1
|
Kratochvilová L, Dinová A, Valková N, Dobrovolná M, Sánchez-Murcia PA, Brázda V. Chromatin Immunoprecipitation Reveals p53 Binding to G-Quadruplex DNA Sequences in Myeloid Leukemia Cell Lines. ACS BIO & MED CHEM AU 2025; 5:283-298. [PMID: 40255281 PMCID: PMC12006861 DOI: 10.1021/acsbiomedchemau.4c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 04/22/2025]
Abstract
Clarifying functions of the p53 protein is a crucial aspect of cancer research. We analyzed the binding sites of p53 wild-type (WT) protein and its oncologically significant mutants and evaluated their transactivation properties using a functional yeast assay. Unlike the binding sites as determined in myeloid leukemia cell lines by chromatin immunoprecipitation of p53-R175H, p53-Y220C, p53-M237I, p53-R248Q, and p53-R273H mutants, the target sites of p53-WT and p53-R282W were significantly associated with putative G-quadruplex sequences (PQSs). Guanine-quadruplex (G-quadruplex or G4) formation in these sequences was evaluated by using a set of biophysical methods. G4s can modulate gene expression induced by p53. At low p53 expression level, PQS upstream of the p53-response element (RE) leads to greater gene expression induced by p53-R282W compared to that for the RE without PQS. Meanwhile, p53-WT protein expression is decreased by the PQS presence. At a high p53 expression level, the presence of PQS leads to a decreased expression of the reporter regardless of the distance and localization of the G4 from the RE.
Collapse
Affiliation(s)
- Libuše Kratochvilová
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 65, Czech Republic
- Department
of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, Brno 612 00, Czech Republic
| | - Alessandra Dinová
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 65, Czech Republic
| | - Natália Valková
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 65, Czech Republic
| | - Michaela Dobrovolná
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 65, Czech Republic
- Department
of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, Brno 612 00, Czech Republic
| | - Pedro A. Sánchez-Murcia
- Laboratory
of Computer-Aided Molecular Design, Division of Medicinal Chemistry, Otto-Loewi Research Center, Neue Stiftingtalstr. 6/III, Graz A-8010, Austria
- BioTechMed-Graz, Mozartgasse 12/II, Graz A-8010, Austria
| | - Václav Brázda
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 65, Czech Republic
- Department
of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, Brno 612 00, Czech Republic
| |
Collapse
|
2
|
Jin X, Wang H, Wang Y. The role of HM13 expression and its relationship to PI3K/Akt and p53 signaling pathways in colorectal cancer. Tissue Cell 2025; 93:102702. [PMID: 39755056 DOI: 10.1016/j.tice.2024.102702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/22/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025]
Abstract
Histocompatibility minor 13 (HM13) is a signal sequence stubbed intramembrane cleavage catalytic protein. Increasing evidence supports the association among HM13 expression, tumor-infiltrating immune cells (TIICs), and cancer. However, its role on formation and progression of colorectal cancer (CRC) has not been explored. In this study, we aim to identify the role and function of HM13 on the progression of CRC and explore the possible mechanism. The findings of our study indicate that HM13 is significantly upregulated in colorectal cancer (CRC) compared to normal colorectal tissues (P< 0.001). Moreover, the elevated expression of HM13 is associated with unfavorable prognosis in CRC patients. Furthermore, our results demonstrate that the overexpression of HM13 contributes to enhanced proliferation and migration, as well as suppressed apoptosis, in SM480 and HCT116 cell lines (P<0.001). Conversely, the downregulation of HM13 (shHM13) yields opposite effects. Additionally, the administration of LY294003 and nutlin-3 effectively inhibits proliferation and migration, while promoting apoptosis in HCT116 cells (P<0.001). However, the presence of HM13 counteracts these changes. In an in vivo study, the knockdown of HM13 (shHM13) significantly reduces tumor growth and the proportion of Ki-67 positive cells, while increasing the percentage of tunel-positive cells (P<0.001). Also, shHM13 decreased the level of p-PI3K/PI3K and p-AKT/AKT, upregulated p53 and p21 activities. It can thus be concluded that HM13 might be a novel oncogene in CRC and regulates proliferation, migration and apoptosis by modulating the PI3K/Akt and p53 signaling pathways.
Collapse
Affiliation(s)
- Xiao Jin
- Department of Gastrointestinal Surgery, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Hao Wang
- Department of Gastrointestinal Surgery, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Yong Wang
- Department of Gastrointestinal Surgery, Yantaishan Hospital, Yantai, Shandong Province, China.
| |
Collapse
|
3
|
Akkız H, Şimşek H, Balcı D, Ülger Y, Onan E, Akçaer N, Delik A. Inflammation and cancer: molecular mechanisms and clinical consequences. Front Oncol 2025; 15:1564572. [PMID: 40165901 PMCID: PMC11955699 DOI: 10.3389/fonc.2025.1564572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Inflammation, a hallmark of cancer, has been associated with tumor progression, transition into malignant phenotype and efficacy of anticancer treatments in cancer. It affects all stages of cancer, from the initiation of carcinogenesis to metastasis. Chronic inflammation induces immunosup-pression, providing an environment conducive to carcinogenesis, whereas acute inflammation induces an antitumor immune response, leading to tumor suppression. Solid tumors have an inflammatory tumor microenvironment (TME) containing cancer cells, immune cells, stromal cells, and soluble molecules, which plays a key role in tumor progression and therapy response. Both cancer cells and stromal cells in the TME are highly plastic and constantly change their phenotypic and functional properties. Cancer-associated inflammation, the majority of which consists of innate immune cells, plays an important role in cancer cell plasticity, cancer progression and the development of anticancer drug resistance. Today, with the combined used of advanced technologies, such as single-cell RNA sequencing and spatial molecular imaging analysis, the pathways linking chronic inflammation to cancer have been largely elucidated. In this review article, we highlighted the molecular and cellular mechanisms involved in cancer-associated inflammation and its effects on cancer progression and treatment response. We also comprehensively review the mechanisms linking chronic inflammation to cancer in the setting of GI cancers.
Collapse
Affiliation(s)
- Hikmet Akkız
- Department of Gastroenterology, Medical Faculty, Bahçeşehir University, İstanbul, Türkiye
| | - Halis Şimşek
- Department of Gastroenterology, Medical Faculty, Hacettepe University, Ankara, Türkiye
| | - Deniz Balcı
- Department of Gastroenterology, Medical Faculty, Bahçeşehir University, İstanbul, Türkiye
| | - Yakup Ülger
- Department of Gastroenterology, Medical Faculty, Cukurova University, Adana, Türkiye
| | - Engin Onan
- Department of Nephrology, Medical Faculty, Baskent University, Adana, Türkiye
| | - Nevin Akçaer
- Department of Gastroenterology, Medical Faculty, Health Sciences University, Adana, Türkiye
| | - Anıl Delik
- Department of Gastroenterology, Medical Faculty, Cukurova University, Adana, Türkiye
- Department of Biology, Science and Literature Faculty, Cukurova University, Adana, Türkiye
| |
Collapse
|
4
|
Thoenen E, Ranjan A, Parrales A, Nishikawa S, Dixon DA, Oka S, Iwakuma T. Suppression of stress granule formation is a vulnerability imposed by mutant p53. Nat Commun 2025; 16:2365. [PMID: 40064891 PMCID: PMC11894096 DOI: 10.1038/s41467-025-57539-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Missense mutations in the TP53 (p53) gene have been linked to malignant progression. However, our in-silico analyses reveal that hepatocellular carcinoma (HCC) patients with mutant p53 (mutp53) have better overall survival compared to those with p53-null (p53null) HCC, unlike other cancer types. Given the historical use of sorafenib (SOR) monotherapy for advanced HCC, we hypothesize that mutp53 increases sensitivity to SOR, a multikinase inhibitor that induces endoplasmic reticulum (ER) stress. Here we show that mutp53 inhibits stress granule (SG) formation by binding to an ER stress sensor, PKR-like ER kinase (PERK), and a key SG component, GAP SH3 domain-binding protein 1 (G3BP1), contributing to increased sensitivity of SG-competent cells and xenografts to ER stress inducers including SOR. Our study identifies a unique vulnerability imposed by mutp53, suggesting mutp53 as a biomarker for ER stress-inducing agents and highlighting the importance of SG inhibition for cancer treatment.
Collapse
Affiliation(s)
- Elizabeth Thoenen
- Department of Pediatrics, Division of Hematology & Oncology, Children's Mercy Research Institute, Kansas City, MO, USA
| | - Atul Ranjan
- Department of Pediatrics, Division of Hematology & Oncology, Children's Mercy Research Institute, Kansas City, MO, USA
| | - Alejandro Parrales
- Department of Pediatrics, Division of Hematology & Oncology, Children's Mercy Research Institute, Kansas City, MO, USA
| | - Shigeto Nishikawa
- Department of Pediatrics, Division of Hematology & Oncology, Children's Mercy Research Institute, Kansas City, MO, USA
| | - Dan A Dixon
- Department of Biochemistry and Molecular Biology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sugako Oka
- Faculty of Medical Science, Kyushu University, Fukuoka, Japan
| | - Tomoo Iwakuma
- Department of Pediatrics, Division of Hematology & Oncology, Children's Mercy Research Institute, Kansas City, MO, USA.
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
5
|
Tan H, Gotea V, Jaiswal SK, Seidel NE, Holland DO, Fedkenheuer K, Elkahloun AG, Bang-Christensen SR, Elnitski L. iSoMAs: Finding isoform expression and somatic mutation associations in human cancers. PLoS Comput Biol 2025; 21:e1012847. [PMID: 40053523 DOI: 10.1371/journal.pcbi.1012847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025] Open
Abstract
Aberrant alternative splicing, prevalent in cancer, impacts various cancer hallmarks involving proliferation, angiogenesis, and invasion. Splicing disruption often results from somatic point mutations rewiring functional pathways to support cancer cell survival. We introduce iSoMAs (iSoform expression and somatic Mutation Association), an efficient computational pipeline leveraging principal component analysis technique, to explore how somatic mutations influence transcriptome-wide gene expression at the isoform level. Applying iSoMAs to 33 cancer types comprising 9,738 tumor samples in The Cancer Genome Atlas, we identified 908 somatically mutated genes significantly associated with altered isoform expression across three or more cancer types. Mutations linked to differential isoform expression occurred through both cis- and trans-acting mechanisms, involving well-known oncogenes/suppressor genes, RNA binding protein and splicing factor genes. With wet-lab experiments, we verified direct association between TP53 mutations and differential isoform expression in cell cycle genes. Additional iSoMAs genes have been validated in the literature with independent cohorts and/or methods. Despite the complexity of cancer, iSoMAs attains computational efficiency via dimension reduction strategy and reveals critical associations between regulatory factors and transcriptional landscapes.
Collapse
Affiliation(s)
- Hua Tan
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Valer Gotea
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sushil K Jaiswal
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nancy E Seidel
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David O Holland
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kevin Fedkenheuer
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Abdel G Elkahloun
- Microarrays and Single-Cell Genomics Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sara R Bang-Christensen
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Laura Elnitski
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
6
|
Lazovic A, Markovic BS, Corovic I, Markovic T, Andjelkovic M, Stojanovic B, Jovanovic I, Mitrovic M. Unlocking the molecular mechanisms of anticancer and immunomodulatory potentials of cariprazine in triple negative breast cancer. Biomed Pharmacother 2025; 184:117931. [PMID: 39978031 DOI: 10.1016/j.biopha.2025.117931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/05/2025] [Accepted: 02/15/2025] [Indexed: 02/22/2025] Open
Abstract
Triple-negative breast cancer (TNBC), a highly invasive type of cancer, is difficult to treat due to insufficient specific targets and low survival rates. Current therapy often encounters drug resistance or relapse; thus, repurposing existing drugs could revolutionize cancer treatment. This study examined the anticancer effects of the antipsychotics Cariprazine (CAR), Olanzapine (OLZ), and Clozapine (CLZ), and the immunomodulatory potential of CAR, in vitro and in vivo in TNBC models. In vitro, CAR, OLZ, and CLZ significantly inhibited the proliferation of TNBC cells. This inhibition occurred via the induction of mitochondrial apoptosis, G0/G1 cell cycle arrest, and the suppression of autophagy, as evidenced by the down-regulation of Bcl-2, p62, and pAKT; the upregulation of Bax and active caspase 3; the decrease of ΔΨM; and the promotion of cytochrome c release. In addition, CAR inhibited MDA-MB-231 cells migration. In vivo, CAR inhibited tumor growth in the 4T1 xenograft model without causing adverse effects and resulted in the mRNA upregulation caspase 9, p53, p21, and Beclin-1. In addition, CAR influenced the immune response by promoting the production of proinflammatory cytokines TNF-α, IFN-γ, IL-17, and IL-1β and increasing the percentage of TNF-α+, IL-17+, IL-1β+, and IFN-γ+ CD3+ splenocytes. In conclusion, compared with other antipsychotics, 5-FU, and cisplatin, CAR exerted the most potent anticancer activity in TNBC in vitro and in vivo. This efficacy may be attributed to its ability to regulate apoptosis and autophagy, promote G0/G1 cell cycle arrest, and modulate antitumor immune response, suggesting its therapeutic potential in breast cancer.
