1
|
Xie J, Wu M, Li L, Zhu L, Hu L, Li Y, Li W. Integrated bioinformatics and experimental verification to dissect the mechanisms and bioactive ingredients of Radix Rehmanniae in treating multiple sclerosis. Biochem Biophys Res Commun 2025; 763:151790. [PMID: 40233432 DOI: 10.1016/j.bbrc.2025.151790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/22/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025]
Abstract
Multiple sclerosis (MS), as a primary cause of nontraumatic disability in young adults, has no effective treatment yet. Radix Rehmanniae (RR), a typical Traditional Chinese Medicine (TCM), is commonly used in MS patients as a most frequent herbal item in TCM formulas. Our recent study demonstrated that RR alleviated neurological deficits in an experimental MS model. However, direct evidence regarding the holistic mechanisms and bioactive components of RR for MS remains unclear. In this study, we employed an integrative strategy combining bioinformatics and experimental validation to profile the holistic mechanisms of RR, identify its bioactive components, and investigate their potential targets in MS. First, a network pharmacology approach was used to construct a "compound-target-pathway" network, indicating the action of RR on MS in a multicomponent-multitarget mode, and predicting Echinacoside and Acteoside as the primary bioactive ingredients. Bioinformatics analyses of transcriptomics and single-cell RNA sequencing based on GSE datasets indicated that oxidative stress and inflammatory/immune regulation in microglia might serve as crucial mechanisms of Echinacoside and Acteoside in MS pathology. Then, in vitro assays validated that Echinacoside and Acteoside possessed anti-inflammatory and antioxidant properties by scavenging ONOO- and H2O2 directly, and suppressing microglia-derived ONOO- production through inhibition of NF-κB-mediated iNOS and NADPH oxidase. In addition, molecular docking showed strong affinities between Acteoside and inflammation-related targets TGF-β and SMAD2. These findings provide the scientific evidence for clinical application of RR and bring novel insights into MS drug development.
Collapse
Affiliation(s)
- Jing Xie
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China; The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Meiling Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Li Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China.
| | - Lixia Zhu
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China.
| | - Liang Hu
- School of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yuzhen Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China.
| | - Wenting Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China.
| |
Collapse
|
2
|
Rahamathulla M, Kumar R, AlRashdan Y, Bose MM, Muthukumar A, Salahuddin M, Ahmed MM, Shivanandappa TB, Pasha I. Neuroprotective Effects of Cucurbita pepo Extract in Cuprizone-Induced Multiple Sclerosis Animal Model. Mol Neurobiol 2025:10.1007/s12035-025-04934-1. [PMID: 40254703 DOI: 10.1007/s12035-025-04934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/08/2025] [Indexed: 04/22/2025]
Abstract
Cuprizone is a neurotoxin with copper-chelating ability, and it produces symptoms that are similar to those caused by multiple sclerosis lesions. Multiple sclerosis induced by cuprizone in animal models depicts oxidative stress as one of the prime factors in pathogenesis. Neurodegeneration has become an extremely serious issue on a global scale. It is preferable to use natural therapy to stop the disease's progression and future occurrences. Cucurbita pepo is a plant with neuroprotective properties and antioxidant properties. The purpose of this study was to determine the ameliorative capability of C. pepo in cuprizone-induced behavioral parameters and histopathological alterations in Wistar rats. The study included four groups of rats: a control group (normal saline), a cuprizone-induced group, and two treatment groups receiving C. pepo at low (200 mg/kg) and high (400 mg/kg) doses for 5 weeks. We exposed the rats to a rotarod test, a forced swimming test, and an elevated plus maze test to assess their behavioral parameters, including motor coordination and anxiety level. Following the study, animals were sacrificed, and brain tissues were extracted to resolve biochemical analysis for oxidative stress along with histopathological changes to determine and compare the oxidative stress between the inducer and treated group and also to analyze the remyelination ability of C. pepo in the disease-induced rat. Results revealed that the rats treated with C. pepo demonstrated significant improvements in motor coordination (P < 0.001) and reduced anxiety-like behavior (P < 0.01) and oxidative stress markers, such as superoxide dismutase and catalase activity. Histopathological analysis showed reduced demyelination and enhanced neuronal integrity in treated groups. These findings indicate that C. pepo attenuates cuprizone-induced oxidative stress and demyelination, supporting its neuroprotective potential in multiple sclerosis models.
Collapse
Affiliation(s)
- Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Al Faraa, 62223, Abha, Saudi Arabia
| | - Rupesh Kumar
- Department of Pharmacology, Alameen College of Pharmacy, Bangalore, India.
| | - Yazan AlRashdan
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, University of Jordan, Amman, 11180, Jordan
| | - Madhura M Bose
- Department of Pharmacology, Alameen College of Pharmacy, Bangalore, India
| | | | - Md Salahuddin
- Department of Pharmaceutical Chemistry, Al-Ameen College of Pharmacy, Bengaluru, Karnataka, 560027, India
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al Kharj, 11942, Saudi Arabia
| | | | - Ismail Pasha
- Department of Pharmacology, Orotta College of Medicine and Health Science, Asmara, Eritrea.
| |
Collapse
|
3
|
Boutet A, Son HJ, Malik M, Haile S, Yang AZ, Pai V, Germann J, Mandell DM. Enlarging and shrinking focal perivascular spaces. Neuroradiol J 2025; 38:224-229. [PMID: 38565221 PMCID: PMC11571348 DOI: 10.1177/19714009241242642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Background and PurposePerivascular spaces (PVS) are interstitial fluid-filled spaces surrounding blood vessels traversing the deep gray nuclei and white matter of the brain. These are commonly encountered on CT and MR imaging and are generally asymptomatic and of no clinical significance. However, occasional changes in the size of focal PVS, for example, when enlarging, may mimic pathologies including neoplasms and infections, hence potentially confounding radiological interpretation. Given these potential diagnostic issues, we sought to better characterize common clinical and imaging features of focal PVS demonstrating size fluctuations.Materials and MethodsUpon institutional approval, we retrospectively identified 4 cases demonstrating PVS with size changes at our institution. To supplement our cases, we also performed a literature review, which identified an additional 14 cases. Their clinical and imaging data were analyzed to identify characteristic features.ResultsOf the 18 total cases (including the 4 institutional cases), 10 cases increased and 8 decreased in size. These focal PVS ranged from 0.4-4.5 cm in size. Whereas a decrease in size did not represent a diagnostic issue, focal increase in size of PVS led to concerning differential diagnoses in at least 30% of the radiology reports. These enlarging PVS were most found in the basal ganglia and temporal lobe, and in patients with previous brain radiation treatment.ConclusionFocal size change of PVS can occur, especially years after brain radiation treatment. Being cognizant of this benign finding is important to consider in the differential diagnosis to avoid undue patient anxiety or unnecessary medical intervention.
Collapse
Affiliation(s)
- Alexandre Boutet
- Joint Department of Medical Imaging, University of Toronto, Canada
| | - Hyo Jin Son
- Temerty Faculty of Medicine, University of Toronto, Canada
| | - Mikail Malik
- Temerty Faculty of Medicine, University of Toronto, Canada
| | - Samuel Haile
- Temerty Faculty of Medicine, University of Toronto, Canada
| | - Andrew Z Yang
- Division of Neurosurgery, University of Toronto, Canada
| | - Vivek Pai
- Joint Department of Medical Imaging, University of Toronto, Canada
- Division of Neuroradiology, Department of Diagnostic Imaging, The Hospital for Sick Children, Canada
| | | | - Daniel M Mandell
- Joint Department of Medical Imaging, University of Toronto, Canada
| |
Collapse
|
4
|
Kruczkowska W, Gałęziewska J, Buczek P, Płuciennik E, Kciuk M, Śliwińska A. Overview of Metformin and Neurodegeneration: A Comprehensive Review. Pharmaceuticals (Basel) 2025; 18:486. [PMID: 40283923 PMCID: PMC12030719 DOI: 10.3390/ph18040486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
This comprehensive review examines the therapeutic potential of metformin, a well-established diabetes medication, in treating neurodegenerative disorders. Originally used as a first-line treatment for type 2 diabetes, recent studies have begun investigating metformin's effects beyond metabolic disorders, particularly its neuroprotective capabilities against conditions like Parkinson's disease, Alzheimer's disease, Huntington's disease, and multiple sclerosis. Key findings demonstrate that metformin's neuroprotective effects operate through multiple pathways: AMPK activation enhancing cellular energy metabolism and autophagy; upregulation of antioxidant defenses; suppression of inflammation; inhibition of protein aggregation; and improvement of mitochondrial function. These mechanisms collectively address common pathological features in neurodegeneration and neuroinflammation, including oxidative stress, protein accumulation, and mitochondrial dysfunction. Clinical and preclinical evidence supporting metformin's association with improved cognitive performance, reduced risk of dementia, and modulation of pathological hallmarks of neurodegenerative diseases is critically evaluated. While metformin shows promise as a therapeutic agent, this review emphasizes the need for further investigation to fully understand its mechanisms and optimal therapeutic applications in neurodegenerative diseases.
Collapse
Affiliation(s)
- Weronika Kruczkowska
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (P.B.); (E.P.)
| | - Julia Gałęziewska
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (P.B.); (E.P.)
| | - Paulina Buczek
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (P.B.); (E.P.)
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (P.B.); (E.P.)
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| |
Collapse
|
5
|
Dehghani S, Ocakcı O, Hatipoglu PT, Özalp VC, Tevlek A. Exosomes as Biomarkers and Therapeutic Agents in Neurodegenerative Diseases: Current Insights and Future Directions. Mol Neurobiol 2025:10.1007/s12035-025-04825-5. [PMID: 40095345 DOI: 10.1007/s12035-025-04825-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
Neurodegenerative diseases (NDs) like Alzheimer's, Parkinson's, and ALS rank among the most challenging global health issues, marked by substantial obstacles in early diagnosis and effective treatment. Current diagnostic techniques frequently demonstrate inadequate sensitivity and specificity, whilst conventional treatment strategies encounter challenges related to restricted bioavailability and insufficient blood-brain barrier (BBB) permeability. Recently, exosomes-nanoscale vesicles packed with proteins, RNAs, and lipids-have emerged as promising agents with the potential to reshape diagnostic and therapeutic approaches to these diseases. Unlike conventional drug carriers, they naturally traverse the BBB and can deliver bioactive molecules to affected neural cells. Their molecular cargo can influence cell signaling, reduce neuroinflammation, and potentially slow neurodegenerative progression. Moreover, exosomes serve as non-invasive biomarkers, enabling early and precise diagnosis while allowing real-time disease monitoring. Additionally, engineered exosomes, loaded with therapeutic molecules, enhance this capability by targeting diseased neurons and overcoming conventional treatment barriers. By offering enhanced specificity, reduced immunogenicity, and an ability to bypass physiological limitations, exosome-based strategies present a transformative advantage over existing diagnostic and therapeutic approaches. This review examines the multifaceted role of exosomes in NDDs, emphasizing their diagnostic capabilities, intrinsic therapeutic functions, and transformative potential as advanced treatment vehicles.
Collapse
Affiliation(s)
- Sam Dehghani
- Faculty of Medicine, Undergraduate Program, Atılım University, 06830, Ankara, Turkey
| | - Ozgecan Ocakcı
- Department of Medical Biology, Faculty of Medicine, AtıLıM University, 06830, Ankara, Turkey
| | - Pars Tan Hatipoglu
- Faculty of Medicine, Undergraduate Program, Atılım University, 06830, Ankara, Turkey
| | - Veli Cengiz Özalp
- Department of Medical Biology, Faculty of Medicine, AtıLıM University, 06830, Ankara, Turkey
| | - Atakan Tevlek
- Department of Medical Biology, Faculty of Medicine, AtıLıM University, 06830, Ankara, Turkey.
| |
Collapse
|
6
|
Essel RR, Krieger B, Bellenberg B, Müller D, Ladopoulos T, Gold R, Schneider R, Lukas C. Lesion assessment in multiple sclerosis: a comparison between synthetic and conventional fluid-attenuated inversion recovery imaging. Front Neurol 2025; 16:1537465. [PMID: 40144619 PMCID: PMC11936806 DOI: 10.3389/fneur.2025.1537465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Background and purpose Magnetic resonance imaging (MRI)-based lesion quantification is essential for the diagnosis of and prognosis in multiple sclerosis (MS). This study compares an established software's performance for automated volumetric and numerical segmentation of MS brain lesions using synthetic T2-weighted fluid-attenuated inversion recovery (FLAIR) MRI, based on a multi-dynamic, multi-echo sequence (MDME), vs. conventional FLAIR imaging. Methods To ensure comparability, 3D FLAIR images were resampled to 4 mm axial slices to match the synthetic images' slice thickness. Lesion segmentation was performed using the Lesion Prediction Algorithm within the Lesion Segmentation Toolbox. For the assessment of spatial differences between lesion segmentations from both sequences, all lesion masks were registered to a brain template in the standard space. Spatial agreement between the two sequences was evaluated by calculating Sørensen-Dice coefficients (SDC) of the segmented and registered lesion masks. Additionally, average lesion masks for both synthetic and conventional FLAIR were created and displayed as overlays on a brain template to visualize segmentation differences. Results Both total lesion volume (TLV) and total lesion number (TLN) were significantly higher for synthetic MRI (11.0 ± 12.8 mL, 19.5 ± 12.1 lesions) than for conventional images (6.1 ± 8.5 mL, 17.9 ± 12.5 lesions). Bland-Altman plot analysis showed minimal TLV differences between synthetic and conventional FLAIR in patients with low overall lesion loads. The intraclass coefficient (ICC) indicated excellent agreement between both measurements, with values of 0.88 for TLV and 0.89 for TLN. The mean SDC was 0.47 ± 0.15. Conclusion Despite some limitations, synthetic FLAIR imaging holds promise as an alternative to conventional FLAIR for assessing MS lesions, especially in patients with low lesion load. However, further refinement is needed to reduce unwanted artifacts that may affect image quality.
