451
|
Samuel S, Abulawi A, Malik R. Hepatitis C and Nonalcoholic Steatohepatitis in the 21st Century: Impact on Liver Disease and Liver Transplantation. GASTROENTEROLOGY INSIGHTS 2023; 14:249-270. [DOI: 10.3390/gastroent14030018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Hepatitis C infection is a leading etiology of hepatic dysfunction and a major indication for liver transplantation due to the development of fibrosis, cirrhosis, and hepatocellular carcinoma. Nonalcoholic fatty liver disease (NAFLD) and, specifically, its subtype nonalcoholic steatohepatitis (NASH) is a rising cause of liver disease. It is predicted to surpass hepatitis C as a leading indication for transplant. The introduction of direct-acting antivirals (DAAs) decreased the prevalence of chronic hepatitis C infections, but the obesity epidemic and metabolic syndrome have increased the prevalence of NASH. Weight loss and dietary modifications are recommended NASH therapies, but unlike for hepatitis C, federally approved agents are lacking and currently under investigation. Clinical trials face many barriers in NASH treatment because of the difficulty of diagnosis and a lack of standardized and accurate clinical and histologic responses. Mortality and morbidity in NASH are heightened because of the presence of multiple comorbidities including cardiovascular disease, diabetes, and renal dysfunction. A liver transplant may be indicated, but a thorough screening of candidates, including a comprehensive cardiovascular assessment, is essential to ensuring successful outcomes pre- and post-transplant. Therapeutic agents for NASH are warranted before it becomes a significant and leading cause of morbidity and mortality worldwide.
Collapse
Affiliation(s)
- Sonia Samuel
- Division of Gastroenterology & Hepatology, Albany Medical Center, 47 New Scotland Ave, Albany, NY 12208, USA
| | - Ahmad Abulawi
- Division of Gastroenterology & Hepatology, Albany Medical Center, 47 New Scotland Ave, Albany, NY 12208, USA
| | - Raza Malik
- Division of Gastroenterology & Hepatology, Albany Medical Center, 47 New Scotland Ave, Albany, NY 12208, USA
| |
Collapse
|
452
|
Obrecht M, Zurbruegg S, Accart N, Lambert C, Doelemeyer A, Ledermann B, Beckmann N. Magnetic resonance imaging and ultrasound elastography in the context of preclinical pharmacological research: significance for the 3R principles. Front Pharmacol 2023; 14:1177421. [PMID: 37448960 PMCID: PMC10337591 DOI: 10.3389/fphar.2023.1177421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
The 3Rs principles-reduction, refinement, replacement-are at the core of preclinical research within drug discovery, which still relies to a great extent on the availability of models of disease in animals. Minimizing their distress, reducing their number as well as searching for means to replace them in experimental studies are constant objectives in this area. Due to its non-invasive character in vivo imaging supports these efforts by enabling repeated longitudinal assessments in each animal which serves as its own control, thereby enabling to reduce considerably the animal utilization in the experiments. The repetitive monitoring of pathology progression and the effects of therapy becomes feasible by assessment of quantitative biomarkers. Moreover, imaging has translational prospects by facilitating the comparison of studies performed in small rodents and humans. Also, learnings from the clinic may be potentially back-translated to preclinical settings and therefore contribute to refining animal investigations. By concentrating on activities around the application of magnetic resonance imaging (MRI) and ultrasound elastography to small rodent models of disease, we aim to illustrate how in vivo imaging contributes primarily to reduction and refinement in the context of pharmacological research.
Collapse
Affiliation(s)
- Michael Obrecht
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stefan Zurbruegg
- Neurosciences Department, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nathalie Accart
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Christian Lambert
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Arno Doelemeyer
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Birgit Ledermann
- 3Rs Leader, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nicolau Beckmann
- Diseases of Aging and Regenerative Medicines, Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
453
|
Zhang D, Liu BW, Liang XQ, Liu FQ. Immunological factors in cirrhosis diseases from a bibliometric point of view. World J Gastroenterol 2023; 29:3899-3921. [PMID: 37426317 PMCID: PMC10324529 DOI: 10.3748/wjg.v29.i24.3899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Cirrhosis results from persistent liver injury that leads to liver fibrosis. Immunological factors play important regulatory roles in the development and progression of cirrhosis. Bibliometrics is one of the most commonly used methods for systematic evaluation of a field of study. To date, there are no bibliometric studies on the role of immunological factors in cirrhosis.
AIM To provide a comprehensive overview of the knowledge structure and research hotspots of immunological factors in cirrhosis.
METHODS We retrieved publications related to immunological factors in cirrhosis between 2003 to 2022 from the Web of Science Core Collection database on December 7, 2022. The search strategy was TS = ((Liver Cirrhosis OR hepatic cirrhosis OR liver fibrosis) AND (Immunologic* Factor* OR Immune Factor* OR Immunomodulator* OR Biological Response Modifier* OR Biomodulator*)). Only original articles and reviews were included. A total of 2873 publications were analyzed using indicators of publication and citation metrics, countries, institutes, authors, journals, references, and keywords by CiteSpace and VOSviewer.
RESULTS A total of 5104 authors from 1173 institutions across 51 countries published 2873 papers on cirrhosis and immunological factors in 281 journals. In the past 20 years, the increasing number of related annual publications and citations indicates that research on immunological factors in cirrhosis has become the focus of attention and has entered a period of accelerated development. The United States (781/27.18%), China (538/18.73%), and Germany (300/10.44%) were the leading countries in this field. Most of the top 10 authors were from the United States (4) and Germany (3), with Gershwin ME contributing the most related articles (42). World Journal of Gastroenterology was the most productive journal, whereas Hepatology was the most co-cited journal. Current research hotspots regarding immunological factors in cirrhosis include fibrosis, cirrhosis, inflammation, liver fibrosis, expression, hepatocellular carcinoma, activation, primary biliary cirrhosis, disease, and hepatic stellate cells. Burst keywords (e.g., epidemiology, gut microbiota, and pathways) represent research frontiers that have attracted the interest of researchers in recent years.
CONCLUSION This bibliometric study comprehensively summarizes the research developments and directions of immunological factors in cirrhosis, providing new ideas for promoting scientific research and clinical applications.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Interventional Therapy, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Bo-Wen Liu
- Department of Interventional Therapy, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xiao-Qing Liang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Fu-Quan Liu
- Department of Interventional Therapy, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| |
Collapse
|
454
|
Zheng JR, Wang ZL, Jiang SZ, Chen HS, Feng B. Lower alanine aminotransferase levels are associated with increased all-cause and cardiovascular mortality in nonalcoholic fatty liver patients. World J Hepatol 2023; 15:813-825. [PMID: 37397938 PMCID: PMC10308293 DOI: 10.4254/wjh.v15.i6.813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/22/2023] [Accepted: 05/16/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Serum alanine aminotransferase (ALT) levels are often considered a marker to evaluate liver disease and its severity. AIM To investigate the association between ALT levels and all-cause and cause-specific mortality in patients with nonalcoholic fatty liver disease (NAFLD). METHODS The Third National Health and Nutrition Examination Survey (NHANES-III) from 1988 to 1994 and NHANES-III-related mortality data from 2019 onward were used to obtain the necessary data for the study. NAFLD was defined as hepatic steatosis, as diagnosed by ultrasound, with no other liver diseases. ALT levels were categorized into four groups according to the different recommended upper limits of normal (ULN) in men and women: < 0.5 ULN, 0.5-1 ULN, 1-2 ULN, and ≥ 2 ULN. The hazard ratios for all-cause mortality and cause-specific mortality were analyzed using the Cox proportional hazard model. RESULTS Multivariate logistic regression analysis demonstrated that the odds ratio of NAFLD correlated positively with increased serum ALT levels. In patients with NAFLD, all-cause mortality and cardiovascular mortality were the highest when ALT was < 0.5 ULN, yet cancer-related mortality was the highest when ALT was ≥ 2 ULN. The same results could be found in both men and women. Univariate analysis showed that severe NAFLD with normal ALT levels had the highest all-cause and cause-specific mortality, but the difference was not statistically significant after adjustment for age and multivariate factors. CONCLUSION The risk of NAFLD was positively correlated with ALT level, but all-cause and cardiovascular mortality were the highest when ALT was < 0.5 ULN. Regardless of the severity of NAFLD, normal or lower ALT levels were associated with higher mortality than elevated ALT levels. Clinicians should be aware that high ALT levels indicate liver injury, but low ALT levels are associated with a higher risk of death.
Collapse
Affiliation(s)
- Jia-Rui Zheng
- Peking University Hepatology Institute, Peking University People's Hospital, Beijing 100044, China
| | - Zi-Long Wang
- Peking University Hepatology Institute, Peking University People's Hospital, Beijing 100044, China
| | - Su-Zhen Jiang
- Peking University Hepatology Institute, Peking University People's Hospital, Beijing 100044, China
| | - Hong-Song Chen
- Peking University Hepatology Institute, Peking University People's Hospital, Beijing 100044, China
| | - Bo Feng
- Peking University Hepatology Institute, Peking University People's Hospital, Beijing 100044, China.
| |
Collapse
|
455
|
Yao J, Zhao Y. Lp-PLA2 silencing ameliorates inflammation and autophagy in nonalcoholic steatohepatitis through inhibiting the JAK2/STAT3 pathway. PeerJ 2023; 11:e15639. [PMID: 37397012 PMCID: PMC10309053 DOI: 10.7717/peerj.15639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Background Nonalcoholic steatohepatitis (NASH), a common cause of liver-related morbidity and mortality worldwide, is characterized by inflammation and hepatocellular injury. Our research focuses on lipoprotein-associated phospholipase A2 (Lp-PLA2), an inflammation-related biomarker that has recently garnered interest in the context of NASH due to its potential roles in disease pathogenesis and progression. Methods We established a NASH mouse model using a high-fat diet (HFD) and treated it with sh-Lp-PLA2 and/or rapamycin (an mTOR inhibitor). Lp-PLA2 expression in NASH mice was detected by qRT-PCR. Serum levels of liver function parameters and inflammatory cytokines were detected using corresponding assay kits. We examined pathological changes in liver using hematoxylin-eosin, oil red O, and Masson staining, and observed autophagy through transmission electron microscopy. The protein levels of Lp-PLA2, mTOR, light chain 3 (LC3) II/I, phosphorylated Janus kinase 2 (p-JAK2)/JAK2, and phosphorylated signal transducer and activator of transcription 3 (p-STAT3)/STAT3 were determined by western blotting. Kupffer cells extracted from C57BL/6J mice were treated to replicate NASH conditions and treated with sh-Lp-PLA2, rapamycin, and/or a JAK2-inhibitor to further verify the roles and mechanisms of Lp-PLA2 in NASH. Results Our data indicate an upregulation of Lp-PLA2 expression in HFD-induced NASH mice. Silencing Lp-PLA2 in NASH mice reduced liver damage and inflammation markers (aspartate aminotransferase (AST), alanine aminotransferase (ALT), total cholesterol (TC), triglycerides (TG), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6)), while increasing IL-10 levels, an anti-inflammatory cytokine. Additionally, Lp-PLA2 silencing decreased lipid and collagen accumulation and promoted autophagy. The beneficial effects of sh-Lp-PLA2 on NASH were enhanced by rapamycin. Furthermore, Lp-PLA2 silencing resulted in the downregulation of the expression of p-JAK2/JAK2 and p-STAT3/STAT3 in NASH mice. Similar results were observed in Kupffer cells treated under NASH conditions; Lp-PLA2 silencing promoted autophagy and repressed inflammation, effects which were potentiated by the addition of rapamycin or a JAK2-inhibitor. Conclusion Our findings suggest that silencing Lp-PLA2 promotes autophagy via deactivating the JAK2/STAT3 signaling pathway, thereby restraining NASH progression. This highlights the potential therapeutic value of targeting Lp-PLA2, adding a new dimension to our understanding of NASH pathogenesis and treatment strategies.
Collapse
|
456
|
Yan JB, Nie YM, Xu SM, Zhang S, Chen ZY. Pure total flavonoids from citrus alleviate oxidative stress and inflammation in nonalcoholic fatty liver disease by regulating the miR-137-3p/NOXA2/NOX2 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154944. [PMID: 37393830 DOI: 10.1016/j.phymed.2023.154944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/25/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) has become a global health issue owing to its large disease population and high morbidity. We previously reported that the improvement in oxidative stress (OS) using pure total flavonoids from citrus (PTFC), flavonoids isolated from the peel of Citrus changshan-huyou Y.B. Chan, is a crucial strategy for NAFLD treatment. However, OS-associated intervention pathways in NAFLD remain unclear. METHODS In this study, we used microRNA (miR)- and mRNA-sequencing to identify the pathway by which PTFC improve OS in NAFLD. Clinical data, mimic/inhibitor assays, and a dual-luciferase reporter assay were selected to verify the regulatory relationships of this pathway. Moreover, in vivo and in vitro experiments were used to confime the regulatory effect of PTFC on this pathway. RESULTS miR-seq, mRNA-seq, and bioinformatics analyses revealed that the miR-137-3p/neutrophil cytosolic factor 2 (NCF2, also known as NOXA2)/cytochrome b-245 beta chain (CYBB, also known as NOX2) pathway may be a target pathway for PTFC to improve OS and NAFLD. Additionally, bivariate logistic regression analysis combining the serum and clinical data of patients revealed NOX2 and NOXA2 as risk factors and total antioxidant capacity (indicator of OS level) as a protective factor for NAFLD. miR-137-3p mimic/inhibitor assays revealed that the upregulation of miR-137-3p is vital for improving cellular steatosis, OS, and inflammation. Dual-luciferase reporter assay confirmed that NOXA2 acts as an miR-137-3p sponge. These results co-determined that miR-137-3p/NOXA2/NOX2 is an essential pathway involved in NAFLD pathogenesis, including lipid accumulation, OS, and inflammation. In vivo and in vitro experiments further confirmed that the miR-137-3p/NOXA2/NOX2 pathway is regulated by PTFC. CONCLUSION PTFC alleviates OS and inflammation in NAFLD by regulating the miR-137-3p/NOXA2/NOX2 pathway.
