1
|
Hsu KC, Huang SM, Shen JY, Chan LY, Lai PY, Lin CY. Explore peptides extracted from gliadin hydrolysates suppressing BACE1 activity and restraining Aβ protein deposition. Int J Biol Macromol 2025; 307:141932. [PMID: 40074130 DOI: 10.1016/j.ijbiomac.2025.141932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
Alzheimer's Disease (AD) constitutes approximately 70 % of dementia cases and is the most prevalent form of dementia. Current therapeutic options, including acetylcholinesterase inhibitors and N-methyl d-aspartate (NMDA) receptor antagonists, provide symptomatic relief but do not cure the disease and often come with side effects. The primary pathological features of AD are amyloid plaques and neurofibrillary tangles, with amyloid plaques formed by the abnormal accumulation of Amyloid-β (Aβ). BACE1 (β-site APP-cleaving enzyme 1), a β-secretase, is a key initiator in amyloidosis. Previous research has shown that G-Bro hydrolysate, produced from the bromelain hydrolysis of gliadin, has optimal BACE1 inhibitory efficiency. This study employs G-Bro hydrolysate for nano UHPLC-ESI Q-TOF mass spectrometry to identify peptide fragment sequences and conducts BACE1 inhibition assays to isolate the most effective peptide, VR-peptide. Using the N2a/PS/APP cell model, we explored the impact of chemically synthesized VR-peptide on BACE1 protein expression, the secretion of soluble APP (sAPP), and levels of Aβ and intracellular Aβ1-42. Results demonstrate that VR-peptide achieves a BACE1 inhibitory rate of 63.8 % and reduces BACE1 expression by over 90 % in comparison with untreated N2a/PS/APP cells. It shifts the balance between extracellular Aβ monomers and aggregates, favoring monomer formation and decreasing intracellular Aβ1-42 levels by over 56 %, underscoring its neuroprotective potential. In conclusion, VR-peptide exhibits promise as a BACE1 inhibitor and a preventive agent against Alzheimer's disease. Derived from hydrolyzed cereal foods, it could be effectively paired with a suitable drug delivery system for enhanced neuronal penetration, paving the way for neuroprotective peptide products targeting Alzheimer's disease.
Collapse
Affiliation(s)
- Kuo-Chiang Hsu
- Department of Nutrition, China Medical University, No.100, Sec.1, Jingmao Rd., Beitun Dist., Taichung City 406040, Taiwan; Department of Food Nutrition and Health Biotechnology, Asia University, 500 Lioufeng Rd., Wufen Dist., Taichung City 41354, Taiwan
| | - Shang-Ming Huang
- Department of Nutrition, China Medical University, No.100, Sec.1, Jingmao Rd., Beitun Dist., Taichung City 406040, Taiwan
| | - Jhih-Yi Shen
- Department of Nutrition, China Medical University, No.100, Sec.1, Jingmao Rd., Beitun Dist., Taichung City 406040, Taiwan
| | - Long Yi Chan
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung 404333, Taiwan
| | - Pei-Yu Lai
- Department of Nutrition, China Medical University, No.100, Sec.1, Jingmao Rd., Beitun Dist., Taichung City 406040, Taiwan
| | - Chin-Yu Lin
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung 404333, Taiwan; Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien 970374, Taiwan.
| |
Collapse
|
2
|
Sukanya S, Bellver-Sanchis A, Singh Choudhary B, Kumar S, Pérez B, Leandro Martínez Rodríguez A, Brea J, Griñán-Ferré C, Malik R. Design, synthesis, and biological evaluation of tetrahydropyrimidine analogue as GSK-3β/Aβ aggregation inhibitor and anti-Alzheimer's agent. Bioorg Chem 2024; 153:107811. [PMID: 39270527 DOI: 10.1016/j.bioorg.2024.107811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
The complex nature of Alzheimer's disease (AD) etiopathology is among the principal hurdles to developing effective anti-Alzheimer agents. Tau pathology and Amyloid-β (Aβ) accumulation are hallmarks and validated therapeutic strategies of AD. GSK-3β is a serine/threonine kinase involved in tau phosphorylation. Its excessive activity also contributes to the production of Aβ plaques, making GSK-3β an attractive AD target. Taking this into account, In this article, we outline the design, synthesis, and biological validation of a focused library of 1,2,3,4-tetrahydropyrimidine based derivatives as inhibitors of GSK-3β, tau phosphorylation, and Aβ accumulation. The inhibitory activity of forty nine synthetic compounds was tested against GSK-3β and other AD-relevant kinases. The kinetic experiments revealed the mode of GSK-3β inhibition by the most potent compound 44. The in- vitro drug metabolism and pharmacokinetic studies were thereafter performed. The anti-aggregation activity of the most potent GSK-3β inhibitor was tested using AD transgenic Caenorhabditis elegans (C. elegans) strain CL2006 for quantification of Aβ plaques and BR5706 C. elegans strain for tau pathology evaluation. We then evaluated the blood-brain barrier permeability and got promising results. Therefore, we present compound 44 as a potential ATP-competitive GSK-3β inhibitor with good metabolism and pharmacokinetic profile, anti-aggregation properties for amyloid beta protein, and reduction in tau-phosphorylation levels. We recommend more investigation into compound 44-based small molecules as possible targets for AD disease-modifying treatments.
Collapse
Affiliation(s)
- Sukanya Sukanya
- Department of Pharmacy, Central University of Rajasthan, Bandarsindari, Ajmer, Rajasthan 305817, India
| | - Aina Bellver-Sanchis
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry. Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Bhanwar Singh Choudhary
- Department of Pharmacy, Central University of Rajasthan, Bandarsindari, Ajmer, Rajasthan 305817, India
| | - Sunil Kumar
- Department of Pharmacy, Central University of Rajasthan, Bandarsindari, Ajmer, Rajasthan 305817, India
| | - Belén Pérez
- Department of Pharmacology, Therapeutics and Toxicology, Institute of Neuroscience, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Antón Leandro Martínez Rodríguez
- Innopharma screening platform, Biofarma research group. Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose Brea
- Innopharma screening platform, Biofarma research group. Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry. Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Institute of Health Carlos III, Madrid, Spain
| | - Ruchi Malik
- Department of Pharmacy, Central University of Rajasthan, Bandarsindari, Ajmer, Rajasthan 305817, India.
| |
Collapse
|
3
|
Sankaran S, Dubey R, Gomatam A, Chakor R, Kshirsagar A, Lohidasan S. Deciphering the multi-functional role of Indian propolis for the management of Alzheimer's disease by integrating LC-MS/MS, network pharmacology, molecular docking, and in-vitro studies. Mol Divers 2024; 28:4325-4342. [PMID: 38466554 DOI: 10.1007/s11030-024-10818-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/27/2024] [Indexed: 03/13/2024]
Abstract
The conventional one-drug-one-disease theory has lost its sheen in multigenic diseases such as Alzheimer's disease (AD). Propolis, a honeybee-derived product has ethnopharmacological evidence of antioxidant, anti-inflammatory, antimicrobial and neuroprotective properties. However, the chemical composition is complex and highly variable geographically. So, to leverage the potential of propolis as an effective treatment modality, it is essential to understand the role of each phytochemical in the AD pathophysiology. Therefore, the present study was aimed at investigating the anti-Alzheimer effect of bioactive in Indian propolis (IP) by combining LC-MS/MS fingerprinting, with network-based analysis and experimental validation. First, phytoconstituents in IP extract were identified using an in-house LC-MS/MS method. The drug likeness and toxicity were assessed, followed by identification of AD targets. The constituent-target-gene network was then constructed along with protein-protein interactions, gene pathway, ontology, and enrichment analysis. LC-MS/MS analysis identified 16 known metabolites with druggable properties except for luteolin-5-methyl ether. The network pharmacology-based analysis revealed that the hit propolis constituents were majorly flavonoids, whereas the main AD-associated targets were MAOB, ESR1, BACE1, AChE, CDK5, GSK3β, and PTGS2. A total of 18 gene pathways were identified to be associated, with the pathways related to AD among the topmost enriched. Molecular docking analysis against top AD targets resulted in suitable binding interactions at the active site of target proteins. Further, the protective role of IP in AD was confirmed with cell-line studies on PC-12, in situ AChE inhibition, and antioxidant assays.
Collapse
Affiliation(s)
- Sandeep Sankaran
- Department of Quality Assurance Techniques, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Rahul Dubey
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Anish Gomatam
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Mumbai, Maharashtra, 400098, India
| | - Rishikesh Chakor
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Ashwini Kshirsagar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Sathiyanarayanan Lohidasan
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India.
| |
Collapse
|
4
|
Yuan J, Dong X, Zhou S, Nao J. Pharmacological activities and therapeutic potential of Hyperoside in the treatment of Alzheimer's and Parkinson's diseases: A systemic review. Neuroscience 2024; 563:136-147. [PMID: 39489478 DOI: 10.1016/j.neuroscience.2024.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are neurodegenerative disorders that significantly impact well-being. Hyperoside (HYP), a flavonoid found in various plant species, particularly within the genus Hypericin, exhibits diverse pharmacological properties. However, the precise mechanisms underlying the anti-AD and anti-PD effects of HYP remain unclear. This systematic review consolidated existing preclinical research on HYP by conducting a comprehensive literature survey and analysis. The objective was to corroborate the therapeutic efficacy of HYP in AD and PD models and to synthesize its potential therapeutic mechanisms. Searches were conducted in the PubMed, CNKI, and Web of Science databases. Reliability assessment of the 17 included studies confirmed the credibility of the mechanisms of action of HYP against AD and PD. We systematically assessed the neuroprotective potential of HYP in in vivo and in vitro models of AD and PD. Our findings indicated that HYP can mitigate, intervene in, and treat AD and PD animal models and associated cells through various mechanisms, including anti-oxidative, anti-inflammatory, anti-apoptotic, anti-Aβ aggregation, and cholinesterase inhibitory activities. Therefore, HYP potentially exerts anti-AD and anti-PD effects through diverse mechanisms, making it a promising candidate for therapeutic intervention in both AD and PD.
Collapse
Affiliation(s)
- Jiayu Yuan
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Siyu Zhou
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
5
|
Preethy H A, Rajendran K, Sukumar AJ, Krishnan UM. Emerging paradigms in Alzheimer's therapy. Eur J Pharmacol 2024; 981:176872. [PMID: 39117266 DOI: 10.1016/j.ejphar.2024.176872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/13/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Alzheimer's disease is a neurodegenerative disorder that affects elderly, and its incidence is continuously increasing across the globe. Unfortunately, despite decades of research, a complete cure for Alzheimer's disease continues to elude us. The current medications are mainly symptomatic and slow the disease progression but do not result in reversal of all disease pathologies. The growing body of knowledge on the factors responsible for the onset and progression of the disease has resulted in the identification of new targets that could be targeted for treatment of Alzheimer's disease. This has opened new vistas for treatment of Alzheimer's disease that have moved away from chemotherapeutic agents modulating a single target to biologics and combinations that acted on multiple targets thereby offering better therapeutic outcomes. This review discusses the emerging directions in therapeutic interventions against Alzheimer's disease highlighting their merits that promise to change the treatment paradigm and challenges that limit their clinical translation.
Collapse
Affiliation(s)
- Agnes Preethy H
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Kayalvizhi Rajendran
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Anitha Josephine Sukumar
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Uma Maheswari Krishnan
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India; School of Arts, Sciences, Humanities & Education, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
6
|
Rosales Hernández MC, Olvera-Valdez M, Velazquez Toledano J, Mendieta Wejebe JE, Fragoso Morales LG, Cruz A. Exploring the Benzazoles Derivatives as Pharmacophores for AChE, BACE1, and as Anti-Aβ Aggregation to Find Multitarget Compounds against Alzheimer's Disease. Molecules 2024; 29:4780. [PMID: 39407708 PMCID: PMC11477595 DOI: 10.3390/molecules29194780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
Despite the great effort that has gone into developing new molecules as multitarget compounds to treat Alzheimer's disease (AD), none of these have been approved to treat this disease. Therefore, it will be interesting to determine whether benzazoles such as benzimidazole, benzoxazole, and benzothiazole, employed as pharmacophores, could act as multitarget drugs. AD is a multifactorial disease in which several pharmacological targets have been identified-some are involved with amyloid beta (Aβ) production, such as beta secretase (BACE1) and beta amyloid aggregation, while others are involved with the cholinergic system as acetylcholinesterase (AChE) and butirylcholinesterase (BChE) and nicotinic and muscarinic receptors, as well as the hyperphosphorylation of microtubule-associated protein (tau). In this review, we describe the in silico and in vitro evaluation of benzazoles on three important targets in AD: AChE, BACE1, and Aβ. Benzothiazoles and benzimidazoles could be the best benzazoles to act as multitarget drugs for AD because they have been widely evaluated as AChE inhibitors, forming π-π interactions with W286, W86, Y72, and F338, as well as in the AChE gorge and catalytic site. In addition, the sulfur atom from benzothiazol interacts with S286 and the aromatic ring from W84, with these compounds having an IC50 value in the μM range. Also, benzimidazoles and benzothiazoles can inhibit Aβ aggregation. However, even though benzazoles have not been widely evaluated on BACE1, benzimidazoles evaluated in vitro showed an IC50 value in the nM range. Therefore, important chemical modifications could be considered to improve multitarget benzazoles' activity, such as substitutions in the aromatic ring with electron withdrawal at position five, or a linker 3 or 4 carbons in length, which would allow for better interaction with targets.
