451
|
Zhang ZL, Liu ZS, Sun Q. Expression of angiopoietins, Tie2 and vascular endothelial growth factor in angiogenesis and progression of hepatocellular carcinoma. World J Gastroenterol 2006; 12:4241-5. [PMID: 16830384 PMCID: PMC4087383 DOI: 10.3748/wjg.v12.i26.4241] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the significance of angiopoietins, Tie2 and vascular endothelial growth factor (VEGF) expression in the angiogenesis and progress of hepatocellular carcinoma (HCC).
METHODS: Fresh surgically resected specimens of HCC and noncancerous liver (NCL) tissue from 38 patients with HCC were obtained, and expression of angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2), Tie2, and VEGF messenger RNA (mRNA) was examined by real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR). Expression pattern of each gene in HCC and NCL tissue specimens was compared and the potential role and interaction in angiogenesis of HCC were analyzed. Genes’ expression level and its relationship with tumor’s clinicopathological parameters were also investigated. Immunohistochemical staining of CD34 was performed to determine the microvessel density (MVD) and Ang-2/Ang-1 ratio was calculated. Relationships between Ang-2/Ang-1 ratio, VEGF and MVD and clinicopathological features were also tested so as to evaluate their significance in the progression of HCC.
RESULTS: Ang-2 and VEGF mRNAs in HCC were significantly higher than those in NCL tissue (P < 0.05), whereas the Ang-1 and Tie2 mRNAs showed no statistical significance (P > 0.05), though slightly lower level of Ang-1 mRNA in HCC was observed. Ang-2/Ang-1 ratio and VEGF were both positively correlated to MVD. The Ang-2/ Ang-1 ratio, Ang-2 and VEGF were all associated with tumor’s clinicopathological parameters (P < 0.05) except for histological grades (P > 0.05). Ang-1 and Tie2 levels in different clinicopathological groups were not significantly different (P > 0.05).
CONCLUSION: Dominant Ang-2 expression against Ang-1 through Tie2 receptor in the presence of VEGF plays a critical role in initiating early neovascularization and transformation of noncancerous liver to hepatocellular carcinoma. Its consequently constant operation in formed HCC induces further angiogenesis and progression of HCC.
Collapse
MESH Headings
- Adult
- Aged
- Angiopoietin-1/genetics
- Angiopoietin-1/metabolism
- Angiopoietin-2/genetics
- Angiopoietin-2/metabolism
- Angiopoietins/genetics
- Angiopoietins/metabolism
- Antigens, CD34/genetics
- Antigens, CD34/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Disease Progression
- Female
- Gene Expression Regulation/genetics
- Humans
- Liver/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Male
- Middle Aged
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, TIE-2/genetics
- Receptor, TIE-2/metabolism
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Zhong-Lin Zhang
- Department of General Surgery, Zhongnan Hospital, Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei Province, China.
| | | | | |
Collapse
|
452
|
Helmbold P, Lautenschläger C, Marsch WC, Nayak RC. Detection of a physiological juvenile phase and the central role of pericytes in human dermal microvascular aging. J Invest Dermatol 2006; 126:1419-21. [PMID: 16557234 DOI: 10.1038/sj.jid.5700275] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
453
|
Hirota K, Semenza GL. Regulation of angiogenesis by hypoxia-inducible factor 1. Crit Rev Oncol Hematol 2006; 59:15-26. [PMID: 16716598 DOI: 10.1016/j.critrevonc.2005.12.003] [Citation(s) in RCA: 343] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 12/24/2005] [Accepted: 12/24/2005] [Indexed: 12/22/2022] Open
Abstract
Hypoxia is an imbalance between oxygen supply and demand that occurs in cancer and in ischemic cardiovascular disease. Hypoxia-inducible factor 1 (HIF-1) was originally identified as the transcription factor that mediates hypoxia-induced erythropoietin expression. More recently, the delineation of molecular mechanisms of angiogenesis has revealed a critical role for HIF-1 in the regulation of angiogenic growth factors. In this review, we discuss the role of HIF-1 in developmental, adaptive and pathological angiogenesis. In addition, potential therapeutic interventions involving modulation of HIF-1 activity in ischemic cardiovascular disease and cancer will be discussed.
Collapse
Affiliation(s)
- Kiichi Hirota
- Department of Anesthesia, Kyoto University Hospital, Kyoto 606-8507, Japan
| | | |
Collapse
|
454
|
Briones VR, Chen S, Riegel AT, Lechleider RJ. Mechanism of fibroblast growth factor-binding protein 1 repression by TGF-beta. Biochem Biophys Res Commun 2006; 345:595-601. [PMID: 16690027 DOI: 10.1016/j.bbrc.2006.04.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 04/11/2006] [Indexed: 01/04/2023]
Abstract
Transforming growth factor-beta (TGF-beta) is the prototypical member of a family of growth factors that play important roles in normal development and human diseases. We identified the gene for fibroblast growth factor-binding protein 1 (FGF-BP1) as being significantly repressed following TGF-beta treatment. FGF-BP1 is an extracellular matrix bound protein that enhances fibroblast growth factor (FGF) signaling. We demonstrate here that TGF-beta signaling significantly represses FGF-BP1 expression in mesenchymal and neural crest cells undergoing in vitro smooth muscle differentiation. Analysis of the downstream signaling pathways shows that Smad2/3 are crucial for efficient FGF-BP1 repression by TGF-beta. Furthermore, we identified a novel element in the region from -785 to -782 bp of the FGF-BP1 promoter, which represents a known binding site for Hypermethylation in Cancer-1 (Hic-1), necessary for repression of FGF-BP1 by TGF-beta. These data define the molecular mechanism of transcriptional repression of an important target of TGF-beta signaling during angiogenesis.
Collapse
Affiliation(s)
- Victorino R Briones
- Department of Cell Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
455
|
de Castro Junior G, Puglisi F, de Azambuja E, El Saghir NS, Awada A. Angiogenesis and cancer: A cross-talk between basic science and clinical trials (the "do ut des" paradigm). Crit Rev Oncol Hematol 2006; 59:40-50. [PMID: 16600618 DOI: 10.1016/j.critrevonc.2006.02.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 11/30/2005] [Accepted: 02/22/2006] [Indexed: 12/30/2022] Open
Abstract
Angiogenesis plays a crucial role in facilitating tumor growth and the metastatic process, and it is the result of a dynamic balance between pro-angiogenic factors, like vascular endothelial growth factor (VEGF) and platelet-derived growth factor, and antiangiogenic factors, like thrombospondin-1 and angiostatin. Many drugs that target human tumors, like bevacizumab and some VEGF-receptor tyrosine-kinase inhibitors (e.g., BAY 43-9006, SU11248 and PTK787/ZK222584) have been studied in clinical trials, with favorable toxicity reports and encouraging results in advanced colorectal cancer, renal cell cancer, breast cancer and non-squamous non-small cell lung cancer, either combined with chemotherapy, or in monotherapy. Another potential approach to inhibiting angiogenesis is through metronomic chemotherapy (low doses of chemotherapy for long periods of time). This review describes the mechanisms of the angiogenic process and evaluates the recent data about antiangiogenic therapies in clinical trials.
Collapse
|
456
|
Wacker BK, Scott EA, Kaneda MM, Alford SK, Elbert DL. Delivery of sphingosine 1-phosphate from poly(ethylene glycol) hydrogels. Biomacromolecules 2006; 7:1335-43. [PMID: 16602758 PMCID: PMC2522266 DOI: 10.1021/bm050948r] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
While protein growth factors promote therapeutic angiogenesis, delivery of lipid factors such as sphingosine 1-phosphate (S1P) may provide better stabilization of newly formed vessels. We developed a biomaterial for the controlled delivery of S1P, a bioactive lipid released from activated platelets. Multiarm poly(ethylene glycol)-vinyl sulfone was cross-linked with albumin, a lipid-transporting protein, to form hydrogels. The rate of S1P release from the materials followed Fickian kinetics and was dependent upon the presence of lipid carriers in the release solution. Delivery of S1P from RGD-modified hydrogels increased the cell migration speed of endothelial cells growing on the materials. The materials also induced angiogenesis in the chorioallantoic membrane assay. Our data demonstrate that the storage and release of lipid factors provides a new route for the induction of angiogenesis by artificial materials.
