451
|
Biofilm systems as tools in biotechnological production. Appl Microbiol Biotechnol 2019; 103:5095-5103. [PMID: 31079168 DOI: 10.1007/s00253-019-09869-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 01/08/2023]
Abstract
The literature provides more and more examples of research projects that develop novel production processes based on microorganisms organized in the form of biofilms. Biofilms are aggregates of microorganisms that are attached to interfaces. These viscoelastic aggregates of cells are held together and are embedded in a matrix consisting of multiple carbohydrate polymers as well as proteins. Biofilms are characterized by a very high cell density and by a natural retentostat behavior. Both factors can contribute to high productivities and a facilitated separation of the desired end-product from the catalytic biomass. Within the biofilm matrix, stable gradients of substrates and products form, which can lead to a differentiation and adaptation of the microorganisms' physiology to the specific process conditions. Moreover, growth in a biofilm state is often accompanied by a higher resistance and resilience towards toxic or growth inhibiting substances and factors. In this short review, we summarize how biofilms can be studied and what most promising niches for their application can be. Moreover, we highlight future research directions that will accelerate the advent of productive biofilms in biology-based production processes.
Collapse
|
452
|
Extracellular electron transfer features of Gram-positive bacteria. Anal Chim Acta 2019; 1076:32-47. [PMID: 31203962 DOI: 10.1016/j.aca.2019.05.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/23/2019] [Accepted: 05/05/2019] [Indexed: 12/20/2022]
Abstract
Electroactive microorganisms possess the unique ability to transfer electrons to or from solid phase electron conductors, e.g., electrodes or minerals, through various physiological mechanisms. The processes are commonly known as extracellular electron transfer and broadly harnessed in microbial electrochemical systems, such as microbial biosensors, microbial electrosynthesis, or microbial fuel cells. Apart from a few model microorganisms, the nature of the microbe-electrode conductive interaction is poorly understood for most of the electroactive species. The interaction determines the efficiency and a potential scaling up of bioelectrochemical systems. Gram-positive bacteria generally have a thick electron non-conductive cell wall and are believed to exhibit weak extracellular electron shuttling activity. This review highlights reported research accomplishments on electroactive Gram-positive bacteria. The use of electron-conducting polymers as mediators is considered as one promising strategy to enhance the electron transfer efficiency up to application scale. In view of the recent progress in understanding the molecular aspects of the extracellular electron transfer mechanisms of Enterococcus faecalis, the electron transfer properties of this bacterium are especially focused on. Fundamental knowledge on the nature of microbial extracellular electron transfer and its possibilities can provide insight in interspecies electron transfer and biogeochemical cycling of elements in nature. Additionally, a comprehensive understanding of cell-electrode interactions may help in overcoming insufficient electron transfer and restricted operational performance of various bioelectrochemical systems and facilitate their practical applications.
Collapse
|
453
|
Vamshi Krishna K, Venkata Mohan S. Purification and Characterization of NDH-2 Protein and Elucidating Its Role in Extracellular Electron Transport and Bioelectrogenic Activity. Front Microbiol 2019; 10:880. [PMID: 31133996 PMCID: PMC6513898 DOI: 10.3389/fmicb.2019.00880] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/05/2019] [Indexed: 11/13/2022] Open
Abstract
In microbial electrochemical systems, transport of electrons from bacteria to an electrode is the key to its functioning. However, the roles of several electron transport proteins, especially the membrane-bound dehydrogenases which link cellular metabolism to EET pathway are yet to be identified. NDH-2 is a non-proton pumping NADH dehydrogenase located in the inner membrane of several bacteria like Bacillus subtilis, Escherichia coli, etc. Unlike NADH dehydrogenase I, NDH-2 is not impeded by a high proton motive force thus helping in the increase of metabolic flux and carbon utilization. In the current study, NADH dehydrogenase II protein (NDH-2) was heterologously expressed from B. subtilis into E. coli BL21 (DE3) for enhancing electron flux through EET pathway and to understand its role in bioelectrogenesis. We found that E. coli expressing NDH-2 has increased the electron flux through EET and has shown a ninefold increase in current (4.7 μA) production when compared to wild strain with empty vector (0.52 μA). Furthermore, expression of NDH-2 also resulted in increased biofilm formation which can be corroborated with the decrease in charge transfer resistance of NDH-2 strain and increased NADH oxidation. It was also found that NDH-2 strain can reduce ferric citrate at a higher rate than wild type strain suggesting increased electron flux through electron transport chain due to NADH dehydrogenase II activity. Purified NDH-2 was found to be ∼42 kDa and has FAD as a cofactor. This work demonstrates that the primary dehydrogenases like NADH dehydrogenases can be overexpressed to increase the electron flux in EET pathway which can further enhance the microbial fuel cells performance.
Collapse
Affiliation(s)
- K Vamshi Krishna
- Bioengineering and Environmental Sciences Laboratory, EEFF Centre, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Laboratory, EEFF Centre, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| |
Collapse
|
454
|
Plekhanova Y, Tarasov S, Bykov A, Reshetilov A. Electrochemical assessment of the interaction of microbial living cells and carbon nanomaterials. IET Nanobiotechnol 2019; 13:332-338. [PMID: 31053698 PMCID: PMC8676533 DOI: 10.1049/iet-nbt.2018.5172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/22/2018] [Accepted: 12/24/2018] [Indexed: 11/20/2022] Open
Abstract
This work considers the effects of various carbon nanomaterials and fibres on bioelectrocatalytic and respiratory activity of bacterial cells during the oxidation of ethanol in the presence of an electron transport mediator. Gluconobacter oxydans sbsp. industrius VKM B-1280 cells were immobilised on the surfaces of graphite electrodes and had an adsorption contact with a nanomaterial (multi-walled carbon nanotubes, thermally expanded graphite, highly oriented pyrolytic graphite, graphene oxide, reduced graphene oxide). The electrochemical parameters of the electrodes (the polarisation curves, the value of generated current at the introduction of substrate, the impedance characteristics) were measured in two-electrode configuration. Modification by multi-walled carbon nanotubes led to the increase of microbial fuel cell (MFC) electric power by 26%. The charge transfer resistance of modified electrodes was 47% lower than unmodified ones. Thermally expanded and pyrolytic graphites had a slight negative effect on the electrochemical properties of modified electrodes. The respiratory activity of bacterial cells did not change in the presence of nanomaterials. The data can be used in the development of microbial biosensors and MFC electrodes based on Gluconobacter cells.
Collapse
Affiliation(s)
- Yulia Plekhanova
- Laboratory of Biosensors, FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki, 5, Pushchino, Moscow Region, 142290, Russian Federation.
| | - Sergei Tarasov
- Laboratory of Biosensors, FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki, 5, Pushchino, Moscow Region, 142290, Russian Federation
| | - Aleksandr Bykov
- Laboratory of Biosensors, FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki, 5, Pushchino, Moscow Region, 142290, Russian Federation
| | - Anatoly Reshetilov
- Laboratory of Biosensors, FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki, 5, Pushchino, Moscow Region, 142290, Russian Federation
| |
Collapse
|
455
|
Koók L, Bakonyi P, Harnisch F, Kretzschmar J, Chae KJ, Zhen G, Kumar G, Rózsenberszki T, Tóth G, Nemestóthy N, Bélafi-Bakó K. Biofouling of membranes in microbial electrochemical technologies: Causes, characterization methods and mitigation strategies. BIORESOURCE TECHNOLOGY 2019; 279:327-338. [PMID: 30765113 DOI: 10.1016/j.biortech.2019.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/28/2019] [Accepted: 02/01/2019] [Indexed: 05/23/2023]
Abstract
The scope of the review is to discuss the current state of knowledge and lessons learned on biofouling of membrane separators being used for microbial electrochemical technologies (MET). It is illustrated what crucial membrane features have to be considered and how these affect the MET performance, paying particular attention to membrane biofouling. The complexity of the phenomena was demonstrated and thereby, it is shown that membrane qualities related to its surface and inherent material features significantly influence (and can be influenced by) the biofouling process. Applicable methods for assessment of membrane biofouling are highlighted, followed by the detailed literature evaluation. Finally, an outlook on e.g. possible mitigation strategies for membrane biofouling in MET is provided.