Collapse
Affiliation(s)
- Martha Cecilia Rosales Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (J.V.T.); (J.E.M.W.); (L.G.F.M.)
| | - Marycruz Olvera-Valdez
- Laboratorio de Nanomateriales Sustentables, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional, Lindavista, Gustavo A. Madero, Ciudad de México 07700, Mexico;
- Laboratorio de Investigación en Química Orgánica y Supramolecular, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio la Laguna Ticomán, Gustavo A. Madero, Ciudad de México 07340, Mexico
| | - Jazziel Velazquez Toledano
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (J.V.T.); (J.E.M.W.); (L.G.F.M.)
| | - Jessica Elena Mendieta Wejebe
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (J.V.T.); (J.E.M.W.); (L.G.F.M.)
| | - Leticia Guadalupe Fragoso Morales
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (J.V.T.); (J.E.M.W.); (L.G.F.M.)
| | - Alejandro Cruz
- Laboratorio de Investigación en Química Orgánica y Supramolecular, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio la Laguna Ticomán, Gustavo A. Madero, Ciudad de México 07340, Mexico
| |
Collapse
|
7
|
Kalaimathi K, Prabhu S, Ayyanar M, Thiruvengadam M, Shine K, Vijaya Prabhu S, Amalraj S. Unravelling the Untapped Pharmacological Potential of Plant Molecules as Inhibitors of BACE1: In Silico Explorations for Alzheimer's Disease. Appl Biochem Biotechnol 2024; 196:5447-5470. [PMID: 38158488 DOI: 10.1007/s12010-023-04803-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
Alzheimer's disease (AD) is an extremely complex, heterogeneous, and multifactorial neurodegenerative disease clinically characterized by progressive memory loss and progressive decline in cognitive function. There is currently no effective treatment for the onset and/or progression of the pathophysiological diseases of AD. The global prevalence of this disease has increased in recent years due to modern lifestyle. Therefore, there is an urgent need to develop a drug with significant neuroprotective potential. Since plant metabolites, especially polyphenols, have important pharmacological properties acting against β-amyloid (Aβ), Tau, neuroinflammation, and oxidative stress, such phytochemicals were selected in the present research. Using the Schrödinger tool (Maestro V.13.6), the drug potency of these metabolites was studied after installation in the highly configured workstation. Among the 120 polyphenols docked, amygdalin showed notable docking values of - 11.2638, followed by eriocitrin (- 10.9569), keracyanin (- 10.7086), and amaroswerin (- 9.48126). The prominent MM-GBSA values of these molecules were - 62.8829, - 52.1914, - 68.6307, and - 63.1074, respectively. The MM-GBSA energy values demonstrated the drug stability of these molecules for β-site amyloid precursor protein-cleaving enzyme 1 (BACE1)-causing AD. In the absorption and distribution assessment, these phytochemicals showed significantly better values than the inhibitors CNP520. The chosen phytochemicals have been demonstrated as non-hepatotoxic; however, the BACE1 inhibitor CNP520 is hepatotoxic. In both the molecular docking and ADMET assessments, these natural chemicals have shown optimism as potential drug candidates for Alzheimer's disease. However, in order to understand the detailed biological metabolism of these compounds in AD, they need to be evaluated in in vivo studies to validate its efficacy.
Collapse
Affiliation(s)
- Karunanithi Kalaimathi
- Department of Chemistry, Government College of Engineering, Sengipatti, Thanjavur, 613402, Tamil Nadu, India
| | - Srinivasan Prabhu
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, 683104, Kerala, India.
| | - Muniappan Ayyanar
- PG and Research Department of Botany, AVVM Sri Pushpam College (Autonomous) Poondi (Affiliated to Bharathidasan University), Thanjavur (Dist), 613503, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Korea
| | - Kadaikunnan Shine
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Sitrarasu Vijaya Prabhu
- PG & Research Department of Biotechnology, Microbiology and Bioinformatics, National College (Autonomous), Tiruchirappalli, 620001, Tamil Nadu, India
| | - Singamoorthy Amalraj
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, 683104, Kerala, India
| |
Collapse
|
8
|
Ghosh AK. BACE1 inhibitor drugs for the treatment of Alzheimer's disease: Lessons learned, challenges to overcome, and future prospects †. Glob Health Med 2024; 6:164-168. [PMID: 38947412 PMCID: PMC11197157 DOI: 10.35772/ghm.2024.01033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024]
Abstract
Alzheimer's disease (AD), first diagnosed over a century ago, remains one of the major healthcare crises around the globe. Currently, there is no cure or effective treatment. The majority of drug development efforts to date have targeted reduction of amyloid-β peptide (Aβ). Drug development through inhibition of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), resulted in promising early clinical studies. However, nearly all small molecule BACE1 inhibitor drugs failed to live up to expectations in later phase clinical trials, due to toxicity and efficacy issues. This commentary aims to provide a brief review of over two decades of BACE1 inhibitor drug development challenges and efforts for treatment of AD and prospects of future BACE1-based drugs.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Departments of Chemistry, Purdue University, West Lafayette, IN, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
9
|
Premkumar T, Sajitha Lulu S. Targeting key players in Alzheimer's disease: bioactive compounds from Moringa oleifera, Desmodium gangeticum, and Centella asiatica as potential therapeutics. J Biomol Struct Dyn 2024:1-23. [PMID: 38887054 DOI: 10.1080/07391102.2024.2335300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/20/2024] [Indexed: 06/20/2024]
Abstract
Alzheimer's Disease (AD) is one of the critical reasons for dementia around the world, with a huge number of cases being reported every year. The breakdown of Amyloid Precursor Protein (APP) plays a crucial role in AD development. The Beta-site APP Cleaving Enzyme 1 (BACE1) is a highly significant proteolytic enzyme found to be critically involved in the APP breakdown process and generates beta-amyloid plaques in the extracellular neuronal membrane. In this study, we have used natural compounds with cognitive and neuroprotective activities from three plants, Centella asiatica, Moringa oleifera, and Desmodium gangeticum to inhibit the activity of BACE1. We have identified nine compounds out of 73 compounds filtered out from the three plants showing high affinity with the catalytic dyad region of BACE1 through molecular docking studies. Interestingly, the 200 ns molecular dynamics simulation study further confirmed the stability of the complexes formed between 9 compounds and the BACE1 protein. Furthermore, the free energy calculations also revealed these complexes possess favorable energies. Astilbin, Delphinidin 3-glucoside, and kaempferol 7-O-glucoside showed good binding affinity and structural stability when compared to other compounds and the control CNP520. Following a preliminary screening, the Astilbin compound was chosen based on the grounds of binding affinity, ADMET Properties, Hbond formation, Molecular Dynamic simulation, and MM-PBSA studies. A subsequent 1microsecond molecular dynamics simulation was conducted for the Astilbin complex. Through microsecond simulation, it was found that Astilbin alters BACE1's behavior and induces conformational rearrangements. Thus, this study opens a gateway to inhibit the activity of BACE1 protein through Astilbin thereby disclosing the possibility of managing Alzheimer's Disease.
Collapse
Affiliation(s)
- T Premkumar
- Integrative Multiomics Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - S Sajitha Lulu
- Integrative Multiomics Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
10
|
Afjadi MN, Dabirmanesh B, Uversky VN. Therapeutic approaches in proteinopathies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:341-388. [PMID: 38811085 DOI: 10.1016/bs.pmbts.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A family of maladies known as amyloid disorders, proteinopathy, or amyloidosis, are characterized by the accumulation of abnormal protein aggregates containing cross-β-sheet amyloid fibrils in many organs and tissues. Often, proteins that have been improperly formed or folded make up these fibrils. Nowadays, most treatments for amyloid illness focus on managing symptoms rather than curing or preventing the underlying disease process. However, recent advances in our understanding of the biology of amyloid diseases have led to the development of innovative therapies that target the emergence and accumulation of amyloid fibrils. Examples of these treatments include the use of small compounds, monoclonal antibodies, gene therapy, and others. In the end, even if the majority of therapies for amyloid diseases are symptomatic, greater research into the biology behind these disorders is identifying new targets for potential therapy and paving the way for the development of more effective treatments in the future.
Collapse
Affiliation(s)
- Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Pushchino, Moscow, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
11
|
Amini R, Moradi S, Najafi R, Mazdeh M, Taherkhani A. BACE1 Inhibition Utilizing Organic Compounds Holds Promise as a Potential Treatment for Alzheimer's and Parkinson's Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:6654606. [PMID: 38425997 PMCID: PMC10904208 DOI: 10.1155/2024/6654606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/14/2023] [Accepted: 11/08/2023] [Indexed: 03/02/2024]
Abstract
Background Neurological disorders like Alzheimer's disease (AD) and Parkinson's disease (PD) manifest through gradually deteriorating cognitive functions. An encouraging strategy for addressing these disorders involves the inhibition of precursor-cleaving enzyme 1 (BACE1). Objectives In the current research, a virtual screening technique was employed to identify potential BACE1 inhibitors among selected herbal isolates. Methods This study evaluated 79 flavonoids, anthraquinones (AQs), and cinnamic acid derivatives for their potential blood-brain barrier (BBB) permeability. Using the AutoDock 4.0 tool, molecular docking analysis was conducted to determine the binding affinity of BBB permeable compounds to the BACE1 active site. Molecular dynamics (MD) simulations were performed to assess the stability of the docked poses of the most potent inhibitors. The interactions between the most effective plant-based inhibitors and the residues within the BACE1 catalytic site were examined before and after MD simulations. Results Ponciretin, danthron, chrysophanol, and N-p-coumaroyltyramine were among the highest-ranking BACE1 inhibitors, with inhibition constant values calculated in the nanomolar range. Furthermore, during 10 ns simulations, the docked poses of these ligands were observed to be stable. Conclusion The findings propose that ponciretin, danthron, chrysophanol, and N-p-coumaroyltyramine might serve as potential choices for the treatment of AD and PD, laying the groundwork for the creation of innovative BACE1 inhibitors.
Collapse
Affiliation(s)
- Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shadi Moradi
- Department of Medical Immunology, School of Medicine, Hamadan University of Medical Science, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehrdokht Mazdeh
- Hearing Disorders Research Cerner, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
12
|
Shen Z, Yang X, Lan Y, Chen G. The Neuro-Inflammatory Microenvironment: An Important Regulator of Stem Cell Survival in Alzheimer's Disease. J Alzheimers Dis 2024; 98:741-754. [PMID: 38489182 DOI: 10.3233/jad-231159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, characterized by progressive memory loss and cognitive impairment due to excessive accumulation of extracellular amyloid-β plaques and intracellular neurofibrillary tangles. Although decades of research efforts have been put into developing disease-modifying therapies for AD, no "curative" drug has been identified. As a central player in neuro-inflammation, microglia play a key role inbrain homeostasis by phagocytosing debris and regulating the balance between neurotoxic and neuroprotective events. Typically, the neurotoxic phenotype of activated microglia is predominant in the impaired microenvironment of AD. Accordingly, transitioning the activity state of microglia from pro-inflammatory to anti-inflammatory can restore the disrupted homeostatic microenvironment. Recently, stem cell therapy holds great promise as a treatment for AD; however, the diminished survival of transplanted stem cells has resulted in a disappointing long-term outcome for this treatment. This article reviews the functional changes of microglia through the course of AD-associated homeostatic deterioration. We summarize the possible microglia-associated therapeutic targets including TREM2, IL-3Rα, CD22, C5aR1, CX3CR1, P2X7R, CD33, Nrf2, PPAR-γ, CSF1R, and NLRP3, each of which has been discussed in detail. The goal of this review is to put forth the notion that microglia could be targeted by either small molecules or biologics to make the brain microenvironment more amenable to stem cell implantation and propose a novel treatment strategy for future stem cell interventions in AD.
