1
|
|
Vann SD. Effects of experimental brain lesions on spatial navigation. Reference Module in Neuroscience and Biobehavioral Psychology 2024. [DOI: 10.1016/b978-0-12-820480-1.00008-5] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/24/2023]
|
2
|
|
Pasanta D, Puts NA. Functional spectroscopy. Reference Module in Neuroscience and Biobehavioral Psychology 2024. [DOI: 10.1016/b978-0-12-820480-1.00003-6] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 11/17/2022]
|
3
|
|
Pustina D. Lesion to symptom mapping. Reference Module in Neuroscience and Biobehavioral Psychology 2024. [DOI: 10.1016/b978-0-12-820480-1.00006-1] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/11/2023]
|
4
|
|
Giesbrecht B, Garrett J. Electroencephalography. Reference Module in Neuroscience and Biobehavioral Psychology 2024. [DOI: 10.1016/b978-0-12-820480-1.00007-3] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/24/2023]
|
5
|
|
Hirschhorn R, Schonberg T. Replication. Reference Module in Neuroscience and Biobehavioral Psychology 2024. [DOI: 10.1016/b978-0-12-820480-1.00014-0] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/06/2023]
|
6
|
|
Kikkert S, Root V, Buehler S, Makin TR. Cortical reorganization in the adult primary sensorimotor cortex. Reference Module in Neuroscience and Biobehavioral Psychology 2024. [DOI: 10.1016/b978-0-12-820480-1.00004-8] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/27/2022]
|
7
|
|
Fu Z, Rutishauser U. Human single neuron recordings. Reference Module in Neuroscience and Biobehavioral Psychology 2024. [DOI: 10.1016/b978-0-12-820480-1.00002-4] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 11/17/2022]
|
8
|
|
Cutler J, Apps MA, Lockwood PL. Reward processing and reinforcement learning: From adolescence to aging. Reference Module in Neuroscience and Biobehavioral Psychology 2024. [DOI: 10.1016/b978-0-12-820480-1.00010-3] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/05/2023]
|
9
|
|
Kahnt T. Outcome-specific reward processing and decision-making. Reference Module in Neuroscience and Biobehavioral Psychology 2024. [DOI: 10.1016/b978-0-12-820480-1.00001-2] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 11/17/2022]
|
10
|
|
Mou W, Qi Y. Human spatial navigation: benchmark behavioral findings. Reference Module in Neuroscience and Biobehavioral Psychology 2024. [DOI: 10.1016/b978-0-12-820480-1.00005-x] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/11/2023]
|
11
|
|
Iaria G, Burles F. Disorders of human spatial navigation: Developmental Topographical Disorientation. Reference Module in Neuroscience and Biobehavioral Psychology 2024. [DOI: 10.1016/b978-0-12-820480-1.00009-7] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/05/2023]
|
12
|
|
Zhong T, Lin Y, Zhuge R, Lin Y, Huang B, Zeng R. Reviewing the mechanism of propofol addiction. All Life 2023;16. [DOI: 10.1080/26895293.2023.2174708] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/08/2023] Open
|
13
|
|
Elreedy HA, Elfiky AM, Mahmoud AA, Ibrahim KS, Ghazy MA. Neuroprotective effect of quercetin through targeting key genes involved in aluminum chloride induced Alzheimer’s disease in rats. Egyptian Journal of Basic and Applied Sciences 2023;10:174-184. [DOI: 10.1080/2314808x.2022.2164136] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/06/2023]
|
14
|
|
Vecchini A, Buratta L, Fogassi L. Grapho-motor imitation training in children with handwriting difficulties: A single-center pilot study. Cogent Education 2023;10. [DOI: 10.1080/2331186x.2023.2192152] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/28/2023] Open
|
15
|
|
Keuenhof KS, Kohler V, Broeskamp F, Panagaki D, Speese SD, Büttner S, Höög JL. Nuclear envelope budding and its cellular functions. Nucleus 2023;14:2178184. [PMID: 36814098 DOI: 10.1080/19491034.2023.2178184] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/24/2023] Open
Abstract
The nuclear pore complex (NPC) has long been assumed to be the sole route across the nuclear envelope, and under normal homeostatic conditions it is indeed the main mechanism of nucleo-cytoplasmic transport. However, it has also been known that e.g. herpesviruses cross the nuclear envelope utilizing a pathway entitled nuclear egress or envelopment/de-envelopment. Despite this, a thread of observations suggests that mechanisms similar to viral egress may be transiently used also in healthy cells. It has since been proposed that mechanisms like nuclear envelope budding (NEB) can facilitate the transport of RNA granules, aggregated proteins, inner nuclear membrane proteins, and mis-assembled NPCs. Herein, we will summarize the known roles of NEB as a physiological and intrinsic cellular feature and highlight the many unanswered questions surrounding these intriguing nuclear events.
Collapse
|
16
|
|
Constant O, Maarifi G, Barthelemy J, Martin MF, Tinto B, Savini G, Van de Perre P, Nisole S, Simonin Y, Salinas S. Differential effects of Usutu and West Nile viruses on neuroinflammation, immune cell recruitment and blood-brain barrier integrity. Emerg Microbes Infect 2023;12:2156815. [PMID: 36495563 DOI: 10.1080/22221751.2022.2156815] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/14/2022]
Abstract
Usutu (USUV) and West Nile (WNV) viruses are two closely related Flavivirus belonging to Japanese encephalitis virus serogroup. Evidence of increased circulation of these two arboviruses now exist in Europe. Neurological disorders are reported in humans mainly for WNV, despite the fact that the interaction and effects of viral infections on the neurovasculature are poorly described, notably for USUV. Using a human in vitro blood-brain barrier (BBB) and a mouse model, this study characterizes and compares the cerebral endothelial cell permissiveness, innate immunity and inflammatory responses and immune cell recruitment during infection by USUV and WNV. Both viruses are able to infect and cross the human BBB but with different consequences. We observed that WNV infects BBB cells resulting in significant endothelium impairment, potent neuroinflammation and immune cell recruitment, in agreement with previous studies. USUV, despite being able to infect BBB cells with higher replication rate than WNV, does not strongly affect endothelium integrity. Importantly, USUV also induces neuroinflammation, immune cell recruitment such as T lymphocytes, monocytes and dendritic cells (DCs) and was able to infect dendritic cells (DCs) more efficiently compared to WNV, with greater propensity for BBB recruitment. DCs may have differential roles for neuroinvasion of the two related viruses.