Collapse
Affiliation(s)
- László Koók
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200 Veszprém, Hungary
| | - Péter Bakonyi
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200 Veszprém, Hungary
| | - Falk Harnisch
- Helmholtz-Centre for Environmental Research GmbH - UFZ, Department Environmental Microbiology, Permoserstrasse 15, Leipzig 04318, Germany
| | - Jörg Kretzschmar
- DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Biochemical Conversion Department, Torgauer Strasse 116, Leipzig 04347, Germany
| | - Kyu-Jung Chae
- Department of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, South Korea
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Dongchuan Rd. 500, Shanghai 200241, PR China
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway.
| | - Tamás Rózsenberszki
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200 Veszprém, Hungary
| | - Gábor Tóth
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200 Veszprém, Hungary
| | - Nándor Nemestóthy
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200 Veszprém, Hungary
| | - Katalin Bélafi-Bakó
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200 Veszprém, Hungary
| |
Collapse
|
456
|
Zeglio E, Rutz AL, Winkler TE, Malliaras GG, Herland A. Conjugated Polymers for Assessing and Controlling Biological Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806712. [PMID: 30861237 DOI: 10.1002/adma.201806712] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/15/2019] [Indexed: 05/20/2023]
Abstract
The field of organic bioelectronics is advancing rapidly in the development of materials and devices to precisely monitor and control biological signals. Electronics and biology can interact on multiple levels: organs, complex tissues, cells, cell membranes, proteins, and even small molecules. Compared to traditional electronic materials such as metals and inorganic semiconductors, conjugated polymers (CPs) have several key advantages for biological interactions: tunable physiochemical properties, adjustable form factors, and mixed conductivity (ionic and electronic). Herein, the use of CPs in five biologically oriented research topics, electrophysiology, tissue engineering, drug release, biosensing, and molecular bioelectronics, is discussed. In electrophysiology, implantable devices with CP coating or CP-only electrodes are showing improvements in signal performance and tissue interfaces. CP-based scaffolds supply highly favorable static or even dynamic interfaces for tissue engineering. CPs also enable delivery of drugs through a variety of mechanisms and form factors. For biosensing, CPs offer new possibilities to incorporate biological sensing elements in a conducting matrix. Molecular bioelectronics is today used to incorporate (opto)electronic functions in living tissue. Under each topic, the limits of the utility of CPs are discussed and, overall, the major challenges toward implementation of CPs and their devices to real-world applications are highlighted.
Collapse
Affiliation(s)
- Erica Zeglio
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
- Department of Micro and Nanosystems, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Alexandra L Rutz
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave., Cambridge, CB3 0FA, UK
| | - Thomas E Winkler
- Department of Micro and Nanosystems, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave., Cambridge, CB3 0FA, UK
| | - Anna Herland
- Department of Micro and Nanosystems, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institute, 17177, Stockholm, Sweden
| |
Collapse
|
457
|
Heydorn RL, Engel C, Krull R, Dohnt K. Strategien zur gezielten Verbesserung des anodenseitigen Elektronentransfers in mikrobiellen Brennstoffzellen. CHEM-ING-TECH 2019. [DOI: 10.1002/cite.201800214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Raymond Leopold Heydorn
- Technische Universität BraunschweigInstitut für Bioverfahrenstechnik, Braunschweiger Zentrum für Systembiologie Rebenring 56 38106 Braunschweig Deutschland
| | - Christina Engel
- Technische Universität BraunschweigInstitut für Bioverfahrenstechnik, Braunschweiger Zentrum für Systembiologie Rebenring 56 38106 Braunschweig Deutschland
| | - Rainer Krull
- Technische Universität BraunschweigInstitut für Bioverfahrenstechnik, Braunschweiger Zentrum für Systembiologie Rebenring 56 38106 Braunschweig Deutschland
| | - Katrin Dohnt
- Technische Universität BraunschweigInstitut für Bioverfahrenstechnik, Braunschweiger Zentrum für Systembiologie Rebenring 56 38106 Braunschweig Deutschland
| |
Collapse
|
458
|
Synthesis and Characterization of Te Nanotubes Decorated with Pt Nanoparticles for a Fuel Cell Anode/Cathode Working at a Neutral pH. Catalysts 2019. [DOI: 10.3390/catal9040328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In fuel-cell technology development, one of the most important objectives is to minimize the amount of Pt, the most employed material as an oxygen reduction and methanol oxidation electro-catalyst. In this paper, we report the synthesis and characterization of Te nanotubes (TeNTs) decorated with Pt nanoparticles, readily prepared from stirred aqueous solutions of PtCl2 containing a suspension of TeNTs, and ethanol acting as a reducing agent, avoiding the use of any hydrophobic surfactants such as capping stabilizing substance. The obtained TeNTs decorated with Pt nanoparticles (TeNTs/PtNPs) have been fully characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area diffraction patterns (SAD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV). We demonstrated that the new material can be successfully employed in fuel cells, either as an anodic (for methanol oxidation reaction) or a cathodic (for oxygen reduction reaction) electrode, with high efficiency in terms of related mass activities and on-set improvement. Remarkably, the cell operates in aqueous electrolyte buffered at pH 7.0, thus, avoiding acidic or alkaline conditions that might lead to, for example, Pt dissolution (at low pH), and paving the way for the development of biocompatible devices and on-chip fuel cells.
Collapse
|
459
|
Rossi R, Cario BP, Santoro C, Yang W, Saikaly PE, Logan BE. Evaluation of Electrode and Solution Area-Based Resistances Enables Quantitative Comparisons of Factors Impacting Microbial Fuel Cell Performance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3977-3986. [PMID: 30810037 DOI: 10.1021/acs.est.8b06004] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Direct comparisons of microbial fuel cells based on maximum power densities are hindered by different reactor and electrode sizes, solution conductivities, and materials. We propose an alternative method here, the electrode potential slope (EPS) analysis, to enable quantitative comparisons based on anode and cathode area-based resistances and operating potentials. Using EPS analysis, the brush anode resistance ( RAn = 10.6 ± 0.5 mΩ m2) was shown to be 28% lower than the resistance of a 70% porosity diffusion layer (70% DL) cathode ( RCat = 14.8 ± 0.9 mΩ m2) and 24% lower than the solution resistance ( RΩ = 14 mΩ m2) (acetate in a 50 mM phosphate buffer solution). Using a less porous cathode (30% DL) did not impact the cathode resistance but did reduce the cathode performance due to a lower operating potential. With low-conductivity domestic wastewater ( RΩ = 87 mΩ m2), both electrodes had higher resistances [ RAn = 75 ± 9 mΩ m2, and RCat = 54 ± 7 mΩ m2 (70% DL)]. Our analysis of the literature using EPS analysis shows how electrode resistances can easily be quantified to compare system performance when the electrode distances are changed or the sizes of the electrodes are different.
Collapse
Affiliation(s)
- Ruggero Rossi
- Department of Civil and Environmental Engineering , The Pennsylvania State University , 231Q Sackett Building , University Park , Pennsylvania 16802 , United States
| | - Benjamin P Cario
- Department of Civil and Environmental Engineering , The Pennsylvania State University , 231Q Sackett Building , University Park , Pennsylvania 16802 , United States
| | - Carlo Santoro
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM) , University of New Mexico , Advanced Materials Lab, 1001 University Boulevard Southeast, Suite 103 , MSC 04 2790, Albuquerque , New Mexico 87131 , United States
| | - Wulin Yang
- Department of Civil and Environmental Engineering , The Pennsylvania State University , 231Q Sackett Building , University Park , Pennsylvania 16802 , United States
| | - Pascal E Saikaly
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Research Center , King Abdullah University of Science and Technology , Thuwal 23955-6900 , Saudi Arabia
| | - Bruce E Logan
- Department of Civil and Environmental Engineering , The Pennsylvania State University , 231Q Sackett Building , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
460
|
Taninaka A, Yoshida S, Sugita Y, Takeuchi O, Shigekawa H. Evolution of local conductance pathways in a single-molecule junction studied using the three-dimensional dynamic probe method. NANOSCALE 2019; 11:5951-5959. [PMID: 30869706 DOI: 10.1039/c9nr00717b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding of the dynamics of the bonding states of molecules with electrodes while the molecular conformation is changed is particularly important for elucidating the details of electrochemical devices as well as molecular devices in which the reaction dynamics of the electrodes and molecules plays an important role, such as in fuel cells, catalysis and bioelectrochemical devices. However, it has been difficult to make measurements when the distance between counter electrodes is short, namely, the molecule is raised from a lying form, almost parallel and close to the electrodes, toward a standing form and vice versa. We previously have developed a method called the three-dimensional (3D) dynamic probe method, which enables conductance measurement while the conformation of a single-molecule junction is precisely controlled by scanning tunneling microscopy (STM) techniques. Here, by combining this method with density functional theory (DFT) calculations, it has become possible to simultaneously consider the effects of the dynamics of molecular structures and the bonding states at the electrodes on the local transmission pathways, local-bond contributions to conductance. Here, by performing an analysis on 1,4-benzenediamine (BDA) and 1,4-benzenedithiol (BDT) single molecule junctions, we have observed, for the first time, the effect of a change in the molecular conformations and bonding states on the local transmission pathways for a short Au electrode distance condition.