Collapse
Affiliation(s)
- Zhiwei Shen
- Department of Neurosurgery, Key laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyi Yang
- College of Clinical Medical, Guizhou Medical University, Guiyang, China
| | - Yulong Lan
- Department of Neurosurgery, Key laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, Key laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Arora R, Babbar R, Dabra A, Chopra B, Deswal G, Grewal AS. Marine-derived Compounds: A Powerful Platform for the Treatment of Alzheimer's Disease. Cent Nerv Syst Agents Med Chem 2024; 24:166-181. [PMID: 38305396 DOI: 10.2174/0118715249269050231129103002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Accepted: 10/31/2023] [Indexed: 02/03/2024]
Abstract
Alzheimer's disease (AD) is a debilitating form of dementia that primarily affects cholinergic neurons in the brain, significantly reducing an individual's capacity for learning and creative skills and ultimately resulting in an inability to carry out even basic daily tasks. As the elderly population is exponentially increasing, the disease has become a significant concern for society. Therefore, neuroprotective substances have garnered considerable interest in addressing this universal issue. Studies have shown that oxidative damage to neurons contributes to the pathophysiological processes underlying AD progression. In AD, tau phosphorylation and glutamate excitotoxicity may play essential roles, but no permanent cure for AD is available. The existing therapies only manage the early symptoms of AD and often come with numerous side effects and toxicities. To address these challenges, researchers have turned to nature and explored various sources such as plants, animals, and marine organisms. Many historic holy books from different cultures emphasize that adding marine compounds to the regular diet enhances brain function and mitigates its decline. Consequently, researchers have devoted significant time to identifying potentially active neuroprotective substances from marine sources. Marine-derived compounds are gaining recognition due to their abundant supply of diverse chemical compounds with biological and pharmacological potential and unique mechanisms of action. Several studies have reported that plants exhibit multitarget potential in treating AD. In light of this, the current study focuses on marine-derived components with excellent potential for treating this neurodegenerative disease.
Collapse
Affiliation(s)
- Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Ritchu Babbar
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Abhishek Dabra
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Bhawna Chopra
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Geeta Deswal
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | | |
Collapse
|
14
|
Coimbra JRM, Resende R, Custódio JBA, Salvador JAR, Santos AE. BACE1 Inhibitors for Alzheimer's Disease: Current Challenges and Future Perspectives. J Alzheimers Dis 2024; 101:S53-S78. [PMID: 38943390 DOI: 10.3233/jad-240146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Disease-modifying therapies (DMT) for Alzheimer's disease (AD) are highly longed-for. In this quest, anti-amyloid therapies take center stage supported by genetic facts that highlight an imbalance between production and clearance of amyloid-β peptide (Aβ) in AD patients. Indeed, evidence from basic research, human genetic and biomarker studies, suggests the accumulation of Aβ as a driver of AD pathogenesis and progression. The aspartic protease β-site AβPP cleaving enzyme (BACE1) is the initiator for Aβ production. Underpinning a critical role for BACE1 in AD pathophysiology are the elevated BACE1 concentration and activity observed in the brain and body fluids of AD patients. Therefore, BACE1 is a prime drug target for reducing Aβ levels in early AD. Small-molecule BACE1 inhibitors have been extensively developed for the last 20 years. However, clinical trials with these molecules have been discontinued for futility or safety reasons. Most of the observed adverse side effects were due to other aspartic proteases cross-inhibition, including the homologue BACE2, and to mechanism-based toxicity since BACE1 has substrates with important roles for synaptic plasticity and synaptic homeostasis besides amyloid-β protein precursor (AβPP). Despite these setbacks, BACE1 persists as a well-validated therapeutic target for which a specific inhibitor with high substrate selectivity may yet to be found. In this review we provide an overview of the evolution in BACE1 inhibitors design pinpointing the molecules that reached advanced phases of clinical trials and the liabilities that precluded adequate trial effects. Finally, we ponder on the challenges that anti-amyloid therapies must overcome to achieve clinical success.
Collapse
Affiliation(s)
- Judite R M Coimbra
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Rosa Resende
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - José B A Custódio
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Laboratory of Biochemistry and Biology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Armanda E Santos
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Laboratory of Biochemistry and Biology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
15
|
Sai Varshini M, Reddy RA, Krishnamurthy PT, Selvaraj D. Rational Design of Dual Inhibitors for Alzheimer's Disease: Insights from Computational Screening of BACE1 and GSK-3β. Curr Comput Aided Drug Des 2024; 20:998-1012. [PMID: 37921183 DOI: 10.2174/0115734099270256231018072007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the most concerned neurodegenerative disorders across the world characterized by amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs), leading to cognitive decline and memory loss. Targeting key pathways involved in AD like Aβ and NFT pathways, are crucial for the development of effective therapeutic strategies. In this study, we aimed to identify and establish promising dual inhibitors targeting BACE1 and GSK-3β, two proteins implicated in Aβ and NFT formation respectively. METHODS We have used molecular docking, ADME property analysis, and MMGBSA calculations for the identification of hit molecules and further evaluation of binding affinity, drug-like properties, and stability against BACE1 and GSK-3β. RESULTS Our results demonstrated strong binding affinities of ZINC000034853956 towards the active sites of both proteins, with favorable interactions involving key residues crucial for inhibitory activity. Additionally, ZINC000034853956 exhibited favorable drug-like properties. MD simulations revealed the stable binding of ZINC000034853956 to both BACE1 and GSK-3β over a 50 ns period, with consistent ligand-protein interactions, such as hydrogen bonding and hydrophobic contacts. These findings highlight the potential of ZINC000034853956 as a promising candidate for AD treatment, acting as a dual inhibitor targeting both BACE1 and GSK-3β. Overall, our study provides valuable insights into the potential of ZINC000034853956 as a dual inhibitor for AD. The strong binding affinity, favorable drug-like properties, and stability observed in MD simulations support its suitability for further optimization and preclinical studies. CONCLUSION Further investigations are warranted to elucidate the precise molecular mechanisms and therapeutic benefits of ZINC000034853956. Our findings offer hope for the development of novel therapeutic interventions targeting crucial pathways involved in AD neurodegeneration.
Collapse
Affiliation(s)
- Magham Sai Varshini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, TN, India
| | - Ramakkamma Aishwarya Reddy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, TN, India
| | | | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, TN, India
| |
Collapse
|
16
|
Thomas J, Wilson S. Molecular and Therapeutic Targets for Amyloid-beta Plaques in Alzheimer's Disease: A Review Study. Basic Clin Neurosci 2024; 15:1-26. [PMID: 39291090 PMCID: PMC11403107 DOI: 10.32598/bcn.2021.3522.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/06/2021] [Accepted: 09/06/2021] [Indexed: 09/19/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive loss of cognition and a gradual decrease in memory. Although AD is considered the most persistent form of dementia and a global concern, no complete cure or agents that can completely halt the progression of AD have been found. In the past years, significant progress has been made in understanding the cellular and molecular changes associated with AD, and numerous drug targets have been identified for the development of drugs for this disease. Amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFT) are the major attributes of AD. Symptomatic relief is the only possible treatment available at present and a disease-modifying drug is of utmost importance. The development of drugs that can inhibit different targets responsible for the formation of plaques is a potential area in AD research. This review is not a complete list of all possible targets for AD but serves to highlight the targets related to Aβ pathology and pathways concerned with the formation of Aβ fragments. This shall serve as a prospect in the identification of Aβ plaque inhibitors and pave the strategies for newer drug treatments. Nevertheless, substantial research is done in this area but to bridle, the clinical difficulty remains a concern.
Collapse
Affiliation(s)
- Jaya Thomas
- Department of Pharmacology, School of Pharmacy University of Amrita Vishwavidyapeetham, Guntur, India
| | - Samson Wilson
- University of Amrita Vishwavidyapeetham, Coimbatore, India
| |
Collapse
|
17
|
Mackiewicz J, Lisek M, Boczek T. Targeting CaN/NFAT in Alzheimer's brain degeneration. Front Immunol 2023; 14:1281882. [PMID: 38077352 PMCID: PMC10701682 DOI: 10.3389/fimmu.2023.1281882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive loss of cognitive functions. While the exact causes of this debilitating disorder remain elusive, numerous investigations have characterized its two core pathologies: the presence of β-amyloid plaques and tau tangles. Additionally, multiple studies of postmortem brain tissue, as well as results from AD preclinical models, have consistently demonstrated the presence of a sustained inflammatory response. As the persistent immune response is associated with neurodegeneration, it became clear that it may also exacerbate other AD pathologies, providing a link between the initial deposition of β-amyloid plaques and the later development of neurofibrillary tangles. Initially discovered in T cells, the nuclear factor of activated T-cells (NFAT) is one of the main transcription factors driving the expression of inflammatory genes and thus regulating immune responses. NFAT-dependent production of inflammatory mediators is controlled by Ca2+-dependent protein phosphatase calcineurin (CaN), which dephosphorylates NFAT and promotes its transcriptional activity. A substantial body of evidence has demonstrated that aberrant CaN/NFAT signaling is linked to several pathologies observed in AD, including neuronal apoptosis, synaptic deficits, and glia activation. In view of this, the role of NFAT isoforms in AD has been linked to disease progression at different stages, some of which are paralleled to diminished cognitive status. The use of classical inhibitors of CaN/NFAT signaling, such as tacrolimus or cyclosporine, or adeno-associated viruses to specifically inhibit astrocytic NFAT activation, has alleviated some symptoms of AD by diminishing β-amyloid neurotoxicity and neuroinflammation. In this article, we discuss the recent findings related to the contribution of CaN/NFAT signaling to the progression of AD and highlight the possible benefits of targeting this pathway in AD treatment.
Collapse
Affiliation(s)
| | | | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
18
|
Kim JH, Han YE, Oh SJ, Lee B, Kwon O, Choi CW, Kim MS. Enhanced neuronal activity by suffruticosol A extracted from Paeonia lactiflora via partly BDNF signaling in scopolamine-induced memory-impaired mice. Sci Rep 2023; 13:11731. [PMID: 37474737 PMCID: PMC10359324 DOI: 10.1038/s41598-023-38773-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023] Open
Abstract
Neurodegenerative diseases are explained by progressive defects of cognitive function and memory. These defects of cognition and memory dysfunction can be induced by the loss of brain-derived neurotrophic factors (BDNF) signaling. Paeonia lactiflora is a traditionally used medicinal herb in Asian countries and some beneficial effects have been reported, including anti-oxidative, anti-inflammatory, anti-cancer activity, and potential neuroprotective effects recently. In this study, we found that suffruticosol A is a major compound in seeds of Paeonia lactiflora. When treated in a SH-SY5 cell line for measuring cell viability and cell survival, suffruticosol A increased cell viability (at 20 µM) and recovered scopolamine-induced neurodegenerative characteristics in the cells. To further confirm its neural amelioration effects in the animals, suffruticosol A (4 or 15 ng, twice a week) was administered into the third ventricle beside the brain of C57BL/6 mice for one month then the scopolamine was intraperitoneally injected into these mice to induce impairments of cognition and memory before conducting behavioral experiments. Central administration of suffruticosol A into the brain restored the memory and cognition behaviors in mice that received the scopolamine. Consistently, the central treatments of suffruticosol A showed rescued cholinergic deficits and BDNF signaling in the hippocampus of mice. Finally, we measured the long-term potentiation (LTP) in the hippocampal CA3-CA1 synapse to figure out the restoration of the synaptic mechanism of learning and memory. Bath application of suffruticosol A (40 µM) improved LTP impairment induced by scopolamine in hippocampal slices. In conclusion, the central administration of suffruticosol A ameliorated neuronal effects partly through elevated BDNF signaling.
Collapse
Affiliation(s)
- June Hee Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Young-Eun Han
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Soo-Jin Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan, 48513, Republic of Korea
| | - Obin Kwon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Chun Whan Choi
- Natural Biomaterial Team, Biocenter, Gyeonggido Business and Science Accelerator, Suwon, 16229, Gyeonggi-do, Republic of Korea.
| | - Min Soo Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
19
|
Pelle MC, Zaffina I, Giofrè F, Pujia R, Arturi F. Potential Role of Glucagon-like Peptide-1 Receptor Agonists in the Treatment of Cognitive Decline and Dementia in Diabetes Mellitus. Int J Mol Sci 2023; 24:11301. [PMID: 37511061 PMCID: PMC10379573 DOI: 10.3390/ijms241411301] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Dementia is a permanent illness characterized by mental instability, memory loss, and cognitive decline. Many studies have demonstrated an association between diabetes and cognitive dysfunction that proceeds in three steps, namely, diabetes-associated cognitive decrements, mild cognitive impairment (MCI; both non-amnesic MCI and amnesic MCI), and dementia [both vascular dementia and Alzheimer's disease (AD)]. Based on this association, this disease has been designated as type 3 diabetes mellitus. The underlying mechanisms comprise insulin resistance, inflammation, lipid abnormalities, oxidative stress, mitochondrial dysfunction, glycated end-products and autophagy. Moreover, insulin and insulin-like growth factor-1 (IGF-1) have been demonstrated to be involved. Insulin in the brain has a neuroprotective role that alters cognitive skills and alteration of insulin signaling determines beta-amyloid (Aβ) accumulation, in turn promoting brain insulin resistance. In this complex mechanism, other triggers include hyperglycemia-induced overproduction of reactive oxygen species (ROS) and inflammatory cytokines, which result in neuroinflammation, suggesting that antidiabetic drugs may be potential treatments to protect against AD. Among these, glucagon-like peptide-1 receptor agonists (GLP-1RAs) are the most attractive antidiabetic drugs due to their actions on synaptic plasticity, cognition and cell survival. The present review summarizes the significant data concerning the underlying pathophysiological and pharmacological mechanisms between diabetes and dementia.