Collapse
Affiliation(s)
- Bradley K. Wacker
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130
| | - Evan A. Scott
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130
| | - Megan M. Kaneda
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130
| | - Shannon K. Alford
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130
| | - Donald L. Elbert
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130
| |
Collapse
|
457
|
Fathers KE, Stone CM, Minhas K, Marriott JJA, Greenwood JD, Dumont DJ, Coomber BL. Heterogeneity of Tie2 expression in tumor microcirculation: influence of cancer type, implantation site, and response to therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 167:1753-62. [PMID: 16314485 PMCID: PMC1613180 DOI: 10.1016/s0002-9440(10)61256-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To evaluate the expression of the Tie2/Tek tyrosine kinase receptor in tumor blood vessels, we examined Tie2lacZ(+)/RAG1(-) mice. There was considerable heterogeneity (Tie2-negative, Tie2-positive, or Tie2-composite blood vessels) in subcutaneous xenografts of human colorectal carcinoma (HCT116; 97.5% Tie2-positive vessels) versus human melanoma (WM115; 75.9% Tie2-positive vessels). Similar patterns of Tie2 expression occurred in abdominal metastases derived from the same cell lines. Immunostaining for endothelial markers and Tie2 revealed that endogenous protein levels corresponded with transgene activity. Endothelial cells were confirmed to be of mouse origin through triple immunofluorescence staining with mouse antiserum to human nuclei, isolectin GS-IB(4), and anti-Tie2. Similar Tie2 heterogeneity was observed in clinical specimens from a variety of human cancers, including malignant melanoma and colorectal carcinoma. We also examined the effect of Tek-Delta Fc anti-angiogenic therapy on tumor growth and Tie2 expression patterns in HCT116 and WM115 subcutaneous xenografts. Tek-Delta induced extensive tumor regression in HCT116 tumors and concomitant reductions in Tie2-expressing blood vessels. However, no significant responses were seen in Tek-Delta-treated WM115 tumors. Thus, vascular heterogeneity of Tie2 expression is cancer-type specific, suggesting that the tumor microenvironment and/or direct cancer cell interactions influence Tie2 endothelial expression.
Collapse
Affiliation(s)
- Kelly E Fathers
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Canada
| | | | | | | | | | | | | |
Collapse
|
458
|
Friis T, Hansen AB, Houen G, Engel AM. Influence of angiogenesis inhibitors on endothelial cell morphology in vitro. APMIS 2006; 114:211-24. [PMID: 16643188 DOI: 10.1111/j.1600-0463.2006.apm_189.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Human umbilical vein endothelial cells (HUVEC) propagated in co-culture with fibroblasts form capillary-like networks of tubes. Here we characterize the morphology and ultrastructure of HUVEC in such co-cultures and investigate the influence of different angiogenesis inhibitors on endothelial cell morphology. Addition of angiogenesis inhibitors to the co-culture disrupted endothelial network formation and influenced endothelial cell morphology in two distinct ways. Instead of characteristic capillary-like networks, the endothelial cell morphology appeared as either short cords or compact cell clusters of variable size. Electron microscopy (EM) showed that in co-culture untreated HUVEC formed capillary-like tubes with lumina and retained important ultrastructural and physiological properties of endothelial cells in functional vessels as they contained both Weibel-Palade bodies and transport vesicles. Immuno-EM showed that the endothelial cell marker CD 31 stained endothelial membranes at cell-cell contacts, and at the luminal and abluminal side of the capillary-like tubes, although most abundantly at the luminal membranes. No ultrastructural signs of apoptosis were seen in HUVEC in inhibitor-treated co-cultures. Our results demonstrate that treatment with levamisole or anti-VEGF inhibits endothelial cell differentiation into tubes or instead induces formation of compact endothelial cell clusters. Treatment with platelet factor 4, suramin and TNP-470 results in formation of short endothelial cell cords. We discuss the implications of these findings.
Collapse
Affiliation(s)
- Tina Friis
- Department of Research and Development, Division of Plasma Products, Statens Serum Institut, Copenhagen, Denmark
| | | | | | | |
Collapse
|
459
|
Li X, Zhu YQ, Luo J, Tao WH, Huang C, Zhang JM. Clinical significance and expression of angiopoietin-2 and matrix metalloproteinase-7 in human colorectal carcinoma. Shijie Huaren Xiaohua Zazhi 2006; 14:434-437. [DOI: 10.11569/wcjd.v14.i4.434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of angiopo-ietin-2 (Ang-2) and matrix metalloproteinase-7 (MMP-7) protein in human colorectal carcinoma, and to explore the relationship between the two proteins and clinical parameters.
METHODS: Immunohistochemical technique was used to detect the expression of Ang-2 and MMP-7 protein in 40 colorectal carcinoma and their adjacent normal tissues.
RESULTS: The positive rates of Ang-2 and MMP-7 were significantly higher in colorectal carcinoma than those in normal tissues (77.5% vs 40%, P = 0.001; 85% vs 35%, P = 0.000). The level of Ang-2 expression had no marked correlations with the sex and age of patients as well as the site, size, lymph node metastasis or histological differentiation of colorectal carcinoma (all P > 0.05), but it was notably correlated with the invasion depth (P = 0.007), distal metastasis (P = 0.023) and Dukes' staging (P = 0.008). The expression of Ang-2 and MMP-7 were also significantly correlated (P = 0.016).
CONCLUSION: High expression of Ang-2 protein may play an important role in the progression and metastasis of colorectal carcinoma through up-regulation of MMP-7 expression.
Collapse
|
460
|
Shin VY, Wu WKK, Chu KM, Wong HPS, Lam EKY, Tai EKK, Koo MWL, Cho CH. Nicotine induces cyclooxygenase-2 and vascular endothelial growth factor receptor-2 in association with tumor-associated invasion and angiogenesis in gastric cancer. Mol Cancer Res 2006; 3:607-15. [PMID: 16317086 DOI: 10.1158/1541-7786.mcr-05-0106] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Blockade of angiogenesis is a promising strategy to suppress tumor growth, invasion, and metastasis. Vascular endothelial growth factor (VEGF), which binds to tyrosine kinase receptors [VEGF receptors (VEGFR) 1 and 2], is the mediator of angiogenesis and mitogen for endothelial cells. Cyclooxygenase-2 (COX-2) plays an important role in the promoting action of nicotine on gastric cancer growth. However, the action of nicotine and the relationship between COX-2 and VEGF/VEGFR system in tumorigenesis remain undefined. In this study, the effects of nicotine in tumor angiogenesis, invasiveness, and metastasis were studied with sponge implantation and Matrigel membrane models. Nicotine (200 microg/mL) stimulated gastric cancer cell proliferation, which was blocked by SC-236 (a highly selective COX-2 inhibitor) and CBO-P11 (a VEGFR inhibitor). This was associated with decreased VEGF levels as well as VEGFR-2 but not VEGFR-1 expression. Topical injection of nicotine enhanced tumor-associated vascularization, with a concomitant increase in VEGF levels in sponge implants. Again, application of SC-236 (2 mg/kg) and CBO-P11 (0.4 mg/kg) partially attenuated vascularization by approximately 30%. Furthermore, nicotine enhanced tumor cell invasion through the Matrigel membrane by 4-fold and promoted migration of human umbilical vein endothelial cells in a cocultured system with gastric cancer cells. The activity of matrix metalloproteinases 2 and 9 and protein expressions of plasminogen activators (urokinase-type plasminogen activator and its receptor), which are the indicators of invasion and migration processes, were increased by nicotine but blocked by COX-2 and VEGFR inhibitors. Taken together, our results reveal that the promoting action of nicotine on angiogenesis, tumor invasion, and metastasis is COX-2/VEGF/VEGFR dependent.
Collapse
Affiliation(s)
- Vivian Y Shin
- Department of Pharmacology, Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, Hong Kong
| | | | | | | | | | | | | | | |
Collapse
|
461
|
Troy G, Huckle W, Rossmeisl J, Panciera D, Lanz O, Robertson J, Ward D. Endostatin and Vascular Endothelial Growth Factor Concentrations in Healthy Dogs, Dogs with Selected Neoplasia, and Dogs with Nonneoplastic Diseases. J Vet Intern Med 2006. [DOI: 10.1111/j.1939-1676.2006.tb02834.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
462
|
Phan B, Rakenius A, Pietrowski D, Bettendorf H, Keck C, Herr D. hCG-dependent regulation of angiogenic factors in human granulosa lutein cells. Mol Reprod Dev 2006; 73:878-84. [PMID: 16596638 DOI: 10.1002/mrd.20465] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
As prerequisite for development and maintenance of many diseases angiogenesis is of particular interest in medicine. Pathologic angiogenesis takes place in chronic arthritis, collagen diseases, arteriosclerosis, retinopathy associated with diabetes, and particularly in cancers. However, angiogenesis as a physiological process regularly occurs in the ovary. After ovulation the corpus luteum is formed by rapid vascularization of initially avascular granulosa lutein cell tissue. This process is regulated by gonadotropic hormones. In order to gain further insights in the regulatory mechanisms of angiogenesis in the ovary, we investigated these mechanisms in cell culture of human granulosa lutein cells. In particular, we determined the expression and production of several angiogenic factors including tissue inhibitor of matrix metalloproteinases-1 (TIMP-1), Leptin, connective tissue growth factor (CTGF), meningioma-associated complimentary DNA (Mac25), basic fibroblast growth factor (bFGF), and Midkine. In addition, we showed that human chorionic gonadotropin (hCG) has distinct effects on their expression and production. hCG enhances the expression and production of TIMP-1, whereas it downregulates the expression of CTGF and Mac25. Furthermore it decreases the expression of Leptin. Our results provide evidence that hCG determines growth and development of the corpus luteum by mediating angiogenic pathways in human granulosa lutein cells. Hence we describe a further approach to understand the regulation of angiogenesis in the ovary.