Collapse
|
17
|
|
Baker MR, Lee AS, Rajadhyaksha AM. L-type calcium channels and neuropsychiatric diseases: Insights into genetic risk variant-associated genomic regulation and impact on brain development. Channels (Austin) 2023;17:2176984. [PMID: 36803254 DOI: 10.1080/19336950.2023.2176984] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/21/2023] Open
Abstract
Recent human genetic studies have linked a variety of genetic variants in the CACNA1C and CACNA1D genes to neuropsychiatric and neurodevelopmental disorders. This is not surprising given the work from multiple laboratories using cell and animal models that have established that Cav1.2 and Cav1.3 L-type calcium channels (LTCCs), encoded by CACNA1C and CACNA1D, respectively, play a key role in various neuronal processes that are essential for normal brain development, connectivity, and experience-dependent plasticity. Of the multiple genetic aberrations reported, genome-wide association studies (GWASs) have identified multiple single nucleotide polymorphisms (SNPs) in CACNA1C and CACNA1D that are present within introns, in accordance with the growing body of literature establishing that large numbers of SNPs associated with complex diseases, including neuropsychiatric disorders, are present within non-coding regions. How these intronic SNPs affect gene expression has remained a question. Here, we review recent studies that are beginning to shed light on how neuropsychiatric-linked non-coding genetic variants can impact gene expression via regulation at the genomic and chromatin levels. We additionally review recent studies that are uncovering how altered calcium signaling through LTCCs impact some of the neuronal developmental processes, such as neurogenesis, neuron migration, and neuron differentiation. Together, the described changes in genomic regulation and disruptions in neurodevelopment provide possible mechanisms by which genetic variants of LTCC genes contribute to neuropsychiatric and neurodevelopmental disorders.
Collapse
|
18
|
|
Jia C, Zhang R, Wei L, Xie J, Zhou S, Yin W, Hua X, Xiao N, Ma M, Jiao H. Investigation of the mechanism of tanshinone IIA to improve cognitive function via synaptic plasticity in epileptic rats. Pharm Biol 2023;61:100-10. [PMID: 36548216 DOI: 10.1080/13880209.2022.2157843] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 12/24/2022] Open
Abstract
CONTEXT Tanshinone IIA is an extract of Salvia miltiorrhiza Bunge (Labiatae) used to treat cardiovascular disorders. It shows potential anticonvulsant and cognition-protective properties. OBJECTIVE We investigated the mechanism of tanshinone IIA on antiepileptic and cognition-protective effects in the model of epileptic rats. MATERIALS AND METHODS Lithium chloride (LiCl)-pilocarpine-induced epileptic Wistar rats were randomly assigned to the following groups (n = 12): control (blank), model, sodium valproate (VPA, 189 mg/kg/d, positive control), tanshinone IIA low dose (TS IIA-L, 10 mg/kg/d), medium dose (TS IIA-M, 20 mg/kg/d) and high dose (TS IIA-H, 30 mg/kg/d). Then, epileptic behavioural observations, Morris water maze test, Timm staining, transmission electron microscopy, immunofluorescence staining, western blotting and RT-qPCR were measured. RESULTS Compared with the model group, tanshinone IIA reduced the frequency and severity of seizures, improved cognitive impairment, and inhibited hippocampal mossy fibre sprouting score (TS IIA-M 1.50 ± 0.22, TS IIA-H 1.17 ± 0.31 vs. model 2.83 ± 0.31), as well as improved the ultrastructural disorder. Tanshinone IIA increased levels of synapse-associated proteins synaptophysin (SYN) and postsynaptic dense substance 95 (PSD-95) (SYN: TS IIA 28.82 ± 2.51, 33.18 ± 2.89, 37.29 ± 1.69 vs. model 20.23 ± 3.96; PSD-95: TS IIA 23.10 ± 0.91, 26.82 ± 1.41, 27.00 ± 0.80 vs. model 18.28 ± 1.01). DISCUSSION AND CONCLUSIONS Tanshinone IIA shows antiepileptic and cognitive function-improving effects, primarily via regulating synaptic plasticity. This research generates a theoretical foundation for future research on potential clinical applications for tanshinone IIA.
Collapse
|
19
|
|
Wang X, Wang H, Li J, Li L, Wang Y, Li A. Salt-induced phosphoproteomic changes in the subfornical organ in rats with chronic kidney disease. Ren Fail 2023;45:2171886. [PMID: 36715439 DOI: 10.1080/0886022X.2023.2171886] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVES Subfornical organ (SFO) is vital in chronic kidney disease (CKD) progression caused by high salt levels. The current study investigated the effects of high salt on phosphoproteomic changes in SFO in CKD rats. METHODS 5/6 nephrectomized rats were fed a normal-salt diet (0.4%) (NC group) or a high-salt diet (4%) (HC group) for three weeks, while sham-operated rats were fed a normal-salt diet (0.4%) (NS group). For phosphoproteomic analysis of SFO in different groups, TiO2 enrichment, isobaric tags for relative and absolute quantification (iTRAQ) labeling, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used. RESULTS There were 6808 distinct phosphopeptides found, which corresponded to 2661 phosphoproteins. NC group had 168 upregulated and 250 downregulated phosphopeptides compared to NS group. Comparison to NC group, HC group had 154 upregulated and 124 downregulated phosphopeptides. Growth associated protein 43 (GAP43) and heat shock protein 27 (Hsp27) were significantly upregulated phosphoproteins and may protect against high-salt damage. Differential phosphoproteins with tight functional connection were synapse proteins and microtubule-associated proteins, implying that high-salt diet disrupted brain's structure and function. Furthermore, differential phosphoproteins in HC/NC comparison group were annotated to participate in GABAergic synapse signaling pathway and aldosterone synthesis and secretion, which attenuated inhibitory neurotransmitter effects and increased sympathetic nerve activity (SNA). DISCUSSION This large scale phosphoproteomic profiling of SFO sheds light on how salt aggravates CKD via the central nervous system.
