathophysiology of ischemic stroke and for the development of new therapeutic methods.
Collapse
Affiliation(s)
- Toshikazu Hirohata
- Department of Rehabilitation and Physical Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takaya Kitano
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chizu Saeki
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kousuke Baba
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
- Academic Research Division, Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
- *Correspondence: Kousuke Baba,
| | - Fumiaki Yoshida
- Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan
- Fumiaki Yoshida,
| | - Takashi Kurihara
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Takashi Kurihara,
| | - Katsuhiro Harada
- Department of Rehabilitation and Physical Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shigeyoshi Saito
- Division of Health Sciences, Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Megumi Shimodozono
- Department of Rehabilitation and Physical Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
21
|
Jeon J, Kim SH, Kong E, Kim SJ, Yang JM, Lee JY, Lee J, Kim YM, Kim P. Establishment of the reproducible branch retinal artery occlusion mouse model and intravital longitudinal imaging of the retinal CX3CR1-GFP+ cells after spontaneous arterial recanalization. Front Med (Lausanne) 2022; 9:897800. [PMID: 35911406 PMCID: PMC9334526 DOI: 10.3389/fmed.2022.897800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Animal models of retinal artery occlusion (RAO) have been widely used in many studies. However, most of these studies prefer using a central retinal artery occlusion (CRAO) which is a typical global ischemia model of the retina, due to the technical limitation of producing single vessel targeted modeling with real-time imaging. A focal ischemia model, such as branch retinal artery occlusion (BRAO), is also needed for explaining interactions, including the immunological reaction between the ischemic retina and adjacent healthy retina. Accordingly, a relevant model for clinical RAO patients has been demanded to understand the pathophysiology of the RAO disease. Herein, we establish a convenient BRAO mouse model to research the focal reaction of the retina. As a photo-thrombotic agent, Rose bengal was intravenously injected into 7 week-old transgenic mice (CX3CR1-GFP) for making embolism occlusion, which causes pathology similarly to clinical cases. In an optimized condition, a 561 nm laser (13.1 mw) was projected to a targeted vessel to induce photo-thrombosis for 27 s by custom-built retinal confocal microscopy. Compared to previous BRAO models, the procedures of thrombosis generation were naturally and minimal invasively generated with real-time retinal imaging. In addition, by utilizing the self-remission characteristics of Rose bengal thrombus, a reflow of the BRAO with immunological reactions of the CX3CR1-GFP+ inflammatory cells such as the retinal microglia and monocytes was monitored and analyzed. In this models, reperfusion began on day 3 after modeling. Simultaneously, the activation of CX3CR1-GFP+ inflammatory cells, including the increase of activation marker and morphologic change, was confirmed by immunohistochemical (IHC) staining and quantitative real-time PCR. CD86 and Nox2 were prominently expressed on day 3 after the modeling. At day 7, blood flow was almost restored in the large vessels. CX3CR1-GFP+ populations in both superficial and deep layers of the retina also increased around even in the BRAO peri-ischemic area. In summary, this study successfully establishes a reproducible BRAO modeling method with convenient capabilities of easily controllable time points and selection of a specific single vessel. It can be a useful tool to analyze the behavior of inflammatory cell after spontaneous arterial recanalization in BRAO and further investigate the pathophysiology of BRAO.
Collapse
Affiliation(s)
- Jehwi Jeon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Sang-Hoon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Eunji Kong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Soo Jin Kim
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jee Myung Yang
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Dongguk University Ilsan Hospital, Ilsan, South Korea
| | - Joo Yong Lee
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Junyeop Lee
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - You-Me Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Pilhan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- *Correspondence: Pilhan Kim,
| |
Collapse
|
22
|
Scaglione A, Conti E, Allegra Mascaro AL, Pavone FS. Tracking the Effect of Therapy With Single-Trial Based Classification After Stroke. Front Syst Neurosci 2022; 16:840922. [PMID: 35602972 PMCID: PMC9114305 DOI: 10.3389/fnsys.2022.840922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/28/2022] [Indexed: 11/24/2022] Open
Abstract
Stroke is a debilitating disease that leads, in the 50% of cases, to permanent motor or cognitive impairments. The effectiveness of therapies that promote recovery after stroke depends on indicators of the disease state that can measure the degree of recovery or predict treatment response or both. Here, we propose to use single-trial classification of task dependent neural activity to assess the disease state and track recovery after stroke. We tested this idea on calcium imaging data of the dorsal cortex of healthy, spontaneously recovered and rehabilitated mice while performing a forelimb retraction task. Results show that, at a single-trial level for the three experimental groups, neural activation during the reward pull can be detected with high accuracy with respect to the background activity in all cortical areas of the field of view and this activation is quite stable across trials and subjects of the same group. Moreover, single-trial responses during the reward pull can be used to discriminate between healthy and stroke subjects with areas closer to the injury site displaying higher discrimination capability than areas closer to this site. Finally, a classifier built to discriminate between controls and stroke at the single-trial level can be used to generate an index of the disease state, the therapeutic score, which is validated on the group of rehabilitated mice. In conclusion, task-related neural activity can be used as an indicator of disease state and track recovery without selecting a peculiar feature of the neural responses. This novel method can be used in both the development and assessment of different therapeutic strategies.
Collapse
Affiliation(s)
- Alessandro Scaglione
- Department of Physics and Astronomy, University of Florence, Florence, Italy,European Laboratory for Non-Linear Spectroscopy, University of Florence, Florence, Italy,*Correspondence: Alessandro Scaglione,
| | - Emilia Conti
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Florence, Italy,Neuroscience Institute, National Research Council, Pisa, Italy
| | - Anna Letizia Allegra Mascaro
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Florence, Italy,Neuroscience Institute, National Research Council, Pisa, Italy
| | - Francesco Saverio Pavone
- Department of Physics and Astronomy, University of Florence, Florence, Italy,European Laboratory for Non-Linear Spectroscopy, University of Florence, Florence, Italy,National Institute of Optics, National Research Council, Florence, Italy
| |
Collapse
|
23
|
Khateeb K, Bloch J, Zhou J, Rahimi M, Griggs DJ, Kharazia VN, Le MN, Wang RK, Yazdan-Shahmorad A. A versatile toolbox for studying cortical physiology in primates. CELL REPORTS METHODS 2022; 2:100183. [PMID: 35445205 PMCID: PMC9017216 DOI: 10.1016/j.crmeth.2022.100183] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/06/2022] [Accepted: 02/23/2022] [Indexed: 12/02/2022]
Abstract
Lesioning and neurophysiological studies have facilitated the elucidation of cortical functions and mechanisms of functional recovery following injury. Clinical translation of such studies is contingent on their employment in non-human primates (NHPs), yet tools for monitoring and modulating cortical physiology are incompatible with conventional lesioning techniques. To address these challenges, we developed a toolbox validated in seven macaques. We introduce the photothrombotic method for inducing focal cortical lesions, a quantitative model for designing experiment-specific lesion profiles and optical coherence tomography angiography (OCTA) for large-scale (~5 cm2) monitoring of vascular dynamics. We integrate these tools with our electrocorticographic array for large-scale monitoring of neural dynamics and testing stimulation-based interventions. Advantageously, this versatile toolbox can be incorporated into established chronic cranial windows. By combining optical and electrophysiological techniques in the NHP cortex, we can enhance our understanding of cortical functions, investigate functional recovery mechanisms, integrate physiological and behavioral findings, and develop neurorehabilitative treatments. MOTIVATION The primate neocortex encodes for complex functions and behaviors, the physiologies of which are yet to be fully understood. Such an understanding in both healthy and diseased states can be crucial for the development of effective neurorehabilitative strategies. However, there is a lack of a comprehensive and adaptable set of tools that enables the study of multiple physiological phenomena in healthy and injured brains. Therefore, we developed a toolbox with the capability to induce targeted cortical lesions, monitor dynamics of underlying cortical microvasculature, and record and stimulate neural activity. With this toolbox, we can enhance our understanding of cortical functions, investigate functional recovery mechanisms, test stimulation-based interventions, and integrate physiological and behavioral findings.