Collapse
Affiliation(s)
- Aleksandar Lazovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, Svetozar Markovic 69, Kragujevac 34000, Serbia.
| | - Bojana Simovic Markovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozar Markovic 69, Kragujevac 34000, Serbia.
| | - Irfan Corovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozar Markovic 69, Kragujevac 34000, Serbia; General Hospital of Novi Pazar, Department of Internal Medicine, General Živković 1, Novi Pazar 36300, Serbia.
| | - Tijana Markovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozar Markovic 69, Kragujevac 34000, Serbia.
| | - Marija Andjelkovic
- Department of Medical Biochemistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića, 69, Kragujevac 34000, Serbia.
| | - Bojan Stojanovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, Svetozar Markovic 69, Kragujevac 34000, Serbia.
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozar Markovic 69, Kragujevac 34000, Serbia.
| | - Marina Mitrovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozar Markovic 69, Kragujevac 34000, Serbia; Department of Medical Biochemistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića, 69, Kragujevac 34000, Serbia.
| |
Collapse
|
7
|
Sadahiro Y, Okubo M, Hitora Y, Hitora-Imamura N, Kotani S, Tsukamoto S. Pestones A and B from a Fungus Pestalotiopsis sp. Bound to Mutant p53 and Changed Its Conformation. JOURNAL OF NATURAL PRODUCTS 2025; 88:546-553. [PMID: 39952908 DOI: 10.1021/acs.jnatprod.4c01440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Oncogenic mutant p53 is one of the targets for cancer therapy, and the development of anticancer drugs that reactivate mutant p53 is a promising strategy. The extract of fungus Pestalotiopsis sp. changed mutant p53 to wild-type-like p53 in Saos-2 (p53R175H) cells, as shown by fluorescent immunostaining, and bioassay-guided purification of the extract afforded new dimeric epoxyquinoids, pestones A and B (1 and 2), and a known compound, rosnecatrone (3). The relative and absolute configurations of 1 and 2 were determined based on the spectroscopic data and semisynthesis from 3. Compounds 1 and 2 altered the conformation of mutant p53 in Saos-2 (p53R175H) cells, as shown by immunofluorescence staining. The cellular thermal shift assay analysis showed that 1 increased the thermostability of mutant p53 in Saos-2 (p53R175H) cells, suggesting the direct binding of 1 to mutant p53. Compounds 1 and 2 exhibited cytotoxic activities against Saos-2 (p53R175H) cells with IC50 values of 1.0 and 1.1 μM, respectively. Compound 1 was found to induce apoptosis in Saos-2 (p53R175H) cells by flow cytometry analysis and decreased tumor growth in vivo using a mouse model with HuCCT1 (p53R175H) cells.
Collapse
Affiliation(s)
- Yusaku Sadahiro
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Misaki Okubo
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Yuki Hitora
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Natsuko Hitora-Imamura
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Shunsuke Kotani
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Sachiko Tsukamoto
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| |
Collapse
|
8
|
Zhang B, Zhang H, Qin Y. A Primer on the Role of TP53 Mutation and Targeted Therapy in Endometrial Cancer. FRONT BIOSCI-LANDMRK 2025; 30:25447. [PMID: 39862074 DOI: 10.31083/fbl25447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 01/27/2025]
Abstract
Endometrial Cancer (EC) is one of the most common gynecological malignancies, ranking first in developed countries and regions. The occurrence and development of EC is closely associated with genetic mutations. TP53 mutation, in particular, can lead to the dysfunction of numerous regulatory factors and alteration of the tumor microenvironment (TME). The changes in the TME subsequently promote the development of tumors and assist in immune escape by tumor cells, making it more challenging to treat EC and resulting in a poor prognosis. Therefore, it is important to understand the effects of TP53 mutation in EC and to conduct further research in relation to the targeting of TP53 mutations. This article reviews current research progress on the role of TP53 mutations in regulating the TME and in the mechanism of EC tumorigenesis, as well as progress on drugs that target TP53 mutations.
Collapse
Affiliation(s)
- Bohao Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou Hospital of Zhengzhou University, 450000 Zhengzhou, Henan, China
| | - Haozhe Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou Hospital of Zhengzhou University, 450000 Zhengzhou, Henan, China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou Hospital of Zhengzhou University, 450000 Zhengzhou, Henan, China
| |
Collapse
|
9
|
Liu J, Zhang B, Huang B, Zhang K, Guo F, Wang Z, Shang D. A stumbling block in pancreatic cancer treatment: drug resistance signaling networks. Front Cell Dev Biol 2025; 12:1462808. [PMID: 39872846 PMCID: PMC11770040 DOI: 10.3389/fcell.2024.1462808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025] Open
Abstract
The primary node molecules in the cell signaling network in cancer tissues are maladjusted and mutated in comparison to normal tissues, which promotes the occurrence and progression of cancer. Pancreatic cancer (PC) is a highly fatal cancer with increasing incidence and low five-year survival rates. Currently, there are several therapies that target cell signaling networks in PC. However, PC is a "cold tumor" with a unique immunosuppressive tumor microenvironment (poor effector T cell infiltration, low antigen specificity), and targeting a single gene or pathway is basically ineffective in clinical practice. Targeted matrix therapy, targeted metabolic therapy, targeted mutant gene therapy, immunosuppressive therapy, cancer vaccines, and other emerging therapies have shown great therapeutic potential, but results have been disappointing. Therefore, we summarize the identified and potential drug-resistant cell signaling networks aimed at overcoming barriers to existing PC therapies.
Collapse
Affiliation(s)
- Jinming Liu
- Department of General Surgery, Pancreas and Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, Pancreas and Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bingqian Huang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Westlake University, Hangzhou, China
| | - Kexin Zhang
- Central Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fujia Guo
- Central Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhizhou Wang
- Department of General Surgery, Pancreas and Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, Pancreas and Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
Xiang H, Kasajima R, Azuma K, Tagami T, Hagiwara A, Nakahara Y, Saito H, Igarashi Y, Wei F, Ban T, Yoshihara M, Nakamura Y, Sato S, Koizume S, Tamura T, Sasada T, Miyagi Y. Multi-omics analysis-based clinical and functional significance of a novel prognostic and immunotherapeutic gene signature derived from amino acid metabolism pathways in lung adenocarcinoma. Front Immunol 2024; 15:1361992. [PMID: 39735553 PMCID: PMC11671776 DOI: 10.3389/fimmu.2024.1361992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/30/2024] [Indexed: 12/31/2024] Open
Abstract
Background Studies have shown that tumor cell amino acid metabolism is closely associated with lung adenocarcinoma (LUAD) development and progression. However, the comprehensive multi-omics features and clinical impact of the expression of genes associated with amino acid metabolism in the LUAD tumor microenvironment (TME) are yet to be fully understood. Methods LUAD patients from The Cancer Genome Atlas (TCGA) database were enrolled in the training cohort. Using least absolute shrinkage and selection operator Cox regression analysis, we developed PTAAMG-Sig, a signature based on the expression of tumor-specific amino acid metabolism genes associated with overall survival (OS) prognosis. We evaluated its predictive performance for OS and thoroughly explored the effects of the PTAAMG-Sig risk score on the TME. The risk score was validated in two Gene Expression Omnibus (GEO) cohorts and further investigated against an original cohort of chemotherapy combined with immune checkpoint inhibitors (ICIs). Somatic mutation, chemotherapy response, immunotherapy response, gene set variation, gene set enrichment, immune infiltration, and plasma-free amino acids (PFAAs) profile analyses were performed to identify the underlying multi-omics features. Results TCGA datasets based PTAAMG-Sig model consisting of nine genes, KYNU, PSPH, PPAT, MIF, GCLC, ACAD8, TYRP1, ALDH2, and HDC, could effectively stratify the OS in LUAD patients. The two other GEO-independent datasets validated the robust predictive power of PTAAMG-Sig. Our differential analysis of somatic mutations in the high- and low-risk groups in TCGA cohort showed that the TP53 mutation rate was significantly higher in the high-risk group and negatively correlated with OS. Prediction from transcriptome data raised the possibility that PTAAMG-Sig could predict the response to chemotherapy and ICIs therapy. Our immunotherapy cohort confirmed the predictive ability of PTAAMG-Sig in the clinical response to ICIs therapy, which correlated with the infiltration of immune cells (e.g., T lymphocytes and nature killer cells). Corresponding to the concentrations of PFAAs, we discovered that the high PTAAMG-Sig risk score patients showed a significantly lower concentration of plasma-free α-aminobutyric acid. Conclusion In patients with LUAD, the PTAAMG-Sig effectively predicted OS, drug sensitivity, and immunotherapy outcomes. These findings are expected to provide new targets and strategies for personalized treatment of LUAD patients.
Collapse
Affiliation(s)
- Huihui Xiang
- Molecular Pathology & Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan
| | - Rika Kasajima
- Molecular Pathology & Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Center for Cancer Genome Medicine, Kanagawa Cancer Center, Yokohama, Japan
| | - Koichi Azuma
- Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Tomoyuki Tagami
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc., Kanagawa, Japan
| | - Asami Hagiwara
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc., Kanagawa, Japan
| | - Yoshiro Nakahara
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Department of Respiratory Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Haruhiro Saito
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Yuka Igarashi
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Japan
| | - Feifei Wei
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Japan
| | - Tatsuma Ban
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mitsuyo Yoshihara
- Molecular Pathology & Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Yoshiyasu Nakamura
- Molecular Pathology & Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Shinya Sato
- Molecular Pathology & Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Shiro Koizume
- Molecular Pathology & Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tetsuro Sasada
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Japan
| | - Yohei Miyagi
- Molecular Pathology & Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan
| |
Collapse
|
11
|
Ahmadi SE, Rahimian E, Rahimi S, Zarandi B, Bahraini M, Soleymani M, Safdari SM, Shabannezhad A, Jaafari N, Safa M. From regulation to deregulation of p53 in hematologic malignancies: implications for diagnosis, prognosis and therapy. Biomark Res 2024; 12:137. [PMID: 39538363 PMCID: PMC11565275 DOI: 10.1186/s40364-024-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The p53 protein, encoded by the TP53 gene, serves as a critical tumor suppressor, playing a vital role in maintaining genomic stability and regulating cellular responses to stress. Dysregulation of p53 is frequently observed in hematological malignancies, significantly impacting disease progression and patient outcomes. This review aims to examine the regulatory mechanisms of p53, the implications of TP53 mutations in various hematological cancers, and emerging therapeutic strategies targeting p53. We conducted a comprehensive literature review to synthesize recent findings related to p53's multifaceted role in hematologic cancers, focusing on its regulatory pathways and therapeutic potential. TP53 mutations in hematological malignancies often lead to treatment resistance and poor prognosis. Current therapeutic strategies, including p53 reactivation and gene therapy, show promise in improving treatment outcomes. Understanding the intricacies of p53 regulation and the consequences of its mutations is essential for developing effective diagnostic and therapeutic strategies in hematological malignancies, ultimately enhancing patient care and survival.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Rahimian
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Bahraini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Soleymani
- Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mehrab Safdari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Thangavelu L, Altamimi ASA, Ghaboura N, Babu MA, Roopashree R, Sharma P, Pal P, Choudhary C, Prasad GVS, Sinha A, Balaraman AK, Rawat S. Targeting the p53-p21 axis in liver cancer: Linking cellular senescence to tumor suppression and progression. Pathol Res Pract 2024; 263:155652. [PMID: 39437639 DOI: 10.1016/j.prp.2024.155652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Liver cancer is a major health epidemic worldwide, mainly due to its high mortality rates and limited treatment options. The association of cellular senescence to tumorigenesis and the cancer hallmarks remains a subject of interest in cancer biology. The p53-p21 signalling axis is an important regulator in restoring the cell's balance by supporting tumor suppression and tumorigenesis in liver cancer. We review the novel molecular mechanisms that p53 and its downstream effector, p21, employ to induce cellular senescence, making it last longer, and halt the proliferation of damaged hepatocytes to become tumorous cells. We also examine how dysregulation of this pathway contributes to HCC pathogenesis, proliferation, survival, acquired resistance to apoptosis, and increased invasiveness. Furthermore, we comprehensively describe the molecular cross-talk between the p53-p21 signalling axis and major cell cycle signalling pathways, including Wnt/β-catenin, PI3K/Akt, and TGF-β in liver cancer and provide an overview of promising candidates for chemoprevention and future therapeutic strategies. This review article explores the roles of the p53-p21 pathway in liver cancer, examining its function in promoting cellular senescence under normal conditions and its potential role in cancer progression. It also highlights novel therapeutic drugs and drug targets within the pathway and discusses the implications for treatment strategies and prognosis in liver cancer.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA UNIVERSITY, Mathura, UP 281406, India.