Collapse
Affiliation(s)
- Atsushi Taninaka
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan.
| | - Shoji Yoshida
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan.
| | - Yoshihiro Sugita
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan.
| | - Osamu Takeuchi
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan.
| | - Hidemi Shigekawa
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan.
| |
Collapse
|
461
|
A New Model for Constant Fuel Utilization and Constant Fuel Flow in Fuel Cells. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9061066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper presents a new model of fuel cells for two different modes of operation: constant fuel utilization control (constant stoichiometry condition) and constant fuel flow control (constant flow rate condition). The model solves the long-standing problem of mixing reversible and irreversible potentials (equilibrium and non-equilibrium states) in the Nernst voltage expression. Specifically, a Nernstian gain term is introduced for the constant fuel utilization condition, and it is shown that the Nernstian gain is an irreversibility in the computation of the output voltage of the fuel cell. A Nernstian loss term accounts for an irreversibility for the constant fuel flow operation. Simulation results are presented. The model has been validated against experimental data from the literature.
Collapse
|
462
|
Hirose A, Kasai T, Koga R, Suzuki Y, Kouzuma A, Watanabe K. Understanding and engineering electrochemically active bacteria for sustainable biotechnology. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0245-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
463
|
Gong C, Sun S, Zhang Y, Sun L, Su Z, Wu A, Wei G. Hierarchical nanomaterials via biomolecular self-assembly and bioinspiration for energy and environmental applications. NANOSCALE 2019; 11:4147-4182. [PMID: 30806426 DOI: 10.1039/c9nr00218a] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bioinspired synthesis offers potential green strategies to build highly complex nanomaterials by utilizing the unique nanostructures, functions, and properties of biomolecules, in which the biomolecular recognition and self-assembly processes play important roles in tailoring the structures and functions of bioinspired materials. Further understanding of biomolecular self-assembly for inspiring the formation and assembly of nanoparticles would promote the design and fabrication of functional nanomaterials for various applications. In this review, we focus on recent advances in bioinspired synthesis and applications of hierarchical nanomaterials based on biomolecular self-assembly. We first discuss biomolecular self-assembly towards biological nanomaterials, in which the mechanisms and ways of biomolecular self-assembly as well as various self-assembled biomolecular nanostructures are demonstrated. Secondly, the bioinspired synthesis strategies including molecule-molecule interaction, molecule-material recognition, molecule-mediated nucleation and growth, and molecule-mediated reduction/oxidation are introduced and discussed. Meanwhile, typical examples and discussions on how biomolecular self-assembly inspires the formation of hierarchical hybrid nanomaterials are presented. Finally, the applications of bioinspired nanomaterials in biofuel cells, light-harvesting systems, batteries, supercapacitors, catalysis, water/air purification, and environmental monitoring are presented and discussed. We believe that this review will be very helpful for readers to understand the self-assembly of biomolecules and the biomimetic/bioinspired strategies for synthesizing hierarchical nanomaterials on the one hand, and on the other hand to design novel materials for extended applications in nanotechnology, materials science, analytical science, and biomedical engineering.
Collapse
Affiliation(s)
- Coucong Gong
- Faculty of Production Engineering and Center for Environmental Research and Sustainable technology (UFT), University of Bremen, D-28359 Bremen, Germany.
| | | | | | | | | | | | | |
Collapse
|
464
|
Yang L, Shui J, Du L, Shao Y, Liu J, Dai L, Hu Z. Carbon-Based Metal-Free ORR Electrocatalysts for Fuel Cells: Past, Present, and Future. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804799. [PMID: 30637835 DOI: 10.1002/adma.201804799] [Citation(s) in RCA: 306] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/07/2018] [Indexed: 06/09/2023]
Abstract
Replacing precious platinum with earth-abundant materials for the oxygen reduction reaction (ORR) in fuel cells has been the objective worldwide for several decades. In the last 10 years, the fastest-growing branch in this area has been carbon-based metal-free ORR electrocatalysts. Great progress has been made in promoting the performance and understanding the underlying fundamentals. Here, a comprehensive review of this field is presented by emphasizing the emerging issues including the predictive design and controllable construction of porous structures and doping configurations, mechanistic understanding from the model catalysts, integrated experimental and theoretical studies, and performance evaluation in full cells. Centering on these topics, the most up-to-date results are presented, along with remarks and perspectives for the future development of carbon-based metal-free ORR electrocatalysts.
Collapse
Affiliation(s)
- Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jianglan Shui
- School of Materials Science and Engineering, Beihang University, Beijing, 100083, China
| | - Lei Du
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yuyan Shao
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jun Liu
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Liming Dai
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
465
|
A Review of Supercapacitors Based on Graphene and Redox-Active Organic Materials. MATERIALS 2019; 12:ma12050703. [PMID: 30818843 PMCID: PMC6427188 DOI: 10.3390/ma12050703] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 11/16/2022]
Abstract
Supercapacitors are a highly promising class of energy storage devices due to their high power density and long life cycle. Conducting polymers (CPs) and organic molecules are potential candidates for improving supercapacitor electrodes due to their low cost, large specific pseudocapacitance and facile synthesis methods. Graphene, with its unique two-dimensional structure, shows high electrical conductivity, large specific surface area and outstanding mechanical properties, which makes it an excellent material for lithium ion batteries, fuel cells and supercapacitors. The combination of CPs and graphene as electrode material is expected to boost the properties of supercapacitors. In this review, we summarize recent reports on three different CP/graphene composites as electrode materials for supercapacitors, discussing synthesis and electrochemical performance. Novel flexible and wearable devices based on CP/graphene composites are introduced and discussed, with an eye to recent developments and challenges for future research directions.
Collapse
|
466
|
Ieropoulos I, Obata O, Pasternak G, Greenman J. Fate of three bioluminescent pathogenic bacteria fed through a cascade of urine microbial fuel cells. J Ind Microbiol Biotechnol 2019; 46:587-599. [PMID: 30796542 PMCID: PMC6510811 DOI: 10.1007/s10295-019-02153-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 02/12/2019] [Indexed: 12/27/2022]
Abstract
Microbial fuel cell (MFC) technology is currently gaining recognition as one of the most promising bioenergy technologies of the future. One aspect of this technology that has received little attention is the disinfection of effluents and the fate of pathogenic organisms that find their way into the waste stream. In this study, three independent trials were carried out to evaluate the fate of three bioluminescent pathogenic bacteria (Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa and Staphylococcus aureus) introduced into the anodic chamber of a urine-fed cascade of 9 MFCs with matured, electroactive biofilms. These are common examples of enteric human pathogens, which could contaminate urine or waste streams. The results showed that the average power generation in the closed circuit cascade reached 754 ± 16 µW, with an average pathogen log-fold reduction of 6.24 ± 0.63 compared to 2.01 ± 0.26 for the open circuit cascade for all three pathogens. The results suggest that the bio-electrochemical reactions associated with electricity generation were the primary driving force for the inactivation of the introduced pathogens. These findings show that pathogenic organisms introduced into waste streams could be inactivated by the power-generating process within the MFC cascade system, thereby preventing propagation and thus rendering the effluent safer for possible reuse.
Collapse
Affiliation(s)
- Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, Bristol, BS16 1QY, UK.
| | - Oluwatosin Obata
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, Bristol, BS16 1QY, UK.
| | - Grzegorz Pasternak
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, Bristol, BS16 1QY, UK
- Faculty of Chemistry Wroclaw, University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wrocław, Poland
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, Bristol, BS16 1QY, UK
- Biological, Biomedical and Analytical Sciences, University of the West of England, Bristol, BS16 1QY, UK
| |
Collapse
|
467
|
Walter XA, Santoro C, Greenman J, Ieropoulos I. Self-stratifying microbial fuel cell: The importance of the cathode electrode immersion height. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2019; 44:4524-4532. [PMID: 31007361 PMCID: PMC6472648 DOI: 10.1016/j.ijhydene.2018.07.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Power generation of bioelectrochemical systems (BESs) is a very important electrochemical parameter to consider particularly when the output has to be harvested for practical applications. This work studies the effect of cathode immersion on the performance of a self-stratified membraneless microbial fuel cell (SSM-MFC) fuelled with human urine. Four different electrolyte immersion heights, i.e. 1 4 , 2 4 , 3 4 and fully submerged were considered. The SSM-MFC performance improved with increased immersion up to 3 4 . The output dropped drastically when the cathode was fully submerged with the conditions becoming fully anaerobic. SSM-MFC with 3 4 submerged cathode had a maximum power output of 3.0 mW followed by 2.4 mW, 2.0 mW, and 0.2 mW for the 2 4 , 1 4 and fully submerged conditions. Durability tests were run on the best performing SSM-MFC with 3 4 cathode immersed and showed an additional increase in the electrochemical output by 17% from 3.0 mW to 3.5 mW. The analysis performed on the anode and cathode separately demonstrated the stability in the cathode behaviour and in parallel an improvement in the anodic performance during one month of investigation.