Collapse
Affiliation(s)
- Karam Khateeb
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Washington National Primate Research Center, Seattle, WA 98195, USA
| | - Julien Bloch
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Washington National Primate Research Center, Seattle, WA 98195, USA
| | - Jasmine Zhou
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Washington National Primate Research Center, Seattle, WA 98195, USA
| | - Mona Rahimi
- Washington National Primate Research Center, Seattle, WA 98195, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA
| | - Devon J. Griggs
- Washington National Primate Research Center, Seattle, WA 98195, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA
| | - Viktor N. Kharazia
- Department of Physiology and Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Minh N. Le
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Ophthalmology, University of Washington Medicine, Seattle, WA 98195, USA
| | - Azadeh Yazdan-Shahmorad
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Washington National Primate Research Center, Seattle, WA 98195, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
24
|
Motolese F, Capone F, Di Lazzaro V. New tools for shaping plasticity to enhance recovery after stroke. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:299-315. [PMID: 35034743 DOI: 10.1016/b978-0-12-819410-2.00016-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Stroke is the second most common cause of death worldwide and its prevalence is projected to increase in the coming years in parallel with the increase of life expectancy. Despite the great improvements in the management of the acute phase of stroke, some residual disability persists in most patients thus requiring rehabilitation. One third of patients do not reach the maximal recovery potential and different approaches have been explored with the aim to boost up recovery. In this regard, noninvasive brain stimulation techniques have been widely used to induce neuroplasticity phenomena. Different protocols of repetitive transcranial magnetic stimulation (rTMS) and transcranial electrical stimulation (tES) can induce short- and long-term changes of synaptic excitability and are promising tools for enhancing recovery in stroke patients. New options for neuromodulation are currently under investigation. They include: vagal nerve stimulation (VNS) that can be delivered invasively, with implanted stimulators and noninvasively with transcutaneous VNS (tVNS); and extremely low-frequency (1-300Hz) magnetic fields. This chapter will provide an overview on the new techniques that are used for neuroprotection and for enhancing recovery after stroke.
Collapse
Affiliation(s)
- Francesco Motolese
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fioravante Capone
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Vincenzo Di Lazzaro
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy.
| |
Collapse
|
25
|
Conti E, Piccardi B, Sodero A, Tudisco L, Lombardo I, Fainardi E, Nencini P, Sarti C, Allegra Mascaro AL, Baldereschi M. Translational Stroke Research Review: Using the Mouse to Model Human Futile Recanalization and Reperfusion Injury in Ischemic Brain Tissue. Cells 2021; 10:3308. [PMID: 34943816 PMCID: PMC8699609 DOI: 10.3390/cells10123308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
The approach to reperfusion therapies in stroke patients is rapidly evolving, but there is still no explanation why a substantial proportion of patients have a poor clinical prognosis despite successful flow restoration. This issue of futile recanalization is explained here by three clinical cases, which, despite complete recanalization, have very different outcomes. Preclinical research is particularly suited to characterize the highly dynamic changes in acute ischemic stroke and identify potential treatment targets useful for clinical translation. This review surveys the efforts taken so far to achieve mouse models capable of investigating the neurovascular underpinnings of futile recanalization. We highlight the translational potential of targeting tissue reperfusion in fully recanalized mouse models and of investigating the underlying pathophysiological mechanisms from subcellular to tissue scale. We suggest that stroke preclinical research should increasingly drive forward a continuous and circular dialogue with clinical research. When the preclinical and the clinical stroke research are consistent, translational success will follow.
Collapse
Affiliation(s)
- Emilia Conti
- Neuroscience Institute, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (E.C.); (A.L.A.M.)
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Benedetta Piccardi
- Neurofarba Department, University of Florence, Via G. Pieraccini 6, 50139 Florence, Italy; (A.S.); (L.T.); (C.S.)
| | - Alessandro Sodero
- Neurofarba Department, University of Florence, Via G. Pieraccini 6, 50139 Florence, Italy; (A.S.); (L.T.); (C.S.)
| | - Laura Tudisco
- Neurofarba Department, University of Florence, Via G. Pieraccini 6, 50139 Florence, Italy; (A.S.); (L.T.); (C.S.)
| | - Ivano Lombardo
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (I.L.); (E.F.)
| | - Enrico Fainardi
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (I.L.); (E.F.)
| | - Patrizia Nencini
- Stroke Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy;
| | - Cristina Sarti
- Neurofarba Department, University of Florence, Via G. Pieraccini 6, 50139 Florence, Italy; (A.S.); (L.T.); (C.S.)
| | - Anna Letizia Allegra Mascaro
- Neuroscience Institute, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (E.C.); (A.L.A.M.)
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Marzia Baldereschi
- Neuroscience Institute, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
26
|
Sato T, Nakamura Y, Takeda A, Ueno M. Lesion Area in the Cerebral Cortex Determines the Patterns of Axon Rewiring of Motor and Sensory Corticospinal Tracts After Stroke. Front Neurosci 2021; 15:737034. [PMID: 34707476 PMCID: PMC8542932 DOI: 10.3389/fnins.2021.737034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022] Open
Abstract
The corticospinal tract (CST) is an essential neural pathway for reorganization that recovers motor functions after brain injuries such as stroke. CST comprises multiple pathways derived from different sensorimotor areas of the cerebral cortex; however, the patterns of reorganization in such complex pathways postinjury are largely unknown. Here we comprehensively examined the rewiring patterns of the CST pathways of multiple cerebral origins in a mouse stroke model that varied in size and location in the sensorimotor cortex. We found that spared contralesional motor and sensory CST axons crossed the midline and sprouted into the denervated side of the cervical spinal cord after stroke in a large cortical area. In contrast, the contralesional CST fibers did not sprout in a small stroke, whereas the ipsilesional axons from the spared motor area grew on the denervated side. We further showed that motor and sensory CST axons did not innervate the projecting areas mutually when either one was injured. The present results reveal the basic principles that generate the patterns of CST rewiring, which depend on stroke location and CST subtype. Our data indicate the importance of targeting different neural substrates to restore function among the types of injury.
Collapse
Affiliation(s)
| | | | | | - Masaki Ueno
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
27
|
Astrakas LG, Li S, Ottensmeyer MP, Pusatere C, Moskowitz MA, Tzika AA. Peak Activation Shifts in the Sensorimotor Cortex of Chronic Stroke Patients Following Robot-assisted Rehabilitation Therapy. Open Neuroimag J 2021; 14:8-15. [PMID: 34434290 PMCID: PMC8384467 DOI: 10.2174/1874440002114010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background: Ischemic stroke is the most common cause of complex chronic disability and the third leading cause of death worldwide. In recovering stroke patients, peak activation within the ipsilesional primary motor cortex (M1) during the performance of a simple motor task has been shown to exhibit an anterior shift in many studies and a posterior shift in other studies. Objective: We investigated this discrepancy in chronic stroke patients who completed a robot-assisted rehabilitation therapy program. Methods: Eight chronic stroke patients with an intact M1 and 13 Healthy Control (HC) volunteers underwent 300 functional magnetic resonance imaging (fMRI) scans while performing a grip task at different force levels with a robotic device. The patients were trained with the same robotic device over a 10-week intervention period and their progress was evaluated serially with the Fugl-Meyer and Modified Ashworth scales. Repeated measure analyses were used to assess group differences in locations of peak activity in the sensorimotor cortex (SM) and the relationship of such changes with scores on the Fugl-Meyer Upper Extremity (FM UE) scale. Results: Patients moving their stroke-affected hand had proportionally more peak activations in the primary motor area and fewer peak activations in the somatosensory cortex than the healthy controls (P=0.009). They also showed an anterior shift of peak activity on average of 5.3-mm (P<0.001). The shift correlated negatively with FM UE scores (P=0.002). Conclusion: A stroke rehabilitation grip task with a robotic device was confirmed to be feasible during fMRI scanning and thus amenable to be used to assess plastic changes in neurological motor activity. Location of peak activity in the SM is a promising clinical neuroimaging index for the evaluation and monitoring of chronic stroke patients.