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pawan Sharma
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Pusparghya Pal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Chhavi Choudhary
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, Punjab 140307, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor 63000, Malaysia
| | - Sushama Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| |
Collapse
|
13
|
Lin L, Lin Y, Han Z, Wang K, Zhou S, Wang Z, Wang S, Chen H. Understanding the molecular regulatory mechanisms of autophagy in lung disease pathogenesis. Front Immunol 2024; 15:1460023. [PMID: 39544928 PMCID: PMC11560454 DOI: 10.3389/fimmu.2024.1460023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024] Open
Abstract
Lung disease development involves multiple cellular processes, including inflammation, cell death, and proliferation. Research increasingly indicates that autophagy and its regulatory proteins can influence inflammation, programmed cell death, cell proliferation, and innate immune responses. Autophagy plays a vital role in the maintenance of homeostasis and the adaptation of eukaryotic cells to stress by enabling the chelation, transport, and degradation of subcellular components, including proteins and organelles. This process is essential for sustaining cellular balance and ensuring the health of the mitochondrial population. Recent studies have begun to explore the connection between autophagy and the development of different lung diseases. This article reviews the latest findings on the molecular regulatory mechanisms of autophagy in lung diseases, with an emphasis on potential targeted therapies for autophagy.
Collapse
Affiliation(s)
- Lin Lin
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- School of Medicine, Southeast University, Nanjing, China
- Science Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Ke Wang
- Department of Science and Education, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Shuwei Zhou
- Department of Radiology, Zhongda Hospital, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, School of Medicine, Southeast University, Nanjing, China
| | - Zhanzhan Wang
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Siyu Wang
- Department of Preventive Medicine, Kunshan Hospital of Chinese Medicine, Kunshan, China
| | - Haoran Chen
- Science Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
14
|
Qayoom H, Mir MA. Mutant P53 modulation by cryptolepine through cell cycle arrest and apoptosis in triple negative breast cancer. Biomed Pharmacother 2024; 179:117351. [PMID: 39216450 DOI: 10.1016/j.biopha.2024.117351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Triple Negative Breast cancer is an aggressive breast cancer subtype. It has a more aggressive clinical course, an earlier age of onset, a larger propensity for metastasis, and worse clinical outcomes as evidenced by a higher risk of recurrence and a shorter survival rate. Currently, the primary options for TNBC treatment are surgery, radiation, and chemotherapy. These treatments however remain ineffective due to recurrence. However, given that p53 mutations have been identified in more than 60-88 % of TNBC, translating p53 into the clinical situation is particularly important in TNBC. In this study, we screened and evaluated the therapeutic potential of cryptolepine (CRP) in TNBC in-vitro models being an anti-malarial drug it could be repurposed as an anti-cancer therapeutic targeting TNBC. Moreover, the cytotoxicity activity of cryptolepine to TNBC cells and a detailed anti-tumor mechanism in mutant P53 has not been reported before. METHODS MTT assays were used to examine the cytotoxicity and cell viability activity of Cryptolepine in TNBC, non-TNBC T47D and MCF-7 and non-malignant MCF10A cells. Scratch wound and clonogenic assay was used to evaluate the cryptolepine's effect on migration and colony forming ability of TNBC cells. Flow cytometry, MMP and DAPI was used to assess cell cycle arrest and cell apoptosis mechanism. The expression of proteins was detected by western blots. The differential expression of RNAs was evaluated by RT-PCR and the interaction between P53 and drug was evaluated computationally using in-silico approach and in-vitro using ChIP assay. RESULTS In this study, we found that cryptolepine has more preferential cytotoxicity in TNBC than non-TNBC cells. Notably, our studies revealed the mechanism by which cryptolepine induces intrinsic apoptosis and inhibit migration, colony formation ability, induce cell cycle arrest by inducing conformational change in the mutant P53 thereby increasing its DNA binding ability, hence activating its tumor suppressing potential significantly. CONCLUSION Our study revealed that CRP significantly reduced the proliferation, migration and colony forming ability of TNBC cells lines. Moreover, it was revealed that CRP induces cell cycle arrest and apoptosis by activating mutant P53 and enhancing its DNA binding ability to induce its tumor suppressing ability.
Collapse
Affiliation(s)
- Hina Qayoom
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Manzoor A Mir
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India.
| |
Collapse
|
15
|
Huang HY, Chen CH, Cheng FJ, Wang BW, Tu CY, Chen YJ, He YH, Yao CH, Huang WC. Incense-burning smoke ingredient Auramine enhances lincRNA-p21 expression for chemosensitization in p53-mutated non-small cell lung cancer. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135105. [PMID: 39047551 DOI: 10.1016/j.jhazmat.2024.135105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Incense-burning smoke is a deleterious air pollutant that initiates cytotoxic effects by inducing apoptosis in lung epithelial cells and also acts as a risk factor for lung cancers. Auramine, an ingredient of incense smoke, has been implicated in tumor progression and cellular sensitivity in non-small cell lung cancer (NSCLC) towards anti-cancer agents through unclear mechanisms. Tumor protein p53 (TP53)-activated long intergenic non-coding RNA-p21 (lincRNA-p21) undertakes a pivotal role in regulating cell apoptosis and chemosensitivity. TP53 mutations prevalent in 50% of NSCLC, contribute to diminished therapeutic efficacy. However, the influence of auramine on chemotherapy-induced lincRNA-p21 expression and apoptosis in NSCLC with different TP53 genetic statuses remains unexplored. This study disclosed that both wild-type p53 (wtp53) and mutant p53 (mutp53) mediate lincRNA-p21 expression, albeit through distinct promoter enhancers, p53-response element (p53RE) and non-B DNA structure G-quadruplex (GQ), respectively. Intriguingly, auramine functions as an effective stabilizer of the GQ structure, augmenting mutp53-mediated lincRNA-p21 expression and enhancing apoptosis and cellular sensitivity to chemotherapy in mutp53-expressing NSCLC cells. These findings suggest a mechanism by which mutp53, in the presence of auramine, is endowed with tumor-suppressing function akin to wtp53, thereby aiding in combating chemoresistance in NSCLC cells harboring TP53 mutations.
Collapse
Affiliation(s)
- Hsuan-Yu Huang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chia-Hung Chen
- School of Medicine, China Medical University, Taichung 404, Taiwan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan; Department of Respiratory Therapy, China Medical University, Taichung 404, Taiwan
| | - Fang-Ju Cheng
- School of Medicine, China Medical University, Taichung 404, Taiwan; Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Bo-Wei Wang
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Chih-Yen Tu
- School of Medicine, China Medical University, Taichung 404, Taiwan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan; Department of Respiratory Therapy, China Medical University, Taichung 404, Taiwan
| | - Yun-Ju Chen
- School of Medicine for International Students, I-Shou University, Kaohsiung 824, Taiwan; Department of Medical Research, E-Da Hospital, Kaohsiung 824, Taiwan
| | - Yu-Hao He
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan; Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 404, Taiwan.
| | - Chun-Hsu Yao
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 404, Taiwan; Biomaterials Translational Research Center, China Medical University Hospital, Taichung 404, Taiwan; Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413, Taiwan.
| | - Wei-Chien Huang
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; Drug Development Center, China Medical University, Taichung 404, Taiwan; Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu 302, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
16
|
Yoel A, Adjumain S, Liang Y, Daniel P, Firestein R, Tsui V. Emerging and Biological Concepts in Pediatric High-Grade Gliomas. Cells 2024; 13:1492. [PMID: 39273062 PMCID: PMC11394548 DOI: 10.3390/cells13171492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Primary central nervous system tumors are the most frequent solid tumors in children, accounting for over 40% of all childhood brain tumor deaths, specifically high-grade gliomas. Compared with pediatric low-grade gliomas (pLGGs), pediatric high-grade gliomas (pHGGs) have an abysmal survival rate. The WHO CNS classification identifies four subtypes of pHGGs, including Grade 4 Diffuse midline glioma H3K27-altered, Grade 4 Diffuse hemispheric gliomas H3-G34-mutant, Grade 4 pediatric-type high-grade glioma H3-wildtype and IDH-wildtype, and infant-type hemispheric gliomas. In recent years, we have seen promising advancements in treatment strategies for pediatric high-grade gliomas, including immunotherapy, CAR-T cell therapy, and vaccine approaches, which are currently undergoing clinical trials. These therapies are underscored by the integration of molecular features that further stratify HGG subtypes. Herein, we will discuss the molecular features of pediatric high-grade gliomas and the evolving landscape for treating these challenging tumors.
Collapse
Affiliation(s)
- Abigail Yoel
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Shazia Adjumain
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Yuqing Liang
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Paul Daniel
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Vanessa Tsui
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
17
|
Patrick N, Markey M. Long-Read MDM4 Sequencing Reveals Aberrant Isoform Landscape in Metastatic Melanomas. Int J Mol Sci 2024; 25:9415. [PMID: 39273363 PMCID: PMC11395681 DOI: 10.3390/ijms25179415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
MDM4 is upregulated in the majority of melanoma cases and has been described as a "key therapeutic target in cutaneous melanoma". Numerous isoforms of MDM4 exist, with few studies examining their specific expression in human tissues. The changes in splicing of MDM4 during human melanomagenesis are critical to p53 activity and represent potential therapeutic targets. Compounding this, studies relying on short reads lose "connectivity" data, so full transcripts are frequently only inferred from the presence of splice junction reads. To address this problem, long-read nanopore sequencing was utilized to read the entire length of transcripts. Here, MDM4 transcripts, both alternative and canonical, are characterized in a pilot cohort of human melanoma specimens. RT-PCR was first used to identify the presence of novel splice junctions in these specimens. RT-qPCR then quantified the expression of major MDM4 isoforms observed during sequencing. The current study both identifies and quantifies MDM4 isoforms present in melanoma tumor samples. In the current study, we observed high expression levels of MDM4-S, MDM4-FL, MDM4-A, and the previously undescribed Ensembl transcript MDM4-209. A novel transcript lacking both exons 6 and 9 is observed and named MDM4-A/S for its resemblance to both MDM4-A and MDM4-S isoforms.
Collapse
Affiliation(s)
| | - Michael Markey
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA;
| |
Collapse
|
18
|
Tang F, Cui Q. Diverse roles of aldolase enzymes in cancer development, drug resistance and therapeutic approaches as moonlighting enzymes. Med Oncol 2024; 41:224. [PMID: 39120781 DOI: 10.1007/s12032-024-02470-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Aldolase enzymes, particularly ALDOA, ALDOB, and ALDOC, play a crucial role in the development and progression of cancer. While the aldolase family is mainly known for its involvement in the glycolysis pathway, these enzymes also have various pathological and physiological functions through distinct signaling pathways such as Wnt/β-catenin, EGFR/MAPK, Akt, and HIF-1α. This has garnered increased attention in recent years and shed light on other sides of this enzyme. Potential therapeutic strategies targeting aldolases include using siRNA, inhibitors like naphthol AS-E phosphate and TX-2098, and natural compounds such as HDPS-4II and L-carnosine. Additionally, anticancer peptides derived from ALDOA, like P04, can potentially increase cancer cells' sensitivity to chemotherapy. Aldolases also affect cancer drug resistance by different approaches, making them good therapeutic targets. In this review, we extensively explore the role of aldolase enzymes in various types of cancers in proliferation, invasion, migration, and drug resistance; we also significantly explore the possible treatment considering aldolase function.
Collapse
Affiliation(s)
- Fan Tang
- General Surgery Department, Xinhua Hospital of Yili Kazak Autonomous Prefecture, YiLi, 835000, China
| | - Qingyang Cui
- Department of Interventional Oncology, Xinhua Hospital of Yili Kazak Autonomous Prefecture, YiLi, 835000, China.
| |
Collapse
|
19
|
Chai D, Wang X, Neeli P, Zhou S, Yu X, Sabapathy K, Li Y. DNA-delivered monoclonal antibodies targeting the p53 R175H mutant epitope inhibit tumor development in mice. Genes Dis 2024; 11:100994. [PMID: 38560504 PMCID: PMC10980946 DOI: 10.1016/j.gendis.2023.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 04/04/2024] Open
Abstract
The tumor suppressor p53 is the most common mutated gene in cancer, with the R175H as the most frequent p53 missense mutant. However, there are currently no approved targeted therapies or immunotherapies against mutant p53. Here, we characterized and investigated a monoclonal antibody (mAb) that recognizes the mutant p53-R175H for its affinity, specificity, and activity against tumor cells in vitro. We then delivered DNA plasmids expressing the anti-R175H mAb or a bispecific antibody (BsAb) into mice to evaluate their therapeutic effects. Our results showed that the anti-R175H mAb specifically bound to the p53-R175H antigen with a high affinity and recognized the human mutant p53-R175H antigen expressed on HEK293T or MC38 cells, with no cross-reactivity with wild-type p53. In cultured cells, the anti-R175H mAb showed higher cytotoxicity than the control but did not induce antibody-dependent cellular cytotoxicity. We made a recombinant MC38 mouse cell line (MC38-p53-R175H) that overexpressed the human p53-R175H after knocking out the endogenous mutant p53 alleles. In vivo, administration of the anti-R175H mAb plasmid elicited a robust anti-tumor effect against MC38-p53-R175H in mice. The administration of the anti-R175H BsAb plasmid showed no therapeutic effects, yet potent anti-tumor activity was observed in combination with the anti-PD-1 antibody. These results indicate that targeting specific mutant epitopes using DNA-delivered mAbs or BsAbs presents a form of improved natural immunity derived from tumor-infiltrating B cells and plasma cells against intracellular tumor antigens.