Collapse
Affiliation(s)
- Roald Ruwen Essel
- Institute of Neuroradiology, St. Josef Hospital Bochum, Ruhr-Universität Bochum, Bochum, Germany
| | - Britta Krieger
- Institute of Neuroradiology, St. Josef Hospital Bochum, Ruhr-Universität Bochum, Bochum, Germany
| | - Barbara Bellenberg
- Institute of Neuroradiology, St. Josef Hospital Bochum, Ruhr-Universität Bochum, Bochum, Germany
| | - Dajana Müller
- Institute of Neuroradiology, St. Josef Hospital Bochum, Ruhr-Universität Bochum, Bochum, Germany
| | - Theodoros Ladopoulos
- Department of Neurology, St. Josef Hospital Bochum, Ruhr-Universität Bochum, Bochum, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef Hospital Bochum, Ruhr-Universität Bochum, Bochum, Germany
| | - Ruth Schneider
- Department of Neurology, St. Josef Hospital Bochum, Ruhr-Universität Bochum, Bochum, Germany
| | - Carsten Lukas
- Institute of Neuroradiology, St. Josef Hospital Bochum, Ruhr-Universität Bochum, Bochum, Germany
- Department of Neurology, St. Josef Hospital Bochum, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
7
|
Zonouz AM, Rahbardar MG, Alibolandi M. Exosome-based platforms for treatment of multiple sclerosis. Brain Res Bull 2025; 222:111256. [PMID: 39952444 DOI: 10.1016/j.brainresbull.2025.111256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/18/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune illness characterized by inflammation and demyelination of the central nervous system (CNS). The effective delivery of therapeutic agents to the CNS continues to be an important barrier in MS treatment due to the blood-brain barrier and limited access to the affected areas. Exosome-based drug delivery systems have become an attractive option for targeted therapy in MS. Exosomes, small extracellular vesicles derived from various cell types, possess unique biological properties that make them ideal nanocarriers for delivering therapeutic cargo to specific cell populations in the CNS. In this study, we supply a comprehensive overview of the current advances and future perspectives of exosome-based drug delivery systems for MS. We discuss the biogenesis of exosomes, strategies for cargo loading, engineering approaches to enhance their targeting capabilities, and the potential clinical applications of exosome-mediated drug delivery in MS therapy. Additionally, we explore preclinical studies and animal models that demonstrate the effectiveness of exosome-based drug delivery in ameliorating MS pathology. By highlighting the challenges and opportunities in utilizing exosomes as drug delivery vehicles, this review aims to contribute to the growing body of knowledge in the field of nanomedicine for MS. Considering the potential of exosome-based drug delivery systems to enhance the accessibility, specificity, and effectiveness of therapies while minimizing off-target effects might change the therapeutic scenario for MS.
Collapse
Affiliation(s)
- Aidin Mohammadi Zonouz
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Farzan M, Saberi-Rounkian M, Asadi-Rizi A, Heidari Z, Farzan M, Fathi M, Aghaei A, Azadegan-Dehkordi F, Bagheri N. The emerging role of the microglia triggering receptor expressed on myeloid cells (TREM) 2 in multiple sclerosis. Exp Neurol 2025; 384:115071. [PMID: 39586397 DOI: 10.1016/j.expneurol.2024.115071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND The chronic inflammatory condition known as multiple sclerosis (MS) causes inflammation and demyelination in the central nervous system (CNS). The activation of multiple cell types, including the CNS's resident immune cells called microglia, is a component of the immunological response in MS. Recently, the triggering receptor expressed on myeloid cells (TREM) family has emerged as a crucial player in modulating microglial function and subsequent neuroinflammation. Understanding the role of TREM receptors in MS pathogenesis could provide insightful information on how to develop new therapeutic approaches. MAIN BODY The TREM family consists of several receptors, including TREM-1 and TREM-2, which can be expressed on both immune cells, such as myeloid cells and microglia, and non-immune cells. These receptors interact with their respective ligands and regulate signaling pathways, ultimately leading to the control of microglial activation and inflammatory reactions. TREM-2, in particular, has garnered significant interest because of its connection with MS and other neurodegenerative diseases. The activation of microglia through TREM receptors in MS is thought to influence the equilibrium between helpful and detrimental inflammatory responses. TREM receptors can promote the phagocytosis of myelin debris and remove apoptotic cells, thus contributing to tissue repair and regeneration. However, excessive or dysregulated activation of microglia mediated by TREM receptors can lead to the release of pro-inflammatory cytokines and neurotoxic factors, exacerbating neuroinflammation and neurodegeneration in MS. CONCLUSION The emerging role of the TREM family in demyelinating diseases highlights the importance of microglia in disease pathogenesis. Understanding the mechanisms by which TREM receptors modulate microglial function can provide valuable insights into the development of targeted therapies for these disorders. By selectively targeting TREM receptors, it may be possible to harness their beneficial effects on tissue repair while dampening their detrimental pro-inflammatory responses. Further research is warranted to elucidate the precise signaling pathways and ligand interactions involved in TREM-mediated microglial activation, which could uncover novel therapeutic avenues for treating MS and other neuroinflammatory disorders.
Collapse
Affiliation(s)
- Mahan Farzan
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; Medical Plants Research Center, Basic Health Sciences institute, Shahrekord University of Medical sciences, Shahrekord, Iran
| | - Masoumeh Saberi-Rounkian
- Student Research committee, School of Paramedicine, Guilan University of Medical sciences, Rasht, Iran
| | - Atefeh Asadi-Rizi
- Young researchers and Elite club, Flavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Zahra Heidari
- Medical Plants Research Center, Basic Health Sciences institute, Shahrekord University of Medical sciences, Shahrekord, Iran
| | - Mahour Farzan
- Medical Plants Research Center, Basic Health Sciences institute, Shahrekord University of Medical sciences, Shahrekord, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ava Aghaei
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; Medical Plants Research Center, Basic Health Sciences institute, Shahrekord University of Medical sciences, Shahrekord, Iran
| | - Fatemeh Azadegan-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Nader Bagheri
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
9
|
Sethi P, Mehan S, Khan Z, Maurya PK, Kumar N, Kumar A, Tiwari A, Sharma T, Das Gupta G, Narula AS, Kalfin R. The SIRT-1/Nrf2/HO-1 axis: Guardians of neuronal health in neurological disorders. Behav Brain Res 2025; 476:115280. [PMID: 39368713 DOI: 10.1016/j.bbr.2024.115280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
SIRT1 (Sirtuin 1) is a NAD+-dependent deacetylase that functions through nucleoplasmic transfer and is present in nearly all mammalian tissues. SIRT1 is believed to deacetylate its protein substrates, resulting in neuroprotective actions, including reduced oxidative stress and inflammation, increased autophagy, increased nerve growth factors, and preserved neuronal integrity in aging or neurological disease. Nrf2 is a transcription factor that regulates the genes responsible for oxidative stress response and substance detoxification. The activation of Nrf2 guards cells against oxidative damage, inflammation, and carcinogenic stimuli. Several neurological abnormalities and inflammatory disorders have been associated with variations in Nrf2 activation caused by either pharmacological or genetic factors. Recent evidence indicates that Nrf2 is at the center of a complex cellular regulatory network, establishing it as a transcription factor with genuine pleiotropy. HO-1 is most likely a component of a defense mechanism in cells under stress, as it provides negative feedback for cell activation and mediator synthesis. This mediator is upregulated by Nrf2, nitric oxide (NO), and other factors in various inflammatory states. HO-1 or its metabolites, such as CO, may mitigate inflammation by modulating signal transduction pathways. Neurological diseases may be effectively treated by modulating the activity of HO-1. Multiple studies have demonstrated that SIRT1 and Nrf2 share an important connection. SIRT1 enhances Nrf2, activates HO-1, protects against oxidative injury, and decreases neuronal death. This has been associated with numerous neurodegenerative and neuropsychiatric disorders. Therefore, activating the SIRT1/Nrf2/HO-1 pathway may help treat various neurological disorders. This review focuses on the current understanding of the SIRT1 and Nrf2/HO-1 neuroprotective processes and the potential therapeutic applications of their target activators in neurodegenerative and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Pranshul Sethi
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Pankaj Kumar Maurya
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| | - Aakash Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, Sofia 1113, Bulgaria; Department of Healthcare, South-West University "NeofitRilski", Ivan Mihailov St. 66, Blagoevgrad 2700, Bulgaria
| |
Collapse
|
10
|
Al-Ameri M, Mansour M, Al-Habahbeh S, Weshah F, Ennab W, Gammoh O. Symptoms of PTSD and depression in newly diagnosed people with multiple sclerosis during the outbreak Oct.7th war on Gaza: A case-control study from Jordan. Mult Scler Relat Disord 2025; 93:106206. [PMID: 39631135 DOI: 10.1016/j.msard.2024.106206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/09/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
The present study examined the severity and the correlates of post-traumatic stress disorder (PTSD) and depression symptoms severity in newly diagnosed people with multiple sclerosis (PwMS) compared to healthy people during the outbreak of the Oct.7th war on Gaza. This is a cross-sectional case-control study recruiting 63 PwMS and 79 controls. The severity of PTSD and depression were measured using validated scales. There was no significant (p>0.05) difference in PTSD and depression scores between the PwMS and the controls. In addition, PwMS who experienced one or more relapses since diagnosis were at a significantly higher risk (B=9.29, t=2.06, p=0.04) for severe PTSD and severe depressive (OR=5.50, 95% CI=1.32-22.92, p=0.01). The study of the mental health of PwMS during times of crisis is emerging in developing countries, future larger-scale and follow-up studies are yet required.
Collapse
Affiliation(s)
- Mariam Al-Ameri
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan.
| | | | | | - Feras Weshah
- Department of Neurology, Al-Bashir Hospital, Amman, Jordan
| | - Wail Ennab
- Department of Neurology, Al-Bashir Hospital, Amman, Jordan
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan.
| |
Collapse
|
11
|
Sharma K, Dixon KM, Münch G, Chang D, Zhou X. Ultraviolet and infrared radiation in Australia: assessing the benefits, risks, and optimal exposure guidelines. Front Public Health 2024; 12:1505904. [PMID: 39744344 PMCID: PMC11688272 DOI: 10.3389/fpubh.2024.1505904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Despite extensive research, determining the optimal level of sunlight exposure for human health remains a challenge, emphasizing the need for ongoing scientific inquiry into this critical aspect of human well-being. This review aims to elucidate how different components of the solar spectrum, particularly near-infrared (NIR) radiation and ultraviolet radiation (UVR) affect human health in diverse ways depending on factors such as time of day and duration of exposure. Sunlight has beneficial effects from the production of melatonin by NIR and vitamin D by UVB. Sunlight also causes harmful effects as evidenced by oxidative stress and DNA damage. Exposure to morning and evening sunlight when the UV index is below 3 is suggested to be beneficial for harnessing its positive effects while avoiding the harmful effects of UVR when the UV index is 3 or higher. Understanding the optimal timing and duration of sunlight exposure is crucial for harnessing its beneficial effects while minimizing its harmful consequences by adopting appropriate sun protection measures. By adhering to sun protection guidelines when the UV index is 3 or more and incorporating strategic exposure to NIR rays when the UV index is less than 3, individuals can optimize their health outcomes while mitigating the risks associated with sun exposure. Given that the effects of sun exposure can be both harmful and beneficial, and Australia's unique geographical position where it experiences the highest levels of exposure to sunlight, it is vital to understand the appropriate level and timing of sun exposure to live healthy under the Australian sun.
Collapse
Affiliation(s)
- Kirti Sharma
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Katie M. Dixon
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Gerald Münch
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown Campus, Sydney, NSW, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| |
Collapse
|
12
|
Sastri KT, Gupta NV, Kannan A, Dutta S, Ali M Osmani R, V B, Ramkishan A, S S. The next frontier in multiple sclerosis therapies: Current advances and evolving targets. Eur J Pharmacol 2024; 985:177080. [PMID: 39491741 DOI: 10.1016/j.ejphar.2024.177080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Recent advancements in research have significantly enhanced our comprehension of the intricate immune components that contribute to multiple sclerosis (MS) pathogenesis. By conducting an in-depth analysis of complex molecular interactions involved in the immunological cascade of the disease, researchers have successfully identified novel therapeutic targets, leading to the development of innovative therapies. Leveraging pioneering technologies in proteomics, genomics, and the assessment of environmental factors has expedited our understanding of the vulnerability and impact of these factors on the progression of MS. Furthermore, these advances have facilitated the detection of significant biomarkers for evaluating disease activity. By integrating these findings, researchers can design novel molecules to identify new targets, paving the way for improved treatments and enhanced patient care. Our review presents recent discoveries regarding the pathogenesis of MS, highlights their genetic implications, and proposes an insightful approach for engaging with newer therapeutic targets in effectively managing this debilitating condition.
Collapse
Affiliation(s)
- K Trideva Sastri
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India.
| | - N Vishal Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India.
| | - Anbarasu Kannan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Suman Dutta
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - Balamuralidhara V
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - A Ramkishan
- Deputy Drugs Controller (India), Central Drugs Standard Control Organization, Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| | | |
Collapse
|
13
|
Jalilian M, Elhaie M, Sharifi M, Abedi I. Assessment of axonal injury in multiple sclerosis: combined analysis of serum light-chain neurofilaments and diffusion tensor imaging. BMJ Neurol Open 2024; 6:e000788. [PMID: 39649079 PMCID: PMC11624819 DOI: 10.1136/bmjno-2024-000788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 11/18/2024] [Indexed: 12/10/2024] Open
Abstract
Background Multiple sclerosis (MS) is a chronic neuroinflammatory condition characterised by demyelination and axonal damage in the central nervous system. Diffusion tensor imaging (DTI) enables non-invasive investigation of microstructural white matter alterations, while serum neurofilament light chain (NFL) holds promise as a fluid biomarker of axonal injury. Objectives To use DTI and serum NFL measurements to evaluate white matter pathology in patients with MS and explore the relationship between in vivo imaging and biochemical indicators of axonal damage. Methods 41 patients with relapse-remitting MS and 41 age-matched healthy controls underwent brain MRI including DTI acquisition. Serum samples were analysed for NFL concentrations using ELISA. Region of interest analysis was conducted to derive DTI metrics including fractional anisotropy, mean diffusivity, axial diffusivity and radial diffusivity. Correlational analyses were used to explore the associations between the imaging and biochemical indices. Results Patients exhibited significantly elevated serum NFL levels and altered DTI metrics compared with controls, indicative of axonal/myelin pathology. DTI parameters were positively correlated with serum NFL concentration (p value<0.0001). Visual analogue scale scores demonstrated a significant positive relationship between DTI metrics and NFL, validating their potential as radiological and fluid-based markers of symptom severity. Conclusions Combined DTI and serum NFL measurements may enhance the evaluation of axonal injury in MS by providing complementary in vivo and biochemical perspectives. The corresponding changes observed between the modalities support their utility as non-invasive biomarkers reflecting pathophysiological processes and clinical status in MS. Larger validation cohorts are needed to determine the clinical applicability.
