451
|
Swaminathan K, Klerman EB, Phillips AJK. Are Individual Differences in Sleep and Circadian Timing Amplified by Use of Artificial Light Sources? J Biol Rhythms 2017; 32:165-176. [PMID: 28367676 DOI: 10.1177/0748730417699310] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Within the human population, there is large interindividual variability in the timing of sleep and circadian rhythms. This variability has been attributed to individual differences in sleep physiology, circadian physiology, and/or light exposure. Recent experimental evidence suggests that the latter is necessary to evoke large interindividual differences in sleep and circadian timing. We used a validated model of human sleep and circadian physiology to test the hypothesis that intrinsic differences in sleep and circadian timing are amplified by self-selected use of artificial light sources. We tested the model under 2 conditions motivated by an experimental study (Wright et al., 2013): (1) a "natural" light cycle, and (2) a "realistic" light cycle that included attenuation of light due to living indoors when natural light levels are high and use of electric light when natural light levels are low. Within these conditions, we determined the relationship between intrinsic circadian period (within the range of 23.7-24.6 h) and timing of sleep onset, sleep offset, and circadian rhythms. In addition, we simulated a work week, with fixed wake time for 5 days and free sleep times on weekends. Under both conditions, a longer intrinsic period resulted in later sleep and circadian timing. Compared to the natural condition, the realistic condition evoked more than double the variation in sleep timing across the physiological range of intrinsic circadian periods. Model predictions closely matched data from the experimental study. We found that if the intrinsic circadian period was long (>24.2 h) under the realistic condition, there was significant mismatch in sleep timing between weekdays and weekends, which is known as social jetlag. These findings indicate that individual tendencies to have very delayed schedules can be greatly amplified by self-selected modifications to the natural light/dark cycle. This has important implications for therapeutic treatment of advanced or delayed sleep phase disorders.
Collapse
Affiliation(s)
- Krithika Swaminathan
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth B Klerman
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew J K Phillips
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
452
|
Price LLA, Lyachev A, Khazova M. Optical performance characterization of light-logging actigraphy dosimeters. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2017; 34:545-557. [PMID: 28375324 DOI: 10.1364/josaa.34.000545] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/10/2017] [Indexed: 06/07/2023]
Abstract
There are several wearable products specially developed or marketed for studying sleep, circadian rhythms, and light levels. However, new recommendations relating to human physiological responses to light have changed what measurements researchers may demand. The performances of 11 light-logging dosimeters from eight manufacturers were compared. The directional and spectral sensitivities, linearity, dynamic range, and resolution were tested for seven models, and compared along with other published data. The sample mainly comprised light-logging actigraphy dosimeters wearable as badges, in accordance with measurement protocols for larger-scale field studies. A proposed standard for optical performance assessments is set out.
Collapse
|
453
|
Te Kulve M, Schlangen LJM, Schellen L, Frijns AJH, van Marken Lichtenbelt WD. The impact of morning light intensity and environmental temperature on body temperatures and alertness. Physiol Behav 2017; 175:72-81. [PMID: 28366816 DOI: 10.1016/j.physbeh.2017.03.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 11/17/2022]
Abstract
Indoor temperature and light exposure are known to affect body temperature, productivity and alertness of building occupants. However, not much is known about the interaction between light and temperature exposure and the relationship between morning light induced alertness and its effect on body temperature. Light intensity and room temperature during morning office hours were investigated under strictly controlled conditions. In a randomized crossover study, two white light conditions (4000K, either bright 1200lx or dim 5lx) under three different room temperatures (26, 29 and 32°C) were investigated. A lower room temperature increased the core body temperature (CBT) and lowered skin temperature and the distal-proximal temperature gradient (DPG). Moreover, a lower room temperature reduced the subjective sleepiness and reaction time on an auditory psychomotor vigilance task (PVT), irrespective of the light condition. Interestingly, the morning bright light exposure did affect thermophysiological parameters, i.e. it decreased plasma cortisol, CBT and proximal skin temperature and increased the DPG, irrespective of the room temperature. During the bright light session, subjective sleepiness decreased irrespective of the room temperature. However, the change in sleepiness due to the light exposure was not related to these physiological changes.
Collapse
Affiliation(s)
- Marije Te Kulve
- Department of Human Biology & Movement Sciences, NUTRIM, Maastricht University, Maastricht, The Netherlands.
| | | | - Lisje Schellen
- Department of Human Biology & Movement Sciences, NUTRIM, Maastricht University, Maastricht, The Netherlands; School of Built Environment and Infrastructure, Avans University of Applied Sciences, Tilburg, The Netherlands
| | - Arjan J H Frijns
- Department of Mechanical Engineering, Eindhoven University of Technology, The Netherlands
| | | |
Collapse
|
454
|
Skeldon AC, Phillips AJK, Dijk DJ. The effects of self-selected light-dark cycles and social constraints on human sleep and circadian timing: a modeling approach. Sci Rep 2017; 7:45158. [PMID: 28345624 PMCID: PMC5366875 DOI: 10.1038/srep45158] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 02/21/2017] [Indexed: 11/24/2022] Open
Abstract
Why do we go to sleep late and struggle to wake up on time? Historically, light-dark cycles were dictated by the solar day, but now humans can extend light exposure by switching on artificial lights. We use a mathematical model incorporating effects of light, circadian rhythmicity and sleep homeostasis to provide a quantitative theoretical framework to understand effects of modern patterns of light consumption on the human circadian system. The model shows that without artificial light humans wakeup at dawn. Artificial light delays circadian rhythmicity and preferred sleep timing and compromises synchronisation to the solar day when wake-times are not enforced. When wake-times are enforced by social constraints, such as work or school, artificial light induces a mismatch between sleep timing and circadian rhythmicity ('social jet-lag'). The model implies that developmental changes in sleep homeostasis and circadian amplitude make adolescents particularly sensitive to effects of light consumption. The model predicts that ameliorating social jet-lag is more effectively achieved by reducing evening light consumption than by delaying social constraints, particularly in individuals with slow circadian clocks or when imposed wake-times occur after sunrise. These theory-informed predictions may aid design of interventions to prevent and treat circadian rhythm-sleep disorders and social jet-lag.
Collapse
Affiliation(s)
- Anne C. Skeldon
- University of Surrey, Department of Mathematics, Guildford, GU2 7XH, UK
| | - Andrew J. K. Phillips
- Harvard Medical School, Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, USA
| | - Derk-Jan Dijk
- University of Surrey, Surrey Sleep Research Centre, Guildford, GU2 7XP, UK
| |
Collapse
|
455
|
O'Keeffe SM, Beynon AL, Davies JS, Moynagh PN, Coogan AN. NF-κB signalling is involved in immune-modulation, but not basal functioning, of the mouse suprachiasmatic circadian clock. Eur J Neurosci 2017; 45:1111-1123. [PMID: 28245070 DOI: 10.1111/ejn.13553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 12/20/2022]
Affiliation(s)
- S. M. O'Keeffe
- Department of Psychology; Maynooth University; National University of Ireland; John Hume Building Maynooth Ireland
| | - A. L. Beynon
- Institute of Life Science; School of Medicine; Swansea University; Wales UK
| | - J. S. Davies
- Institute of Life Science; School of Medicine; Swansea University; Wales UK
| | - P. N. Moynagh
- Department of Biology; Maynooth University; National University of Ireland; Maynooth Ireland
| | - A. N. Coogan
- Department of Psychology; Maynooth University; National University of Ireland; John Hume Building Maynooth Ireland
| |
Collapse
|
456
|
Pupillary responses to short-wavelength light are preserved in aging. Sci Rep 2017; 7:43832. [PMID: 28266650 PMCID: PMC5339857 DOI: 10.1038/srep43832] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/30/2017] [Indexed: 01/22/2023] Open
Abstract
With aging, less blue light reaches the retina due to gradual yellowing of the lens. This could result in reduced activation of blue light-sensitive melanopsin-containing retinal ganglion cells, which mediate non-visual light responses (e.g., the pupillary light reflex, melatonin suppression, and circadian resetting). Herein, we tested the hypothesis that older individuals show greater impairment of pupillary responses to blue light relative to red light. Dose-response curves for pupillary constriction to 469-nm blue light and 631-nm red light were compared between young normal adults aged 21–30 years (n = 60) and older adults aged ≥50 years (normal, n = 54; mild cataract, n = 107; severe cataract, n = 18). Irrespective of wavelength, pupillary responses were reduced in older individuals and further attenuated by severe, but not mild, cataract. The reduction in pupillary responses was comparable in response to blue light and red light, suggesting that lens yellowing did not selectively reduce melanopsin-dependent light responses. Compensatory mechanisms likely occur in aging that ensure relative constancy of pupillary responses to blue light despite changes in lens transmission.