Collapse
Affiliation(s)
- Loukas G Astrakas
- Medical Physics, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Shasha Li
- Harvard Medical School, Boston, MA, USA.,NMR Surgical Laboratory, Department of Surgery, Center for Surgery, Innovation and Bioengineering, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark P Ottensmeyer
- Harvard Medical School, Boston, MA, USA.,Medical Device & Simulation Laboratory, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Christian Pusatere
- NMR Surgical Laboratory, Department of Surgery, Center for Surgery, Innovation and Bioengineering, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael A Moskowitz
- Harvard Medical School, Boston, MA, USA.,Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Neuroscience Center, Departments of Neurology and Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - A Aria Tzika
- Harvard Medical School, Boston, MA, USA.,NMR Surgical Laboratory, Department of Surgery, Center for Surgery, Innovation and Bioengineering, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Zeiger WA, Marosi M, Saggi S, Noble N, Samad I, Portera-Cailliau C. Barrel cortex plasticity after photothrombotic stroke involves potentiating responses of pre-existing circuits but not functional remapping to new circuits. Nat Commun 2021; 12:3972. [PMID: 34172735 PMCID: PMC8233353 DOI: 10.1038/s41467-021-24211-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/01/2021] [Indexed: 01/14/2023] Open
Abstract
Recovery after stroke is thought to be mediated by adaptive circuit plasticity, whereby surviving neurons assume the roles of those that died. However, definitive longitudinal evidence of neurons changing their response selectivity after stroke is lacking. We sought to directly test whether such functional “remapping” occurs within mouse primary somatosensory cortex after a stroke that destroys the C1 barrel. Using in vivo calcium imaging to longitudinally record sensory-evoked activity under light anesthesia, we did not find any increase in the number of C1 whisker-responsive neurons in the adjacent, spared D3 barrel after stroke. To promote plasticity after stroke, we also plucked all whiskers except C1 (forced use therapy). This led to an increase in the reliability of sensory-evoked responses in C1 whisker-responsive neurons but did not increase the number of C1 whisker-responsive neurons in spared surround barrels over baseline levels. Our results argue against remapping of functionality after barrel cortex stroke, but support a circuit-based mechanism for how rehabilitation may improve recovery. Definitive evidence for functional remapping after stroke remains lacking. Here, the authors performed in vivo intrinsic signal imaging and two-photon calcium imaging of sensory-evoked responses before and after photothrombotic stroke and found no evidence of remapping of lost functionalities to new circuits in peri-infarct cortex.
Collapse
Affiliation(s)
- William A Zeiger
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Máté Marosi
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Satvir Saggi
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Natalie Noble
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Isa Samad
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA. .,Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Balch MHH, Harris H, Chugh D, Gnyawali S, Rink C, Nimjee SM, Arnold WD. Ischemic stroke-induced polyaxonal innervation at the neuromuscular junction is attenuated by robot-assisted mechanical therapy. Exp Neurol 2021; 343:113767. [PMID: 34044000 DOI: 10.1016/j.expneurol.2021.113767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/30/2021] [Accepted: 05/22/2021] [Indexed: 01/12/2023]
Abstract
Ischemic stroke is a leading cause of disability world-wide. Mounting evidence supports neuromuscular pathology following stroke, yet mechanisms of dysfunction and therapeutic action remain undefined. The objectives of our study were to investigate neuromuscular pathophysiology following ischemic stroke and to evaluate the therapeutic effect of Robot-Assisted Mechanical massage Therapy (RAMT) on neuromuscular junction (NMJ) morphology. Using an ischemic stroke model in male rats, we demonstrated longitudinal losses of muscle contractility and electrophysiological estimates of motor unit number in paretic hindlimb muscles within 21 days of stroke. Histological characterization demonstrated striking pre- and postsynaptic alterations at the NMJ. Stroke prompted enlargement of motor axon terminals, acetylcholine receptor (AChR) area, and motor endplate size. Paretic muscle AChRs were also more homogenously distributed across motor endplates, exhibiting fewer clusters and less fragmentation. Most interestingly, NMJs in paretic muscle exhibited increased frequency of polyaxonal innervation. This finding of increased polyaxonal innervation in stroke-affected skeletal muscle suggests that reduction of motor unit number following stroke may be a spurious artifact due to overlapping of motor units rather than losses. Furthermore, we tested the effects of RAMT - which we recently showed to improve motor function and protect against subacute myokine disturbance - and found significant attenuation of stroke-induced NMJ alterations. RAMT not only normalized the post-stroke presentation of polyaxonal innervation but also mitigated postsynaptic expansion. These findings confirm complex neuromuscular pathophysiology after stroke, provide mechanistic direction for ongoing research, and inform development of future therapeutic strategies. SIGNIFICANCE: Ischemic stroke is a leading contributor to chronic disability, and there is growing evidence that neuromuscular pathology may contribute to the impact of stroke on physical function. Following ischemic stroke in a rat model, there are progressive declines of motor unit number estimates and muscle contractility. These changes are paralleled by striking pre- and postsynaptic maladaptive changes at the neuromuscular junction, including polyaxonal innervation. When administered to paretic hindlimb muscle, Robot-Assisted Mechanical massage Therapy - previously shown to improve motor function and protect against subacute myokine disturbance - prevents stroke-induced neuromuscular junction alterations. These novel observations provide insight into the neuromuscular response to cerebral ischemia, identify peripheral mechanisms of functional disability, and present a therapeutic rehabilitation strategy with clinical relevance.
Collapse
Affiliation(s)
- Maria H H Balch
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Hallie Harris
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Deepti Chugh
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Surya Gnyawali
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Cameron Rink
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Shahid M Nimjee
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - W David Arnold
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physical Medicine and Rehabilitation, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
30
|
Cecchini G, Scaglione A, Allegra Mascaro AL, Checcucci C, Conti E, Adam I, Fanelli D, Livi R, Pavone FS, Kreuz T. Cortical propagation tracks functional recovery after stroke. PLoS Comput Biol 2021; 17:e1008963. [PMID: 33999967 PMCID: PMC8159272 DOI: 10.1371/journal.pcbi.1008963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/27/2021] [Accepted: 04/13/2021] [Indexed: 12/04/2022] Open
Abstract
Stroke is a debilitating condition affecting millions of people worldwide. The development of improved rehabilitation therapies rests on finding biomarkers suitable for tracking functional damage and recovery. To achieve this goal, we perform a spatiotemporal analysis of cortical activity obtained by wide-field calcium images in mice before and after stroke. We compare spontaneous recovery with three different post-stroke rehabilitation paradigms, motor training alone, pharmacological contralesional inactivation and both combined. We identify three novel indicators that are able to track how movement-evoked global activation patterns are impaired by stroke and evolve during rehabilitation: the duration, the smoothness, and the angle of individual propagation events. Results show that, compared to pre-stroke conditions, propagation of cortical activity in the subacute phase right after stroke is slowed down and more irregular. When comparing rehabilitation paradigms, we find that mice treated with both motor training and pharmacological intervention, the only group associated with generalized recovery, manifest new propagation patterns, that are even faster and smoother than before the stroke. In conclusion, our new spatiotemporal propagation indicators could represent promising biomarkers that are able to uncover neural correlates not only of motor deficits caused by stroke but also of functional recovery during rehabilitation. In turn, these insights could pave the way towards more targeted post-stroke therapies. Millions of people worldwide suffer from long-lasting motor deficits caused by stroke. Very recently, the two basic therapeutic approaches, motor training and pharmacological intervention, have been combined in order to achieve a more efficient functional recovery. In this study, we analyze the neurophysiological activity in the brain of mice observed with in vivo calcium imaging before and after the induction of a stroke. We use a newly developed universal approach based on the temporal sequence of local activation in different brain regions to quantify three properties of global propagation patterns: duration, smoothness and angle. These innovative spatiotemporal propagation indicators allow us to track damage and functional recovery following stroke and to quantify the relative success of motor training, pharmacological inactivation, and a combination of both, compared to spontaneous recovery. We show that all three treatments reverse the alterations observed during the subacute phase right after stroke. We also find that combining motor training and pharmacological intervention does not restore pre-stroke features but rather leads to the emergence of new propagation patterns that, surprisingly, are even faster and smoother than the pre-stroke patterns.