Collapse
Affiliation(s)
- Milad Jalilian
- Department of Neuroscience and Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran (the Islamic Republic of)
| | - Mohammadreza Elhaie
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran (the Islamic Republic of)
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran (the Islamic Republic of)
| | - Iraj Abedi
- Department of Medical Physics, Isfahan University of Medical Sciences, Isfahan, Iran (the Islamic Republic of)
| |
Collapse
|
14
|
Sokratous D, Charalambous CC, Zamba—Papanicolaou E, Michailidou K, Konstantinou N. A 12-week in-phase bilateral upper limb exercise protocol promoted neuroplastic and clinical changes in people with relapsing remitting multiple sclerosis: A registered report randomized single-case concurrent multiple baseline study. PLoS One 2024; 19:e0299611. [PMID: 39418242 PMCID: PMC11486400 DOI: 10.1371/journal.pone.0299611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
INTRODUCTION Relapsing-Remitting Multiple Sclerosis manifests various motor symptoms including impairments in corticospinal tract integrity, whose symptoms can be assessed using transcranial magnetic stimulation. Several factors, such as exercise and interlimb coordination, can influence the plastic changes in corticospinal tract. Previous work in healthy and chronic stroke survivors showed that the greatest improvement in corticospinal plasticity occurred during in-phase bilateral exercises of the upper limbs. Altered corticospinal plasticity due to bilateral lesions in the central nervous system is common after Multiple Sclerosis, yet the effect of in-phase bilateral exercise on the bilateral corticospinal plasticity in this cohort remains unclear. Our aim was to investigate the effects of in-phase bilateral exercises on central motor conduction time, motor evoked potential amplitude and latency, motor threshold and clinical measures in people with Relapsing-Remitting Multiple Sclerosis. METHODS Five people were randomized and recruited in this single case concurrent multiple baseline design study. The intervention protocol lasted for 12 consecutive weeks (30-60 minutes /session x 3 sessions / week) and included in-phase bilateral upper limb movements, adapted to different sports activities and to functional motor training. To define the functional relation between the intervention and the results, we conducted a visual analysis. If a potential sizeable effect was observed, we subsequently performed a statistical analysis. RESULTS Results demonstrated bilateral reduction of the motor threshold alongside with improvement of all clinical measures, but not in any other corticospinal plasticity measures. CONCLUSION Our preliminary findings suggest that in-phase bilateral exercise affects motor threshold in people with Relapsing-Remitting Multiple Sclerosis. Therefore, this measure could potentially serve as a proxy for detecting corticospinal plasticity in this cohort. However, future studies with larger sample sizes should validate and potentially establish the effect of in-phase bilateral exercise on the corticospinal plasticity and clinical measures in this cohort. TRIAL REGISTRATION Clinical trial registration: ClinicalTrials.gov NCT05367947.
Collapse
Affiliation(s)
- Dimitris Sokratous
- Department of Rehabilitation Sciences, Faculty of Health Sciences, Cyprus University of Technology, Limassol, Cyprus
- Physiotherapy Unit, Neurology Clinics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | | | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Nikos Konstantinou
- Department of Rehabilitation Sciences, Faculty of Health Sciences, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
15
|
Miscioscia A, Mainero C, Treaba CA, Silvestri E, Scialpi G, Berardi A, Causin F, Anglani MG, Rinaldi F, Perini P, Puthenparampil M, Bertoldo A, Gallo P. The contribution of paramagnetic rim and cortical lesions to physical and cognitive disability at multiple sclerosis clinical onset: evaluating the power of MRI and OCT biomarkers. J Neurol 2024; 271:6702-6714. [PMID: 39155316 DOI: 10.1007/s00415-024-12622-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND In multiple sclerosis (MS), imaging biomarkers play a crucial role in characterizing the disease at the time of diagnosis. MRI and optical coherence tomography (OCT) provide readily available biomarkers that may help to define the patient's clinical profile. However, the evaluation of cortical and paramagnetic rim lesions (CL, PRL), as well as retinal atrophy, is not routinely performed in clinic. OBJECTIVE To identify the most significant MRI and OCT biomarkers associated with early clinical disability in MS. METHODS Brain, spinal cord (SC) MRI, and OCT scans were acquired from 45 patients at MS diagnosis to obtain: brain PRL and non-PRL, CL, SC lesion volumes and counts, brain volumetric metrics, SC C2-C3 cross-sectional area, and retinal layer thickness. Regression models assessed relationships with physical disability (Expanded Disability Status Scale [EDSS]) and cognitive performance (Brief International Cognitive Assessment for Multiple Sclerosis [BICAMS]). RESULTS In a stepwise regression (R2 = 0.526), PRL (β = 0.001, p = 0.023) and SC lesion volumes (β = 0.001, p = 0.017) were the most significant predictors of EDSS, while CL volume and age were strongly associated with BICAMS scores. Moreover, in a model where PRL and non-PRL were pooled, only the contribution of SC lesion volume was retained in EDSS prediction. OCT measures did not show associations with disability at the onset. CONCLUSION At MS onset, PRL and SC lesions exhibit the strongest association with physical disability, while CL strongly contribute to cognitive performance. Incorporating the evaluation of PRL and CL into the initial MS patient assessment could help define their clinical profile, thus supporting the treatment choice.
Collapse
Affiliation(s)
- Alessandro Miscioscia
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Bldg 149, 13th Street, Charlestown, MA, 02129, USA.
- Department of Neuroscience, University of Padua, Padua, Italy.
- Multiple Sclerosis Centre of the Veneto Region (CeSMuV), Padua University Hospital, Padua, Italy.
| | - Caterina Mainero
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Bldg 149, 13th Street, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, USA
| | - Constantina A Treaba
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Bldg 149, 13th Street, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, USA
| | - Erica Silvestri
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Graziana Scialpi
- Multiple Sclerosis Centre of the Veneto Region (CeSMuV), Padua University Hospital, Padua, Italy
| | - Angela Berardi
- Multiple Sclerosis Centre of the Veneto Region (CeSMuV), Padua University Hospital, Padua, Italy
| | | | | | - Francesca Rinaldi
- Multiple Sclerosis Centre of the Veneto Region (CeSMuV), Padua University Hospital, Padua, Italy
| | - Paola Perini
- Multiple Sclerosis Centre of the Veneto Region (CeSMuV), Padua University Hospital, Padua, Italy
| | - Marco Puthenparampil
- Department of Neuroscience, University of Padua, Padua, Italy
- Multiple Sclerosis Centre of the Veneto Region (CeSMuV), Padua University Hospital, Padua, Italy
| | | | - Paolo Gallo
- Department of Neuroscience, University of Padua, Padua, Italy
- Multiple Sclerosis Centre of the Veneto Region (CeSMuV), Padua University Hospital, Padua, Italy
| |
Collapse
|
16
|
Mohammadi S, Ghaderi S, Fatehi F. Quantitative Susceptibility Mapping Values Quantification in Deep Gray Matter Structures for Relapsing-Remitting Multiple Sclerosis: A Systematic Review and Meta-Analysis. Brain Behav 2024; 14:e70093. [PMID: 39415615 PMCID: PMC11483550 DOI: 10.1002/brb3.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND/OBJECTIVES This systematic review and meta-analysis aimed to investigate the role of magnetic susceptibility (χ) in deep gray matter (DGM) structures, including the putamen (PUT), globus pallidus (GP), caudate nucleus (CN), and thalamus, in the most common types of multiple sclerosis (MS) and relapsing-remitting MS (RRMS), using quantitative susceptibility mapping (QSM). METHODS The literature was systematically reviewed up to November 2023, adhering to PRISMA guidelines. This study was conducted using a random-effects model to calculate the standardized mean difference (SMD) in QSM values between patients with RRMS and healthy controls (HCs). Publication bias and risk of bias were also assessed. RESULTS Nine studies involving 1074 RRMS patients with RRMS and 640 HCs were included in the meta-analysis. The results showed significantly higher QSM (χ) values in the PUT (SMD = 0.40, 95% confidence interval [CI] = 0.22-0.59, p = .000), GP (SMD = 0.60, 95% CI = 0.50-0.70, p = .00), and CN (SMD = 0.40, 95% CI = 0.15-0.66, p = .005) of RRMS patients compared to HCs. However, there were no significant differences in the QSM values in the thalamus between patients with RRMS and HCs (SMD = -0.33, 95% CI -0.67-0.01, p = .026). Age- and sex-based subgroup analysis demonstrated that younger patients (< 40 years) in the PUT, GP, and CN groups and larger male populations (> 25%) in the PUT and GP groups had more significant χ. Interestingly, thalamic QSM values were found to decrease in RRMS patients over 40 years of age and in higher male populations. Sex-based subgroup analysis indicated higher iron levels in the PUT and GP of RRMS patients regardless of sex. QSM values were higher in certain brain regions (PUT, GP, and CN) during the early stages (disease duration < 9.6 years) of RRMS, but lower in the thalamus during the later stages (disease duration > 9.6 years) than HCs. DISCUSSION/CONCLUSION QSM may serve as a biomarker for understanding χ value alterations such as iron dysregulation and its contribution to neurodegeneration in RRMS, especially in the basal ganglia nuclei including PUT, GP, and CN.
Collapse
Affiliation(s)
- Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Neurology DepartmentUniversity Hospitals of Leicester NHS TrustLeicesterUK
| |
Collapse
|
17
|
Richardson B, Goedert T, Quraishe S, Deinhardt K, Mudher A. How do neurons age? A focused review on the aging of the microtubular cytoskeleton. Neural Regen Res 2024; 19:1899-1907. [PMID: 38227514 DOI: 10.4103/1673-5374.390974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/01/2023] [Indexed: 01/17/2024] Open
Abstract
Aging is the leading risk factor for Alzheimer's disease and other neurodegenerative diseases. We now understand that a breakdown in the neuronal cytoskeleton, mainly underpinned by protein modifications leading to the destabilization of microtubules, is central to the pathogenesis of Alzheimer's disease. This is accompanied by morphological defects across the somatodendritic compartment, axon, and synapse. However, knowledge of what occurs to the microtubule cytoskeleton and morphology of the neuron during physiological aging is comparatively poor. Several recent studies have suggested that there is an age-related increase in the phosphorylation of the key microtubule stabilizing protein tau, a modification, which is known to destabilize the cytoskeleton in Alzheimer's disease. This indicates that the cytoskeleton and potentially other neuronal structures reliant on the cytoskeleton become functionally compromised during normal physiological aging. The current literature shows age-related reductions in synaptic spine density and shifts in synaptic spine conformation which might explain age-related synaptic functional deficits. However, knowledge of what occurs to the microtubular and actin cytoskeleton, with increasing age is extremely limited. When considering the somatodendritic compartment, a regression in dendrites and loss of dendritic length and volume is reported whilst a reduction in soma volume/size is often seen. However, research into cytoskeletal change is limited to a handful of studies demonstrating reductions in and mislocalizations of microtubule-associated proteins with just one study directly exploring the integrity of the microtubules. In the axon, an increase in axonal diameter and age-related appearance of swellings is reported but like the dendrites, just one study investigates the microtubules directly with others reporting loss or mislocalization of microtubule-associated proteins. Though these are the general trends reported, there are clear disparities between model organisms and brain regions that are worthy of further investigation. Additionally, longitudinal studies of neuronal/cytoskeletal aging should also investigate whether these age-related changes contribute not just to vulnerability to disease but also to the decline in nervous system function and behavioral output that all organisms experience. This will highlight the utility, if any, of cytoskeletal fortification for the promotion of healthy neuronal aging and potential protection against age-related neurodegenerative disease. This review seeks to summarize what is currently known about the physiological aging of the neuron and microtubular cytoskeleton in the hope of uncovering mechanisms underpinning age-related risk to disease.
Collapse
Affiliation(s)
- Brad Richardson
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Thomas Goedert
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
| | - Shmma Quraishe
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Katrin Deinhardt
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Amritpal Mudher
- School of Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
18
|
Albadawi EA. Microstructural Changes in the Corpus Callosum in Neurodegenerative Diseases. Cureus 2024; 16:e67378. [PMID: 39310519 PMCID: PMC11413839 DOI: 10.7759/cureus.67378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
The corpus callosum, the largest white matter structure in the brain, plays a crucial role in interhemispheric communication and cognitive function. This review examines the microstructural changes observed in the corpus callosum across various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis (ALS). New neuroimaging studies, mainly those that use diffusion tensor imaging (DTI) and advanced tractography methods, were put together to show how changes have happened in the organization of white matter and the connections between them. Some of the most common ways the corpus callosum breaks down are discussed, including less fractional anisotropy, higher mean diffusivity, and atrophy in certain regions. The relationship between these microstructural changes and cognitive decline, motor dysfunction, and disease progression is explored. Additionally, we consider the potential of corpus callosum imaging as a biomarker for early disease detection and monitoring. Studies show that people with these disorders have lower fractional anisotropy and higher mean diffusivity in the corpus callosum, often in ways that are specific to the disease. These changes often happen before gray matter atrophy and are linked to symptoms, which suggests that the corpus callosum could be used as an early sign of neurodegeneration. The review also highlights the implications of these findings for understanding disease mechanisms and developing therapeutic strategies. Future directions, including the application of advanced imaging techniques and longitudinal studies, are discussed to elucidate the role of corpus callosum degeneration in neurodegenerative processes. This review underscores the importance of the corpus callosum in understanding the pathophysiology of neurodegenerative diseases and its potential as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Emad A Albadawi
- Department of Basic Medical Sciences, College of Medicine, Taibah Univeristy, Madinah, SAU
| |
Collapse
|
19
|
Alkhazaali-Ali Z, Sahab-Negah S, Boroumand AR, Tavakol-Afshari J. MicroRNA (miRNA) as a biomarker for diagnosis, prognosis, and therapeutics molecules in neurodegenerative disease. Biomed Pharmacother 2024; 177:116899. [PMID: 38889636 DOI: 10.1016/j.biopha.2024.116899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Neurodegenerative diseases that include Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), Huntington's disease (HD), and multiple sclerosis (MS) that arise due to numerous causes like protein accumulation and autoimmunity characterized by neurologic depletion which lead to incapacity in normal physiological function such as thinking and movement in these patients. Glial cells perform an important role in protective neuronal function; in the case of neuroinflammation, glial cell dysfunction can promote the development of neurodegenerative diseases. miRNA that participates in gene regulation and plays a vital role in many biological processes in the body; in the central nervous system (CNS), it can play an essential part in neural maturation and differentiation. In neurodegenerative diseases, miRNA dysregulation occurs, enhancing the development of these diseases. In this review, we discuss neurodegenerative disease (Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS)) and how miRNA is preserved as a diagnostic biomarker or therapeutic agent in these disorders. Finally, we highlight miRNA as therapy.