Collapse
Affiliation(s)
- Xavier Alexis Walter
- Corresponding author. Bristol BioEnergy Centre (B-BiC), Bristol Robotics Laboratory, T-Block, Frenchay Campus, University of the West of England, Bristol, BS16 1QY, United Kingdom.
| | | | | | - Ioannis Ieropoulos
- Corresponding author. Bristol BioEnergy Centre (B-BiC), Bristol Robotics Laboratory, T-Block, Frenchay Campus, University of the West of England, Bristol, BS16 1QY, United Kingdom.
| |
Collapse
|
468
|
Ruiz‐Colón E, Pérez‐Pérez M, Suleiman D. Transport properties of blended sulfonated poly(styrene‐isobutylene‐styrene) and isopropyl phosphate membranes. J Appl Polym Sci 2019. [DOI: 10.1002/app.47009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Eduardo Ruiz‐Colón
- Chemical Engineering Department University of Puerto Rico Mayagüez 00681‐9000 Puerto Rico
| | - Maritza Pérez‐Pérez
- Chemical Engineering Department University of Puerto Rico Mayagüez 00681‐9000 Puerto Rico
| | - David Suleiman
- Chemical Engineering Department University of Puerto Rico Mayagüez 00681‐9000 Puerto Rico
| |
Collapse
|
469
|
Santoro C, Kodali M, Shamoon N, Serov A, Soavi F, Merino-Jimenez I, Gajda I, Greenman J, Ieropoulos I, Atanassov P. Increased power generation in supercapacitive microbial fuel cell stack using Fe-N-C cathode catalyst. JOURNAL OF POWER SOURCES 2019; 412:416-424. [PMID: 30774187 PMCID: PMC6360396 DOI: 10.1016/j.jpowsour.2018.11.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/01/2018] [Accepted: 11/21/2018] [Indexed: 05/22/2023]
Abstract
The anode and cathode electrodes of a microbial fuel cell (MFC) stack, composed of 28 single MFCs, were used as the negative and positive electrodes, respectively of an internal self-charged supercapacitor. Particularly, carbon veil was used as the negative electrode and activated carbon with a Fe-based catalyst as the positive electrode. The red-ox reactions on the anode and cathode, self-charged these electrodes creating an internal electrochemical double layer capacitor. Galvanostatic discharges were performed at different current and time pulses. Supercapacitive-MFC (SC-MFC) was also tested at four different solution conductivities. SC-MFC had an equivalent series resistance (ESR) decreasing from 6.00 Ω to 3.42 Ω in four solutions with conductivity between 2.5 mScm-1 and 40 mScm-1. The ohmic resistance of the positive electrode corresponded to 75-80% of the overall ESR. The highest performance was achieved with a solution conductivity of 40 mS cm-1 and this was due to the positive electrode potential enhancement for the utilization of Fe-based catalysts. Maximum power was 36.9 mW (36.9 W m-3) that decreased with increasing pulse time. SC-MFC was subjected to 4520 cycles (8 days) with a pulse time of 5 s (ipulse 55 mA) and a self-recharging time of 150 s showing robust reproducibility.
Collapse
Affiliation(s)
- Carlo Santoro
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, NM, 87131, USA
- Corresponding author.
| | - Mounika Kodali
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, NM, 87131, USA
| | - Najeeb Shamoon
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, NM, 87131, USA
| | - Alexey Serov
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, NM, 87131, USA
| | - Francesca Soavi
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum – Università, di Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Irene Merino-Jimenez
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Iwona Gajda
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
- Biological, Biomedical and Analytical Sciences, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
- Biological, Biomedical and Analytical Sciences, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
- Corresponding author. Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK.
| | - Plamen Atanassov
- Department of Chemical and Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
470
|
Jiang Y, May HD, Lu L, Liang P, Huang X, Ren ZJ. Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation. WATER RESEARCH 2019; 149:42-55. [PMID: 30419466 DOI: 10.1016/j.watres.2018.10.092] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Carbon-rich waste materials (solid, liquid, or gaseous) are largely considered to be a burden on society due to the large capital and energy costs for their treatment and disposal. However, solid and liquid organic wastes have inherent energy and value, and similar as waste CO2 gas they can be reused to produce value-added chemicals and materials. There has been a paradigm shift towards developing a closed loop, biorefinery approach for the valorization of these wastes into value-added products, and such an approach enables a more carbon-efficient and circular economy. This review quantitatively analyzes the state-of-the-art of the emerging microbial electrochemical technology (MET) platform and provides critical perspectives on research advancement and technology development. The review offers side-by-side comparison between microbial electrosynthesis (MES) and electro-fermentation (EF) processes in terms of principles, key performance metrics, data analysis, and microorganisms. The study also summarizes all the processes and products that have been developed using MES and EF to date for organic waste and CO2 valorization. It finally identifies the technological and economic potentials and challenges on future system development.
Collapse
Affiliation(s)
- Yong Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China; Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Harold D May
- Hollings Marine Laboratory, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Lu Lu
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA; Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, USA
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Zhiyong Jason Ren
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA; Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
471
|
Mateo S, Mascia M, Fernandez-Morales FJ, Rodrigo MA, Di Lorenzo M. Assessing the impact of design factors on the performance of two miniature microbial fuel cells. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
472
|
Imran M, Prakash O, Pushkar P, Mungray A, Kailasa SK, Chongdar S, Mungray AK. Performance enhancement of benthic microbial fuel cell by cerium coated electrodes. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.08.158] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
473
|
Zou L, Wu X, Huang Y, Ni H, Long ZE. Promoting Shewanella Bidirectional Extracellular Electron Transfer for Bioelectrocatalysis by Electropolymerized Riboflavin Interface on Carbon Electrode. Front Microbiol 2019; 9:3293. [PMID: 30697199 PMCID: PMC6340934 DOI: 10.3389/fmicb.2018.03293] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/18/2018] [Indexed: 11/13/2022] Open
Abstract
The extracellular electron transfer (EET) that connects the intracellular metabolism of electroactive microorganisms to external electron donors/acceptors, is the foundation to develop diverse microbial electrochemical technologies. For a particular microbial electrochemical device, the surface chemical property of an employed electrode material plays a crucial role in the EET process owing to the direct and intimate biotic-abiotic interaction. The functional modification of an electrode surface with redox mediators has been proposed as an effectual approach to promote EET, but the underlying mechanism remains unclear. In this work, we investigated the enhancement of electrochemically polymerized riboflavin interface on the bidirectional EET of Shewanella putrefaciens CN32 for boosting bioelectrocatalytic ability. An optimal polyriboflavin functionalized carbon cloth electrode achieved about 4.3-fold output power density (∼707 mW/m2) in microbial fuel cells and 3.7-fold cathodic current density (∼0.78 A/m2) for fumarate reduction in three-electrode cells compared to the control, showing great increases in both outward and inward EET rates. Likewise, the improvement was observed for polyriboflavin-functionalized graphene electrodes. Through comparison between wild-type strain and outer-membrane cytochrome (MtrC/UndA) mutant, the significant improvements were suggested to be attributed to the fast interfacial electron exchange between the polyriboflavin interface with flexible electrochemical activity and good biocompatibility and the outer-membrane cytochromes of the Shewanella strain. This work not only provides an effective approach to boost microbial electrocatalysis for energy conversion, but also offers a new demonstration of broadening the applications of riboflavin-functionalized interface since the widespread contribution of riboflavin in various microbial EET pathways together with the facile electropolymerization approach.
Collapse
Affiliation(s)
| | | | | | | | - Zhong-er Long
- College of Life Science, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
474
|
Yu L, Yang Z, He Q, Zeng RJ, Bai Y, Zhou S. Novel Gas Diffusion Cloth Bioanodes for High-Performance Methane-Powered Microbial Fuel Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:530-538. [PMID: 30484637 DOI: 10.1021/acs.est.8b04311] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Microbial fuel cells (MFCs) are a promising technology that converts chemical energy into electricity. However, up to now only few MFCs have been powered by gas fuels, such as methane, and their limited performance is still challenged by the low solubility and bioavailability of gases. Here, we developed a gas diffusion cloth (GDC) anode to significantly enhance the performance of methane-powered MFCs. The GDC anode was constructed by simply coating waterproof GORE-TEX cloth with conductive carbon cloth in one step. After biofilm enrichment, the GDC anodes obtained a methane-dependent current up to 1130.2 mA m-2, which was 165.2 times higher than conventional carbon cloth (CC) anodes. Moreover, MFCs equipped with GDC anodes generated a maximum power density of 419.5 mW m-2. Illumina high-throughput sequencing revealed that the GDC anode biofilm was dominated mainly by Geobacter, in contrast with the most abundant Methanobacterium in planktonic cells. It is hypothesized that Methanobacterium reversed the methanogenesis process by transferring electrons to the anodes, and Geobacter generated electricity via the intermediates (e.g., acetate) of anaerobic methane oxidation. Overall, this work provides an effective route in preparing facile and cost-effective anodes for high-performance methane MFCs.