Collapse
Affiliation(s)
- Maria Chiara Pelle
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Isabella Zaffina
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Giofrè
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Pujia
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Franco Arturi
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
- Research Center for the Prevention and Treatment of Metabolic Diseases (CR METDIS), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
20
|
Schreiner TG, Schreiner OD, Adam M, Popescu BO. The Roles of the Amyloid Beta Monomers in Physiological and Pathological Conditions. Biomedicines 2023; 11:1411. [PMID: 37239082 PMCID: PMC10216198 DOI: 10.3390/biomedicines11051411] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Amyloid beta peptide is an important biomarker in Alzheimer's disease, with the amyloidogenic hypothesis as one of the central hypotheses trying to explain this type of dementia. Despite numerous studies, the etiology of Alzheimer's disease remains incompletely known, as the pathological accumulation of amyloid beta aggregates cannot fully explain the complex clinical picture of the disease. Or, for the development of effective therapies, it is mandatory to understand the roles of amyloid beta at the brain level, from its initial monomeric stage prior to aggregation in the form of senile plaques. In this sense, this review aims to bring new, clinically relevant data on a subject intensely debated in the literature in the last years. In the first part, the amyloidogenic cascade is reviewed and the possible subtypes of amyloid beta are differentiated. In the second part, the roles played by the amyloid beta monomers in physiological and pathological (neurodegenerative) conditions are illustrated based on the most relevant and recent studies published on this topic. Finally, considering the importance of amyloid beta monomers in the pathophysiology of Alzheimer's disease, new research directions with diagnostic and therapeutic impacts are suggested.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania;
- Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 21–23 Professor Dimitrie Mangeron Blvd., 700050 Iasi, Romania;
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania;
| | - Oliver Daniel Schreiner
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania;
- Medical Oncology Department, Regional Institute of Oncology, 700483 Iași, Romania
| | - Maricel Adam
- Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 21–23 Professor Dimitrie Mangeron Blvd., 700050 Iasi, Romania;
| | - Bogdan Ovidiu Popescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania;
- Neurology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Laboratory of Cell Biology, Neurosciences and Experimental Myology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
21
|
Espinosa-Jiménez T, Cano A, Sánchez-López E, Olloquequi J, Folch J, Bulló M, Verdaguer E, Auladell C, Pont C, Muñoz-Torrero D, Parcerisas A, Camins A, Ettcheto M. A novel rhein-huprine hybrid ameliorates disease-modifying properties in preclinical mice model of Alzheimer's disease exacerbated with high fat diet. Cell Biosci 2023; 13:52. [PMID: 36895036 PMCID: PMC9999531 DOI: 10.1186/s13578-023-01000-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by a polyetiological origin. Despite the global burden of AD and the advances made in AD drug research and development, the cure of the disease remains elusive, since any developed drug has demonstrated effectiveness to cure AD. Strikingly, an increasing number of studies indicate a linkage between AD and type 2 diabetes mellitus (T2DM), as both diseases share some common pathophysiological features. In fact, β-secretase (BACE1) and acetylcholinesterase (AChE), two enzymes involved in both conditions, have been considered promising targets for both pathologies. In this regard, due to the multifactorial origin of these diseases, current research efforts are focusing on the development of multi-target drugs as a very promising option to derive effective treatments for both conditions. In the present study, we evaluated the effect of rhein-huprine hybrid (RHE-HUP), a synthesized BACE1 and AChE inhibitor, both considered key factors not only in AD but also in metabolic pathologies. Thus, the aim of this study is to evaluate the effects of this compound in APP/PS1 female mice, a well-established familial AD mouse model, challenged by high-fat diet (HFD) consumption to concomitantly simulate a T2DM-like condition. RESULTS Intraperitoneal treatment with RHE-HUP in APP/PS1 mice for 4 weeks reduced the main hallmarks of AD, including Tau hyperphosphorylation, Aβ42 peptide levels and plaque formation. Moreover, we found a decreased inflammatory response together with an increase in different synaptic proteins, such as drebrin 1 (DBN1) or synaptophysin, and in neurotrophic factors, especially in BDNF levels, correlated with a recovery in the number of dendritic spines, which resulted in memory improvement. Notably, the improvement observed in this model can be attributed directly to a protein regulation at central level, since no peripheral modification of those alterations induced by HFD consumption was observed. CONCLUSIONS Our results suggest that RHE-HUP could be a new candidate for the treatment of AD, even for individuals with high risk due to peripheral metabolic disturbances, given its multi-target profile which allows for the improvement of some of the most important hallmarks of the disease.
Collapse
Affiliation(s)
- Triana Espinosa-Jiménez
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain.,Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Amanda Cano
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain.,Ace Alzheimer Center Barcelona-International University of Catalunya (UIC), Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Elena Sánchez-López
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain.,Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034, Barcelona, Spain
| | - Jordi Olloquequi
- Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain.,Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Talca, Chile
| | - Jaume Folch
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), 43201, Reus, Spain.,Nutrition and Metabolic Health Research Group, Institute of Health Pere Virgili-IISPV, 43201, Reus, Spain
| | - Mònica Bulló
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43201, Reus, Spain.,Nutrition and Metabolic Health Research Group, Institute of Health Pere Virgili-IISPV, 43201, Reus, Spain.,CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029, Madrid, Spain
| | - Ester Verdaguer
- Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Carme Auladell
- Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Caterina Pont
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Diego Muñoz-Torrero
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain.,Institute of Biomedicine (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Antoni Parcerisas
- Department of Basic Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain.,Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain. .,Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain. .,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain. .,Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII 27/31, 08028, Barcelona, Spain.
| |
Collapse
|
22
|
Climova A, Pivovarova E, Szczesio M, Gobis K, Ziembicka D, Korga-Plewko A, Kubik J, Iwan M, Antos-Bielska M, Krzyżowska M, Czylkowska A. Anticancer and antimicrobial activity of new copper (II) complexes. J Inorg Biochem 2023; 240:112108. [PMID: 36592510 DOI: 10.1016/j.jinorgbio.2022.112108] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
In this study, three new organic ligands N'-(benzylidene)-6-chloropyrazine-2-carbohydrazonamide (L1), 6-chloro-N'-(4-nitrobenzylidene)picolinohydrazonamide(L2), and N'-(benzylidene)-4-chloropicolinohydrazonamide (L3) and three copper coordination compounds (Cu(L1)Cl2, Cu(L2)Cl2 and Cu(L3)Cl2) based on them were synthesized. All obtained compounds were characterized using appropriate analytical techniques: elemental analysis (EA), thermogravimetric analysis (TG-DTG), Fourier transform infrared spectroscopy (FTIR) and flame-atomic absorption spectrometry (F-AAS). These methods of physicochemical analyses helped to assume that the complexation in three cases proceeds in a bidentate manner. The X-ray investigation confirmed the synthesis pathway and molecular structures for L1 and L3 ligands. The antimicrobial activity of the obtained compounds was then comprehensively investigated, where Cu(L3)Cl2 showed the strongest antibacterial properties against all tested bacteria (Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli). LN229 human glioma cells and BJ human normal fibroblasts cells were treated with tested compounds and their cytotoxicity was evaluated with MTT test. The effect of complexing on antitumor activity has been investigated. The ligand L1 and its complex showed similar activity against normal cells while complexation increases toxicity against cancer cells in concentrations of 50 and 100 μM. For the one pair of ligand/complex compounds the apoptosis detection, cell cycle analysis and gene expression analysis (qRT-PCR) were performed. Cu(L1)Cl2 showed the stronger toxic effect in comparison with L1 due to the population of early apoptotic cells which revealed metabolic activity in MTT assay.
Collapse
Affiliation(s)
- Alina Climova
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Ekaterina Pivovarova
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Małgorzata Szczesio
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Katarzyna Gobis
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 107 Gen. Hallera Ave., 80-416 Gdańsk, Poland.
| | - Dagmara Ziembicka
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 107 Gen. Hallera Ave., 80-416 Gdańsk, Poland.
| | - Agnieszka Korga-Plewko
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b, 20-093 Lublin, Poland.
| | - Joanna Kubik
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b, 20-093 Lublin, Poland.
| | - Magdalena Iwan
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Chodźki 8, 20-093 Lublin, Poland.
| | - Małgorzata Antos-Bielska
- Department of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163, Warsaw, Poland.
| | - Małgorzata Krzyżowska
- Department of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163, Warsaw, Poland
| | - Agnieszka Czylkowska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| |
Collapse
|
23
|
Lowe M, Cardenas A, Valentin JP, Zhu Z, Abendroth J, Castro JL, Class R, Delaunois A, Fleurance R, Gerets H, Gryshkova V, King L, Lorimer DD, MacCoss M, Rowley JH, Rosseels ML, Royer L, Taylor RD, Wong M, Zaccheo O, Chavan VP, Ghule GA, Tapkir BK, Burrows JN, Duffey M, Rottmann M, Wittlin S, Angulo-Barturen I, Jiménez-Díaz MB, Striepen J, Fairhurst KJ, Yeo T, Fidock DA, Cowman AF, Favuzza P, Crespo-Fernandez B, Gamo FJ, Goldberg DE, Soldati-Favre D, Laleu B, de Haro T. Discovery and Characterization of Potent, Efficacious, Orally Available Antimalarial Plasmepsin X Inhibitors and Preclinical Safety Assessment of UCB7362. J Med Chem 2022; 65:14121-14143. [PMID: 36216349 PMCID: PMC9620073 DOI: 10.1021/acs.jmedchem.2c01336] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Indexed: 01/18/2023]
Abstract
Plasmepsin X (PMX) is an essential aspartyl protease controlling malaria parasite egress and invasion of erythrocytes, development of functional liver merozoites (prophylactic activity), and blocking transmission to mosquitoes, making it a potential multistage drug target. We report the optimization of an aspartyl protease binding scaffold and the discovery of potent, orally active PMX inhibitors with in vivo antimalarial efficacy. Incorporation of safety evaluation early in the characterization of PMX inhibitors precluded compounds with a long human half-life (t1/2) to be developed. Optimization focused on improving the off-target safety profile led to the identification of UCB7362 that had an improved in vitro and in vivo safety profile but a shorter predicted human t1/2. UCB7362 is estimated to achieve 9 log 10 unit reduction in asexual blood-stage parasites with once-daily dosing of 50 mg for 7 days. This work demonstrates the potential to deliver PMX inhibitors with in vivo efficacy to treat malaria.