Collapse
|
20
|
|
Cascella R, Banchelli M, Abolghasem Ghadami S, Ami D, Gagliani MC, Bigi A, Staderini T, Tampellini D, Cortese K, Cecchi C, Natalello A, Adibi H, Matteini P, Chiti F. An in situ and in vitro investigation of cytoplasmic TDP-43 inclusions reveals the absence of a clear amyloid signature. Ann Med 2023;55:72-88. [PMID: 36495262 DOI: 10.1080/07853890.2022.2148734] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 12/13/2022] Open
Abstract
Introduction: Several neurodegenerative conditions are associated with a common histopathology within neurons of the central nervous system, consisting of the deposition of cytoplasmic inclusions of TAR DNA-binding protein 43 (TDP-43). Such inclusions have variably been described as morphologically and molecularly ordered aggregates having amyloid properties, as filaments without the cross-β-structure and dye binding specific for amyloid, or as amorphous aggregates with no defined structure and fibrillar morphology.Aims and Methods: Here we have expressed human full-length TDP-43 in neuroblastoma x spinal cord 34 (NSC-34) cells to investigate the morphological, structural, and tinctorial properties of TDP-43 inclusions in situ. We have used last-generation amyloid diagnostic probes able to cross the cell membrane and detect amyloid in the cytoplasm and have adopted Raman and Fourier transform infrared microspectroscopies to study in situ the secondary structure of the TDP-43 protein in the inclusions. We have then used transmission electron microscopy to study the morphology of the TDP-43 inclusions.Results: The results show the absence of amyloid dye binding, the lack of an enrichment of cross-β structure in the inclusions, and of a fibrillar texture in the round inclusions. The aggregates formed in vitro from the purified protein under conditions in which it is initially native also lack all these characteristics, ruling out a clear amyloid-like signature.Conclusions: These findings indicate a low propensity of TDP-43 to form amyloid fibrils and even non-amyloid filaments, under conditions in which the protein is initially native and undergoes its typical nucleus-to-cell mislocalization. It cannot be excluded that filaments emerge on the long time scale from such inclusions, but the high propensity of the protein to form initially other types of inclusions appear to be an essential characteristic of TDP-43 proteinopathies.KEY MESSAGESCytoplasmic inclusions of TDP-43 formed in NSC-34 cells do not stain with amyloid-diagnostic dyes, are not enriched with cross-β structure, and do not show a fibrillar morphology.TDP-43 assemblies formed in vitro from pure TDP-43 do not have any hallmarks of amyloid.
Collapse
|
21
|
|
Heigl T, Netzer MA, Zanetti L, Ganglberger M, Fernández-Quintero ML, Koschak A. Characterization of two pathological gating-charge substitutions in Cav1.4 L-type calcium channels. Channels (Austin) 2023;17:2192360. [PMID: 36943941 DOI: 10.1080/19336950.2023.2192360] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/23/2023] Open
Abstract
Cav1.4 L-type calcium channels are predominantly expressed at the photoreceptor terminals and in bipolar cells, mediating neurotransmitter release. Mutations in its gene, CACNA1F, can cause congenital stationary night-blindness type 2 (CSNB2). Due to phenotypic variability in CSNB2, characterization of pathological variants is necessary to better determine pathological mechanism at the site of action. A set of known mutations affects conserved gating charges in the S4 voltage sensor, two of which have been found in male CSNB2 patients. Here, we describe two disease-causing Cav1.4 mutations with gating charge neutralization, exchanging an arginine 964 with glycine (RG) or arginine 1288 with leucine (RL). In both, charge neutralization was associated with a reduction channel expression also reflected in smaller ON gating currents. In RL channels, the strong decrease in whole-cell current densities might additionally be explained by a reduction of single-channel currents. We further identified alterations in their biophysical properties, such as a hyperpolarizing shift of the activation threshold and an increase in slope factor of activation and inactivation. Molecular dynamic simulations in RL substituted channels indicated water wires in both, resting and active, channel states, suggesting the development of omega (ω)currents as a new pathological mechanism in CSNB2. This sum of the respective channel property alterations might add to the differential symptoms in patients beside other factors, such as genomic and environmental deviations.
Collapse
|
22
|
|
Pfeiffer P, Coates JR, Esqueda YM, Kennedy A, Getchell K, McLenon M, Kosa E, Agbas A. Exosomal TAR DNA binding protein 43 profile in canine model of amyotrophic lateral sclerosis: a preliminary study in developing blood-based biomarker for neurodegenerative diseases. Ann Med 2023;55:34-41. [PMID: 36495266 DOI: 10.1080/07853890.2022.2153162] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Blood-based biomarkers provide a crucial information in the progress of neurodegenerative diseases with a minimally invasive sampling method. Validated blood-based biomarker application in people with amyotrophic lateral sclerosis would derive numerous benefits. Canine degenerative myelopathy is a naturally occurring animal disease model to study the biology of human amyotrophic lateral sclerosis. Serum derived exosomes are potential carriers for cell-specific cargoes making them ideal venue to study biomarkers for a variety of diseases and biological processes. This study assessed the exosomal proteins that may be assigned as surrogate biomarker that may reflect biochemical changes in the central nervous system. METHODS Exosomes were isolated from canine serum using commercial exosome isolation reagents. Exosomes target proteins contents were analyzed by the Western blotting method. RESULTS The profiles of potential biomarker candidates in spinal cord homogenate and that of serum-derived exosomes were found elevated in dogs with degenerative myelopathy as compared to control subjects. CONCLUSIONS Serum-derived exosomal biomolecules can serve as surrogate biomarkers in neurodegenerative diseases.KEY MESSAGESA canine with degenerative myelopathy can serve as a model animal to study human amyotrophic lateral sclerosis.Serum-derived exosomes contain Transactive Response DNA Binding Protein 43 (TDP-43), a potential biomarker candidate.The levels of spinal cord TDP-43 proteins and that of serum-derived exosomes exhibited similar profiling. Therefore, serum derived exosomes may be used as a venue for establishing blood-based biomarkers for neurodegenerative diseases.
Collapse
|
23
|
|
Hussey JW, Limpitikul WB, Dick IE. Calmodulin Mutations in Human Disease. Channels (Austin) 2023;17:2165278. [PMID: 36629534 DOI: 10.1080/19336950.2023.2165278] [Cited by in Crossref: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 01/12/2023] Open
Abstract
Calcium ions (Ca2+) are the basis of a unique and potent array of cellular responses. Calmodulin (CaM) is a small but vital protein that is able to rapidly transmit information about changes in Ca2+ concentrations to its regulatory targets. CaM plays a critical role in cellular Ca2+ signaling, and interacts with a myriad of target proteins. Ca2+-dependent modulation by CaM is a major component of a diverse array of processes, ranging from gene expression in neurons to the shaping of the cardiac action potential in heart cells. Furthermore, the protein sequence of CaM is highly evolutionarily conserved, and identical CaM proteins are encoded by three independent genes (CALM1-3) in humans. Mutations within any of these three genes may lead to severe cardiac deficits including severe long QT syndrome (LQTS) and/or catecholaminergic polymorphic ventricular tachycardia (CPVT). Research into disease-associated CaM variants has identified several proteins modulated by CaM that are likely to underlie the pathogenesis of these calmodulinopathies, including the cardiac L-type Ca2+ channel (LTCC) CaV1.2, and the sarcoplasmic reticulum Ca2+ release channel, ryanodine receptor 2 (RyR2). Here, we review the research that has been done to identify calmodulinopathic CaM mutations and evaluate the mechanisms underlying their role in disease.