Collapse
Affiliation(s)
- Zahraa Alkhazaali-Ali
- Department of Immunology, Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Amir Reza Boroumand
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol-Afshari
- Department of Immunology, Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
20
|
Stojsavljević A, Jagodić J, Perović T, Manojlović D, Pavlović S. Changes of Target Essential Trace Elements in Multiple Sclerosis: A Systematic Review and Meta-Analysis. Biomedicines 2024; 12:1589. [PMID: 39062163 PMCID: PMC11274787 DOI: 10.3390/biomedicines12071589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Multiple sclerosis (MS) is a chronic, complex, and demyelinating disease closely associated with altered levels of trace elements. Although the first studies into the role of trace elements in MS were published in the 1970s, for five decades it has remained unknown whether trace elements can be part of this heterogeneous neurological disease. (2) Materials and methods: To drive toward at a potential solution, we conducted a systematic review and meta-analysis to elucidate whether there were differences in circulating levels of neurologically important essential trace elements (Zn, Fe, Co, Cu, Mn, and Se) between MS cases and controls. (3) Results: This study revealed significantly lower serum/plasma Zn and Fe levels and higher Cu levels in MS-affected individuals compared to controls. At the same time, no significant differences were found between the MS cases and controls regarding their serum/plasma levels of Co, Mn, or Se. Thus, the loss of Fe and Zn should be considered in supplementation/nutrition strategies for MS patients. On the other hand, since high serum Cu levels indicate a burden on the bloodstreams of MS patients, Cu should be excluded from mineral supplement strategies. Furthermore, all three trace elements (Fe, Zn, and Cu) should be considered from an etiological point of view, and, most importantly, their levels in the bloodstreams of MS patients should be monitored. (4) Conclusions: This study highlights the way for personalized and targeted strategies in the management of MS.
Collapse
Affiliation(s)
- Aleksandar Stojsavljević
- Innovation Center, Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia
| | - Jovana Jagodić
- Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia; (J.J.); (D.M.)
| | - Tatjana Perović
- Psychiatric Hospital, University Medical Center Zvezdara, 11000 Belgrade, Serbia;
- Serbian RE&CBT Centre, 11000 Belgrade, Serbia
| | - Dragan Manojlović
- Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia; (J.J.); (D.M.)
| | - Slađan Pavlović
- Institute for Biological Research “Siniša Stanković”-National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia;
| |
Collapse
|
21
|
Anand MAV, Manjula KS, Wang CZ. Functional Role of DDR1 in Oligodendrocyte Signaling Mechanism in Association with Myelination and Remyelination Process in the Central Nerve System. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2024; 67:161-173. [PMID: 39175192 DOI: 10.4103/ejpi.ejpi-d-24-00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
ABSTRACT Multiple sclerosis (MS) is a complicated, inflammatory disease that causes demyelination of the central nervous system (CNS), resulting in a variety of neurological abnormalities. Over the past several decades, different animal models have been used to replicate the clinical symptoms and neuropathology of MS. The experimental model of experimental autoimmune/allergic encephalomyelitis (EAE) and viral and toxin-induced model was widely used to investigate the clinical implications of MS. Discoidin domain receptor 1 (DDR1) signaling in oligodendrocytes (OL) brings a new dimension to our understanding of MS pathophysiology. DDR1 is effectively involved in the OL during neurodevelopment and remyelination. It has been linked to many cellular processes, including migration, invasion, proliferation, differentiation, and adhesion. However, the exact functional involvement of DDR1 in developing OL and myelinogenesis in the CNS remains undefined. In this review, we critically evaluate the current literature on DDR1 signaling in OL and its proliferation, migration, differentiation, and myelination mechanism in OL in association with the progression of MS. It increases our knowledge of DDR1 in OL as a novel target molecule for oligodendrocyte-associated diseases in the CNS, including MS.
Collapse
Affiliation(s)
| | - Kumar Shivamadhaiah Manjula
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chau-Zen Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Professional Studies, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
22
|
Chisari CG, Aguglia U, Amato MP, Bergamaschi R, Bertolotto A, Bonavita S, Morra VB, Cavalla P, Cocco E, Conte A, Cottone S, De Luca G, Di Sapio A, Filippi M, Gallo A, Gasperini C, Granella F, Lus G, Maimone D, Maniscalco GT, Marfia G, Moiola L, Paolicelli D, Pesci I, Ragonese P, Rovaris M, Salemi G, Solaro C, Totaro R, Trojano M, Vianello M, Zaffaroni M, Lepore V, Patti F. Long-term effectiveness of natalizumab in secondary progressive multiple sclerosis: A propensity-matched study. Neurotherapeutics 2024; 21:e00363. [PMID: 38714462 PMCID: PMC11284548 DOI: 10.1016/j.neurot.2024.e00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/12/2024] [Indexed: 05/09/2024] Open
Abstract
Treatment options for secondary progressive MS (SPMS) are limited, especially considering that the new drugs recently approved are licensed for actively relapsing patients. We aimed to compare the disability progression in a real-world cohort of SPMS patients treated with natalizumab (NTZ) or interferon beta-1b (IFNb-1b). This multicenter retrospective enrolled patients with a diagnosis of SPMS according to 2014 Lublin criteria, who received NTZ or IFNb-1b for at least 48 months between the 1st June 2012 and the 15th May 2018 at 33 Italian MS centers contributing to the Italian MS Registry NTZ or IFNb-1b. Confirmed Expanded Disability Status Scale worsening (CEW) and progression independent of relapse (PIRA) were evaluated. In order to correct for non-randomization, a propensity score matching of the groups was performed. Out of 5206 MS patients identified at the time of data extraction, 421 SPMS patients treated with NTZ (224 [53.2%] females, mean age 45.3 ± 25.4 years) and 353 with IFNb-1b (133 [37.8%] females, mean age 48.5 ± 19.8 years) were enrolled. After applying the matching procedure, 102 patients were retained in the NTZ group and 98 in the IFNb-2b group. The proportion of patients who reached the 48-month 1-point CEW was significantly higher in IFNb-1b compared to NTZ group (58.2% versus 30.4%, p = 0.01). The proportion of patients who developed PIRA at 48 months were significantly higher in IFNb-1b compared to NTZ (72.4% versus 40.2%, p = 0.01). EDSS before treatment initiation and SPMS duration were risk factors for disability progression in terms of PIRA (HR 2.54, 25%CI 1.67-5.7; p = 0.006 and HR 2.04, 25%CI 1.22-3.35; p = 0.01, respectively). Patients treated with IFNb-1b were 1.64 times more to likely to develop PIRA (HR 1.64, 25%CI 1.04-4.87; p = 0.001). Treatment with NTZ in SPMS patients showed more favorable disability outcomes compared to IFNb-1b with beneficial effects over 48 months.
Collapse
Affiliation(s)
- Clara G Chisari
- Department "GF. Ingrassia"; Section of Neurosciences, University of Catania, Italy; UOS Sclerosi Multipla, AOU Policlinico "G. Rodolico-San Marco", University of Catania, Catania, Italy
| | - Umberto Aguglia
- Regional Epilepsy Centre, Great Metropolitan "Bianchi-Melacrino-Morelli" Hospital, Reggio Calabria, Italy
| | - Maria Pia Amato
- Department NEUROFARBA, Section Neurosciences, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | | | - Antonio Bertolotto
- Department of Neurology and Multiple Sclerosis Regional Referral Centre, AOU San Luigi Gonzaga, Orbassano, Turin, Italy
| | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli" Naples, Italy
| | | | - Paola Cavalla
- Multiple Sclerosis Center, Department of Neuroscience and Mental Health, City of Health and Science University Hospital of Torino, Torino, Italy
| | - Eleonora Cocco
- Multiple Sclerosis Centre Binaghi Hospital, ATS Sardegna-University of Cagliari, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed Pozzili, Italy
| | | | - Giovanna De Luca
- Multiple Sclerosis Center, Neurology Clinic, Policlinico SS Annunziata, University of Chieti-Pescara, Chieti, Italy
| | - Alessia Di Sapio
- Department of Neurology and Multiple Sclerosis Regional Referral Centre, AOU San Luigi Gonzaga, Orbassano, Turin, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Gallo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli" Naples, Italy
| | - Claudio Gasperini
- Department of Neuroscience, UOC Neurology, San Camillo-Forlanini Hospital, Rome, Italy
| | - Franco Granella
- Neurosciences Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giacomo Lus
- Department of Advanced Medical and Surgical Sciences, II Division of Neurology, Multiple Sclerosis Center, University of Campania 'L. Vanvitelli', Naples, Italy
| | - Davide Maimone
- Centro Sclerosi Multipla, UOC Neurologia, Azienda Ospedaliera Cannizzaro, Catania, Italy
| | | | - Girolama Marfia
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Lucia Moiola
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Damiano Paolicelli
- Department of Translational Biomedicines and Neurosciences University of Bari, A. Moro, Bari, Italy
| | - Ilaria Pesci
- Centro Sclerosi Multipla Unità Operativa Neurologia, Azienda Unità Sanitaria Locale, Ospedale Di Vaio, Fidenza, Parma, Italy
| | - Paolo Ragonese
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, Palermo University, Palermo, Italy
| | | | - Giuseppe Salemi
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, Palermo University, Palermo, Italy
| | - Claudio Solaro
- Department of Rehabilitation, C.R.R.F. "Mons. L. Novarese", Loc. Trompone, Moncrivello, (VC), Italy
| | - Rocco Totaro
- Demyelinating Disease Center, Neurology Unit, University of L'Aquila, L'Aquila, Italy
| | - Maria Trojano
- School of Medicine, University "Aldo Moro", Bari, Italy
| | | | - Mauro Zaffaroni
- Multiple Sclerosis Center, ASST della Valle Olona, Ospedale di Gallarate, (VA), Italy
| | - Vito Lepore
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Francesco Patti
- Department "GF. Ingrassia"; Section of Neurosciences, University of Catania, Italy; UOS Sclerosi Multipla, AOU Policlinico "G. Rodolico-San Marco", University of Catania, Catania, Italy.
| |
Collapse
|
23
|
Takase EO, Yamasaki R, Nagata S, Watanabe M, Masaki K, Yamaguchi H, Kira JI, Takeuchi H, Isobe N. Astroglial connexin 43 is a novel therapeutic target for chronic multiple sclerosis model. Sci Rep 2024; 14:10877. [PMID: 38740862 PMCID: PMC11091090 DOI: 10.1038/s41598-024-61508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
In chronic stages of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalitis (EAE), connexin (Cx)43 gap junction channel proteins are overexpressed because of astrogliosis. To elucidate the role of increased Cx43, the central nervous system (CNS)-permeable Cx blocker INI-0602 was therapeutically administered. C57BL6 mice with chronic EAE initiated by MOG35-55 received INI-0602 (40 mg/kg) or saline intraperitoneally every other day from days post-immunization (dpi) 17-50. Primary astroglia were employed to observe calcein efflux responses. In INI-0602-treated mice, EAE clinical signs improved significantly in the chronic phase, with reduced demyelination and decreased CD3+ T cells, Iba-1+ and F4/80+ microglia/macrophages, and C3+GFAP+ reactive astroglia infiltration in spinal cord lesions. Flow cytometry analysis of CD4+ T cells from CNS tissues revealed significantly reduced Th17 and Th17/Th1 cells (dpi 24) and Th1 cells (dpi 50). Multiplex array of cerebrospinal fluid showed significantly suppressed IL-6 and significantly increased IL-10 on dpi 24 in INI-0602-treated mice, and significantly suppressed IFN-γ and MCP-1 on dpi 50 in the same group. In vitro INI-0602 treatment inhibited ATP-induced calcium propagations of Cx43+/+ astroglial cells to similar levels of those of Cx43-/- cells. Astroglial Cx43 hemichannels represent a novel therapeutic target for chronic EAE and MS.
Collapse
Affiliation(s)
- Ezgi Ozdemir Takase
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Satoshi Nagata
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Mitsuru Watanabe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Katsuhisa Masaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroo Yamaguchi
- School of Physical Therapy, Faculty of Rehabilitation, Reiwa Health Sciences University, Fukuoka, Japan
| | - Jun-Ichi Kira
- Translational Neuroscience Center, Graduate School of Medicine, and School of Pharmacy at Fukuoka, International University of Health and Welfare, Ookawa, Japan
- Department of Neurology, Brain and Nerve Center, Fukuoka Central Hospital, Fukuoka, Japan
| | - Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
- Department of Neurology, Graduate School of Medicine, International University of Health and Welfare, Narita, Japan.
- Center for Intractable Neurological Diseases and Dementia, International University of Health and Welfare Atami Hospital, Atami, Japan.
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
24
|
Stojsavljević A, Jagodić J, Pavlović S, Dinčić E, Kuveljić J, Manojlović D, Živković M. Essential trace element levels in multiple sclerosis: Bridging demographic and clinical gaps, assessing the need for supplementation. J Trace Elem Med Biol 2024; 83:127421. [PMID: 38452433 DOI: 10.1016/j.jtemb.2024.127421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic demyelinating disorder intricately linked to perturbations in trace element levels. While previous studies have explored circulating trace elements in a limited sample, understanding the impact of demographic and clinical variables on the elemental profile within a larger cohort remains elusive. METHODS This study aimed to evaluate essential trace elements (Cr, Mn, Co, Cu, Zn, and Se) in the sera of 215 MS patients compared to a meticulously matched control group of 100 individuals with similar gender and age. Our main objective was to identify potential variations in elemental profiles based on demographic and clinical parameters among MS patients, elucidating the prospective relevance of supplementing specific essential trace elements. RESULTS Data indicated a significant decrease in serum levels of Mn, Co, Zn, and Se, and an increase in Cr in MS patients compared to controls. These trace elements not only discriminated between MS patients and controls but also exhibited distinctive capabilities among demographic subgroups. Gender, smoking habits, and age strata (20-40 years and 41-60 years) revealed discernible variations in elemental profiles between MS patients and their control counterparts. Se demonstrated the singular ability to stratify cases of extreme MS severity, mild relapsing-remitting MS (RRMS) and highly severe secondary progressive MS (SPMS). In contrast, Co significantly differentiated RRMS from primary progressive MS (PPMS), while Cu significantly differentiated SPMS from PPMS. Additionally, Cu showed a negative correlation with MSSS, while Mn and Zn showed a positive correlation with EDSS. CONCLUSION These findings underscore a substantive deficiency in Mn, Co, Zn, and Se in the MS cohort, supporting targeted supplementation with these trace elements. This study provides a comprehensive understanding of the intricate relationship between essential trace elements and MS, paving the way for further research into personalized nutritional interventions for this complex neurological disorder.