Collapse
Affiliation(s)
- B Phan
- Department of Obstetrics and Gynecology, Freiburg University Medical Center, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
463
|
Abstract
Tumor angiogenesis is crucial for the progression and metastasis of cancer. The vasculature of tumor tissue is different from normal vasculature. Therefore, tumor vascular targeting therapy could represent an effective therapeutic strategy with which to suppress both primary tumor growth and tumor metastasis. The use of viral vectors for tumor vascular targeting therapy is a promising strategy based on the unique properties of viral vectors. In order to circumvent the potential problems of antiviral neutralizing antibodies, poor access to extravascular tumor tissue, and toxicities to normal tissue, viral vectors need to be modified to target the tumor endothelial cells. Viral vectors that could be used for tumor vascular targeting therapy include adenoviral vectors, adeno-associated viral vectors, retroviral vectors, lentiviral vectors, measles virus, and herpes simplex viral vectors. In this review, we will summarize the strategies available for targeting viral vectors for tumor vascular targeting therapy.
Collapse
Affiliation(s)
- Yanzheng Liu
- Sidney Kimmel Cancer Center, 10835 Road to the Cure, San Diego, CA 92121, USA
| | | |
Collapse
|
464
|
Joung IS, Iwamoto MN, Shiu YT, Quam CT. Cyclic strain modulates tubulogenesis of endothelial cells in a 3D tissue culture model. Microvasc Res 2005; 71:1-11. [PMID: 16368114 DOI: 10.1016/j.mvr.2005.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 10/07/2005] [Accepted: 10/16/2005] [Indexed: 12/23/2022]
Abstract
Angiogenesis is the formation of new blood vessels from preexisting capillaries or venules. It occurs in a mechanically dynamic environment due to blood flow, but the role of hemodynamic forces in angiogenesis remains poorly understood. We have developed a unique in vitro system for the investigation of angiogenesis under cyclic strain. In this system, tubulogenesis of vascular endothelial cells in 3D collagen gels occurs under well-defined cyclic strain, which mimics blood-pressure-induced stretch. Using this system, we demonstrate that cyclic strain results in alignment of endothelial-cord-like structures perpendicular to the principal axis of stretch. Such preferential orientation was the most evident in deep and long cord-like structures. This in vitro system, along with the novel findings of strain-modulated endothelial tube morphology, enables the formation of an experimental basis for understanding the role of cyclic strain in the regulation of angiogenesis.
Collapse
Affiliation(s)
- In Suk Joung
- Department of Bioengineering, University of Utah, 20 South 2030 East, BPR Room 506, Salt Lake City, 84112, USA
| | | | | | | |
Collapse
|
465
|
Santana-Blank LA, Rodríguez-Santana E, Santana-Rodríguez KE. Photo-infrared pulsed bio-modulation (PIPBM): a novel mechanism for the enhancement of physiologically reparative responses. Photomed Laser Surg 2005; 23:416-24. [PMID: 16144487 DOI: 10.1089/pho.2005.23.416] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE The present manuscript describes the non-invasive, long-range, energy transport of a singular infrared pulsed laser device (IPLD) and the upstream components of the original action mechanism, designated photo-infrared pulsed bio-modulation (PIPBM). BACKGROUND DATA Major strides have been taken in recent years towards scientifically acceptable clinical applications of low-energy lasers. Nevertheless, challenges still abound. For instance, the range of potential target tissues for laser therapy in medicine has been, until now, limited by the optical penetration of the beam or to sites accessible by fiberoptics. In addition, much needs to be learned about the action mechanisms of pulsed lasers, which can induce unique biological effects. METHODS We present a review of the IPLD laser technology and the PIPBM mechanism. RESULTS The studies reviewed suggest that the PIPBM enhances physiologically reparative processes in a non-toxic and selective manner through the activation and modulation of chaotic dynamics in water. These, in turn, lead not only to local, but also long-distance (systemic) effects. CONCLUSIONS Though additional studies are necessary to fully explore the biological effects of the PIPBM induced by the IPLD, this mechanism may have multiple potential applications in medicine that are the subject of active current and future investigations.
Collapse
Affiliation(s)
- Luis A Santana-Blank
- Fundalas, Foundation for Interdisciplinary Research and Development, Caracas, Venezuela.
| | | | | |
Collapse
|
466
|
Merrill MJ, Oldfield EH. A reassessment of vascular endothelial growth factor in central nervous system pathology. J Neurosurg 2005; 103:853-68. [PMID: 16304990 DOI: 10.3171/jns.2005.103.5.0853] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
✓ Overexpression of vascular endothelial growth factor (VEGF) is associated with several central nervous system (CNS) diseases and abnormalities, and is often postulated as a causative factor and promising therapeutic target in these settings. The authors' goal was to reassess the contribution of VEGF to the biology and pathology of the CNS.
The authors review the literature relating to the following aspects of VEGF: 1) the biology of VEGF in normal brain; 2) the involvement of VEGF in CNS disorders other than tumors (traumatic and ischemic injuries, arteriovenous malformations, inflammation); and 3) the role of VEGF in brain tumor biology (gliomas and the associated vasogenic edema, and hemangioblastomas).
The authors conclude the following: first, that VEGF overexpression contributes to the phenotype associated with many CNS disorders, but VEGF is a reactive rather than a causative factor in many cases; and second, that use of VEGF as a therapeutic agent or target is complicated by the effects of VEGF not only on the cerebral vasculature, but also on astrocytes, neurons, and inflammatory cells. In many cases, therapeutic interventions targeting the VEGF/VEGF receptor axis are likely to be ineffective or even detrimental. Clinical manipulation of VEGF levels in the CNS must be approached with caution.
Collapse
Affiliation(s)
- Marsha J Merrill
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-1414, USA.
| | | |
Collapse
|
467
|
Tuccillo C, Cuomo A, Rocco A, Martinelli E, Staibano S, Mascolo M, Gravina AG, Nardone G, Ricci V, Ciardiello F, Del Vecchio Blanco C, Romano M. Vascular endothelial growth factor and neo-angiogenesis in H. pylori gastritis in humans. J Pathol 2005; 207:277-284. [PMID: 16184519 DOI: 10.1002/path.1844] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Host response plays a major role in the pathogenesis of Helicobacter pylori-induced gastroduodenal disease including adenocarcinoma of the distal stomach. Vascular endothelial growth factor (VEGF) is an important modulator of gastric mucosal repair and is overexpressed in gastric cancer. The present study sought to evaluate the expression of VEGF in the gastric mucosa of H. pylori-infected and H. pylori-non-infected dyspeptic patients. Fifteen H. pylori-infected and 15 H. pylori-non-infected dyspeptic patients were studied. Diagnosis of H. pylori infection was based on rapid urease test and histology. VEGF protein expression was assessed by western blotting. VEGF mRNA expression was assessed by RT-PCR. VEGF localization in the gastric mucosa and neo-angiogenesis were determined by immunohistochemistry. VEGF protein and mRNA expression was significantly greater in H. pylori-infected than in non-infected patients. Immunohistochemistry showed that VEGF expression was more intense in the gastric gland compartment of H. pylori-infected mucosa than in the non-infected mucosa. The increase in VEGF expression was associated with a significant increase in neo-angiogenesis as assessed by determination of CD34-positive micro-vessels. H. pylori gastritis is therefore associated with up-regulation of VEGF expression, which parallels the increased formation of blood vessels in the gastric mucosa. It is postulated that increased VEGF expression and neo-angiogenesis may contribute to H. pylori-related gastric carcinogenesis.
Collapse
Affiliation(s)
- Concetta Tuccillo
- Dipartimento di Internistica Clinica e Sperimentale-Cattedra di Gastroenterologia, Seconda Università di Napoli, Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
468
|
Dickson PV, Nathwani AC, Davidoff AM. Delivery of antiangiogenic agents for cancer gene therapy. Technol Cancer Res Treat 2005; 4:331-41. [PMID: 16029054 DOI: 10.1177/153303460500400403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The understanding that tumor growth and metastasis are angiogenesis dependent processes has led to interest in targeting tumor vasculature in anticancer therapy. Furthermore, recent insights into the molecular interactions that orchestrate physiologic and pathologic angiogenesis have resulted in a variety of antiangiogenic strategies. A gene therapy-mediated approach for the delivery of antiangiogenic agents has several advantages, including the potential for sustained expression. However, the choice of angiogenesis inhibitor, method of gene delivery, and target/site for transgene expression are important variables to be considered when designing this approach. Here we review the major alternatives within each of these categories and provide illustrative examples of their use in preclinical models.