Collapse
|
24
|
|
Yang Y, Liu Z, Lu J, Sun Y, Fu Y, Pan M, Xie X, Ge Q. Analysis approaches for the identification and prediction of N(6)-methyladenosine sites. Epigenetics 2023;18:2158284. [PMID: 36562485 DOI: 10.1080/15592294.2022.2158284] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 12/24/2022] Open
Abstract
The global dynamics in a variety of biological processes can be revealed by mapping transcriptional m6A sites, in particular full-transcriptome m6A. And individual m6A sites have contributed to biological function, which can be evaluated by stoichiometric information obtained from the single nucleotide resolution. Currently, the identification of m6A sites is mainly carried out by experiment and prediction methods, based on high-throughput sequencing and machine learning model respectively. This review summarizes the recent topics and progress made in bioinformatics methods of deciphering the m6A methylation, including the experimental detection of m6A methylation sites, techniques of data analysis, the way of predicting m6A methylation sites, m6A methylation databases, and detection of m6A modification in circRNA. At the end, the essay makes a brief discussion for the development perspective in this area.
Collapse
|
25
|
|
Xia Z, Hu B, Yang M, He W. Zinc finger protein 189 promotes the differentiation of lamina propria T helper 17.1 cells in dextran sulfate sodium-induced colitis. Autoimmunity 2023;56:2189140. [PMID: 36942486 DOI: 10.1080/08916934.2023.2189140] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/23/2023]
Abstract
The factors regulating the heterogeneity of interleukin-17A (IL-17A)-expressing CD4+ T cells in inflammatory bowel diseases remain unclear. In the current study, we characterised the expression and function of zinc finger protein 189 (ZFP189) in a murine colitis model. Mice were given dextran sulphate sodium to induce acute colitis. Flow cytometry was applied to recognise and enrich Th17 and Th17.1 cells based on the expression of IL-17A, interferon-γ (IFN-γ), C-X-C motif chemokine receptor 3 (CXCR3), and C-C motif chemokine receptor 4 (CCR4). The expression of ZFP189 in Th17 and Th17.1 cells was determined by Immunoblotting. Lentivirus-mediated ZFP189 knockdown was conducted to evaluate the effect of ZFP189 on the differentiation of Th17 and Th17.1 cells. The adoptive transfer was performed to analyse the pathogenicity of Th17.1 cells in vivo. We found that ZFP189 was mildly up-regulated in IL-17A-expressing CD4+ T cells in colonic lamina propria. Lamina propria Th17.1 cells expressed higher ZFP189 than Th17 cells. In vitro ZFP189 knockdown in CD4+ T cells did not impact Th17 cell differentiation but suppressed Th17.1 cell differentiation, as evidenced by lower T-box expressed in T cells (T-bet) and IFN-γ. When adoptively transferred into mice, ZFP189-deficient Th17.1 cells produced fewer IFN-γ, tumour necrosis factor-alpha (TNF-α), and granulocyte-macrophage colony-stimulating factor (GM-CSF) than ZFP189-expressing Th17.1 cells. Moreover, ZFP189-deficient Th17.1 cells induced less severe colitis than ZFP189-expressing Th17.1 cells, as evidenced by less body weight loss, a lower disease activity index, and a lower colon histological score. In summary, ZFP189 acts as a positive regulator of the differentiation and pathogenicity of lamina propria Th17.1 cells in colitis.
Collapse
|
26
|
|
Zhang C, Jian H, Shang S, Lu L, Lou Y, Kang Y, Bai H, Fu Z, Lv Y, Kong X, Li X, Feng S, Zhou H. Crosstalk between m6A mRNAs and m6A circRNAs and the time-specific biogenesis of m6A circRNAs after OGD/R in primary neurons. Epigenetics 2023;18:2181575. [PMID: 36861189 DOI: 10.1080/15592294.2023.2181575] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/03/2023] Open
Abstract
Cerebral ischaemiareperfusion injury is an important pathological process in nervous system diseases during which neurons undergo oxygenglucose deprivation and reoxygenation (OGD/R) injury. No study has used epitranscriptomics to explore the characteristics and mechanism of injury. N6methyladenosine (m6A) is the most abundant epitranscriptomic RNA modification. However, little is known about m6A modifications in neurons, especially during OGD/R. m6A RNA immunoprecipitation sequencing (MeRIPseq) and RNA-sequencing data for normal and OGD/R-treated neurons were analysed by bioinformatics. MeRIP quantitative real-time polymerase chain reaction was used to determine the m6A modification levels on specific RNAs. We report the m6A modification profiles of the mRNA and circRNA transcriptomes of normal and OGD/R-treated neurons. Expression analysis revealed that the m6A levels did not affect m6A mRNA or m6A circRNA expression. We found crosstalk between m6A mRNAs and m6A circRNAs and identified three patterns of m6A circRNA production in neurons; thus, distinct OGD/R treatments induced the same genes to generate different m6A circRNAs. Additionally, m6A circRNA biogenesis during distinct OGD/R processes was found to be time specific. These results expand our understanding of m6A modifications in normal and OGD/R-treated neurons, providing a reference to explore epigenetic mechanisms and potential treatments for OGD/R-related diseases.
Collapse
|
27
|
|
Xu P, Shao RR, He Y. Bibliometric analysis of recent research on the association between TRPV1 and inflammation. Channels (Austin) 2023;17:2189038. [PMID: 36919561 DOI: 10.1080/19336950.2023.2189038] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/16/2023] Open
Abstract
TRPV1 channel is a sensitive ion channel activated by some noxious stimuli and has been reported to change many physiological functions after its activation. In this paper, we present a scientometric approach to explore the trends of the association between TRPV1 channel and inflammation and our goal is to provide creative directions for future research. The related literature was retrieved from Web of Science Core Collection and then analyzed by CiteSpace and VOSviewer. A total of 1533 documents were screened. The most productive country, institution, journal, author, cited journal, cited author, and references were the United States, University of California, San Francisco, Pain, Lu-yuan Lee, Nature, Michael J. Caterina, and Caterina MJ (Science, 2000), respectively. The most influential country and institution were Switzerland and University of California, San Francisco, respectively. The cooperation among countries or institutions was extensive. Amounts of documents were distributed in molecular, biology, genetics. TRPV1-associated neurons, neuropeptides, neuropathic pain, neuroinflammation, and neurogenic inflammation were mainly hotspots in this field. The research has presented valuable data about previous studies in the link of TRPV1 channel and inflammation.