Collapse
Affiliation(s)
- Linpeng Yu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment , Fujian Agriculture and Forestry University , Fuzhou 350002 , China
| | - Zujie Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment , Fujian Agriculture and Forestry University , Fuzhou 350002 , China
| | - Qiuxiang He
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment , Fujian Agriculture and Forestry University , Fuzhou 350002 , China
| | - Raymond J Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment , Fujian Agriculture and Forestry University , Fuzhou 350002 , China
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry , University of Science and Technology of China , Hefei 230026 , PR China
| | - Yanan Bai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment , Fujian Agriculture and Forestry University , Fuzhou 350002 , China
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry , University of Science and Technology of China , Hefei 230026 , PR China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment , Fujian Agriculture and Forestry University , Fuzhou 350002 , China
| |
Collapse
|
475
|
Zou L, Huang YH, Long ZE, Qiao Y. On-going applications of Shewanella species in microbial electrochemical system for bioenergy, bioremediation and biosensing. World J Microbiol Biotechnol 2018; 35:9. [PMID: 30569420 DOI: 10.1007/s11274-018-2576-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/07/2018] [Indexed: 11/24/2022]
Abstract
Microbial electrochemical system (MES) has attracted ever-growing interest as a promising platform for renewable energy conversion and bioelectrochemical remediation. Shewanella species, the dissimilatory metal reduction model bacteria with versatile extracellular electron transfer (EET) strategies, are the well-received microorganisms in diverse MES devices for various practical applications as well as microbial EET mechanism investigation. Meanwhile, the available genomic information and the unceasing established gene-editing toolbox offer an unprecedented opportunity to boost the applications of Shewanella species in MES. This review thoroughly summarizes the status quo of the applications of Shewanella species in microbial fuel cells for bioelectricity generation, microbial electrosynthesis for biotransformation of valuable chemicals and bioremediation of environment-hazardous pollutants with synoptical discussion on their EET mechanism. Recent advances in rational design and genetic engineering of Shewanella strains for either promoting the MES performance or broadening their applications are surveyed. Moreover, some emerging applications beyond electricity generation, such as biosensing and biocomputing, are also documented. The challenges and perspectives for Shewanella-based MES are also discussed elaborately for the sake of not only discovering new scientific lights on microbial extracellular respiratory but also propelling practical applications.
Collapse
Affiliation(s)
- Long Zou
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Yun-Hong Huang
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Zhong-Er Long
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China.
| | - Yan Qiao
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
476
|
Cost-Effective Surface Modification of Carbon Cloth Electrodes for Microbial Fuel Cells by Candle Soot Coating. COATINGS 2018. [DOI: 10.3390/coatings8120468] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study explored an economically-feasible and environmentally friendly attempt to provide more electrochemically promising carbon cloth anodes for microbial fuel cells (MFCs) by modifying them with candle soot coating. The sponge-like structure of the deposited candle soot apparently increased the surface areas of the carbon cloths for bacterial adhesion. The superhydrophilicity of the deposited candle soot was more beneficial to bacterial propagation. The maximum power densities of MFCs configured with 20-s (13.6 ± 0.9 mW·m−2), 60-s (19.8 ± 0.2 mW·m−2), and 120-s (17.6 ± 0.8 mW·m−2) candle-soot-modified carbon cloth electrodes were apparently higher than that of an MFC configured with an unmodified electrode (10.2 ± 0.2 mW·m−2). The MFCs configured with the 20- and 120-s candle-soot-modified carbon cloth electrodes exhibited lower power densities than that of the MFC with the 60-s candle-soot-modified carbon cloth electrode. This suggested that the insufficient residence time of candle soot led to an incomplete formation of the hydrophilic surface, whereas protracted candle sooting would lead to a thick deposited soot film with a smaller conductivity. The application of candle soot for anode modification provided a simple, rapid, cost-effective, and environment-friendly approach to enhancing the electron-transfer capabilities of carbon cloth electrodes. However, a postponement in the MFC construction may lead to a deteriorated hydrophilicity of the candle-soot-modified carbon cloth.
Collapse
|
477
|
Wang Y, Zhou L, Luo X, Zhang Y, Sun J, Ning XA, Yuan Y. Solar Photothermal Electrodes for Highly Efficient Microbial Energy Harvesting at Low Ambient Temperatures. CHEMSUSCHEM 2018; 11:4071-4076. [PMID: 30277322 DOI: 10.1002/cssc.201801808] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/28/2018] [Indexed: 06/08/2023]
Abstract
Temperature is an important parameter for the performance of bioelectrochemical systems (BESs). Energy-intensive bulk water heating has been usually employed to maintain a desired temperature for the BESs. This study concerns a proof-of-concept of a light-to-heat photothermal electrode for solar heating of a local electroactive biofilm in a BES for efficient microbial energy harvesting at low temperatures as a replacement for bulk water heating approaches. The photothermal electrode was prepared by coating Ti3 C2 Tx MXene sunlight absorber onto carbon felt. The as-prepared photothermal electrode could efficiently raise the local temperature of the bioelectrode to approximately 30 °C from low bulk water temperatures (i.e., 10, 15, and 20 °C) under simulated sunlight illumination. As a result, highly efficient microbial energy could be harvested from the low-temperature BES equipped with a photothermal electrode without bulk water heating. This study represents a new avenue for the design and fabrication of electrodes for temperature-sensitive electrochemical and biological systems.
Collapse
Affiliation(s)
- Yi Wang
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Lihua Zhou
- Institute of Natural Medicine & Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Xiaoshan Luo
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yaping Zhang
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Jian Sun
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Xun-An Ning
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yong Yuan
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
478
|
Ruiz‐Colón E, Pérez‐Pérez M, Ortiz‐Negrón A, Suleiman D. Polymer Nanocomposite Membranes of Sulfonated Poly(Styrene‐Isobutylene‐Styrene) With Sulfonated Graphene Oxide for Fuel Cell and Protective Clothing Applications. POLYM ENG SCI 2018. [DOI: 10.1002/pen.25018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Eduardo Ruiz‐Colón
- Chemical Engineering Department University of Puerto Rico Mayagüez 00681‐9000 Puerto Rico
| | - Maritza Pérez‐Pérez
- Chemical Engineering Department University of Puerto Rico Mayagüez 00681‐9000 Puerto Rico
| | | | - David Suleiman
- Chemical Engineering Department University of Puerto Rico Mayagüez 00681‐9000 Puerto Rico
| |
Collapse
|
479
|
De Vrieze J, Arends JBA, Verbeeck K, Gildemyn S, Rabaey K. Interfacing anaerobic digestion with (bio)electrochemical systems: Potentials and challenges. WATER RESEARCH 2018; 146:244-255. [PMID: 30273809 DOI: 10.1016/j.watres.2018.08.045] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
For over a century, anaerobic digestion has been a key technology in stabilizing organic waste streams, while at the same time enabling the recovery of energy. The anticipated transition to a bio-based economy will only increase the quantity and diversity of organic waste streams to be treated, and, at the same time, increase the demand for additional and effective resource recovery schemes for nutrients and organic matter. The performance of anaerobic digestion can be supported and enhanced by (bio)electrochemical systems in a wide variety of hybrid technologies. Here, the possible benefits of combining anaerobic digestion with (bio)electrochemical systems were reviewed in terms of (1) process monitoring, control, and stabilization, (2) nutrient recovery, (3) effluent polishing, and (4) biogas upgrading. The interaction between microorganisms and electrodes with respect to niche creation is discussed, and the potential impact of this interaction on process performance is evaluated. The strength of combining anaerobic digestion with (bio)electrochemical technologies resides in the complementary character of both technologies, and this perspective was used to distinguish transient trends from schemes with potential for full-scale application. This is supported by an operational costs assessment, showing that the economic potential of combining anaerobic digestion with a (bio)electrochemical system is highly case-specific, and strongly depends on engineering challenges with respect to full-scale applications.