Collapse
Affiliation(s)
- Jun-Bin Yan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, China; The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, 310000, China
| | - Yun-Meng Nie
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Su-Mei Xu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, China
| | - Shuo Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, 310000, China; Key Laboratory of Traditional Chinese Medicine for the treatment of Intestine-Liver of Zhejiang Province, Hangzhou, 310000, China.
| | - Zhi-Yun Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, China; Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, 310000, China.
| |
Collapse
|
457
|
Huang X, Chen H, Wen S, Dong M, Zhou L, Yuan X. Therapeutic Approaches for Nonalcoholic Fatty Liver Disease: Established Targets and Drugs. Diabetes Metab Syndr Obes 2023; 16:1809-1819. [PMID: 37366486 PMCID: PMC10290856 DOI: 10.2147/dmso.s411400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), as a multisystemic disease, is the most prevalent chronic liver disease characterized by extremely complex pathogenic mechanisms and multifactorial etiology, which often develops as a consequence of obesity, metabolic syndrome. Pathophysiological mechanisms involved in the development of NAFLD include diet, obesity, insulin resistance (IR), genetic and epigenetic determinants, intestinal dysbiosis, oxidative/nitrosative stress, autophagy dysregulation, hepatic inflammation, gut-liver axis, gut microbes, impaired mitochondrial metabolism and regulation of hepatic lipid metabolism. Some of the new drugs for the treatment of NAFLD are introduced here. All of them achieve therapeutic objectives by interfering with certain pathophysiological pathways of NAFLD, including fibroblast growth factors (FGF) analogues, peroxisome proliferator-activated receptors (PPARs) agonists, glucagon-like peptide-1 (GLP-1) agonists, G protein-coupled receptors (GPCRs), sodium-glucose cotransporter-2 inhibitors (SGLT-2i), farnesoid X receptor (FXR), fatty acid synthase inhibitor (FASNi), antioxidants, etc. This review describes some pathophysiological mechanisms of NAFLD and established targets and drugs.
Collapse
Affiliation(s)
- Xiaojing Huang
- Graduate School of Fudan University, Shanghai, People’s Republic of China
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Huiling Chen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Meiyuan Dong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Xinlu Yuan
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| |
Collapse
|
458
|
Feng Y, Zheng S, Liu L, Yang Y. Association of serum uric acid with hepatic steatosis detected by controlled attenuation parameter in the United States population. Lipids Health Dis 2023; 22:76. [PMID: 37340407 DOI: 10.1186/s12944-023-01846-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/09/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND The relationship between serum uric acid (SUA) and nonalcoholic fatty liver disease (NAFLD) has been previously reported. Controlled attenuation parameter (CAP) has better diagnostic performance than ultrasonography for assessing hepatic steatosis. The association of SUA with hepatic steatosis detected by CAP is worth further study. METHODS The US population aged 20 years or older from the National Health and Nutrition Examination Survey (NHANES) was assessed. Hepatic steatosis was evaluated by the controlled attenuation parameter (CAP). NAFLD status was defined as CAP values of 268 dB/m without hepatitis B or C virus infection or considerable alcohol consumption. Multiple imputations were performed to fill in the missing covariate values. Linear regression, logistic regression, and smooth curve fitting were used to examine the association. RESULTS In total, 3919 individuals participated in this study. There was a positive association between SUA (µmol/L) and CAP (β = 0.14, 95% CI: 0.12-0.17, P < 0.01). After stratification by sex, a significant relationship between SUA and CAP existed in both males (β = 0.12, 95% CI: 0.09-0.16, P < 0.01) and females (β = 0.17, 95% CI: 0.14-0.20, P < 0.01) after multiple imputation. The inflection points of the threshold effect of SUA on CAP were 487.7 µmol/L in males and 386.6 µmol/L in females. There was a positive association between SUA (mg/dL) and NAFLD (OR = 1.30, 95% CI: 1.23-1.37, P < 0.01). After stratification by race, positive relationships were also observed. Meanwhile, a positive relationship existed between hyperuricemia and NAFLD (OR = 1.94, 95% CI: 1.64-2.30, P < 0.01). The positive relationship was more significant in females than in males (P for interaction < 0.01). CONCLUSIONS There was a positive association between SUA and CAP, as well as between SUA and NAFLD. Subgroup studies stratified by sex and ethnicity demonstrated that the effects were consistent.
Collapse
Affiliation(s)
- Yunfu Feng
- Endoscopy Center, The First People's Hospital of Kunshan, Kunshan, 215300, China
| | - Sijie Zheng
- Endoscopy Center, The First People's Hospital of Kunshan, Kunshan, 215300, China
| | - Luojie Liu
- Department of Gastroenterology, Changshu Hospital Affiliated to Soochow University, Changshu, 215500, China.
| | - Yanting Yang
- Department of Gastroenterology, The Third People's Hospital of Kunshan, Kunshan, 215300, China.
| |
Collapse
|
459
|
Han J, Li S, Wang W, Jiang X, Liu C, Lei L, Li Y, Sheng R, Zhang Y, Wu Y, Zhang J, Zhang Y, Xu Y, Si S. SIRT1 Activator E1231 Alleviates Nonalcoholic Fatty Liver Disease by Regulating Lipid Metabolism. Curr Issues Mol Biol 2023; 45:5052-5070. [PMID: 37367070 DOI: 10.3390/cimb45060321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases. Silencing information regulator 1 (SIRT1) was demonstrated to modulate cholesterol and lipid metabolism in NAFLD. Here, a novel SIRT1 activator, E1231, was studied for its potential improvement effects on NAFLD. C57BL/6J mice were fed a high-fat and high-cholesterol diet (HFHC) for 40 weeks to create a NAFLD mouse model, and E1231 was administered by oral gavage (50 mg/kg body weight, once/day) for 4 weeks. Liver-related plasma biochemistry parameter tests, Oil Red O staining, and hematoxylin-eosin staining results showed that E1231 treatment ameliorated plasma dyslipidemia, plasma marker levels of liver damage (alanine aminotransferase (ALT) and aspartate aminotransferase (AST)), liver total cholesterol (TC) and triglycerides (TG) contents, and obviously decreased hepatic steatosis score and NAFLD Activity Score (NAS) in the NAFLD mouse model. Western blot results showed that E1231 treatment significantly regulated lipid-metabolism-related protein expression. In particular, E1231 treatment increased SIRT1, PGC-1α, and p-AMPKα protein expression but decreased ACC and SCD-1 protein expression. Additionally, in vitro studies demonstrated that E1231 inhibited lipid accumulation and improved mitochondrial function in free-fatty-acid-challenged hepatocytes, and required SIRT1 activation. In conclusion, this study illustrated that the SIRT1 activator E1231 alleviated HFHC-induced NAFLD development and improved liver injury by regulating the SIRT1-AMPKα pathway, and might be a promising candidate compound for NAFLD treatment.
Collapse
Affiliation(s)
- Jiangxue Han
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Shunwang Li
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Weizhi Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Xinhai Jiang
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Chao Liu
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Lijuan Lei
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Yining Li
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Ren Sheng
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Yuyan Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Yexiang Wu
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Jing Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Yuhao Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Shuyi Si
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| |
Collapse
|
460
|
Su P, Chen JG, Tang DH. Exercise against nonalcoholic fatty liver disease: Possible role and mechanism of lipophagy. Life Sci 2023; 327:121837. [PMID: 37301321 DOI: 10.1016/j.lfs.2023.121837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease worldwide. NAFLD is prevalent in about 30% of people worldwide. The lack of physical activity is considered as one of the risks for NAFLD, and approximately one-third of NAFLD patients hardly engage in physical activity. It is acknowledged that exercise is one of the optimal non-pharmacological methods for preventing and treating NAFLD. Different forms of exercise such as aerobic exercise, resistance exercise and even simply physical activity in a higher level can be beneficial in reducing liver lipid accumulation and disease progression for NAFLD patients. In NAFLD patients, exercise is helpful in lowering steatosis and enhancing liver function. The mechanisms underlying the prevention and treatment of NAFLD by exercise are various and complex. Current studies on the mechanisms have focused on the pro-lipolytic, anti-inflammatory, and antioxidant and lipophagy. Promotion of lipophagy is regarded as an important mechanism for prevention and improvement of NAFLD by exercise. Recent studies have investigated the above mechanism, yet the potential mechanism has not been completely elucidated. Thus, in this review, we cover the recent advances of exercise-promoted lipophagy in NAFLD treatment and prevention. Furthermore, given the fact that exercise activates SIRT1, we discuss the possible regulatory mechanisms of lipophagy by SIRT1 during exercise. These mechanisms need to be verified by further experimental studies.
Collapse
Affiliation(s)
- Pei Su
- Department of College of P.E. and Sport, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing 100875, People's Republic of China.
| | - Jian-Gang Chen
- Department of College of P.E. and Sport, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing 100875, People's Republic of China.
| | - Dong-Hui Tang
- Department of College of P.E. and Sport, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing 100875, People's Republic of China.
| |
Collapse
|
461
|
Gong Y, Liu Z, Zhang Y, Zhang J, Zheng Y, Wu Z. AGER1 deficiency-triggered ferroptosis drives fibrosis progression in nonalcoholic steatohepatitis with type 2 diabetes mellitus. Cell Death Discov 2023; 9:178. [PMID: 37280194 DOI: 10.1038/s41420-023-01477-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023] Open
Abstract
Hyperglycemia is an independent risk factor for the rapid progression of nonalcoholic steatohepatitis (NASH) to liver fibrosis with an incompletely defined mechanism. Ferroptosis is a novel form of programmed cell death that has been identified as a pathogenic mechanism in various diseases. However, the role of ferroptosis in the development of liver fibrosis in NASH with type 2 diabetes mellitus (T2DM) is unclear. Here, we observed the histopathological features of the progression of NASH to liver fibrosis as well as hepatocyte epithelial-mesenchymal transition (EMT) in a mouse model of NASH with T2DM and high-glucose-cultured steatotic human normal liver (LO2) cells. The distinctive features of ferroptosis, including iron overload, decreased antioxidant capacity, the accumulation of reactive oxygen species, and elevated lipid peroxidation products, were confirmed in vivo and in vitro. Liver fibrosis and hepatocyte EMT were markedly alleviated after treatment with the ferroptosis inhibitor ferrostatin-1. Furthermore, a decrease in the gene and protein levels of AGE receptor 1 (AGER1) was detected in the transition from NASH to liver fibrosis. Overexpression of AGER1 dramatically reversed hepatocyte EMT in high-glucose-cultured steatotic LO2 cells, whereas the knockdown of AGER1 had the opposite effect. The mechanisms underlying the phenotype appear to be associated with the inhibitory effects of AGER1 on ferroptosis, which is dependent on the regulation of sirtuin 4. Finally, in vivo adeno-associated virus-mediated AGER1 overexpression effectively relieved liver fibrosis in a murine model. Collectively, these findings suggest that ferroptosis participates in the pathogenesis of liver fibrosis in NASH with T2DM by promoting hepatocyte EMT. AGER1 could reverse hepatocyte EMT to ameliorate liver fibrosis by inhibiting ferroptosis. The results also suggest that AGER1 may be a potential therapeutic target for the treatment of liver fibrosis in patients with NASH with T2DM. Chronic hyperglycemia is associated with increased advanced glycation end products, resulting in the downregulation of AGER1. AGER1 deficiency downregulates Sirt4, which disturbs key regulators of ferroptosis (TFR-1, FTH, GPX4, and SLC7A11). These lead to increased iron uptake, decreasing the antioxidative capacity and enhanced lipid ROS production, ultimately leading to ferroptosis, which further promotes hepatocyte epithelial-mesenchymal transition and fibrosis progression in NASH with T2DM.
Collapse
Affiliation(s)
- Yihui Gong
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Zijun Liu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yuanyuan Zhang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Jun Zhang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yin Zheng
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China.
| | - Zhongming Wu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China.
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China.
| |
Collapse
|
462
|
Butera A, Amelio I. Healthy lifestyle? or just the right genetic mutations. Cell Cycle 2023; 22:1353-1356. [PMID: 37128635 PMCID: PMC10228415 DOI: 10.1080/15384101.2023.2206351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 05/03/2023] Open
Abstract
The development of genomic technologies over the past decades has enabled identification of genetic variants responsible of disease; occasionally however, protective rare variants emerged. Verweij et al have recently reported genetic variants in CIDEB gene that are protective from liver injury. Here, we briefly summarise the recent findings on the impact of CIDEB variants on liver disease, while emphasizing how phenotype-genotype studies tailored for the identification of "protective" mutations might direct development of prevention and therapeutic strategies for common diseases.
Collapse
Affiliation(s)
- Alessio Butera
- Chair for Systems Toxicology, University of Konstanz, Konstanz, Germany
| | - Ivano Amelio
- Chair for Systems Toxicology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
463
|
Gull N, Arshad F, Naikoo GA, Hassan IU, Pedram MZ, Ahmad A, Aljabali AAA, Mishra V, Satija S, Charbe N, Negi P, Goyal R, Serrano-Aroca Á, Al Zoubi MS, El-Tanani M, Tambuwala MM. Recent Advances in Anticancer Activity of Novel Plant Extracts and Compounds from Curcuma longa in Hepatocellular Carcinoma. J Gastrointest Cancer 2023; 54:368-390. [PMID: 35285010 PMCID: PMC8918363 DOI: 10.1007/s12029-022-00809-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE Among all forms of cancers, hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. There are several treatment options for HCC ranging from loco-regional therapy to surgical treatment. Yet, there is high morbidity and mortality. Recent research focus has shifted towards more effective and less toxic cancer treatment options. Curcumin, the active ingredient in the Curcuma longa plant, has gained widespread attention in recent years because of its multifunctional properties as an antioxidant, anti-inflammatory, antimicrobial, and anticancer agent. METHODS A systematic search of PubMed, Embase and Google Scholar was performed for studies reporting incidence of HCC, risk factors associated with cirrhosis and experimental use of curcumin as an anti-cancer agent. RESULTS This review exclusively encompasses the anti-cancer properties of curcumin in HCC globally and it's postulated molecular targets of curcumin when used against liver cancers. CONCLUSIONS This review is concluded by presenting the current challenges and future perspectives of novel plant extracts derived from C. longa and the treatment options against cancers.