Collapse
Affiliation(s)
- Dafei Chai
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xu Wang
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Praveen Neeli
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shan Zhou
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xingfang Yu
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kanaga Sabapathy
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 168583, Singapore
| | - Yong Li
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
20
|
Soares BCC, Khine HEE, Sritularak B, Chanvorachote P, Alduina R, Sungthong R, Chaotham C. Cymensifin A: a promising pharmaceutical candidate to defeat lung cancer via cellular reactive oxygen species-mediated apoptosis. Front Pharmacol 2024; 15:1361085. [PMID: 38666017 PMCID: PMC11043475 DOI: 10.3389/fphar.2024.1361085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Background: The upgrade of natural products for cancer treatment is essential since current anticancer drugs still pose severe side effects. Cymensifin A (Cym A) isolated from an orchid Cymbidium ensifolium has shown its potential to induce the death of several cancer cells; however, its underlying molecular mechanisms are hitherto unknown. Methods: Here, we conducted a set of in vitro preliminary tests to assess the cytotoxic effects of Cym A on non-small-cell lung cancer (NSCLC) cells (A549, H23, H292, and H460). A flow cytometry system and Western blot analyses were employed to unveil molecular mechanisms underlying cancer cell apoptosis caused by Cym A. Results: Cym A at 25-50 μM caused the death of all NSCLC cells tested, and its cytotoxicity was comparable to cisplatin, a currently used anticancer drug. The compound induced apoptosis of all NSCLC cells in a dose-dependent manner (5-50 μM), proven by flow cytometry, but H460 cells showed more resistance compared to other cells tested. Cym A-treated H460 cells demonstrated increased reactive oxygen species (ROS) and downregulated antioxidants (catalase, superoxide dismutase, and thioredoxin). The compound also upregulated the tumor suppressor P53 and the pro-apoptotic protein BAX but downregulated pro-survival proteins (BCL-2 and MCL-1) and deactivated survival signals (AKT and ERK) in H460 cells. Cym A was proven to trigger cellular ROS formation, but P53 and BAX were 2-fold more activated by Cym A compared to those treated with hydrogen peroxide. Our findings also supported that Cym A exerted its roles in the downregulation of nuclear factor erythroid 2-related factor 2 (a regulator of cellular antioxidant activity) and the increased levels of cleaved poly (ADP-ribose) polymerase (PARP) and cleaved caspase 3/7 during apoptosis. Conclusion: We propose that Cym A induces lung cancer cell death via ROS-mediated apoptosis, while the modulation of cellular ROS/antioxidant activity, the upregulation of P53 and BAX, the downregulation or deactivation of BCL-2, MCL-1, AKT, and ERK, and the increased cleavage of PARP and caspase 3/7, were the elucidated underlying molecular mechanisms of this phytochemical. The compound can be a promising candidate for future anticancer drug development.
Collapse
Affiliation(s)
- Bruno Cesar Costa Soares
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Hnin Ei Ei Khine
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Rungroch Sungthong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
21
|
Huang X, Cao Z, Qian J, Ding T, Wu Y, Zhang H, Zhong S, Wang X, Ren X, Zhang W, Xu Y, Yao G, Wang X, Yang X, Wen L, Zhang Y. Nanoreceptors promote mutant p53 protein degradation by mimicking selective autophagy receptors. NATURE NANOTECHNOLOGY 2024; 19:545-553. [PMID: 38216684 DOI: 10.1038/s41565-023-01562-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/01/2023] [Indexed: 01/14/2024]
Abstract
In some cancers mutant p53 promotes the occurrence, development, metastasis and drug resistance of tumours, with targeted protein degradation seen as an effective therapeutic strategy. However, a lack of specific autophagy receptors limits this. Here, we propose the synthesis of biomimetic nanoreceptors (NRs) that mimic selective autophagy receptors. The NRs have both a component for targeting the desired protein, mutant-p53-binding peptide, and a component for enhancing degradation, cationic lipid. The peptide can bind to mutant p53 while the cationic lipid simultaneously targets autophagosomes and elevates the levels of autophagosome formation, increasing mutant p53 degradation. The NRs are demonstrated in vitro and in a patient-derived xenograft ovarian cancer model in vivo. The work highlights a possible direction for treating diseases by protein degradation.
Collapse
Affiliation(s)
- Xiaowan Huang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, People's Republic of China
- School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Ziyang Cao
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Jieying Qian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, People's Republic of China
| | - Tao Ding
- School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Yanxia Wu
- Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Shenzhen, People's Republic of China
| | - Hao Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, People's Republic of China
| | - Suqin Zhong
- School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Xiaoli Wang
- School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Xiaoguang Ren
- School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Wang Zhang
- School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Youcui Xu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Guangyu Yao
- Breast Center, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xingwu Wang
- Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Shenzhen, People's Republic of China
| | - Xianzhu Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, People's Republic of China.
- National Engineering Research Centre for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, People's Republic of China.
| | - Longping Wen
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China.
| | - Yunjiao Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, People's Republic of China.
- School of Medicine, South China University of Technology, Guangzhou, People's Republic of China.
- National Engineering Research Centre for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, People's Republic of China.
| |
Collapse
|
22
|
Zheng M, Kumar A, Sharma V, Behl T, Sehgal A, Wal P, Shinde NV, Kawaduji BS, Kapoor A, Anwer MK, Gulati M, Shen B, Singla RK, Bungau SG. Revolutionizing pediatric neuroblastoma treatment: unraveling new molecular targets for precision interventions. Front Cell Dev Biol 2024; 12:1353860. [PMID: 38601081 PMCID: PMC11004261 DOI: 10.3389/fcell.2024.1353860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Neuroblastoma (NB) is the most frequent solid tumor in pediatric cases, contributing to around 15% of childhood cancer-related deaths. The wide-ranging genetic, morphological, and clinical diversity within NB complicates the success of current treatment methods. Acquiring an in-depth understanding of genetic alterations implicated in the development of NB is essential for creating safer and more efficient therapies for this severe condition. Several molecular signatures are being studied as potential targets for developing new treatments for NB patients. In this article, we have examined the molecular factors and genetic irregularities, including those within insulin gene enhancer binding protein 1 (ISL1), dihydropyrimidinase-like 3 (DPYSL3), receptor tyrosine kinase-like orphan receptor 1 (ROR1) and murine double minute 2-tumor protein 53 (MDM2-P53) that play an essential role in the development of NB. A thorough summary of the molecular targeted treatments currently being studied in pre-clinical and clinical trials has been described. Recent studies of immunotherapeutic agents used in NB are also studied in this article. Moreover, we explore potential future directions to discover new targets and treatments to enhance existing therapies and ultimately improve treatment outcomes and survival rates for NB patients.
Collapse
Affiliation(s)
- Min Zheng
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Ankush Kumar
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Vishakha Sharma
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Ludhiana, Punjab, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology, Pharmacy, Kanpur, Uttar Pradesh, India
| | | | | | - Anupriya Kapoor
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Australian Research Consortium in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, Australia
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rajeev K. Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
| |
Collapse
|
23
|
Song B, Yang P, Zhang S. Cell fate regulation governed by p53: Friends or reversible foes in cancer therapy. Cancer Commun (Lond) 2024; 44:297-360. [PMID: 38311377 PMCID: PMC10958678 DOI: 10.1002/cac2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Targeted therapies aimed at key oncogenic driver mutations in combination with chemotherapy and radiotherapy as well as immunotherapy have benefited cancer patients considerably. Tumor protein p53 (TP53), a crucial tumor suppressor gene encoding p53, regulates numerous downstream genes and cellular phenotypes in response to various stressors. The affected genes are involved in diverse processes, including cell cycle arrest, DNA repair, cellular senescence, metabolic homeostasis, apoptosis, and autophagy. However, accumulating recent studies have continued to reveal novel and unexpected functions of p53 in governing the fate of tumors, for example, functions in ferroptosis, immunity, the tumor microenvironment and microbiome metabolism. Among the possibilities, the evolutionary plasticity of p53 is the most controversial, partially due to the dizzying array of biological functions that have been attributed to different regulatory mechanisms of p53 signaling. Nearly 40 years after its discovery, this key tumor suppressor remains somewhat enigmatic. The intricate and diverse functions of p53 in regulating cell fate during cancer treatment are only the tip of the iceberg with respect to its equally complicated structural biology, which has been painstakingly revealed. Additionally, TP53 mutation is one of the most significant genetic alterations in cancer, contributing to rapid cancer cell growth and tumor progression. Here, we summarized recent advances that implicate altered p53 in modulating the response to various cancer therapies, including chemotherapy, radiotherapy, and immunotherapy. Furthermore, we also discussed potential strategies for targeting p53 as a therapeutic option for cancer.
Collapse
Affiliation(s)
- Bin Song
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Ping Yang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanP. R. China
- Laboratory of Radiation MedicineNHC Key Laboratory of Nuclear Technology Medical TransformationWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduSichuanP. R. China
| |
Collapse
|
24
|
Naeimzadeh Y, Tajbakhsh A, Fallahi J. Understanding the prion-like behavior of mutant p53 proteins in triple-negative breast cancer pathogenesis: The current therapeutic strategies and future directions. Heliyon 2024; 10:e26260. [PMID: 38390040 PMCID: PMC10881377 DOI: 10.1016/j.heliyon.2024.e26260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Breast cancer (BC) is viewed as a significant public health issue and is the primary cause of cancer-related deaths among women worldwide. Triple-negative breast cancer (TNBC) is a particularly aggressive subtype that predominantly affects young premenopausal women. The tumor suppressor p53 playsa vital role in the cellular response to DNA damage, and its loss or mutations are commonly present in many cancers, including BC. Recent evidence suggests that mutant p53 proteins can aggregate and form prion-like structures, which may contribute to the pathogenesis of different types of malignancies, such as BC. This review provides an overview of BC molecular subtypes, the epidemiology of TNBC, and the role of p53 in BC development. We also discuss the potential implications of prion-like aggregation in BC and highlight future research directions. Moreover, a comprehensive analysis of the current therapeutic approaches targeting p53 aggregates in BC treatment is presented. Strategies including small molecules, chaperone inhibitors, immunotherapy, CRISPR-Cas9, and siRNA are discussed, along with their potential benefits and drawbacks. The use of these approaches to inhibit p53 aggregation and degradation represents a promising target for cancer therapy. Future investigations into the efficacy of these approaches against various p53 mutations or binding to non-p53 proteins should be conducted to develop more effective and personalized therapies for BC treatment.
Collapse
Affiliation(s)
- Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| |
Collapse
|
25
|
Kamath D, Iwakuma T, Bossmann SH. Therapeutic potential of combating cancer by restoring wild-type p53 through mRNA nanodelivery. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 56:102732. [PMID: 38199451 PMCID: PMC11108594 DOI: 10.1016/j.nano.2024.102732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Among the tumor suppressor genes, TP53 is the most frequently mutated in human cancers, and most mutations are missense mutations causing production of mutant p53 (mutp53) proteins. TP53 mutations not only results in loss of function (LOH) as a transcription factor and a tumor suppressor, but also gain wild-type p53 (WTp53)-independent oncogenic functions that enhance cancer metastasis and progression (Yamamoto and Iwakuma, 2018; Zhang et al., 2022). TP53 has extensively been studied as a therapeutic target as well as for drug development and therapies, however with limited success. Achieving targeted therapies for restoration of WTp53 function and depletion or repair of mutant p53 (mutp53) will have far reaching implication in cancer treatment and therapies. This review briefly discusses the role of p53 mutation in cancer and the therapeutic potential of restoring WTp53 through the advances in mRNA nanomedicine.