Collapse
|
457
|
Laing EE, Möller-Levet CS, Poh N, Santhi N, Archer SN, Dijk DJ. Blood transcriptome based biomarkers for human circadian phase. eLife 2017; 6. [PMID: 28218891 PMCID: PMC5318160 DOI: 10.7554/elife.20214] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/28/2017] [Indexed: 12/31/2022] Open
Abstract
Diagnosis and treatment of circadian rhythm sleep-wake disorders both require assessment of circadian phase of the brain’s circadian pacemaker. The gold-standard univariate method is based on collection of a 24-hr time series of plasma melatonin, a suprachiasmatic nucleus-driven pineal hormone. We developed and validated a multivariate whole-blood mRNA-based predictor of melatonin phase which requires few samples. Transcriptome data were collected under normal, sleep-deprivation and abnormal sleep-timing conditions to assess robustness of the predictor. Partial least square regression (PLSR), applied to the transcriptome, identified a set of 100 biomarkers primarily related to glucocorticoid signaling and immune function. Validation showed that PLSR-based predictors outperform published blood-derived circadian phase predictors. When given one sample as input, the R2 of predicted vs observed phase was 0.74, whereas for two samples taken 12 hr apart, R2 was 0.90. This blood transcriptome-based model enables assessment of circadian phase from a few samples. DOI:http://dx.doi.org/10.7554/eLife.20214.001
Collapse
Affiliation(s)
- Emma E Laing
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Carla S Möller-Levet
- Bioinformatics Core Facility, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Norman Poh
- Department of Computer Science, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, United Kingdom
| | - Nayantara Santhi
- Surrey Sleep Research Centre, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Simon N Archer
- Surrey Sleep Research Centre, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
458
|
Gubin DG, Weinert D, Rybina SV, Danilova LA, Solovieva SV, Durov AM, Prokopiev NY, Ushakov PA. Activity, sleep and ambient light have a different impact on circadian blood pressure, heart rate and body temperature rhythms. Chronobiol Int 2017; 34:632-649. [PMID: 28276854 DOI: 10.1080/07420528.2017.1288632] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 12/20/2022]
Abstract
The aim of the present study was to investigate the impact of endogenous and exogenous factors for the expression of the daily rhythms of body temperature (BT), blood pressure (BP) and heart rate (HR). One hundred and seventy-three young adults (YA), 17-24 years old (y.o.), of both genders were studied under a modified constant-routine (CR) protocol for 26 h. Participants were assigned randomly to groups with different lighting regimens: CR-LD, n = 77, lights (>400 l×) on from 09:00 to 17:00 h and off (<10 l×) from 17:00 to 09:00 next morning; CR-LL, n = 81, lights on (>400 l×) during the whole experimental session; CR-DD, n = 15, constant dim light (<10 l×) during the whole experiment. Systolic (SBP) and diastolic (DBP) BP, HR and BT were measured every 2 h. For comparison, the results of the former studies performed under conditions of regular life with an activity period from 07:00 to 23:00 h and sleep from 23:00 till 07:00 h (Control) were reanalyzed. Seven-day Ambulatory Blood Pressure Monitoring (ABPM) records from 27 YA (16-38 y.o.) and BT self-measurement data from 70 YA (17-30 y.o.) taken on ≥ 3 successive days at 08:00, 11:00, 14:00, 17:00, 20:00, 23:00 and 03:00 were available. The obtained daily patterns were different between Control and CR-DD groups, due to effects of activity, sleep and light. The comparison of Control and CR-LD groups allowed the effects of sleep and activity to be estimated since the lighting conditions were similar. The activity level substantially elevated SBP, but not DBP. Sleep, on the other hand, lowered the nighttime DBP, but has no effect on SBP. HR was affected both by activity and sleep. In accordance with previous studies, these results confirm that the steep BP increase in the morning is not driven by the circadian clock, but rather by sympathoadrenal factors related to awakening and corresponding anticipatory mechanisms. The effect on BT was not significant. To investigate the impact of light during the former dark time and darkness during the former light time, the CR-LL and CR-DD groups were each compared with the CR-LD group. Light delayed the evening decrease of BT, most likely via a suppression of the melatonin rise. Besides, it had a prominent arousal effect on SBP both in the former light and dark phases, a moderate effect on DBP and no effect on HR. Darkness induced decline in BT. BP values were decreased during the former light time. No effects on HR were found. Altogether, the results of the present paper show that BT, BP and HR are affected by exogenous factors differently. Moreover, the effect was gender-specific. Especially, the response of BT and BP to ambient light was evident only in females. We suppose that the distinct, gender-specific responses of SBP, DBP and HR to activity, sleep and ambient light do reflect fundamental differences in the circadian control of various cardiovascular functions. Furthermore, the presented data are important for the elaboration of updated reference standards, the interpretation of rhythm disorders and for personalized chronotherapeutic approaches to prevent adverse cardiovascular events more effectively.
Collapse
Affiliation(s)
- D G Gubin
- a Department of Biology , Tyumen Medical University , Tyumen , Russia
| | - D Weinert
- b Department of Zoology, Institute of Biology/Zoology , Martin Luther University , Halle-Wittenberg , Germany
| | - S V Rybina
- a Department of Biology , Tyumen Medical University , Tyumen , Russia
| | - L A Danilova
- a Department of Biology , Tyumen Medical University , Tyumen , Russia
| | - S V Solovieva
- a Department of Biology , Tyumen Medical University , Tyumen , Russia
| | - A M Durov
- a Department of Biology , Tyumen Medical University , Tyumen , Russia
- c Department of Physical Culture and Sports , Tyumen State University , Tyumen , Russia
| | - N Y Prokopiev
- c Department of Physical Culture and Sports , Tyumen State University , Tyumen , Russia
| | - P A Ushakov
- a Department of Biology , Tyumen Medical University , Tyumen , Russia
| |
Collapse
|
459
|
'In a dark place, we find ourselves': light intensity in critical care units. Intensive Care Med Exp 2017; 5:9. [PMID: 28168516 PMCID: PMC5293701 DOI: 10.1186/s40635-017-0122-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/28/2017] [Indexed: 11/10/2022] Open
Abstract
Intensive care units provide specialised care for critically ill patients around the clock. However, intensive care unit patients have disrupted circadian rhythms. Furthermore, disrupted circadian rhythms are associated with worse outcome. As light is the most powerful ‘re-setter’ of circadian rhythm, we measured light intensity on intensive care unit. Light intensity was low compared to daylight during the ‘day’; frequent bright light interruptions occurred over ‘night’. These findings are predicted to disrupt circadian rhythms and impair entrainment to external time. Bright lighting during daytime and black out masks at night might help maintain biological rhythms in critically ill patients and improve clinical outcomes.
Collapse
|
460
|
Hung SM, Milea D, Rukmini AV, Najjar RP, Tan JH, Viénot F, Dubail M, Tow SLC, Aung T, Gooley JJ, Hsieh PJ. Cerebral neural correlates of differential melanopic photic stimulation in humans. Neuroimage 2017; 146:763-769. [DOI: 10.1016/j.neuroimage.2016.09.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/21/2016] [Accepted: 09/25/2016] [Indexed: 12/31/2022] Open
|
461
|
A systematic review of circadian function, chronotype and chronotherapy in attention deficit hyperactivity disorder. ACTA ACUST UNITED AC 2017; 9:129-147. [DOI: 10.1007/s12402-016-0214-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/19/2016] [Indexed: 12/23/2022]
|
462
|
Yoshimura M, Kitazawa M, Maeda Y, Mimura M, Tsubota K, Kishimoto T. Smartphone viewing distance and sleep: an experimental study utilizing motion capture technology. Nat Sci Sleep 2017; 9:59-65. [PMID: 28331379 PMCID: PMC5349506 DOI: 10.2147/nss.s123319] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
There are studies reporting the negative impact of smartphone utilization on sleep. It is considered that reduction of melatonin secretion under the blue light exposure from smart-phone displays is one of the causes. The viewing distance may cause sleep disturbance, because the viewing distance determines the screen illuminance and/or asthenopia. However, to date, there has been no study closely investigating the impact of viewing distance on sleep; therefore, we sought to determine the relationship between smartphone viewing distance and subjective sleep status. Twenty-three nursing students (mean age ± standard deviation of 19.7±3.1 years) participated in the study. Subjective sleep status was assessed using the Pittsburgh Sleep Quality Index, morningness-eveningness questionnaire, and the Epworth sleepiness scale. We used the distance between the head and the hand while holding a smartphone to measure the viewing distance while using smartphones in sitting and lying positions. The distance was calculated using the three-dimensional coordinates obtained by a noncontact motion-sensing device. The viewing distance of smartphones in the sitting position ranged from 13.3 to 32.9 cm among participants. In the lying position, it ranged from 9.9 to 21.3cm. The viewing distance was longer in the sitting position than in the lying position (mean ± standard deviation: 20.3±4.7 vs 16.4±2.7, respectively, P<0.01). We found that the short viewing distance in the lying position had a positive correlation to a poorer sleep state (R2=0.27, P<0.05), lower sleep efficiency (R2=0.35, P<0.05), and longer sleep latency (R2=0.38, P<0.05). Moreover, smartphone viewing distances in lying position correlated negatively with subjective sleep status. Therefore, when recommending ideal smartphone use in lying position, one should take into account the viewing distances.
Collapse
Affiliation(s)
| | - Momoko Kitazawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo; RIKEN Center for Advanced Photonics, Wako, Saitama; Department of Nursing, Aino University Junior College
| | | | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo
| | - Taishiro Kishimoto
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Department of Psychiatry, Hofstra Northwell School of Medicine, NY, USA
| |
Collapse
|
463
|
Tam SKE, Hasan S, Hughes S, Hankins MW, Foster RG, Bannerman DM, Peirson SN. Modulation of recognition memory performance by light requires both melanopsin and classical photoreceptors. Proc Biol Sci 2016; 283:20162275. [PMID: 28003454 PMCID: PMC5204172 DOI: 10.1098/rspb.2016.2275] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/14/2016] [Indexed: 01/26/2023] Open
Abstract
Acute light exposure exerts various effects on physiology and behaviour. Although the effects of light on brain network activity in humans are well demonstrated, the effects of light on cognitive performance are inconclusive, with the size, as well as direction, of the effect depending on the nature of the task. Similarly, in nocturnal rodents, bright light can either facilitate or disrupt performance depending on the type of task employed. Crucially, it is unclear whether the effects of light on behavioural performance are mediated via the classical image-forming rods and cones or the melanopsin-expressing photosensitive retinal ganglion cells. Here, we investigate the modulatory effects of light on memory performance in mice using the spontaneous object recognition task. Importantly, we examine which photoreceptors are required to mediate the effects of light on memory performance. By using a cross-over design, we show that object recognition memory is disrupted when the test phase is conducted under a bright light (350 lux), regardless of the light level in the sample phase (10 or 350 lux), demonstrating that exposure to a bright light at the time of test, rather than at the time of encoding, impairs performance. Strikingly, the modulatory effect of light on memory performance is completely abolished in both melanopsin-deficient and rodless-coneless mice. Our findings provide direct evidence that melanopsin-driven and rod/cone-driven photoresponses are integrated in order to mediate the effect of light on memory performance.
Collapse
Affiliation(s)
- Shu K E Tam
- Sleep and Circadian Neuroscience Institute (Nuffield Department of Clinical Neurosciences), Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
- Department of Experimental Psychology, Oxford University, Tinbergen Building, 9 South Parks Road, Oxford OX1 3UD, UK
| | - Sibah Hasan
- Sleep and Circadian Neuroscience Institute (Nuffield Department of Clinical Neurosciences), Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Steven Hughes
- Sleep and Circadian Neuroscience Institute (Nuffield Department of Clinical Neurosciences), Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Mark W Hankins
- Sleep and Circadian Neuroscience Institute (Nuffield Department of Clinical Neurosciences), Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Russell G Foster
- Sleep and Circadian Neuroscience Institute (Nuffield Department of Clinical Neurosciences), Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - David M Bannerman
- Department of Experimental Psychology, Oxford University, Tinbergen Building, 9 South Parks Road, Oxford OX1 3UD, UK
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (Nuffield Department of Clinical Neurosciences), Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
464
|
Meesters Y, Gordijn MC. Seasonal affective disorder, winter type: current insights and treatment options. Psychol Res Behav Manag 2016; 9:317-327. [PMID: 27942239 PMCID: PMC5138072 DOI: 10.2147/prbm.s114906] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Seasonal affective disorder (SAD), winter type, is a seasonal pattern of recurrent major depressive episodes most commonly occurring in autumn or winter and remitting in spring/summer. The syndrome has been well-known for more than three decades, with light treatment being the treatment of first choice. In this paper, an overview is presented of the present insights in SAD. Description of the syndrome, etiology, and treatment options are mentioned. Apart from light treatment, medication and psychotherapy are other treatment options. The predictable, repetitive nature of the syndrome makes it possible to discuss preventive treatment options. Furthermore, critical views on the concept of SAD as a distinct diagnosis are discussed.