Collapse
Affiliation(s)
- Nighat Gull
- School of Sciences, Maulana Azad National Urdu University, 32, Hyderabad, TS, India
| | - Fareeha Arshad
- Department of Biochemistry, Aligarh Muslim University, U.P., India
| | - Gowhar A Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, Sultanate of Oman.
| | - Israr Ul Hassan
- College of Engineering, Dhofar University, Salalah, Sultanate of Oman
| | - Mona Zamani Pedram
- Faculty of Mechanical Engineering-Energy Division, K. N. Toosi University of Technology, P.O. Box: 19395-1999, No. 15-19, Pardis St., Mollasadra Ave., Vanak Sq., Tehran, 1999 143344, Iran
| | - Arif Ahmad
- School of Sciences, Maulana Azad National Urdu University, 32, Hyderabad, TS, India
| | - Alaa A A Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid, 21163, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Nitin Charbe
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, TX, 78363, USA
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173229, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173229, India
| | - Ángel Serrano-Aroca
- Biomaterials & Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, 46001, Valencia, Spain
| | - Mazhar S Al Zoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Murtaza M Tambuwala
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Northern Ireland, Coleraine, BT52 1SA, County Londonderry, UK.
| |
Collapse
|
464
|
Yang Y, Jia X, Qu M, Yang X, Fang Y, Ying X, Zhang M, Wei J, Pan Y. Exploring the potential of treating chronic liver disease targeting the PI3K/Akt pathway and polarization mechanism of macrophages. Heliyon 2023; 9:e17116. [PMID: 37484431 PMCID: PMC10361319 DOI: 10.1016/j.heliyon.2023.e17116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 07/25/2023] Open
Abstract
Chronic liver disease is a significant public health issue that can lead to considerable morbidity and mortality, imposing an enormous burden on healthcare resources. Understanding the mechanisms underlying chronic liver disease pathogenesis and developing effective treatment strategies are urgently needed. In this regard, the activation of liver resident macrophages, namely Kupffer cells, plays a vital role in liver inflammation and fibrosis. Macrophages display remarkable plasticity and can polarize into different phenotypes according to diverse microenvironmental stimuli. The polarization of macrophages into M1 pro-inflammatory or M2 anti-inflammatory phenotypes is regulated by complex signaling pathways such as the PI3K/Akt pathway. This review focuses on investigating the potential of using plant chemicals targeting the PI3K/Akt pathway for treating chronic liver disease while elucidating the polarization mechanism of macrophages under different microenvironments. Studies have demonstrated that inhibiting M1-type macrophage polarization or promoting M2-type polarization can effectively combat chronic liver diseases such as alcoholic liver disease, non-alcoholic fatty liver disease, and liver fibrosis. The PI3K/Akt pathway acts as a pivotal modulator of macrophage survival, migration, proliferation, and their responses to metabolism and inflammatory signals. Activating the PI3K/Akt pathway induces anti-inflammatory cytokine expression, resulting in the promotion of M2-like phenotype to facilitate tissue repair and resolution of inflammation. Conversely, inhibiting PI3K/Akt signaling could enhance the M1-like phenotype, which exacerbates liver damage. Targeting the PI3K/Akt pathway has tremendous potential as a therapeutic strategy for regulating macrophage polarization and activity to treat chronic liver diseases with plant chemicals, providing new avenues for liver disease treatment.
Collapse
Affiliation(s)
- Yaqian Yang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xiaotao Jia
- Department of Neurology, The Affifiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710003, PR China
| | - Mengyang Qu
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xinmao Yang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yan Fang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xiaoping Ying
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Meiqian Zhang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Jing Wei
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yanfang Pan
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| |
Collapse
|
465
|
Eisenberg D, Arnow KD, Barreto NB, Davis K, LaVela SL, Frayne SM, Nevedal AL, Wu J, Harris AHS. Interaction between increasing body mass index and spinal cord injury to the probability of developing a diagnosis of nonalcoholic fatty liver disease. Obes Sci Pract 2023; 9:253-260. [PMID: 37287523 PMCID: PMC10242254 DOI: 10.1002/osp4.643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 06/09/2023] Open
Abstract
Background The prevalence of obesity and comorbidities is high in the population with spinal cord injury (SCI). We sought to determine the effect of SCI on the functional form of the relationship between body mass index (BMI) and risk of developing nonalcoholic fatty liver disease (NAFLD), and assess whether SCI-specific mapping of BMI to risk of developing NAFLD is needed. Methods Longitudinal cohort study comparing Veterans Health Administration patients with a diagnosis of SCI to a 1:2 matched control group without SCI. The relationship between BMI and development of NAFLD at any time was assessed with propensity score matched Cox regression models; NAFLD development at 10-year with a propensity score matched logistic model. The positive predictive value of developing NAFLD at 10 years was calculated for BMI 19-45 kg/m2. Results 14,890 individuals with SCI met study inclusion criteria, and 29,780 Non-SCI individuals in matched control group. Overall, 9.2% in SCI group and 7.3% in Non-SCI group developed NAFLD during the study period. A logistic model assessing the relationship between BMI and the probability of developing a diagnosis of NAFLD demonstrated that the probability of developing disease increased as BMI increased in both cohorts. The probability was significantly higher in the SCI cohort at each BMI threshold (p < 0.01), and increased at a higher rate compared with the Non-SCI cohort as BMI increased 19-45 kg/m2. Positive predictive value for developing a diagnosis of NAFLD was higher in the SCI group for any given BMI threshold from 19 kg/m2 to BMI 45 kg/m2. Conclusions The probability of developing NAFLD is greater in individuals with SCI than without SCI, at every BMI level 19 kg/m2 to 45 kg/m2. Individuals with SCI may warrant a higher level of suspicion and closer screening for NAFLD. The association of SCI and BMI is not linear.
Collapse
Affiliation(s)
- Dan Eisenberg
- Center for Innovation to ImplementationVA Palo Alto Health Care SystemPalo AltoCaliforniaUSA
- Stanford‐Surgery Policy Improvement Research & Education CenterStanford School of MedicineStanfordCaliforniaUSA
| | - Katherine D. Arnow
- Stanford‐Surgery Policy Improvement Research & Education CenterStanford School of MedicineStanfordCaliforniaUSA
| | - Nicolas B. Barreto
- Stanford‐Surgery Policy Improvement Research & Education CenterStanford School of MedicineStanfordCaliforniaUSA
| | - Kristen Davis
- Stanford‐Surgery Policy Improvement Research & Education CenterStanford School of MedicineStanfordCaliforniaUSA
| | - Sherri L. LaVela
- Center of Innovation for Complex Chronic CareVA Edward Hines JrHinesIllinoisUSA
- Department of Physical Medicine and RehabilitationFeinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Susan M. Frayne
- Center for Innovation to ImplementationVA Palo Alto Health Care SystemPalo AltoCaliforniaUSA
- Department of MedicineStanford School of MedicineStanfordCaliforniaUSA
| | - Andrea L. Nevedal
- Center for Innovation to ImplementationVA Palo Alto Health Care SystemPalo AltoCaliforniaUSA
| | - Justina Wu
- Center for Innovation to ImplementationVA Palo Alto Health Care SystemPalo AltoCaliforniaUSA
| | - Alex H. S. Harris
- Center for Innovation to ImplementationVA Palo Alto Health Care SystemPalo AltoCaliforniaUSA
- Stanford‐Surgery Policy Improvement Research & Education CenterStanford School of MedicineStanfordCaliforniaUSA
| |
Collapse
|
466
|
Xie R, Zhang Y. Associations between dietary flavonoid intake with hepatic steatosis and fibrosis quantified by VCTE: Evidence from NHANES and FNDDS. Nutr Metab Cardiovasc Dis 2023; 33:1179-1189. [PMID: 36964061 DOI: 10.1016/j.numecd.2023.03.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND AND AIM Flavonoids are natural products of plant origin and have been shown to be beneficial for nonalcoholic fatty liver disease (NAFLD) in animal studies. However, relevant epidemiological evidence is still lacking, and the relationship between flavonoid and subclass intake with quantified hepatic steatosis and fibrosis has not been investigated. METHODS AND RESULTS This study was based on the Food and Nutrient Database for Dietary Studies (FNDDS) expanded flavonoid intake database and the National Health and Nutrition Examination Survey (NHANES) 2017-2018 and included a total of 4113 participants with vibration-controlled transient elastography (VCTE) data. Multiple logistic regression was used to assess linear relationships between flavonoids and hepatic steatosis and fibrosis. Smoothed curve fit and a generalized additive model were used to investigate the non-linear relationship, and a two-tailed linear regression model was used to find potential inflection points. Of the 4113 participants, 1045 (25.41%) were diagnosed with NAFLD. After adjusting for energy and major non-dietary covariates, significant linear negative correlations were observed between total flavonoids and CAP [-1.53 (-2.59, -0.47)] and LSM [-0.17 (-0.27, -0.07)]. After adjusting for all covariates, flavones had the strongest and most significant negative association with hepatic steatosis [-1.98 (-3.79, -0.17)]. The results of smooth curve fitting and subgroup analysis demonstrated gender differences, and threshold effect analysis further identified a U-shaped relationship and inflection point between flavonoid intake and hepatic steatosis (infection point: 287.25 mg/d). CONCLUSIONS Our findings suggest negative associations between flavonoid and subclass intake with hepatic steatosis and fibrosis.
Collapse
Affiliation(s)
- Ruijie Xie
- Department of Microsurgery, University of South China Affiliated Nanhua Hospital, Hengyang, China; Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Medical Faculty, University of Heidelberg, 69117 Heidelberg, Germany
| | - Ya Zhang
- Department of Gland Surgery, University of South China Affiliated Nanhua Hospital, Hengyang, China.
| |
Collapse
|
467
|
Portincasa P. NAFLD, MAFLD, and beyond: one or several acronyms for better comprehension and patient care. Intern Emerg Med 2023; 18:993-1006. [PMID: 36807050 PMCID: PMC10326150 DOI: 10.1007/s11739-023-03203-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 02/19/2023]
Abstract
The term non-alcoholic fatty liver disease (NAFLD) has rapidly become the most common type of chronic liver disease. NAFLD points to excessive hepatic fat storage and no evidence of secondary hepatic fat accumulation in patients with "no or little alcohol consumption". Both the etiology and pathogenesis of NAFLD are largely unknown, and a definitive therapy is lacking. Since NAFLD is very often and closely associated with metabolic dysfunctions, a consensus process is ongoing to shift the acronym NAFLD to MAFLD, i.e., metabolic-associated fatty liver disease. The change in terminology is likely to improve the classification of affected individuals, the disease awareness, the comprehension of the terminology and pathophysiological aspects involved, and the choice of more personalized therapeutic approaches while avoiding the intrinsic stigmatization due to the term "non-alcoholic". Even more recently, other sub-classifications have been proposed to concentrate the heterogeneous causes of fatty liver disease under one umbrella. While awaiting additional validation studies in this field, we discuss the main reasons underlying this important shift of paradigm.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica "A. Murri", Department of Preventive and Regenerative Medicine and Ionian Area (DiMePrev-J), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
468
|
Zhang Q, Jin Y, Xin X, An Z, Hu YY, Li Y, Feng Q. A high-trans fat, high-carbohydrate, high-cholesterol, high-cholate diet-induced nonalcoholic steatohepatitis mouse model and its hepatic immune response. Nutr Metab (Lond) 2023; 20:28. [PMID: 37244987 DOI: 10.1186/s12986-023-00749-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/08/2023] [Indexed: 05/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic progressive disease that can progress to non-alcoholic steatohepatitis (NASH). Animal models are important tools for basic NASH research. Immune activation plays a key role in liver inflammation in patients with NASH. We established a high-trans fat, high-carbohydrate, and high-cholesterol, high-cholate diet-induced (HFHCCC) mouse model. C57BL/6 mice were fed a normal or HFHCCC diet for 24 weeks, and the immune response characteristics of this model were evaluated. The proportion of immune cells in mouse liver tissues was detected by immunohistochemistry and flow cytometry, Multiplex bead immunoassay and Luminex technology was used to detecte the expression of cytokines in mouse liver tissues. The results showed that mice treated with HFHCCC diet exhibited remarkably increased hepatic triglycerides (TG) content, and the increase in plasma transaminases resulted in hepatocyte injury. Biochemical results showed that HFHCCC induced elevated hepatic lipids, blood glucose, insulin; marked hepatocyte steatosis, ballooning, inflammation, and fibrosis. The proportion of innate immunity-related cells, including Kupffer cells (KCs), neutrophils, dendritic cells (DCs), natural killer T cells (NKT), and adaptive immunity-related CD3+ T cells increased; interleukin-1α (IL-1α), IL-1β, IL-2, IL-6, IL-9, and chemokines, including CCL2, CCL3, and macrophage colony stimulating factor (G-CSF) increased. The constructed model closely approximated the characteristics of human NASH and evaluation of its immune response signature, showed that the innate immune response was more pronounced than adaptive immunity. Its use as an experimental tool for understanding innate immune responses in NASH is recommended.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| | - Yue Jin
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China
| | - Xin Xin
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, 201203, China
| | - Ziming An
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China
| | - Yi-Yang Hu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Yajuan Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New Area, Shanghai, 201203, China.
| | - Qin Feng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China.
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, 201203, China.
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China.
| |
Collapse
|
469
|
Zadoorian A, Du X, Yang H. Lipid droplet biogenesis and functions in health and disease. Nat Rev Endocrinol 2023:10.1038/s41574-023-00845-0. [PMID: 37221402 DOI: 10.1038/s41574-023-00845-0] [Citation(s) in RCA: 191] [Impact Index Per Article: 95.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/25/2023]
Abstract
Ubiquitous yet unique, lipid droplets are intracellular organelles that are increasingly being recognized for their versatility beyond energy storage. Advances uncovering the intricacies of their biogenesis and the diversity of their physiological and pathological roles have yielded new insights into lipid droplet biology. Despite these insights, the mechanisms governing the biogenesis and functions of lipid droplets remain incompletely understood. Moreover, the causal relationship between the biogenesis and function of lipid droplets and human diseases is poorly resolved. Here, we provide an update on the current understanding of the biogenesis and functions of lipid droplets in health and disease, highlighting a key role for lipid droplet biogenesis in alleviating cellular stresses. We also discuss therapeutic strategies of targeting lipid droplet biogenesis, growth or degradation that could be applied in the future to common diseases, such as cancer, hepatic steatosis and viral infection.