Collapse
Affiliation(s)
- Divya Kamath
- The University of Kansas Medical Center, Department of Cancer Biology, 3901 Rainbow Blvd, mailstop 1071, 66160 Kansas City, KS, USA.
| | - Tomoo Iwakuma
- Children's Mercy Hospital, Adele Hall Campus, 2401 Gillham Rd, Kansas City, MO 64108, USA.
| | - Stefan H Bossmann
- The University of Kansas Medical Center, Department of Cancer Biology, 3901 Rainbow Blvd, mailstop 1071, 66160 Kansas City, KS, USA.
| |
Collapse
|
26
|
Ming‐Kun C, Zi‐Xian C, Mao‐Ping C, Hong C, Zhuang‐Fei C, Shan‐Chao Z. Engineered extracellular vesicles: A new approach for targeted therapy of tumors and overcoming drug resistance. Cancer Commun (Lond) 2024; 44:205-225. [PMID: 38155418 PMCID: PMC10876209 DOI: 10.1002/cac2.12518] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023] Open
Abstract
Targeted delivery of anti-tumor drugs and overcoming drug resistance in malignant tumor cells remain significant clinical challenges. However, there are only few effective methods to address these issues. Extracellular vesicles (EVs), actively secreted by cells, play a crucial role in intercellular information transmission and cargo transportation. Recent studies have demonstrated that engineered EVs can serve as drug delivery carriers and showed promising application prospects. Nevertheless, there is an urgent need for further improvements in the isolation and purification of EVs, surface modification techniques, drug assembly processes, and precise recognition of tumor cells for targeted drug delivery purposes. In this review, we summarize the applications of engineered EVs in cancer treatment and overcoming drug resistance, and current challenges associated with engineered EVs are also discussed. This review aims to provide new insights and potential directions for utilizing engineered EVs as targeted delivery systems for anti-tumor drugs and overcoming drug resistance in the near future.
Collapse
Affiliation(s)
- Chen Ming‐Kun
- Department of UrologyThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdongP. R. China
- The Third Clinical CollegeSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Chen Zi‐Xian
- Department of UrologyThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdongP. R. China
- The Third Clinical CollegeSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Cai Mao‐Ping
- Department of UrologyThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdongP. R. China
- The Third Clinical CollegeSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Chen Hong
- Luoyang Key Laboratory of Organic Functional MoleculesCollege of Food and DrugLuoyang Normal UniversityLuoyangHenanP. R. China
| | - Chen Zhuang‐Fei
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Zhao Shan‐Chao
- Department of UrologyThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdongP. R. China
- The Third Clinical CollegeSouthern Medical UniversityGuangzhouGuangdongP. R. China
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
| |
Collapse
|
27
|
Su N, Zhou E, Cui M, Li H, Wu S, Zhang Q, Cao Z. Role and molecular mechanism of APOBEC3B in the development and progression of gastric cancer. Heliyon 2024; 10:e24458. [PMID: 38312680 PMCID: PMC10835258 DOI: 10.1016/j.heliyon.2024.e24458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Gastric cancer is a common malignant tumor with a high mortality rate. Abnormal APOBEC3B (apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3B) expression increases tumor susceptibility. However, the exact molecular mechanism of APOBEC3B expression in the development of gastric cancer is still unknown. We investigated the effect of APOBEC3B on the malignant biological behavior of gastric cancer cells and discussed the role of APOBEC3B in the development and progression of gastric cancer. APOBEC3B protein levels were measured in 161 gastric cancer samples using western blotting and immunohistochemistry. Both in vitro and in vivo assays were performed, and molecules were analyzed using bioinformatics analysis and western blotting. APOBEC3B was overexpressed in gastric cancer. Moreover, APOBEC3B significantly enhanced cell proliferation in vitro and tumorigenicity in vivo. Regarding the underlying mechanism, APOBEC3B promoted the proliferation of gastric cancer cells by upregulating P53, MCM2 (minichromosome maintenance protein 2), and cyclin D1. Our results suggest that APOBEC3B is involved in cancer progression, providing a new theoretical basis for the prevention and treatment of gastric cancer.
Collapse
Affiliation(s)
- Nana Su
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Erle Zhou
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Min Cui
- Department of Pediatrics, Binzhou City People's Hospital, Binzhou, 256600, China
| | - Hong Li
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Shuhua Wu
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Qian Zhang
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Zhang Cao
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, 256603, China
| |
Collapse
|
28
|
Zafar A, Khan MJ, Abu J, Naeem A. Revolutionizing cancer care strategies: immunotherapy, gene therapy, and molecular targeted therapy. Mol Biol Rep 2024; 51:219. [PMID: 38281269 PMCID: PMC10822809 DOI: 10.1007/s11033-023-09096-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/04/2023] [Indexed: 01/30/2024]
Abstract
Despite the availability of technological advances in traditional anti-cancer therapies, there is a need for more precise and targeted cancer treatment strategies. The wide-ranging shortfalls of conventional anticancer therapies such as systematic toxicity, compromised life quality, and limited to severe side effects are major areas of concern of conventional cancer treatment approaches. Owing to the expansion of knowledge and technological advancements in the field of cancer biology, more innovative and safe anti-cancerous approaches such as immune therapy, gene therapy and targeted therapy are rapidly evolving with the aim to address the limitations of conventional therapies. The concept of immunotherapy began with the capability of coley toxins to stimulate toll-like receptors of immune cells to provoke an immune response against cancers. With an in-depth understating of the molecular mechanisms of carcinogenesis and their relationship to disease prognosis, molecular targeted therapy approaches, that inhibit or stimulate specific cancer-promoting or cancer-inhibitory molecules respectively, have offered promising outcomes. In this review, we evaluate the achievement and challenges of these technically advanced therapies with the aim of presenting the overall progress and perspective of each approach.
Collapse
Affiliation(s)
- Aasma Zafar
- Department of Biosciences, COMSATS University, Islamabad, 45550, Pakistan
| | | | - Junaid Abu
- Hazm Mebaireek General Hospital, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Aisha Naeem
- Qatar University Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
29
|
Al-Jumaili MMO. Transcription Silencing and CpGs Hypermethylation as Therapeutic Gene Editing in Clinical Colorectal Adenocarcinoma Repression. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2024; 83:6-16. [PMID: 38268163 DOI: 10.4166/kjg.2023.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024]
Abstract
Background/Aims Colorectal cancer is the most common cancer in oncopathology, with an increasing incidence among the elderly during the last decade. Various genetic and environmental factors play important roles in the emergence of colorectal adenocarcinoma. Non-coding RNAs, approximately 20-22 nucleotides, are transcribed irregularly in many cancer cells and play a critical role in many metabolic pathways in clinical cancer cases. DNA methylation is a critical epigenetic alteration that controls gene expression. In the current study, transcriptional silencing and CpG hypermethylation were developed as a therapeutic gene editing strategy for the clinical repression of colorectal adenocarcinoma. Methods A human colorectal adenocarcinoma cell line (Caco2) and a normal lung fibroblast cell line (Wi38) were utilized as the paradigms in this research to examine the effect of mir155 molecule transfection and CpGs-island (CGI) methylation. Cell counting was achieved using six-well and 24-well plates before transfection using a hemocytometer. The two cell lines were transfected with the mir155 agomir and antagomir molecules. The transfection efficiency, cell viability, cell IC50, and target gene expression were measured, and CGIs-methylation was achieved by bisulfate conversion. Results The outcomes revealed the downregulation of oncogenes (AKT1 and VCAM1 genes as cancer-associated genes) and the upregulation of tumor suppressor genes (TSGs, Tp53 and KEAP1). In addition, CpG-islands methylation showed significant blocking of the oncogene promoter regions, and the switch on of TSG promoter regions was continuous. Conclusions miRNA-CGI-methylation led to the regression of Caco2 cell proliferation, suggesting the potential use of RNA silencing and DNA methylation in targeted gene therapy for colorectal cancer.
Collapse
|
30
|
Li Y, Zhong G, Li L, Li T, Li H, Li Y, Zhang H, Pan J, Hu L, Liao J, Yu W, Tang Z. MitomiR-1736-3p regulates copper-induced mitochondrial pathway apoptosis by inhibiting AATF in chicken hepatocytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167825. [PMID: 37839473 DOI: 10.1016/j.scitotenv.2023.167825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Copper (Cu) is a toxic heavy metal pollutant. The hepatic toxicity of Cu has attracted widespread attention from researchers. However, its underlying mechanism remains elusive. Mitochondrial microRNAs (mitomiRs) are considered important factors in regulating mitochondrial and cellular functions, and their roles have been implicated in the mechanisms of metal toxicity. Therefore, this research revealed the changes in the mitomiRs expression profile of chicken liver after Cu exposure. It was ultimately determined that mitomiR-1736-3p can be involved in Cu-induced chicken liver damage by targeting AATF. In particular, our investigations have uncovered that exposure to Cu can trigger heightened levels of apoptosis in the hepatic tissue of chickens and primary chicken embryo hepatocytes (CEHs). It is noteworthy that we found upregulation of miR-1736-3p expression can exacerbate Cu-induced cell apoptosis, while inhibition of miR-1736-3p can effectively reduce apoptosis occurrence. Subsequently, we found that Cu-induced cell apoptosis could be restored by overexpressing AATF, while silencing AATF exacerbated the level of apoptosis. Fascinatingly, this change in apoptotic level is directly influenced by AATF on Bax and Bak1, rather than on p53 and Bcl-2. Overall, these findings suggest that the mitomiR-1736-3p/AATF axis mediates the mitochondrial pathway of cell apoptosis potentially involved in Cu-induced chicken liver toxicity.
Collapse
Affiliation(s)
- Yuanxu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Lei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Tingyu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Huayu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Wenlan Yu
- Laboratory Animal Center, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| |
Collapse
|
31
|
Carrillo ND, Awasthi P, Lee JH, Wen T, Chen M, Sterling C, Wolfe TJ, Cryns VL, Anderson RA. Linking Phosphoinositides to Proteins: A Novel Signaling PIPeline. JOURNAL OF CELLULAR SIGNALING 2024; 5:114-121. [PMID: 39582486 PMCID: PMC11584056 DOI: 10.33696/signaling.5.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Phosphoinositide (PIPn) signaling plays pivotal roles in myriad biological processes and is altered in many diseases including cancer. Canonical PIPn signaling involves membrane-associated PIPn lipid second messengers that modulate protein recruitment and activity at membrane focal points. In the nucleus, PIPn signaling operates separately from membranous compartments defining the paradigm of non-canonical PIPn signaling. However, the mechanisms by which this non-membranous nuclear PIPn pool is established and mediates stress signaling is poorly understood. The recent discovery of a p53-signalosome by Chen et al. (Nature Cell Biology 2022) represents a new PIPn signaling axis that operates independently from membrane structures where PIPns are dynamically linked to nuclear p53 and modified by PIPn kinases and phosphatases, allowing the activation of a nuclear PI 3-kinase/Akt pathway that is entirely distinct from the canonical membrane-localized pathway. Here, we will discuss emerging insights about the non-canonical PIPn pathway, which links PIPns to a growing number of cellular targets and highlight the similarities/differences with its canonical counterpart. We will also discuss potential therapeutic targets in this non-canonical PIPn pathway, which is likely to be deregulated in many diseases.
Collapse
Affiliation(s)
- Noah D. Carrillo
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health; 1111 Highland Avenue, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health; 1111 Highland Avenue, Madison, WI 53705, USA
| | - Poorwa Awasthi
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health; 1111 Highland Avenue, Madison, WI 53705, USA
| | - Jeong Hyo Lee
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health; 1111 Highland Avenue, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health; 1111 Highland Avenue, Madison, WI 53705, USA
| | - Tianmu Wen
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health; 1111 Highland Avenue, Madison, WI 53705, USA
| | - Mo Chen
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health; 1111 Highland Avenue, Madison, WI 53705, USA
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Colin Sterling
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health; 1111 Highland Avenue, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health; 1111 Highland Avenue, Madison, WI 53705, USA
| | - Trevor J. Wolfe
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health; 1111 Highland Avenue, Madison, WI 53705, USA
| | - Vincent L. Cryns
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health; 1111 Highland Avenue, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health; 1111 Highland Avenue, Madison, WI 53705, USA
- These authors contributed equally to this work
| | - Richard A. Anderson
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health; 1111 Highland Avenue, Madison, WI 53705, USA
- These authors contributed equally to this work
| |
Collapse
|
32
|
Vuletić A, Mirjačić Martinović K, Spasić J. Role of Histone Deacetylase 6 and Histone Deacetylase 6 Inhibition in Colorectal Cancer. Pharmaceutics 2023; 16:54. [PMID: 38258065 PMCID: PMC10818982 DOI: 10.3390/pharmaceutics16010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Histone deacetylase 6 (HDAC6), by deacetylation of multiple substrates and association with interacting proteins, regulates many physiological processes that are involved in cancer development and invasiveness such as cell proliferation, apoptosis, motility, epithelial to mesenchymal transition, and angiogenesis. Due to its ability to remove misfolded proteins, induce autophagy, and regulate unfolded protein response, HDAC6 plays a protective role in responses to stress and enables tumor cell survival. The scope of this review is to discuss the roles of HDCA6 and its implications for the therapy of colorectal cancer (CRC). As HDAC6 is overexpressed in CRC, correlates with poor disease prognosis, and is not essential for normal mammalian development, it represents a good therapeutic target. Selective inhibition of HDAC6 impairs growth and progression without inducing major adverse events in experimental animals. In CRC, HDAC6 inhibitors have shown the potential to reduce tumor progression and enhance the therapeutic effect of other drugs. As HDAC6 is involved in the regulation of immune responses, HDAC6 inhibitors have shown the potential to improve antitumor immunity by increasing the immunogenicity of tumor cells, augmenting immune cell activity, and alleviating immunosuppression in the tumor microenvironment. Therefore, HDAC6 inhibitors may represent promising candidates to improve the effect of and overcome resistance to immunotherapy.