Collapse
Affiliation(s)
- Gloria Cecchini
- Department of Mathematics and Computer Science, University of Barcelona, Barcelona, Spain
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- CSDC, University of Florence, Sesto Fiorentino, Italy
- * E-mail:
| | - Alessandro Scaglione
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy
| | - Anna Letizia Allegra Mascaro
- European Laboratory for Non-linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy
- Neuroscience Institute, National Research Council, Pisa, Italy
| | - Curzio Checcucci
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy
| | - Emilia Conti
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy
- Neuroscience Institute, National Research Council, Pisa, Italy
| | - Ihusan Adam
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- CSDC, University of Florence, Sesto Fiorentino, Italy
- Department of Information Engineering, University of Florence, Sesto Fiorentino, Italy
| | - Duccio Fanelli
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- CSDC, University of Florence, Sesto Fiorentino, Italy
- INFN, Florence Section, Sesto Fiorentino, Italy
| | - Roberto Livi
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- CSDC, University of Florence, Sesto Fiorentino, Italy
- INFN, Florence Section, Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy
- National Institute of Optics (INO), National Research Council (CNR), Sesto Fiorentino, Italy
| | - Thomas Kreuz
- Institute for Complex Systems (ISC), National Research Council (CNR), Sesto Fiorentino, Italy
| |
Collapse
|
31
|
Conti S, Spalletti C, Pasquini M, Giordano N, Barsotti N, Mainardi M, Lai S, Giorgi A, Pasqualetti M, Micera S, Caleo M. Combining robotics with enhanced serotonin-driven cortical plasticity improves post-stroke motor recovery. Prog Neurobiol 2021; 203:102073. [PMID: 33984455 DOI: 10.1016/j.pneurobio.2021.102073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/22/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Despite recent progresses in robotic rehabilitation technologies, their efficacy for post-stroke motor recovery is still limited. Such limitations might stem from the insufficient enhancement of plasticity mechanisms, crucial for functional recovery. Here, we designed a clinically relevant strategy that combines robotic rehabilitation with chemogenetic stimulation of serotonin release to boost plasticity. These two approaches acted synergistically to enhance post-stroke motor performance. Indeed, mice treated with our combined therapy showed substantial functional gains that persisted beyond the treatment period and generalized to non-trained tasks. Motor recovery was associated with a reduction in electrophysiological and neuroanatomical markers of GABAergic neurotransmission, suggesting disinhibition in perilesional areas. To unveil the translational potentialities of our approach, we specifically targeted the serotonin 1A receptor by delivering Buspirone, a clinically approved drug, in stroke mice undergoing robotic rehabilitation. Administration of Buspirone restored motor impairments similarly to what observed with chemogenetic stimulation, showing the immediate translational potential of this combined approach to significantly improve motor recovery after stroke.
Collapse
Affiliation(s)
- S Conti
- Translational Neural Engineering Area, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - C Spalletti
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - M Pasquini
- Translational Neural Engineering Area, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - N Giordano
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - N Barsotti
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Italy
| | - M Mainardi
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - S Lai
- Translational Neural Engineering Area, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - A Giorgi
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Italy
| | - M Pasqualetti
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Italy; Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - S Micera
- Translational Neural Engineering Area, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy; Bertarelli Foundation Chair in Translational NeuroEngineering Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Centre for Neuroprosthetics and Institute of Bioengineering, Lausanne, Switzerland.
| | - M Caleo
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy; Department of Biomedical Sciences, University of Padova, Italy.
| |
Collapse
|
32
|
Abstract
Stroke is a debilitating disease. Current effective therapies for stroke recovery are limited to neurorehabilitation. Most stroke recovery occurs in a limited and early time window. Many of the mechanisms of spontaneous recovery after stroke parallel mechanisms of normal learning and memory. While various efforts are in place to identify potential drug targets, an emerging approach is to understand biological correlates between learning and stroke recovery. This review assesses parallels between biological changes at the molecular, structural, and functional levels during learning and recovery after stroke, with a focus on drug and cellular targets for therapeutics.
Collapse
Affiliation(s)
- Mary Teena Joy
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - S. Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
33
|
Gamma frequency activation of inhibitory neurons in the acute phase after stroke attenuates vascular and behavioral dysfunction. Cell Rep 2021; 34:108696. [PMID: 33535035 DOI: 10.1016/j.celrep.2021.108696] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/06/2020] [Accepted: 01/06/2021] [Indexed: 11/24/2022] Open
Abstract
Alterations in gamma oscillations occur in several neurological disorders, and the entrainment of gamma oscillations has been recently proposed as a treatment for neurodegenerative disease. Optogenetic stimulation enhances recovery in models of stroke when applied weeks after injury; however, the benefits of acute brain stimulation have not been investigated. Here, we report beneficial effects of gamma-frequency modulation in the acute phase, within 1 h, after stroke. Transgenic VGAT-ChR2 mice are subject to awake photothrombotic stroke in an area encompassing the forelimb sensory and motor cortex. Optogenetic stimulation at 40 Hz in the peri-infarct zone recovers neuronal activity 24 h after stroke in motor and parietal association areas, as well as blood flow over the first week after stroke. Stimulation significantly reduces lesion volume and improves motor function. Our results suggest that acute-phase modulation of cortical oscillatory dynamics may serve as a target for neuroprotection against stroke.
Collapse
|
34
|
Nikitin D, Choi S, Mican J, Toul M, Ryu WS, Damborsky J, Mikulik R, Kim DE. Development and Testing of Thrombolytics in Stroke. J Stroke 2021; 23:12-36. [PMID: 33600700 PMCID: PMC7900387 DOI: 10.5853/jos.2020.03349] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Despite recent advances in recanalization therapy, mechanical thrombectomy will never be a treatment for every ischemic stroke because access to mechanical thrombectomy is still limited in many countries. Moreover, many ischemic strokes are caused by occlusion of cerebral arteries that cannot be reached by intra-arterial catheters. Reperfusion using thrombolytic agents will therefore remain an important therapy for hyperacute ischemic stroke. However, thrombolytic drugs have shown limited efficacy and notable hemorrhagic complication rates, leaving room for improvement. A comprehensive understanding of basic and clinical research pipelines as well as the current status of thrombolytic therapy will help facilitate the development of new thrombolytics. Compared with alteplase, an ideal thrombolytic agent is expected to provide faster reperfusion in more patients; prevent re-occlusions; have higher fibrin specificity for selective activation of clot-bound plasminogen to decrease bleeding complications; be retained in the blood for a longer time to minimize dosage and allow administration as a single bolus; be more resistant to inhibitors; and be less antigenic for repetitive usage. Here, we review the currently available thrombolytics, strategies for the development of new clot-dissolving substances, and the assessment of thrombolytic efficacies in vitro and in vivo.
Collapse
Affiliation(s)
- Dmitri Nikitin
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Seungbum Choi
- Molecular Imaging and Neurovascular Research Laboratory, Department of Neurology, Dongguk University College of Medicine, Goyang, Korea
| | - Jan Mican
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,Department of Neurology, St. Anne's Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Toul
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Wi-Sun Ryu
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Jiri Damborsky
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Robert Mikulik
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Department of Neurology, St. Anne's Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Dong-Eog Kim
- Molecular Imaging and Neurovascular Research Laboratory, Department of Neurology, Dongguk University College of Medicine, Goyang, Korea.,Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| |
Collapse
|
35
|
Xu GJ, Zhang Q, Li SY, Zhu YT, Yu KW, Wang CJ, Xie HY, Wu Y. Environmental enrichment combined with fasudil treatment inhibits neuronal death in the hippocampal CA1 region and ameliorates memory deficits. Neural Regen Res 2021; 16:1460-1466. [PMID: 33433459 PMCID: PMC8323697 DOI: 10.4103/1673-5374.303034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Currently, no specific treatment exists to promote recovery from cognitive impairment after a stroke. Dysfunction of the actin cytoskeleton correlates well with poststroke cognitive declines, and its reorganization requires proper regulation of Rho-associated kinase (ROCK) proteins. Fasudil downregulates ROCK activation and protects neurons against cytoskeleton collapse in the acute phase after stroke. An enriched environment can reduce poststroke cognitive impairment. However, the efficacy of environmental enrichment combined with fasudil treatment remains poorly understood. A photothrombotic stroke model was established in 6-week-old male C57BL/6 mice. Twenty-four hours after modeling, these animals were intraperitoneally administered fasudil (10 mg/kg) once daily for 14 successive days and/or provided with environmental enrichment for 21 successive days. After exposure to environmental enrichment combined with fasudil treatment, the number of neurons in the hippocampal CA1 region increased significantly, the expression and proportion of p-cofilin in the hippocampus decreased, and the distribution of F-actin in the hippocampal CA1 region increased significantly. Furthermore, the performance of mouse stroke models in the tail suspension test and step-through passive avoidance test improved significantly. These findings suggest that environmental enrichment combined with fasudil treatment can ameliorate memory dysfunction through inhibition of the hippocampal ROCK/cofilin pathway, alteration of the dynamic distribution of F-actin, and inhibition of neuronal death in the hippocampal CA1 region. The efficacy of environmental enrichment combined with fasudil treatment was superior to that of fasudil treatment alone. This study was approved by the Animal Ethics Committee of Fudan University of China (approval No. 2019-Huashan Hospital JS-139) on February 20, 2019.