Collapse
|
28
|
|
García-pérez MA. Use and misuse of corrections for multiple testing. Methods in Psychology 2023;8:100120. [DOI: 10.1016/j.metip.2023.100120] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/29/2023] Open
|
29
|
|
Rudy MJ, Salois G, Cubello J, Newell R, Mayer-Proschel M. Gestational iron deficiency affects the ratio between interneuron subtypes in the postnatal cerebral cortex in mice. Development 2023;150:dev201068. [PMID: 36805633 DOI: 10.1242/dev.201068] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/22/2023]
Abstract
Gestational iron deficiency (gID) is highly prevalent and associated with an increased risk of intellectual and developmental disabilities in affected individuals that are often defined by a disrupted balance of excitation and inhibition (E/I) in the brain. Using a nutritional mouse model of gID, we previously demonstrated a shift in the E/I balance towards increased inhibition in the brains of gID offspring that was refractory to postnatal iron supplementation. We thus tested whether gID affects embryonic progenitor cells that are fated towards inhibitory interneurons. We quantified relevant cell populations during embryonic inhibitory neuron specification and found an increase in the proliferation of Nkx2.1+ interneuron progenitors in the embryonic medial ganglionic eminence at E14 that was associated with increased Shh signaling in gID animals at E12. When we quantified the number of mature inhibitory interneurons that are known to originate from the MGE, we found a persistent disruption of differentiated interneuron subtypes in early adulthood. Our data identify a cellular target that links gID with a disruption of cortical interneurons which play a major role in the establishment of the E/I balance.
Collapse
|
30
|
|
Lernia DD, Serino S, Tuena C, Cacciatore C, Polli N, Riva G. Mental health meets computational neuroscience: A predictive Bayesian account of the relationship between interoception and multisensory bodily illusions in anorexia nervosa. Int J Clin Health Psychol 2023;23:100383. [PMID: 36937547 DOI: 10.1016/j.ijchp.2023.100383] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/09/2023] Open
Abstract
Mental health disorders pose a significant challenge to society. The Bayesian perspective on the mind offers unique insights and tools that may help address a variety of mental health conditions. Psychopathological dysfunctions are often connected to altered predictive and active inference processes, in which cognitive and physiological pathogenic beliefs shape the clinical condition and its symptoms. However, there is a lack of general empirical models that integrate cognitive beliefs, physiological experience, and symptoms in healthy and clinical populations. In this study, we examined the relationship between altered predictive mechanisms, interoception, and pathological bodily distortions in healty individuals and in individuals suffering from anorexia nervosa (AN). AN patients (N=15) completed a Virtual Reality Full-Body Illusion along with interoceptive tasks twice: at hospital admission during an acute symptomatological phase (Time 1) and after a 12-week outpatient clinical weight-restoring rehabilitative program (Time 2). Results were compared to a healthy control group. Our findings indicated that higher levels of interoceptive metacognitive awareness were associated with a greater embodiment. However, unlike in healthy participants, AN patients' interoceptive metacognition was linked to embodiment even in multisensory mismatching (asynchronous) conditions. In addition, unlike in healthy participants, higher interoceptive metacognition in AN patients was related to prior abnormal bodily distortions during the acute symptomatology phase. Prediction errors in bodily estimates predicted posterior bodily estimate distortions after the illusion, but while this relationship was only significant in the synchronous condition in healthy participants, there was no significant difference between synchronous and asynchronous conditions in AN patients. Despite the success of the rehabilitation program in restoring some dysfunctional patterns in the AN group, prediction errors and posterior estimate distortions were present at hospital discharge. Our findings suggest that individuals with AN prioritize interoceptive metacognitive processes (i.e., confidence in their own perceived sensations rather than their actual perceptions), disregarding bottom-up bodily inputs in favour of their prior altered top-down beliefs. Moreover, even if the rehabilitative program partially mitigated these alterations, the pathological condition impaired the patients' ability to coherently update their prior erroneous expectations with real-time multisensory bottom-up bodily information, possibly locking the patients in the experience of a distorted prior top-down belief. These results suggest new therapeutic perspectives and introduce the framework of regenerative virtual therapy (RVT), which aims at utilizing technology-based somatic modification techniques to restructure the maladaptive priors underlying a pathological condition.
Collapse
|
31
|
|
Guo Y, Lei X, Liu L, Pan Y. circ2CBA: prediction of circRNA-RBP binding sites combining deep learning and attention mechanism. FRONT COMPUT SCI-CHI 2023;17:175904. [DOI: 10.1007/s11704-022-2151-0] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/15/2022]
|
32
|
|
Song X, Liu Y, Zhang X, Weng P, Zhang R, Wu Z. Role of intestinal probiotics in the modulation of lipid metabolism: implications for therapeutic treatments. FOOD SCI HUM WELL 2023;12:1439-1449. [DOI: 10.1016/j.fshw.2023.02.005] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/28/2023] Open
|
33
|
|
Wei W, Zhang G, Zhang Y, Zhang L, Wu S, Li X, Yang D. Research progress on adaptive modifications of the gut microflora and regulation of host glucose and lipid metabolism by cold stimulation. Frigid Zone Medicine 2023;3:13-21. [DOI: 10.2478/fzm-2023-0003] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/27/2023]
Abstract
Abstract
The gut microflora is a combination of all microbes in intestine and their microenvironment, and its change can sensitively reflect the relevant response of the body to external environment and remarkably affect body's metabolism as well. Recent studies have found that cold exposure affects the body's gut microflora, which can lead to changes in the body's metabolism of glucose and lipid. This review summarizes recent research on the effects of cold exposure on gut microbes and metabolism of glucose and lipid, aiming to provide some new ideas on the approaches and measures for the prevention and treatment of diabetes and obesity.
Collapse
|
34
|
|
Abugaber D, Finestrat I, Luque A, Morgan-short K. Generalized additive mixed modeling of EEG supports dual-route accounts of morphosyntax in suggesting no word frequency effects on processing of regular grammatical forms. J Neurolinguistics 2023;67:101137. [DOI: 10.1016/j.jneuroling.2023.101137] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/30/2023]
|
35
|
|
Qian S, Lin HA, Pan Q, Zhang S, Zhang Y, Geng Z, Wu Q, He Y, Zhu B. Chemically revised conducting polymers with inflammation resistance for intimate bioelectronic electrocoupling. Bioact Mater 2023;26:24-51. [PMID: 36875055 DOI: 10.1016/j.bioactmat.2023.02.010] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/23/2023] Open
Abstract
Conducting polymers offer attractive mixed ionic-electronic conductivity, tunable interfacial barrier with metal, tissue matchable softness, and versatile chemical functionalization, making them robust to bridge the gap between brain tissue and electronic circuits. This review focuses on chemically revised conducting polymers, combined with their superior and controllable electrochemical performance, to fabricate long-term bioelectronic implants, addressing chronic immune responses, weak neuron attraction, and long-term electrocommunication instability challenges. Moreover, the promising progress of zwitterionic conducting polymers in bioelectronic implants (≥4 weeks stable implantation) is highlighted, followed by a comment on their current evolution toward selective neural coupling and reimplantable function. Finally, a critical forward look at the future of zwitterionic conducting polymers for in vivo bioelectronic devices is provided.