Collapse
Affiliation(s)
- Ana Vuletić
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Katarina Mirjačić Martinović
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Jelena Spasić
- Clinic for Medical Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| |
Collapse
|
33
|
Tong Y, Gu M, Luo X, Qi H, Jiang W, Deng Y, Wei L, Liu J, Ding Y, Cai J, Hu Y. An engineered nanoplatform cascade to relieve extracellular acidity and enhance resistance-free chemotherapy. J Control Release 2023; 363:562-573. [PMID: 37797888 DOI: 10.1016/j.jconrel.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Tumor extracellular acidity and chemoresistance are regarded as the main obstacles to achieving optimal chemotherapeutic efficacy in tumor therapy. Herein, a new kind of acid-cascade P-S-Z nanoparticles (NPs) is developed to relieve extracellular acidosis and enhance chemotherapy without causing drug resistance. The P-S-Z NPs selectively accumulate in tumors and then regulate the release of S-Z NPs containing syrosingopine (Syr) and acid-activated prodrug ZMC1-Pt depending on the extracellular acidity. Benefiting from their small size and positive surface charge, S-Z NPs are easily internalized by tumor cells in deep tumor tissue, facilitating the release of Syr to inhibit lactic acid excretion and ultimately enhance cell acidosis. The prolonged intracellular acidosis not only inhibits tumor cell proliferation, but also continuously triggers the activation of ZMC1-Pt prodrug, a platinum-based chemotherapeutic drug that effectively eliminates cancer cells and restores wild-type p53 function to prevent tumor chemoresistance. As a proof of concept, this is a promising strategy to transfer the adverse effect of intracellular acidosis to facilitate chemotherapy. This well-designed delivery system effectively kills tumor cells without causing significant tumor drug resistance, thus opening a new window to treat cancer.
Collapse
Affiliation(s)
- Yuqing Tong
- College of Engineering and Applied Sciences, MOE Key Laboratory of High Performance Polymer Materials & Technology, Nanjing University, Nanjing 210033, China
| | - Meng Gu
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA
| | - Xingyu Luo
- College of Engineering and Applied Sciences, MOE Key Laboratory of High Performance Polymer Materials & Technology, Nanjing University, Nanjing 210033, China
| | - Haifeng Qi
- College of Engineering and Applied Sciences, MOE Key Laboratory of High Performance Polymer Materials & Technology, Nanjing University, Nanjing 210033, China
| | - Wei Jiang
- College of Engineering and Applied Sciences, MOE Key Laboratory of High Performance Polymer Materials & Technology, Nanjing University, Nanjing 210033, China
| | - Yu Deng
- College of Engineering and Applied Sciences, MOE Key Laboratory of High Performance Polymer Materials & Technology, Nanjing University, Nanjing 210033, China
| | - Lulu Wei
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA
| | - Jun Liu
- Department of Laboratory Medicine, Wuxi No. 5 People's Hospital Affiliated Jiangnan University, Wuxi, Jiangsu 214005, China
| | - Yin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210033, China.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA.
| | - Yong Hu
- College of Engineering and Applied Sciences, MOE Key Laboratory of High Performance Polymer Materials & Technology, Nanjing University, Nanjing 210033, China.
| |
Collapse
|
34
|
Katebi M, Rahgozar S, Kazemi F, Rahmani S, Najafi Dorcheh S. GingerenoneA overcomes dexamethasone resistance by activating apoptosis and inhibiting cell proliferation in pediatric T-ALL cells. Cancer Sci 2023; 114:3984-3995. [PMID: 37619556 PMCID: PMC10551595 DOI: 10.1111/cas.15936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Plant-based combination strategies have been widely considered in cancer therapy to attenuate chemotherapeutics side effects. The anti-leukemic effect of the whole ginger extract was previously portrayed by our team, and the current study is centered around the cytotoxicity and mechanism of action of a phenolic subsidiary of ginger, GingerenoneA, on pediatric acute lymphoblastic leukemia. GingernoneA imposed, dose-dependently, inhibitory effects on the viability of T and B leukemia cell lines confirmed by MTT assays. Resistance to Dexamethasone, a mostly used chemotherapeutic in acute lymphoblastic leukemia treatments, was overcome by GingernoneA. A synergistic effect of Dexamethasone and GingrenoneA on T leukemia cell lines and patient primary cells was confirmed. Annexin-V/PI and acridine orange/ethidium bromide staining illustrated dose-dependent apoptosis in CCRF-CEM cells developed by GingerenoneA. The intrinsic and extrinsic apoptosis induction and antiproliferative attribution of GingerenoneA were validated by western blot and qPCR. Despite the supposed loss of function in CCRF-CEM cells, TP53 showed increased expression levels and functional activity upon treatment with GingernoneA. Bioinformatic studies revealed the conceivable impact of GingerenoneA on the reactivity of mutant P53 through its binding to Cys124. Our findings may provide novel strategies for therapeutic intervention to ameliorate pALL outcomes.
Collapse
Affiliation(s)
- Melika Katebi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and TechnologyUniversity of IsfahanIran
| | - Soheila Rahgozar
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and TechnologyUniversity of IsfahanIran
| | - Farnoosh Kazemi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and TechnologyUniversity of IsfahanIran
| | - Saeideh Rahmani
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and TechnologyUniversity of IsfahanIran
| | - Somayeh Najafi Dorcheh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and TechnologyUniversity of IsfahanIran
| |
Collapse
|
35
|
Malla BA, Ali A, Maqbool I, Dar NA, Ahmad SB, Alsaffar RM, Rehman MU. Insights into molecular docking and dynamics to reveal therapeutic potential of natural compounds against P53 protein. J Biomol Struct Dyn 2023; 41:8762-8781. [PMID: 36281711 DOI: 10.1080/07391102.2022.2137241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/11/2022] [Indexed: 10/31/2022]
Abstract
P53 is eminent tumour suppressor protein that plays a prominent role in cell cycle arrest, DNA repair, senescence, differentiation and initiation of apoptosis. P53 is an attractive drug target and the high toxicity of some cancer chemotherapy drugs increase the demand for new anti-cancer drugs from natural products. In this current scenario, identification of promising anticancer compounds from natural sources by repurposing approach is still relevant for the early prevention and effective management of cancer. In present study, we docked natural compounds like podophyllotoxin, quercetin and rutin along standard drugs (MG-132 and Bay 61-3606) against p53 protein. ADME/T analysis predicted toxicity of phytochemicals and drugs. In silico docking analysis of podophyllotoxin, quercetin and rutin gave HDOCK docking scores of -187.87, -148. 97 and -143.85, whereas control drugs MG-132 and Bay 61-3606 showed docking scores of -159.59 and -140.71 against p53 respectively. AutoDock analysis of rutin and MG-132 showed highest binding affinity scores of -7.3 and -6.8 kcal/mol against p53. Molecular dynamic simulation for p53 protein displayed stable conformation and convergence. In this study, P53-rutin complex showed free binding energy score of 11.84 kcal/mol and P53-MG-132 complex reported free energy score of 16.3 kcal/mol. Protein contacts atlas gives non-covalent contacts framework by exploring interfaces of individual subunits and protein-ligand interactions. STRING tool predicts physical and functional interactions between proteins. The results of this study revealed that rutin and MG-132 could be promising inhibitors against targeted p53 protein and this could prove detrimental for molecular therapeutics and drug-designing strategies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bashir Ahmad Malla
- Department of Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, J&K, India
| | - Aarif Ali
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, J&K, India
| | - Irfan Maqbool
- Department of Clinical Biochemistry, SKIMS Soura, Srinagar, J&K, India
| | - Nazir Ahmad Dar
- Department of Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, J&K, India
| | - Sheikh Bilal Ahmad
- Division of Veterinary Biochemistry, SKUAST-K, Shuhama Alusteng, J&K, India
| | - Rana M Alsaffar
- Department Of Pharmacology & Toxicology, College Of Pharmacy Girls Section, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
36
|
Wu D, Li Y, Zheng L, Xiao H, Ouyang L, Wang G, Sun Q. Small molecules targeting protein-protein interactions for cancer therapy. Acta Pharm Sin B 2023; 13:4060-4088. [PMID: 37799384 PMCID: PMC10547922 DOI: 10.1016/j.apsb.2023.05.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/28/2023] [Accepted: 05/22/2023] [Indexed: 10/07/2023] Open
Abstract
Protein-protein interactions (PPIs) are fundamental to many biological processes that play an important role in the occurrence and development of a variety of diseases. Targeting the interaction between tumour-related proteins with emerging small molecule drugs has become an attractive approach for treatment of human diseases, especially tumours. Encouragingly, selective PPI-based therapeutic agents have been rapidly advancing over the past decade, providing promising perspectives for novel therapies for patients with cancer. In this review we comprehensively clarify the discovery and development of small molecule modulators of PPIs from multiple aspects, focusing on PPIs in disease, drug design and discovery strategies, structure-activity relationships, inherent dilemmas, and future directions.
Collapse
Affiliation(s)
- Defa Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yang Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Lang Zheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Huan Xiao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Qiu Sun
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
- West China Medical Publishers, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
37
|
Kapturska KM, Pawlak A. New molecular targets in canine hemangiosarcoma-Comparative review and future of the precision medicine. Vet Comp Oncol 2023; 21:357-377. [PMID: 37308243 DOI: 10.1111/vco.12917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 05/10/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023]
Abstract
Human angiosarcoma and canine hemangiosarcoma reveal similarities not only in their aggressive clinical behaviour, but especially in molecular landscape and genetic alterations involved in tumorigenesis and metastasis formation. Currently, no satisfying treatment that allows for achieving long overall survival or even prolonged time to progression does not exist. Due to the progress that has been made in targeted therapies and precision medicine the basis for a new treatment design is to uncover mutations and their functions as possible targets to provide tailored drugs for individual cases. Whole exome or genome sequencing studies and immunohistochemistry brought in the last few years important discoveries and identified the most common mutations with probably crucial role in this tumour development. Also, despite a lack of mutation in some of the culprit genes, the cancerogenesis cause may be buried in main cellular pathways connected with proteins encoded by those genes and involving, for example, pathological angiogenesis. The aim of this review is to highlight the most promising molecular targets for precision oncology treatment from the veterinary perspective aided by the principles of comparative science. Some of the drugs are only undergoing laboratory in vitro studies and others entered the clinic in the management of other cancer types in humans, but those used in dogs with promising responses have been mentioned as priorities.
Collapse
Affiliation(s)
- Karolina Małgorzata Kapturska
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
- Veterinary Clinic NEOVET s.c. Hildebrand, Jelonek, Michalek-Salt, Wroclaw, Poland
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
38
|
Li Y, Shen L, Tao K, Xu G, Ji K. Key Roles of p53 Signaling Pathway-Related Factors GADD45B and SERPINE1 in the Occurrence and Development of Gastric Cancer. Mediators Inflamm 2023; 2023:6368893. [PMID: 37662480 PMCID: PMC10471451 DOI: 10.1155/2023/6368893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/16/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
p53 can function as an independent and unfavorable prognosis biomarker in cancer patients. We tried to identify the key factors of the p53 signaling pathway involved in gastric cancer (GC) occurrence and development based on the genotype-tissue expression (GTEx) and the Cancer Genome Atlas (TCGA) screening. We downloaded gene expression data and clinical data of GC included in the GTEx and TCGA databases, followed by differential analysis. Then, the key factors in the p53 signaling pathway were identified, followed by an analysis of the correlation between key factors and the prognosis of GC patients. Human GC cell lines were selected for in vitro cell experiments to verify the effects of key prognostic factors on the proliferation, migration, invasion, and apoptosis of GC cells. We found 4,944 significantly differentially expressed genes (DEGs), of which 2,465 were upregulated and 2,479 downregulated in GC. Then, 27 DEGs were found to be involved in the p53 signaling pathway. GADD45B and SERPINE1 genes were prognostic high-risk genes. The regression coefficients of GADD45B and SERPINE1 were positive. GADD45B was poorly expressed, while SERPINE1 was highly expressed in GC tissues, highlighting their prognostic role in GC. The in vitro cell experiments confirmed that overexpression of GADD45B or silencing of SERPINE1 could inhibit the proliferation, migration, and invasion and augment the apoptosis of GC cells. Collectively, the p53 signaling pathway-related factors GADD45B and SERPINE1 may be key genes that participate in the development of GC.