Collapse
Affiliation(s)
- Ybe Meesters
- University Center for Psychiatry, University Medical Center Groningen
| | - Marijke Cm Gordijn
- Department of Chronobiology, GeLifes, University of Groningen, Groningen, the Netherlands; Chrono@Work B.V., Groningen, the Netherlands
| |
Collapse
|
465
|
Ouk K, Hughes S, Pothecary CA, Peirson SN, Morton AJ. Attenuated pupillary light responses and downregulation of opsin expression parallel decline in circadian disruption in two different mouse models of Huntington's disease. Hum Mol Genet 2016; 25:ddw359. [PMID: 28031289 PMCID: PMC5418835 DOI: 10.1093/hmg/ddw359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 12/28/2022] Open
Abstract
Circadian deficits in Huntington's disease (HD) are recapitulated in both fragment (R6/2) and full-length (Q175) mouse models of HD. Circadian rhythms are regulated by the suprachiasmatic nuclei (SCN) in the hypothalamus, which are primarily entrained by light detected by the retina. The SCN receives input from intrinsically photosensitive retinal ganglion cells (ipRGCs) that express the photopigment melanopsin, but also receive input from rods and cones. In turn, ipRGCs mediate a range of non-image forming responses to light including circadian entrainment and the pupillary light response (PLR). Retinal degeneration/dysfunction has been described previously in R6/2 mice. We investigated, therefore, whether or not circadian disruption in HD mice is due to abnormalities in retinal photoreception. We measured the expression of melanopsin, rhodopsin and cone opsin, as well as other retinal markers (tyrosine hydroxylase, calbindin, PKCα and Brna3), in R6/2 and Q175 mice at different stages of disease. We also measured the PLR as a 'readout' for ipRGC function and a marker of light reception by the retina. We found that the PLR was attenuated in both lines of HD mice. This was accompanied by a progressive downregulation of cone opsin and melanopsin expression. We suggest that disease-related changes in photoreception by the retina contribute to the progressive dysregulation of circadian rhythmicity and entrainment seen in HD mice. Colour vision is abnormal in HD patients. Therefore, if retinal deficits similar to those seen in HD mice are confirmed in patients, specifically designed light therapy may be an effective strategy to improve circadian dysfunction.
Collapse
Affiliation(s)
- Koliane Ouk
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Steven Hughes
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
| | - Carina A Pothecary
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
| | - Stuart N Peirson
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
| | - A Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
466
|
Brown LA, Hasan S, Foster RG, Peirson SN. COMPASS: Continuous Open Mouse Phenotyping of Activity and Sleep Status. Wellcome Open Res 2016; 1:2. [PMID: 27976750 PMCID: PMC5140024 DOI: 10.12688/wellcomeopenres.9892.2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background: Disruption of rhythms in activity and rest occur in many diseases, and provide an important indicator of healthy physiology and behaviour. However, outside the field of sleep and circadian rhythm research, these rhythmic processes are rarely measured due to the requirement for specialised resources and expertise. Until recently, the primary approach to measuring activity in laboratory rodents has been based on voluntary running wheel activity. By contrast, measuring sleep requires the use of electroencephalography (EEG), which involves invasive surgical procedures and time-consuming data analysis. Methods: Here we describe a simple, non-invasive system to measure home cage activity in mice based upon passive infrared (PIR) motion sensors. Careful calibration of this system will allow users to simultaneously assess sleep status in mice. The use of open-source tools and simple sensors keeps the cost and the size of data-files down, in order to increase ease of use and uptake. Results: In addition to providing accurate data on circadian activity parameters, here we show that extended immobility of >40 seconds provides a reliable indicator of sleep, correlating well with EEG-defined sleep (Pearson’s r >0.95, 4 mice). Conclusions: Whilst any detailed analysis of sleep patterns in mice will require EEG, behaviourally-defined sleep provides a valuable non-invasive means of simultaneously phenotyping both circadian rhythms and sleep. Whilst previous approaches have relied upon analysis of video data, here we show that simple motion sensors provide a cheap and effective alternative, enabling real-time analysis and longitudinal studies extending over weeks or even months. The data files produced are small, enabling easy deposition and sharing. We have named this system COMPASS - Continuous Open Mouse Phenotyping of Activity and Sleep Status. This simple approach is of particular value in phenotyping screens as well as providing an ideal tool to assess activity and rest cycles for non-specialists.
Collapse
Affiliation(s)
- Laurence A Brown
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sibah Hasan
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Russell G Foster
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
467
|
Brown LA, Hasan S, Foster RG, Peirson SN. COMPASS: Continuous Open Mouse Phenotyping of Activity and Sleep Status. Wellcome Open Res 2016. [PMID: 27976750 DOI: 10.12688/wellcomeopenres.9892.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background Disruption of rhythms in activity and rest occur in many diseases, and provide an important indicator of healthy physiology and behaviour. However, outside the field of sleep and circadian rhythm research, these rhythmic processes are rarely measured due to the requirement for specialised resources and expertise. Until recently, the primary approach to measuring activity in laboratory rodents has been based on voluntary running wheel activity. By contrast, measuring sleep requires the use of electroencephalography (EEG), which involves invasive surgical procedures and time-consuming data analysis. Methods Here we describe a simple, non-invasive system to measure home cage activity in mice based upon passive infrared (PIR) motion sensors. Careful calibration of this system will allow users to simultaneously assess sleep status in mice. The use of open-source tools and simple sensors keeps the cost and the size of data-files down, in order to increase ease of use and uptake. Results In addition to providing accurate data on circadian activity parameters, here we show that extended immobility of >40 seconds provides a reliable indicator of sleep, correlating well with EEG-defined sleep (Pearson's r >0.95, 4 mice). Conclusions Whilst any detailed analysis of sleep patterns in mice will require EEG, behaviourally-defined sleep provides a valuable non-invasive means of simultaneously phenotyping both circadian rhythms and sleep. Whilst previous approaches have relied upon analysis of video data, here we show that simple motion sensors provide a cheap and effective alternative, enabling real-time analysis and longitudinal studies extending over weeks or even months. The data files produced are small, enabling easy deposition and sharing. We have named this system COMPASS - Continuous Open Mouse Phenotyping of Activity and Sleep Status. This simple approach is of particular value in phenotyping screens as well as providing an ideal tool to assess activity and rest cycles for non-specialists.
Collapse
Affiliation(s)
- Laurence A Brown
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sibah Hasan
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Russell G Foster
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
468
|
Giménez MC, Geerdinck LM, Versteylen M, Leffers P, Meekes GJBM, Herremans H, de Ruyter B, Bikker JW, Kuijpers PMJC, Schlangen LJM. Patient room lighting influences on sleep, appraisal and mood in hospitalized people. J Sleep Res 2016; 26:236-246. [DOI: 10.1111/jsr.12470] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 09/27/2016] [Indexed: 01/25/2023]
Affiliation(s)
| | | | - Mathijs Versteylen
- Department of Cardiology; St Antonius Hospital; Nieuwegein the Netherlands
| | - Pieter Leffers
- school CAPHRI; Maastricht University Medical Center; Maastricht the Netherlands
| | | | | | | | | | | | | |
Collapse
|
469
|
Correa Á, Barba A, Padilla F. Light Effects on Behavioural Performance Depend on the Individual State of Vigilance. PLoS One 2016; 11:e0164945. [PMID: 27820822 PMCID: PMC5098788 DOI: 10.1371/journal.pone.0164945] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/04/2016] [Indexed: 11/18/2022] Open
Abstract
Research has shown that exposure to bright white light or blue-enriched light enhances alertness, but this effect is not consistently observed in tasks demanding high-level cognition (e.g., Sustained Attention to Response Task-SART, which measures inhibitory control). Individual differences in sensitivity to light effects might be mediated by variations in the basal level of arousal. We tested this hypothesis by measuring the participants' behavioural state of vigilance before light exposure, through the Psychomotor Vigilance Task. Then we compared the effects of a blue-enriched vs. dim light at nighttime on the performance of the auditory SART, by controlling for individual differences in basal arousal. The results replicated the alerting effects of blue-enriched light, as indexed by lower values of both proximal temperature and distal-proximal gradient. The main finding was that lighting effects on SART performance were highly variable across individuals and depended on their prior state of vigilance. Specifically, participants with higher levels of basal vigilance before light exposure benefited most from blue-enriched lighting, responding faster in the SART. These results highlight the importance of considering basal vigilance to define the boundary conditions of light effects on cognitive performance. Our study adds to current research delineating the complex and reciprocal interactions between lighting effects, arousal, cognitive task demands and behavioural performance.
Collapse
Affiliation(s)
- Ángel Correa
- Centro de Investigación Mente, Cerebro y Comportamiento, Universidad de Granada, Granada, Spain
- Departamento de Psicología Experimental. Universidad de Granada, Granada, Spain
- * E-mail:
| | - Antonio Barba
- Centro de Investigación Mente, Cerebro y Comportamiento, Universidad de Granada, Granada, Spain
| | - Francisca Padilla
- Centro de Investigación Mente, Cerebro y Comportamiento, Universidad de Granada, Granada, Spain
- Departamento de Psicología Experimental. Universidad de Granada, Granada, Spain
| |
Collapse
|
470
|
Aarts MPJ, Aries MBC, Diakoumis A, van Hoof J. Shedding a Light on Phototherapy Studies with People having Dementia: A Critical Review of the Methodology from a Light Perspective. Am J Alzheimers Dis Other Demen 2016; 31:551-563. [PMID: 26980717 PMCID: PMC10852648 DOI: 10.1177/1533317515628046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Light therapy is applied to older people with dementia as a treatment to reset the biological clock, to improve the cognitive functioning, and to reduce behavioral symptoms. Although the methodological quality of light therapy studies is essential, many aspects concerning the description of the lighting applied are missing. This study reviewed light therapy studies concerning the effects on people with dementia as a way to check the methodological quality of the description of light from a light engineering perspective. Twelve studies meeting the inclusion criteria were chosen for further analysis. Each study was scored on a list of aspects relevant to a proper description of lighting aspects. The overview demonstrates that the overall quality of the methodologies is poor. The studies describe the lighting insufficiently and not in the correct metrics. The robustness of light therapy studies can be improved by involving a light engineer or specialist.