Collapse
Affiliation(s)
- Armella Zadoorian
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
470
|
Li Y, Guo L. The versatile role of Serpina3c in physiological and pathological processes: a review of recent studies. Front Endocrinol (Lausanne) 2023; 14:1189007. [PMID: 37288300 PMCID: PMC10242157 DOI: 10.3389/fendo.2023.1189007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
Murine Serpina3c belongs to the family of serine protease inhibitors (Serpins), clade "A" and its human homologue is SerpinA3. Serpina3c is involved in some physiological processes, including insulin secretion and adipogenesis. In the pathophysiological process, the deletion of Serpina3c leads to more severe metabolic disorders, such as aggravated non-alcoholic fatty liver disease (NAFLD), insulin resistance and obesity. In addition, Serpina3c can improve atherosclerosis and regulate cardiac remodeling after myocardial infarction. Many of these processes are directly or indirectly mediated by its inhibition of serine protease activity. Although its function has not been fully revealed, recent studies have shown its potential research value. Here, we aimed to summarize recent studies to provide a clearer view of the biological roles and the underlying mechanisms of Serpina3c.
Collapse
Affiliation(s)
| | - Liang Guo
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
471
|
Chen X, Shi J, Lai Y, Xue Y, Ung COL, Hu H. Systematic analysis of randomised controlled trials of Chinese herb medicine for non-alcoholic steatohepatitis (NASH): implications for future drug development and trial design. Chin Med 2023; 18:58. [PMID: 37208742 DOI: 10.1186/s13020-023-00761-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is a liver disease currently lacking an approved therapy, resulting in significant clinical demand. Traditional Chinese medicines (TCMs) have been commonly used to manage NASH. This study aimed to systematically analyse the randomised controlled trials (RCTs) using TCMs for NASH management. METHODS A systematic literature review was performed by following PRISMA guidelines 2020 in six electronic databases: PubMed, Web of Science, Scopus, Embase, the Cochrane Library, and China National Knowledge Infrastructure, from inception until August 2022. RCTs using TCMs for NASH were included in the analysis, irrespective of language or blinding. RESULTS 112 RCTs were included in this review, with 10,573 NASH participants. 108 RCTs were conducted in China, and 4 RCTs were in other countries. Herbal medicine decoction was the major dosage form used for treating NASH (82/112). 11 TCMs products have been approved for NASH treatment (8 in China, 2 in Iran, and 1 in Japan). Classic prescriptions, such as "Huang Lian Jie Du decoction", "Yin Chen Hao decoction", and "Yi Guan Jian" were used in some studies. The TCMs treatment of NASH involved the use of 199 different plants, with the top 5 herbs being Salviae Miltiorrhizae Radix Et Rhizoma, Alismatis Rhizoma, Bupleuri Radix, Poria, and Curcumae Radix. "Salviae Miltiorrhizae Radix Et Rhizoma + Bupleuri Radix/Alismatis Rhizoma" were the mostly common drug-pair in the herbs network analysis. Nowadays, "Bupleuri Radix/Alismatis Rhizoma + Atractylodis Macrocephalae Rhizoma" are increasingly applied in herbal formulas for NASH. Based on the PICOS principles, the included studies varied in terms of the population, intervention, comparator, outcomes, and study design. However, some studies reported unstandardised results and failed to report diagnostic standards, inclusion or exclusion criteria, or sufficient patient information. CONCLUSION Adopting Chinese classic prescriptions or drug-pair may provide a basis for developing new drugs of NASH management. Further research is needed to refine the clinical trial design and obtain more convincing evidence for using TCMs to treat NASH.
Collapse
Affiliation(s)
- Xianwen Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Junnan Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Yunfeng Lai
- School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Xue
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Carolina Oi Lam Ung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Taipa, Macao, China.
| | - Hao Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Taipa, Macao, China.
| |
Collapse
|
472
|
Shelley K, Articolo A, Luthra R, Charlton M. Clinical characteristics and management of patients with nonalcoholic steatohepatitis in a real-world setting: analysis of the Ipsos NASH therapy monitor database. BMC Gastroenterol 2023; 23:160. [PMID: 37208593 DOI: 10.1186/s12876-023-02794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/30/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) is the more severe, inflammatory type of nonalcoholic fatty liver disease (NAFLD). NASH, a leading indication for liver transplantation, is growing in prevalence. The extent of liver fibrosis, ranging from fibrosis stage (FS) of none (F0) to cirrhosis (F4), is a strong predictor of health outcomes. There is little information on patient demographics and clinical characteristics by fibrosis stage and NASH treatment outside of academic medical centers. METHODS We conducted a cross-sectional observational study using Ipsos' syndicated NASH Therapy Monitor database, consisting of medical chart audits provided by sampled NASH-treating physicians in the United States in 2016 (n = 174) and 2017 (n = 164). Data was collected online. RESULTS Of 2,366 patients reported on by participating physicians and included in the analysis, 68% had FS F0-F2, 21% had bridging fibrosis (F3), and 9% had cirrhosis (F4). Common comorbidities were type 2 diabetes (56%), hyperlipidemia (44%), hypertension (46%), and obesity (42%). Patients with more advanced fibrosis scores (F3-F4) had higher comorbidity rates than patients with F0-F2. Commonly used diagnostic tests included ultrasound (80%), liver biopsy (78%), AST/ALT ratio (43%), NAFLD fibrosis score (25%), transient elastography (23%), NAFLD liver fat score (22%), and Fatty Liver Index (19%). Most commonly prescribed medications were vitamin E (53%), statins (51%), metformin (47%), angiotensin converting enzyme inhibitors (28%), and beta blockers (22%). Medications were commonly prescribed for reasons other than their known effects. CONCLUSION Physicians in this study, drawn from a spectrum of practice settings, relied on ultrasound and liver biopsy for diagnosis and vitamin E, statins, and metformin for pharmacological treatment of NASH. These findings imply poor adherence to guidelines in the diagnosis and management of NAFLD and NASH. Nonalcoholic steatohepatitis (NASH) is a liver disease caused by excess fat in the liver which can lead to liver inflammation and scarring (fibrosis), ranging from stage F0 (no scarring) to F4 (advanced scarring). The stage of liver scarring can predict the likelihood of future health problems, including liver failure and liver cancer. However, we do not fully understand how patient characteristics may vary at different stages of liver scarring. We looked at medical information from physicians treating patients diagnosed with NASH to understand how patient characteristics might differ based on the severity of their liver scarring. The majority (68%) of patients were stage F0-F2, with 30% having advanced scarring (F3-F4). In addition to NASH, many patients also had type 2 diabetes, high cholesterol, high blood pressure, and obesity. Patients with more advanced scarring (F3-F4) were more likely to have these diseases than patients with less severe disease (F0-F2). Diagnosis of NASH by participating physicians was based on tests including imaging (ultrasound, CT scan, MRI), liver biopsy, blood tests, and whether patients had other conditions that would put them at risk for NASH. The medications that the doctors prescribed most often to their patients included vitamin E and drugs to treat high cholesterol, high blood pressure, or diabetes. Medications were frequently prescribed for reasons other than their known effects. By understanding how patient characteristics vary by stages of liver scarring and how NASH is currently managed may help guide the evaluation and treatment of NASH when NASH-specific therapies become available.
Collapse
Affiliation(s)
| | - Amy Articolo
- Novo Nordisk Inc, 800 Scudders Mill Road, Plainsboro, NJ, USA
| | - Rakesh Luthra
- Novo Nordisk Inc, 800 Scudders Mill Road, Plainsboro, NJ, USA.
| | - Michael Charlton
- Transplant Institute, Center for Liver Diseases, University of Chicago Biological Sciences, Chicago, IL, USA
| |
Collapse
|
473
|
Wen X, Liu H, Luo X, Lui L, Fan J, Xing Y, Wang J, Qiao X, Li N, Wang G. Supplementation of Lactobacillus plantarum ATCC14917 mitigates non-alcoholic fatty liver disease in high-fat-diet-fed rats. Front Microbiol 2023; 14:1146672. [PMID: 37266005 PMCID: PMC10229879 DOI: 10.3389/fmicb.2023.1146672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Atherosclerosis and non-alcoholic fatty liver disease (NAFLD) have been increasing at an alarming rate worldwide. Many clinical studies have underlined the link between NAFLD and atherosclerosis. Our previous experiments have discovered that Lactobacillus (L.) plantarum ATCC14917 supplementation could decrease the progression of atherosclerotic lesion formation. In this study, we aimed to investigate the role of supplementation of L. plantarum ATCC14917 mitigates liver injury in rats fed with a high-fat diet (HFD, 45% kcal from fat). A total of 32 rats were randomly divided into four groups, including two intervention groups, who fed with HFD and administering either 1 × 107 or 1 × 109 colony forming units (CFU) of L. plantarum ATCC14917, the normal control group, and the HFD control group. The results showed that supplementation with low-dose and high-dose of L. plantarum ATCC14917 for 8 weeks could alleviate the body weight gain (p < 0.05), hepatic steatosis, and serum lipid metabolism (p < 0.05) in HFD-fed rats. Moreover, supplementation of L. plantarum ATCC 14917 decreased total cholesterol (TC), triglyceride (TG), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels (p < 0.05) in serum, and improved HFD-associated inflammation (p < 0.05). Furthermore, cecal contents were analyzed by high-throughput 16S ribosomal RNA sequencing. The results indicated that supplementation of L. plantarum ATCC 14917 could ameliorate HFD-induced gut dysbiosis. In summary, our findings suggest that supplementation of L. plantarum ATCC 14917 could mitigate NAFLD in rats, suggesting it may be considered as a probiotic agent for preventing HFD-induced obesity.
Collapse
Affiliation(s)
- Xingjian Wen
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Hejing Liu
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaoling Luo
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Li Lui
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Jiuyu Fan
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Yajing Xing
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Jia Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Xingfang Qiao
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Na Li
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Guixue Wang
- College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
474
|
Mátis D, Hegyi P, Teutsch B, Tornai T, Erőss B, Pár G, Váncsa S. Improved body composition decreases the fat content in non-alcoholic fatty liver disease, a meta-analysis and systematic review of longitudinal studies. Front Med (Lausanne) 2023; 10:1114836. [PMID: 37215704 PMCID: PMC10194653 DOI: 10.3389/fmed.2023.1114836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Background Based on cross-sectional studies, there is a link between body composition parameters and steatosis in non-alcoholic fatty liver disease (NAFLD). However, whether long-term changes in different body composition parameters will result in NAFLD resolution is unclear. Therefore, we aimed to summarize the literature on longitudinal studies evaluating the association between NAFLD resolution and body composition change. Methods Based on the recommendations of the Cochrane Handbook, we performed a systematic search on September 26th, 2021, in three databases: Embase, MEDLINE (via PubMed), and Cochrane Central Register of Controlled Trials (CENTRAL). Eligible studies reported on patients with NAFLD (liver fat >5%) and examined the correlation between body composition improvement and decrease in steatosis. We did not have pre-defined body composition or steatosis measurement criteria. Next, we calculated pooled correlation coefficient (r) with a 95% confidence interval (CI). Furthermore, we narratively summarized articles with other statistical methods. Results We included 15 studies in our narrative review and five in our quantitative synthesis. Based on two studies with 85 patients, we found a pooled correlation coefficient of r = 0.49 (CI: 0.22-0.69, Spearman's correlation) between the change of visceral adipose tissue and liver steatosis. Similarly, based on three studies with 175 patients, the correlation was r = 0.33 (CI: 0.19-0.46, Pearson's correlation). On the other hand, based on two studies with 163 patients, the correlation between subcutaneous adipose tissue change and liver steatosis change was r = 0.42 (CI: 0.29-0.54, Pearson's correlation). Furthermore, based on the studies in the narrative synthesis, body composition improvement was associated with steatosis resolution. Conclusions Based on the included studies, body composition improvement may be associated with a decrease in liver fat content in NAFLD. Systematic review registration Identifier: CRD42021278584.
Collapse
Affiliation(s)
- Dóra Mátis
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
| | - Brigitta Teutsch
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Tornai
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
| | - Bálint Erőss
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
| | - Gabriella Pár
- Division of Gastroenterology, First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Szilárd Váncsa
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
| |
Collapse
|
475
|
Chen L, Wang Y. Interdisciplinary advances reshape the delivery tools for effective NASH treatment. Mol Metab 2023; 73:101730. [PMID: 37142161 DOI: 10.1016/j.molmet.2023.101730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH), a severe systemic and inflammatory subtype of nonalcoholic fatty liver disease, eventually develops into cirrhosis and hepatocellular carcinoma with few options for effective treatment. Currently potent small molecules identified in preclinical studies are confronted with adverse effects and long-term ineffectiveness in clinical trials. Nevertheless, highly specific delivery tools designed from interdisciplinary concepts may address the significant challenges by either effectively increasing the concentrations of drugs in target cell types, or selectively manipulating the gene expression in liver to resolve NASH. SCOPE OF REVIEW We focus on dissecting the detailed principles of the latest interdisciplinary advances and concepts that direct the design of future delivery tools to enhance the efficacy. Recent advances have indicated that cell and organelle-specific vehicles, non-coding RNA research (e.g. saRNA, hybrid miRNA) improve the specificity, while small extracellular vesicles and coacervates increase the cellular uptake of therapeutics. Moreover, strategies based on interdisciplinary advances drastically elevate drug loading capacity and delivery efficiency and ameliorate NASH and other liver diseases. MAJOR CONCLUSIONS The latest concepts and advances in chemistry, biochemistry and machine learning technology provide the framework and strategies for the design of more effective tools to treat NASH, other pivotal liver diseases and metabolic disorders.