Collapse
Affiliation(s)
| | | | | | - Zhaoning Zhu
- UCB, 216 Bath Road, Slough SL1 3WE, United
Kingdom
| | - Jan Abendroth
- UCB, 7869 NE Day Road West, Bainbridge Island, Washington 98110, United States
| | | | - Reiner Class
- UCB, Chem.
du Foriest 1, 1420 Braine-l’Alleud, Belgium
| | | | | | - Helga Gerets
- UCB, Chem.
du Foriest 1, 1420 Braine-l’Alleud, Belgium
| | | | - Lloyd King
- UCB, 216 Bath Road, Slough SL1 3WE, United
Kingdom
| | - Donald D. Lorimer
- UCB, 7869 NE Day Road West, Bainbridge Island, Washington 98110, United States
| | - Malcolm MacCoss
- Bohicket
Pharma Consulting LLC, 2556 Seabrook Island Road, Seabrook Island, South Carolina 29455, United States
| | | | | | - Leandro Royer
- UCB, Chem.
du Foriest 1, 1420 Braine-l’Alleud, Belgium
| | | | - Melanie Wong
- UCB, 216 Bath Road, Slough SL1 3WE, United
Kingdom
| | | | - Vishal P. Chavan
- Sai
Life Sciences Limited, Plot DS-7, IKP Knowledge Park, Genome Valley, Turkapally, Hyderabad 500078, Telangana, India
| | - Gokul A. Ghule
- Sai
Life Sciences Limited, Plot DS-7, IKP Knowledge Park, Genome Valley, Turkapally, Hyderabad 500078, Telangana, India
| | - Bapusaheb K. Tapkir
- Sai
Life Sciences Limited, Plot DS-7, IKP Knowledge Park, Genome Valley, Turkapally, Hyderabad 500078, Telangana, India
| | - Jeremy N. Burrows
- Medicines
for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Maëlle Duffey
- Medicines
for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Matthias Rottmann
- Swiss
Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
- University
of Basel, 4002 Basel, Switzerland
| | - Sergio Wittlin
- Swiss
Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
- University
of Basel, 4002 Basel, Switzerland
| | - Iñigo Angulo-Barturen
- The
Art of Discovery, SL
Biscay Science and Technology Park, Astondo Bidea, BIC Bizkaia Building,
no. 612, Derio 48160, Bizkaia, Basque Country, Spain
| | - María Belén Jiménez-Díaz
- The
Art of Discovery, SL
Biscay Science and Technology Park, Astondo Bidea, BIC Bizkaia Building,
no. 612, Derio 48160, Bizkaia, Basque Country, Spain
| | - Josefine Striepen
- Department
of Microbiology & Immunology, Columbia
University Irving Medical Center, New York, New York 10032, United States
| | - Kate J. Fairhurst
- Department
of Microbiology & Immunology, Columbia
University Irving Medical Center, New York, New York 10032, United States
| | - Tomas Yeo
- Department
of Microbiology & Immunology, Columbia
University Irving Medical Center, New York, New York 10032, United States
| | - David A. Fidock
- Department
of Microbiology & Immunology, Columbia
University Irving Medical Center, New York, New York 10032, United States
- Center
for Malaria Therapeutics and Antimicrobial Resistance, Division of
Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Alan F. Cowman
- The Walter
and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Paola Favuzza
- The Walter
and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | | | | | - Daniel E. Goldberg
- Division
of Infectious Diseases, Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8051, St. Louis, Missouri 63110, United States
| | - Dominique Soldati-Favre
- Department
of Microbiology and Molecular Medicine, Faculty of Medicine, CMU, 1 rue Michel-Servet, CH-1211 Genève 4, Switzerland
| | - Benoît Laleu
- Medicines
for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | | |
Collapse
|
24
|
Hodges SL, Bouza AA, Isom LL. Therapeutic Potential of Targeting Regulated Intramembrane Proteolysis Mechanisms of Voltage-Gated Ion Channel Subunits and Cell Adhesion Molecules. Pharmacol Rev 2022; 74:1028-1048. [PMID: 36113879 PMCID: PMC9553118 DOI: 10.1124/pharmrev.121.000340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/13/2022] [Indexed: 10/03/2023] Open
Abstract
Several integral membrane proteins undergo regulated intramembrane proteolysis (RIP), a tightly controlled process through which cells transmit information across and between intracellular compartments. RIP generates biologically active peptides by a series of proteolytic cleavage events carried out by two primary groups of enzymes: sheddases and intramembrane-cleaving proteases (iCLiPs). Following RIP, fragments of both pore-forming and non-pore-forming ion channel subunits, as well as immunoglobulin super family (IgSF) members, have been shown to translocate to the nucleus to function in transcriptional regulation. As an example, the voltage-gated sodium channel β1 subunit, which is also an IgSF-cell adhesion molecule (CAM), is a substrate for RIP. β1 RIP results in generation of a soluble intracellular domain, which can regulate gene expression in the nucleus. In this review, we discuss the proposed RIP mechanisms of voltage-gated sodium, potassium, and calcium channel subunits as well as the roles of their generated proteolytic products in the nucleus. We also discuss other RIP substrates that are cleaved by similar sheddases and iCLiPs, such as IgSF macromolecules, including CAMs, whose proteolytically generated fragments function in the nucleus. Importantly, dysfunctional RIP mechanisms are linked to human disease. Thus, we will also review how understanding RIP events and subsequent signaling processes involving ion channel subunits and IgSF proteins may lead to the discovery of novel therapeutic targets. SIGNIFICANCE STATEMENT: Several ion channel subunits and immunoglobulin superfamily molecules have been identified as substrates of regulated intramembrane proteolysis (RIP). This signal transduction mechanism, which generates polypeptide fragments that translocate to the nucleus, is an important regulator of gene transcription. RIP may impact diseases of excitability, including epilepsy, cardiac arrhythmia, and sudden death syndromes. A thorough understanding of the role of RIP in gene regulation is critical as it may reveal novel therapeutic strategies for the treatment of previously intractable diseases.
Collapse
Affiliation(s)
- Samantha L Hodges
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Alexandra A Bouza
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Lori L Isom
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
25
|
Picone P, Sanfilippo T, Vasto S, Baldassano S, Guggino R, Nuzzo D, Bulone D, San Biagio PL, Muscolino E, Monastero R, Dispenza C, Giacomazza D. From Small Peptides to Large Proteins against Alzheimer’sDisease. Biomolecules 2022; 12:biom12101344. [PMID: 36291553 PMCID: PMC9599460 DOI: 10.3390/biom12101344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder in the elderly. The two cardinal neuropathological hallmarks of AD are the senile plaques, which are extracellular deposits mainly constituted by beta-amyloids, and neurofibrillary tangles formed by abnormally phosphorylated Tau (p-Tau) located in the cytoplasm of neurons. Although the research has made relevant progress in the management of the disease, the treatment is still lacking. Only symptomatic medications exist for the disease, and, in the meantime, laboratories worldwide are investigating disease-modifying treatments for AD. In the present review, results centered on the use of peptides of different sizes involved in AD are presented.
Collapse
Affiliation(s)
- Pasquale Picone
- Istituto per la Ricerca e l’Innovazione Biomedica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
- Dipartmento of Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Tiziana Sanfilippo
- Ambulatorio di Nutrizione Clinica ASP Palermo, Via G. Cusmano 24, 90141 Palermo, Italy
- Anestesia e Rianimazione, Presidio Ospedaliero “S. Cimino”, 90141 Termini Imerese, Italy
| | - Sonya Vasto
- Dipartmento of Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche (STEBICEF), University of Palermo, 90128 Palermo, Italy
- Istituti Euro-Mediterranei di Scienza e Tecnologia (IEMEST), Via M. Miraglia 20, 90139 Palermo, Italy
| | - Sara Baldassano
- Dipartmento of Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Rossella Guggino
- Ambulatorio di Nutrizione Clinica ASP Palermo, Via G. Cusmano 24, 90141 Palermo, Italy
- Anestesia e Rianimazione, Presidio Ospedaliero “S. Cimino”, 90141 Termini Imerese, Italy
| | - Domenico Nuzzo
- Istituto per la Ricerca e l’Innovazione Biomedica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
- Dipartmento of Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche (STEBICEF), University of Palermo, 90128 Palermo, Italy
- Correspondence: (D.N.); (D.G.)
| | - Donatella Bulone
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Pier Luigi San Biagio
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Emanuela Muscolino
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Bldg 6, 90128 Palermo, Italy
| | - Roberto Monastero
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Clelia Dispenza
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Bldg 6, 90128 Palermo, Italy
| | - Daniela Giacomazza
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
- Correspondence: (D.N.); (D.G.)
| |
Collapse
|
26
|
Abideen SA, Khan M, Irfan M, Ahmad S. Deciphering the dynamics of cathepsin D as a potential drug target to enhance anticancer drug-induced apoptosis. J Mol Liq 2022; 361:119677. [DOI: 10.1016/j.molliq.2022.119677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Chen Y, Qin Q, Zhao W, Luo D, Huang Y, Liu G, Kuang Y, Cao Y, Chen Y. Carnosol Reduced Pathogenic Protein Aggregation and Cognitive Impairment in Neurodegenerative Diseases Models via Improving Proteostasis and Ameliorating Mitochondrial Disorders. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10490-10505. [PMID: 35973126 DOI: 10.1021/acs.jafc.2c02665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer's disease, Parkinson's disease, and Huntington's disease are incurable diseases with progressive loss of neural function and require urgent development of effective treatments. Carnosol (CL) reportedly has a pharmacological effect in the prevention of dementia. Nevertheless, the mechanisms of CL's neuroprotection are not entirely clear. The present study aimed to investigate the effects and mechanisms of CL-mediated neuroprotection through Caenorhabditis elegans models. First, CL restored ND protein homeostasis via inhibiting the IIS pathway, regulating MAPK signaling, and simultaneously activating molecular chaperone, thus inhibiting amyloid peptide (Aβ), polyglutamine (polyQ), and α-synuclein (α-syn) deposition and reducing protein disruption-mediated behavioral and cognitive impairments as well as neuronal damages. Furthermore, CL could repair mitochondrial structural damage via improving the mitochondrial membrane protein function and mitochondrial structural homeostasis and improve mitochondrial functional defects via increasing adenosine triphosphate contents, mitochondrial membrane potential, and reactive oxygen species levels, suggesting that CL could improve the ubiquitous mitochondrial defects in NDs. More importantly, we found that CL activated mitochondrial kinetic homeostasis related genes to improve the mitochondrial homeostasis and dysfunction in NDs. Meanwhile, CL up-regulated unc-17, cho-1, and cha-1 genes to alleviate Aβ-mediated cholinergic neurological disorders and activated Notch signaling and the Wnt pathway to diminish polyQ- and α-syn-induced ASH neurons as well as dopaminergic neuron damages. Overall, our study clarified the beneficial anti-ND neuroprotective effects of CL in different aspects and provided new insights into developing CL into products with preventive and therapeutic effects on NDs.
Collapse
Affiliation(s)
- Yun Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| | - Qiao Qin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| | - Wen Zhao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| | - Danxia Luo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| | - Yingyin Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| | - Yong Kuang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| |
Collapse
|
28
|
Combined structure and ligand-based design of dual BACE-1/GSK-3β inhibitors for Alzheimer’s disease. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Hassan NA, Alshamari AK, Hassan AA, Elharrif MG, Alhajri AM, Sattam M, Khattab RR. Advances on Therapeutic Strategies for Alzheimer's Disease: From Medicinal Plant to Nanotechnology. Molecules 2022; 27:4839. [PMID: 35956796 PMCID: PMC9369981 DOI: 10.3390/molecules27154839] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic dysfunction of neurons in the brain leading to dementia. It is characterized by gradual mental failure, abnormal cognitive functioning, personality changes, diminished verbal fluency, and speech impairment. It is caused by neuronal injury in the cerebral cortex and hippocampal area of the brain. The number of individuals with AD is growing at a quick rate. The pathology behind AD is the progress of intraneuronal fibrillary tangles, accumulation of amyloid plaque, loss of cholinergic neurons, and decrease in choline acetyltransferase. Unfortunately, AD cannot be cured, but its progression can be delayed. Various FDA-approved inhibitors of cholinesterase enzyme such as rivastigmine, galantamine, donepezil, and NDMA receptor inhibitors (memantine), are available to manage the symptoms of AD. An exhaustive literature survey was carried out using SciFinder's reports from Alzheimer's Association, PubMed, and Clinical Trials.org. The literature was explored thoroughly to obtain information on the various available strategies to prevent AD. In the context of the present scenario, several strategies are being tried including the clinical trials for the treatment of AD. We have discussed pathophysiology, various targets, FDA-approved drugs, and various drugs in clinical trials against AD. The goal of this study is to shed light on current developments and treatment options, utilizing phytopharmaceuticals, nanomedicines, nutraceuticals, and gene therapy.
Collapse
Affiliation(s)
- Nasser A. Hassan
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; (A.M.A.); (M.S.)