Collapse
Affiliation(s)
| | - Jovana Jagodić
- University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
| | - Slađan Pavlović
- Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Evica Dinčić
- Military Medical Academy, Clinic for Neurology, Belgrade, Serbia; University of Defense in Belgrade, Serbia
| | - Jovana Kuveljić
- VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | | | - Maja Živković
- VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
25
|
Saedmocheshi S, Yousfi N, Chamari K. Breaking boundaries: the transformative role of exercise in managing multiple sclerosis. EXCLI JOURNAL 2024; 23:475-490. [PMID: 38741722 PMCID: PMC11089092 DOI: 10.17179/excli2024-6932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/13/2024] [Indexed: 05/16/2024]
Abstract
Multiple sclerosis (MS) is a prevalent cause of physical disability in adults, with inflammation-induced demyelination and neurodegeneration contributing to its etiology. This comprehensive review explores the multifaceted benefits of exercise in managing MS, including improvements in aerobic capacity, balance, muscle strength, immune and hormonal functions and mood. Various exercise modalities, such as aerobic, resistance, flexibility, and balance training, are discussed, along with tailored protocols for MS patients. Recommended exercise strategies are: aerobic exercise: 2-3x/week; 10-30 minutes (40 %-60 % of maximum heart rate (HRmax), HIIT: 1x/week, five 30-90-second intervals at 90 %-100 % HRmax, Resistance training: 2-3x/week, 5-10 exercises; 1-3 sets for each exercise, 8-15 repetitions/set. The review also examines the impact of exercise on neuroplasticity, cardiovascular responses, cytokine modulation, stress hormone regulation, brain structure, and function and fatigue perception. Emphasizing the importance of exercise in enhancing the quality of life for individuals with MS, the review proposes exercise prescriptions and highlights the promising link between physical activity, brain health, and improved hormonal and immune status in MS patients. This review aims to inform future research and guide clinical practices for effective MS management.
Collapse
Affiliation(s)
- Saber Saedmocheshi
- Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj, Iran
| | - Narimen Yousfi
- Tunisian Research Laboratory "Sport Performance Optimisation", (LR09SEP01) National Center of Medicine and Science in Sport, Tunis, Tunisia
| | - Karim Chamari
- Higher Institute of Sport and Physical Education, ISSEP Ksar Said, Manouba University, Tunis, Tunisia
| |
Collapse
|
26
|
Lazzarotto A, Hamzaoui M, Tonietto M, Dubessy AL, Khalil M, Pirpamer L, Ropele S, Enzinger C, Battaglini M, Stromillo ML, De Stefano N, Filippi M, Rocca MA, Gallo P, Gasperini C, Stankoff B, Bodini B. Time is myelin: early cortical myelin repair prevents atrophy and clinical progression in multiple sclerosis. Brain 2024; 147:1331-1343. [PMID: 38267729 PMCID: PMC10994569 DOI: 10.1093/brain/awae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/15/2023] [Accepted: 01/13/2024] [Indexed: 01/26/2024] Open
Abstract
Cortical myelin loss and repair in multiple sclerosis (MS) have been explored in neuropathological studies, but the impact of these processes on neurodegeneration and the irreversible clinical progression of the disease remains unknown. Here, we evaluated in vivo cortical demyelination and remyelination in a large cohort of people with all clinical phenotypes of MS followed up for 5 years using magnetization transfer imaging (MTI), a technique that has been shown to be sensitive to myelin content changes in the cortex. We investigated 140 people with MS (37 clinically isolated syndrome, 71 relapsing-MS, 32 progressive-MS), who were clinically assessed at baseline and after 5 years and, along with 84 healthy controls, underwent a 3 T-MRI protocol including MTI at baseline and after 1 year. Changes in cortical volume over the radiological follow-up were computed with a Jacobian integration method. Magnetization transfer ratio was employed to calculate for each patient an index of cortical demyelination at baseline and of dynamic cortical demyelination and remyelination over the follow-up period. The three indices of cortical myelin content change were heterogeneous across patients but did not significantly differ across clinical phenotypes or treatment groups. Cortical remyelination, which tended to fail in the regions closer to CSF (-11%, P < 0.001), was extensive in half of the cohort and occurred independently of age, disease duration and clinical phenotype. Higher indices of cortical dynamic demyelination (β = 0.23, P = 0.024) and lower indices of cortical remyelination (β = -0.18, P = 0.03) were significantly associated with greater cortical atrophy after 1 year, independently of age and MS phenotype. While the extent of cortical demyelination predicted a higher probability of clinical progression after 5 years in the entire cohort [odds ratio (OR) = 1.2; P = 0.043], the impact of cortical remyelination in reducing the risk of accumulating clinical disability after 5 years was significant only in the subgroup of patients with shorter disease duration and limited extent of demyelination in cortical regions (OR = 0.86, P = 0.015, area under the curve = 0.93). In this subgroup, a 30% increase in cortical remyelination nearly halved the risk of clinical progression at 5 years, independently of clinical relapses. Overall, our results highlight the critical role of cortical myelin dynamics in the cascade of events leading to neurodegeneration and to the subsequent accumulation of irreversible disability in MS. Our findings suggest that early-stage myelin repair compensating for cortical myelin loss has the potential to prevent neuro-axonal loss and its long-term irreversible clinical consequences in people with MS.
Collapse
Affiliation(s)
- Andrea Lazzarotto
- Department of Neuroscience, Sorbonne Université, Paris Brain Institute, CNRS, Inserm, 75013 Paris, France
- AP-HP, Hôpital Universitaire Pitié-Salpêtrière, 75013 Paris, France
- Padova Neuroscience Center, University of Padua, 35122 Padua, Italy
| | - Mariem Hamzaoui
- Department of Neuroscience, Sorbonne Université, Paris Brain Institute, CNRS, Inserm, 75013 Paris, France
| | - Matteo Tonietto
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 91400 Orsay, France
- Roche Pharma Research & Early Development, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | | | - Michael Khalil
- Department of Neurology, Medical University of Graz, 8036 Graz, Austria
| | - Lukas Pirpamer
- Department of Neurology, Medical University of Graz, 8036 Graz, Austria
- Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering, University of Basel, CH-4051 Basel, Switzerland
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, 8036 Graz, Austria
| | | | - Marco Battaglini
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Maria Laura Stromillo
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Maria Assunta Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Paolo Gallo
- Padova Neuroscience Center, University of Padua, 35122 Padua, Italy
- Multiple Sclerosis Centre of Veneto Region, 35128 Padua, Italy
| | | | - Bruno Stankoff
- Department of Neuroscience, Sorbonne Université, Paris Brain Institute, CNRS, Inserm, 75013 Paris, France
- AP-HP, Hôpital Universitaire Pitié-Salpêtrière, 75013 Paris, France
| | - Benedetta Bodini
- Department of Neuroscience, Sorbonne Université, Paris Brain Institute, CNRS, Inserm, 75013 Paris, France
- AP-HP, Hôpital Universitaire Pitié-Salpêtrière, 75013 Paris, France
| |
Collapse
|
27
|
Ramos-González EJ, Bitzer-Quintero OK, Ortiz G, Hernández-Cruz JJ, Ramírez-Jirano LJ. Relationship between inflammation and oxidative stress and its effect on multiple sclerosis. Neurologia 2024; 39:292-301. [PMID: 38553104 DOI: 10.1016/j.nrleng.2021.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/28/2021] [Indexed: 04/02/2024] Open
Abstract
INTRODUCTION This paper highlights the relationship of inflammation and oxidative stress as damage mechanisms of Multiple Sclerosis (MS), considered an inflammatory and autoimmune disease. DEVELOPMENT The oxidative stress concept has been defined by an imbalance between oxidants and antioxidants in favor of the oxidants. There is necessary to do physiological functions, like the respiration chain, but in certain conditions, the production of reactive species overpassed the antioxidant systems, which could cause tissue damage. On the other hand, it is well established that inflammation is a complex reaction in the vascularized connective tissue in response to diverse stimuli. However, an unregulated prolonged inflammatory process also can induce tissue damage. CONCLUSION Both inflammation and oxidative stress are interrelated since one could promote the other, leading to a toxic feedback system, which contributes to the inflammatory and demyelination process in MS.
Collapse
Affiliation(s)
- E J Ramos-González
- Unidad de Investigacion Biomedica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas, Zacatecas, Mexico
| | - O K Bitzer-Quintero
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - G Ortiz
- Departamento de Diciplinas Metodológicas y Filosóficas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - J J Hernández-Cruz
- Departamento de Diciplinas Metodológicas y Filosóficas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - L J Ramírez-Jirano
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
28
|
Dziedzic A, Maciak K, Miller ED, Starosta M, Saluk J. Targeting Vascular Impairment, Neuroinflammation, and Oxidative Stress Dynamics with Whole-Body Cryotherapy in Multiple Sclerosis Treatment. Int J Mol Sci 2024; 25:3858. [PMID: 38612668 PMCID: PMC11011409 DOI: 10.3390/ijms25073858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/05/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Multiple sclerosis (MS), traditionally perceived as a neurodegenerative disease, exhibits significant vascular alternations, including blood-brain barrier (BBB) disruption, which may predispose patients to increased cardiovascular risks. This vascular dysfunction is intricately linked with the infiltration of immune cells into the central nervous system (CNS), which plays a significant role in perpetuating neuroinflammation. Additionally, oxidative stress serves not only as a byproduct of inflammatory processes but also as an active contributor to neural damage. The synthesis of these multifaceted aspects highlights the importance of understanding their cumulative impact on MS progression. This review reveals that the triad of vascular damage, chronic inflammation, and oxidative imbalance may be considered interdependent processes that exacerbate each other, underscoring the need for holistic and multi-targeted therapeutic approaches in MS management. There is a necessity for reevaluating MS treatment strategies to encompass these overlapping pathologies, offering insights for future research and potential therapeutic interventions. Whole-body cryotherapy (WBCT) emerges as one of the potential avenues for holistic MS management approaches which may alleviate the triad of MS progression factors in multiple ways.
Collapse
Affiliation(s)
- Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (K.M.)
| | - Karina Maciak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (K.M.)
| | - Elżbieta Dorota Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland; (E.D.M.); (M.S.)
| | - Michał Starosta
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland; (E.D.M.); (M.S.)
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (K.M.)
| |
Collapse
|
29
|
Turano E, Scambi I, Bonafede R, Dusi S, Angelini G, Lopez N, Marostica G, Rossi B, Furlan R, Constantin G, Mariotti R, Bonetti B. Extracellular vesicles from adipose mesenchymal stem cells target inflamed lymph nodes in experimental autoimmune encephalomyelitis. Cytotherapy 2024; 26:276-285. [PMID: 38231166 DOI: 10.1016/j.jcyt.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/29/2023] [Accepted: 12/26/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND AIMS Adipose mesenchymal stem cells (ASCs) represent a promising therapeutic approach in inflammatory neurological disorders, including multiple sclerosis (MS). Recent lines of evidence indicate that most biological activities of ASCs are mediated by the delivery of soluble factors enclosed in extracellular vesicles (EVs). Indeed, we have previously demonstrated that small EVs derived from ASCs (ASC-EVs) ameliorate experimental autoimmune encephalomyelitis (EAE), a murine model of MS. The precise mechanisms and molecular/cellular target of EVs during EAE are still unknown. METHODS To investigate the homing of ASC-EVs, we intravenously injected small EVs loaded with ultra-small superparamagnetic iron oxide nanoparticles (USPIO) at disease onset in EAE-induced C57Bl/6J mice. Histochemical analysis and transmission electron microscopy were carried out 48 h after EV treatment. Moreover, to assess the cellular target of EVs, flow cytometry on cells extracted ex vivo from EAE mouse lymph nodes was performed. RESULTS Histochemical and ultrastructural analysis showed the presence of labeled EVs in lymph nodes but not in lungs and spinal cord of EAE injected mice. Moreover, we identified the cellular target of EVs in EAE lymph nodes by flow cytometry: ASC-EVs were preferentially located in macrophages, with a consistent amount also noted in dendritic cells and CD4+ T lymphocytes. CONCLUSIONS This represents the first direct evidence of the privileged localization of ASC-EVs in draining lymph nodes of EAE after systemic injection. These data provide prominent information on the distribution, uptake and retention of ASC-EVs, which may help in the development of EV-based therapy in MS.
Collapse
Affiliation(s)
- Ermanna Turano
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Ilaria Scambi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Roberta Bonafede
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Silvia Dusi
- Division of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Gabriele Angelini
- Division of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Nicola Lopez
- Division of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Giulia Marostica
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Rossi
- Division of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Gabriela Constantin
- Division of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Raffaella Mariotti
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Bruno Bonetti
- Neurology Unit, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy.
| |
Collapse
|
30
|
Wang Q, Feng D, Jia S, Lu Q, Zhao M. B-Cell Receptor Repertoire: Recent Advances in Autoimmune Diseases. Clin Rev Allergy Immunol 2024; 66:76-98. [PMID: 38459209 DOI: 10.1007/s12016-024-08984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
In the field of contemporary medicine, autoimmune diseases (AIDs) are a prevalent and debilitating group of illnesses. However, they present extensive and profound challenges in terms of etiology, pathogenesis, and treatment. A major reason for this is the elusive pathophysiological mechanisms driving disease onset. Increasing evidence suggests the indispensable role of B cells in the pathogenesis of autoimmune diseases. Interestingly, B-cell receptor (BCR) repertoires in autoimmune diseases display a distinct skewing that can provide insights into disease pathogenesis. Over the past few years, advances in high-throughput sequencing have provided powerful tools for analyzing B-cell repertoire to understand the mechanisms during the period of B-cell immune response. In this paper, we have provided an overview of the mechanisms and analytical methods for generating BCR repertoire diversity and summarize the latest research progress on BCR repertoire in autoimmune diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), primary Sjögren's syndrome (pSS), multiple sclerosis (MS), and type 1 diabetes (T1D). Overall, B-cell repertoire analysis is a potent tool to understand the involvement of B cells in autoimmune diseases, facilitating the creation of innovative therapeutic strategies targeting specific B-cell clones or subsets.
Collapse
Affiliation(s)
- Qian Wang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Delong Feng
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Sujie Jia
- Department of Pharmacy, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China.
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
31
|
Cadenas-Garrido P, Schonvandt-Alarcos A, Herrera-Quintana L, Vázquez-Lorente H, Santamaría-Quiles A, Ruiz de Francisco J, Moya-Escudero M, Martín-Oliva D, Martín-Guerrero SM, Rodríguez-Santana C, Aragón-Vela J, Plaza-Diaz J. Using Redox Proteomics to Gain New Insights into Neurodegenerative Disease and Protein Modification. Antioxidants (Basel) 2024; 13:127. [PMID: 38275652 PMCID: PMC10812581 DOI: 10.3390/antiox13010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Antioxidant defenses in biological systems ensure redox homeostasis, regulating baseline levels of reactive oxygen and nitrogen species (ROS and RNS). Oxidative stress (OS), characterized by a lack of antioxidant defenses or an elevation in ROS and RNS, may cause a modification of biomolecules, ROS being primarily absorbed by proteins. As a result of both genome and environment interactions, proteomics provides complete information about a cell's proteome, which changes continuously. Besides measuring protein expression levels, proteomics can also be used to identify protein modifications, localizations, the effects of added agents, and the interactions between proteins. Several oxidative processes are frequently used to modify proteins post-translationally, including carbonylation, oxidation of amino acid side chains, glycation, or lipid peroxidation, which produces highly reactive alkenals. Reactive alkenals, such as 4-hydroxy-2-nonenal, are added to cysteine (Cys), lysine (Lys), or histidine (His) residues by a Michael addition, and tyrosine (Tyr) residues are nitrated and Cys residues are nitrosylated by a Michael addition. Oxidative and nitrosative stress have been implicated in many neurodegenerative diseases as a result of oxidative damage to the brain, which may be especially vulnerable due to the large consumption of dioxygen. Therefore, the current methods applied for the detection, identification, and quantification in redox proteomics are of great interest. This review describes the main protein modifications classified as chemical reactions. Finally, we discuss the importance of redox proteomics to health and describe the analytical methods used in redox proteomics.