Collapse
Affiliation(s)
- Gao-Jing Xu
- Department of rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qun Zhang
- Department of rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Si-Yue Li
- Department of rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Tong Zhu
- Department of rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ke-Wei Yu
- Department of rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuan-Jie Wang
- Department of Rehabilitation Medicine, Jinshan Hospital of Fudan University, Shanghai, China
| | - Hong-Yu Xie
- Department of rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Wu
- Department of rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Joy MT, Carmichael ST. Encouraging an excitable brain state: mechanisms of brain repair in stroke. Nat Rev Neurosci 2021; 22:38-53. [PMID: 33184469 PMCID: PMC10625167 DOI: 10.1038/s41583-020-00396-7] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2020] [Indexed: 02/02/2023]
Abstract
Stroke induces a plastic state in the brain. This period of enhanced plasticity leads to the sprouting of new axons, the formation of new synapses and the remapping of sensory-motor functions, and is associated with motor recovery. This is a remarkable process in the adult brain, which is normally constrained in its levels of neuronal plasticity and connectional change. Recent evidence indicates that these changes are driven by molecular systems that underlie learning and memory, such as changes in cellular excitability during memory formation. This Review examines circuit changes after stroke, the shared mechanisms between memory formation and brain repair, the changes in neuronal excitability that underlie stroke recovery, and the molecular and pharmacological interventions that follow from these findings to promote motor recovery in animal models. From these findings, a framework emerges for understanding recovery after stroke, central to which is the concept of neuronal allocation to damaged circuits. The translation of the concepts discussed here to recovery in humans is underway in clinical trials for stroke recovery drugs.
Collapse
Affiliation(s)
- Mary T Joy
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
37
|
Cruz SA, Qin Z, Ricke KM, Stewart AFR, Chen HH. Neuronal protein-tyrosine phosphatase 1B hinders sensory-motor functional recovery and causes affective disorders in two different focal ischemic stroke models. Neural Regen Res 2021; 16:129-136. [PMID: 32788467 PMCID: PMC7818877 DOI: 10.4103/1673-5374.286970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ischemic brain injury causes neuronal death and inflammation. Inflammation activates protein-tyrosine phosphatase 1B (PTP1B). Here, we tested the significance of PTP1B activation in glutamatergic projection neurons on functional recovery in two models of stroke: by photothrombosis, focal ischemic lesions were induced in the sensorimotor cortex (SM stroke) or in the peri-prefrontal cortex (peri-PFC stroke). Elevated PTP1B expression was detected at 4 days and up to 6 weeks after stroke. While ablation of PTP1B in neurons of neuronal knockout (NKO) mice had no effect on the volume or resorption of ischemic lesions, markedly different effects on functional recovery were observed. SM stroke caused severe sensory and motor deficits (adhesive removal test) in wild type and NKO mice at 4 days, but NKO mice showed drastically improved sensory and motor functional recovery at 8 days. In addition, peri-PFC stroke caused anxiety-like behaviors (elevated plus maze and open field tests), and depression-like behaviors (forced swimming and tail suspension tests) in wild type mice 9 and 28 days after stroke, respectively, with minimal effect on sensory and motor function. Peri-PFC stroke-induced affective disorders were associated with fewer active (FosB+) neurons in the PFC and nucleus accumbens but more FosB+ neurons in the basolateral amygdala, compared to sham-operated mice. In contrast, mice with neuronal ablation of PTP1B were protected from anxiety-like and depression-like behaviors and showed no change in FosB+ neurons after peri-PFC stroke. Taken together, our study identifies neuronal PTP1B as a key component that hinders sensory and motor functional recovery and also contributes to the development of anxiety-like and depression-like behaviors after stroke. Thus, PTP1B may represent a novel therapeutic target to improve stroke recovery. All procedures for animal use were approved by the Animal Care and Use Committee of the University of Ottawa Animal Care and Veterinary Service (protocol 1806) on July 27, 2018.
Collapse
Affiliation(s)
- Shelly A Cruz
- Ottawa Hospital Research Institute, Neuroscience Program; Brain and Mind Institute, University of Ottawa, Ottawa, ON, Canada
| | - Zhaohong Qin
- Ottawa Hospital Research Institute, Neuroscience Program; Brain and Mind Institute, University of Ottawa, Ottawa, ON, Canada
| | - Konrad M Ricke
- Brain and Mind Institute; Department of Biochemistry, Microbiology and Immunology, University of Ottawa; University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Alexandre F R Stewart
- Department of Biochemistry, Microbiology and Immunology; Centre for Infection, Immunity and Inflammation, University of Ottawa; University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Hsiao-Huei Chen
- Ottawa Hospital Research Institute, Neuroscience Program; Brain and Mind Institute; Cellular and Molecular Medicine; Department of Medicine; Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
38
|
Allegra Mascaro AL, Conti E, Lai S, Di Giovanna AP, Spalletti C, Alia C, Panarese A, Scaglione A, Sacconi L, Micera S, Caleo M, Pavone FS. Combined Rehabilitation Promotes the Recovery of Structural and Functional Features of Healthy Neuronal Networks after Stroke. Cell Rep 2020; 28:3474-3485.e6. [PMID: 31553915 DOI: 10.1016/j.celrep.2019.08.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 06/19/2019] [Accepted: 08/20/2019] [Indexed: 10/26/2022] Open
Abstract
Rehabilitation is considered the most effective treatment for promoting the recovery of motor deficits after stroke. One of the most challenging experimental goals is to unambiguously link brain rewiring to motor improvement prompted by rehabilitative therapy. Previous work showed that robotic training combined with transient inactivation of the contralesional cortex promotes a generalized recovery in a mouse model of stroke. Here, we use advanced optical imaging and manipulation tools to study cortical remodeling induced by this rehabilitation paradigm. We show that the stabilization of peri-infarct synaptic contacts accompanies increased vascular density induced by angiogenesis. Furthermore, temporal and spatial features of cortical activation recover toward pre-stroke conditions through the progressive formation of a new motor representation in the peri-infarct area. In the same animals, we observe reinforcement of inter-hemispheric connectivity. Our results provide evidence that combined rehabilitation promotes the restoration of structural and functional features distinctive of healthy neuronal networks.
Collapse
Affiliation(s)
- Anna Letizia Allegra Mascaro
- Neuroscience Institute, National Research Council, Pisa 56124, Italy; European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino 50019, Italy.