Collapse
Affiliation(s)
- Mariëlle P J Aarts
- Building Physics and Services, Department of the Built Environment, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Myriam B C Aries
- Building Physics and Services, Department of the Built Environment, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Adonia Diakoumis
- Building Physics and Services, Department of the Built Environment, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Joost van Hoof
- Fontys EGT-Centre for Healthcare and Technology, Fontys University of Applied Sciences, Eindhoven, the Netherlands
| |
Collapse
|
471
|
Bushnell M, Umino Y, Solessio E. A system to measure the pupil response to steady lights in freely behaving mice. J Neurosci Methods 2016; 273:74-85. [PMID: 27494989 DOI: 10.1016/j.jneumeth.2016.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 06/27/2016] [Accepted: 08/02/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND Transgenic mice are widely used for the study of basic visual function and retinal disease, including in psychophysical tests. Mice have a robust pupillary light reflex that controls the amount of light that enters the eye, and the attenuating effects of the pupil must be considered during such tests. Measurement of the size of pupils at various luminance levels requires that mice remain stable over prolonged periods of time; however, sedation of mice with anesthesia and/or manual restraint can influence the size of their pupils. NEW METHOD We present a system to measure the pupillary light response to steady lights of freely behaving mice using a custom-built, portable device that automatically acquires close-up images of their eyes. The device takes advantage of the intrinsic nature of mice to inspect objects of interest and can be used to measure pupillary responses in optomotor or operant behavior testing chambers. RESULTS The size of the pupils in freely behaving mice decreased gradually with luminance from a maximal area in the dark of 3.8mm2 down to a minimum 0.14mm2 at 80 scotopic cd/m2. The data was well fit with a Hill equation with Lo equal to 0.21cd/m2 and coefficient h=0.48. COMPARISON WITH EXISTING METHODS These values agree with prior measurements of the pupillary response of unrestrained mice that use more laborious and time consuming approaches. CONCLUSIONS Our new method facilitates practical, straightforward and accurate measurements of pupillary responses made under the same experimental conditions as those used during psychophysical testing.
Collapse
Affiliation(s)
- Mark Bushnell
- Center for Vision Research and SUNY Eye Institute, Department of Ophthalmology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, New York 13210, USA
| | - Yumiko Umino
- Center for Vision Research and SUNY Eye Institute, Department of Ophthalmology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, New York 13210, USA
| | - Eduardo Solessio
- Center for Vision Research and SUNY Eye Institute, Department of Ophthalmology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, New York 13210, USA.
| |
Collapse
|
472
|
Stenvers DJ, van Dorp R, Foppen E, Mendoza J, Opperhuizen AL, Fliers E, Bisschop PH, Meijer JH, Kalsbeek A, Deboer T. Dim light at night disturbs the daily sleep-wake cycle in the rat. Sci Rep 2016; 6:35662. [PMID: 27762290 PMCID: PMC5071835 DOI: 10.1038/srep35662] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/04/2016] [Indexed: 01/01/2023] Open
Abstract
Exposure to light at night (LAN) is associated with insomnia in humans. Light provides the main input to the master clock in the hypothalamic suprachiasmatic nucleus (SCN) that coordinates the sleep-wake cycle. We aimed to develop a rodent model for the effects of LAN on sleep. Therefore, we exposed male Wistar rats to either a 12 h light (150–200lux):12 h dark (LD) schedule or a 12 h light (150–200 lux):12 h dim white light (5 lux) (LDim) schedule. LDim acutely decreased the amplitude of daily rhythms of REM and NREM sleep, with a further decrease over the following days. LDim diminished the rhythms of 1) the circadian 16–19 Hz frequency domain within the NREM sleep EEG, and 2) SCN clock gene expression. LDim also induced internal desynchronization in locomotor activity by introducing a free running rhythm with a period of ~25 h next to the entrained 24 h rhythm. LDim did not affect body weight or glucose tolerance. In conclusion, we introduce the first rodent model for disturbed circadian control of sleep due to LAN. We show that internal desynchronization is possible in a 24 h L:D cycle which suggests that a similar desynchronization may explain the association between LAN and human insomnia.
Collapse
Affiliation(s)
- Dirk Jan Stenvers
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Rick van Dorp
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Ewout Foppen
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Jorge Mendoza
- Institute of Cellular and Integrative Neurosciences, CNRS UPR3212, University of Strasbourg, France
| | - Anne-Loes Opperhuizen
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Peter H Bisschop
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Johanna H Meijer
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands.,Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Tom Deboer
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
473
|
Non-image forming effects of illuminance level: Exploring parallel effects on physiological arousal and task performance. Physiol Behav 2016; 164:129-39. [DOI: 10.1016/j.physbeh.2016.05.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/15/2016] [Accepted: 05/19/2016] [Indexed: 11/23/2022]
|
474
|
Adhikari P, Zele AJ, Thomas R, Feigl B. Quadrant Field Pupillometry Detects Melanopsin Dysfunction in Glaucoma Suspects and Early Glaucoma. Sci Rep 2016; 6:33373. [PMID: 27622679 PMCID: PMC5020729 DOI: 10.1038/srep33373] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022] Open
Abstract
It is difficult to detect visual function deficits in patients at risk for glaucoma (glaucoma suspects) and at early disease stages with conventional ophthalmic tests such as perimetry. To this end, we introduce a novel quadrant field measure of the melanopsin retinal ganglion cell mediated pupil light response corresponding with typical glaucomatous arcuate visual field defects. The melanopsin-mediated post-illumination pupil response (PIPR) was measured in 46 patients with different stages of glaucoma including glaucoma suspects and compared to a healthy group of 21 participants with no disease. We demonstrate that the superonasal quadrant PIPR differentiated glaucoma suspects and early glaucoma patients from controls with fair (AUC = 0.74) and excellent (AUC = 0.94) diagnostic accuracy, respectively. The superonasal PIPR provides a linear functional correlate of structural retinal nerve fibre thinning in glaucoma suspects and early glaucoma patients. This first report that quadrant PIPR stimulation detects melanopsin dysfunction in patients with early glaucoma and at pre-perimetric stages may have future implications in treatment decisions of glaucoma suspects.
Collapse
Affiliation(s)
- Prakash Adhikari
- Medical Retina and Visual Science Laboratories, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Brisbane, QLD, 4059, Australia
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Andrew J. Zele
- Medical Retina and Visual Science Laboratories, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Brisbane, QLD, 4059, Australia
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ravi Thomas
- Queensland Eye Institute, South Brisbane, QLD, Australia
- University of Queensland, Brisbane, QLD, Australia
| | - Beatrix Feigl
- Medical Retina and Visual Science Laboratories, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Brisbane, QLD, 4059, Australia
- Queensland Eye Institute, South Brisbane, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
475
|
Individual Differences in the Post-Illumination Pupil Response to Blue Light: Assessment without Mydriatics. BIOLOGY 2016; 5:biology5030034. [PMID: 27618116 PMCID: PMC5037353 DOI: 10.3390/biology5030034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/25/2016] [Accepted: 08/30/2016] [Indexed: 11/17/2022]
Abstract
Melanopsin-containing retinal ganglion cells play an important role in the non-image forming effects of light, through their direct projections on brain circuits involved in circadian rhythms, mood and alertness. Individual differences in the functionality of the melanopsin-signaling circuitry can be reliably quantified using the maximum post-illumination pupil response (PIPR) after blue light. Previous protocols for acquiring PIPR relied on the use of mydriatics to dilate the light-exposed eye. However, pharmacological pupil dilation is uncomfortable for the participants and requires ophthalmological expertise. Hence, we here investigated whether an individual's maximum PIPR can be validly obtained in a protocol that does not use mydriatics but rather increases the intensity of the light stimulus. In 18 participants (5 males, mean age ± SD: 34.6 ± 13.6 years) we evaluated the PIPR after exposure to intensified blue light (550 µW/cm²) provided to an undilated dynamic pupil. The test-retest reliability of the primary PIPR outcome parameter was very high, both between day-to-day assessments (Intraclass Correlation Coefficient (ICC) = 0.85), as well as between winter and summer assessments (ICC = 0.83). Compared to the PIPR obtained with the use of mydriatics and 160 µW/cm² blue light exposure, the method with intensified light without mydriatics showed almost zero bias according to Bland-Altman plots and had moderate to strong reliability (ICC = 0.67). In conclusion, for PIPR assessments, increasing the light intensity is a feasible and reliable alternative to pupil dilation to relieve the participant's burden and to allow for performance outside the ophthalmological clinic.
Collapse
|
476
|
Dai Q, Shan Q, Lam H, Hao L, Lin Y, Cui Z. Circadian-effect engineering of solid-state lighting spectra for beneficial and tunable lighting. OPTICS EXPRESS 2016; 24:20049-20059. [PMID: 27607613 DOI: 10.1364/oe.24.020049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Optimization of solid-state lighting spectra is performed to achieve beneficial and tunable circadian effects. First, the minimum spectral circadian action factor (CAF) of 2700 K white light-emitting diodes (LEDs) is studied for applications where biologically active illumination is undesirable. It is found that white-LEDs based on (i) RGB chips, (ii) blue & red chips plus green phosphor, and (iii) blue chip plus green & red phosphors are the corresponding minimum-CAF solutions at color-rendering index (CRI) requirements of 80, 90, and 95, respectively. Second, maximum CAF tunability of LED clusters is studied for dynamic daylighting applications. A dichromatic phosphor-converted blue-centered LED, a dichromatic phosphor-converted green-centered LED, and a monochromatic red LED are grouped to obtain white spectra between 2700 K and 6500 K. A maximum CAF tunability of 3.25 times is achieved with CRI above 90 and luminous efficacy of radiation of 313 - 373 lm/W. We show that our approaches have advantages over previously reported solutions on system simplicity, minimum achievable CAF value, CAF tunability range, and light source efficacy.