Collapse
Affiliation(s)
- Paula Cadenas-Garrido
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Ailén Schonvandt-Alarcos
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Lourdes Herrera-Quintana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (C.R.-S.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Héctor Vázquez-Lorente
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (C.R.-S.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Alicia Santamaría-Quiles
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Jon Ruiz de Francisco
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Marina Moya-Escudero
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - David Martín-Oliva
- Department of Cell Biology, Faculty of Science, University of Granada, 18071 Granada, Spain;
| | - Sandra M. Martín-Guerrero
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9RT, UK
| | - César Rodríguez-Santana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (C.R.-S.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Jerónimo Aragón-Vela
- Department of Health Sciences, Area of Physiology, Building B3, Campus s/n “Las Lagunillas”, University of Jaén, 23071 Jaén, Spain
| | - Julio Plaza-Diaz
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain
| |
Collapse
|
32
|
Malko VA, Sadovnichuk EA, Lepekhina AS, Bisaga GN, Topuzova MP, Shchukina TV, Dryagina NV, Efimcev AY, Alekseeva TM. [Possibilities of magnetic resonance morphometry and laboratory biomarkers in studying the progression of multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:66-71. [PMID: 39175242 DOI: 10.17116/jnevro202412407266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
OBJECTIVE To show that magnetic resonance morphometry and laboratory biomarkers are promising methods for early detection of progressive forms of multiple sclerosis (MS). MATERIAL AND METHODS Eighty-one patients with MS were examined, magnetic resonance morphometry was performed in all of them, 60 patients were analyzed for neurofilament light chains (sNFL), phosphorylated neurofilament heavy chains (spNFH) and glial fibrillary protein (sGFAP) in serum by enzyme-linked immunosorbent assay. RESULTS Brain volumes were negatively correlated with disease duration, EDSS score, 25-foot walk test score and 9-ring test and positively correlated with the Symbol-Numeric Test and the Montreal Cognitive Assessment. Patients with progressive types of MS (PMS) had smaller volumes of brain gray matter, cerebellar white matter, occipital lobes, caudate nucleus, hippocampus, pallidum, thalamus, and contiguous nucleus. A CSF volume greater than 15.06% could suggest progression (CI 54.79-91%) with a sensitivity of 77.78% and specificity of 70.18%. When patients were on DMT, they had larger thalamic volumes (median 1.09% [1.6; 1.16] vs 1.04% [0.95; 1.14]; p=0.02) and smaller CSF volumes (13.86±2.87% vs. 15.55±3.49%; p=0.03). The levels of sNFL and spNFH were not increased in PMS and during exacerbations, and the low obtained values of sNFL suggest poor sensitivity of the method. There were trends (p=0.374) towards higher sGFAP in patients with PRS (median 3.2 ng/mL [1.85; 4.6] compared to remitting MS (2.05 ng/mL [1.29; 4.52]). CONCLUSION The results demonstrate the differences in brain volumes in patients with different types of MS and emphasize the importance of long-term follow-up to better assess disease progression.
Collapse
Affiliation(s)
- V A Malko
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - E A Sadovnichuk
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - A S Lepekhina
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - G N Bisaga
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - M P Topuzova
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - T V Shchukina
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - N V Dryagina
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - A Yu Efimcev
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - T M Alekseeva
- Almazov National Medical Research Centre, St. Petersburg, Russia
| |
Collapse
|
33
|
Mendes O. Inflammation and neurodegeneration in multiple sclerosis. A REVIEW ON DIVERSE NEUROLOGICAL DISORDERS 2024:321-345. [DOI: 10.1016/b978-0-323-95735-9.00023-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
34
|
Dzau W, Sharmin S, Patti F, Izquierdo G, Eichau S, Prat A, Girard M, Duquette P, Onofrj M, Lugaresi A, Ozakbas S, Gerlach O, Boz C, Grammond P, Terzi M, Amato MP, La Spitaleri D, Ramo-Tello C, Maimone D, Cartechini E, Buzzard K, Skibina O, van der Walt A, Butzkueven H, Iuliano G, Soysal A, Kalincik T. Risk of secondary progressive multiple sclerosis after early worsening of disability. J Neurol Neurosurg Psychiatry 2023; 94:984-991. [PMID: 37414538 DOI: 10.1136/jnnp-2023-331748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Whether progression independent of relapse activity (PIRA) heralds earlier onset of secondary progressive multiple sclerosis (SPMS) and more rapid accumulation of disability during SPMS remains to be determined. We investigated the association between early PIRA, relapse-associated worsening (RAW) of disability and time to SPMS, subsequent disability progression and their response to therapy. METHODS This observational cohort study included patients with relapsing-remitting multiple sclerosis (RRMS) from the MSBase international registry across 146 centres and 39 countries. Associations between the number of PIRA and RAW during early multiple sclerosis (MS) (the initial 5 years of MS onset) were analysed with respect to: time to SPMS using Cox proportional hazards models adjusted for disease characteristics; and disability progression during SPMS, calculated as the change of Multiple Sclerosis Severity Scores over time, using multivariable linear regression. RESULTS 10 692 patients met the inclusion criteria: 3125 (29%) were men and the mean MS onset age was 32.2 years. A higher number of early PIRA (HR=1.50, 95% CI 1.28 to 1.76, p<0.001) and RAW (HR=2.53, 95% CI 2.25 to 2.85, p<0.001) signalled a higher risk of SPMS. A higher proportion of early disease-modifying therapy exposure (per 10%) reduced the effect of early RAW (HR=0.94, 95% CI 0.89 to 1.00, p=0.041) but not PIRA (HR=0.97, 95% CI 0.91 to 1.05, p=0.49) on SPMS risk. No association between early PIRA/RAW and disability progression during SPMS was found. CONCLUSIONS Early disability increase during RRMS is associated with a greater risk of SPMS but not the rate of disability progression during SPMS. The deterioration associated with early relapses represents a potentially treatable risk factor of SPMS. TRIAL REGISTRATION NUMBER Australian New Zealand Clinical Trials Registry (ACTRN12605000455662).
Collapse
Affiliation(s)
- Winston Dzau
- Neuroimmunology Centre, Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- CORe, Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sifat Sharmin
- CORe, Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Francesco Patti
- Neuroscience, University of Catania Department of Surgical and Medical Sciences and Advanced Technologies 'G.F. Ingrassia', Catania, Italy
- Multiple Sclerosis Center, University of Catania, Catania, Italy
| | - Guillermo Izquierdo
- Department of Neurology, Hospital Universitario Virgen Macarena, Sevilla, Andalucía, Spain
| | - Sara Eichau
- Department of Neurology, Hospital Universitario Virgen Macarena, Sevilla, Andalucía, Spain
| | - Alexandre Prat
- MS Center, CHUM, Montreal, Quebec, Canada
- Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Marc Girard
- MS Center, CHUM, Montreal, Quebec, Canada
- Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Pierre Duquette
- MS Center, CHUM, Montreal, Quebec, Canada
- Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Marco Onofrj
- Department of Neuroscience, Imaging, and Clinical Sciences, Gabriele d'Annunzio University of Chieti and Pescara Department of Sciences, Chieti, Italy
| | - Alessandra Lugaresi
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
- UOSI Riabilitazione Sclerosi Multipla, IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Serkan Ozakbas
- Faculty of Medicine, Dokuz Eylul Universitesi, Izmir, Turkey
| | - Oliver Gerlach
- Department of Neurology, Zuyderland Medical Centre, Sittard-Geleen, The Netherlands
- School for Mental Health and Neuroscience, Universiteit Maastricht, Maastricht, The Netherlands
| | - Cavit Boz
- Medical Faculty, Karadeniz Technical University, Trabzon, Trabzon, Turkey
| | - Pierre Grammond
- Department of Neurology, CIUSSS du Centre-Ouest-de-l'Ile-de-Montreal, Montreal, Quebec, Canada
| | - Murat Terzi
- Medical Faculty, Ondokuz Mayis University, Samsun, Turkey
| | - Maria Pia Amato
- Department NEUROFARBA, University of Florence, Firenze, Italy
| | - Daniele La Spitaleri
- Department of Neurology, Azienda Ospedaliera di Rilievo Nazionale e di Alta Specialità San Giuseppe Moscati, Avellino, Italy
| | | | - Davide Maimone
- UO Neurologia, Azienda Ospedaliera di Rilievo Nazionale e di Alta Specializzazione Garibaldi, Catania, Sicilia, Italy
| | | | - Katherine Buzzard
- Neuroimmunology Centre, Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Neurology, Box Hill Hospital, Box Hill, Victoria, Australia
- Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Olga Skibina
- Department of Neurology, Box Hill Hospital, Box Hill, Victoria, Australia
- Department of Medicine, Monash University, Clayton, Victoria, Australia
- Department of Neurology, The Alfred, Melbourne, Victoria, Australia
| | - Anneke van der Walt
- Department of Neurology, The Alfred, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Helmut Butzkueven
- Department of Neurology, The Alfred, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Gerardo Iuliano
- Department of Neurology, Azienda Ospedaliera Universitaria 'San Giovanni di Dio e Ruggi d'Aragona' Plesso 'Ruggi', Salerno, Italy
| | - Aysun Soysal
- Department of Neurology, Bakirkoy Education and Research Hospital for Psychiatric and Neurological Diseases, Istanbul, Turkey
| | - Tomas Kalincik
- Neuroimmunology Centre, Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- CORe, Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
35
|
Raghib MF, Bernitsas E. From Animal Models to Clinical Trials: The Potential of Antimicrobials in Multiple Sclerosis Treatment. Biomedicines 2023; 11:3069. [PMID: 38002068 PMCID: PMC10668955 DOI: 10.3390/biomedicines11113069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune, demyelinating disease of the central nervous system (CNS). Microbes, including bacteria and certain viruses, particularly Epstein-Barr virus (EBV), have been linked to the pathogenesis of MS. While there is currently no cure for MS, antibiotics and antivirals have been studied as potential treatment options due to their immunomodulatory ability that results in the regulation of the immune process. The current issue addressed in this systematic review is the effect of antimicrobials, including antibiotics, antivirals, and antiparasitic agents in animals and humans. We performed a comprehensive search of PubMed, Google Scholar, and Scopus for articles on antimicrobials in experimental autoimmune encephalomyelitis animal models of MS, as well as in people with MS (pwMS). In animal models, antibiotics tested included beta-lactams, minocycline, rapamycin, macrolides, and doxycycline. Antivirals included acyclovir, valacyclovir, and ganciclovir. Hydroxychloroquine was the only antiparasitic that was tested. In pwMS, we identified a total of 24 studies, 17 of them relevant to antibiotics, 6 to antivirals, and 1 relevant to antiparasitic hydroxychloroquine. While the effect of antimicrobials in animal models was promising, only minocycline and hydroxychloroquine improved outcome measures in pwMS. No favorable effect of the antivirals in humans has been observed yet. The number and size of clinical trials testing antimicrobials have been limited. Large, multicenter, well-designed studies are needed to further evaluate the effect of antimicrobials in MS.
Collapse
Affiliation(s)
- Muhammad Faraz Raghib
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Evanthia Bernitsas
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Sastry Neuroimaging Laboratory, Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
36
|
Li W, Wu M, Li Y, Shen J. Reactive nitrogen species as therapeutic targets for autophagy/mitophagy modulation to relieve neurodegeneration in multiple sclerosis: Potential application for drug discovery. Free Radic Biol Med 2023; 208:37-51. [PMID: 37532065 DOI: 10.1016/j.freeradbiomed.2023.07.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disease with limited therapeutic effects, eventually developing into handicap. Seeking novel therapeutic strategies for MS is timely important. Active autophagy/mitophagy could mediate neurodegeneration, while its roles in MS remain controversial. To elucidate the exact roles of autophagy/mitophagy and reveal its in-depth regulatory mechanisms, we conduct a systematic literature study and analyze the factors that might be responsible for divergent results obtained. The dynamic change levels of autophagy/mitophagy appear to be a determining factor for final neuron fate during MS pathology. Excessive neuronal autophagy/mitophagy contributes to neurodegeneration after disease onset at the active MS phase. Reactive nitrogen species (RNS) serve as key regulators for redox-related modifications and participate in autophagy/mitophagy modulation in MS. Nitric oxide (•NO) and peroxynitrite (ONOO-), two representative RNS, could nitrate or nitrosate Drp1/parkin/PINK1 pathway, activating excessive mitophagy and aggravating neuronal injury. Targeting RNS-mediated excessive autophagy/mitophagy could be a promising strategy for developing novel anti-MS drugs. In this review, we highlight the important roles of RNS-mediated autophagy/mitophagy in neuronal injury and review the potential therapeutic compounds with the bioactivities of inhibiting RNS-mediated autophagy/mitophagy activation and attenuating MS progression. Overall, we conclude that reactive nitrogen species could be promising therapeutic targets to regulate autophagy/mitophagy for multiple sclerosis treatment.
Collapse
Affiliation(s)
- Wenting Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| | - Meiling Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Yuzhen Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
37
|
Mohammadi S, Mohammadi M, Ghaderi S. Sleep-related regions in neurodegenerative diseases by central nervous system localization using magnetic resonance imaging. Psychiatry Res Neuroimaging 2023; 336:111727. [PMID: 39492095 DOI: 10.1016/j.pscychresns.2023.111727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 08/23/2023] [Accepted: 10/09/2023] [Indexed: 11/05/2024]
Abstract
Sleep disruptions associated with neurodegenerative diseases (NDDs) damage the brain's sleep-regulating regions. Advanced magnetic resonance imaging (MRI) techniques can characterize the signature of each neurodegenerative pathology. We performed an evaluation of sleep-related regions in NDDs using MRI to localize the central nervous system (CNS). In the initial search, 61 related papers were discovered using predetermined inclusion and exclusion criteria. Finally, 30 articles were included in this study. The study included patients with Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS), rapid eye movement (REM) sleep behavior disorder (RBD), idiopathic RBD (iRBD), amyotrophic lateral sclerosis (ALS), and mild cognitive impairment (MCI). Sleep-related regions recognized by CNS localization in NDDs can be linked to important regions. MRI also revealed cortical thinning, GM atrophy, WM, and tract loss, changes in diffusion tensor imaging (DTI) biomarkers (fractional anisotropy (FA), axial diffusivity (Da), and radial diffusivity (Dr)), a decrease in DMN connectivity, a reduction in functional connectivity (FC), and amplitude of low-frequency fluctuation (ALFF) alterations. Sleep plays an important role in predicting future risks for the development of NDDs. Other neuroimaging, cognitive-behavioral, and clinical research can use the information found in this research about the brain regions, MRI biomarker changes, and their relationships.