Collapse
Affiliation(s)
- Yaoqing Li
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing 312000, China
| | - Liyijing Shen
- Department of Radiology, Shaoxing People's Hospital, Shaoxing 312000, China
| | - Kelong Tao
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing 312000, China
| | - Guangen Xu
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing 312000, China
| | - Kewei Ji
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing 312000, China
| |
Collapse
|
39
|
Wang YF, Zheng Y, Cha YY, Feng Y, Dai SX, Zhao S, Chen H, Xu M. Essential oil of lemon myrtle (Backhousia citriodora) induces S-phase cell cycle arrest and apoptosis in HepG2 cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116493. [PMID: 37054823 DOI: 10.1016/j.jep.2023.116493] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lemon myrtle (Backhousia citriodora F.Muell.) leaves, whether fresh or dried, are used traditionally in folk medicine to treat wounds, cancers, skin infections, and other infectious conditions. However, the targets and mechanisms related to anti-cancer effect of lemon myrtle are unavailable. In our study, we found that the essential oil of lemon myrtle (LMEO) showed anti-cancer activity in vitro, and we initially explored its mechanism of action. MATERIALS AND METHODS We analyzed the chemical compositions of LMEO by GC-MS. We tested the cytotoxicity of LMEO on various cancer cell lines using the MTT assay. Network pharmacology was used also to analyze the targets of LMEO. Moreover, the mechanisms of LMEO were investigated through scratch assay, flow cytometry analysis, and western blot in the HepG2 liver cancer cell line. RESULTS LMEO showed cytotoxicity on various cancer cell lines with values of IC50 40.90 ± 2.23 (liver cancer HepG2 cell line), 58.60 ± 6.76 (human neuroblastoma SH-SY5Y cell line), 68.91 ± 4.62 (human colon cancer HT-29 cell line) and 57.57 ± 7.61 μg/mL (human non-small cell lung cancer A549 cell line), respectively. The major cytotoxic chemical constituent in LMEO was identified as citrals, which accounted for 74.9% of the content. Network pharmacological analysis suggested that apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1), androgen receptor (AR), cyclin-dependent kinases 1 (CDK1), nuclear factor erythroid 2-related factor 2 (Nrf-2), fatty acid synthase (FASN), epithelial growth factor receptor (EGFR), estrogen receptor 1 (ERα) and cyclin-dependent kinases 4 (CDK4) are potential cytotoxic targets of LMEO. These targets are closely related to cell migration, cycle and apoptosis. Notley, the p53 protein had the highest confidence to co-associate with the eight common targets, which was further confirmed by scratch assay, flow cytometry analysis, and western blot in the HepG2 liver cancer cell line. LMEO significantly inhibited the migration of HepG2 cells in time-dependent and dose-dependent manner. Moreover, LMEO caused a S-phase blocking on HepG2 cells and promoted apoptosis in the meanwhile. Western blot results indicated that p53 protein, Cyclin A2 and Bax proteins were up-regulated, while Cyclin E1 and Bcl-2 proteins were down-regulated. CONCLUSION LMEO showed cytotoxicity in various cancer cell lines in vitro. Pharmacological networks showed LMEO to have multi-component and multi-targeting effects that are related to inhibit migration of HepG2 cells, and affect cell cycle S-phase arrest and apoptosis through modulation of p53 protein.
Collapse
Affiliation(s)
- Yun-Fen Wang
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, China
| | - Yang Zheng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yin-Yue Cha
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, China
| | - Yang Feng
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, China
| | - Shao-Xing Dai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Sanjun Zhao
- School of Life Sciences, Yunnan Normal University, Chenggong, Kunming, 650500, China.
| | - Hao Chen
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, China.
| | - Min Xu
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong Campus, Kunming, 650500, China.
| |
Collapse
|
40
|
Walker DM, Lazarova TI, Riesinger SW, Poirier MC, Messier T, Cunniff B, Walker VE. WR1065 conjugated to thiol-PEG polymers as novel anticancer prodrugs: broad spectrum efficacy, synergism, and drug resistance reversal. Front Oncol 2023; 13:1212604. [PMID: 37576902 PMCID: PMC10419174 DOI: 10.3389/fonc.2023.1212604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/27/2023] [Indexed: 08/15/2023] Open
Abstract
The lack of anticancer agents that overcome innate/acquired drug resistance is the single biggest barrier to achieving a durable complete response to cancer therapy. To address this issue, a new drug family was developed for intracellular delivery of the bioactive aminothiol WR1065 by conjugating it to discrete thiol-PEG polymers: 4-star-PEG-S-S-WR1065 (4SP65) delivers four WR1065s/molecule and m-PEG6-S-S-WR1065 (1LP65) delivers one. Infrequently, WR1065 has exhibited anticancer effects when delivered via the FDA-approved cytoprotectant amifostine, which provides one WR1065/molecule extracellularly. The relative anticancer effectiveness of 4SP65, 1LP65, and amifostine was evaluated in a panel of 15 human cancer cell lines derived from seven tissues. Additional experiments assessed the capacity of 4SP65 co-treatments to potentiate the anticancer effectiveness and overcome drug resistance to cisplatin, a chemotherapeutic, or gefitinib, a tyrosine kinase inhibitor (TKI) targeting oncogenic EGFR mutations. The CyQUANT®-NF proliferation assay was used to assess cell viability after 48-h drug treatments, with the National Cancer Institute COMPARE methodology employed to characterize dose-response metrics. In normal human epithelial cells, 4SP65 or 1LP65 enhanced or inhibited cell growth but was not cytotoxic. In cancer cell lines, 4SP65 and 1LP65 induced dose-dependent cytostasis and cytolysis achieving 99% cell death at drug concentrations of 11.2 ± 1.2 µM and 126 ± 15.8 µM, respectively. Amifostine had limited cytostatic effects in 11/14 cancer cell lines and no cytolytic effects. Binary pairs of 4SP65 plus cisplatin or gefitinib increased the efficacy of each partner drug and surmounted resistance to cytolysis by cisplatin and gefitinib in relevant cancer cell lines. 4SP65 and 1LP65 were significantly more effective against TP53-mutant than TP53-wild-type cell lines, consistent with WR1065-mediated reactivation of mutant p53. Thus, 4SP65 and 1LP65 represent a unique prodrug family for innovative applications as broad-spectrum anticancer agents that target p53 and synergize with a chemotherapeutic and an EGFR-TKI to prevent or overcome drug resistance.
Collapse
Affiliation(s)
- Dale M. Walker
- The Burlington HC Research Group, Inc., Jericho, VT, United States
| | | | | | - Miriam C. Poirier
- Carcinogen–DNA Interactions Section, Laboratory of Cellular Carcinogenesis and Tumor Promotion, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Terri Messier
- Department of Pathology and Laboratory Medicine, Redox Biology and Pathology Program, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Brian Cunniff
- Department of Pathology and Laboratory Medicine, Redox Biology and Pathology Program, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Vernon E. Walker
- Department of Pathology and Laboratory Medicine, Redox Biology and Pathology Program, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| |
Collapse
|
41
|
Liu F, Wu X, Wang W, Chang J. A novel immunohistochemical score predicts the postoperative prognosis of gastric cancer patients. World J Surg Oncol 2023; 21:220. [PMID: 37491274 PMCID: PMC10369746 DOI: 10.1186/s12957-023-03113-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND AND AIM Immunohistochemistry indicators are increasingly being used to predict the survival prognosis of cancer patients after surgery. This study aimed to combine some markers to establish an immunohistochemical score (MSI-P53-Ki-67[MPK]) and stratify postoperative patients with gastric cancer according to the score. METHODS We used 245 patients who underwent surgery at one center as the training cohort and 111 patients from another center as the validation cohort. All patients were treated between January 2012 and June 2018. The training cohort was screened for prognostic factors, and MPK scores were established using univariate and multifactorial COX risk proportional models. Patients were prognostically stratified according to the MPK score after gastrectomy for gastric cancer. Overall survival (OS) and recurrence-free survival (RFS) rates were compared among low-, intermediate-, and high-risk groups using the Kaplan-Meier method, and survival curves were plotted. Finally, the MPK score was validated using the validation cohort. RESULTS In the training group, there were statistically significant differences in OS and RFS in the low, medium, and high-risk groups (P < 0.001). Thirty patients were in the high-risk group (12.2%). The median survival times of the three groups were 64.0, 44.0, and 23.0, respectively, and median times to recurrence were 54.0, 35.0, and 16.0 months, respectively. In the validation group, the prognosis in the three risk groups remained significantly different (P < 0.001). CONCLUSIONS The novel MPK score could effectively predict the postoperative OS and RFS of gastric cancer patients, risk-stratify postoperative patients, and identify postoperative high-risk patients for refined management.
Collapse
Affiliation(s)
- Feng Liu
- Department of Gastrointestinal Surgery, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, 215300, People's Republic of China
| | - Xiaoyang Wu
- Department of Gastrointestinal Surgery, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, 215300, People's Republic of China
| | - Weiping Wang
- Department of General Surgery, Kunshan Second People's Hospital, Suzhou, 215300, People's Republic of China
| | - Jun Chang
- Department of General Surgery, Kunshan Second People's Hospital, Suzhou, 215300, People's Republic of China.
| |
Collapse
|
42
|
Zhao HG, Deininger M. Always stressed but never exhausted: how stem cells in myeloid neoplasms avoid extinction in inflammatory conditions. Blood 2023; 141:2797-2812. [PMID: 36947811 PMCID: PMC10315634 DOI: 10.1182/blood.2022017152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/27/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
Chronic or recurrent episodes of acute inflammation cause attrition of normal hematopoietic stem cells (HSCs) that can lead to hematopoietic failure but they drive progression in myeloid malignancies and their precursor clonal hematopoiesis. Mechanistic parallels exist between hematopoiesis in chronic inflammation and the continuously increased proliferation of myeloid malignancies, particularly myeloproliferative neoplasms (MPNs). The ability to enter dormancy, a state of deep quiescence characterized by low oxidative phosphorylation, low glycolysis, reduced protein synthesis, and increased autophagy is central to the preservation of long-term HSCs and likely MPN SCs. The metabolic features of dormancy resemble those of diapause, a state of arrested embryonic development triggered by adverse environmental conditions. To outcompete their normal counterparts in the inflammatory MPN environment, MPN SCs co-opt mechanisms used by HSCs to avoid exhaustion, including signal attenuation by negative regulators, insulation from activating cytokine signals, anti-inflammatory signaling, and epigenetic reprogramming. We propose that new therapeutic strategies may be derived from conceptualizing myeloid malignancies as an ecosystem out of balance, in which residual normal and malignant hematopoietic cells interact in multiple ways, only few of which have been characterized in detail. Disrupting MPN SC insulation to overcome dormancy, interfering with aberrant cytokine circuits that favor MPN cells, and directly boosting residual normal HSCs are potential strategies to tip the balance in favor of normal hematopoiesis. Although eradicating the malignant cell clones remains the goal of therapy, rebalancing the ecosystem may be a more attainable objective in the short term.
Collapse
Affiliation(s)
- Helong Gary Zhao
- Versiti Blood Research Institute and Medical College of Wisconsin, Milwaukee, WI
| | - Michael Deininger
- Versiti Blood Research Institute and Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
43
|
Metur SP, Lei Y, Zhang Z, Klionsky DJ. Regulation of autophagy gene expression and its implications in cancer. J Cell Sci 2023; 136:jcs260631. [PMID: 37199330 PMCID: PMC10214848 DOI: 10.1242/jcs.260631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023] Open
Abstract
Autophagy is a catabolic cellular process that targets and eliminates superfluous cytoplasmic components via lysosomal degradation. This evolutionarily conserved process is tightly regulated at multiple levels as it is critical for the maintenance of homeostasis. Research in the past decade has established that dysregulation of autophagy plays a major role in various diseases, such as cancer and neurodegeneration. However, modulation of autophagy as a therapeutic strategy requires identification of key players that can fine tune the induction of autophagy without complete abrogation. In this Review, we summarize the recent discoveries on the mechanism of regulation of ATG (autophagy related) gene expression at the level of transcription, post transcription and translation. Furthermore, we briefly discuss the role of aberrant expression of ATG genes in the context of cancer.
Collapse
Affiliation(s)
- Shree Padma Metur
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuchen Lei
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhihai Zhang
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
44
|
Mehri A, Mardanshahi M, Sirous H, Khanahmad H, Rostami M. Pyrimido[4,5-b]indole derivatives bearing 1,2,4-oxadiazole moiety as MDM2 inhibitor candidates in cancer treatment. Future Med Chem 2023; 15:517-532. [PMID: 37097083 DOI: 10.4155/fmc-2023-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Aim: In this study, novel hybrid structures of pyrimido-indole-oxadiazole were developed as MDM2 inhibitors for restoring the regular function of the p53. Materials & methods: A multistep chemical pathway was used to synthesize the derivatives. Nutlin-3a was used as a standard lead in molecular docking and molecular dynamics simulations. Finally, cytotoxicity was evaluated against MCF-7 cancer cells versus Doxorubicin. Results: The most promising candidate was 12c, which had an NO2 group in the para position of the oxadiazole ring (IC50: 1.1 μM). A satisfactory result was obtained with the combined application of 12c and Doxorubicin (IC50 decreased to 0.63 μM), which could be potentially attributed to MDM2 inhibition. Conclusion: These hybrid structures can be further investigated as potential MDM2 inhibitors.