Collapse
Affiliation(s)
- Linshan Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health.
| |
Collapse
|
476
|
Karim G, Bansal MB. Resmetirom: An Orally Administered, Smallmolecule, Liver-directed, β-selective THR Agonist for the Treatment of Non-alcoholic Fatty Liver Disease and Non-alcoholic Steatohepatitis. TOUCHREVIEWS IN ENDOCRINOLOGY 2023; 19:60-70. [PMID: 37313239 PMCID: PMC10258622 DOI: 10.17925/ee.2023.19.1.60] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/08/2023] [Indexed: 06/15/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of fatty liver disease, including non-alcoholic fatty liver (NAFL) and its more progressive form, non-alcoholic steatohepatitis (NASH). The prevalence of NAFLD/NASH along with type 2 diabetes and obesity is rising worldwide. In those who develop NASH, unlike those with bland steatosis (NAFL), lipotoxic lipids drive hepatocyte injury, inflammation and stellate cell activation leading to progressive accumulation of collagen or fibrosis, ultimately leading to cirrhosis and increased risk of hepatocellular carcinoma. Hypothyroidism is associated with NAFLD/NASH; specifically, intrahepatic hypothyroidism drives lipotoxicty in preclinical models. Agonists of thyroid hormone receptor (THR)-β, which is primarily found in the liver, can promote lipophagy, mitochondrial biogenesis and mitophagy, stimulating increased hepatic fatty acid β-oxidation, and thereby decreasing the burden of lipotoxic lipids, while promoting low-density lipoprotein (LDL) uptake and favourable effects on lipid profiles. A number of THR-β agonists are currently being investigated for NASH. This review focuses on resmetirom, an orally administered, once-daily, small-molecule, liver-directed, ß-selective THR agonist, as it is furthest along in development. Data from completed clincal studies outlined in this review demonstrate that resmetirom is effective in reducing hepatic fat content as measured by magnetic resonance imaging-derived proton density fat fraction, reduces liver enzymes, improves non-i nvasive markers of liver fibrogenesis and decreases liver stiffness, while eliciting a favourable cardiovascular profile with a reduction in serum lipids, including LDL cholesterol. Topline phase III biopsy data showed resolution of NASH and/or fibrosis improvement after 52 weeks of treatment, with more detailed peer-reviewed findings anticipated in order to certify these findings. Longer term clinical outcomes from both MAESTRO-NASH and MAESTRO-NASH OUTCOMES will be a pivotal juncture in the drug's road towards being approved as a NASH therapeutic.
Collapse
Affiliation(s)
- Gres Karim
- Department of Medicine, Mount Sinai Israel, New York, NY, USA
| | - Meena B Bansal
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
477
|
Mawatari K, Koike N, Nohara K, Wirianto M, Uebanso T, Shimohata T, Shikishima Y, Miura H, Nii Y, Burish MJ, Yagita K, Takahashi A, Yoo SH, Chen Z. The Polymethoxyflavone Sudachitin Modulates the Circadian Clock and Improves Liver Physiology. Mol Nutr Food Res 2023; 67:e2200270. [PMID: 36829302 DOI: 10.1002/mnfr.202200270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/13/2022] [Indexed: 02/26/2023]
Abstract
SCOPE Polymethoxylated flavones (PMFs) are a group of natural compounds known to display a wide array of beneficial effects to promote physiological fitness. Recent studies reveal circadian clocks as an important cellular mechanism mediating preventive efficacy of the major PMF Nobiletin against metabolic disorders. Sudachitin is a PMF enriched in Citrus sudachi, and its functions and mechanism of action are poorly understood. METHODS AND RESULTS Using circadian reporter cells, it shows that Sudachitin modulates circadian amplitude and period of Bmal1 promoter-driven reporter rhythms, and real-time qPCR analysis shows that Sudachitin alters expression of core clock genes, notably Bmal1, at both transcript and protein levels. Mass-spec analysis reveals systemic exposure in vivo. In mice fed with high-fat diet with or without Sudachitin, it observes increased nighttime activity and daytime sleep, accompanied by significant metabolic improvements in a circadian time-dependent manner, including respiratory quotient, blood lipid and glucose profiles, and liver physiology. Focusing on liver, RNA-sequencing and metabolomic analyses reveal prevalent diurnal alteration in both gene expression and metabolite accumulation. CONCLUSION This study elucidates Sudachitin as a new clock-modulating PMF with beneficial effects to improve diurnal metabolic homeostasis and liver physiology, suggesting the circadian clock as a fundamental mechanism to safeguard physiological well-being.
Collapse
Affiliation(s)
- Kazuaki Mawatari
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima, 770-8503, Japan
| | - Nobuya Koike
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, 465 Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kazunari Nohara
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Marvin Wirianto
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Takashi Uebanso
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima, 770-8503, Japan
| | - Takaaki Shimohata
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima, 770-8503, Japan
| | - Yasuhiro Shikishima
- Ikeda Yakusou Corporation, 1808-1 Shuzunakatsu, Ikeda-cho, Miyoshi-city, Tokushima, 778-0020, Japan
| | - Hiroyuki Miura
- Ikeda Yakusou Corporation, 1808-1 Shuzunakatsu, Ikeda-cho, Miyoshi-city, Tokushima, 778-0020, Japan
| | - Yoshitaka Nii
- Food and Biotechnology Division, Tokushima Prefectural Industrial Technology Center, 11-2 Nishibari, Saika-cho, Tokushima, 770-8021, Japan
| | - Mark J Burish
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Kazuhiro Yagita
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, 465 Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima, 770-8503, Japan
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| |
Collapse
|
478
|
Deng G, Liu C, Zhao J, Wang M, Li Y, Yang M, Ye H, Li J, Qin M, Wu C, Shi H, Liao Y, Zhou Z, Zhang S, Lam Yung KK, Gao L. Exocarpium Citri Grandis alleviates the aggravation of NAFLD by mitigating lipid accumulation and iron metabolism disorders. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116559. [PMID: 37116730 DOI: 10.1016/j.jep.2023.116559] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Exocarpium Citri grandis (ECG, Huajuhong in Chinese), the epicarp of C. grandis 'Tomentosa', has been used for hundreds of years as an anti-inflammatory, expectorant, hypoglycemic, and lipid-lowering medication in China. Nevertheless, there have been few papers that have explored the mechanism behind ECG's hypolipidemic characteristics from the perspective of treating nonalcoholic fatty liver disease (NAFLD). AIM OF STUDY The purpose of our study was to confirm the therapeutic and preventative effects of ECG in NAFLD by regulating lipid accumulation and iron metabolism, and to explore the specific mechanism of ECG in enhancing hepatic iron transport and excretion capabilities. STUDY DESIGN We constructed a NAFLD model by feeding male C57BL/6 J mice with a high-fat diet for 12 weeks. Mice were gavaged with ECG beginning in the seventh week of modeling, and three dosage gradients were established: low dose group (2.5 g/kg/d), medium dose group (5 g/kg/d) y, and high dose group (10 g/kg/d) until the end of model construction in week 12. MATERIALS AND METHODS We used network pharmacology to analyze the relationship between ECG and NAFLD. In addition, we constructed a nonalcoholic fatty liver disease model by feeding male C57BL/6 J mice a high-fat diet for 12 weeks. Finally, lipid accumulation, iron accumulation, inflammation and oxidative stress were evaluated by serological index detection, histological detection, immunofluorescent and immunohistochemical staining, and western blotting. RESULTS Network pharmacology confirmed the treatment effect of ECG in NAFLD. Three active components of ECG, including Naringenin, Naringin and Neohesperidin, were detected by UHPLC-HRMS analysis. The results of serum TC, TG, LDL concentration, HE staining, Oil red staining and Nile red staining demonstrated that ECG could improve lipid metabolism disorders. The results of serum iron concentration, liver tissue iron concentration, iron metabolism-related proteins Ferritin light chain, Ferroportin1, Transferrin receptor, and Transferrin demonstrated that ECG improved the iron transport and storage capacities of hepatic cells. CONCLUSIONS Our results demonstrated that ECG relieved liver injury by inhibiting lipid accumulation and iron accumulation in NAFLD.
Collapse
Affiliation(s)
- Guanghui Deng
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Gastroenterology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Chang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Jiamin Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Ming Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yunjia Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Menghan Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Haixin Ye
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Junjie Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Mengchen Qin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Chaofeng Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Hao Shi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yuxin Liao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Zhaoxi Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Shiqing Zhang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, China.
| | - Ken Kin Lam Yung
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of China; Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of China.
| | - Lei Gao
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Gastroenterology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
479
|
Wang MX, Peng ZG. 17β-hydroxysteroid dehydrogenases in the progression of nonalcoholic fatty liver disease. Pharmacol Ther 2023; 246:108428. [PMID: 37116587 DOI: 10.1016/j.pharmthera.2023.108428] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a worldwide epidemic and a major public health problem, with a prevalence of approximately 25%. The pathogenesis of NAFLD is complex and may be affected by the environment and susceptible genetic factors, resulting in a highly variable disease course and no approved drugs in the clinic. Notably, 17β-hydroxysteroid dehydrogenase type 13 (HSD17B13), which belongs to the 17β-hydroxysteroid dehydrogenase superfamily (HSD17Bs), is closely related to the clinical outcome of liver disease. HSD17Bs consists of fifteen members, most related to steroid and lipid metabolism, and may have the same biological function as HSD17B13. In this review, we highlight recent advances in basic research on the functional activities, major substrates, and key roles of HSD17Bs in the progression of NAFLD to develop innovative anti-NAFLD drugs targeting HSD17Bs.
Collapse
Affiliation(s)
- Mei-Xi Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin 300060, China
| | - Zong-Gen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
480
|
Zhao Y, Qiu C, Dong Y, Wang X, Chen J, Yao J, Jiang Y, Zhang C, Weng H, Liu Y, Wong YN, Huang P. Technical Acoustic Measurements Combined with Clinical Parameters for the Differential Diagnosis of Nonalcoholic Steatohepatitis. Diagnostics (Basel) 2023; 13:diagnostics13091547. [PMID: 37174939 PMCID: PMC10177914 DOI: 10.3390/diagnostics13091547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Background and aim: Diagnosing nonalcoholic steatohepatitis (NASH) is challenging. This study intended to explore the diagnostic value of multiple technical acoustic measurements in the diagnosis of NASH, and to establish a diagnostic model combining technical acoustic measurements with clinical parameters to improve the diagnostic efficacy of NASH. Methods: We consecutively enrolled 75 patients with clinically suspected nonalcoholic fatty liver disease (NAFLD) who underwent percutaneous liver biopsy in our hospital from June 2020 to December 2021. All cases underwent multiple advanced acoustic measurements for liver such as shear wave dispersion (SWD), shear wave speed (SWS), attenuation imaging (ATI), normalized local variance (NLV), and liver-kidney intensity ratio (Ratio) examination before liver biopsies. A nomogram prediction model combining the technical acoustic measurements and clinical parameters was established and the model is proposed to improve the diagnostic performance of NASH. Results: A total of 75 cases were included in this study. The classification of pathological grade for NASH was as follows: normal liver, (n = 15, 20%), nonalcoholic fatty liver (NAFL), (n = 44, 58.7%), and NASH, (n = 16, 21.3%). There were statistically significant differences in SWS (p = 0.002), acoustic coefficient (AC) (p = 0.018), NLV (p = 0.033), age (p = 0.013) and fasting blood glucose (Glu) (p = 0.049) between NASH and non-NASH. A nomogram model which includes SWS, AC, NLV, age and Glu was built to predict NASH, and the calibration curves showed good calibrations in both training and validation sets. The AUCs of the combined nomogram model for the training set and validation set were 0.8597 and 0.7794, respectively. Conclusion: There were statistically significant differences in SWS, AC, NLV, age and Glu between NASH and non-NASH. A nomogram model which includes SWS, AC, NLV, age and Glu was built to predict NASH. The predictive model has a higher diagnostic performance than a single factor model in the diagnosis of NASH and has good clinical application prospects.
Collapse
Affiliation(s)
- Yanan Zhao
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Chen Qiu
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yiping Dong
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xuchu Wang
- Department of Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jifan Chen
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jianting Yao
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yifan Jiang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Chao Zhang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Huifang Weng
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yajing Liu
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | | | - Pintong Huang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| |
Collapse
|
481
|
Xiang M, Qian X, Han L, Wang H, Wang J, Liu W, Gu Y, Yao S, Yang J, Zhang Y, Peng Y, Zhang Z. Aquaporin-8 ameliorates hepatic steatosis through farnesoid X receptor in obese mice. iScience 2023; 26:106561. [PMID: 37123234 PMCID: PMC10130924 DOI: 10.1016/j.isci.2023.106561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/17/2022] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Aquaporin-8(AQP8), is a transmembrane channel protein that abounds in liver, which mainly promotes water transport, modulating bile acid formation. However, its role in hepatic lipid metabolism remains unclear. In this study, we found the expression of AQP8 was reduced in liver specimens of patients with NAFLD, high-fat diet (HFD)-induced mice and genetically obese db/db mice. Knockdown of AQP8 in hepatocytes exacerbated the intracellular lipid accumulation induced by free fatty acid (FFA) mixtures. In contrast, hepatic AQP8 overexpression activated farnesoid X receptor (FXR), inhibiting gene expression associated with lipogenesis, which further reduced intrahepatic triglyceride overload in obese mice. FXR knockout abrogated the ameliorating effect of AQP8 overexpression on NAFLD in mice. These findings indicate that AQP8 overexpression protects against fatty liver through activating the FXR pathway.
Collapse
Affiliation(s)
- Minqi Xiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Qian
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luyu Han
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hui Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiren Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Yanyun Gu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangshuang Yao
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifei Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Peng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiguo Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
482
|
Cabrera D, Moncayo-Rizzo J, Cevallos K, Alvarado-Villa G. Waist Circumference as a Risk Factor for Non-Alcoholic Fatty Liver Disease in Older Adults in Guayaquil, Ecuador. Geriatrics (Basel) 2023; 8:geriatrics8020042. [PMID: 37102968 PMCID: PMC10137339 DOI: 10.3390/geriatrics8020042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/21/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
Non-alcoholic liver steatosis is currently considered an epidemic. It involves a broad spectrum of liver diseases, in which older adults constitute a susceptible group. The aim of this study is to identify the role of waist circumference as a risk factor for non-alcoholic fatty liver disease. METHODS A cross-sectional study was carried out in 99 older adults who regularly attended five gerontological centers in the city of Guayaquil, Ecuador. The variables studied were age, gender, independent life, access to complete meals, waist circumference, and NAFLD diagnosed by ultrasound. RESULTS A significant relationship exists between waist circumference, body mass index, and fat mass percentage. However, only age and waist circumference were significant in the multivariate logistic regression model. Our results suggest that in the presence of waist circumference, body mass index loses its significance and age may be a protective factor due to adipose tissue loss and redistribution. CONCLUSION Anthropometric measurements such as waist circumference can be used as complement indicators of NAFLD.