Collapse
Affiliation(s)
- Paxton V Dickson
- Department of Surgery, St. Jude Children's Research Hospital, and the Department of Surgery, The University of Tennessee-Memphis, Health Science Center, TN 38163, USA
| | | | | |
Collapse
|
469
|
Groothuis PG, Nap AW, Winterhager E, Grümmer R. Vascular development in endometriosis. Angiogenesis 2005; 8:147-56. [PMID: 16211360 DOI: 10.1007/s10456-005-9005-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Accepted: 01/26/2005] [Indexed: 01/17/2023]
Abstract
Endometriosis, defined as the presence of endometrial tissue outside the uterus, is an estrogen-dependent disease which causes pelvic pain and subfertility in women of reproductive age. The condition has a dramatic impact on the professional, social and marital life of sufferers. Direct and indirect evidence suggests that angiogenesis is required for the development and persistence of endometriosis. In this review the state-of-the-art with regard to our understanding of the role of angiogenesis in the ectopic implantation and survival of menstrual endometrial tissue will be discussed.
Collapse
Affiliation(s)
- P G Groothuis
- Research Institute GROW, Department of Obstetrics and Gynaecology, University Hospital Maastricht, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
470
|
Laschke MW, Elitzsch A, Vollmar B, Vajkoczy P, Menger MD. Combined inhibition of vascular endothelial growth factor (VEGF), fibroblast growth factor and platelet-derived growth factor, but not inhibition of VEGF alone, effectively suppresses angiogenesis and vessel maturation in endometriotic lesions. Hum Reprod 2005; 21:262-8. [PMID: 16172144 DOI: 10.1093/humrep/dei308] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Angiogenesis represents the crucial step in the pathogenesis of endometriosis, because endometriotic lesions require neovascularization to establish, proliferate and invade inside the peritoneal cavity. To elucidate the role of angiogenic factors, we investigated in vivo whether blockade of vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and platelet-derived growth factor (PDGF) affects angiogenesis of ectopic endometrium. METHODS Mechanically isolated endometrial fragments were transplanted into the dorsal skinfold chamber of hormonally synchronized hamsters. Subsequently, we analysed the effect of the VEGF inhibitor SU5416 and the combined VEGF, FGF and PDGF inhibitor SU6668 on angiogenesis of the ectopic endometrium over a time-period of 14 days using intravital fluorescence microscopy. RESULTS Selective blockade of VEGF resulted in a slight reduction of microvessel density when compared to control animals. In contrast, combined inhibition of all three growth factors significantly suppressed angiogenesis of endometrial grafts, as indicated by a reduced size of the microvascular network and a decreased microvessel density. This was caused by an inhibition of blood vessel maturation. CONCLUSIONS Vascularization of endometriotic lesions is not solely driven by VEGF, but depends on the cross-talk between VEGF, FGF and PDGF. Thus, the combined inhibition of these growth factors may represent a novel therapeutic strategy in the treatment of endometriosis.
Collapse
Affiliation(s)
- M W Laschke
- Institute for Clinical & Experimental Surgery, University of Saarland, 66421 Homburg/Saar, Germany.
| | | | | | | | | |
Collapse
|
471
|
Datta K, Mondal S, Sinha S, Li J, Wang E, Knebelmann B, Karumanchi SA, Mukhopadhyay D. Role of elongin-binding domain of von hippel lindau gene product on HuR-mediated VPF/VEGF mRNA stability in renal cell carcinoma. Oncogene 2005; 24:7850-8. [PMID: 16170373 DOI: 10.1038/sj.onc.1208912] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Vascular endothelial growth factor (VEGF), also known as vascular permeability factor (VPF), is a key mediator of angiogenesis for both physiological and pathological conditions. It is well established that the hypoxic induction of VPF/VEGF is in large part an increase in the stability of its mRNA. A Hu family ubiquitously expressed RNA-binding protein HuR has recently been shown to be important for VPF/VEGF mRNA stabilization. In renal cancer cells, the inactivation of the tumor suppressor protein von Hippel Lindau (VHL) leads to an increase in VPF/VEGF expression. VHL not only inhibits the transcription of VPF/VEGF but also plays a significant role in decreasing its mRNA stability. Here we delineate a possible mechanism by which VHL can control the function of HuR in order to regulate the stability of VPF/VEGF mRNA. The experiments presented here suggest that the association of the elongin-binding domain of VHL with a specific RNA-binding domain of HuR (RRM1) is important for the destabilizing function of VHL on VPF/VEGF mRNA.
Collapse
Affiliation(s)
- Kaustubh Datta
- Department of Biochemistry and Molecular Biology and Mayo Clinic Cancer Center, Mayo Clinic Foundation, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
472
|
Goldstein LJ, Chen H, Bauer RJ, Bauer SM, Velazquez OC. Normal human fibroblasts enable melanoma cells to induce angiogenesis in type I collagen. Surgery 2005; 138:439-49. [PMID: 16213896 DOI: 10.1016/j.surg.2005.06.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2005] [Revised: 06/22/2005] [Accepted: 06/24/2005] [Indexed: 01/22/2023]
Abstract
BACKGROUND We previously reported that fibroblasts induce human microvascular endothelial cells (HMVECs) to differentiate from monolayer to capillarylike morphology. We now test the hypothesis that fibroblasts modulate angiogenesis in melanoma cells. METHODS We tested 12 human melanoma lines (2 radial growth phase (RGP), 3 vertical growth phase (VGP), and 7 metastatic (MM)) for ability to induce HMVECs to invade/migrate into collagen and form capillarylike networks. HMVEC monolayers were overlaid with 3-dimensional collagen gels embedded with melanoma cells alone (M), fibroblasts alone (F), or a 1:1 mixture of the 2 cells (M+F). After 5 days, gels were removed, fixed, and HMVEC networks were quantified by von Willebrand's factor (vWF) immunofluorescence. The influence of soluble factors on HMVEC invasion/migration into collagen was assessed with the use of acellular 3-D collagen gels overlaid on HMVEC monolayers, cultured with conditioned media (CM) derived from monolayers of M, F, or M+F. Angiogenic growth factors involved in the observed invasion/migration were identified with the use of a RayBio Cytokine Antibody Array (RayBiotech, Norcross, Ga). RESULTS Cell line-specific variability in melanoma-supported angiogenesis was observed only when in combination with fibroblasts (analysis of variance [ANOVA], P < .01). Melanoma plus fibroblasts uniformly resulted in a significantly higher angiogenic response than melanoma alone (P < .05). One vertical growth phase and one metastatic melanoma line, while weakly angiogenic alone, induced significantly higher angiogenesis than either fibroblast or melanoma alone (P < .05) when combined with fibroblasts. CM from M or M+F induced significantly less HMVEC invasion/migration into collagen than CM from fibroblasts alone. Interleukin 8, monocyte chemotactic protein-1, and tissue inhibitor of metalloproteinase-2 were identified as significantly elevated in the media derived from M+F cultures, compared with either cell type alone. CONCLUSION To our knowledge, this is the first report demonstrating that melanoma-supported angiogenesis in collagen is more significantly influenced by normal skin-derived fibroblasts than by the intrinsic biology of the melanoma cell type. Interleukin 8, monocyte chemotactic protein-1, and tissue inhibitor of metalloproteinase-2 are implicated as potential paracrine factors regulating this observed effect.
Collapse
Affiliation(s)
- Lee J Goldstein
- Hospital of the University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | |
Collapse
|
473
|
Yang DZ, He J, Zhang JC, Wang ZR. Angiostatin inhibits pancreatic cancer cell proliferation and growth in nude mice. World J Gastroenterol 2005; 11:4992-6. [PMID: 16124051 PMCID: PMC4321915 DOI: 10.3748/wjg.v11.i32.4992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the biologic behavior of pancreatic cancer cells in vitro and in vivo, and to explore the potential value of angiostatin gene therapy for pancreatic cancer.
METHODS: The recombinant vector pcDNA3.1(+)-angiostatin was transfected into human pancreatic cancer cells PC-3 with Lipofectamine 2000, and paralleled with the vector and mock control. Angiostatin transcription and protein expression were determined by immunofluorescence and Western blot. The stable cell line was selected by G418. The supernatant was collected to treat endothelial cells. Cell proliferation and growth in vitro were observed under microscope. Cell growth curves were plotted. The troms-fected or untroms-fected cells overexpressing angiostatin vector were implanted subcutaneously into nude mice. The size of tumors was measured, and microvessel density count (MVD) in tumor tissues was assessed by immunohistochemistry with primary anti-CD34 antibody.