- Synthetic Unit, Department of Photochemistry, Chemical Industries Research Institute, National Research Centre, Cairo 12622, Egypt;
| | - Asma K. Alshamari
- Department of Chemistry, College of Science, Ha’il University, Ha’il 81451, Saudi Arabia;
| | - Allam A. Hassan
- Department of Chemistry, Faculty of Science, Suez University, Suez 43221, Egypt;
- Department of Chemistry, College of Science, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Mohamed G. Elharrif
- Department of Basic Medical Sciences, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia;
| | - Abdullah M. Alhajri
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; (A.M.A.); (M.S.)
| | - Mohammed Sattam
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; (A.M.A.); (M.S.)
| | - Reham R. Khattab
- Synthetic Unit, Department of Photochemistry, Chemical Industries Research Institute, National Research Centre, Cairo 12622, Egypt;
| |
Collapse
|
30
|
Ugbaja SC, Lawal IA, Abubakar BH, Mushebenge AG, Lawal MM, Kumalo HM. Allostery Inhibition of BACE1 by Psychotic and Meroterpenoid Drugs in Alzheimer's Disease Therapy. Molecules 2022; 27:4372. [PMID: 35889246 PMCID: PMC9320338 DOI: 10.3390/molecules27144372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
In over a century since its discovery, Alzheimer's disease (AD) has continued to be a global health concern due to its incurable nature and overwhelming increase among older people. In this paper, we give an overview of the efforts of researchers towards identifying potent BACE1 exosite-binding antibodies and allosteric inhibitors. Herein, we apply computer-aided drug design (CADD) methods to unravel the interactions of some proposed psychotic and meroterpenoid BACE1 allosteric site inhibitors. This study is aimed at validating the allosteric potentials of these selected compounds targeted at BACE1 inhibition. Molecular docking, molecular dynamic (MD) simulations, and post-MD analyses are carried out on these selected compounds, which have been experimentally proven to exhibit allosteric inhibition on BACE1. The SwissDock software enabled us to identify more than five druggable pockets on the BACE1 structural surface using docking. Besides the active site region, a melatonin derivative (compound 1) previously proposed as a BACE1 allostery inhibitor showed appreciable stability at eight different subsites on BACE1. Refinement with molecular dynamic (MD) simulations shows that the identified non-catalytic sites are potential allostery sites for compound 1. The allostery and binding mechanism of the selected potent inhibitors show that the smaller the molecule, the easier the attachment to several enzyme regions. This finding hereby establishes that most of these selected compounds failed to exhibit strong allosteric binding with BACE1 except for compound 1. We hereby suggest that further studies and additional identification/validation of other BACE1 allosteric compounds be done. Furthermore, this additional allosteric site investigation will help in reducing the associated challenges with designing BACE1 inhibitors while exploring the opportunities in the design of allosteric BACE1 inhibitors.
Collapse
Affiliation(s)
- Samuel C. Ugbaja
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa; (A.G.M.); (M.M.L.)
| | - Isiaka A. Lawal
- Chemistry Department, Faculty of Applied and Computer Science, Vanderbijlpark Campus, Vaal University of Technology, Vanderbijlpark 1900, South Africa;
| | - Bahijjahtu H. Abubakar
- The Renewable Energy Programme, Federal Ministry of Environment, Aguiyi Ironsi St, Maitama, Abuja 904101, Nigeria;
| | - Aganze G. Mushebenge
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa; (A.G.M.); (M.M.L.)
| | - Monsurat M. Lawal
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa; (A.G.M.); (M.M.L.)
| | - Hezekiel M. Kumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa; (A.G.M.); (M.M.L.)
| |
Collapse
|
31
|
Mohamed Yusof NIS, Abdullah ZL, Othman N, Mohd Fauzi F. Structure–Activity Relationship Analysis of Flavonoids and Its Inhibitory Activity Against BACE1 Enzyme Toward a Better Therapy for Alzheimer’s Disease. Front Chem 2022; 10:874615. [PMID: 35832462 PMCID: PMC9271896 DOI: 10.3389/fchem.2022.874615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
Drug development in Alzheimer’s disease (AD) suffers from a high attrition rate. In 2021, 117 agents tested in phases I and II and 36 agents tested in phase III were discontinued. Natural product compounds may be good lead compounds for AD as they contain functional groups that are important for binding against key AD targets such as β-secretase enzyme (BACE1). Hence, in this study, 64 flavonoids collected from rigorous literature search and screening that have been tested from 2010 to 2022 against BACE1, which interferes in the formation of amyloid plaque, were analyzed. The 64 unique flavonoids can be further classified into five core fragments. The flavonoids were subjected to clustering analysis based on its structure, and each representative of the clusters was subjected to molecular docking. There were 12 clusters formed, where only 1 cluster contained compounds from two different core fragments. Several observations can be made where 1) flavanones with sugar moieties showed higher inhibitory activity compared to flavanones without sugar moieties. The number of sugar moieties and position of glycosidic linkage may also affect the inhibitory activity. 2) Non-piperazine-substituted chalcones when substituted with functional groups with decreasing electronegativity at the para position of both rings result in a decrease in inhibitory activity. Molecular docking indicates that ring A is involved in hydrogen bond, whereas ring B is involved in van der Waals interaction with BACE1. 3) Hydrogen bond is an important interaction with the catalytic sites of BACE1, which are Asp32 and Asp228. As flavonoids contain favorable structures and properties, this makes them an interesting lead compound for BACE1. However, to date, no flavonoids have made it through clinical trials. Hence, these findings may aid in the design of highly potent and specific BACE1 inhibitors, which could delay the progression of AD.
Collapse
Affiliation(s)
| | | | - Norodiyah Othman
- Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Selangor, Malaysia
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health Complex, Selangor, Malaysia
| | - Fazlin Mohd Fauzi
- Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Selangor, Malaysia
- Collaborative Drug Discovery Research, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Selangor, Malaysia
- *Correspondence: Fazlin Mohd Fauzi,
| |
Collapse
|
32
|
Hussain F, Hafeez J, Khalifa AS, Naeem M, Ali T, Eed EM. In vitro and in vivo study of inhibitory potentials of α-glucosidase and acetylcholinesterase and biochemical profiling of M. charantia in alloxan-induced diabetic rat models. Am J Transl Res 2022; 14:3824-3839. [PMID: 35836841 PMCID: PMC9274573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Diabetes mellitus is a multifactorial chronic disease that affects the human population and it is the third most common cause of death worldwide. Momordica charantia is used as popular folk medicine and its action against diabetes mellitus remains unclear. We investigated the inhibitory potentials of α-glucosidase, acetylcholinesterase, and biochemical profiling of M. charantia in alloxan-induced diabetic rat models. METHODS An In vivo study was carried out by using twenty male albino Wistar rats randomly divided into five groups each comprising four rats. Diabetes mellitus was induced by single intraperitoneal administration of 80 mg/kg body weight of alloxan and treatment with plant extract was conducted for a period of thirty days to check their impact on body weight and differentblood values. Biochemical profiling and characterization were performed by in vitro assays and HPLC, and FTIR. Histopathologic effects of M. charantia were examined through automated image analysis. Results were analyzed through Tukey's test, a complete randomized design and two factorial designs under CRD. RESULTS Methanolic extract demonstrated potent alpha-glucosidase (72.30 ± 1.17%) and acetylcholinesterase (50.12 ± 0.82%) inhibitory activities. HPLC analysis confirmed the existence of vital flavonoids, antioxidants, and saponins. FTIR revealed the presence of hydroxyl groups, esters, alkanes, alkenes, alkynes, ketones, alcohols, amines and carboxylic acids as major functional groups. Results of in vivo study demonstrated that co-administration of alloxan and methanolic extract of M. charantia significantly improved the levels of fasting blood glucose, glycated hemoglobin and insulin in diabetic rats. CONCLUSION M. charantia can be recommended as a therapeutic adjunct for diabetic patients as it can provide favorable remedial action in the context of the diabetes continuum of metabolic syndrome.
Collapse
Affiliation(s)
- Fatma Hussain
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of AgricultureFaisalabad 38000, Pakistan
| | - Javaria Hafeez
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of AgricultureFaisalabad 38000, Pakistan
| | - Amany S Khalifa
- Department of Clinical Pathology and Pharmaceutics, College of Pharmacy, Taif UniversityP.O. Box 11099, Taif 21944, Saudi Arabia
| | - Muhammad Naeem
- College of Life Science, Hebei Normal UniversityShijiazhuang 050024, Hebei, China
| | - Tayyab Ali
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of AgricultureFaisalabad 38000, Pakistan
| | - Emad M Eed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif UniversityP.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
33
|
Velueta-Viveros M, Martínez-Bailén M, Puerta A, Romero-Hernández LL, Křen V, Merino-Montiel P, Montiel-Smith S, Fernandes MX, Moreno-Vargas AJ, Padrón JM, López Ó, Fernández-Bolaños JG. Carbohydrate-derived bicyclic selenazolines as new dual inhibitors (cholinesterases/OGA) against Alzheimer’s disease. Bioorg Chem 2022; 127:105983. [DOI: 10.1016/j.bioorg.2022.105983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022]
|
34
|
Nadh AG, Revikumar A, Sudhakaran P, Nair AS. Identification of potential lead compounds against BACE1 through in-silico screening of phytochemicals of Medhya rasayana plants for Alzheimer's disease management. Comput Biol Med 2022; 145:105422. [DOI: 10.1016/j.compbiomed.2022.105422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 11/03/2022]
|
35
|
Patel S, Bansoad AV, Singh R, Khatik GL. BACE1: A Key Regulator in Alzheimer's Disease Progression and Current Development of its Inhibitors. Curr Neuropharmacol 2022; 20:1174-1193. [PMID: 34852746 PMCID: PMC9886827 DOI: 10.2174/1570159x19666211201094031] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurodegenerative disease with no specific disease-modifying treatment. β-secretase (BACE1) is considered the potential and rationale target because it is involved in the rate-limiting step, which produces toxic Aβ42 peptides that leads to deposits in the form of amyloid plaques extracellularly, resulting in AD. OBJECTIVE This study aims to discuss the role and implications of BACE1 and its inhibitors in the management of AD. METHODS We have searched and collected the relevant quality work from PubMed using the following keywords "BACE1", BACE2", "inhibitors", and "Alzheimer's disease". In addition, we included the work which discusses the role of BACE1 in AD and the recent work on its inhibitors. RESULTS In this review, we have discussed the importance of BACE1 in regulating AD progression and the current development of BACE1 inhibitors. However, the development of a BACE1 inhibitor is very challenging due to the large active site of BACE1. Nevertheless, some of the BACE1 inhibitors have managed to enter advanced phases of clinical trials, such as MK-8931 (Verubecestat), E2609 (Elenbecestat), AZD3293 (Lanabecestat), and JNJ-54861911 (Atabecestat). This review also sheds light on the prospect of BACE1 inhibitors as the most effective therapeutic approach in delaying or preventing AD progression. CONCLUSION BACE1 is involved in the progression of AD. The current ongoing or failed clinical trials may help understand the role of BACE1 inhibition in regulating the Aβ load and cognitive status of AD patients.
Collapse
Affiliation(s)
| | - Ankush Vardhaman Bansoad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (Uttar Pradesh), 226002, India
| | - Rakesh Singh
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (Uttar Pradesh), 226002, India
| | - Gopal L. Khatik
- Department of Medicinal Chemistry, ,Address correspondence to this author at the Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, India, 226002; E-mail: ,
| |
Collapse
|
36
|
Prasanna CAL, Sharma A. Pharmacological exploration of triazole based therapeutics for Alzheimer disease: An overview. Curr Drug Targets 2022; 23:933-953. [DOI: 10.2174/1389450123666220328153741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Alzheimer`s disease (AD) is an irreversible progressive neurodegenerative disorder which may account for approximately 60-70% cases of dementia worldwide. AD is characterized by impaired behavioural and cognitive functions including memory, language, conception, attentiveness, judgment, and reasoning problems. The two important hallmarks of AD are the appearance of plaques and tangles of amyloid beta (Aβ) and tau proteins, respectively, in the brain based on the etiology of the disease including cholinergic impairment, metal dyshomeostasis, oxidative stress, and degradation of neurotransmitters. Currently, the used medication only provides alleviation of symptoms but not effective in curing the disease that is creating by an urge to develop new molecules to treat AD. Heterocyclic compounds have proven their ability to be developed as drugs for the treatment of various diseases. The five-membered heterocyclic compound triazole has received foremost fascination for the discovery of new drugs due to the possibility of structural variation and proved its significance in various drug categories. Therefore, this review summarizes mainly the recent advancements in the development of novel 1,2,3-triazole and 1,2,4-triazole based molecules in the drug discovery process for targeting various AD targets such as phosphodiesterase 1 (PDE1) Inhibitors, Apoptosis signal-regulating kinase 1 (ASK1) inhibitors, Somatostatin receptor subtype-4 (SSTR4) agonist, many other druggable targets, molecular modelling studies as well as various methodology for the synthesis of triazoles containing molecules such as Click reaction, Pellizzari and Einhorn-Brunner Reaction.