| | - Emilia Conti
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino 50019, Italy; Department of Physics and Astronomy, University of Florence, Sesto Fiorentino 50019, Italy
| | - Stefano Lai
- Translational Neural Engineering Area, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56127, Italy
| | | | | | - Claudia Alia
- Neuroscience Institute, National Research Council, Pisa 56124, Italy
| | - Alessandro Panarese
- Translational Neural Engineering Area, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56127, Italy
| | - Alessandro Scaglione
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino 50019, Italy
| | - Leonardo Sacconi
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino 50019, Italy; National Institute of Optics, National Research Council, Sesto Fiorentino 50019, Italy
| | - Silvestro Micera
- Translational Neural Engineering Area, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56127, Italy; Bertarelli Foundation Chair in Translational NeuroEngineering, Centre for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Matteo Caleo
- Neuroscience Institute, National Research Council, Pisa 56124, Italy; Department of Biomedical Sciences, University of Padua, Padova 35131, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Sesto Fiorentino 50019, Italy; Department of Physics and Astronomy, University of Florence, Sesto Fiorentino 50019, Italy; National Institute of Optics, National Research Council, Sesto Fiorentino 50019, Italy
| |
Collapse
|
39
|
Galkov M, Kiseleva E, Gulyaev M, Sidorova M, Gorbacheva L. New PAR1 Agonist Peptide Demonstrates Protective Action in a Mouse Model of Photothrombosis-Induced Brain Ischemia. Front Neurosci 2020; 14:335. [PMID: 32547356 PMCID: PMC7273131 DOI: 10.3389/fnins.2020.00335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/20/2020] [Indexed: 11/23/2022] Open
Abstract
Protease-activated receptors (PARs) are involved not only in hemostasis but also in the development of ischemic brain injury. In the present work, we examined in vivo effects of a new peptide (AP9) composing Asn47-Phen55 of PAR1 “tethered ligand” generated by activated protein C. We chose a mouse model of photothrombosis (PT)-induced ischemia to assess AP9 effects in vivo. To reveal the molecular mechanism of AP9 action, mice lacking β-arrestin-2 were used. AP9 was injected intravenously once 10 min before PT at doses of 0.2, 2, or 20 mg/kg, or twice, that is, 10 min before and 1 h after PT at a dose of 20 mg/kg. Lesion volume was measured by magnetic resonance imaging and staining of brain sections with tetrazolium salt. Neurologic deficit was estimated using the cylinder and the grid-walk tests. Blood–brain barrier (BBB) disruption was assessed by Evans blue dye extraction. Eosin-hematoxylin staining and immunohistochemical staining were applied to evaluate the number of undamaged neurons and activated glial cells in the penumbra. A single administration of AP9 (20 mg/kg), as well as its two injections (20 mg/kg), decreased brain lesion volume. A double administration of AP9 also reduced BBB disruption and neurological deficit in mice. We did not observe the protective effect of AP9 in mice lacking β-arrestin-2 after PT. Thus, we demonstrated for the first time protective properties of a PAR1 agonist peptide, AP9, in vivo. β-Arrestin-2 was required for the protective action of AP9 in PT-induced brain ischemia.
Collapse
Affiliation(s)
- Maksim Galkov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Electrophysiology Laboratory, Translational Medicine Institute, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ekaterina Kiseleva
- Electrophysiology Laboratory, Translational Medicine Institute, Pirogov Russian National Research Medical University, Moscow, Russia.,Department of Cell Biology, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - Mikhail Gulyaev
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Maria Sidorova
- Laboratory of Peptide Synthesis, Institute of Experimental Cardiology, National Medical Research Center for Cardiology of Russian Ministry of Health, Moscow, Russia
| | - Liubov Gorbacheva
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Electrophysiology Laboratory, Translational Medicine Institute, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
40
|
Lu Y, Lu X, Zhang C, Marchand PJ, Lesage F. Longitudinal optical coherence tomography imaging of tissue repair and microvasculature regeneration and function after targeted cerebral ischemia. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-15. [PMID: 32285652 PMCID: PMC7152803 DOI: 10.1117/1.jbo.25.4.046002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
SIGNIFICANCE Understanding how the brain recovers from cerebral tissue and vascular damage after an ischemic event can help develop new therapeutic strategies for the treatment of stroke. AIM We investigated cerebral tissue repair and microvasculature regeneration and function after a targeted ischemic stroke. APPROACH Following photothrombosis occlusion of microvasculature, chronic optical coherence tomography (OCT)-based angiography was used to track ischemic tissue repair and microvasculature regeneration at three different cortical depths and up to 28 days in awake animals. Capillary network orientation analysis was performed to study the structural pattern of newly formed microvasculature. Based on the time-resolved OCT-angiography, we also investigated capillary stalling, which is likely related to ischemic stroke-induced inflammation. RESULTS Deeper cerebral tissue was found to have a larger ischemic area than shallower regions at any time point during the course of poststroke recovery, which suggests that cerebral tissue located deep in the cortex is more vulnerable. Regenerated microvasculature had a highly organized pattern at all cortical depths with a higher degree of structural reorganization in deeper regions. Additionally, capillary stalling event analysis revealed that cerebral ischemia augmented stalling events considerably. CONCLUSION Longitudinal OCT angiography reveals that regenerated capillary network has a highly directional pattern and an increased density and incidence of capillary stalling event.
Collapse
Affiliation(s)
- Yuankang Lu
- Laboratoire d’Imagerie Optique et Moléculaire, École Polytechnique de Montréal, Montréal, Québec, Canada
| | - Xuecong Lu
- Laboratoire d’Imagerie Optique et Moléculaire, École Polytechnique de Montréal, Montréal, Québec, Canada
| | - Cong Zhang
- Laboratoire d’Imagerie Optique et Moléculaire, École Polytechnique de Montréal, Montréal, Québec, Canada
- Université de Montreal, Montréal, Québec, Canada
| | - Paul J. Marchand
- Laboratoire d’Imagerie Optique et Moléculaire, École Polytechnique de Montréal, Montréal, Québec, Canada
| | - Frédéric Lesage
- Laboratoire d’Imagerie Optique et Moléculaire, École Polytechnique de Montréal, Montréal, Québec, Canada
- Institut de Cardiologie de Montréal, Montréal, Québec, Canada
| |
Collapse
|
41
|
Galkov M, Gulyaev M, Kiseleva E, Andreev-Andrievskiy A, Gorbacheva L. Methods for detection of brain injury after photothrombosis-induced ischemia in mice: Characteristics and new aspects of their application. J Neurosci Methods 2020; 329:108457. [PMID: 31614160 DOI: 10.1016/j.jneumeth.2019.108457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/12/2019] [Accepted: 10/06/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Photothrombosis is a minimally invasive method for induction of cortical ischemia. However, different ways of applying some methods to assess photothrombosis-induced damage need to be developed. NEW METHODS We applied the tongue protrusion test and H&E staining of brain sections to detect ischemic damage after photothrombosis. Evaluation of the local status of the BBB using Evans blue dye was proposed. We also assessed the sensitivity of the grid-walk test. Moreover, we examined the interchangeability of MRI and TTC staining to measure lesion volume. RESULTS We evaluated ischemic outcomes at 24 h after photothrombosis in mice. The tongue protrusion test did not reveal impairments of the neurological status whereas the grid-walk test showed the high sensitivity. Using histological techniques, we determined the reduction in the number of neurons with normal morphology in the penumbra. 3D reconstruction of the brain, which reflected Evans blue dye distribution in the nervous tissue, revealed BBB disruption in areas remote from the ischemic core. We also showed the strong correlation between damage volumes assessed by MRI and TTC staining. COMPARISON WITH EXISTING METHODS The present work demonstrates the efficacy of the classical histological approach and TTC staining that are more affordable than MRI and immunohistochemical methods. Detection of 3D distribution of Evans blue dye in the brain in contrast to its total extraction reveals BBB damage in details. CONCLUSIONS We proposed the simple methods for describing the severity of brain ischemia at the cellular and whole organism levels without significant labor and financial expenditures.
Collapse
Affiliation(s)
- Maksim Galkov
- Lomonosov Moscow State University, 119991 Moscow, Russia; Pirogov Russian National Research Medical University, 117997 Moscow, Russia.
| | | | - Ekaterina Kiseleva
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia; Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alexander Andreev-Andrievskiy
- Lomonosov Moscow State University, 119991 Moscow, Russia; Institute of Biomedical Problems of Russian Academy of Sciences, 123007 Moscow, Russia
| | - Liubov Gorbacheva
- Lomonosov Moscow State University, 119991 Moscow, Russia; Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
42
|
Sunil S, Erdener SE, Lee BS, Postnov D, Tang J, Kura S, Cheng X, Chen IA, Boas DA, Kılıç K. Awake chronic mouse model of targeted pial vessel occlusion via photothrombosis. NEUROPHOTONICS 2020; 7:015005. [PMID: 32042854 PMCID: PMC6992450 DOI: 10.1117/1.nph.7.1.015005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/02/2020] [Indexed: 05/09/2023]
Abstract
Animal models of stroke are used extensively to study the mechanisms involved in the acute and chronic phases of recovery following stroke. A translatable animal model that closely mimics the mechanisms of a human stroke is essential in understanding recovery processes as well as developing therapies that improve functional outcomes. We describe a photothrombosis stroke model that is capable of targeting a single distal pial branch of the middle cerebral artery with minimal damage to the surrounding parenchyma in awake head-fixed mice. Mice are implanted with chronic cranial windows above one hemisphere of the brain that allow optical access to study recovery mechanisms for over a month following occlusion. Additionally, we study the effect of laser spot size used for occlusion and demonstrate that a spot size with small axial and lateral resolution has the advantage of minimizing unwanted photodamage while still monitoring macroscopic changes to cerebral blood flow during photothrombosis. We show that temporally guiding illumination using real-time feedback of blood flow dynamics also minimized unwanted photodamage to the vascular network. Finally, through quantifiable behavior deficits and chronic imaging we show that this model can be used to study recovery mechanisms or the effects of therapeutics longitudinally.