RESULTS: After transfected into PC-3 with Lipofectamine 2000 and selected by G418, macroscopic resistant cell clones were formed in the experimental group transfected with pcDNA 3.1(+)-angiostatin and vector control. But untreated cells died in the mock control. Angiostatin protein expression was detected in the experimental group by immunofluorescence and Western-blot. Cell proliferation and growth in vitro in the three groups were observed respectively under microscope. After treatment with supernatant, significant differences were observed in endothelial cell (ECV-304) growth in vitro. The cell proliferation and growth were inhibited. In nude mice model, markedly inhibited tumorigenesis and slowed tumor expansion were observed in the experimental group as compared to controls, which was parallel to the decreased microvessel density in and around tumor tissue.
CONCLUSION: Angiostatin does not directly inhibit human pancreatic cancer cell proliferation and growth in vitro, but it inhibits endothelial cell growth in vitro. It exerts the anti-tumor functions through antiangiogenesis in a paracrine way in vivo.
Collapse
Affiliation(s)
- Ding-Zhong Yang
- Department of Surgery, The First Hospital, Xi'an Jiaotong University, Xi'an 710065, Shaanxi Province, China.
| | | | | | | |
Collapse
|
474
|
Abstract
Hereditary origin of a tumor helps toward early discovery of its mutated gene; for example, it supports the compilation of a DNA panel from index cases to identify that gene by finding mutations in it. The gene for a hereditary tumor may contribute also to common tumors. For some syndromes, such as hereditary paraganglioma, several genes can cause a similar syndrome. For other syndromes, such as multiple endocrine neoplasia 2, one gene supports variants of a syndrome. Onset usually begins earlier and in more locations with hereditary than sporadic tumors. Mono- or oligoclonal ("clonal") tumor usually implies a postnatal delay, albeit less delay than for sporadic tumor, to onset and potential for cancer. Hormone excess from a polyclonal tissue shows onset at birth and no benefit from subtotal ablation of the secreting organ. Genes can cause neoplasms through stepwise loss of function, gain of function, or combinations of these. Polyclonal hormonal excess reflects abnormal gene dosage or effect, such as activation or haploinsufficiency. Polyclonal hyperplasia can cause the main endpoint of clinical expression in some syndromes or can be a precursor to clonal progression in others. Gene discovery is usually the first step toward clarifying the molecule and pathway mutated in a syndrome. Most mutated pathways in hormone excess states are only partly understood. The bases for tissue specificity of hormone excess syndromes are usually uncertain. In a few syndromes, tissue selectivity arises from mutation in the open reading frame of a regulatory gene (CASR, TSHR) with selective expression driven by its promoter. Polyclonal excess of a hormone is usually from a defect in the sensor system for an extracellular ligand (e.g., calcium, glucose, TSH). The final connections of any of these polyclonal or clonal pathways to hormone secretion have not been identified. In many cases, monoclonal proliferation causes hormone excess, probably as a secondary consequence of accumulation of cells with coincidental hormone-secretory ability.
Collapse
Affiliation(s)
- Stephen J Marx
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases/NIH, Building 10, Room 9C-101, 10 Center Drive, MSC 1802, Bethesda, MD 20892-1802, USA.
| | | |
Collapse
|
475
|
Karagiannis ED, Popel AS. Distinct modes of collagen type I proteolysis by matrix metalloproteinase (MMP) 2 and membrane type I MMP during the migration of a tip endothelial cell: insights from a computational model. J Theor Biol 2005; 238:124-45. [PMID: 16005020 DOI: 10.1016/j.jtbi.2005.05.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 04/18/2005] [Accepted: 05/04/2005] [Indexed: 01/03/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of enzymes responsible for the proteolytic processing of extracellular matrix (ECM) structural proteins under physiological and pathological conditions. During sprouting angiogenesis, the MMPs expressed by a single "tip" endothelial cell exhibit proteolytic activity that allows the cells of the sprouting vessel bud to migrate into the ECM. Membrane type I matrix metalloproteinase (MT1-MMP) and the diffusible matrix metalloproteinase MMP2, in the presence of the tissue inhibitor of metalloproteinases TIMP2, constitute a system of proteins that play an important role during the proteolysis of collagen type I matrices. Here, we have formulated a computational model to investigate the proteolytic potential of such a tip endothelial cell. The cell expresses MMP2 in its proenzyme form, pro-MMP2, as well as MT1-MMP and TIMP2. The interactions of the proteins are described by a biochemically detailed reaction network. Assuming that the rate-limiting step of the migration is the ability of the tip cell to carry out proteolysis, we have estimated cell velocities for matrices of different collagen content. The estimated velocities of a few microns per hour are in agreement with experimental data. At high collagen content, proteolysis was carried out primarily by MT1-MMP and localized to the cell leading edge, whereas at lower concentrations, MT1-MMP and MMP2 were found to act in parallel, causing proteolysis in the vicinity of the leading edge. TIMP2 is a regulator of the proteolysis localization because it can shift the activity of MT1-MMP from its enzymatic toward its activatory mode, suggesting a tight mechanosensitive regulation of the enzymes and inhibitor expression. The model described here provides a foundation for quantitative studies of angiogenesis in extracellular matrices of different compositions, both in vitro and in vivo. It also identifies critical parameters whose values are not presently available and which should be determined in future experiments.
Collapse
Affiliation(s)
- Emmanouil D Karagiannis
- Department of Biomedical Engineering, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA.
| | | |
Collapse
|
476
|
Abstract
Pathologic angiogenesis induced by a tumor is essential for its survival. The promise of tumor inhibition by targeting angiogenesis over the past several years has translated into numerous ongoing clinical trials. Recently, in a phase III trial involving patients with metastatic colorectal cancer, Bevacizumab (Genentech, Inc, San Francisco, CA), a recombinant humanized monoclonal antibody against vascular endothelial growth factor used in conjunction with standard chemotherapy was shown to increase survival, progression-free survival, response rate, and duration of response compared to chemotherapy alone. Thus far, duration of the increased response remains less than 6 months. The majority of deaths in patients with colorectal cancer are related to hepatic metastases. It is hoped that novel approaches directed at the complex interactions between tumor and microenvironment in the angiogenic process will strengthen the therapeutic armamentarium against hepatic malignancies.
Collapse
Affiliation(s)
- Shiva Sarraf-Yazdi
- Department of Surgery, Duke University Medical Center, DUMC, 3247, Durham, N.C. 27710, USA
| | | | | |
Collapse
|
477
|
Affiliation(s)
- Johanna A Joyce
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA.
| |
Collapse
|
478
|
Abstract
Multiple myeloma (MM) is a plasma cell malignancy characterized by an increase of the bone marrow angiogenesis. Angiopoietin-1 (Ang-1) is a critical factor in the regulation of physiological and pathological vessel formation that acts by binding to a specific receptor Tie2 expressed on endothelial cells. Recent evidences indicate that human MM cells produce Ang-1 and up-regulate its receptor Tie2 in bone marrow endothelial cells. An overexpression of Ang-1 has been also found in MM cells as compared to normal plasma cells. The correlation between Ang-1 expression and BM angiogenesis, demonstrated in MM patients, and the inhibitory effect of Tie2 blocking on MM-induced vessel formation suggest that Ang-1 production by MM cells is critically involved in the angiogenic process in MM. In this review we focalize our attention on Ang-1/Tie2 system and its role in MM-induced angiogenesis.
Collapse
Affiliation(s)
- Nicola Giuliani
- Multiple Myeloma Research Unit, Chair of Hematology and BMT Center, University of Parma, Italy.
| | | | | | | |
Collapse
|
479
|
Fechine-Jamacaru FV, Fechine Júnior JU, de Moraes Filho MO. [Model of inflammatory angiogenesis in rabbit cornea induced by punctual alkaline cauterization]. Acta Cir Bras 2005; 20:64-73. [PMID: 15810467 DOI: 10.1590/s0102-86502005000100010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE To establish a model of angiogenesis in rabbit cornea induced by punctual alkaline cauterization. METHODS Six rabbits were submitted to punctual cauterization in right cornea. It was used a circular piece (3 mm) of filter paper, that was previously soaked in 1 M NaOH and placed 1 mm from the superior limbus for 2 minutes. The animals were evaluated at 3, 6, 9, 12, 15, 18 and 21 days after cauterization. Quantification of angiogenesis was performed according to 4 methods: radial vessel length (V), angiogenic index (I), area of the triangle (T) and area of the circular band sector (S), which provide an approximation of the area of neovascularization. RESULTS The analysis of the quantitative data of angiogenesis showed that neovascular response progressed in a biphasic manner: rising between days 0 and 12 (proliferation), stable between days 12 and 21 (maturation). This pattern was observed on the values of the vascular growth mean rate. Between days 0 and 12, it was 16 times greater than that verified between days 12 and 21. It was found a statiscally significant positive linear correlation among the 4 methods of measurement of angiogenesis. CONCLUSION The punctual alkaline cauterization of the rabbit cornea induces and sustains corneal neovascularization, so that, it can be used as model of angiogenesis.