Collapse
Affiliation(s)
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| |
Collapse
|
37
|
Kleffman K, Levinson G, Rose IVL, Blumenberg LM, Shadaloey SAA, Dhabaria A, Wong E, Galan-Echevarria F, Karz A, Argibay D, Von Itter R, Floristan A, Baptiste G, Eskow NM, Tranos JA, Chen J, Vega Y Saenz de Miera EC, Call M, Rogers R, Jour G, Wadghiri YZ, Osman I, Li YM, Mathews P, DeMattos R, Ueberheide B, Ruggles KV, Liddelow SA, Schneider RJ, Hernando E. Melanoma-secreted Amyloid Beta Suppresses Neuroinflammation and Promotes Brain Metastasis. Cancer Discov 2022; 12:1314-1335. [PMID: 35262173 PMCID: PMC9069488 DOI: 10.1158/2159-8290.cd-21-1006] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/21/2021] [Accepted: 02/18/2022] [Indexed: 11/16/2022]
Abstract
Brain metastasis is a significant cause of morbidity and mortality in multiple cancer types and represents an unmet clinical need. The mechanisms that mediate metastatic cancer growth in the brain parenchyma are largely unknown. Melanoma, which has the highest rate of brain metastasis among common cancer types, is an ideal model to study how cancer cells adapt to the brain parenchyma. Our unbiased proteomics analysis of melanoma short-term cultures revealed that proteins implicated in neurodegenerative pathologies are differentially expressed in melanoma cells explanted from brain metastases compared to those derived from extracranial metastases. We showed that melanoma cells require amyloid beta (AB) for growth and survival in the brain parenchyma. Melanoma-secreted AB activates surrounding astrocytes to a pro-metastatic, anti-inflammatory phenotype and prevents phagocytosis of melanoma by microglia. Finally, we demonstrate that pharmacological inhibition of AB decreases brain metastatic burden.
Collapse
Affiliation(s)
- Kevin Kleffman
- NYU Langone Medical Center, New York, New York, United States
| | - Grace Levinson
- NYU Langone Medical Center, New York, New York, United States
| | - Indigo V L Rose
- NYU Langone Medical Center, New York, New York, United States
| | | | | | - Avantika Dhabaria
- Proteomics Laboratory, Division of Advanced Research and Technology, NYU Langone Health, New York, New York., New York, NY, United States
| | - Eitan Wong
- Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | | | - Alcida Karz
- NYU Langone Medical Center, New York, New York, United States
| | - Diana Argibay
- NYU Langone Medical Center, New York, NY, United States
| | | | | | - Gillian Baptiste
- New York University Grossman School of Medicine, New York, NY, United States
| | | | - James A Tranos
- NYU Langone Medical Center, New York, New York, United States
| | - Jenny Chen
- NYU Langone Medical Center, New York, New York, United States
| | | | - Melissa Call
- NYU Langone Medical Center, New York, New York, United States
| | - Robert Rogers
- NYU Langone Medical Center, New York, New York, United States
| | - George Jour
- New York University, New York, New York, United States
| | | | - Iman Osman
- New York University School of Medicine, New York, New York, United States
| | - Yue-Ming Li
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Paul Mathews
- NYU Langone Medical Center, New York, New York, United States
| | - Ronald DeMattos
- Eli Lilly (United States), Indianapolis, Indiana, United States
| | - Beatrix Ueberheide
- Proteomics Laboratory, Division of Advanced Research and Technology, NYU Langone Health, New York, New York., United States
| | - Kelly V Ruggles
- New York University Langone Medical Center, New York, United States
| | | | | | - Eva Hernando
- NYU Langone Medical Center, New York, NY, United States
| |
Collapse
|
38
|
Dwibedi V, Jain S, Singhal D, Mittal A, Rath SK, Saxena S. Inhibitory activities of grape bioactive compounds against enzymes linked with human diseases. Appl Microbiol Biotechnol 2022; 106:1399-1417. [PMID: 35106636 DOI: 10.1007/s00253-022-11801-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
A quest for identification of novel, safe and efficient natural compounds, as additives in the modern food and cosmetic industries, has been prompted by concerns about toxicity and side effects of synthetic products. Plant phenolic compounds are one of the most documented natural products due to their multifarious biological applications. Grape (Vitis vinifera) is an important source of phenolic compounds such as phenolic acids, tannins, quinones, coumarins and, most importantly, flavonoids/flavones. This review crisply encapsulates enzyme inhibitory activities of various grape polyphenols towards different key human-ailment-associated enzymes: xanthine oxidase (gout), tyrosinase (hyperpigmentation), α-amylase and α-glucosidase (diabetes mellitus), pancreatic lipase (obesity), cholinesterase (Alzheimer's disease), angiotensin i-converting enzymes (hypertension), α-synuclein (Parkinson's disease) and histone deacetylase (various diseases). The review also depicts the enzyme inhibitory mechanism of various grape polyphenols and briefly discusses their stature as potential therapeutic and drug development candidates. KEY POINTS: • Nineteen major bioactive polyphenols from the grape/grape products and their disease targets are presented • Sixty-two important polyphenols as enzyme inhibitors from grape/grape products are presented • A thorough description and graphical presentation of biological significance of polyphenols against various diseases.
Collapse
Affiliation(s)
- Vagish Dwibedi
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147001, India
| | - Sahil Jain
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Divya Singhal
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Anuradha Mittal
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Santosh Kumar Rath
- Department of Pharmaceutical Chemistry, Danteswari College of Pharmacy, Borpadar, Jagdalpur, Chhattisgarh, 494221, India.
| | - Sanjai Saxena
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147001, India
| |
Collapse
|
39
|
Li Y, Han X, Fan H, Sun J, Ni M, Zhang L, Fang F, Zhang W, Ma P. Circular RNA AXL increases neuron injury and inflammation through targeting microRNA-328 mediated BACE1 in Alzheimer’s disease. Neurosci Lett 2022; 776:136531. [DOI: 10.1016/j.neulet.2022.136531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/25/2022] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
|
40
|
Vitória JJM, Trigo D, da Cruz E Silva OAB. Revisiting APP secretases: an overview on the holistic effects of retinoic acid receptor stimulation in APP processing. Cell Mol Life Sci 2022; 79:101. [PMID: 35089425 PMCID: PMC11073327 DOI: 10.1007/s00018-021-04090-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide and is characterized by the accumulation of the β-amyloid peptide (Aβ) in the brain, along with profound alterations in phosphorylation-related events and regulatory pathways. The production of the neurotoxic Aβ peptide via amyloid precursor protein (APP) proteolysis is a crucial step in AD development. APP is highly expressed in the brain and is complexly metabolized by a series of sequential secretases, commonly denoted the α-, β-, and γ-cleavages. The toxicity of resulting fragments is a direct consequence of the first cleaving event. β-secretase (BACE1) induces amyloidogenic cleavages, while α-secretases (ADAM10 and ADAM17) result in less pathological peptides. Hence this first cleavage event is a prime therapeutic target for preventing or reverting initial biochemical events involved in AD. The subsequent cleavage by γ-secretase has a reduced impact on Aβ formation but affects the peptides' aggregating capacity. An array of therapeutic strategies are being explored, among them targeting Retinoic Acid (RA) signalling, which has long been associated with neuronal health. Additionally, several studies have described altered RA levels in AD patients, reinforcing RA Receptor (RAR) signalling as a promising therapeutic strategy. In this review we provide a holistic approach focussing on the effects of isoform-specific RAR modulation with respect to APP secretases and discuss its advantages and drawbacks in subcellular AD related events.
Collapse
Affiliation(s)
- José J M Vitória
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Diogo Trigo
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Odete A B da Cruz E Silva
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
41
|
Pourabdi L, Küçükkılınç TT, Khoshtale F, Ayazgök B, Nadri H, Farokhi Alashti F, Forootanfar H, Akbari T, Shafiei M, Foroumadi A, Sharifzadeh M, Shafiee Ardestani M, Abaee MS, Firoozpour L, Khoobi M, Mojtahedi MM. Synthesis of New 3-Arylcoumarins Bearing N-Benzyl Triazole Moiety: Dual Lipoxygenase and Butyrylcholinesterase Inhibitors With Anti-Amyloid Aggregation and Neuroprotective Properties Against Alzheimer’s Disease. Front Chem 2022; 9:810233. [PMID: 35127652 PMCID: PMC8812461 DOI: 10.3389/fchem.2021.810233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
A novel series of coumarin derivatives linked to the N-benzyl triazole group were synthesized and evaluated against 15-lipoxygenase (15-LOX), and acetyl- and butyrylcholinesterase (AChE and BuChE) to find the most potent derivative against Alzheimer’s disease (AD). Most of the compounds showed weak to moderate activity against ChEs. Among the most active BuChE and 15-LOX inhibitors, 8l and 8n exhibited an excellent neuroprotective effect, higher than the standard drug (quercetin) on the PC12 cell model injured by H2O2 and significantly reduced aggregation of amyloid Aβ1-42, with potencies of 1.44 and 1.79 times higher than donepezil, respectively. Compound 8l also showed more activity than butylated hydroxytoluene (BHT) as the reference antioxidant agent in reducing the levels of H2O2 activated by amyloid β in BV2 microglial cells. Kinetic and ligand–enzyme docking studies were also performed for better understanding of the mode of interaction between the best BuChE inhibitor and the enzyme. Considering the acceptable BuChE and 15-LOX inhibition activities as well as significant neuroprotection, and anti-amyloid aggregation activities, 8l and 8n could be considered as potential MTDLs for further modification and studies against AD.
Collapse
Affiliation(s)
- Ladan Pourabdi
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | | | - Fatemeh Khoshtale
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Beyza Ayazgök
- Faculty of Pharmacy, Department of Biochemistry, Hacettepe University, Ankara, Turkey
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farid Farokhi Alashti
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Tayebeh Akbari
- Department of Microbiology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Mohammad Shafiei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Sciences Research Center, The institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - M. Saeed Abaee
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Khoobi
- Pharmaceutical Sciences Research Center, The institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad M. Mojtahedi, ; Mehdi Khoobi, ,
| | - Mohammad M. Mojtahedi
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
- *Correspondence: Mohammad M. Mojtahedi, ; Mehdi Khoobi, ,
| |
Collapse
|
42
|
Liu Y, Chen X, Che Y, Li H, Zhang Z, Peng W, Yang J. LncRNAs as the Regulators of Brain Function and Therapeutic Targets for Alzheimer’s Disease. Aging Dis 2022; 13:837-851. [PMID: 35656102 PMCID: PMC9116922 DOI: 10.14336/ad.2021.1119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of dementia and a serious threat to the health and safety of the elderly population. It has become an emerging public health problem and a major economic and social burden. However, there is currently no effective treatment for AD. Although the mechanism of AD pathogenesis has been investigated substantially, the full range of molecular factors that contribute to its development remain largely unclear. In recent years, accumulating evidence has revealed that long non-coding RNAs (lncRNAs), a type of non-coding RNA longer than 200 nucleotides, play important roles in multiple biological processes involved in AD pathogenesis. With the further exploration of genomics, the role of lncRNA in the pathogenesis of AD has been phenotypically or mechanistically studied. Herein, we systematically review the current knowledge about lncRNAs implicated in AD and elaborate on their main regulatory pathways, which may contribute to the discovery of novel therapeutic targets and drugs for AD.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Xin Chen
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yutong Che
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Inter-disciplinary Research Center of Language Intelligence and Cultural Heritages, Hunan University, Changsha, Hunan, China.
- Correspondence should be addressed to: Dr. Weijun Peng (E-mail: ) and Ms. Jingjing Yang (), Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jingjing Yang
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China.
- Xiangya Nursing School, Central South University, Changsha, China.