Collapse
|
36
|
|
Li D, Wang X, Li Y, Song D, Ma W. Resource sharedness between language and music processing: An ERP study. J Neurolinguistics 2023;67:101136. [DOI: 10.1016/j.jneuroling.2023.101136] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/09/2023]
|
37
|
|
Mohammadi S, Jahanshahi A, Salehi MA, Darvishi R, Seyedmirzaei H, Luna LP. White matter microstructural changes in internet addiction disorder: A systematic review of diffusion tensor imaging studies. Addict Behav 2023;143:107690. [DOI: 10.1016/j.addbeh.2023.107690] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/29/2023]
|
38
|
|
Marinho LSR, Chiarantin GMD, Ikebara JM, Cardoso DS, de Lima-Vasconcellos TH, Higa GSV, Ferraz MSA, De Pasquale R, Takada SH, Papes F, Muotri AR, Kihara AH. The impact of antidepressants on human neurodevelopment: Brain organoids as experimental tools. Semin Cell Dev Biol 2023;144:67-76. [PMID: 36115764 DOI: 10.1016/j.semcdb.2022.09.007] [Cited by in Crossref: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/23/2022]
Abstract
The use of antidepressants during pregnancy benefits the mother's well-being, but the effects of such substances on neurodevelopment remain poorly understood. Moreover, the consequences of early exposure to antidepressants may not be immediately apparent at birth. In utero exposure to selective serotonin reuptake inhibitors (SSRIs) has been related to developmental abnormalities, including a reduced white matter volume. Several reports have observed an increased incidence of autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) after prenatal exposure to SSRIs such as sertraline, the most widely prescribed SSRI. The advent of human-induced pluripotent stem cell (hiPSC) methods and assays now offers appropriate tools to test the consequences of such compounds for neurodevelopment in vitro. In particular, hiPSCs can be used to generate cerebral organoids - self-organized structures that recapitulate the morphology and complex physiology of the developing human brain, overcoming the limitations found in 2D cell culture and experimental animal models for testing drug efficacy and side effects. For example, single-cell RNA sequencing (scRNA-seq) and electrophysiological measurements on organoids can be used to evaluate the impact of antidepressants on the transcriptome and neuronal activity signatures in developing neurons. While the analysis of large-scale transcriptomic data depends on dimensionality reduction methods, electrophysiological recordings rely on temporal data series to discriminate statistical characteristics of neuronal activity, allowing for the rigorous analysis of the effects of antidepressants and other molecules that affect the developing nervous system, especially when applied in combination with relevant human cellular models such as brain organoids.
Collapse
|
39
|
|
Marques BL, Maciel GF, Brito MR Júnior, Dias LD, Scalzo S, Santos AK, Kihara AH, da Costa Santiago H, Parreira RC, Birbrair A, Resende RR. Regulatory mechanisms of stem cell differentiation: Biotechnological applications for neurogenesis. Semin Cell Dev Biol 2023;144:11-9. [PMID: 36202693 DOI: 10.1016/j.semcdb.2022.09.014] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/15/2022]
Abstract
The world population's life expectancy is growing, and neurodegenerative disorders common in old age require more efficient therapies. In this context, neural stem cells (NSCs) are imperative for the development and maintenance of the functioning of the nervous system and have broad therapeutic applicability for neurodegenerative diseases. Therefore, knowing all the mechanisms that govern the self-renewal, differentiation, and cell signaling of NSC is necessary. This review will address some of these aspects, including the role of growth and transcription factors, epigenetic modulators, microRNAs, and extracellular matrix components. Furthermore, differentiation and transdifferentiation processes will be addressed as therapeutic strategies showing their significance for stem cell-based therapy.
Collapse
|
40
|
|
Gao C, Tello E, Peterson DG. Identification of compounds that enhance bitterness of coffee brew. Food Chem 2023;415:135674. [PMID: 36868066 DOI: 10.1016/j.foodchem.2023.135674] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/17/2023]
Abstract
The bitterness perception of coffee is a key attribute that impacts consumer acceptance. Nontargeted liquid chromatography/mass spectrometry (LC/MS) flavoromics analysis was applied to identify compounds that enhance the bitter perception of roasted coffee brew. Orthogonal partial least squares (OPLS) analysis was used to model the comprehensive chemical profiles and sensory bitter intensity ratings of fourteen coffee brews with good fit and predictivity. Five compounds that were highly predictive and positively correlated to bitter intensity were selected from the OPLS model, further isolated, and purified using preparative LC fractionation. Sensory recombination testing demonstrated that five compounds significantly enhanced the bitter perception of coffee when presented as a mixture, but not when presented individually. In addition, a set of roasting experiments revealed the five compounds were generated during the coffee roasting process.
Collapse
|
41
|
|
Santos AK, Scalzo S, de Souza RTV, Santana PHG, Marques BL, Oliveira LF, Filho DM, Kihara AH, da Costa Santiago H, Parreira RC, Birbrair A, Ulrich H, Resende RR. Strategic use of organoids and organs-on-chip as biomimetic tools. Semin Cell Dev Biol 2023;144:3-10. [PMID: 36192310 DOI: 10.1016/j.semcdb.2022.09.010] [Cited by in Crossref: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/30/2022]
Abstract
Organoid development and organ-on-a-chip are technologies based on differentiating stem cells, forming 3D multicellular structures resembling organs and tissues in vivo. Hence, both can be strategically used for disease modeling, drug screening, and host-pathogen studies. In this context, this review highlights the significant advancements in the area, providing technical approaches to organoids and organ-on-a-chip that best imitate in vivo physiology.