Collapse
Affiliation(s)
- Francisco Vagnaldo Fechine-Jamacaru
- Laboratório de Cirurgia Experimental (LABCEX) do Programa de Pós-Graduação Stricto Sensu em Cirurgia, Departamento de Cirurgia, Universidade Federal do Ceará (UFC)
| | | | | |
Collapse
|
480
|
Losso JN, Bawadi HA. Hypoxia inducible factor pathways as targets for functional foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:3751-68. [PMID: 15884793 DOI: 10.1021/jf0479719] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The etiology of most chronic angiogenic diseases such as rheumatoid arthritis, atherosclerosis, diabetes complications, and cancer includes the presence of pockets of hypoxic cells growing behind aerobic cells and away from blood vessels. Hypoxic cells are the result of uncontrolled growth and insufficient vascularization and have undergone a shift from aerobic to anaerobic metabolism. Cells respond to hypoxia by stimulating the expression of hypoxia inducible factor (HIF), which is critical for survival under hypoxic conditions and in embryogenesis. HIF is a heterodimer consisting of the O2-regulated subunit, HIF-1alpha, and the constitutively expressed aryl hydrocarbon receptor nuclear translocator, HIF-1beta. Under hypoxic conditions, HIF-1alpha is stable, accumulates, and migrates to the nucleus where it binds to HIF-1beta to form the complex (HIF-1alpha + HIF-1beta). Transcription is initiated by the binding of the complex (HIF-1alpha + HIF-1beta) to hypoxia responsive elements (HREs). The complex [(HIF-1alpha + HIF-1beta) + HREs] stimulates the expression of genes involved in angiogenesis, anaerobic metabolism, vascular permeability, and inflammation. Experimental and clinical evidence show that these hypoxic cells are the most aggressive and difficult angiogenic disease cells to treat and are a major reason for antiangiogenic and conventional treatment failure. Hypoxia occurs in early stages of disease development (before metastasis), activates angiogenesis, and stimulates vascular remodeling. HIF-1alpha has also been identified under aerobic conditions in certain types of cancer. This review summarizes the role of hypoxia in some chronic degenerative angiogenic diseases and discusses potential functional foods to target the HIF-1alpha pathways under hypoxic and normoxic conditions. It is reported that dietary quinones, semiquinones, phenolics, vitamins, amino acids, isoprenoids, and vasoactive compounds can down-regulate the HIF-1 pathways and therefore the expression of several proangiogenic factors. Considering the lack of efficiency or the side effects of synthetic antiangiogenic drugs at clinical trials, down-regulation of hypoxia-induced angiogenesis by use of naturally occurring functional foods may provide an effective means of prevention.
Collapse
Affiliation(s)
- Jack N Losso
- Food Protein Biotechnology Laboratory, Department of Food Science, Louisiana State University Agricultural Center, 111 Food Science Building, Baton Rouge, Louisiana 70803, USA.
| | | |
Collapse
|
481
|
Abstract
Angiogenesis is the hallmark of cancer. Growing evidence indicates that an imbalance between pro- and anti-angiogenic molecules triggers the angiogenic switch during tumor progression. Several molecules, able to affect vascular formation and function, are now beginning to be elucidated. Recent data indicate that angiogenesis also occurs in hematological malignancies. In multiple myeloma it has been demonstrated that patients with active disease have an increase in bone marrow angiogenesis correlated with the progression of disease and an adverse prognosis. The pathophysiology of myeloma-induced angiogenesis is complex and involves either the direct production of angiogenic molecules by myeloma cells or their induction in the microenvironment. In this review we have focalized our attention on the main factors involved in the angiogenic switch that occurs in MM patients.
Collapse
Affiliation(s)
- Nicola Giuliani
- Chair of Hematology and BMT Center, University of Parma, Parma, Italy.
| | | | | |
Collapse
|
482
|
Bordel R, Laschke MW, Menger MD, Vollmar B. Inhibition of p53 during physiological angiogenesis in the hamster ovary does not affect extent of new vessel formation but delays vessel maturation. Cell Tissue Res 2005; 320:427-35. [PMID: 15856310 DOI: 10.1007/s00441-005-1078-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Accepted: 12/21/2004] [Indexed: 12/16/2022]
Abstract
Transcription factor p53 regulates the cell cycle and apoptosis and may impair angiogenesis by the deregulation of pro-angiogenic factors and the activation of anti-angiogenic factors. Our aim has been to elucidate further the role of p53 in physiological angiogenesis. By treating hamsters with the wildtype p53 inhibitor pifithrin-alpha (PFT) versus equivalent volumes of the vehicle dimethylsulfoxide, we showed a reduced p53 tissue protein level, a reduction of poly(ADP-ribose) polymerase and cleaved caspase-3 products, and a slightly increased proliferation of cell nuclear antigen and cyclin D1 by Western blot protein analysis of ovarian tissue. PFT further increased platelet-derived growth factor and did not influence vascular endothelial growth factor in female reproductive tissue. Despite these differences in tissue levels of proteins potentially involved in angiogenesis, in vivo fluorescence-microscopic analysis of freely transplanted ovarian follicles revealed comparable kinetics and an extent of revascularization with almost identical densities of network microvessels in both groups. However, follicles of PFT-treated animals exhibited enlarged diameters and higher volumetric blood flow within the newly formed microvessels. Less-dense basement membranes with unclear laminar structure and only a loose contact of pericytes to endothelial cells were also occasionally found, providing evidence of delayed maturation and impaired diameter control of microvessels. Thus, inhibition of wildtype p53 during physiological angiogenesis does not affect the extent of new vessel formation but may delay the maturation of newly formed microvessels.
Collapse
Affiliation(s)
- R Bordel
- Department of Experimental Surgery, University of Rostock, Schillingallee 70, 18055, Rostock, Germany
| | | | | | | |
Collapse
|
483
|
Tsuneki H, Ma EL, Kobayashi S, Sekizaki N, Maekawa K, Sasaoka T, Wang MW, Kimura I. Antiangiogenic activity of β-eudesmol in vitro and in vivo. Eur J Pharmacol 2005; 512:105-15. [PMID: 15840394 DOI: 10.1016/j.ejphar.2005.02.035] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 02/16/2005] [Accepted: 02/22/2005] [Indexed: 12/27/2022]
Abstract
Abnormal angiogenesis is implicated in various diseases including cancer and diabetic retinopathy. In this study, we examined the effect of beta-eudesmol, a sesquiterpenoid alcohol isolated from Atractylodes lancea rhizome, on angiogenesis in vitro and in vivo. Proliferation of porcine brain microvascular endothelial cells and human umbilical vein endothelial cells (HUVEC) was inhibited by beta-eudesmol (50-100 microM). It also inhibited the HUVEC migration stimulated by basic fibroblast growth factor (bFGF) and the tube formation by HUVEC in Matrigel. beta-eudesmol (100 microM) blocked the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 induced by bFGF or vascular endothelial growth factor. Furthermore, beta-eudesmol significantly inhibited angiogenesis in subcutaneously implanted Matrigel plugs in mice and in adjuvant-induced granuloma in mice. These results indicate that beta-eudesmol inhibits angiogenesis, at least in part, through the blockade of the ERK signaling pathway. We considered that beta-eudesmol may aid the development of drugs to treat angiogenic diseases.
Collapse
Affiliation(s)
- Hiroshi Tsuneki
- Department of Clinical Pharmacology, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
484
|
Kishimoto K, Liu S, Tsuji T, Olson KA, Hu GF. Endogenous angiogenin in endothelial cells is a general requirement for cell proliferation and angiogenesis. Oncogene 2005; 24:445-56. [PMID: 15558023 DOI: 10.1038/sj.onc.1208223] [Citation(s) in RCA: 250] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Angiogenin is an angiogenic protein that undergoes nuclear translocation in endothelial cells where it accumulates in the nucleolus and stimulates rRNA transcription, a rate-limiting step in ribosome biogenesis, protein translation, and cell growth. Here, we report that angiogenin is required for cell proliferation induced by various other angiogenic proteins including acidic and basic fibroblast growth factors (aFGF and bFGF), epidermal growth factor (EGF), and vascular endothelial growth factor (VEGF). Downregulation of angiogenin in endothelial cells by small interfering RNA (siRNA) and antisense results in a decrease in rRNA transcription, ribosome biogenesis, and cell proliferation induced by these angiogenic factors. Inhibitors of the nuclear translocation of angiogenin abolish the angiogenic activities of these factors. Stable angiogenin antisense transfection in HeLa cells reduces tumor angiogenesis in athymic mice despite the elevated expression level of bFGF and VEGF. Thus, nuclear angiogenin assumes an essential role in endothelial cell proliferation and is necessary for angiogenesis induced by other angiogenic factors. Angiogenin-stimulated rRNA transcription in endothelial cells may thus serve as a crossroad in the process of angiogenesis induced by various angiogenic factors.