Collapse
Affiliation(s)
- Jo De Vrieze
- Center for Microbial Ecology & Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Jan B A Arends
- Center for Microbial Ecology & Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Kristof Verbeeck
- Center for Microbial Ecology & Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Sylvia Gildemyn
- Center for Microbial Ecology & Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium; OWS nv, Dok Noord 5, 9000, Gent, Belgium
| | - Korneel Rabaey
- Center for Microbial Ecology & Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium.
| |
Collapse
|
480
|
Zhou H, Yang Y, You S, Liu B, Ren N, Xing D. Oxygen reduction reaction activity and the microbial community in response to magnetite coordinating nitrogen-doped carbon catalysts in bioelectrochemical systems. Biosens Bioelectron 2018; 122:113-120. [DOI: 10.1016/j.bios.2018.09.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 10/28/2022]
|
481
|
Anusha G, Noori M, Ghangrekar M. Application of silver-tin dioxide composite cathode catalyst for enhancing performance of microbial desalination cell. MATERIALS SCIENCE FOR ENERGY TECHNOLOGIES 2018; 1:188-195. [DOI: 10.1016/j.mset.2018.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
482
|
Sun G, Kang K, Qiu L, Guo X, Zhu M. Electrochemical performance and microbial community analysis in air cathode microbial fuel cells fuelled with pyroligneous liquor. Bioelectrochemistry 2018; 126:12-19. [PMID: 30472567 DOI: 10.1016/j.bioelechem.2018.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/27/2022]
Abstract
Microbial fuels cells (MFCs) have been applied for the degradation of pyroligneous liquor (PL) derived from apple tree branches, at different concentrations. The substrate removal, electrochemical properties, and microbial community characteristics were analysed to evaluate the performance of MFCs. Maximum current density (1.94 A/m2), coulombic efficiency (28%), and phenol removal rate (84%) were achieved with MFCs fed with PL at the optimal concentration of 1 g chemical oxygen demand (COD)/L. The polarisation test, cyclic voltammetry, and electrochemical impedance of the electrode redox reaction further explained how the addition of PL could stimulate formation of the electrochemically active biofilm, at the optimal concentration of 1 g COD/L. The microbial community of the anodic biofilm demonstrated that MFCs fed with 1 g COD/L had the highest relative abundance of the typical electrogenic bacteria Geobacter (33%), followed by Sphaerochaeta (6%) and Clostridium (4%). The results revealed that syntrophic interaction of these functional microorganisms contributed significantly to the PL degradation and electrical current generation.
Collapse
Affiliation(s)
- Guotao Sun
- Department of Agricultural Engineering, Northwest A&F University, Yangling 712100, China
| | - Kang Kang
- Department of Agricultural Engineering, Northwest A&F University, Yangling 712100, China
| | - Ling Qiu
- Department of Agricultural Engineering, Northwest A&F University, Yangling 712100, China.
| | - Xiaohui Guo
- Department of Agricultural Engineering, Northwest A&F University, Yangling 712100, China
| | - Mingqiang Zhu
- Department of Agricultural Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
483
|
Park JM, Hong JW, Son JS, Hwang YJ, Cho HM, You YH, Ghim SY. A strategy for securing unique microbial resources – focusing on Dokdo islands-derived microbial resources. Isr J Ecol Evol 2018. [DOI: 10.1163/22244662-20181024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review focuses on the state of research on the microbial resources of Dokdo, Korea, as a strategy for securing national microbial resources. In the Korean peninsula, studies aimed at securing microbial resources are carried out across diverse natural environments, especially in the Dokdo islands. Until 2017, a total of 61 novel microbial genera, species, or newly recorded strains have been reported. Among these, 10 new taxa have had their whole genome sequenced and published, in order to find novel useful genes. Additionally, there have been multiple reports of bacteria with novel characteristics, including promoting plant growth or inducing systemic resistance in plants, calcite-forming ability, electrical activation, and production of novel enzymes. Furthermore, fundamental studies on microbial communities help to secure and define microbial resources in the Dokdo islands. This study will propose several tactics, based on ecological principles, for securing more microbial resources to cope with the current increase in international competition for biological resources.
Collapse
Affiliation(s)
- Jong Myong Park
- a School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Research Institute for Ulleungdo & Dokdo Islands, Kyungpook National University, Daegu 41566, Republic of Korea
- b Department of Infectious Disease Diagnosis, Incheon Institute of Public Health and Environment, Incheon 22320, Republic of Korea
| | - Ji Won Hong
- c Marine Plants Team, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Jin-Soo Son
- a School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Research Institute for Ulleungdo & Dokdo Islands, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ye-Ji Hwang
- a School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Research Institute for Ulleungdo & Dokdo Islands, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyun-Min Cho
- d LOTTE Group R&D Center, Seoul 07594, Republic of Korea
| | - Young-Hyun You
- e Microoganism Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Sa-Youl Ghim
- a School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Research Institute for Ulleungdo & Dokdo Islands, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
484
|
Catal T, Yavaser S, Enisoglu-Atalay V, Bermek H, Ozilhan S. Monitoring of neomycin sulfate antibiotic in microbial fuel cells. BIORESOURCE TECHNOLOGY 2018; 268:116-120. [PMID: 30077167 DOI: 10.1016/j.biortech.2018.07.122] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
Indirect detection and quantification of the neomycin sulfate antibiotic was accomplished in microbial fuel cells. Performance of the microbial fuel cells was examined on the basis of the following parameters; voltage generation, power density, current density and coulombic efficiencies. Removal of neomycin sulfate was monitored using LC-MS/MS in parallel with chemical oxygen demand and total carbohydrate removal. While neomycin sulfate was partially degraded, microbial fuel cell performance appeared to be affected and eventually inhibited by neomycin sulfate on a concentration-based fashion. In order to further examine the neomycin sulfate bio-sensing activity of the microbial fuel cell, a computational chemistry approach was used to obtain the information about the highest occupied molecular orbital-lowest unoccupied molecular orbital energy values of outer electron orbitals, their distribution, and ionization potentials (IPs). The results showed that electroactive bio-film-based MFCs can be used for sensitive detection of neomycin sulfate found in wastewaters.
Collapse
Affiliation(s)
- Tunc Catal
- Department of Molecular Biology and Genetics, Uskudar University 34662 Uskudar, Istanbul, Turkey; Istanbul Protein Research-Application and Inovation Center (PROMER), Uskudar University 34662 Uskudar, Istanbul, Turkey.
| | - Sehnaz Yavaser
- Department of Molecular Biology and Genetics, Uskudar University 34662 Uskudar, Istanbul, Turkey; Istanbul Protein Research-Application and Inovation Center (PROMER), Uskudar University 34662 Uskudar, Istanbul, Turkey
| | - Vildan Enisoglu-Atalay
- Istanbul Protein Research-Application and Inovation Center (PROMER), Uskudar University 34662 Uskudar, Istanbul, Turkey; Department of Bioengineering, Uskudar University 34662 Uskudar, Istanbul, Turkey
| | - Hakan Bermek
- Department of Molecular Biology and Genetics, Istanbul Technical University 34467-Maslak, Istanbul, Turkey
| | - Selma Ozilhan
- Personalized Medicine Application and Research Center (KIMER), Uskudar University 34662 Uskudar, Istanbul, Turkey
| |
Collapse
|
485
|
A weak infrared light strengthens anoxygenic photosynthetic bacteria activated sludge for the anaerobic biodegradation of polylactic acid in microbial fuel cell systems. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.09.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
486
|
Cheng P, Shan R, Yuan HR, Deng LF, Chen Y. Enhanced Rhodococcus pyridinivorans HR-1 anode performance by adding trehalose lipid in microbial fuel cell. BIORESOURCE TECHNOLOGY 2018; 267:774-777. [PMID: 30097358 DOI: 10.1016/j.biortech.2018.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
In this study, a trehalose lipid was added to a Rhodococcus pyridinivorans-inoculated MFC to improve the power output by enhancing electron transfer. Upon trehalose lipid additions of different concentrate from 0 to 20 mg/L, the maximum power density increased from 54.7 mW/m2 to 324.4 mW/m2 (5.93 times) while the corresponding current density was 3.66 times increased from 0.35 A/m2 to 1.28 A/m2. Cyclic voltammetry analysis revealed that the addition of trehalose lipid increased the electron transfer performance, while electrochemical impedance spectroscopy results proved a decrease in internal resistance. It was demonstrated that adding bio-surfactant in MFC was a novel way to enhance power output performance.
Collapse
Affiliation(s)
- Peng Cheng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Rui Shan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Hao-Ran Yuan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China.
| | - Li-Fang Deng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Yong Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| |
Collapse
|
487
|
Perazzoli S, de Santana Neto JP, Soares HM. Prospects in bioelectrochemical technologies for wastewater treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:1237-1248. [PMID: 30388080 DOI: 10.2166/wst.2018.410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bioelectrochemical technologies are emerging as innovative solutions for waste treatment, offering flexible platforms for both oxidation and reduction reaction processes. A great variety of applications have been developed by utilizing the energy produced in bioelectrochemical systems, such as direct electric power generation, chemical production or water desalination. This manuscript provides a literature review on the prospects in bioelectrochemical technologies for wastewater treatment, including organic, nutrients and metals removal, production of chemical compounds and desalination. The challenges and perspectives for scale-up were discussed. A technological strategy to improve the process monitoring and control based on big data platforms is also presented. To translate the viability of wastewater treatment based on bioelectrochemical technologies into commercial application, it is necessary to exploit interdisciplinary areas by combining the water/wastewater sector, energy and data analytics technologies.