Collapse
Affiliation(s)
| | - Jorge Moncayo-Rizzo
- Department of Health Sciences, Universidad de Especialidades Espiritu Santo, Guayaquil 092301, Ecuador
| | - Karen Cevallos
- Department of Health Sciences, Universidad de Especialidades Espiritu Santo, Guayaquil 092301, Ecuador
| | - Geovanny Alvarado-Villa
- Department of Health Sciences, Universidad de Especialidades Espiritu Santo, Guayaquil 092301, Ecuador
| |
Collapse
|
483
|
Yao Q, Yu Z, Meng Q, Chen J, Liu Y, Song W, Ren X, Zhou J, Chen X. The Role of Small Intestinal Bacterial Overgrowth in Obesity and Its Related Diseases. Biochem Pharmacol 2023; 212:115546. [PMID: 37044299 DOI: 10.1016/j.bcp.2023.115546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
Obesity has become a major public health problem worldwide and its occurrence is increasing globally. Obesity has also been shown to be involved in the occurrence and development of many diseases and pathological conditions, such as nonalcoholic fatty liver disease (NAFLD), type 2 diabetes mellitus (T2DM), insulin resistance (IR). In recent years, gut microbiota has received extensive attention as an important regulatory part involved in host diseases and health status. A growing body of evidence suggests that gut microbiota dysbiosis has a significant adverse effect on the host. Small intestinal bacterial overgrowth (SIBO), a type of intestinal microbial dysbiosis, has been gradually revealed to be associated with obesity and its related diseases. The presence of SIBO may lead to the destruction of intestinal barrier integrity, increased intestinal permeability, increased endotoxin levels, activation of inflammatory responses, and translocation of bacteria from the colon to the small intestine. However, the causal relationship between SIBO and obesity and the specific mechanisms have not been well elucidated. This review discusses the cross-talk between SIBO and obesity and its related diseases, and expounds its potential mechanisms and interventions, which may help to discover new therapeutic targets for obesity and its related diseases and develop treatment options.
Collapse
Affiliation(s)
- Qinyan Yao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Zihan Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Qingguo Meng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Jihua Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Yaxin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Wenxuan Song
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Xiangfeng Ren
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Jinjie Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China.
| |
Collapse
|
484
|
Abu-Freha N, Cohen B, Gordon M, Weissmann S, Fich A, Munteanu D, Yardeni D, Etzion O. Comorbidities and Malignancy among NAFLD Patients Compared to the General Population, A Nation-Based Study. Biomedicines 2023; 11:biomedicines11041110. [PMID: 37189727 DOI: 10.3390/biomedicines11041110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
(1) Background: Non-alcoholic fatty liver disease (NAFLD) is a common liver disease. Aims: We aimed to investigate the frequency of comorbidities and malignancies among NAFLD patients compared to the general population. (2) Methods: A retrospective study included adult patients with a NAFLD diagnosis. A control group was matched for age and gender. Demographics, comorbidities, malignancies, and mortality were collected and compared. (3) Results: 211,955 NAFLD patients were analyzed in comparison to 452,012 matched general population controls. Significantly higher rates of diabetes mellitus (23.2% vs. 13.3%), obesity (58.8% vs. 27.8%), hypertension (57.2% vs. 39.9%), chronic ischemic heart disease (24.7% vs. 17.3%), and CVA (3.2% vs. 2.8%) were found among NAFLD patients. Patients with NAFLD had significantly higher rates of the following malignancies: prostate cancer (1.6% vs. 1.2%), breast cancer (2.6% vs. 1.9%), colorectal cancer (1.8% vs. 1.4%), uterine cancer (0.4 vs. 0.2%), kidney cancer (0.8% vs. 0.5%), but a lower rate of lung cancer (0.9% vs. 1.2%) and stomach cancer (0.3% vs. 0.4%). The all-cause mortality rate among NAFLD patients was significantly lower in comparison to the general population (10.8% vs. 14.7%, p < 0.001). (4) Conclusions: Higher rates of comorbidities and malignancies among NAFLD patients were observed, but a lower rate of all-cause mortality was found.
Collapse
Affiliation(s)
- Naim Abu-Freha
- The Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beer-Sheva 84101, Israel
- The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Bracha Cohen
- Soroka Clinical Research Center, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - Michal Gordon
- Soroka Clinical Research Center, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - Sarah Weissmann
- The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Soroka Clinical Research Center, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - Alexander Fich
- The Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beer-Sheva 84101, Israel
- The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Daniela Munteanu
- The Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beer-Sheva 84101, Israel
- The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - David Yardeni
- The Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beer-Sheva 84101, Israel
- The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ohad Etzion
- The Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Beer-Sheva 84101, Israel
- The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
485
|
Luo W, Xu G, Song Z, Mu W, Wen J, Hui S, Zhao J, Zhan X, Bai Z, Xiao X. Licorice extract inhibits the cGAS-STING pathway and protects against non-alcoholic steatohepatitis. Front Pharmacol 2023; 14:1160445. [PMID: 37081966 PMCID: PMC10111149 DOI: 10.3389/fphar.2023.1160445] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Background: Inflammation and fibrosis are typical symptoms of non-alcoholic steatohepatitis (NASH), which is one of the most common chronic liver diseases. The cGAS-STING signaling pathway has been implicated in the progression of NASH, and targeting this pathway may represent a new therapeutic strategy. Licorice is a widely used herb with anti-inflammatory and liver-protective properties. In this study, we assessed the effect of licorice extract on the cGAS-STING pathway.Methods: Bone marrow-derived macrophages (BMDMs) were treated with licorice extract and then stimulated with HT-DNA, 2'3'-cGAMP, or other agonists to activate the cGAS-STING pathway. Quantitative real-time PCR and western blot were conducted to analyze whether licorice extract could affect the cGAS-STING pathway. Methionine and choline-deficient diet (MCD) was used to induce NASH in mice, which were treated with licorice extract (500 mg/kg) by gavage and/or c-176 (15 mg/kg) by intraperitoneal injection every 2 days. After 6 weeks of treatment, histological analysis of liver tissue was performed, along with measurements of plasma biochemical parameters.Results: Licorice extract inhibits cGAS-STING pathway activation. Mechanistically, it might function by inhibiting the oligomerization of STING. Treatment with licorice extract reduced inflammation and fibrosis in MCD diet-induced NASH mice models. Furthermore, we found that the therapeutic effect of combination treatment with licorice extract and C-176 (STING inhibitor) on the pathology and fibrosis of MCD diet-induced NASH models was similar to that of licorice extract or C-176 administered alone.Conclusion: Licorice extract can inhibit the cGAS-STING pathway and improve hepatic inflammation and fibrosis in NASH mice models. It strongly suggests that licorice extract may be a candidate therapeutic for NASH.
Collapse
Affiliation(s)
- Wei Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guang Xu
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Guang Xu, ; Xiaoyan Zhan, ; Zhaofang Bai, ; Xiaohe Xiao,
| | - Zheng Song
- Peking University 302 Clinical Medical School, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenqing Mu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jincai Wen
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Siwen Hui
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jia Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoyan Zhan
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Guang Xu, ; Xiaoyan Zhan, ; Zhaofang Bai, ; Xiaohe Xiao,
| | - Zhaofang Bai
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Guang Xu, ; Xiaoyan Zhan, ; Zhaofang Bai, ; Xiaohe Xiao,
| | - Xiaohe Xiao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Guang Xu, ; Xiaoyan Zhan, ; Zhaofang Bai, ; Xiaohe Xiao,
| |
Collapse
|
486
|
Brown C, Aksan N, Muir AJ. Consider hospice in end-stage liver disease prognostic scale to open discussions regarding six-month mortality. JGH Open 2023; 7:278-285. [PMID: 37125249 PMCID: PMC10134759 DOI: 10.1002/jgh3.12889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/29/2023] [Accepted: 03/06/2023] [Indexed: 05/02/2023]
Abstract
Background and Aim Hospice is underutilized in the management of patients with end-stage liver disease and may improve the patient experience at the end of life. This study aims to create a novel prognostic scale to accurately predict 6-month mortality to more comprehensively facilitate hospice referral. Methods Sociodemographic, clinical, and laboratory variables associated with mortality from the United Network for Organ Sharing database were tested in univariate analysis followed by multivariate analyses with four predictor groups: Demographics, Diagnoses, Complexities, and Laboratory studies to develop the hospice in end-stage liver disease prognostic scale (HELP) scale (70% sample, N = 13 516) followed with replication in a 30% (N = 5792) internal validation sample. Results Only the predictor groups of Complexities and Laboratory studies met the c-statistic threshold of 0.70 for inclusion in the multivariate analyses. Backward elimination in the final logistic regression and validated weighted transformation procedure resulted in: HELP scale = (functional status × 11) + (ascites × 3) + (SBP × 3) + (HE × 4) + (dialysis × 5) + (TIPS × -3) + (albumin × -3) + (MELD-Na ≥ 21 × 20). HELP scale had a strong predictive value for six-month mortality with Area under the Receiver Operating Curve (AUROC) 0.816 and replicated in the validation sample. Conclusion HELP scale is a novel prognostic score utilizing the strength of model of end-stage liver disease-sodium (MELD-Na), along with clinical factors, for a more nuanced assessment of six-month mortality. This scale can provide an individualized approach in opening discussions of hospice referral and may be better accepted by patients and providers given its contextualization of important clinical factors.
Collapse
Affiliation(s)
- Cristal Brown
- Dell Medical SchoolUniversity of Texas at AustinAustinTexasUSA
| | - Nazan Aksan
- Dell Medical SchoolUniversity of Texas at AustinAustinTexasUSA
| | - Andrew Joseph Muir
- Duke University School of MedicineDuke Clinical Research InstituteDurhamNorth CarolinaUSA
| |
Collapse
|
487
|
Zhang J, Fu S, Liu D, Wang Y, Tan Y. Statin can reduce the risk of hepatocellular carcinoma among patients with nonalcoholic fatty liver disease: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 2023; 35:353-358. [PMID: 36719824 DOI: 10.1097/meg.0000000000002517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Currently, nonalcoholic fatty liver disease (NAFLD) is the main cause of chronic liver disease and liver-related mortality worldwide. Hepatocellular carcinoma (HCC) is a fatal complication in patients with NAFLD. However, whether statins can reduce the risk of HCC in patients with NAFLD remains controversial. We aimed to determine the relationship between statin use and HCC occurrence among patients with NAFLD. We independently retrieved related studies from PubMed, EMBASE, Cochrane Library, Web of Science, and ClinicalTrial.gov (from 1 January 2000 to 27 February 2022). The main outcome was the development of HCC. A fixed-effects model was used to merge odds ratio (OR) in the meta-analysis. Five studies involving 684 363 patients were included. The results of the meta-analysis suggested a significantly lower risk of HCC among statin users with NAFLD [OR = 0.59; 95% confidence interval (CI), 0.39-0.89; I2 = 87.90%]. Additionally, a lower risk of HCC was observed among patients with NAFLD aged less than 65 years (OR = 0.59; 95% CI, 0.46-0.77; I2 = 20.50%). Statins can reduce the risk of HCC in patients aged less than 65 years with NAFLD.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Shifeng Fu
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Deliang Liu
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Yongjun Wang
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Yuyong Tan
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University
- Research Center of Digestive Disease, Central South University, Changsha, China
| |
Collapse
|
488
|
Huang YH, Chan C, Lee HW, Huang C, Chen YJ, Liu PC, Lu SN, Chuang WL, Huang JF, Yu ML, Koshiol J, Lee MH. Influence of Nonalcoholic Fatty Liver Disease With Increased Liver Enzyme Levels on the Risk of Cirrhosis and Hepatocellular Carcinoma. Clin Gastroenterol Hepatol 2023; 21:960-969.e1. [PMID: 35124270 PMCID: PMC9349477 DOI: 10.1016/j.cgh.2022.01.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The influence of nonalcoholic fatty liver disease (NAFLD) on the long-term risk of cirrhosis and hepatocellular carcinoma (HCC) in Asian populations has not been widely investigated. METHODS We enrolled 129,374 adults aged 30 years and older, all of whom participated in a health screening program from 2008 through 2013, were seronegative for hepatitis B surface antigen and anti-hepatitis C virus antibodies, and had limited daily alcohol consumption (<20 g/d for men and <10 g/d for women). Abdominal ultrasonography was performed to determine the presence of NAFLD. The participants were divided into the following groups: NAFLD with increased or normal liver enzyme levels, and non-NAFLD with normal liver enzyme levels. The incidences of cirrhosis and HCC were determined through computerized data linkage with nationwide registries. Cox proportional hazard models were used to estimate the hazard ratios of NAFLD on the risks of cirrhosis and HCC. RESULTS The incidence rates of cirrhosis and HCC increased as follows: non-NAFLD with normal liver enzyme levels (n = 66,801; 51%), NAFLD with normal liver enzyme levels (n = 41,461; 32%), and NAFLD with increased liver enzyme levels (n = 21,112; 16%). In the NAFLD group with increased liver enzyme levels and the NAFLD group with normal liver enzyme levels, the corresponding multivariate-adjusted hazard ratios for cirrhosis were 3.51 (95% confidence interval [CI]: 2.36-5.22) and 0.73 (95% CI: 0.46-1.16), and for HCC were 1.91 (95% CI: 1.08-3.38) and 0.57 (95% CI: 0.31-1.04), respectively, compared with the non-NAFLD group (P for trend < .001). The findings were consistent after restricting the analysis to nonobese individuals (body mass index, <25 kg/m2) and nonobese individuals without diabetes (P < .05). CONCLUSIONS Individuals with NAFLD and increased liver enzyme levels showed significantly higher risks for cirrhosis and HCC and should be monitored.