Collapse
MESH Headings
- Angiogenesis Inducing Agents
- Base Sequence
- Cell Division/physiology
- Cells, Cultured
- DNA Primers
- Endothelium, Vascular/cytology
- Gene Expression Regulation, Neoplastic
- HeLa Cells
- Humans
- Neovascularization, Pathologic/physiopathology
- Neovascularization, Physiologic/physiology
- Oligonucleotides, Antisense
- RNA, Small Interfering/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Ribonuclease, Pancreatic/genetics
- Ribonuclease, Pancreatic/physiology
- Transcription, Genetic
- Umbilical Veins
Collapse
Affiliation(s)
- Koji Kishimoto
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 930, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
485
|
Gustavsson H, Welén K, Damber JE. Transition of an androgen-dependent human prostate cancer cell line into an androgen-independent subline is associated with increased angiogenesis. Prostate 2005; 62:364-73. [PMID: 15389782 DOI: 10.1002/pros.20145] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Androgen-independent prostate cancer is today an incurable disease, but increased understanding of the mechanisms for the transition into an androgen-independent state may increase the possibilities for more efficient strategies in the future. METHODS An androgen-independent subline, LNCaP-19, to the androgen-dependent prostate cancer cell line LNCaP was developed in vitro under standard culture conditions. The characteristics of LNCaP-19 regarding androgen responsiveness, PSA, and VEGF secretion was studied in vitro. The growth in vivo and the microvessel density (MVD) of the tumors were studied after inoculation in nude mice. RESULTS LNCaP-19 grows equally well in dextran-charcoal stripped FBS (DCC-FBS) as in normal FBS, and rapidly gives rise to tumors in both intact and castrated mice, indicating a true androgen-independent growth. The PSA secretion from LNCaP-19 cells was lower than from LNCaP cells, while the VEGF level was comparable to the secretion from LNCaP cells without androgen stimulation. The MVD was increased in the LNCaP-19 tumors, and the vessels also displayed a changed morphology with exclusively small microvessels without lumen. CONCLUSIONS LNCaP-19 shows characteristics resembling those of androgen-independent prostate cancer. An increased MVD and changed vessel morphology in the tumor, makes it an interesting model system for studies regarding angiogenesis in the context of the acquisition of androgen independence.
Collapse
Affiliation(s)
- Heléne Gustavsson
- Department of Urology, Institution for the Surgical Sciences, Göteborg University, Göteborg, Sweden
| | | | | |
Collapse
|
486
|
Ansiaux R, Baudelet C, Jordan BF, Beghein N, Sonveaux P, De Wever J, Martinive P, Grégoire V, Feron O, Gallez B. Thalidomide Radiosensitizes Tumors through Early Changes in the Tumor Microenvironment. Clin Cancer Res 2005. [DOI: 10.1158/1078-0432.743.11.2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
Purpose: The aim of this work was to study changes in the tumor microenvironment early after an antiangiogenic treatment using thalidomide (a promising angiogenesis inhibitor in a variety of cancers), with special focus on a possible “normalization” of the tumor vasculature that could be exploited to improve radiotherapy.
Experimental Design: Tumor oxygenation, perfusion, permeability, interstitial fluid pressure (IFP), and radiation sensitivity were studied in an FSAII tumor model. Mice were treated by daily i.p. injection of thalidomide at a dose of 200 mg/kg. Measurements of the partial pressure of oxygen (pO2) were carried out using electron paramagnetic resonance oximetry. Three complementary techniques were used to assess the blood flow inside the tumor: dynamic contrast-enhanced magnetic resonance imaging, Patent Blue staining, and laser Doppler imaging. IFP was measured by a “wick-in-needle” technique.
Results: Our results show that thalidomide induces tumor reoxygenation within 2 days. This reoxygenation is correlated with a reduction in IFP and an increase in perfusion. These changes can be attributed to extensive vascular remodeling that we observed using CD31 labeling.
Conclusions: In summary, the microenvironmental changes induced by thalidomide were sufficient to radiosensitize tumors. The fact that thalidomide radiosensitization was not observed in vitro, and that in vivo radiosensitization occurred in a narrow time window, lead us to believe that initial vascular normalization by thalidomide accounts for tumor radiosensitization.
Collapse
Affiliation(s)
| | - Christine Baudelet
- 1Biomedical Magnetic Resonance, Laboratories of
- 2Medicinal Chemistry and Radiopharmacy, and
| | - Bénédicte F. Jordan
- 1Biomedical Magnetic Resonance, Laboratories of
- 2Medicinal Chemistry and Radiopharmacy, and
| | - Nelson Beghein
- 1Biomedical Magnetic Resonance, Laboratories of
- 2Medicinal Chemistry and Radiopharmacy, and
| | | | | | | | - Vincent Grégoire
- 4Radiobiology and Radioprotection Unit, Université Catholique de Louvain, Brussels, Belgium
| | | | - Bernard Gallez
- 1Biomedical Magnetic Resonance, Laboratories of
- 2Medicinal Chemistry and Radiopharmacy, and
| |
Collapse
|
487
|
Ria R, Portaluri M, Russo F, Cirulli T, Di Pietro G, Bambace S, Cucci F, Romano T, Vacca A, Dammacco F. Serum levels of angiogenic cytokines decrease after antineoplastic radiotherapy. Cancer Lett 2004; 216:103-7. [PMID: 15500953 DOI: 10.1016/j.canlet.2004.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Accepted: 05/27/2004] [Indexed: 01/08/2023]
Abstract
Serum levels of angiogenic cytokines decrease after radiotherapy in patients with cancer and their may have an impact on response to treatment and progression-free survival. Here, we have evaluated sera of patients before and after radiotherapy for various tumour types for levels of soluble fibroblast growth factor-2 (FGF-2), vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) to assess whether these factors decrease after radiotherapy, and whether their diminution is related to the radiation dose, tumour type, age and haemoglobin level. We demonstrate that levels of FGF-2 and VEGF, but not HGF, decrease significantly, and that the extent of their diminution is related to the radiation dose and response.
Collapse
Affiliation(s)
- Roberto Ria
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari, Policlinico, Piazza Giulio Cesare 11, I-70124 Bari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
488
|
Michaud-Levesque J, Rolland Y, Demeule M, Bertrand Y, Béliveau R. Inhibition of endothelial cell movement and tubulogenesis by human recombinant soluble melanotransferrin: involvement of the u-PAR/LRP plasminolytic system. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1743:243-53. [PMID: 15843038 DOI: 10.1016/j.bbamcr.2004.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 09/23/2004] [Accepted: 10/14/2004] [Indexed: 01/01/2023]
Abstract
We have previously demonstrated that human recombinant soluble melanotransferrin (hr-sMTf) interacts with the single-chain zymogen pro urokinase-type plasminogen activator (scu-PA) and plasminogen. In the present work, the impact of exogenous hr-sMTf on endothelial cells (EC) migration and morphogenic differentiation into capillary-like structures (tubulogenesis) was assessed. hr-sMTF at 10 nM inhibited by 50% the migration and tubulogenesis of human microvessel EC (HMEC-1). In addition, in hr-sMTf-treated HMEC-1, the expression of both urokinase-type plasminogen activator receptor (u-PAR) and low-density lipoprotein receptor-related protein (LRP) are down-regulated. However, fluorescence-activated cell sorting analysis revealed a 25% increase in cell surface u-PAR in hr-sMTf-treated HMEC-1, whereas the binding of the urokinase-type plasminogen activator (u-PA)*plasminogen activator inhibitor-1 (PAI-1) complex is decreased. This reduced u-PA-PAI-1 binding is correlated with a strong inhibition of the HMEC-1 plasminolytic activity, indicating that exogenous hr-sMTf treatment alters the internalization and recycling processes of free and active u-PAR at the cellular surface. Overall, these results demonstrate that exogenous hr-sMTf affects plasminogen activation at the cell surface, thus leading to the inhibition of EC movement and tubulogenesis. These results are the first to consider the potential use of hr-sMTf as a possible therapeutic agent in angiogenesis-related pathologies.