Collapse
|
42
|
|
Ben Khemis I, Aouaini F, Bukhari L, Nasr S, Ben Lamine A. Quantitative characterizations of mOR-EG activated by vanilla odorants using advanced statistical physics modeling. Food Chem 2023;415:135782. [PMID: 36868068 DOI: 10.1016/j.foodchem.2023.135782] [Cited by in Crossref: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/04/2023]
Abstract
An advanced monolayer adsorption model of an ideal gas was successfully employed to investigate the adsorption of vanillin, vanillin methyl ether, vanillin ethyl ether, and vanillin acetate odorants on mouse eugenol olfactory receptor mOR-EG. In order to understand the adsorption process putatively introduced in olfactory perception, model parameters were analyzed. Hence, fitting results showed that the studied vanilla odorants were linked in mOR-EG binding pockets with a non-parallel orientation, and their adsorption was a multi-molecular process (n > 1). The adsorption energy values that ranged from 14.021 to 19.193 kJ/mol suggested that the four vanilla odorants were physisorbed on mOR-EG (ΔEa < 40 kJ/mol) and the adsorption mechanism may be considered as an exothermic mechanism (ΔEa > 0). The estimated parameters may also be utilized for the quantitative characterization of the interactions of the studied odorants with mOR-EG to determine the corresponding olfactory bands ranging from 8 to 24.5 kJ/mol.
Collapse
|
43
|
|
Jeziorski J, Brandt R, Evans JH, Campana W, Kalichman M, Thompson E, Goldstein L, Koch C, Muotri AR. Brain organoids, consciousness, ethics and moral status. Semin Cell Dev Biol 2023;144:97-102. [PMID: 35339359 DOI: 10.1016/j.semcdb.2022.03.020] [Cited by in Crossref: 4] [Cited by in RCA: 2] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/26/2022]
Abstract
Advances in the field of human stem cells are often a source of public and ethical controversy. Researchers must frequently balance diverse societal perspectives on questions of morality with the pursuit of medical therapeutics and innovation. Recent developments in brain organoids make this challenge even more acute. Brain organoids are a new class of brain surrogate generated from human pluripotent stem cells (hPSCs). They have gained traction as a model for studying the intricacies of the human brain by using advancements in stem cell biology to recapitulate aspects of the developing human brain in vitro. However, recent observation of neural oscillations spontaneously emerging from these organoids raises the question of whether brain organoids are or could become conscious. At the same time, brain organoids offer a potentially unique opportunity to scientifically understand consciousness. To address these issues, experimental biologists, philosophers, and ethicists united to discuss the possibility of consciousness in human brain organoids and the consequent ethical and moral implications.
Collapse
|
44
|
|
Móvio MI, de Lima-Vasconcellos TH, Dos Santos GB, Echeverry MB, Colombo E, Mattos LS, Resende RR, Kihara AH. Retinal organoids from human-induced pluripotent stem cells: From studying retinal dystrophies to early diagnosis of Alzheimer's and Parkinson's disease. Semin Cell Dev Biol 2023;144:77-86. [PMID: 36210260 DOI: 10.1016/j.semcdb.2022.09.011] [Cited by in Crossref: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/18/2022]
Abstract
Human-induced pluripotent stem cells (hiPSCs) have provided new methods to study neurodegenerative diseases. In addition to their wide application in neuronal disorders, hiPSCs technology can also encompass specific conditions, such as inherited retinal dystrophies. The possibility of evaluating alterations related to retinal disorders in 3D organoids increases the truthfulness of in vitro models. Moreover, both Alzheimer's (AD) and Parkinson's disease (PD) have been described as causing early retinal alterations, generating beta-amyloid protein accumulation, or affecting dopaminergic amacrine cells. This review addresses recent advances and future perspectives obtained from in vitro modeling of retinal diseases, focusing on retinitis pigmentosa (RP). Additionally, we depicted the possibility of evaluating changes related to AD and PD in retinal organoids obtained from potential patients long before the onset of the disease, constituting a valuable tool in early diagnosis. With this, we pointed out prospects in the study of retinal dystrophies and early diagnosis of AD and PD.
Collapse
|
45
|
|
Nguyen JN, Chauhan A. Bystanders or not? Microglia and lymphocytes in aging and stroke. Neural Regen Res 2023;18:1397-403. [PMID: 36571333 DOI: 10.4103/1673-5374.360345] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/06/2022] Open
Abstract
As the average age of the world population increases, more people will face debilitating aging-associated conditions, including dementia and stroke. Not only does the incidence of these conditions increase with age, but the recovery afterward is often worse in older patients. Researchers and health professionals must unveil and understand the factors behind age-associated diseases to develop a therapy for older patients. Aging causes profound changes in the immune system including the activation of microglia in the brain. Activated microglia promote T lymphocyte transmigration leading to an increase in neuroinflammation, white matter damage, and cognitive impairment in both older humans and rodents. The presence of T and B lymphocytes is observed in the aged brain and correlates with worse stroke outcomes. Preclinical strategies in stroke target either microglia or the lymphocytes or the communications between them to promote functional recovery in aged subjects. In this review, we examine the role of the microglia and T and B lymphocytes in aging and how they contribute to cognitive impairment. Additionally, we provide an important update on the contribution of these cells and their interactions in preclinical aged stroke.
Collapse
|
46
|
|
Sergiou CS, Tatti E, Romanella SM, Santarnecchi E, Weidema AD, Rassin EGC, Franken IHA, van Dongen JDM. The effect of HD-tDCS on brain oscillations and frontal synchronicity during resting-state EEG in violent offenders with a substance dependence. Int J Clin Health Psychol 2023;23:100374. [PMID: 36875007 DOI: 10.1016/j.ijchp.2023.100374] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/24/2023] Open
Abstract
Violence is a major problem in our society and therefore research into the neural underpinnings of aggression has grown exponentially. Although in the past decade the biological underpinnings of aggressive behavior have been examined, research on neural oscillations in violent offenders during resting-state electroencephalography (rsEEG) remains scarce. In this study we aimed to investigate the effect of high-definition transcranial direct current stimulation (HD-tDCS) on frontal theta, alpha and beta frequency power, asymmetrical frontal activity, and frontal synchronicity in violent offenders. Fifty male violent forensic patients diagnosed with a substance dependence were included in a double-blind sham-controlled randomized study. The patients received 20 minutes of HD-tDCS two times a day on five consecutive days. Before and after the intervention, the patients underwent a rsEEG task. Results showed no effect of HD-tDCS on the power in the different frequency bands. Also, no increase in asymmetrical activity was found. However, we found increased synchronicity in frontal regions in the alpha and beta frequency bands indicating enhanced connectivity in frontal brain regions as a result of the HD-tDCS-intervention. This study has enhanced our understanding of the neural underpinnings of aggression and violence, pointing to the importance of alpha and beta frequency bands and their connectivity in frontal brain regions. Although future studies should further investigate the complex neural underpinnings of aggression in different populations and using whole-brain connectivity, it can be suggested with caution, that HD-tDCS could be an innovative method to regain frontal synchronicity in neurorehabilitation.