Collapse
Affiliation(s)
- Smrithi Sunil
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Address all correspondence to Smrithi Sunil, E-mail:
| | - Sefik Evren Erdener
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
| | - Blaire S. Lee
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Dmitry Postnov
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Copenhagen University, Department of Biomedical Sciences, Copenhagen, Denmark
| | - Jianbo Tang
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Sreekanth Kura
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Xiaojun Cheng
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Ichun Anderson Chen
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - David A. Boas
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Kıvılcım Kılıç
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
| |
Collapse
|
43
|
Affiliation(s)
- David T Bundy
- From the Department of Rehabilitation Medicine (D.T.B., R.J.N.), University of Kansas Medical Center, Kansas City, KS
| | - Randolph J Nudo
- From the Department of Rehabilitation Medicine (D.T.B., R.J.N.), University of Kansas Medical Center, Kansas City, KS.,Landon Center on Aging (R.J.N.), University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
44
|
Snyder AZ, Bauer AQ. Mapping Structure-Function Relationships in the Brain. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:510-521. [PMID: 30528965 PMCID: PMC6488459 DOI: 10.1016/j.bpsc.2018.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 01/06/2023]
Abstract
Mapping the structural and functional connectivity of the brain is a major focus of systems neuroscience research and will help to identify causally important changes in neural circuitry responsible for behavioral dysfunction. Several methods for examining brain activity in humans have been extended to rodent and monkey models in which molecular and genetic manipulations exist for linking to human disease. In this review, which is part of a special issue focused on bridging brain connectivity information across species and spatiotemporal scales, we address mapping brain activity and neural connectivity in rodents using optogenetics in conjunction with either functional magnetic resonance imaging or optical intrinsic signal imaging. We chose to focus on these techniques because they are capable of reporting spontaneous or evoked hemodynamic activity most closely linked to human neuroimaging studies. We discuss the capabilities and limitations of blood-based imaging methods, usage of optogenetic techniques to map neural systems in rodent models, and other powerful mapping techniques for examining neural connectivity over different spatial and temporal scales. We also discuss implementing strategies for mapping brain connectivity in humans with both basic and clinical applications, and conclude with how cross-species mapping studies can be utilized to influence preclinical imaging studies and clinical practices alike.
Collapse
Affiliation(s)
- Abraham Z Snyder
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Adam Q Bauer
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
45
|
Rodent Models of Developmental Ischemic Stroke for Translational Research: Strengths and Weaknesses. Neural Plast 2019; 2019:5089321. [PMID: 31093271 PMCID: PMC6476045 DOI: 10.1155/2019/5089321] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/19/2018] [Accepted: 02/06/2019] [Indexed: 12/25/2022] Open
Abstract
Cerebral ischemia can occur at any stage in life, but clinical consequences greatly differ depending on the developmental stage of the affected brain structures. Timing of the lesion occurrence seems to be critical, as it strongly interferes with neuronal circuit development and determines the way spontaneous plasticity takes place. Translational stroke research requires the use of animal models as they represent a reliable tool to understand the pathogenic mechanisms underlying the generation, progression, and pathological consequences of a stroke. Moreover, in vivo experiments are instrumental to investigate new therapeutic strategies and the best temporal window of intervention. Differently from adults, very few models of the human developmental stroke have been characterized, and most of them have been established in rodents. The models currently used provide a better understanding of the molecular factors involved in the effects of ischemia; however, they still hold many limitations due to matching developmental stages across different species and the complexity of the human disorder that hardly can be described by segregated variables. In this review, we summarize the key factors contributing to neonatal brain vulnerability to ischemic strokes and we provide an overview of the advantages and limitations of the currently available models to recapitulate different aspects of the human developmental stroke.
Collapse
|
46
|
Yarossi M, Patel J, Qiu Q, Massood S, Fluet G, Merians A, Adamovich S, Tunik E. The Association Between Reorganization of Bilateral M1 Topography and Function in Response to Early Intensive Hand Focused Upper Limb Rehabilitation Following Stroke Is Dependent on Ipsilesional Corticospinal Tract Integrity. Front Neurol 2019; 10:258. [PMID: 30972004 PMCID: PMC6443957 DOI: 10.3389/fneur.2019.00258] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 02/26/2019] [Indexed: 01/12/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) induced motor evoked potentials (MEPs) are an established proxy of corticospinal excitability. As a binary measure, the presence (MEP+) or absence (MEP-) of ipsilesional hemisphere MEPs early following stroke is a robust indicator of long-term recovery, however this measure does not provide information about spatial cortical reorganization. MEPs have been systematically acquired over the sensorimotor cortex to "map" motor topography. In this investigation we compared the degree to which functional improvements resulting from early (<3 months post-stroke) intensive hand focused upper limb rehabilitation correlate with changes in motor topography between MEP+ and MEP- individuals. Following informed consent, 17 individuals (4 Female, 60.3 ± 9.4 years, 24.6 ± 24.01 days post first time stroke) received 8 one hour-sessions of training with virtual reality (VR)/Robotic simulations. Clinical tests [Box and Blocks Test (BBT), Wolf Motor Function Test (WMFT), Upper Extremity Fugl-Meyer (UEFMA)], kinematic and kinetic assessments [finger Active Range of Motion (finger AROM), Maximum Pinch Force (MPF)], and bilateral TMS mapping of 5 hand muscles were performed prior to (PRE), directly following (POST), and 1 month following (1M) training. Participants were divided into two groups (MEP+, MEP-) based on whether an MEP was present in the affected first dorsal interosseous (FDI) at any time point. MEP+ individuals improved significantly more than MEP- individuals from PRE to 1M on the WMFT, BBT, and finger AROM scores. Ipsilesional hemisphere FDI area increased significantly with time in the MEP+ group. FDI area of the contralesional hemisphere was not significantly different across time points or groups. In the MEP+ group, significant correlations were observed between PRE-1M changes in ipsilesional FDI area and WMFT, BBT, and finger AROM, and contralesional FDI area and UEFMA and MPF. In the MEP- group, no significant correlations were found between changes in contralesional FDI area and functional outcomes. We report preliminary evidence in a small sample that patterns of recovery and the association of recovery to bilateral changes in motor topography may depend on integrity of the ipsilesional cortical spinal tract as assessed by the presence of TMS evoked MEPs.
Collapse
Affiliation(s)
- Mathew Yarossi
- Movement Neuroscience Laboratory, Department of Physical Therapy, Movement and Rehabilitation Science, Bouve College of Health Sciences, Northeastern University, Boston, MA, United States.,SPIRAL Group, Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States
| | - Jigna Patel
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Qinyin Qiu
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Supriya Massood
- Brookdale Rehabilitation - North Campus, Naples Community Hospital, Naples, FL, United States
| | - Gerard Fluet
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Alma Merians
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, United States
| | - Sergei Adamovich
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, United States.,Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Eugene Tunik
- Movement Neuroscience Laboratory, Department of Physical Therapy, Movement and Rehabilitation Science, Bouve College of Health Sciences, Northeastern University, Boston, MA, United States.,Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, United States.,Department of Electrical and Computer Engineering, College of Engineering, Northeastern University, Boston, MA, United States
| |
Collapse
|
47
|
Balbinot G, Schuch CP. Compensatory Relearning Following Stroke: Cellular and Plasticity Mechanisms in Rodents. Front Neurosci 2019; 12:1023. [PMID: 30766468 PMCID: PMC6365459 DOI: 10.3389/fnins.2018.01023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/18/2018] [Indexed: 11/13/2022] Open
Abstract
von Monakow’s theory of diaschisis states the functional ‘standstill’ of intact brain regions that are remote from a damaged area, often implied in recovery of function. Accordingly, neural plasticity and activity patterns related to recovery are also occurring at the same regions. Recovery relies on plasticity in the periinfarct and homotopic contralesional regions and involves relearning to perform movements. Seeking evidence for a relearning mechanism following stroke, we found that rodents display many features that resemble classical learning and memory mechanisms. Compensatory relearning is likely to be accompanied by gradual shaping of these regions and pathways, with participating neurons progressively adapting cortico-striato-thalamic activity and synaptic strengths at different cortico-thalamic loops – adapting function relayed by the striatum. Motor cortex functional maps are progressively reinforced and shaped by these loops as the striatum searches for different functional actions. Several cortical and striatal cellular mechanisms that influence motor learning may also influence post-stroke compensatory relearning. Future research should focus on how different neuromodulatory systems could act before, during or after rehabilitation to improve stroke recovery.