Collapse
Affiliation(s)
- Ali Mehri
- Department of Medicinal Chemistry, School of Pharmacy & Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Mahboubeh Mardanshahi
- Department of Medicinal Chemistry, School of Pharmacy & Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Hajar Sirous
- Bioinformatics Research Center, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Hossein Khanahmad
- Department of Genetics & Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Mahboubeh Rostami
- Isfahan Pharmaceutical Sciences Research Center & Department of Medicinal Chemistry, School of Pharmacy & Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| |
Collapse
|
45
|
Song H, Wu J, Tang Y, Dai Y, Xiang X, Li Y, Wu L, Wu J, Liang Y, Xing Y, Yan N, Li Y, Wang Z, Xiao S, Li J, Zheng D, Chen X, Fang H, Ye C, Ma Y, Wu Y, Wu W, Li J, Zhang S, Lu M. Diverse rescue potencies of p53 mutations to ATO are predetermined by intrinsic mutational properties. Sci Transl Med 2023; 15:eabn9155. [PMID: 37018419 DOI: 10.1126/scitranslmed.abn9155] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Tumor suppressor p53 is inactivated by thousands of heterogeneous mutations in cancer, but their individual druggability remains largely elusive. Here, we evaluated 800 common p53 mutants for their rescue potencies by the representative generic rescue compound arsenic trioxide (ATO) in terms of transactivation activity, cell growth inhibition, and mouse tumor-suppressive activities. The rescue potencies were mainly determined by the solvent accessibility of the mutated residue, a key factor determining whether a mutation is a structural one, and the temperature sensitivity, the ability to reassemble the wild-type DNA binding surface at a low temperature, of the mutant protein. A total of 390 p53 mutants were rescued to varying degrees and thus were termed as type 1, type 2a, and type 2b mutations, depending on the degree to which they were rescued. The 33 type 1 mutations were rescued to amounts comparable to the wild type. In PDX mouse trials, ATO preferentially inhibited growth of tumors harboring type 1 and type 2a mutants. In an ATO clinical trial, we report the first-in-human mutant p53 reactivation in a patient harboring the type 1 V272M mutant. In 47 cell lines derived from 10 cancer types, ATO preferentially and effectively rescued type 1 and type 2a mutants, supporting the broad applicability of ATO in rescuing mutant p53. Our study provides the scientific and clinical communities with a resource of the druggabilities of numerous p53 mutations (www.rescuep53.net) and proposes a conceptual p53-targeting strategy based on individual mutant alleles rather than mutation type.
Collapse
Affiliation(s)
- Huaxin Song
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiale Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yigang Tang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinrong Xiang
- Hematology Research Laboratory, West China Hospital, Department of Hematology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ya Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lili Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiaqi Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Liang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yangfei Xing
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ni Yan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuntong Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhengyuan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shujun Xiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiabing Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Derun Zheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinjie Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chenjing Ye
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuting Ma
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yu Wu
- Hematology Research Laboratory, West China Hospital, Department of Hematology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wen Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Junming Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sujiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Min Lu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
46
|
Wang X, Liu Y, Li K, Hao Z. Roles of p53-Mediated Host–Virus Interaction in Coronavirus Infection. Int J Mol Sci 2023; 24:ijms24076371. [PMID: 37047343 PMCID: PMC10094438 DOI: 10.3390/ijms24076371] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
The emergence of the SARS-CoV-2 coronavirus has garnered global attention due to its highly pathogenic nature and the resulting health crisis and economic burden. Although drugs such as Remdesivir have been considered a potential cure by targeting the virus on its RNA polymerase, the high mutation rate and unique 3’ to 5’ exonuclease with proofreading function make it challenging to develop effective anti-coronavirus drugs. As a result, there is an increasing focus on host–virus interactions because coronaviruses trigger stress responses, cell cycle changes, apoptosis, autophagy, and the dysregulation of immune function and inflammation in host cells. The p53 tumor suppressor molecule is a critical regulator of cell signaling pathways, cellular stress responses, DNA repair, and apoptosis. However, viruses can activate or inhibit p53 during viral infections to enhance viral replication and spread. Given its pivotal role in cell physiology, p53 represents a potential target for anti-coronavirus drugs. This review aims to summarize the relationship between p53 and coronaviruses from various perspectives, to shed light on potential targets for antiviral drug development and vaccine design.
Collapse
Affiliation(s)
| | | | | | - Zhihui Hao
- Correspondence: ; Tel./Fax: +86-010-6273-1192
| |
Collapse
|
47
|
Role of Ganetespib, an HSP90 Inhibitor, in Cancer Therapy: From Molecular Mechanisms to Clinical Practice. Int J Mol Sci 2023; 24:ijms24055014. [PMID: 36902446 PMCID: PMC10002602 DOI: 10.3390/ijms24055014] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Heat-shock proteins are upregulated in cancer and protect several client proteins from degradation. Therefore, they contribute to tumorigenesis and cancer metastasis by reducing apoptosis and enhancing cell survival and proliferation. These client proteins include the estrogen receptor (ER), epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R), human epidermal growth factor receptor 2 (HER-2), and cytokine receptors. The diminution of the degradation of these client proteins activates different signaling pathways, such as the PI3K/Akt/NF-κB, Raf/MEK/ERK, and JAK/STAT3 pathways. These pathways contribute to hallmarks of cancer, such as self-sufficiency in growth signaling, an insensitivity to anti-growth signals, the evasion of apoptosis, persistent angiogenesis, tissue invasion and metastasis, and an unbounded capacity for replication. However, the inhibition of HSP90 activity by ganetespib is believed to be a promising strategy in the treatment of cancer because of its low adverse effects compared to other HSP90 inhibitors. Ganetespib is a potential cancer therapy that has shown promise in preclinical tests against various cancers, including lung cancer, prostate cancer, and leukemia. It has also shown strong activity toward breast cancer, non-small cell lung cancer, gastric cancer, and acute myeloid leukemia. Ganetespib has been found to cause apoptosis and growth arrest in these cancer cells, and it is being tested in phase II clinical trials as a first-line therapy for metastatic breast cancer. In this review, we will highlight the mechanism of action of ganetespib and its role in treating cancer based on recent studies.
Collapse
|
48
|
Urachal carcinoma: The journey so far and the road ahead. Pathol Res Pract 2023; 243:154379. [PMID: 36821941 DOI: 10.1016/j.prp.2023.154379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
Urachal carcinoma, a rare cancer arising from urachus, accounts for about 1% of bladder cancer. The diagnosis at stage I shows about 63% 5-year survival whereas only 8% of the patients at stage IV shows a 5-year survival. Above 90% of urachal carcinomas are adenocarcinomas and most of the urachal carcinoma cases are invasive, showing a high resemblance to adenocarcinoma of various origins, making it hard for a conclusive diagnosis. Even though inconclusive, immunohistochemistry can play a significant role in identifying urachal carcinoma. Most cases show the biomarkers CK20 and CDX2, whereas CK7 and β-catenin are expressed at a lesser frequency. Due to the few cases available, there is a lack of evidence regarding specific markers differentiating urachal carcinoma from colorectal or primary bladder adenocarcinomas. In addition to immunohistochemistry, genomic characterization is emerging to play a role in the classification and treatment of the disease. Urachal carcinoma has been reported to have a molecular level similarity with colorectal malignancies regarding certain gene expressions. The TP53 mutations inactivating the tumor suppressor can probably be explored as a possible target in treating urachal carcinoma. Additionally, certain targets identified in gastric and breast cancer along with anti-HER2 treatment strategies can be explored. Immuno-oncology utilizes immune checkpoint inhibitors for the treatment of MSI-H tumors whereas a combination of tyrosine kinase inhibitors along with immune checkpoint inhibitors are being studied to treat MSI stable tumors. The article is an in-depth overview of urachal carcinoma addressing the current landscape with an emphasis on the future scenario.
Collapse
|
49
|
Habelt B, Dörr W. Relative biological effectiveness of low-energy X-rays (25 kV) in mutant p53 cancer cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2023; 62:161-170. [PMID: 36609923 PMCID: PMC9950242 DOI: 10.1007/s00411-022-01014-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Low-energy X-rays as used in radiation therapy and diagnostics such as mammography are associated with a certain risk of promoting tumour development, especially in patients with mutations in cancer-related genes like TP53. The present study therefore addressed the relative biological effectiveness (RBE) of low-energy X-rays for two human adenocarcinoma cell lines of the breast (MDA-MB-468) and pancreas (BxPC-3) with a mutation in the TP53 gene. Clonogenic survival and cytogenetic changes in terms of micronuclei (MN) formation were determined following irradiation with 25 kV X-rays and 200 kV reference irradiation in the dose range of 1-8 Gy. Except the frequency of MN-containing binucleated cells (BNC) (BNC + MN/BNC) in breast cancer cells yielding an RBE between 0.6 and 0.8, both cell lines displayed dose-dependent variations of RBE values between 1 and 2 for all biological end points (cell survival, (BNC + MN/BNC), MN/BNC, MN/(BNC + MN)) with increased effectiveness of 25 kV irradiation in pancreatic compared to breast cancer cells. The results confirm previous findings indicating increased effectiveness of low-energy X-rays and underline the necessity of careful risk estimation for cancer screening programmes.
Collapse
Affiliation(s)
- Bettina Habelt
- Department of Radiotherapy and Radiation Oncology, Medical Faculty Carl Gustav Carus, University of Technology Dresden, Dresden, Germany.
- Department of Psychiatry & Psychotherapy, Medical Faculty Carl Gustav Carus, University of Technology Dresden, Dresden, Germany.
| | - Wolfgang Dörr
- Department of Radiation Oncology, Medical University Vienna, Vienna, Austria
| |
Collapse
|
50
|
Salucci S, Bavelloni A, Stella AB, Fabbri F, Vannini I, Piazzi M, Volkava K, Scotlandi K, Martinelli G, Faenza I, Blalock W. The Cytotoxic Effect of Curcumin in Rhabdomyosarcoma Is Associated with the Modulation of AMPK, AKT/mTOR, STAT, and p53 Signaling. Nutrients 2023; 15:nu15030740. [PMID: 36771452 PMCID: PMC9920154 DOI: 10.3390/nu15030740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Approximately 7% of cancers arising in children and 1% of those arising in adults are soft tissue sarcomas (STS). Of these malignancies, rhabdomyosarcoma (RMS) is the most common. RMS survival rates using current therapeutic protocols have remained largely unchanged in the past decade. Thus, it is imperative that the main molecular drivers in RMS tumorigenesis are defined so that more precise, effective, and less toxic therapies can be designed. Curcumin, a common herbal supplement derived from plants of the Curcuma longa species, has an exceptionally low dietary biotoxicity profile and has demonstrated anti-tumorigenic benefits in vitro. In this study, the anti-tumorigenic activity of curcumin was assessed in rhabdomyosarcoma cell lines and used to identify the major pathways responsible for curcumin's anti-tumorigenic effects. Curcumin treatment resulted in cell cycle arrest, inhibited cell migration and colony forming potential, and induced apoptotic cell death. Proteome profiler array analysis demonstrated that curcumin treatment primarily influenced flux through the AKT-mammalian target of rapamycin (mTOR), signal transducer and activator of transcription (STAT), AMP-dependent kinase (AMPK), and p53 associated pathways in a rhabdomyosarcoma subtype-specific manner. Thus, the strategic, combinational therapeutic targeting of these pathways may present the best option to treat this group of tumors.
Collapse
Affiliation(s)
- Sara Salucci
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna, 40126 Bologna, Italy
| | - Alberto Bavelloni
- Laboratorio di Oncologia Sperimentale, IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Anna Bartoletti Stella
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Università di Bologna, 40126 Bologna, Italy
| | - Francesco Fabbri
- Laboratorio di Bioscienze, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Ivan Vannini
- Laboratorio di Bioscienze, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Manuela Piazzi
- ‘‘Luigi Luca Cavalli-Sforza’’ Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerca (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Karyna Volkava
- Dipartimento di Farmacia e Biotecnologie (FABIT), Università di Bologna, 40126 Bologna, Italy
| | - Katia Scotlandi
- Laboratorio di Oncologia Sperimentale, IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Giovanni Martinelli
- Laboratorio di Bioscienze, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Irene Faenza
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna, 40126 Bologna, Italy
- Correspondence: (I.F.); (W.B.)
| | - William Blalock
- ‘‘Luigi Luca Cavalli-Sforza’’ Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerca (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Correspondence: (I.F.); (W.B.)
| |
Collapse
|