Collapse
|
477
|
Anderson JL, Hilaire MAS, Auger RR, Glod CA, Crow SJ, Rivera AN, Salgado SMF, Pullen SJ, Kaufman TK, Selby AJ, Wolfe DJ. Are short (blue) wavelengths necessary for light treatment of seasonal affective disorder? Chronobiol Int 2016; 33:1267-1279. [PMID: 27494399 DOI: 10.1080/07420528.2016.1207660] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Despite widely published speculation regarding a potential potency advantage of short-wavelength (blue-appearing) light for Seasonal Affective Disorder (SAD) treatment, there have been few systematic studies. Those comparing short-wavelength to broad-wavelength (white) light under actual clinical conditions suggest equivalent effectiveness. This multicenter, parallel-group design trial was undertaken to compare the effects of light therapy on SAD using blue (~465 nm) versus blue-free (595-612 nm) LED lights. Fifty-six medication-free subjects aged 21-64 years who met DSM-IV-TR criteria for recurrent major depression with winter-type seasonal pattern were enrolled in this blinded study at five participating centers between January and March 2012. Thirty-five subjects met the criteria for randomization to 30 min of either blue (~465 nm) or blue-free (595-612 nm) daily morning light therapy. Twenty-nine subjects completed the study; three subjects withdrew due to treatment-related adverse events, including migraines, and three withdrew for non-study-related reasons. The primary effectiveness variable was depression score (SIGH-ADS) after six weeks of daily light treatment. Secondary effectiveness variables included quality-of-life (QoL) and suicidality ratings. Using an intent-to-treat analysis, mean depression scores were different at baseline for the blue group (29 ± 5 versus 26 ± 5, p = 0.05 blue versus blue-free, respectively), and the initial score was used as a covariate. Baseline scores were not significantly different between treatment groups among those who completed the study, and no significant differences in depression scores were observed after 6 weeks (mean ± SD scores at 6 weeks: 5.6 ± 6.1 versus 4.5 ± 5.3, p = 0.74, blue versus blue-free, respectively). In addition, the proportion of subjects who met remission criteria, defined as a depression score ≤8, was not significantly different between the two groups (p = 0.41); among the 29 subjects who completed the study, 76% of subjects experienced remission by the end of the trial, which coincided with the beginning of spring. The QoL and suicidality ratings were also significantly improved from pre- to post-treatment, with no significant difference between treatments. No subject experienced worsening or non-improved symptoms over the 6-week trial. The main finding of this study is that subjects treated with blue light did not improve more than subjects treated with blue-free light; both showed substantial improvement on multiple measures. Failure to find differences may have resulted from methodological constraints, including a small sample size. Recruitment began mid-winter during an unusually mild season, and the trial was terminated earlier than planned by the study sponsor due to a failure to detect a difference. However, if confirmed in a larger randomized sample, these results suggest that blue wavelengths are not necessary for successful SAD treatment.
Collapse
Affiliation(s)
- J L Anderson
- a Harvard Medical School and Brigham & Women's Hospital , Boston , MA , USA
| | - M A St Hilaire
- a Harvard Medical School and Brigham & Women's Hospital , Boston , MA , USA
| | - R R Auger
- b Mayo Clinic College of Medicine , Rochester , MN , USA
| | - C A Glod
- c Harvard Medical School & McLean Hospital , Belmont , MA , USA.,d Merrimack College , North Andover , MA , USA
| | - S J Crow
- e University of Minnesota, MN Obesity Center and The Emily Program , Minneapolis , MN , USA
| | | | | | - S J Pullen
- h St. Luke's Health System , Boise , ID , USA , and
| | - T K Kaufman
- b Mayo Clinic College of Medicine , Rochester , MN , USA
| | - A J Selby
- i Shawnee Mission Primary Care , Leawood , KS , USA
| | - D J Wolfe
- a Harvard Medical School and Brigham & Women's Hospital , Boston , MA , USA
| |
Collapse
|
478
|
Dasilva M, Storchi R, Davis KE, Grieve KL, Lucas RJ. Melanopsin supports irradiance-driven changes in maintained activity in the superior colliculus of the mouse. Eur J Neurosci 2016; 44:2314-23. [DOI: 10.1111/ejn.13336] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/23/2016] [Accepted: 07/12/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Miguel Dasilva
- Faculty of Life Sciences; University of Manchester; Manchester M13 9PT UK
| | - Riccardo Storchi
- Faculty of Life Sciences; University of Manchester; Manchester M13 9PT UK
| | - Katherine E. Davis
- Faculty of Life Sciences; University of Manchester; Manchester M13 9PT UK
| | - Kenneth L. Grieve
- Faculty of Life Sciences; University of Manchester; Manchester M13 9PT UK
| | - Robert J. Lucas
- Faculty of Life Sciences; University of Manchester; Manchester M13 9PT UK
| |
Collapse
|
479
|
Geerdink M, Walbeek TJ, Beersma DGM, Hommes V, Gordijn MCM. Short Blue Light Pulses (30 Min) in the Morning Support a Sleep-Advancing Protocol in a Home Setting. J Biol Rhythms 2016; 31:483-97. [PMID: 27449476 DOI: 10.1177/0748730416657462] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many people in our modern civilized society sleep later on free days compared to work days. This discrepancy in sleep timing will lead to so-called 'social jetlag' on work days with negative consequences for performance and health. Light therapy in the morning is often proposed as the most effective method to advance the circadian rhythm and sleep phase. However, most studies focus on direct effects on the circadian system and not on posttreatment effects on sleep phase and sleep integrity. In this placebo-controlled home study we investigated if blue light, rather than amber light therapy, can phase shift the sleep phase along with the circadian rhythm with preservation of sleep integrity and performance. We selected 42 participants who suffered from 'social jetlag' on workdays. Participants were randomly assigned to either high-intensity blue light exposure or amber light exposure (placebo) with similar photopic illuminance. The protocol consisted of 14 baseline days without sleep restrictions, 9 treatment days with either 30-min blue light pulses or 30-min amber light pulses in the morning along with a sleep advancing scheme and 7 posttreatment days without sleep restrictions. Melatonin samples were taken at days 1, 7, 14 (baseline), day 23 (effect treatment), and day 30 (posttreatment). Light exposure was recorded continuously. Sleep was monitored through actigraphy. Performance was measured with a reaction time task. As expected, the phase advance of the melatonin rhythm from day 14 to day 23 was significantly larger in the blue light exposure group, compared to the amber light group (84 min ± 51 (SD) and 48 min ± 47 (SD) respectively; t36 = 2.23, p < 0.05). Wake-up time during the posttreatment days was slightly earlier compared to baseline in the blue light group compared to slightly later in the amber light group (-21 min ± 33 (SD) and +12 min ± 33 (SD) respectively; F1,35 = 9.20, p < 0.01). The number of sleep bouts was significantly higher in the amber light group compared to the blue light group during sleep in the treatment period (F1,32 = 4.40, p < 0.05). Performance was significantly worse compared to baseline at all times during (F1,13 = 10.1, p < 0.01) and after amber light treatment (F1,13 = 17.1, p < 0.01), while only in the morning during posttreatment in the blue light condition (F1,10 = 9.8, p < 0.05). The data support the conclusion that blue light was able to compensate for the sleep integrity reduction and to a large extent for the performance decrement that was observed in the amber light condition, both probably as a consequence of the advancing sleep schedule. This study shows that blue light therapy in the morning, applied in a home setting, supports a sleep advancing protocol by phase advancing the circadian rhythm as well as sleep timing.
Collapse
Affiliation(s)
- Moniek Geerdink
- Department of Chronobiology, GeLifes, University of Groningen, the Netherlands
| | - Thijs J Walbeek
- Department of Psychology, University of California, San Diego, La Jolla, California, USA
| | - Domien G M Beersma
- Department of Chronobiology, GeLifes, University of Groningen, the Netherlands
| | - Vanja Hommes
- Philips Consumer Lifestyle, Drachten, the Netherlands
| | - Marijke C M Gordijn
- Department of Chronobiology, GeLifes, University of Groningen, the Netherlands Chrono@Work B.V., Groningen, the Netherlands
| |
Collapse
|
480
|
Adamsson M, Laike T, Morita T. Annual variation in daily light exposure and circadian change of melatonin and cortisol concentrations at a northern latitude with large seasonal differences in photoperiod length. J Physiol Anthropol 2016; 36:6. [PMID: 27435153 PMCID: PMC4952149 DOI: 10.1186/s40101-016-0103-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 07/05/2016] [Indexed: 01/17/2023] Open
Abstract
Background Seasonal variations in physiology and behavior have frequently been reported. Light is the major zeitgeber for synchronizing internal circadian rhythms with the external solar day. Non-image forming effects of light radiation, for example, phase resetting of the circadian rhythms, melatonin suppression, and acute alerting effects, depend on several characteristics of the light exposure including intensity, timing and duration, spectral composition and previous light exposure, or light history. The aim of the present study was to report on the natural pattern of diurnal and seasonal light exposure and to examine seasonal variations in the circadian change of melatonin and cortisol concentrations for a group of Swedish office workers. Methods Fifteen subjects participated in a field study that was carried out in the south of Sweden. Ambulatory equipment was used for monthly measurements of the daily exposure to light radiation across the year. The measurements included illuminance and irradiance. The subjects collected saliva samples every 4 h during 1 day of the monthly measuring period. Results The results showed that there were large seasonal differences in daily amount of light exposure across the year. Seasonal differences were observed during the time periods 04:00–08:00, 08:00–12:00, 12:00–16:00, 16:00–20:00, and 20:00–24:00. Moreover, there were seasonal differences regarding the exposure pattern. The subjects were to a larger extent exposed to light in the afternoon/evening in the summer. During the winter, spring, and autumn, the subjects received much of the daily light exposure in the morning and early afternoon. Regarding melatonin, a seasonal variation was observed with a larger peak level during the winter and higher levels in the morning at 07:00. Conclusions This study adds to the results from other naturalistic studies by reporting on the diurnal and seasonal light exposure patterns for a group living at a northern latitude of 56° N, with large annual variations in photoperiod length. It seems to be seasonal variation in the lighting conditions, both concerning intensities as well as regarding the pattern of the light exposure to which people living at high latitudes are exposed which may result in seasonal variation in the circadian profile of melatonin.
Collapse
Affiliation(s)
- Mathias Adamsson
- School of Engineering, Jönköping University, P.O. Box 1026, SE-551 11, Jönköping, Sweden.
| | - Thorbjörn Laike
- Department of Architecture and Built Environment, Lund University, P.O. Box 118, SE-221 00, Lund, Sweden
| | - Takeshi Morita
- Department of Environmental Science, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
481
|
Yan SS, Wang W. The effect of lens aging and cataract surgery on circadian rhythm. Int J Ophthalmol 2016; 9:1066-74. [PMID: 27500118 DOI: 10.18240/ijo.2016.07.21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/14/2016] [Indexed: 12/31/2022] Open
Abstract
Many organisms have evolved an approximately 24-hour circadian rhythm that allows them to achieve internal physiological homeostasis with external environment. Suprachiasmatic nucleus (SCN) is the central pacemaker of circadian rhythm, and its activity is entrained to the external light-dark cycle. The SCN controls circadian rhythm through regulating the synthesis of melatonin by pineal gland via a multisynaptic pathway. Light, especially short-wavelength blue light, is the most potent environmental time cue in circadian photoentrainment. Recently, the discovery of a novel type of retinal photoreceptors, intrinsically photosensitive retinal ganglion cells, sheds light on the mechanism of circadian photoentrainment and raises concerns about the effect of ocular diseases on circadian system. With age, light transmittance is significantly decreased due to the aging of crystalline lens, thus possibly resulting in progressive loss of circadian photoreception. In the current review, we summarize the circadian physiology, highlight the important role of light in circadian rhythm regulation, discuss about the correlation between age-related cataract and sleep disorders, and compare the effect of blue light- filtering intraocular lenses (IOLs) and ultraviolet only filtering IOLs on circadian rhythm.