Collapse
Affiliation(s)
- Simone Perazzoli
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil E-mail:
| | - José P de Santana Neto
- Department of Mechanical Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Hugo M Soares
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil E-mail:
| |
Collapse
|
488
|
Applications of Emerging Bioelectrochemical Technologies in Agricultural Systems: A Current Review. ENERGIES 2018. [DOI: 10.3390/en11112951] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background: Bioelectrochemical systems (BESs) are emerging energy-effective and environment-friendly technologies. Different applications of BESs are able to effectively minimize wastes and treat wastewater while simultaneously recovering electricity, biohydrogen and other value-added chemicals via specific redox reactions. Although there are many studies that have greatly advanced the performance of BESs over the last decade, research and reviews on agriculture-relevant applications of BESs are very limited. Considering the increasing demand for food, energy and water due to human population expansion, novel technologies are urgently needed to promote productivity and sustainability in agriculture. Methodology: This review study is based on an extensive literature search regarding agriculture-related BES studies mainly in the last decades (i.e., 2009–2018). The databases used in this review study include Scopus, Google Scholar and Web of Science. The current and future applications of bioelectrochemical technologies in agriculture have been discussed. Findings/Conclusions: BESs have the potential to recover considerable amounts of electric power and energy chemicals from agricultural wastes and wastewater. The recovered energy can be used to reduce the energy input into agricultural systems. Other resources and value-added chemicals such as biofuels, plant nutrients and irrigation water can also be produced in BESs. In addition, BESs may replace unsustainable batteries to power remote sensors or be designed as biosensors for agricultural monitoring. The possible applications to produce food without sunlight and remediate contaminated soils using BESs have also been discussed. At the same time, agricultural wastes can also be processed into construction materials or biochar electrodes/electrocatalysts for reducing the high costs of current BESs. Future studies should evaluate the long-term performance and stability of on-farm BES applications.
Collapse
|
489
|
Liu L, Sun X, Li W, An Y, Li H. Electrochemical hydrodechlorination of perchloroethylene in groundwater on a Ni-doped graphene composite cathode driven by a microbial fuel cell. RSC Adv 2018; 8:36142-36149. [PMID: 35558452 PMCID: PMC9088688 DOI: 10.1039/c8ra06951d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/18/2018] [Indexed: 12/07/2022] Open
Abstract
Enhancing the activity of the cathode and reducing the voltage for electrochemical hydrodechlorination of chlorohydrocarbon were always the challenges in the area of electrochemical remediation. In this study, a novel cathode material of Ni-doped graphene generated by Ni nanoparticles dispersed evenly on graphene was prepared to electrochemically dechlorinate PCE in groundwater. The reduction potential of Ni-doped graphene for PCE electrochemical hydrodechlorination was -0.24 V (vs. Ag/AgCl) determined by cyclic voltammetry. A single MFC with a voltage of 0.389-0.460 V and a current of 0.221-0.257 mA could drive electrochemical hydrodechlorination of PCE effectively with Ni-doped graphene as the cathode catalyst, and the removal rate of PCE was significantly higher than that with single Ni or graphene as the cathode catalyst. Moreover, neutral conditions were more suitable for Ni-doped graphene to electrochemically hydrodechlorinate PCE in groundwater and no byproduct was accumulated.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Superhard Materials, Jilin University Changchun 130012 China
| | - Xiaochen Sun
- State Key Laboratory of Superhard Materials, Jilin University Changchun 130012 China
| | - Wenxin Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education Changchun 130021 China
| | - Yonglei An
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education Changchun 130021 China
| | - Hongdong Li
- State Key Laboratory of Superhard Materials, Jilin University Changchun 130012 China
| |
Collapse
|
490
|
Mecheri B, Gokhale R, Santoro C, Costa de Oliveira MA, D’Epifanio A, Licoccia S, Serov A, Artyushkova K, Atanassov P. Oxygen Reduction Reaction Electrocatalysts Derived from Iron Salt and Benzimidazole and Aminobenzimidazole Precursors and Their Application in Microbial Fuel Cell Cathodes. ACS APPLIED ENERGY MATERIALS 2018; 1:5755-5765. [PMID: 30406217 PMCID: PMC6199672 DOI: 10.1021/acsaem.8b01360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/25/2018] [Indexed: 05/20/2023]
Abstract
In this work, benzimidazole (BZIM) and aminobenzimidazole (ABZIM) were used as organic-rich in nitrogen precursors during the synthesis of iron-nitrogen-carbon (Fe-N-C) based catalysts by sacrificial support method (SSM) technique. The catalysts obtained, denoted Fe-ABZIM and Fe-BZIM, were characterized morphologically and chemically through SEM, TEM, and XPS. Moreover, these catalysts were initially tested in rotating ring disk electrode (RRDE) configuration, resulting in similar high electrocatalytic activity toward oxygen reduction reaction (ORR) having low hydrogen peroxide generated (<3%). The ORR performance was significantly higher compared to activated carbon (AC) that was the control. The catalysts were then integrated into air-breathing (AB) and gas diffusion layer (GDL) cathode electrode and tested in operating microbial fuel cells (MFCs). The presence of Fe-N-C catalysts boosted the power output compared to AC cathode MFC. The AB-type cathode outperformed the GDL type cathode probably because of reduced catalyst layer flooding. The highest performance obtained in this work was 162 ± 3 μWcm-2. Fe-ABZIM and Fe-BZIM had similar performance when incorporated to the same type of cathode configuration. Long-term operations show a decrease up to 50% of the performance in two months operations. Despite the power output decrease, the Fe-BZIM/Fe-ABZIM catalysts gave a significant advantage in fuel cell performance compared to the bare AC.
Collapse
Affiliation(s)
- Barbara Mecheri
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
- E-mail: . Phone: +39 06 7259 4488
| | - Rohan Gokhale
- Department
of Chemical and Biological Engineering, Center for Micro-Engineered
Materials (CMEM), Advanced Materials Lab, University of New Mexico, 1001 University Blvd. SE Suite 103, MSC 04 2790, Albuquerque, New Mexico 87131, United States
| | - Carlo Santoro
- Department
of Chemical and Biological Engineering, Center for Micro-Engineered
Materials (CMEM), Advanced Materials Lab, University of New Mexico, 1001 University Blvd. SE Suite 103, MSC 04 2790, Albuquerque, New Mexico 87131, United States
- E-mail: . Phone: +1 505 277 2640
| | - Maida Aysla Costa de Oliveira
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Alessandra D’Epifanio
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Silvia Licoccia
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Alexey Serov
- Department
of Chemical and Biological Engineering, Center for Micro-Engineered
Materials (CMEM), Advanced Materials Lab, University of New Mexico, 1001 University Blvd. SE Suite 103, MSC 04 2790, Albuquerque, New Mexico 87131, United States
| | - Kateryna Artyushkova
- Department
of Chemical and Biological Engineering, Center for Micro-Engineered
Materials (CMEM), Advanced Materials Lab, University of New Mexico, 1001 University Blvd. SE Suite 103, MSC 04 2790, Albuquerque, New Mexico 87131, United States
| | - Plamen Atanassov
- Department
of Chemical and Biological Engineering, Center for Micro-Engineered
Materials (CMEM), Advanced Materials Lab, University of New Mexico, 1001 University Blvd. SE Suite 103, MSC 04 2790, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
491
|
Do MH, Ngo HH, Guo WS, Liu Y, Chang SW, Nguyen DD, Nghiem LD, Ni BJ. Challenges in the application of microbial fuel cells to wastewater treatment and energy production: A mini review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:910-920. [PMID: 29929329 DOI: 10.1016/j.scitotenv.2018.05.136] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 05/21/2023]
Abstract
Wastewater is now considered to be a vital reusable source of water reuse and saving energy. However, current wastewater has multiple limitations such as high energy costs, large quantities of residuals being generated and lacking in potential resources. Recently, great attention has been paid to microbial fuel cells (MFCs) due to their mild operating conditions where a variety of biodegradable substrates can serve as fuel. MFCs can be used in wastewater treatment facilities to break down organic matter, and they have also been analysed for application as a biosensor such as a sensor for biological oxygen which demands monitoring. MFCs represent an innovation technology solution that is simple and rapid. Despite the advantages of this technology, there are still practical barriers to consider including low electricity production, current instability, high internal resistance and costly materials used. Thus, many problems must be overcome and doing this requires a more detailed analysis of energy production, consumption, and application. Currently, real-world applications of MFCs are limited due to their low power density level of only several thousand mW/m2. Efforts are being made to improve the performance and reduce the construction and operating costs of MFCs. This paper explores several aspects of MFCs such as anode, cathode and membrane, and in an effort to overcome the practical challenges of this system.