Collapse
|
47
|
|
Shen W, Pristov JB, Nobili P, Nikolić L. Can glial cells save neurons in epilepsy? Neural Regen Res 2023;18:1417-22. [PMID: 36571336 DOI: 10.4103/1673-5374.360281] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/19/2022] Open
Abstract
Epilepsy is a neurological disorder caused by the pathological hyper-synchronization of neuronal discharges. The fundamental research of epilepsy mechanisms and the targets of drug design options for its treatment have focused on neurons. However, approximately 30% of patients suffering from epilepsy show resistance to standard anti-epileptic chemotherapeutic agents while the symptoms of the remaining 70% of patients can be alleviated but not completely removed by the current medications. Thus, new strategies for the treatment of epilepsy are in urgent demand. Over the past decades, with the increase in knowledge on the role of glia in the genesis and development of epilepsy, glial cells are receiving renewed attention. In a normal brain, glial cells maintain neuronal health and in partnership with neurons regulate virtually every aspect of brain function. In epilepsy, however, the supportive roles of glial cells are compromised, and their interaction with neurons is altered, which disrupts brain function. In this review, we will focus on the role of glia-related processes in epileptogenesis and their contribution to abnormal neuronal activity, with the major focus on the dysfunction of astroglial potassium channels, water channels, gap junctions, glutamate transporters, purinergic signaling, synaptogenesis, on the roles of microglial inflammatory cytokines, microglia-astrocyte interactions in epilepsy, and on the oligodendroglial potassium channels and myelin abnormalities in the epileptic brain. These recent findings suggest that glia should be considered as the promising next-generation targets for designing anti-epileptic drugs that may improve epilepsy and drug-resistant epilepsy.
Collapse
|
48
|
|
Wang HN, Qian WJ, Zhao GL, Li F, Miao YY, Lei B, Sun XH, Wang ZF. L- and T-type Ca(2+) channels dichotomously contribute to retinal ganglion cell injury in experimental glaucoma. Neural Regen Res 2023;18:1570-7. [PMID: 36571364 DOI: 10.4103/1673-5374.360277] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/19/2022] Open
Abstract
Retinal ganglion cell apoptotic death is the main pathological characteristic of glaucoma, which is the leading cause of irreversible blindness. Disruption of Ca2+ homeostasis plays an important role in glaucoma. Voltage-gated Ca2+ channel blockers have been shown to improve vision in patients with glaucoma. However, whether and how voltage-gated Ca2+ channels are involved in retinal ganglion cell apoptotic death are largely unknown. In this study, we found that total Ca2+ current densities in retinal ganglion cells were reduced in a rat model of chronic ocular hypertension experimental glaucoma, as determined by whole-cell patch-clamp electrophysiological recordings. Further analysis showed that L-type Ca2+ currents were downregulated while T-type Ca2+ currents were upregulated at the later stage of glaucoma. Western blot assay and immunofluorescence experiments confirmed that expression of the CaV1.2 subunit of L-type Ca2+ channels was reduced and expression of the CaV3.3 subunit of T-type Ca2+ channels was increased in retinas of the chronic ocular hypertension model. Soluble tumor necrosis factor-α, an important inflammatory factor, inhibited the L-type Ca2+ current of isolated retinal ganglion cells from control rats and enhanced the T-type Ca2+ current. These changes were blocked by the tumor necrosis factor-α inhibitor XPro1595, indicating that both types of Ca2+ currents may be mediated by soluble tumor necrosis factor-α. The intracellular mitogen-activated protein kinase/extracellular signal-regulated kinase pathway and nuclear factor kappa-B signaling pathway mediate the effects of tumor necrosis factor-α. TUNEL assays revealed that mibefradil, a T-type calcium channel blocker, reduced the number of apoptotic retinal ganglion cells in the rat model of chronic ocular hypertension. These results suggest that T-type Ca2+ channels are involved in disrupted Ca2+ homeostasis and apoptosis of retinal ganglion cells in glaucoma, and application of T-type Ca2+ channel blockers, especially a specific CaV3.3 blocker, may be a potential strategy for the treatment of glaucoma.
Collapse
|
49
|
|
Li W, Shao C, Huang P, Yu D, Yang J, Wan H, He Y. Optimization, characterization of Astragalus polysaccharides, and evaluation of anti-inflammation effect in primary cultured astrocytes via HMGB1/RAGE/NF-κB/NLRP3 signal pathway. Ind Crops Prod 2023;197:116594. [DOI: 10.1016/j.indcrop.2023.116594] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/29/2023]
|
50
|
|
Ye Q, Srivastava P, Al-Kuwari N, Chen X. Oncogenic BRAF(V600E) induces microglial proliferation through extracellular signal-regulated kinase and neuronal death through c-Jun N-terminal kinase. Neural Regen Res 2023;18:1613-22. [PMID: 36571370 DOI: 10.4103/1673-5374.361516] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/19/2022] Open
Abstract
Activating V600E in v-Raf murine sarcoma viral oncogene homolog B (BRAF) is a common driver mutation in cancers of multiple tissue origins, including melanoma and glioma. BRAFV600E has also been implicated in neurodegeneration. The present study aims to characterize BRAFV600E during cell death and proliferation of three major cell types of the central nervous system: neurons, astrocytes, and microglia. Multiple primary cultures (primary cortical mixed culture) and cell lines of glial cells (BV2) and neurons (SH-SY5Y) were employed. BRAFV600E and BRAFWT expression was mediated by lentivirus or retrovirus. Blockage of downstream effectors (extracellular signal-regulated kinase 1/2 and JNK1/2) were achieved by siRNA. In astrocytes and microglia, BRAFV600E induces cell proliferation, and the proliferative effect in microglia is mediated by activated extracellular signal-regulated kinase, but not c-Jun N-terminal kinase. Conditioned medium from BRAFV600E-expressing microglia induced neuronal death. In neuronal cells, BRAFV600E directly induces neuronal death, through c-Jun N-terminal kinase but not extracellular signal-regulated kinase. We further show that BRAF-related genes are enriched in pathways in patients with Parkinson's disease. Our study identifies distinct consequences mediated by distinct downstream effectors in dividing glial cells and in neurons following the same BRAF mutational activation and a causal link between BRAF-activated microglia and neuronal cell death that does not require physical proximity. It provides insight into a possibly important role of BRAF in neurodegeneration as a result of either dysregulated BRAF in neurons or its impact on glial cells.
Collapse
|