- Correspondence should be addressed to: Dr. Weijun Peng (E-mail: ) and Ms. Jingjing Yang (), Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
43
|
Schreiner TG, Popescu BO. Amyloid Beta Dynamics in Biological Fluids-Therapeutic Impact. J Clin Med 2021; 10:5986. [PMID: 34945282 PMCID: PMC8706225 DOI: 10.3390/jcm10245986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Despite the significant impact of Alzheimer's disease (AD) at individual and socioeconomic levels and the numerous research studies carried out on this topic over the last decades, the treatments available in daily clinical practice remain less than satisfactory. Among the accepted etiopathogenic hypotheses, the amyloidogenic pathway theory, although intensively studied and even sometimes controversial, is still providing relevant theoretical elements for understanding the etiology of AD and for the further development of possible therapeutic tools. In this sense, this review aims to offer new insights related to beta amyloid (Aβ), an essential biomarker in AD. First the structure and function of Aβ in normal and pathological conditions are presented in detail, followed by a discussion on the dynamics of Aβ at the level of different biological compartments. There is focus on Aβ elimination modalities at central nervous system (CNS) level, and clearance via the blood-brain barrier seems to play a crucial/dominant role. Finally, different theoretical and already-applied therapeutic approaches for CNS Aβ elimination are presented, including the recent "peripheral sink therapeutic strategy" and "cerebrospinal fluid sinks therapeutic strategy". These data outline the need for a multidisciplinary approach designed to deliver a solution to stimulate Aβ clearance in more direct ways, including from the cerebrospinal fluid level.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania;
- Neurology Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania
| | - Bogdan Ovidiu Popescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania;
- Neurology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Laboratory of Cell Biology, Neurosciences and Experimental Myology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
44
|
Wang N, Wang H, Pan Q, Kang J, Liang Z, Zhang R. The Combination of β-Asarone and Icariin Inhibits Amyloid- β and Reverses Cognitive Deficits by Promoting Mitophagy in Models of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7158444. [PMID: 34887998 PMCID: PMC8651403 DOI: 10.1155/2021/7158444] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/14/2021] [Accepted: 11/01/2021] [Indexed: 01/18/2023]
Abstract
β-Asarone is the main constituent of Acorus tatarinowii Schott and exhibits important effects in diseases such as neurodegenerative and neurovascular diseases. Icariin (ICA) is a major active ingredient of Epimedium that has attracted increasing attention because of its unique pharmacological effects in degenerative disease. In this paper, we primarily explored the effects of the combination of β-asarone and ICA in clearing noxious proteins and reversing cognitive deficits. The accumulation of damaged mitochondria and mitophagy are hallmarks of aging and age-related neurodegeneration, including Alzheimer's disease (AD). Here, we provide evidence that autophagy/mitophagy is impaired in the hippocampus of APP/PS1 mice and in Aβ1-42-induced PC12 cell models. Enhanced mitophagic activity has been reported to promote Aβ and tau clearance in in vitro and in vivo models. Meanwhile, there is growing evidence that treatment of AD should be preceded by intervention before the formation of pathological products. The efficacy of the combination therapy was better than that of the individual therapies applied separately. Then, we found that the combination therapy also inhibited cell and mitochondrial damage by inducing autophagy/mitophagy. These findings suggest that impaired removal of defective mitochondria is a pivotal event in AD pathogenesis, and that combination treatment with mitophagy inducers represents a potential strategy for therapeutic intervention.
Collapse
Affiliation(s)
- Nanbu Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Haoyu Wang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qi Pan
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jian Kang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziwen Liang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Ronghua Zhang
- The First Affiliated Hospital, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
45
|
Kim TK, Hong JM, Kim KH, Han SJ, Kim IC, Oh H, Yim JH. Potential of Ramalin and Its Derivatives for the Treatment of Alzheimer's Disease. Molecules 2021; 26:6445. [PMID: 34770857 PMCID: PMC8588271 DOI: 10.3390/molecules26216445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 11/18/2022] Open
Abstract
The pathogenesis of Alzheimer's disease (AD) is still unclear, and presently there is no cure for the disease that can be used for its treatment or to stop its progression. Here, we investigated the therapeutic potential of ramalin (isolated from the Antarctic lichen, Ramalina terebrata), which exhibits various physiological activities, in AD. Specifically, derivatives were synthesized based on the structure of ramalin, which has a strong antioxidant effect, BACE-1 inhibition activity, and anti-inflammatory effects. Therefore, ramalin and its derivatives exhibit activity against multiple targets associated with AD and can serve as potential therapeutic agents for the disease.
Collapse
Affiliation(s)
- Tai Kyoung Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea; (T.K.K.); (J.-M.H.); (K.H.K.); (S.J.H.); (I.-C.K.)
| | - Ju-Mi Hong
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea; (T.K.K.); (J.-M.H.); (K.H.K.); (S.J.H.); (I.-C.K.)
| | - Kyung Hee Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea; (T.K.K.); (J.-M.H.); (K.H.K.); (S.J.H.); (I.-C.K.)
- Department of Chemistry, Hanseo University, Seosan 31962, Korea
| | - Se Jong Han
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea; (T.K.K.); (J.-M.H.); (K.H.K.); (S.J.H.); (I.-C.K.)
| | - Il-Chan Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea; (T.K.K.); (J.-M.H.); (K.H.K.); (S.J.H.); (I.-C.K.)
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan 54538, Korea;
| | - Joung Han Yim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea; (T.K.K.); (J.-M.H.); (K.H.K.); (S.J.H.); (I.-C.K.)
| |
Collapse
|
46
|
Song XJ, Zhou HY, Sun YY, Huang HC. Phosphorylation and Glycosylation of Amyloid-β Protein Precursor: The Relationship to Trafficking and Cleavage in Alzheimer's Disease. J Alzheimers Dis 2021; 84:937-957. [PMID: 34602469 DOI: 10.3233/jad-210337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder in the central nervous system, and this disease is characterized by extracellular senile plaques and intracellular neurofibrillary tangles. Amyloid-β (Aβ) peptide is the main constituent of senile plaques, and this peptide is derived from the amyloid-β protein precursor (AβPP) through the successive cleaving by β-site AβPP-cleavage enzyme 1 (BACE1) and γ-secretase. AβPP undergoes the progress of post-translational modifications, such as phosphorylation and glycosylation, which might affect the trafficking and the cleavage of AβPP. In the recent years, about 10 phosphorylation sites of AβPP were identified, and they play complex roles in glycosylation modification and cleavage of AβPP. In this article, we introduced the transport and the cleavage pathways of AβPP, then summarized the phosphorylation and glycosylation sites of AβPP, and further discussed the links and relationship between phosphorylation and glycosylation on the pathways of AβPP trafficking and cleavage in order to provide theoretical basis for AD research.
Collapse
Affiliation(s)
- Xi-Jun Song
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China.,Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, China
| | - He-Yan Zhou
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China.,Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, China
| | - Yu-Ying Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China.,Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, China
| | - Han-Chang Huang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China.,Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, China
| |
Collapse
|
47
|
Chen L, Zhou YP, Liu HY, Gu JH, Zhou XF, Yue-Qin Z. Long-term oral administration of hyperoside ameliorates AD-related neuropathology and improves cognitive impairment in APP/PS1 transgenic mice. Neurochem Int 2021; 151:105196. [PMID: 34601013 DOI: 10.1016/j.neuint.2021.105196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease (AD) is a highly prevalent neurodegenerative disorder characterized by the pathological hallmarks of β-amyloid plaque deposits, tau pathology, inflammation, and cognitive decline. Hyperoside, a flavone glycoside isolated from Rhododendron brachycarpum G. Don (Ericaceae), has neuroprotective effects against Aβ both in vitro and in vivo. However, whether hyperoside could delay AD pathogenesis remains unclear. In the present study, we observed if chronic treatment with hyperoside can reverse pathological progressions of AD in the APP/PS1 transgenic mouse model. Meanwhile, we attempted to elucidate the molecular mechanisms involved in regulating its effects. After 9 months of treatment, we found that hyperoside can improve spatial learning and memory in APP/PS1 transgenic mice, reduce amyloid plaque deposition and tau phosphorylation, decrease the number of activated microglia and astrocytes, and attenuate neuroinflammation and oxidative stress in the brain of APP/PS1 mice. These beneficial effects may be mediated in part by influencing reduction of BACE1 and GSK3β levels. Hyperoside confers neuroprotection against the pathology of AD in APP/PS1 mouse model and is emerging as a promising therapeutic candidate drug for AD.
Collapse
Affiliation(s)
- Liang Chen
- Yunnan Key Laboratory of Stem Cells and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming, China
| | - Yi-Ping Zhou
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Hua-Yi Liu
- Yunnan Key Laboratory of Stem Cells and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming, China
| | - Juan-Hua Gu
- Yunnan Key Laboratory of Stem Cells and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming, China
| | - Xin-Fu Zhou
- Yunnan Key Laboratory of Stem Cells and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming, China; School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, SA, Australia
| | - Zeng Yue-Qin
- Yunnan Key Laboratory of Stem Cells and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming, China.
| |
Collapse
|
48
|
Lin C, Zhang D, Sun S, Shi Y, Yan C, Lin J. Pharmacokinetic and tissue distribution study of ZCY-15, a novel compound against Alzheimer's disease, in rats by liquid chromatography-tandem mass spectrometry. Eur J Pharm Sci 2021; 164:105917. [PMID: 34175447 DOI: 10.1016/j.ejps.2021.105917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 05/20/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022]
Abstract
ZCY-15, N-(3,5-dimethyladamatan-1-yl)-N-(3-methylphenyl) urea, is a candidate compound synthesized from the memantine structure and has been shown to be remarkably effective in treating Alzheimer's disease. To elucidate the pharmacokinetics and tissue distribution of ZCY-15 in rats after oral and intravenous administration, a rapid and selective LC-MS/MS method was established for the determination of ZCY-15 in rat plasma and tissues. According to the dissolution characteristics, the plasma samples were prepared by acetonitrile protein precipitation and carbamazepine was selected as the internal standard (IS). After separation by gradient elution using Aqela Venusil ASB C8 (2.1 × 50 mm, 3 µm), the pretreated samples were analyzed in MRM mode in positive ESI mode. The effective detection limit of this method was 1.95-1000 ng·mL-1. Tissue samples were collected from the heart, liver, spleen, lung, kidney, fat, muscle, brain, hippocampus, testicles or ovaries, large intestine, small intestine and stomach. The proposed method demonstrated fine precision and accuracy for analyzing ZCY-15 in selected tissues within the concentration range of standard liquid chromatography-tandem mass spectrometry. The whole analysis time was 3.6 min per sample. After oral administration, the blood and tissue concentrations of ZCY-15 in female rats were significantly higher than those in male rats. The clearance rate of ZCY-15 in female rats was lower than that in male rats. The results confirmed that there were gender differences. It has been shown that ZCY-15 could pass through the blood-brain barrier and was highly concentrated in the hippocampus. We established the first bioanalytical method to quantify ZCY-15 in rodent bio-samples for ongoing pharmacokinetic and tissue distribution studies, and the results were expected to lay foundation for the subsequent studies.
Collapse
Affiliation(s)
- Chengjiang Lin
- Department of Pharmacy, The First Hospital of China Medical University, Nanjing Street No.155, Heping District, Shenyang City 110001, Liaoning, China; School of Pharmaceutical Science, China Medical University, Puhe Road No.77, Shenyang City 110122, Liaoning, China
| | - Donghu Zhang
- Department of Pharmacy, The First Hospital of China Medical University, Nanjing Street No.155, Heping District, Shenyang City 110001, Liaoning, China
| | - Shanshan Sun
- Department of Pharmacy, The First Hospital of China Medical University, Nanjing Street No.155, Heping District, Shenyang City 110001, Liaoning, China
| | - Yue Shi
- Department of Pharmacy, The First Hospital of China Medical University, Nanjing Street No.155, Heping District, Shenyang City 110001, Liaoning, China
| | - Chengda Yan
- Department of Pharmacy, The First Hospital of China Medical University, Nanjing Street No.155, Heping District, Shenyang City 110001, Liaoning, China
| | - Jianyang Lin
- Department of Pharmacy, The First Hospital of China Medical University, Nanjing Street No.155, Heping District, Shenyang City 110001, Liaoning, China.
| |
Collapse
|
49
|
Lee K, Yang A, Lin YC, Reker D, Bernardes GJ, Rodrigues T. Combating small-molecule aggregation with machine learning. CELL REPORTS PHYSICAL SCIENCE 2021; 2:100573. [DOI: 10.1016/j.xcrp.2021.100573] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
50
|
Shah H, Patel A, Parikh V, Nagani A, Bhimani B, Shah U, Bambharoliya T. The β-Secretase Enzyme BACE1: A Biochemical Enigma for Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2021; 19:184-194. [PMID: 32452328 DOI: 10.2174/1871527319666200526144141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/18/2020] [Accepted: 04/29/2020] [Indexed: 01/08/2023]
Abstract
Beta site amyloid precursor protein cleaving enzyme 1 (BACE1) is a rational target in Alzheimer's Disease (AD) drug development due to its role in amyloidogenic cleavage of Amyloid Precursor Protein (APP) in generating Amyloid β (Aβ). This β-secretase cleaves not only Amyloid Precursor Protein (APP) and its homologues, but also small series of substrates including neuregulin and β subunit of voltage-gated sodium channel that play a very important role in the development and normal function of the brain. Moreover, BACE1 is modulated at the post-translational level by several factors that are associated with both physiological and pathological functions. Since the discovery of BACE1 over a decade ago, medicinal chemistry and pharmacokinetics of BACE1 small molecule inhibitors have proven challenging for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Hirak Shah
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat 391760, India
| | - Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Vruti Parikh
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat 391760, India
| | - Afzal Nagani
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat 391760, India
| | - Bhargav Bhimani
- Piramal Discovery Solution, Pharmaceutical Special Economic Zone, Ahmedabad 382213, India
| | - Umang Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Tushar Bambharoliya
- Pharmaceutical Polymer Technology, North Carolina State University, North Carolina, NC, United States
| |
Collapse
|