Collapse
Affiliation(s)
- M H Do
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - H H Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.
| | - W S Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Y Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - S W Chang
- Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea.
| | - D D Nguyen
- Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea; Institution of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - L D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - B J Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| |
Collapse
|
492
|
Liu Y, Liu ZM. Promoted activity of nitrogen-doped activated carbon as a highly efficient oxygen reduction catalyst in microbial fuel cells. J APPL ELECTROCHEM 2018. [DOI: 10.1007/s10800-018-1263-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
493
|
Rossi R, Yang W, Zikmund E, Pant D, Logan BE. In situ biofilm removal from air cathodes in microbial fuel cells treating domestic wastewater. BIORESOURCE TECHNOLOGY 2018; 265:200-206. [PMID: 29902652 DOI: 10.1016/j.biortech.2018.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
One challenge in using microbial fuel cells (MFCs) for wastewater treatment is the reduction in performance over time due to cathode fouling. An in-situ technique was developed to clean air cathodes using magnets on either side of the electrode, with the air-side magnet moved to clean the water-side magnet by scraping off the biofilm. The power output of the magnet-cleaned cathodes after one month of operation was 132 ± 7 mW m-2, which was 42% higher than the controls with no magnet (93 ± 4 mW m-2) (no separator, NS), and 110% higher (116 ± 4 mW m-2) than controls with separators (Sp, 55 ± 7 mW m-2). Cleaning cathodes using magnets reduced the biofilm by 75% (NS) and 28% (Sp). The in-situ cleaning technique thus improved the performance of the MFC over time by reducing biofouling due to biofilm formation on the air cathodes.
Collapse
Affiliation(s)
- Ruggero Rossi
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Wulin Yang
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Emily Zikmund
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium
| | - Bruce E Logan
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
494
|
Bakonyi P, Koók L, Kumar G, Tóth G, Rózsenberszki T, Nguyen DD, Chang SW, Zhen G, Bélafi-Bakó K, Nemestóthy N. Architectural engineering of bioelectrochemical systems from the perspective of polymeric membrane separators: A comprehensive update on recent progress and future prospects. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.051] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
495
|
Gajda I, Greenman J, Ieropoulos IA. Recent advancements in real-world microbial fuel cell applications. CURRENT OPINION IN ELECTROCHEMISTRY 2018; 11:78-83. [PMID: 31417973 PMCID: PMC6686732 DOI: 10.1016/j.coelec.2018.09.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 05/09/2023]
Abstract
This short review focuses on the recent developments of the Microbial Fuel Cell (MFC) technology, its scale-up and implementation in real world applications. Microbial Fuel Cells produce (bio)energy from waste streams, which can reduce environmental pollution, but also decrease the cost of the treatment. Although the technology is still considered "new", it has a long history since its discovery, but it is only now that recent developments have allowed its implementation in real world settings, as a precursor to commercialisation.
Collapse
Affiliation(s)
- Iwona Gajda
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
- Centre for Research in Biosciences, University of the West of England, BS16 1QY, UK
| | - Ioannis A. Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
- Centre for Research in Biosciences, University of the West of England, BS16 1QY, UK
| |
Collapse
|
496
|
Ieropoulos IA, You J, Gajda I, Greenman J. A New Method for Modulation, Control and Power Boosting in Microbial Fuel Cells. FUEL CELLS (WEINHEIM) 2018; 18:663-668. [PMID: 30853877 PMCID: PMC6392115 DOI: 10.1002/fuce.201800009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/26/2018] [Indexed: 06/09/2023]
Abstract
Microbial fuel cells (MFCs) are energy transducers, which through the metabolic reactions of facultative anaerobic microorganisms, transform the energy in organic matter directly into electricity. Extrinsic parameters such as hydraulic retention time, fuel quality (type and concentration) and physicochemical environment of electrodes and biofilms (e.g., temperature, pH, salinity, and redox), can all influence system efficiency. This work proposes that MFCs can be "fine-tuned" by adjustment of any of the physicochemical conditions including redox potential; in this context, an entirely novel method was investigated as a practical means of tuning, modulating and monitoring the redox potential within the electrode chambers. The method uses additional electrodes - known as 3rd and 4th-pins for anode and cathode chambers, respectively - which can be used in individual units, modules, cascades or stacks, for optimising the production of a large variety of chemicals, as well as biomass, water and power. The results have shown that the power output modulation resulted in an up to 79% and 33% increase, when connected via 3rd and 4th pins, respectively. Apart from power improvement, this study also demonstrated a method of open circuit potential (OCP) sensing, by using the same additional electrodes to both monitor and control the MFC signal in real time.
Collapse
Affiliation(s)
- I. A. Ieropoulos
- University of the West of EnglandBristol BioEnergy CentreBristol Robotics LaboratoryT‐Block, Frenchay CampusBS16 1QYBristolUK
| | - J. You
- University of the West of EnglandBristol BioEnergy CentreBristol Robotics LaboratoryT‐Block, Frenchay CampusBS16 1QYBristolUK
| | - I. Gajda
- University of the West of EnglandBristol BioEnergy CentreBristol Robotics LaboratoryT‐Block, Frenchay CampusBS16 1QYBristolUK
| | - J. Greenman
- University of the West of EnglandBristol BioEnergy CentreBristol Robotics LaboratoryT‐Block, Frenchay CampusBS16 1QYBristolUK
| |
Collapse
|
497
|
Zou L, Qiao Y, Li CM. Boosting Microbial Electrocatalytic Kinetics for High Power Density: Insights into Synthetic Biology and Advanced Nanoscience. ELECTROCHEM ENERGY R 2018. [DOI: 10.1007/s41918-018-0020-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
498
|
Badea SL, Enache S, Tamaian R, Niculescu VC, Varlam M, Pirvu CV. Enhanced open-circuit voltage and power for two types of microbial fuel cells in batch experiments using Saccharomyces cerevisiae as biocatalyst. J APPL ELECTROCHEM 2018. [DOI: 10.1007/s10800-018-1254-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
499
|
Liang P, Duan R, Jiang Y, Zhang X, Qiu Y, Huang X. One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment. WATER RESEARCH 2018; 141:1-8. [PMID: 29753171 DOI: 10.1016/j.watres.2018.04.066] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 04/23/2018] [Accepted: 04/28/2018] [Indexed: 05/21/2023]
Abstract
This study constructed a 1000 L modularized MFC system, the largest volume so far, to treat practical municipal wastewater. This MFC system was operated under two different water flow connections in two municipal wastewater treatment plants (MWTP) for more than one year to test their treating abilities for wastewater with both low (average 80 mg L-1) and high initial COD concentration (average 250 mg L-1). The COD concentration in the effluent from the MFC system remained below 50 mg L-1 with a removal rate of 70-90%, which stably met the level A of the first class in discharge standard of pollutants for MWTP of China. A maximum power density of 125 W m-3 (7.58 W m-2) was generated when the MFC system was fed with artificial wastewater, while it lay in a range of 7-60 W m-3 (0.42-3.64 W m-2) when treating municipal wastewater. The energy recovery of 0.033 ± 0.005 kWh per m3 of municipal wastewater was achieved, with a hydraulic retention time (HRT) of 2 h.
Collapse
Affiliation(s)
- Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Rui Duan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yong Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yong Qiu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
500
|
Gao G, Wang D, Brocenschi R, Zhi J, Mirkin MV. Toward the Detection and Identification of Single Bacteria by Electrochemical Collision Technique. Anal Chem 2018; 90:12123-12130. [DOI: 10.1021/acs.analchem.8b03043] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Guanyue Gao
- Department of Chemistry and Biochemistry, Queens College-City University of New York, Flushing, New York 11367, United States
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Dengchao Wang
- Department of Chemistry and Biochemistry, Queens College-City University of New York, Flushing, New York 11367, United States
| | - Ricardo Brocenschi
- Department of Chemistry and Biochemistry, Queens College-City University of New York, Flushing, New York 11367, United States
- Centro de Estudos do Mar, Universidade Federal do Paraná, 83255-976 Pontal do Paraná, Paraná, Brazil
| | - Jinfang Zhi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Michael V. Mirkin
- Department of Chemistry and Biochemistry, Queens College-City University of New York, Flushing, New York 11367, United States
- The Graduate Center, City University of New York, New York, New York 10016, United States
| |
Collapse
|