Collapse
Affiliation(s)
- Gustavo Balbinot
- Brain Institute, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Clarissa Pedrini Schuch
- Graduate Program in Rehabilitation Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| |
Collapse
|
48
|
Chae SY, Jang JH, Im GH, Jeong JH, Jung WB, Ko S, Jie H, Kim JH, Chang YS, Chung S, Kim KS, Lee JH. Physical exercise enhances adult cortical plasticity in a neonatal rat model of hypoxic-ischemic injury: Evidence from BOLD-fMRI and electrophysiological recordings. Neuroimage 2018; 188:335-346. [PMID: 30553043 DOI: 10.1016/j.neuroimage.2018.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/29/2018] [Accepted: 12/11/2018] [Indexed: 01/15/2023] Open
Abstract
Neuroplasticity is considered essential for recovery from brain injury in developing brains. Recent studies indicate that it is especially effective during early postnatal development and during the critical period. The current study used functional magnetic resonance imaging (fMRI) and local field potential (LFP) electrophysiological recordings in rats that experienced neonatal hypoxic-ischemic (HI) injury during the critical period to demonstrate that physical exercise (PE) can improve cortical plasticity even when performed during adulthood, after the critical period. We investigated to what extent the blood oxygen level-dependent (BOLD)-fMRI responses were increased in the contralesional spared cortex, and how these increases were related to the LFP electrophysiological measurements and the functional outcome. The balance of excitation and inhibition was assessed by measuring excitatory and inhibitory postsynaptic currents in stellate cells in the primary somatosensory (S1) cortex, which was compared with the BOLD-fMRI responses in the contralesional S1 cortex. The ratio of inhibitory postsynaptic current (IPSC) to excitatory postsynaptic current (EPSC) at the thalamocortical (TC) input to the spared S1 cortex was significantly increased by PE, which is consistent with the increased BOLD-fMRI responses and improved functional outcome. Our data clearly demonstrate in an experimental rat model of HI injury during the critical period that PE in adulthood enhances neuroplasticity and suggest that enhanced feed-forward inhibition at the TC input to the S1 cortex might underlie the PE-induced amelioration of the somatosensory deficits caused by the HI injury. In summary, the results of the current study indicate that PE, even if performed beyond the critical period or during adulthood, can be an effective therapy to treat neonatal brain injuries, providing a potential mechanism for the development of a potent rehabilitation strategy to alleviate HI-induced neurological impairments.
Collapse
Affiliation(s)
- Sun Young Chae
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea; Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea; Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea
| | - Jun Ho Jang
- BnH Research Co., Ltd., Goyang-si, Gyeonggi-do, 10594, South Korea
| | - Geun Ho Im
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea; Animal Research and Molecular Imaging, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, South Korea
| | - Ji-Hyun Jeong
- Brain Korea 21 Plus Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Won-Beom Jung
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea; Department of Global Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sukjin Ko
- Brain Korea 21 Plus Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Hyesoo Jie
- Brain Korea 21 Plus Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Ji Hye Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Yun Sil Chang
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea; Department of Pediatrics Division of Neonatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Seungsoo Chung
- Brain Korea 21 Plus Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| | - Ki-Soo Kim
- Department of Pediatrics Division of Neonatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05535, South Korea.
| | - Jung Hee Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea; Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea; Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea; Animal Research and Molecular Imaging, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, South Korea; Department of Global Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
49
|
Kannangara TS, Carter A, Xue Y, Dhaliwal JS, Béïque JC, Lagace DC. Excitable Adult-Generated GABAergic Neurons Acquire Functional Innervation in the Cortex after Stroke. Stem Cell Reports 2018; 11:1327-1336. [PMID: 30416050 PMCID: PMC6294071 DOI: 10.1016/j.stemcr.2018.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/13/2018] [Accepted: 10/15/2018] [Indexed: 11/16/2022] Open
Abstract
Ischemic stroke enhances the proliferation of adult-generated precursor cells that ectopically migrate toward the infarct. Studies have correlated precursor cell proliferation and subsequent adult neurogenesis with enhanced stroke recovery, yet it remains unclear whether stroke can generate new neurons capable of functional integration into the injured cortex. Here, using single and bitransgenic reporter mice, we identify spatial and temporal features of a multilineage cellular response to focal ischemia. We reveal that a small population of stroke-induced immature neurons accumulate within the peri-infarct region of the adult sensorimotor cortex, exhibit voltage-dependent conductances, fire action potentials, express GABAergic markers, and receive sparse GABAergic synaptic inputs. Collectively, these findings reveal that GABAergic neurons arising from the lateral ventricle have the capacity to integrate into the stroke-injured cortex, although their limited number and exiguous synaptic integration may limit their ability to participate in stroke recovery.
Collapse
Affiliation(s)
- Timal S Kannangara
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada; Neuroscience Program, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Canadian Partnership for Stroke Recovery, Ottawa, ON K1G 5Z3, Canada
| | - Anthony Carter
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Canadian Partnership for Stroke Recovery, Ottawa, ON K1G 5Z3, Canada
| | - Yingben Xue
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jagroop S Dhaliwal
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada; Neuroscience Program, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jean-Claude Béïque
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada; Neuroscience Program, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Canadian Partnership for Stroke Recovery, Ottawa, ON K1G 5Z3, Canada.
| | - Diane C Lagace
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada; Neuroscience Program, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Canadian Partnership for Stroke Recovery, Ottawa, ON K1G 5Z3, Canada.
| |
Collapse
|
50
|
Tabernig CB, Lopez CA, Carrere LC, Spaich EG, Ballario CH. Neurorehabilitation therapy of patients with severe stroke based on functional electrical stimulation commanded by a brain computer interface. J Rehabil Assist Technol Eng 2018; 5:2055668318789280. [PMID: 31191948 PMCID: PMC6453036 DOI: 10.1177/2055668318789280] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 06/21/2018] [Indexed: 02/06/2023] Open
Abstract
Introduction Brain computer interface is an emerging technology to treat the sequelae of stroke. The purpose of this study was to explore the motor imagery related desynchronization of sensorimotor rhythms of stroke patients and to assess the efficacy of an upper limb neurorehabilitation therapy based on functional electrical stimulation controlled by a brain computer interface. Methods Eight severe chronic stroke patients were recruited. The study consisted of two stages: screening and therapy. During screening, the ability of patients to desynchronize the contralateral oscillatory sensorimotor rhythms by motor imagery of the most affected hand was assessed. In the second stage, a therapeutic intervention was performed. It involved 20 sessions where an electrical stimulator was activated when the patient's cerebral activity related to motor imagery was detected. The upper limb was assessed, before and after the intervention, by the Fugl-Meyer score (primary outcome). Spasticity, motor activity, range of movement and quality of life were also evaluated (secondary outcomes). Results Desynchronization was identified in all screened patients. Significant post-treatment improvement (p < 0.05) was detected in the primary outcome measure and in the majority of secondary outcome scores. Conclusions The results suggest that the proposed therapy could be beneficial in the neurorehabilitation of stroke individuals.
Collapse
Affiliation(s)
- Carolina B Tabernig
- Laboratorio de Ingeniería en Rehabilitación e Investigaciones Neuromusculares y Sensoriales (LIRINS), Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde, Argentina
| | - Camila A Lopez
- Fundación Rosarina de Neuro-rehabilitación, Rosario, Argentina
| | - Lucía C Carrere
- Laboratorio de Ingeniería en Rehabilitación e Investigaciones Neuromusculares y Sensoriales (LIRINS), Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde, Argentina
| | - Erika G Spaich
- SMI®, Department of Health Science and Technology, Aalborg University, Denmark
| | | |
Collapse
|