Collapse
Affiliation(s)
- Shen-Shen Yan
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| | - Wei Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
482
|
Pachito DV, Eckeli AL, Desouky AS, Corbett MA, Partonen T, Wilson Rajaratnam SM, Riera R. Workplace lighting for improving mood and alertness in daytime workers. Hippokratia 2016. [DOI: 10.1002/14651858.cd012243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Daniela V Pachito
- Prossono; Neurology and Sleep Medicine; Rua Itacolomi, 149 Alto da Boa Vista Ribeirão Preto Sao Paulo Brazil 14.025-250
| | - Alan L Eckeli
- São Paulo University; Neuroscience and Behavioural Sciences; Campus Universitario Ribeirão Preto São Paulo Brazil 14.048-900
| | | | - Mark A Corbett
- Corbett & Associates PtyLtd; PO Box 477 Walkerville South Australia Australia 5081
| | - Timo Partonen
- National Institute for Health and Welfare; Department of Health; Mannerheimintie 166 Helsinki Finland FI-00300
| | - Shanthakumar M Wilson Rajaratnam
- Monash University; School of Psychological Sciences; 18 Innovation Walk (Building 17) Monash University Clayton Campus Clayton Victoria Australia 3800
| | - Rachel Riera
- Brazilian Cochrane Centre; Centro de Estudos em Medicina Baseada em Evidências e Avaliação Tecnológica em Saúde; Rua Borges Lagoa, 564 cj 63 São Paulo SP Brazil 04038-000
| |
Collapse
|
483
|
Pilorz V, Tam SKE, Hughes S, Pothecary CA, Jagannath A, Hankins MW, Bannerman DM, Lightman SL, Vyazovskiy VV, Nolan PM, Foster RG, Peirson SN. Melanopsin Regulates Both Sleep-Promoting and Arousal-Promoting Responses to Light. PLoS Biol 2016; 14:e1002482. [PMID: 27276063 PMCID: PMC4898879 DOI: 10.1371/journal.pbio.1002482] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/13/2016] [Indexed: 11/30/2022] Open
Abstract
Light plays a critical role in the regulation of numerous aspects of physiology and behaviour, including the entrainment of circadian rhythms and the regulation of sleep. These responses involve melanopsin (OPN4)-expressing photosensitive retinal ganglion cells (pRGCs) in addition to rods and cones. Nocturnal light exposure in rodents has been shown to result in rapid sleep induction, in which melanopsin plays a key role. However, studies have also shown that light exposure can result in elevated corticosterone, a response that is not compatible with sleep. To investigate these contradictory findings and to dissect the relative contribution of pRGCs and rods/cones, we assessed the effects of light of different wavelengths on behaviourally defined sleep. Here, we show that blue light (470 nm) causes behavioural arousal, elevating corticosterone and delaying sleep onset. By contrast, green light (530 nm) produces rapid sleep induction. Compared to wildtype mice, these responses are altered in melanopsin-deficient mice (Opn4-/-), resulting in enhanced sleep in response to blue light but delayed sleep induction in response to green or white light. We go on to show that blue light evokes higher Fos induction in the SCN compared to the sleep-promoting ventrolateral preoptic area (VLPO), whereas green light produced greater responses in the VLPO. Collectively, our data demonstrates that nocturnal light exposure can have either an arousal- or sleep-promoting effect, and that these responses are melanopsin-mediated via different neural pathways with different spectral sensitivities. These findings raise important questions relating to how artificial light may alter behaviour in both the work and domestic setting. Light can produce either sleep or arousal in mice. This study reveals that these opposing effects depend upon the wavelength of light and appear to involve separate pathways, both modulated by the photopigment melanopsin. Light exerts profound effects on our physiology and behaviour, setting our biological clocks to the correct time and regulating when we are asleep and we are awake. The photoreceptors mediating these responses include the rods and cones involved in vision, as well as a subset of photosensitive retinal ganglion cells (pRGCs) expressing the blue light-sensitive photopigment melanopsin. Previous studies have shown that mice lacking melanopsin show impaired sleep in response to light. However, other studies have shown that light increases glucocorticoid release—a response typically associated with stress. To address these contradictory findings, we studied the responses of mice to light of different colours. We found that blue light was aversive, delaying sleep onset and increasing glucocorticoid levels. By contrast, green light led to rapid sleep onset. These different behavioural effects appear to be driven by different neural pathways. Surprisingly, both responses were impaired in mice lacking melanopsin. These data show that light can promote either sleep or arousal. Moreover, they provide the first evidence that melanopsin directly mediates the effects of light on glucocorticoids. This work shows the extent to which light affects our physiology and has important implications for the design and use of artificial light sources.
Collapse
Affiliation(s)
- Violetta Pilorz
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, Oxford Molecular Pathology Institute, Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Shu K. E. Tam
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, Oxford Molecular Pathology Institute, Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Steven Hughes
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, Oxford Molecular Pathology Institute, Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Carina A. Pothecary
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, Oxford Molecular Pathology Institute, Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Aarti Jagannath
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, Oxford Molecular Pathology Institute, Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Mark W. Hankins
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, Oxford Molecular Pathology Institute, Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - David M. Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Stafford L. Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, United Kingdom
| | - Vladyslav V. Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Patrick M. Nolan
- MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, United Kingdom
| | - Russell G. Foster
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, Oxford Molecular Pathology Institute, Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail: (SNP); (RGF)
| | - Stuart N. Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, Oxford Molecular Pathology Institute, Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail: (SNP); (RGF)
| |
Collapse
|
484
|
Mure LS, Hatori M, Zhu Q, Demas J, Kim IM, Nayak SK, Panda S. Melanopsin-Encoded Response Properties of Intrinsically Photosensitive Retinal Ganglion Cells. Neuron 2016; 90:1016-27. [PMID: 27181062 DOI: 10.1016/j.neuron.2016.04.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/17/2016] [Accepted: 04/06/2016] [Indexed: 11/16/2022]
Abstract
Melanopsin photopigment expressed in intrinsically photosensitive retinal ganglion cells (ipRGCs) plays a crucial role in the adaptation of mammals to their ambient light environment through both image-forming and non-image-forming visual responses. The ipRGCs are structurally and functionally distinct from classical rod/cone photoreceptors and have unique properties, including single-photon response, long response latency, photon integration over time, and slow deactivation. We discovered that amino acid sequence features of melanopsin protein contribute to the functional properties of the ipRGCs. Phosphorylation of a cluster of Ser/Thr residues in the C-terminal cytoplasmic region of melanopsin contributes to deactivation, which in turn determines response latency and threshold sensitivity of the ipRGCs. The poorly conserved region distal to the phosphorylation cluster inhibits phosphorylation's functional role, thereby constituting a unique delayed deactivation mechanism. Concerted action of both regions sustains responses to dim light, allows for the integration of light over time, and results in precise signal duration.
Collapse
Affiliation(s)
- Ludovic S Mure
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Megumi Hatori
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Quansheng Zhu
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - James Demas
- St. Olaf College, 1520 St. Olaf Avenue, Northfield, MN 55057, USA
| | - Irene M Kim
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Surendra K Nayak
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Satchidananda Panda
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
485
|
Grønli J, Byrkjedal IK, Bjorvatn B, Nødtvedt Ø, Hamre B, Pallesen S. Reading from an iPad or from a book in bed: the impact on human sleep. A randomized controlled crossover trial. Sleep Med 2016; 21:86-92. [DOI: 10.1016/j.sleep.2016.02.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/29/2015] [Accepted: 02/03/2016] [Indexed: 10/22/2022]
|
486
|
Stevens RG. Circadian disruption and health: Shift work as a harbinger of the toll taken by electric lighting. Chronobiol Int 2016; 33:589-94. [DOI: 10.3109/07420528.2016.1167732] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
487
|
Muscarinic acetylcholine receptor-mediated stimulation of retinal ganglion cell photoreceptors. Neuropharmacology 2016; 108:305-15. [PMID: 27055770 DOI: 10.1016/j.neuropharm.2016.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 12/16/2022]
Abstract
Melanopsin-dependent phototransduction in intrinsically photosensitive retinal ganglion cells (ipRGCs) involves a Gq-coupled phospholipase C (PLC) signaling cascade. Acetylcholine, released in the mammalian retina by starburst amacrine cells, can also activate Gq-PLC pathways through certain muscarinic acetylcholine receptors (mAChRs). Using multielectrode array recordings of rat retinas, we demonstrate that robust spiking responses can be evoked in neonatal and adult ipRGCs after bath application of the muscarinic agonist carbachol. The stimulatory action of carbachol on ipRGCs was a direct effect, as confirmed through calcium imaging experiments on isolated ipRGCs in purified cultures. Using flickering (6 Hz) yellow light stimuli at irradiances below the threshold for melanopsin activation, spiking responses could be elicited in ipRGCs that were suppressed by mAChR antagonism. Therefore, this work identified a novel melanopsin-independent pathway for stimulating sustained spiking in ganglion cell photoreceptors. This mAChR-mediated pathway could enhance ipRGC spiking responses in conditions known to evoke retinal acetylcholine release, such as those involving flickering or moving visual stimuli. Furthermore, this work identifies a pharmacological approach for light-independent ipRGC stimulation that could be targeted by mAChR agonists.