Collapse
Affiliation(s)
- Sana Mohammadi
- Department of Medical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mohammadi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Thümmler K, Wrzos C, Franz J, McElroy D, Cole JJ, Hayden L, Arseni D, Schwarz F, Junker A, Edgar JM, Kügler S, Neef A, Wolf F, Stadelmann C, Linington C. Fibroblast growth factor 9 (FGF9)-mediated neurodegeneration: Implications for progressive multiple sclerosis? Neuropathol Appl Neurobiol 2023; 49:e12935. [PMID: 37705188 DOI: 10.1111/nan.12935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 08/22/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
AIMS Fibroblast growth factor (FGF) signalling is dysregulated in multiple sclerosis (MS) and other neurological and psychiatric conditions, but there is little or no consensus as to how individual FGF family members contribute to disease pathogenesis. Lesion development in MS is associated with increased expression of FGF1, FGF2 and FGF9, all of which modulate remyelination in a variety of experimental settings. However, FGF9 is also selectively upregulated in major depressive disorder (MDD), prompting us to speculate it may also have a direct effect on neuronal function and survival. METHODS Transcriptional profiling of myelinating cultures treated with FGF1, FGF2 or FGF9 was performed, and the effects of FGF9 on cortical neurons investigated using a combination of transcriptional, electrophysiological and immunofluorescence microscopic techniques. The in vivo effects of FGF9 were explored by stereotactic injection of adeno-associated viral (AAV) vectors encoding either FGF9 or EGFP into the rat motor cortex. RESULTS Transcriptional profiling of myelinating cultures after FGF9 treatment revealed a distinct neuronal response with a pronounced downregulation of gene networks associated with axonal transport and synaptic function. In cortical neuronal cultures, FGF9 also rapidly downregulated expression of genes associated with synaptic function. This was associated with a complete block in the development of photo-inducible spiking activity, as demonstrated using multi-electrode recordings of channel rhodopsin-transfected rat cortical neurons in vitro and, ultimately, neuronal cell death. Overexpression of FGF9 in vivo resulted in rapid loss of neurons and subsequent development of chronic grey matter lesions with neuroaxonal reduction and ensuing myelin loss. CONCLUSIONS These observations identify overexpression of FGF9 as a mechanism by which neuroaxonal pathology could develop independently of immune-mediated demyelination in MS. We suggest targeting neuronal FGF9-dependent pathways may provide a novel strategy to slow if not halt neuroaxonal atrophy and loss in MS, MDD and potentially other neurodegenerative diseases.
Collapse
Affiliation(s)
- Katja Thümmler
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Claudia Wrzos
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Jonas Franz
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Göttingen Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen, Germany
| | - Daniel McElroy
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - John J Cole
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Lorna Hayden
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Diana Arseni
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Friedrich Schwarz
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas Junker
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Department of Neuropathology, University Hospital Essen, Essen, Germany
| | - Julia M Edgar
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Sebastian Kügler
- Institute for Neurology, University Medical Center Göttingen, Göttingen, Germany
- Center Nanoscale Microscopy and Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Andreas Neef
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Göttingen Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Fred Wolf
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Göttingen Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- Cluster of Excellence Multiscale Bioimaging: From Molecular Machines to Network of Excitable Cells (MBExC), University of Goettingen, Göttingen, Germany
| | - Christine Stadelmann
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence Multiscale Bioimaging: From Molecular Machines to Network of Excitable Cells (MBExC), University of Goettingen, Göttingen, Germany
| | | |
Collapse
|
39
|
Garcia Corrales AV, Verberk SGS, Haidar M, Grajchen E, Dehairs J, Vanherle S, Loix M, Weytjens T, Gervois P, Matsuzaka T, Lambrichts I, Swinnen JV, Bogie JFJ, Hendriks JJA. Fatty acid elongation by ELOVL6 hampers remyelination by promoting inflammatory foam cell formation during demyelination. Proc Natl Acad Sci U S A 2023; 120:e2301030120. [PMID: 37669365 PMCID: PMC10500284 DOI: 10.1073/pnas.2301030120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/24/2023] [Indexed: 09/07/2023] Open
Abstract
A hallmark of multiple sclerosis (MS) is the formation of multiple focal demyelinating lesions within the central nervous system (CNS). These lesions mainly consist of phagocytes that play a key role in lesion progression and remyelination, and therefore represent a promising therapeutic target in MS. We recently showed that unsaturated fatty acids produced by stearoyl-CoA desaturase-1 induce inflammatory foam cell formation during demyelination. These fatty acids are elongated by the "elongation of very long chain fatty acids" proteins (ELOVLs), generating a series of functionally distinct lipids. Here, we show that the expression and activity of ELOVLs are altered in myelin-induced foam cells. Especially ELOVL6, an enzyme responsible for converting saturated and monounsaturated C16 fatty acids into C18 species, was found to be up-regulated in myelin phagocytosing phagocytes in vitro and in MS lesions. Depletion of Elovl6 induced a repair-promoting phagocyte phenotype through activation of the S1P/PPARγ pathway. Elovl6-deficient foamy macrophages showed enhanced ABCA1-mediated lipid efflux, increased production of neurotrophic factors, and reduced expression of inflammatory mediators. Moreover, our data show that ELOVL6 hampers CNS repair, as Elovl6 deficiency prevented demyelination and boosted remyelination in organotypic brain slice cultures and the mouse cuprizone model. These findings indicate that targeting ELOVL6 activity may be an effective strategy to stimulate CNS repair in MS and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Aida V. Garcia Corrales
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| | - Sanne G. S. Verberk
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| | - Mansour Haidar
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| | - Elien Grajchen
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| | - Jonas Dehairs
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven Cancer Institute, University of Leuven, Leuven3000, Belgium
| | - Sam Vanherle
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| | - Melanie Loix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| | - Tine Weytjens
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| | - Pascal Gervois
- Department of Cardiology and Organ Systems, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| | - Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki305-8575, Japan
| | - Ivo Lambrichts
- Department of Cardiology and Organ Systems, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| | - Johannes V. Swinnen
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven Cancer Institute, University of Leuven, Leuven3000, Belgium
| | - Jeroen F. J. Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| | - Jerome J. A. Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek3590, Belgium
| |
Collapse
|
40
|
Palanisamy CP, Pei J, Alugoju P, Anthikapalli NVA, Jayaraman S, Veeraraghavan VP, Gopathy S, Roy JR, Janaki CS, Thalamati D, Mironescu M, Luo Q, Miao Y, Chai Y, Long Q. New strategies of neurodegenerative disease treatment with extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs). Theranostics 2023; 13:4138-4165. [PMID: 37554286 PMCID: PMC10405853 DOI: 10.7150/thno.83066] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/08/2023] [Indexed: 08/10/2023] Open
Abstract
Neurodegenerative diseases are characterized by the progressive loss of neurons and intricate interactions between different cell types within the affected regions. Reliable biomarkers that can accurately reflect disease activity, diagnose, and monitor the progression of neurodegenerative diseases are crucial for the development of effective therapies. However, identifying suitable biomarkers has been challenging due to the heterogeneous nature of these diseases, affecting specific subsets of neurons in different brain regions. One promising approach for promoting brain regeneration and recovery involves the transplantation of mesenchymal stem cells (MSCs). MSCs have demonstrated the ability to modulate the immune system, promote neurite outgrowth, stimulate angiogenesis, and repair damaged tissues, partially through the release of their extracellular vesicles (EVs). MSC-derived EVs retain some of the therapeutic characteristics of their parent MSCs, including their ability to regulate neurite outgrowth, promote angiogenesis, and facilitate tissue repair. This review aims to explore the potential of MSC-derived EVs as an emerging therapeutic strategy for neurodegenerative diseases, highlighting their role in modulating disease progression and promoting neuronal recovery. By elucidating the mechanisms by which MSC-derived EVs exert their therapeutic effects, we can advance our understanding and leverage their potential for the development of novel treatment approaches in the field of neurodegenerative diseases.
Collapse
Affiliation(s)
- Chella Perumal Palanisamy
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - JinJin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Phaniendra Alugoju
- Department of Clinical Chemistry, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Sridevi Gopathy
- Department of Physiology, SRM Dental College, Ramapuram campus, Chennai, Tamil Nadu 600089, India
| | - Jeane Rebecca Roy
- Department of Anatomy, Bhaarath Medical College and hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu 600073, India
| | - Coimbatore Sadagopan Janaki
- Department of Anatomy, Bhaarath Medical College and hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu 600073, India
| | | | - Monica Mironescu
- Faculty of Agricultural Sciences Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, Bv. Victoriei 10, 550024 Sibiu, Romania
| | - Qiang Luo
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
| | - Yu Miao
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
| | - Yuan Chai
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
| | - Qianfa Long
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
| |
Collapse
|
41
|
Schröder LJ, Thiesler H, Gretenkort L, Möllenkamp TM, Stangel M, Gudi V, Hildebrandt H. Polysialic acid promotes remyelination in cerebellar slice cultures by Siglec-E-dependent modulation of microglia polarization. Front Cell Neurosci 2023; 17:1207540. [PMID: 37492129 PMCID: PMC10365911 DOI: 10.3389/fncel.2023.1207540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023] Open
Abstract
Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system. Spontaneous restoration of myelin after demyelination occurs, but its efficiency declines during disease progression. Efficient myelin repair requires fine-tuning inflammatory responses by brain-resident microglia and infiltrating macrophages. Accordingly, promising therapeutic strategies aim at controlling inflammation to promote remyelination. Polysialic acid (polySia) is a polymeric glycan with variable chain lengths, presented as a posttranslational modification on select protein carriers. PolySia emerges as a negative regulator of inflammatory microglia and macrophage activation and has been detected on oligodendrocyte precursors and reactive astrocytes in multiple sclerosis lesions. As shown recently, polySia-modified proteins can also be released by activated microglia, and the intrinsically released protein-bound and exogenously applied free polySia were equally able to attenuate proinflammatory microglia activation via the inhibitory immune receptor Siglec-E. In this study, we explore polySia as a candidate substance for promoting myelin regeneration by immunomodulation. Lysophosphatidylcholine-induced demyelination of organotypic cerebellar slice cultures was used as an experimental model to analyze the impact of polySia with different degrees of polymerization (DP) on remyelination and inflammation. In lysophosphatidylcholine-treated cerebellar slice cultures, polySia-positive cells were abundant during demyelination but largely reduced during remyelination. Based on the determination of DP24 as the minimal polySia chain length required for the inhibition of inflammatory BV2 microglia activation, pools with short and long polySia chains (DP8-14 and DP24-30) were generated and applied to slice cultures during remyelination. Unlike DP8-14, treatment with DP24-30 significantly improved remyelination, increased arginase-1-positive microglia ratios, and reduced the production of nitric oxide in wildtype, but not in Siglec-E-deficient slice cultures. In vitro differentiation of oligodendrocytes was not affected by DP24-30. Collectively, these results suggest a beneficial effect of exogenously applied polySia DP24-30 on remyelination by Siglec-E-dependent microglia regulation.
Collapse
Affiliation(s)
- Lara-Jasmin Schröder
- Clinic for Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Hauke Thiesler
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Lina Gretenkort
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | | | - Martin Stangel
- Center for Systems Neuroscience Hannover, Hannover, Germany
- Translational Medicine, Novartis Institute for Biomedical Research, Novartis, Basel, Switzerland
| | - Viktoria Gudi
- Clinic for Neurology, Hannover Medical School, Hannover, Germany
| | - Herbert Hildebrandt
- Center for Systems Neuroscience Hannover, Hannover, Germany
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
42
|
Dermitzakis I, Theotokis P, Evangelidis P, Delilampou E, Evangelidis N, Chatzisavvidou A, Avramidou E, Manthou ME. CNS Border-Associated Macrophages: Ontogeny and Potential Implication in Disease. Curr Issues Mol Biol 2023; 45:4285-4300. [PMID: 37232741 PMCID: PMC10217436 DOI: 10.3390/cimb45050272] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Being immune privileged, the central nervous system (CNS) is constituted by unique parenchymal and non-parenchymal tissue-resident macrophages, namely, microglia and border-associated macrophages (BAMs), respectively. BAMs are found in the choroid plexus, meningeal and perivascular spaces, playing critical roles in maintaining CNS homeostasis while being phenotypically and functionally distinct from microglial cells. Although the ontogeny of microglia has been largely determined, BAMs need comparable scrutiny as they have been recently discovered and have not been thoroughly explored. Newly developed techniques have transformed our understanding of BAMs, revealing their cellular heterogeneity and diversity. Recent data showed that BAMs also originate from yolk sac progenitors instead of bone marrow-derived monocytes, highlighting the absolute need to further investigate their repopulation pattern in adult CNS. Shedding light on the molecular cues and drivers orchestrating BAM generation is essential for delineating their cellular identity. BAMs are receiving more attention since they are gradually incorporated into neurodegenerative and neuroinflammatory disease evaluations. The present review provides insights towards the current understanding regarding the ontogeny of BAMs and their involvement in CNS diseases, paving their way into targeted therapeutic strategies and precision medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (P.T.); (P.E.); (E.D.); (N.E.); (A.C.); (E.A.)
| |
Collapse
|
43
|
Omrani MA, Bayati A, Sahraian MA, Eskandarieh S. Epidemiological parameters of multiple sclerosis in Chaharmahal and Bakhtiari Province, Iran. CURRENT JOURNAL OF NEUROLOGY 2023; 22:103-109. [PMID: 38011364 PMCID: PMC10460920 DOI: 10.18502/cjn.v22i2.13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/06/2023] [Indexed: 11/29/2023]
Abstract
Background: Multiple sclerosis (MS) is a neurological disease with a high burden and disability. There are reports of various medications' side effects on patients with MS. The aim of the study is to determine the characteristics and medicine usage distribution among patients with MS in Chaharmahal and Bakhtiari Province in Iran. Methods: This registry-based cross-sectional study was performed among MS cases in Chaharmahal and Bakhtiari Province. The epidemiological data were collected from the nationwide MS registry of Iran (NMSRI) from 2019 to 2022. The information collected included age, sex, family history, type of MS, age at MS onset and diagnosis, MS symptoms, physical condition, and history of medication use. All tests were performed at a significance level of 0.05 using SPSS software. Results: A total of 416 patients included in this study. Among them, 325 individuals (78%) were women with mean ± standard deviation (SD) of age of 37.35 ± 8.51 years. No significant difference was observed between men and women in terms of age, type of MS disease, family history of MS, and physical condition (P > 0.05). The results showed that the Expanded Disability Status Scale (EDSS) score in female patients (1.41) was different from the EDSS score in male patients (1.77) (P < 0.05). Most of the patients often used interferon beta (IFN-β). Conclusion: The results provided new insight into the epidemiology and medicine patterns of patients with MS in Chaharmahal and Bakhtiari Province. The epidemiological situation of MS in this province is similar to other parts of Iran. Planning according to national programs is suggested for the management and control of MS.