Collapse
Affiliation(s)
| | - Chi Chan
- Institute of Clinical Medicine, Taipei, Taiwan
| | - Hye-Won Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Claire Huang
- Institute of Clinical Medicine, Taipei, Taiwan; Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Ju Chen
- Institute of Clinical Medicine, Taipei, Taiwan; Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Po-Chun Liu
- Institute of Clinical Medicine, Taipei, Taiwan; Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Nan Lu
- Department of Gastroenterology, Chang-Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division and Hepatitis Center, Kaohsiung, Taiwan; Faculty of Internal Medicine, Kaohsiung, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division and Hepatitis Center, Kaohsiung, Taiwan; Faculty of Internal Medicine, Kaohsiung, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung, Taiwan; Center for Liquid Biopsy and Cohort Research, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Internal Medicine, Kaohsiung, Taiwan
| | - Ming-Lung Yu
- Hepatobiliary Division and Hepatitis Center, Kaohsiung, Taiwan; Faculty of Internal Medicine, Kaohsiung, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung, Taiwan; Center for Liquid Biopsy and Cohort Research, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jill Koshiol
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | | |
Collapse
|
489
|
Sanyal AJ, Williams SA, Lavine JE, Neuschwander-Tetri BA, Alexander L, Ostroff R, Biegel H, Kowdley KV, Chalasani N, Dasarathy S, Diehl AM, Loomba R, Hameed B, Behling C, Kleiner DE, Karpen SJ, Williams J, Jia Y, Yates KP, Tonascia J. Defining the serum proteomic signature of hepatic steatosis, inflammation, ballooning and fibrosis in non-alcoholic fatty liver disease. J Hepatol 2023; 78:693-703. [PMID: 36528237 PMCID: PMC10165617 DOI: 10.1016/j.jhep.2022.11.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/01/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Despite recent progress, non-invasive tests for the diagnostic assessment and monitoring of non-alcoholic fatty liver disease (NAFLD) remain an unmet need. Herein, we aimed to identify diagnostic signatures of the key histological features of NAFLD. METHODS Using modified-aptamer proteomics, we assayed 5,220 proteins in each of 2,852 single serum samples from 636 individuals with histologically confirmed NAFLD. We developed and validated dichotomized protein-phenotype models to identify clinically relevant severities of steatosis (grade 0 vs. 1-3), hepatocellular ballooning (0 vs. 1 or 2), lobular inflammation (0-1 vs. 2-3) and fibrosis (stages 0-1 vs. 2-4). RESULTS The AUCs of the four protein models, based on 37 analytes (18 not previously linked to NAFLD), for the diagnosis of their respective components (at a clinically relevant severity) in training/paired validation sets were: fibrosis (AUC 0.92/0.85); steatosis (AUC 0.95/0.79), inflammation (AUC 0.83/0.72), and ballooning (AUC 0.87/0.83). An additional outcome, at-risk NASH, defined as steatohepatitis with NAFLD activity score ≥4 (with a score of at least 1 for each of its components) and fibrosis stage ≥2, was predicted by multiplying the outputs of each individual component model (AUC 0.93/0.85). We further evaluated their ability to detect change in histology following treatment with placebo, pioglitazone, vitamin E or obeticholic acid. Component model scores significantly improved in the active therapies vs. placebo, and differential effects of vitamin E, pioglitazone, and obeticholic acid were identified. CONCLUSIONS Serum protein scanning identified signatures corresponding to the key components of liver biopsy in NAFLD. The models developed were sufficiently sensitive to characterize the longitudinal change for three different drug interventions. These data support continued validation of these proteomic models to enable a "liquid biopsy"-based assessment of NAFLD. CLINICAL TRIAL NUMBER Not applicable. IMPACT AND IMPLICATIONS An aptamer-based protein scan of serum proteins was performed to identify diagnostic signatures of the key histological features of non-alcoholic fatty liver disease (NAFLD), for which no approved non-invasive diagnostic tools are currently available. We also identified specific protein signatures related to the presence and severity of NAFLD and its histological components that were also sensitive to change over time. These are fundamental initial steps in establishing a serum proteome-based diagnostic signature of NASH and provide the rationale for using these signatures to test treatment response and to identify several novel targets for evaluation in the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Arun J Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| | | | - Joel E Lavine
- Dept. of Pediatrics, Columbia University, New York, NY, USA
| | | | | | | | | | | | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Srinivasan Dasarathy
- Division of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Anna Mae Diehl
- Division of Gastroenterology and Hepatology, Duke University School of Medicine, Durham, NC, USA
| | - Rohit Loomba
- NAFLD Research Center, University of California San Diego School of Medicine, San Diego, CA, USA
| | - Bilal Hameed
- Division of Gastroenterology and Hepatology, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Cynthia Behling
- NAFLD Research Center, University of California San Diego School of Medicine, San Diego, CA, USA
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Saul J Karpen
- Dept. of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Yi Jia
- Clinical R&D, SomaLogic Inc., Boulder, CO, USA
| | - Katherine P Yates
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - James Tonascia
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
490
|
Wang Z, Du H, Zhao Y, Ren Y, Ma C, Chen H, Li M, Tian J, Xue C, Long G, Xu M, Jiang Y. Response to pioglitazone in non-alcoholic fatty liver disease patients with vs. without type 2 diabetes: A meta-analysis of randomized controlled trials. Front Endocrinol (Lausanne) 2023; 14:1111430. [PMID: 37065735 PMCID: PMC10091905 DOI: 10.3389/fendo.2023.1111430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/13/2023] [Indexed: 03/31/2023] Open
Abstract
Background Pioglitazone is considered a potential therapy for non-alcoholic fatty liver disease (NAFLD). However, different effects of pioglitazone on NAFLD have been demonstrated in diabetic and non-diabetic patients. Herein, a meta-analysis of randomized, placebo-controlled trials was carried out to indirectly compare pioglitazone in NAFLD patients with vs. without type 2 diabetes. Methods Randomized controlled trials (RCTs) of pioglitazone vs. placebo involving NAFLD patients with or without type 2 diabetes/prediabetes collected from databases were enrolled into this analysis. Methodological quality was employed to evaluate the domains recommended by the Cochrane Collaboration. The analysis covered the changes in histology (fibrosis, hepatocellular ballooning, inflammation, steatosis), liver enzymes, blood lipids, fasting blood glucose (FBS), homeostasis model assessment-IR (HOMA-IR), weight and body mass index (BMI) before and after treatment, and adverse events. Results The review covered seven articles, with 614 patients in total, of which three were non-diabetic RCTs. No difference was found in patients with vs. without type 2 diabetes in histology, liver enzymes, blood lipids, HOMA-IR, weight, BMI, and FBS. Moreover, no significant difference was revealed in adverse effects between NAFLD patients with diabetes and without DM, except the incidence of edema that was found to be higher in the pioglitazone group than in the placebo group in NAFLD patients with diabetes. Conclusions Pioglitazone could exert a certain effect on alleviating NAFLD, which was consistent between non-diabetic NAFLD patients and diabetic NAFLD patients in improving histopathology, liver enzymes, and HOMA-IR and reducing blood lipids. Furthermore, there were no adverse effects, except the incidence of edema which is higher in the pioglitazone group in NAFLD patients with diabetes. However, large sample sizes and well-designed RCTs are required to further confirm these conclusions.
Collapse
Affiliation(s)
- Zeyu Wang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huiqing Du
- Department of Gastroenterology, Xingtai People’s Hospital, Xingtai, China
| | - Ying Zhao
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yadi Ren
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Cuihua Ma
- Department of Gastroenterology, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Hongyu Chen
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Man Li
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jiageng Tian
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Caihong Xue
- Department of Pediatric Ophthalmology and Strabismus, Tianjin Eye Hospital, Tianjin, China
| | - Guangfeng Long
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Meidong Xu
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yong Jiang
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
491
|
Song Q, Ling Q, Fan L, Deng Y, Gao Q, Yang R, Chen S, Wu S, Cai J. Severity of non-alcoholic fatty liver disease is a risk factor for developing hypertension from prehypertension. Chin Med J (Engl) 2023:00029330-990000000-00475. [PMID: 37027402 DOI: 10.1097/cm9.0000000000002111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND There is little published evidence about the role of non-alcoholic fatty liver disease (NAFLD) in the progression from prehypertension to hypertension. This study was conducted to investigate the association of NAFLD and its severity with the risk of hypertension developing from prehypertension. METHODS The study cohort comprised 25, 433 participants from the Kailuan study with prehypertension at baseline; those with excessive alcohol consumption and other liver diseases were excluded. NAFLD was diagnosed by ultrasonography and stratified as mild, moderate, or severe. Univariable and multivariable Cox proportional hazard regression was used to calculate the hazard ratios (HRs) and 95% confidence intervals (CIs) of incident hypertension according to the presence and 3 categories of severity of NAFLD. RESULTS During a median of 12.6 years of follow-up, 10,638 participants progressed to hypertension from prehypertension. After adjusting for multiple risk factors, patients with prehypertension and NAFLD had a 15% higher risk of incident hypertension than those without NAFLD (HR = 1.15, 95% CI 1.10-1.21). Moreover, the severity of NAFLD was associated with the incidence of hypertension, which was higher in patients with more severe NAFLD (HR = 1.15 [95% CI 1.10-1.21] in the mild NAFLD group; HR = 1.15 [95% CI 1.07-1.24] in the moderate NAFLD group; and HR = 1.20 [95% CI 1.03-1.41] in the severe NAFLD group). Subgroup analysis indicated that age and baseline systolic blood pressure may modify this association. CONCLUSIONS NAFLD is an independent risk factor for hypertension in patients with prehypertension. The risk of incident hypertension increases with the severity of NAFLD.
Collapse
Affiliation(s)
- Qirui Song
- Hypertension Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Qianhui Ling
- State Key Laboratory of Cardiovascular Disease of China, Fuwai Hospital, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Luyun Fan
- Hypertension Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yue Deng
- Hypertension Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Qiannan Gao
- Hypertension Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Ruixue Yang
- Hypertension Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Shuohua Chen
- Department of Cardiology, Kailuan General Hospital, Tangshan, Hebei 063000, China
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, Tangshan, Hebei 063000, China
| | - Jun Cai
- Hypertension Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
492
|
Gu X, Wei M, Hu F, Ouyang H, Huang Z, Lu B, Ji L. Chlorogenic acid ameliorated non-alcoholic steatohepatitis via alleviating hepatic inflammation initiated by LPS/TLR4/MyD88 signaling pathway. Chem Biol Interact 2023; 376:110461. [PMID: 36965689 DOI: 10.1016/j.cbi.2023.110461] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is a severe pathological stage in non-alcoholic fatty liver disease (NAFLD) and is generally recognized to be induced by chronic inflammation. Natural compound chlorogenic acid (CGA) is well-known for its anti-inflammatory capacity. This study aimed at evaluating the alleviation of CGA on NASH and further exploring its engaged mechanism via focusing on abrogating hepatic inflammation. Our results showed that CGA had a good amelioration on NASH in vivo. CGA alleviated liver oxidative injury by inducing nuclear factor erythroid 2-related factor 2 (Nrf2) activation and reduced liver steatosis via up-regulating peroxisome proliferator-activated receptor-alpha (PPARα). CGA attenuated hepatic inflammation in vivo, but didn't decrease the elevated lipopolysaccharide (LPS) content. CGA blocked the activation of nuclear factor kappa-B (NFκB) or inflammasome both in MCDD-fed mice and in LPS-stimulated macrophages. CGA was found to directly bind to myeloid differentiation primary response 88 (MyD88), and thus competitively blocked the interaction between toll-like receptor 4 (TLR4) and MyD88, thereby abrogating hepatic inflammation initiated by LPS-TLR4-MyD88. Moreover, the CGA-provided anti-inflammatory effect was obviously disappeared in macrophages overexpressed MyD88. Hence, CGA has an excellent efficacy in improving NASH. CGA alleviated liver inflammation during NASH progression through blocking LPS-TLR4-MyD88 signaling pathway via directly binding to MyD88.
Collapse
Affiliation(s)
- Xinnan Gu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mengjuan Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Feifei Hu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hao Ouyang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
493
|
Zhu Y, Zhang H, Jiang P, Xie C, Luo Y, Chen J. Transcriptional and Epigenetic Alterations in the Progression of Non-Alcoholic Fatty Liver Disease and Biomarkers Helping to Diagnose Non-Alcoholic Steatohepatitis. Biomedicines 2023; 11:970. [PMID: 36979950 PMCID: PMC10046227 DOI: 10.3390/biomedicines11030970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a broad spectrum of conditions from simple steatosis (non-alcoholic fatty liver (NAFL)) to non-alcoholic steatohepatitis (NASH), and its global prevalence continues to rise. NASH, the progressive form of NAFLD, has higher risks of liver and non-liver related adverse outcomes compared with those patients with NAFL alone. Therefore, the present study aimed to explore the mechanisms in the progression of NAFLD and to develop a model to diagnose NASH based on the transcriptome and epigenome. Differentially expressed genes (DEGs) and differentially methylated genes (DMGs) among the three groups (normal, NAFL, and NASH) were identified, and the functional analysis revealed that the development of NAFLD was primarily related to the oxidoreductase-related activity, PPAR signaling pathway, tight junction, and pathogenic Escherichia coli infection. The logistic regression (LR) model, consisting of ApoF, THOP1, and BICC1, outperformed the other five models. With the highest AUC (0.8819, 95%CI: 0.8128-0.9511) and a sensitivity of 97.87%, as well as a specificity of 64.71%, the LR model was determined as the diagnostic model, which can differentiate NASH from NAFL. In conclusion, several potential mechanisms were screened out based on the transcriptome and epigenome, and a diagnostic model was built to help patient stratification for NAFLD populations.