Collapse
|
488
|
Ohlemacher SK, Sridhar A, Xiao Y, Hochstetler AE, Sarfarazi M, Cummins TR, Meyer JS. Stepwise Differentiation of Retinal Ganglion Cells from Human Pluripotent Stem Cells Enables Analysis of Glaucomatous Neurodegeneration. Stem Cells 2016; 34:1553-62. [PMID: 26996528 DOI: 10.1002/stem.2356] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/18/2015] [Accepted: 01/06/2016] [Indexed: 12/14/2022]
Abstract
Human pluripotent stem cells (hPSCs), including both embryonic and induced pluripotent stem cells, possess the unique ability to readily differentiate into any cell type of the body, including cells of the retina. Although previous studies have demonstrated the ability to differentiate hPSCs to a retinal lineage, the ability to derive retinal ganglion cells (RGCs) from hPSCs has been complicated by the lack of specific markers with which to identify these cells from a pluripotent source. In the current study, the definitive identification of hPSC-derived RGCs was accomplished by their directed, stepwise differentiation through an enriched retinal progenitor intermediary, with resultant RGCs expressing a full complement of associated features and proper functional characteristics. These results served as the basis for the establishment of induced pluripotent stem cells (iPSCs) from a patient with a genetically inherited form of glaucoma, which results in damage and loss of RGCs. Patient-derived RGCs specifically exhibited a dramatic increase in apoptosis, similar to the targeted loss of RGCs in glaucoma, which was significantly rescued by the addition of candidate neuroprotective factors. Thus, the current study serves to establish a method by which to definitively acquire and identify RGCs from hPSCs and demonstrates the ability of hPSCs to serve as an effective in vitro model of disease progression. Moreover, iPSC-derived RGCs can be utilized for future drug screening approaches to identify targets for the treatment of glaucoma and other optic neuropathies. Stem Cells 2016;34:1553-1562.
Collapse
Affiliation(s)
- Sarah K Ohlemacher
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Akshayalakshmi Sridhar
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Yucheng Xiao
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, USA
| | - Alexandra E Hochstetler
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Mansoor Sarfarazi
- Molecular Ophthalmic Genetics Laboratory, University of Connecticut Health Center, Farmington, CT, USA
| | - Theodore R Cummins
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, USA.,Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA
| | - Jason S Meyer
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
489
|
Daneault V, Dumont M, Massé É, Vandewalle G, Carrier J. Light-sensitive brain pathways and aging. J Physiol Anthropol 2016; 35:9. [PMID: 26980095 PMCID: PMC4791759 DOI: 10.1186/s40101-016-0091-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/01/2016] [Indexed: 01/08/2023] Open
Abstract
Notwithstanding its effects on the classical visual system allowing image formation, light acts upon several non-image-forming (NIF) functions including body temperature, hormonal secretions, sleep-wake cycle, alertness, and cognitive performance. Studies have shown that NIF functions are maximally sensitive to blue wavelengths (460–480 nm), in comparison to longer light wavelengths. Higher blue light sensitivity has been reported for melatonin suppression, pupillary constriction, vigilance, and performance improvement but also for modulation of cognitive brain functions. Studies investigating acute stimulating effects of light on brain activity during the execution of cognitive tasks have suggested that brain activations progress from subcortical regions involved in alertness, such as the thalamus, the hypothalamus, and the brainstem, before reaching cortical regions associated with the ongoing task. In the course of aging, lower blue light sensitivity of some NIF functions has been reported. Here, we first describe neural pathways underlying effects of light on NIF functions and we discuss eye and cerebral mechanisms associated with aging which may affect NIF light sensitivity. Thereafter, we report results of investigations on pupillary constriction and cognitive brain sensitivity to light in the course of aging. Whereas the impact of light on cognitive brain responses appears to decrease substantially, pupillary constriction seems to remain more intact over the lifespan. Altogether, these results demonstrate that aging research should take into account the diversity of the pathways underlying the effects of light on specific NIF functions which may explain their differences in light sensitivity.
Collapse
Affiliation(s)
- V Daneault
- Functional Neuroimaging Unit, University of Montreal Geriatric Institute, Montreal, QC, Canada. .,Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada. .,Department of Psychology, University of Montreal, Montreal, QC, Canada.
| | - M Dumont
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada
| | - É Massé
- Functional Neuroimaging Unit, University of Montreal Geriatric Institute, Montreal, QC, Canada.,Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada
| | - G Vandewalle
- Department of Psychology, University of Montreal, Montreal, QC, Canada.,Cyclotron Research Centre, University of Liège, Liège, Belgium
| | - J Carrier
- Functional Neuroimaging Unit, University of Montreal Geriatric Institute, Montreal, QC, Canada.,Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada.,Department of Psychology, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
490
|
Light-induced melatonin suppression at night after exposure to different wavelength composition of morning light. Neurosci Lett 2016; 616:1-4. [DOI: 10.1016/j.neulet.2015.12.063] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/06/2015] [Accepted: 12/30/2015] [Indexed: 11/18/2022]
|
491
|
Chaput JP. Is sleep deprivation a contributor to obesity in children? Eat Weight Disord 2016; 21:5-11. [PMID: 26576804 DOI: 10.1007/s40519-015-0233-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/07/2015] [Indexed: 12/19/2022] Open
Abstract
Chronic lack of sleep (called "sleep deprivation") is common in modern societies with 24/7 availability of commodities. Accumulating evidence supports the role of reduced sleep as contributing to the current obesity epidemic in children and youth. Longitudinal studies have consistently shown that short sleep duration is associated with weight gain and the development of obesity. Recent experimental studies have reported that sleep restriction leads to weight gain in humans. Increased food intake appears to be the main mechanism by which insufficient sleep results in weight gain. Voluntary sleep restriction has been shown to increase snacking, the number of meals eaten per day, and the preference for energy-dense foods. Although the causes of sleep loss in the pediatric population are numerous, more research looking at screen exposure before bedtime and its effects on sleep is needed given the pervasiveness of electronic media devices in today's environment. Health professionals should routinely ask questions about sleep and promote a good night's sleep because insufficient sleep impacts activity and eating behaviors. Future research should examine the clinical benefits of increasing sleep duration on eating behaviors and body weight control and determine the importance of adequate sleep to improve the treatment of obesity.
Collapse
Affiliation(s)
- Jean-Philippe Chaput
- Healthy Active Living and Obesity Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada.
| |
Collapse
|
492
|
Meesters Y, Winthorst WH, Duijzer WB, Hommes V. The effects of low-intensity narrow-band blue-light treatment compared to bright white-light treatment in sub-syndromal seasonal affective disorder. BMC Psychiatry 2016; 16:27. [PMID: 26888208 PMCID: PMC4758137 DOI: 10.1186/s12888-016-0729-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 02/01/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The discovery of a novel photoreceptor in the retinal ganglion cells with a highest sensitivity of 470-490 nm blue light has led to research on the effects of short-wavelength light in humans. Several studies have explored the efficacy of monochromatic blue or blue-enriched light in the treatment of SAD. In this study, a comparison has been made between the effects of broad-wavelength light without ultraviolet (UV) wavelengths compared to narrow-band blue light in the treatment of sub-syndromal seasonal affective disorder (Sub-SAD). METHOD In a 15-day design, 48 participants suffering from Sub-SAD completed 20-minute sessions of light treatment on five consecutive days. 22 participants were given bright white-light treatment (BLT, broad-wavelength light without UV 10 000 lux, irradiance 31.7 Watt/m(2)) and 26 participants received narrow-band blue light (BLUE, 100 lux, irradiance 1.0 Watt/m(2)). All participants completed daily and weekly questionnaires concerning mood, activation, sleep quality, sleepiness and energy. Also, mood and energy levels were assessed by means of the SIGH-SAD, the primary outcome measure. RESULTS On day 15, SIGH-SAD ratings were significantly lower than on day 1 (BLT 54.8 %, effect size 1.7 and BLUE 50.7 %, effect size 1.9). No statistically significant differences were found on the main outcome measures. CONCLUSION Light treatment is an effective treatment for Sub-SAD. The use of narrow-band blue-light treatment is equally effective as bright white-light treatment. TRIAL REGISTRATION This study was registered in the Dutch Trial Register (Nederlands Trial Register TC = 4342 ) (20-12-2013).
Collapse
Affiliation(s)
- Ybe Meesters
- University of Groningen, University Medical Center Groningen, University Center for Psychiatry, PO Box 30001, Groningen, 9700 RB, The Netherlands.
| | - Wim H. Winthorst
- University of Groningen, University Medical Center Groningen, University Center for Psychiatry, PO Box 30001, Groningen, 9700 RB The Netherlands
| | - Wianne B. Duijzer
- University of Groningen, University Medical Center Groningen, University Center for Psychiatry, PO Box 30001, Groningen, 9700 RB The Netherlands
| | - Vanja Hommes
- Philips Consumer Lifestyle Drachten, Drachten, The Netherlands.
| |
Collapse
|
493
|
Gracitelli CPB, Duque-Chica GL, Moura ALDA, Roizenblatt M, Nagy BV, de Melo GR, Borba PD, Teixeira SH, Tufik S, Ventura DF, Paranhos A. Relationship between Daytime Sleepiness and Intrinsically Photosensitive Retinal Ganglion Cells in Glaucomatous Disease. J Ophthalmol 2016; 2016:5317371. [PMID: 26955483 PMCID: PMC4756205 DOI: 10.1155/2016/5317371] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/02/2016] [Accepted: 01/12/2016] [Indexed: 11/29/2022] Open
Abstract
Patients with glaucoma showed to have higher daytime sleepiness measured by Epworth sleepiness scale. In addition, this symptom was associated with pupillary reflex and polysomnography parameters. These ipRGC functions might be impaired in patients with glaucoma, leading to worse quality of life.