Collapse
Affiliation(s)
- Mohammad Amin Omrani
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Asghar Bayati
- Department of Neurology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Ali Sahraian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sharareh Eskandarieh
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Twarowski B, Herbet M. Inflammatory Processes in Alzheimer's Disease-Pathomechanism, Diagnosis and Treatment: A Review. Int J Mol Sci 2023; 24:6518. [PMID: 37047492 PMCID: PMC10095343 DOI: 10.3390/ijms24076518] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Alzheimer's disease is one of the most commonly diagnosed cases of senile dementia in the world. It is an incurable process, most often leading to death. This disease is multifactorial, and one factor of this is inflammation. Numerous mediators secreted by inflammatory cells can cause neuronal degeneration. Neuritis may coexist with other mechanisms of Alzheimer's disease, contributing to disease progression, and may also directly underlie AD. Although much has been established about the inflammatory processes in the pathogenesis of AD, many aspects remain unexplained. The work is devoted in particular to the pathomechanism of inflammation and its role in diagnosis and treatment. An in-depth and detailed understanding of the pathomechanism of neuroinflammation in Alzheimer's disease may help in the development of diagnostic methods for early diagnosis and may contribute to the development of new therapeutic strategies for the disease.
Collapse
Affiliation(s)
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland
| |
Collapse
|
45
|
Zhang C, Raveney B, Takahashi F, Yeh TW, Hohjoh H, Yamamura T, Oki S. Pathogenic Microglia Orchestrate Neurotoxic Properties of Eomes-Expressing Helper T Cells. Cells 2023; 12:cells12060868. [PMID: 36980209 PMCID: PMC10047905 DOI: 10.3390/cells12060868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
In addition to disease-associated microglia (DAM), microglia with MHC-II and/or IFN-I signatures may form additional pathogenic subsets that are relevant to neurodegeneration. However, the significance of such MHC-II and IFN-I signatures remains elusive. We demonstrate here that these microglial subsets play intrinsic roles in orchestrating neurotoxic properties of neurotoxic Eomes+ Th cells under the neurodegeneration-associated phase of experimental autoimmune encephalomyelitis (EAE) that corresponds to progressive multiple sclerosis (MS). Microglia acquire IFN-signature after sensing ectopically expressed long interspersed nuclear element-1 (L1) gene. Furthermore, ORF1, an L1-encoded protein aberrantly expressed in the diseased central nervous system (CNS), stimulated Eomes+ Th cells after Trem2-dependent ingestion and presentation in MHC-II context by microglia. Interestingly, administration of an L1 inhibitor significantly ameliorated neurodegenerative symptoms of EAE concomitant with reduced accumulation of Eomes+ Th cells in the CNS. Collectively, our data highlight a critical contribution of new microglia subsets as a neuroinflammatory hub in immune-mediated neurodegeneration.
Collapse
Affiliation(s)
- Chenyang Zhang
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo 187-8502, Japan
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Ben Raveney
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo 187-8502, Japan
| | - Fumio Takahashi
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo 187-8502, Japan
| | - Tzu-wen Yeh
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo 187-8502, Japan
| | - Hirohiko Hohjoh
- Department of Molecular Pharmacology, National Institute of Neuroscience, NCNP, Tokyo 187-8502, Japan
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo 187-8502, Japan
- Correspondence: (T.Y.); (S.O.); Tel.: +81-42-341-2711 (T.Y. & S.O.)
| | - Shinji Oki
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo 187-8502, Japan
- Correspondence: (T.Y.); (S.O.); Tel.: +81-42-341-2711 (T.Y. & S.O.)
| |
Collapse
|
46
|
Bekircan-Kurt CE, Jahanroshan J, Tuncer A, Ergul-Ulger Z, Gunes G, Erdem-Ozdamar S, Tan E. The evaluation of small fibers in multiple sclerosis. Mult Scler Relat Disord 2023; 72:104602. [PMID: 36889099 DOI: 10.1016/j.msard.2023.104602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/14/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Dysesthetic or ongoing extremity pain is a common symptom in all multiple sclerosis (MS) types. Although the pathology of the disease is the demyelination of central neurons, the patients may also complain of neuropathic pain in distal extremities that is generally related to A-delta and C fiber dysfunction. It is not known whether thinly myelinated and unmyelinated fibers are affected in MS patients. We aim to investigate the small fiber loss and its length dependency. METHODS We evaluated the skin biopsy taken from proximal and distal leg of MS patients with neuropathic pain. Six patients with primary progressive MS (PPMS), seven with relapsing-remitting MS (RRMS), seven with secondary progressive MS (SPMS) and as a control group ten age and sex-matched healthy controls were included. Neurological examination, electrophysiological evaluation and DN4 questionnaire were performed. Subsequently, skin punch biopsy from 10 cm above the lateral malleolus and proximal thigh were done. The biopsy samples were stained with PGP9.5 antibody and intraepidermal nerve fiber density (IENFD) was determined. RESULTS The mean proximal IENFD was 8.58±3.58 fibers/mm among MS patients and 14.72±2.89 fiber/mm among healthy controls (p=0.001). However, the mean distal IENFD did not differ between MS patients and healthy controls (9.26±3.24 and 9.75±1.6 fiber/mm respectively. Although proximal and distal IENFD tends to be lower in MS patients with neuropathic pain, there was no statistically significant difference between MS patients with and without neuropathic pain CONCLUSION: Although MS is a demyelinating disease, unmyelinated fibers can also be affected. Our findings suggest non-length dependent small fiber neuropathy in MS patients.
Collapse
Affiliation(s)
- Can Ebru Bekircan-Kurt
- Department of Neurology, Hacettepe University School of Medicine, Ankara, Turkey; Neuromuscular Diseases Research Laboratory, Hacettepe University School of Medicine, Ankara, Turkey.
| | - Javid Jahanroshan
- Department of Neurology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Asli Tuncer
- Department of Neurology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Zeynep Ergul-Ulger
- Department of Neurology, Hacettepe University School of Medicine, Ankara, Turkey; Neuromuscular Diseases Research Laboratory, Hacettepe University School of Medicine, Ankara, Turkey
| | - Gursel Gunes
- Department of Hematology, University of Health Sciences Diskapi Yildirim Beyazit Research and Training Hospital, Ankara, Turkey
| | - Sevim Erdem-Ozdamar
- Department of Neurology, Hacettepe University School of Medicine, Ankara, Turkey; Neuromuscular Diseases Research Laboratory, Hacettepe University School of Medicine, Ankara, Turkey
| | - Ersin Tan
- Department of Neurology, Hacettepe University School of Medicine, Ankara, Turkey; Neuromuscular Diseases Research Laboratory, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
47
|
Hashemi B, Abdollahi M, Abbaspour-Aghdam S, Hazrati A, Malekpour K, Meshgi S, Kafil HS, Ghazi F, Yousefi M, Roshangar L, Ahmadi M. The effect of probiotics on immune responses and their therapeutic application: A new treatment option for multiple sclerosis. Biomed Pharmacother 2023; 159:114195. [PMID: 36630847 DOI: 10.1016/j.biopha.2022.114195] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/10/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Multiple sclerosis (MS) is known as a chronic inflammatory disease (CID) that affects the central nervous system and leads to nerve demyelination. However, the exact cause of MS is unknown, but immune system regulation and inhibiting the function of inflammatory pathways may have a beneficial effect on controlling and improving the disease. Studies show that probiotics can alter the gut microbiome, thereby improving and affecting the immune system and inflammatory responses in patients with MS. The results show that probiotics have a good effect on the recovery of patients with MS in humans and animals. The present study investigated the effect of probiotics and possible therapeutic mechanisms of probiotics on immune cells and inflammatory cytokines. This review article showed that probiotics could improve immune cells and inflammatory cytokines in patients with MS and can play an effective role in disease management and control.
Collapse
Affiliation(s)
- Behnam Hashemi
- Department of Bacteriology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Maryam Abdollahi
- Department of Bacteriology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Sanaz Abbaspour-Aghdam
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahla Meshgi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhood Ghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
48
|
Nogo-A and LINGO-1: Two Important Targets for Remyelination and Regeneration. Int J Mol Sci 2023; 24:ijms24054479. [PMID: 36901909 PMCID: PMC10003089 DOI: 10.3390/ijms24054479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) that causes progressive neurological disability in most patients due to neurodegeneration. Activated immune cells infiltrate the CNS, triggering an inflammatory cascade that leads to demyelination and axonal injury. Non-inflammatory mechanisms are also involved in axonal degeneration, although they are not fully elucidated yet. Current therapies focus on immunosuppression; however, no therapies to promote regeneration, myelin repair, or maintenance are currently available. Two different negative regulators of myelination have been proposed as promising targets to induce remyelination and regeneration, namely the Nogo-A and LINGO-1 proteins. Although Nogo-A was first discovered as a potent neurite outgrowth inhibitor in the CNS, it has emerged as a multifunctional protein. It is involved in numerous developmental processes and is necessary for shaping and later maintaining CNS structure and functionality. However, the growth-restricting properties of Nogo-A have negative effects on CNS injury or disease. LINGO-1 is also an inhibitor of neurite outgrowth, axonal regeneration, oligodendrocyte differentiation, and myelin production. Inhibiting the actions of Nogo-A or LINGO-1 promotes remyelination both in vitro and in vivo, while Nogo-A or LINGO-1 antagonists have been suggested as promising therapeutic approaches for demyelinating diseases. In this review, we focus on these two negative regulators of myelination while also providing an overview of the available data on the effects of Nogo-A and LINGO-1 inhibition on oligodendrocyte differentiation and remyelination.
Collapse
|
49
|
Conti A, Treaba CA, Mehndiratta A, Barletta VT, Mainero C, Toschi N. An Interpretable Machine Learning Model to Predict Cortical Atrophy in Multiple Sclerosis. Brain Sci 2023; 13:brainsci13020198. [PMID: 36831740 PMCID: PMC9954500 DOI: 10.3390/brainsci13020198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
To date, the relationship between central hallmarks of multiple sclerosis (MS), such as white matter (WM)/cortical demyelinated lesions and cortical gray matter atrophy, remains unclear. We investigated the interplay between cortical atrophy and individual lesion-type patterns that have recently emerged as new radiological markers of MS disease progression. We employed a machine learning model to predict mean cortical thinning in whole-brain and single hemispheres in 150 cortical regions using demographic and lesion-related characteristics, evaluated via an ultrahigh field (7 Tesla) MRI. We found that (i) volume and rimless (i.e., without a "rim" of iron-laden immune cells) WM lesions, patient age, and volume of intracortical lesions have the most predictive power; (ii) WM lesions are more important for prediction when their load is small, while cortical lesion load becomes more important as it increases; (iii) WM lesions play a greater role in the progression of atrophy during the latest stages of the disease. Our results highlight the intricacy of MS pathology across the whole brain. In turn, this calls for multivariate statistical analyses and mechanistic modeling techniques to understand the etiopathogenesis of lesions.
Collapse
Affiliation(s)
- Allegra Conti
- Department of Biomedicine and Prevention, University of Rome ‘Tor Vergata’, Via Montpellier 1, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-06-72596393
| | - Constantina Andrada Treaba
- Massachusetts General Hospital, Boston, MA 02114, USA
- A. A. Martinos Center for Biomedical Imaging, Boston, MA 02129, USA
| | - Ambica Mehndiratta
- Massachusetts General Hospital, Boston, MA 02114, USA
- A. A. Martinos Center for Biomedical Imaging, Boston, MA 02129, USA
| | - Valeria Teresa Barletta
- Massachusetts General Hospital, Boston, MA 02114, USA
- A. A. Martinos Center for Biomedical Imaging, Boston, MA 02129, USA
| | - Caterina Mainero
- Massachusetts General Hospital, Boston, MA 02114, USA
- A. A. Martinos Center for Biomedical Imaging, Boston, MA 02129, USA
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome ‘Tor Vergata’, Via Montpellier 1, 00133 Rome, Italy
- Massachusetts General Hospital, Boston, MA 02114, USA
- A. A. Martinos Center for Biomedical Imaging, Boston, MA 02129, USA
| |
Collapse
|
50
|
Cano A, Muñoz-Morales Á, Sánchez-López E, Ettcheto M, Souto EB, Camins A, Boada M, Ruíz A. Exosomes-Based Nanomedicine for Neurodegenerative Diseases: Current Insights and Future Challenges. Pharmaceutics 2023; 15:298. [PMID: 36678926 PMCID: PMC9863585 DOI: 10.3390/pharmaceutics15010298] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Neurodegenerative diseases constitute a group of pathologies whose etiology remains unknown in many cases, and there are no treatments that stop the progression of such diseases. Moreover, the existence of the blood-brain barrier is an impediment to the penetration of exogenous molecules, including those found in many drugs. Exosomes are extracellular vesicles secreted by a wide variety of cells, and their primary functions include intercellular communication, immune responses, human reproduction, and synaptic plasticity. Due to their natural origin and molecular similarities with most cell types, exosomes have emerged as promising therapeutic tools for numerous diseases. Specifically, neurodegenerative diseases have shown to be a potential target for this nanomedicine strategy due to the difficult access to the brain and the strategy's pathophysiological complexity. In this regard, this review explores the most important biological-origin drug delivery systems, innovative isolation methods of exosomes, their physicochemical characterization, drug loading, cutting-edge functionalization strategies to target them within the brain, the latest research studies in neurodegenerative diseases, and the future challenges of exosomes as nanomedicine-based therapeutic tools.
Collapse
Affiliation(s)
- Amanda Cano
- Ace Alzheimer Center Barcelona—International University of Catalunya (UIC), 08028 Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), 08028 Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Álvaro Muñoz-Morales
- Ace Alzheimer Center Barcelona—International University of Catalunya (UIC), 08028 Barcelona, Spain
| | - Elena Sánchez-López
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), 08028 Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain
| | - Miren Ettcheto
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Antonio Camins
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona—International University of Catalunya (UIC), 08028 Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| | - Agustín Ruíz
- Ace Alzheimer Center Barcelona—International University of Catalunya (UIC), 08028 Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| |
Collapse
|