Collapse
Affiliation(s)
| | | | | | | | - Yao Luo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
494
|
Wang X, Wang L, Geng L, Tanaka N, Ye B. Resmetirom Ameliorates NASH-Model Mice by Suppressing STAT3 and NF-κB Signaling Pathways in an RGS5-Dependent Manner. Int J Mol Sci 2023; 24:5843. [PMID: 36982915 PMCID: PMC10058113 DOI: 10.3390/ijms24065843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Resmetirom, a liver-directed, orally active agonist of THR-β, could play a favorable role in treating NASH, but little is known about the underlying mechanism. A NASH cell model was established to test the preventive effect of resmetirom on this disease in vitro. RNA-seq was used for screening, and rescue experiments were performed to validate the target gene of the drug. A NASH mouse model was used to further elucidate the role and the underlying mechanism of resmetirom. Resmetirom effectively eliminated lipid accumulation and decreased triglyceride (TG) levels. In addition, repressed RGS5 in the NASH model could be recovered by resmetirom treatment. The silencing of RGS5 effectively impaired the role of resmetirom. In the NASH mouse model, obvious gray hepatization, liver fibrosis and inflammation, and increased macrophage infiltration were observed in liver tissues, while resmetirom almost returned them to normal conditions as observed in the control group. Pathological experimental data also confirmed that resmetirom has great potential in NASH treatment. Finally, RGS5 expression was suppressed in the NASH mouse model, but it was upregulated by resmetirom treatment, while the STAT3 and NF-κB signaling pathways were activated in NASH but inhibited by the agent. Resmetirom could improve NASH by recovering RGS5 expression and subsequently inactivating the STAT3 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Xiaojing Wang
- Department of Gastroenterology, Lishui Hospital of Zhejiang University/The Central Hospital of Lishui, Lishui 323000, China
| | - Liangjing Wang
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310009, China
| | - Lin Geng
- Department of Gastroenterology, Lishui Hospital of Zhejiang University/The Central Hospital of Lishui, Lishui 323000, China
| | - Naoki Tanaka
- Department of Global Medical Research Promotion, Shinshu University Graduate School of Medicine, Matsumoto 390-8621, Japan
- International Relations Office, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Research Center for Social Systems, Shinshu University, Matsumoto 390-8621, Japan
| | - Bin Ye
- Department of Gastroenterology, Lishui Hospital of Zhejiang University/The Central Hospital of Lishui, Lishui 323000, China
| |
Collapse
|
495
|
He H, Chai X, Li J, Li C, Wu X, Ye X, Ma H, Li X. LCN2 contributes to the improvement of nonalcoholic steatohepatitis by 8-Cetylberberine. Life Sci 2023; 321:121595. [PMID: 36940908 DOI: 10.1016/j.lfs.2023.121595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
AIMS Nonalcoholic steatohepatitis (NASH) is becoming one of the most common causes of liver transplantation and hepatocellular carcinoma, but no specific drugs are FDA-approved to treat it. 8-cetylberberine (CBBR), which is a long-chain alkane derivative of berberine, exhibits potent pharmacological activities and improves metabolism performance. The aim of this study is to explore the function and mechanism of CBBR against NASH. MATERIALS AND METHODS L02 and HepG2 hepatocytes were treated with the medium containing palmitic acids and oleic acids (PO) and incubated with CBBR for 12 h, then the levels of lipid accumulation were tested by kits or western blots. C57BL/6 J mice were fed with a high-fat diet or a high-fat/high-cholesterol diet. CBBR (15 mg/kg or 30 mg/kg) was orally administered for 8 weeks. Liver weight, steatosis, inflammation, and fibrosis were evaluated. Transcriptomic indicated the target of CBBR in NASH. KEY FINDINGS CBBR significantly reduced lipid accumulation, inflammation, liver injury, and fibrosis in NASH mice. CBBR also decreased lipid accumulation and inflammation in PO-induced L02 and HepG2 cells. RNA sequencing and bioinformatics analysis indicated that CBBR inhibited the pathways and key regulators associated with lipid accumulation, inflammation, and fibrosis in the pathogenesis of NASH. Mechanically, CBBR may prevent NASH via inhibiting LCN2, as proved by the finding that the anti-NASH effect of CBBR was more obvious in PO-stimulated HepG2 cells treated with LCN2 overexpression. SIGNIFICANCE Our work provides an insight into the effectiveness of CBBR in improving metabolic-stress-caused NASH as well as the mechanism by regulating LCN2.
Collapse
Affiliation(s)
- Huan He
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xue Chai
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Juan Li
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Changsheng Li
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xinran Wu
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xiaoli Ye
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Hang Ma
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Xuegang Li
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
496
|
Zhang Z, Wang S, Zhu Z, Nie B. Identification of potential feature genes in non-alcoholic fatty liver disease using bioinformatics analysis and machine learning strategies. Comput Biol Med 2023; 157:106724. [PMID: 36898287 DOI: 10.1016/j.compbiomed.2023.106724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) and NAFLD-associated hepatocellular carcinoma (HCC) has continuously increased in recent years. Machine learning is an effective method for screening the feature genes of a disease for prediction, prevention and personalized treatment. Here, we used the "limma" package and weighted gene co-expression network analysis (WGCNA) to screen 219 NAFLD-related genes and found that they were mainly enriched in inflammation-related pathways. Four feature genes (AXUD1, FOSB, GADD45B, and SOCS2) were screened by LASSO regression and support vector machine-recursive feature elimination (SVM-RFE) machine learning algorithms. Therefore, a clinical diagnostic model with an area under the curve (AUC) value of 0.994 was constructed, which was superior to other indicators of NAFLD. Significant correlations existed between feature genes expression and steatohepatitis histology or clinical variables. These findings were also validated in external datasets and a mouse model. Finally, we found that feature genes expression was significantly decreased in NAFLD-associated HCC and that SOCS2 may be a prognostic biomarker. Our findings may provide new insights into the diagnosis, prevention and treatment targets of NAFLD and NAFLD-associated HCC.
Collapse
Affiliation(s)
- Zhaohui Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong Province, 510630, China
| | - Shihao Wang
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong Province, 510630, China
| | - Zhengwen Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong Province, 510630, China
| | - Biao Nie
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong Province, 510630, China.
| |
Collapse
|
497
|
Rahimi S, Angaji SA, Majd A, Hatami B, Baghaei K. Evaluating the effect of basic fibroblast growth factor on the progression of NASH disease by inhibiting ceramide synthesis and ER stress-related pathways. Eur J Pharmacol 2023; 942:175536. [PMID: 36693552 DOI: 10.1016/j.ejphar.2023.175536] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is associated with intrahepatic lipid accumulation, inflammation, and hepatocyte death. Several studies have indicated that high-fat diets increase ceramide synthases-6 (CerS-6) expression and a concomitant elevation of C16-ceramides, which can modulate endoplasmic reticulum (ER) stress and further contribute to the progression of NASH. Ceramide levels have reportedly been impacted by basic fibroblast growth factor (bFGF) in various diseases. This study looked into the role of bFGF on CerS6/C16-ceramide and ER stress-related pathways in a mouse model of NASH. Male C57BL/6J mice were fed a western diet (WD) combined with carbon tetrachloride (CCl4) for eight weeks. Next, bFGF was injected into the NASH mice for seven days of continuous treatment. The effects of bFGF on NASH endpoints (including steatosis, inflammation, ballooning, and fibrosis), ceramide levels and ER-stress-induced inflammation, reactive oxygen species (ROS) production, and apoptosis were evaluated. Treatment with bFGF significantly reduced CerS-6/C16-ceramide. Further, the inflammatory condition was alleviated with reduction of nuclear factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6) gene expression. ROS level was also reduced. ER stress-related cell death diminished by reducing C/EBP homologous protein (CHOP) mRNA expression and caspase 3 activity. Furthermore, activation of the hepatic stellate cells was inhibited in the bFGF-treated mice by lowering the amount of alpha-smooth muscle actin (α-SMA) at the mRNA and protein level. According to our findings, CerS-6/C16-ceramide alteration impacts ER stress-mediated inflammation, oxidative stress, and apoptosis. The bFGF treatment effectively attenuated the development of NASH by downregulating CerS-6/C16-ceramide and subsequent ER stress-related pathways.
Collapse
Affiliation(s)
- Shahrzad Rahimi
- Department of Genetic, North Tehran Branch, Islamic Azad University, Tehran, 1651153311, Iran
| | - Seyyed Abdolhamid Angaji
- Department of Genetic, North Tehran Branch, Islamic Azad University, Tehran, 1651153311, Iran; Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, 1571914911, Iran
| | - Ahmad Majd
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, 1651153311, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717413, Iran
| | - Kaveh Baghaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717413, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717413, Iran.
| |
Collapse
|
498
|
Fang Z, Xu H, Duan J, Ruan B, Liu J, Song P, Ding J, Xu C, Li Z, Dou K, Wang L. Short-term tamoxifen administration improves hepatic steatosis and glucose intolerance through JNK/MAPK in mice. Signal Transduct Target Ther 2023; 8:94. [PMID: 36864030 PMCID: PMC9981902 DOI: 10.1038/s41392-022-01299-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 11/30/2022] [Accepted: 12/22/2022] [Indexed: 03/04/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) which is a leading cause of chronic liver diseases lacks effective treatment. Tamoxifen has been proven to be the first-line chemotherapy for several solid tumors in clinics, however, its therapeutic role in NAFLD has never been elucidated before. In vitro experiments, tamoxifen protected hepatocytes against sodium palmitate-induced lipotoxicity. In male and female mice fed with normal diets, continuous tamoxifen administration inhibited lipid accumulation in liver, and improved glucose and insulin intolerance. Short-term tamoxifen administration largely improved hepatic steatosis and insulin resistance, however, the phenotypes manifesting inflammation and fibrosis remained unchanged in abovementioned models. In addition, mRNA expressions of genes related to lipogenesis, inflammation, and fibrosis were downregulated by tamoxifen treatment. Moreover, the therapeutic effect of tamoxifen on NAFLD was not gender or ER dependent, as male and female mice with metabolic disorders shared no difference in response to tamoxifen and ER antagonist (fulvestrant) did not abolish its therapeutic effect as well. Mechanistically, RNA sequence of hepatocytes isolated from fatty liver revealed that JNK/MAPK signaling pathway was inactivated by tamoxifen. Pharmacological JNK activator (anisomycin) partially deprived the therapeutic role of tamoxifen in treating hepatic steatosis, proving tamoxifen improved NAFLD in a JNK/MAPK signaling-dependent manner.
Collapse
Affiliation(s)
- Zhiqiang Fang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Hao Xu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Juanli Duan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Bai Ruan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China.,Center of Clinical Aerospace Medicine & Department of Aviation Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jingjing Liu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ping Song
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jian Ding
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chen Xu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhiwen Li
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
499
|
Correlation between CT Abdominal Anthropometric Measurements and Liver Density in Individuals with Non-Alcoholic Fatty Liver Disease. Medicina (B Aires) 2023; 59:medicina59030500. [PMID: 36984501 PMCID: PMC10053809 DOI: 10.3390/medicina59030500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Background: With a growing frequency, nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide. NAFLD has a strong correlation with other metabolic disorders, such as obesity, particularly abdominal obesity, even though the underlying causes or risk factors are not entirely understood. This study aims to investigate correlations between abdominal anthropometric measurements and the presence and intensity of liver steatosis as assessed by unenhanced computed tomography (CT). Methods: One hundred and nineteen patients (male/female, 66/53; mean age 54.54 +/− 12.90 years) underwent abdominal non–contrast-enhanced CT. CT images were examined to determine the attenuation of liver parenchyma, subcutaneous fat depth, and waist circumference (WC). Results: Among all patients, WC (r = −0.78, p < 0.0001), infraumbilical subcutaneous fat thicknesses (r = −0.51, p < 0.0001), right paraumbilical subcutaneous fat thicknesses (r = −0.62, p < 0.0001), and left paraumbilical subcutaneous fat thicknesses (r = −0.53, p < 0.0001) had a high inverse correlation with the liver attenuation values. The presence of T2D (OR: 2.40, p = 0.04), WC (OR: 11.45, p < 0.001), right paraumbilical (OR: 10.09, p < 0.001), left paraumbilical (OR: 2.81, p = 0.01), and infraumbilical (OR: 3.06, p = 0.007) were strongly independent predictors of NAFLD risk. Moreover, regarding the laboratory parameters, only the higher value of GGT (OR: 2.84, p = 0.009) is a predictor of NAFLD risk. Conclusions: Our data show that higher baseline values of all abdominal anthropometric measurements are correlated with liver attenuation and act as predictors of NAFLD risk.
Collapse
|
500
|
Jarmakiewicz-Czaja S, Gruszecka J, Filip R. What Do NAFLD, Liver Fibrosis, and Inflammatory Bowel Disease Have in Common? Review of the Current Literature. Metabolites 2023; 13:metabo13030378. [PMID: 36984818 PMCID: PMC10051776 DOI: 10.3390/metabo13030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Liver disease is one of the most common extraintestinal manifestations of inflammatory bowel disease (IBD). Often the course of liver disease is associated with an exacerbation of the underlying disease (Crohn’s Disease/Ulcerative Colitis). Nonalcoholic steatohepatitis encompasses a wide spectrum of liver damage. The most common form is nonalcoholic fatty liver disease (NAFLD) (75–80%), and the less common but more dangerous form is nonalcoholic steatohepatitis (NASH). NAFLD is now the most common cause of chronic liver disease in developed countries and the leading indication for liver transplantation in the United States. Genetic, demographic, clinical, and environmental factors can play a role in the pathogenesis of NAFLD. The increasing prevalence of NAFLD is associated with a widespread obesity epidemic, metabolic complications, including hypertension, type 2 diabetes, and dyslipidaemia. Some of the most common manifestations of IBD are liver, biliary tract, and gallbladder diseases. The liver fibrosis process has a complex pathophysiology and is often dependent on exogenous factors such as the treatment used and endogenous factors such as the gut microbiome. However, the factors that link IBD and liver fibrosis are not yet clear. The main purpose of the review is to try to find links between IBD and selected liver diseases and to identify knowledge gaps that will inform further research.
Collapse
Affiliation(s)
| | - Jolanta Gruszecka
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Clinical Microbiology, Clinical Hospital No. 2, 35-959 Rzeszow, Poland
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-959 Rzeszow, Poland
- Correspondence:
| |
Collapse
|