Collapse
Affiliation(s)
- Carolina P. B. Gracitelli
- Department of Ophthalmology, Federal University of São Paulo, Rua Botucatu, 821 Vila Clementino, 04023-062 São Paulo, SP, Brazil
| | - Gloria Liliana Duque-Chica
- Experimental Psychology Department, Institute of Psychology, University of São Paulo, São Paulo, SP, Brazil
| | - Ana Laura de Araújo Moura
- Department of Ophthalmology, Federal University of São Paulo, Rua Botucatu, 821 Vila Clementino, 04023-062 São Paulo, SP, Brazil
- Experimental Psychology Department, Institute of Psychology, University of São Paulo, São Paulo, SP, Brazil
| | - Marina Roizenblatt
- Department of Ophthalmology, Federal University of São Paulo, Rua Botucatu, 821 Vila Clementino, 04023-062 São Paulo, SP, Brazil
| | - Balazs V. Nagy
- Experimental Psychology Department, Institute of Psychology, University of São Paulo, São Paulo, SP, Brazil
| | - Geraldine Ragot de Melo
- Department of Ophthalmology, Federal University of São Paulo, Rua Botucatu, 821 Vila Clementino, 04023-062 São Paulo, SP, Brazil
| | - Paula Delegrego Borba
- Department of Ophthalmology, Federal University of São Paulo, Rua Botucatu, 821 Vila Clementino, 04023-062 São Paulo, SP, Brazil
| | - Sérgio H. Teixeira
- Department of Ophthalmology, Federal University of São Paulo, Rua Botucatu, 821 Vila Clementino, 04023-062 São Paulo, SP, Brazil
| | - Sergio Tufik
- Sleep Medicine Division, Psychobiology Department, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Dora Fix Ventura
- Experimental Psychology Department, Institute of Psychology, University of São Paulo, São Paulo, SP, Brazil
| | - Augusto Paranhos
- Department of Ophthalmology, Federal University of São Paulo, Rua Botucatu, 821 Vila Clementino, 04023-062 São Paulo, SP, Brazil
| |
Collapse
|
494
|
Stevens RG, Zhu Y. Electric light, particularly at night, disrupts human circadian rhythmicity: is that a problem? Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0120. [PMID: 25780233 DOI: 10.1098/rstb.2014.0120] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Over the past 3 billion years, an endogenous circadian rhythmicity has developed in almost all life forms in which daily oscillations in physiology occur. This allows for anticipation of sunrise and sunset. This physiological rhythmicity is kept at precisely 24 h by the daily cycle of sunlight and dark. However, since the introduction of electric lighting, there has been inadequate light during the day inside buildings for a robust resetting of the human endogenous circadian rhythmicity, and too much light at night for a true dark to be detected; this results in circadian disruption and alters sleep/wake cycle, core body temperature, hormone regulation and release, and patterns of gene expression throughout the body. The question is the extent to which circadian disruption compromises human health, and can account for a portion of the modern pandemics of breast and prostate cancers, obesity, diabetes and depression. As societies modernize (i.e. electrify) these conditions increase in prevalence. There are a number of promising leads on putative mechanisms, and epidemiological findings supporting an aetiologic role for electric lighting in disease causation. These include melatonin suppression, circadian gene expression, and connection of circadian rhythmicity to metabolism in part affected by haem iron intake and distribution.
Collapse
Affiliation(s)
- Richard G Stevens
- Department of Community Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Yong Zhu
- Department of Environmental Health Sciences, Yale University, New Haven, CT, USA
| |
Collapse
|
495
|
te Kulve M, Schellen L, Schlangen LJM, van Marken Lichtenbelt WD. The influence of light on thermal responses. Acta Physiol (Oxf) 2016; 216:163-85. [PMID: 26172218 DOI: 10.1111/apha.12552] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 01/02/2023]
Abstract
Light is essential for vision and plays an important role in non-visual responses, thus affecting alertness, mood and circadian rhythms. Furthermore, light influences physiological processes, such as thermoregulation, and therefore may be expected to play a role in thermal comfort (TC) as well. A systematic literature search was performed for human studies exploring the relation between ocular light exposure, thermophysiology and TC. Experimental results show that light in the evening can reduce melatonin secretion, delay the natural decline in core body temperature (CBT) and slow down the increase in distal skin temperature. In the morning though, bright light can result in a faster decline in melatonin levels, thus enabling a faster increase in CBT. Moreover, the colour of light can affect temperature perception of the environment. Light with colour tones towards the red end of the visual spectrum leads to a warmer perception compared to more bluish light tones. It should be noted, however, that many results of light on thermal responses are inconclusive, and a theoretical framework is largely lacking. In conclusion, light is capable of evoking thermophysiological responses and visual input can alter perception of the thermal environment. Therefore, lighting conditions should be taken into consideration during thermophysiological research and in the design of indoor climates.
Collapse
Affiliation(s)
- M. te Kulve
- Department of Human Biology, NUTRIM; Maastricht University; Maastricht the Netherlands
| | - L. Schellen
- Department of Human Biology, NUTRIM; Maastricht University; Maastricht the Netherlands
- School of Built Environment and Infrastructure; Avans University of Applied Sciences; Tilburg the Netherlands
| | | | | |
Collapse
|
496
|
Sivaprasad S, Arden G. Spare the rods and spoil the retina: revisited. Eye (Lond) 2016; 30:189-92. [PMID: 26656085 PMCID: PMC4763134 DOI: 10.1038/eye.2015.254] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 11/10/2015] [Indexed: 01/23/2023] Open
Abstract
Visual function improves with oxygen inhalation in people with diabetes even in the absence of visible retinopathy. Rods consume the most oxygen in the retina due to the high metabolic activity required to maintain the dark current. Therefore, Arden hypothesized that in diabetes where oxygen supply may also be affected due to the changes in retinal vasculature, prevention of dark adaptation may be a viable option to prevent or decrease the rate of progression of diabetic retinopathy. Animal experiments have proven that the absence of rods decreases the development of retinal neovascularisation. The same principle applies to panretinal photocoagulation, an established treatment for proliferative diabetic retinopathy. Recently, a few clinical studies have also shown that preventing dark adaptation by suppressing rods with 500-nm light source at night decreases the rate of progression of early diabetic retinopathy and maculopathy in the short-term. We await the results of a large two-year multi-centre trial (CLEOPATRA trial) to evaluate the long-term effects of decreasing dark adaptation by applying a 500nm light source as a mask over eyes with non-central diabetic macular oedema.
Collapse
Affiliation(s)
- S Sivaprasad
- NIHR Moorfields Biomedical Research Centre, London, UK
| | - G Arden
- NIHR Moorfields Biomedical Research Centre, London, UK
| |
Collapse
|
497
|
|
498
|
Effects of blue light on the circadian system and eye physiology. Mol Vis 2016; 22:61-72. [PMID: 26900325 PMCID: PMC4734149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/21/2016] [Indexed: 10/31/2022] Open
Abstract
Light-emitting diodes (LEDs) have been used to provide illumination in industrial and commercial environments. LEDs are also used in TVs, computers, smart phones, and tablets. Although the light emitted by most LEDs appears white, LEDs have peak emission in the blue light range (400-490 nm). The accumulating experimental evidence has indicated that exposure to blue light can affect many physiologic functions, and it can be used to treat circadian and sleep dysfunctions. However, blue light can also induce photoreceptor damage. Thus, it is important to consider the spectral output of LED-based light sources to minimize the danger that may be associated with blue light exposure. In this review, we summarize the current knowledge of the effects of blue light on the regulation of physiologic functions and the possible effects of blue light exposure on ocular health.
Collapse
|
499
|
Pattinson CL, Allan AC, Staton SL, Thorpe KJ, Smith SS. Environmental Light Exposure Is Associated with Increased Body Mass in Children. PLoS One 2016; 11:e0143578. [PMID: 26735299 PMCID: PMC4711797 DOI: 10.1371/journal.pone.0143578] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/07/2015] [Indexed: 12/21/2022] Open
Abstract
The timing, intensity, and duration of exposure to both artificial and natural light have acute metabolic and physiological effects in mammals. Recent research in human adults suggests exposure to moderate intensity light later in the day is concurrently associated with increased body mass; however, no studies have investigated the effect of light exposure on body mass in young children. We examined objectively measured light exposure and body mass of 48 preschool-aged children at baseline, and measured their body mass again 12 months later. At baseline, moderate intensity light exposure earlier in the day was associated with increased body mass index (BMI). Increased duration of light exposure at baseline predicted increased BMI 12-months later, even after controlling for baseline sleep duration, sleep timing, BMI, and activity. The findings identify that light exposure may be a contributor to the obesogenic environment during early childhood.
Collapse
Affiliation(s)
- Cassandra L. Pattinson
- Centre for Children’s Health Research, Institute for Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Alicia C. Allan
- Centre for Accident Research and Road Safety – Queensland (CARRS-Q), Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Sally L. Staton
- Centre for Children’s Health Research, Institute for Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Karen J. Thorpe
- Centre for Children’s Health Research, Institute for Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Simon S. Smith
- Centre for Children’s Health Research, Institute for Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
- Centre for Accident Research and Road Safety – Queensland (CARRS-Q), Queensland University of Technology, Kelvin Grove, Queensland, Australia
| |
Collapse
|
500
|
Dauchy RT, Wren-Dail MA, Hoffman AE, Hanifin JP, Warfield B, Brainard GC, Hill SM, Belancio VP, Dauchy EM, Blask DE. Effects of Daytime Exposure to Light from Blue-Enriched Light-Emitting Diodes on the Nighttime Melatonin Amplitude and Circadian Regulation of Rodent Metabolism and Physiology. Comp Med 2016; 66:373-383. [PMID: 27780004 PMCID: PMC5073062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/05/2016] [Accepted: 05/23/2016] [Indexed: 06/06/2023]
Abstract
Regular cycles of exposure to light and dark control pineal melatonin production and temporally coordinate circadian rhythms of metabolism and physiology in mammals. Previously we demonstrated that the peak circadian amplitude of nocturnal blood melatonin levels of rats were more than 6-fold higher after exposure to cool white fluorescent (CWF) light through blue-tinted (compared with clear) rodent cages. Here, we evaluated the effects of light-phase exposure of rats to white light-emitting diodes (LED), which emit light rich in the blue-appearing portion of the visible spectrum (465-485 nm), compared with standard broadspectrum CWF light, on melatonin levels during the subsequent dark phase and on plasma measures of metabolism and physiology. Compared with those in male rats under a 12:12-h light:dark cycle in CWF light, peak plasma melatonin levels at the middark phase (time, 2400) in rats under daytime LED light were over 7-fold higher, whereas midlight phase levels (1200) were low in both groups. Food and water intakes, body growth rate, and total fatty acid content of major metabolic tissues were markedly lower, whereas protein content was higher, in the LED group compared with CWF group. Circadian rhythms of arterial plasma levels of total fatty acids, glucose, lactic acid, pO2, pCO2, insulin, leptin, and corticosterone were generally lower in LED-exposed rats. Therefore, daytime exposure of rats to LED light with high blue emissions has a marked positive effect on the circadian regulation of neuroendocrine, metabolic, and physiologic parameters associated with the promotion of animal health and wellbeing and thus may influence scientific outcomes.
Collapse
Affiliation(s)
- Robert T Dauchy
- Departments of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana, Pennsylvania, USA.
| | - Melissa A Wren-Dail
- Departments of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana, Pennsylvania, USA
| | - Aaron E Hoffman
- Departments of Epidemiology, Tulane University School of Medicine, Tulane, Louisiana, Pennsylvania, USA
| | - John P Hanifin
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Benjamin Warfield
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - George C Brainard
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Steven M Hill
- Departments of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana, Pennsylvania, USA
| | - Victoria P Belancio
- Departments of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana, Pennsylvania, USA
| | - Erin M Dauchy
- Departments of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana, Pennsylvania, USA
| | - David E Blask
- Departments of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana, Pennsylvania, USA
| |
Collapse
|