Collapse
Affiliation(s)
- Jonathan Michaud-Levesque
- Laboratoire de Médecine Moléculaire, Service d'Hémato-Oncologie, Hôpital Ste-Justine-UQAM, C.P. 8888, Succursale Centre-ville, Montréal, Québec, Canada H3C 3P8
| | | | | | | | | |
Collapse
|
489
|
Abstract
A review of adipose tissue angiogenesis includes the morphological and cytochemical development of adipose tissue vasculature and the concept of primitive fat organs. Spatial and temporal relationships between fetal vascular and fat cell development are discussed, including depot- and genetic-dependent arteriolar differentiation. The relationship between connective tissue deposition and elaboration of adipose tissue vasculature is discussed with respect to regulating adipocyte development in a depot-dependent manner. In vitro studies indicated that depot-dependent vascular traits may be attributable to intrinsic growth characteristics of adipose tissue endothelial cells. These studies indicate that adipogenesis may be regulated by factors that drive angiogenesis. Fundamental aspects of angiogenesis, including basement membrane breakdown, vasculogenesis, angiogenic remodeling, vessel stabilization, and vascular permeability were reviewed. Critical angiogenic factors include vascular endothelial growth factor (VEGF), VEGF receptors, angiopoietins (Ang), ephrins, matrix metalloproteinases, and the plasminogen enzymatic system. Vascular endothelial growth factor is the most critical factor because it initiates the formation of immature vessels and disruption of a single VEGF allele leads to embryonic lethality in mice. Expression of VEGF is influenced by hypoxia, insulin, growth factors, and several cytokines. Angiogenic factors secreted and/or produced by adipocytes or preadipocytes are discussed. Vascular endothelial growth factor expression and secretion by adipocytes is regulated by insulin and hypoxia, and is associated with adipose tissue accretion. Vascular endothelial growth factor accounts for most of the angiogenic activity of adipose tissue. The proposed role of leptin as an adipogenic factor is reviewed with respect to efficacy on various aspects of angiogenesis relative to other angiogenic factors. The VEGF and leptin genes are both hypoxia inducible, but potential links between VEGF and leptin gene expression have not been examined. Finally, several studies including a study of mice treated with antiangiogenic factors indicate that adipose tissue accretion can be controlled through the vasculature per se.
Collapse
Affiliation(s)
- G J Hausman
- USDA-ARS, Richard B. Russell Agricultural Research Center, Animal Physiology Research Unit, Athens, GA 30605-2720, USA.
| | | |
Collapse
|
490
|
Plank MJ, Sleeman BD, Jones PF. A mathematical model of tumour angiogenesis, regulated by vascular endothelial growth factor and the angiopoietins. J Theor Biol 2004; 229:435-54. [PMID: 15246783 DOI: 10.1016/j.jtbi.2004.04.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2003] [Revised: 04/05/2004] [Accepted: 04/08/2004] [Indexed: 01/04/2023]
Abstract
Angiogenesis--the growth of new blood vessels from existing ones--is a prerequisite for the growth of solid tumours beyond a diameter of approximately 2 mm. In recent years, the angiopoietins have emerged as important regulators of angiogenesis. They mediate a delicate balance between vascular quiescence, regression and new growth, but their mechanism of action is not fully understood. This work attempts to provide a mathematical description of the role of the angiopoietins in angiogenesis. The model is formulated within the framework of reinforced random walks, which allows easy transition between the continuum (macroscopic) and discrete (microscopic) forms. Model predictions are in qualitative agreement with experimental observations, and may have implications for anti-cancer therapies based on the prevention of angiogenesis.
Collapse
Affiliation(s)
- M J Plank
- School of Mathematics, University of Leeds, Leeds LS2 9JT, UK.
| | | | | |
Collapse
|
491
|
Streubel B, Chott A, Huber D, Exner M, Jäger U, Wagner O, Schwarzinger I. Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas. N Engl J Med 2004; 351:250-9. [PMID: 15254283 DOI: 10.1056/nejmoa033153] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The growth of most tumors depends on the formation of new blood vessels. In contrast to genetically unstable tumor cells, the endothelial cells of tumor vessels are considered to be normal diploid cells that do not acquire mutations. METHODS Using a combined immunohistochemical and fluorescence in situ hybridization assay, we examined the endothelial cells in 27 B-cell lymphomas for cytogenetic alterations that are known to be present in the lymphoma cells. RESULTS We found that 15 to 85 percent (median, 37 percent) of the microvascular endothelial cells in the B-cell lymphomas harbored lymphoma-specific chromosomal translocations. In addition, numerical chromosomal aberrations were shared by the lymphoma cells and the endothelial cells. CONCLUSIONS Our findings suggest that microvascular endothelial cells in B-cell lymphomas are in part tumor-related and therefore reflect a novel aspect of tumor angiogenesis.
Collapse
Affiliation(s)
- Berthold Streubel
- Institutes of Pathology, Center of Excellence in Clinical and Experimental Oncology, Lymphoma Program, Medical University of Vienna, Vienna General Hospital, Vienna
| | | | | | | | | | | | | |
Collapse
|
492
|
Gong YQ, Fan Y, Wu DZ, Yang H, Hu ZB, Wang ZT. In vivo and in vitro evaluation of erianin, a novel anti-angiogenic agent. Eur J Cancer 2004; 40:1554-65. [PMID: 15196540 DOI: 10.1016/j.ejca.2004.01.041] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Accepted: 01/12/2004] [Indexed: 01/31/2023]
Abstract
This study evaluated the anti-angiogenic activities of erianin in vivo and in vitro. Erianin, a natural product from Dendrobium chrysotoxum, caused moderate growth delay in xenografted human hepatoma Bel7402 and melanoma A375 and induced significant vascular shutdown within 4 h of administering 100 mg/kg of the drug. Erianin also displayed potent anti-angiogenic activities in vitro: it abrogated spontaneous or basic fibroblast growth factor-induced neovascularisation in chick embryo; it inhibited proliferation of human umbilical vein endothelial cells (EC(50) 34.1+/-12.7 nM), disrupted endothelial tube formation, and abolished migration across collagen and adhesion to fibronectin. Erianin also exerted selective inhibition toward endothelial cells, and quiescent endothelium showed more resistance than in proliferative and tumour conditions. In a cytoskeletal study, erianin depolymerised both F-actin and beta-tubulin, more significantly in proliferating endothelial cells than in confluent cells. In conclusion, erianin caused extensive tumour necrosis, growth delay and rapid vascular shutdown in hepatoma and melanoma models; it inhibited angiogenesis in vivo and in vitro and induced endothelial cytoskeletal disorganisation. These findings suggest that erianin has the therapeutic potential to inhibit angiogenesis in vivo and in vitro.
Collapse
Affiliation(s)
- Y-Q Gong
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, PR China
| | | | | | | | | | | |
Collapse
|
493
|
Nelson DK, Williams T. Frontonasal process-specific disruption of AP-2alpha results in postnatal midfacial hypoplasia, vascular anomalies, and nasal cavity defects. Dev Biol 2004; 267:72-92. [PMID: 14975718 DOI: 10.1016/j.ydbio.2003.10.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Revised: 10/23/2003] [Accepted: 10/28/2003] [Indexed: 11/24/2022]
Abstract
A majority of the bones of the vertebrate cranial vault and craniofacial complex develop via intramembranous ossification, and are separated by fibrous sutures that undergo osteogenic differentiation in response to growth stimuli. Craniosynostosis is a common human birth defect that results from the premature bony fusion within skull sutures, and causes a myriad of complications including mental retardation and craniofacial anomalies. Synostosis of facial sutures has been reported to cause midfacial hypoplasia in some craniosynostosis cases, but most studies focus on cranial vault sutures. In this study, we have generated a mouse model of frontonasal suture synostosis and midfacial hypoplasia through the tissue-specific elimination of the AP-2alpha transcription factor. We report here the generation AP-2CRE, a frontonasal process (FNP)- and limb-specific CRE recombinase allele that is directed by human AP-2alpha promoter and enhancer elements. We used the AP-2CRE line in combination with the conditional AP-2alpha line to produce a new frontonasal knockout (FKO) mutant that lacks AP-2alpha in the FNP and limbs. FKO mice exhibit shortened snouts and wide-set eyes that become apparent at postnatal day 15. The most prominent defects in FKO snouts are (1) a lack of growth within the frontonasal sutures, and (2) a reduction in the snout vasculature. Additional defects are observed in the FKO nasal bones and sutures, the nasal cavity cartilage and bony projections, and the olfactory epithelium. The characteristics of the FKO mouse model are a unique combination of midfacial growth anomalies, and provide the first evidence that AP-2alpha is essential for appropriate postnatal craniofacial morphogenesis.
Collapse
Affiliation(s)
- D K Nelson
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
494
|
Oh P, Li Y, Yu J, Durr E, Krasinska KM, Carver LA, Testa JE, Schnitzer JE. Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 2004; 429:629-35. [PMID: 15190345 DOI: 10.1038/nature02580] [Citation(s) in RCA: 359] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Accepted: 04/19/2004] [Indexed: 12/24/2022]
Abstract
The molecular complexity of tissues and the inaccessibility of most cells within a tissue limit the discovery of key targets for tissue-specific delivery of therapeutic and imaging agents in vivo. Here, we describe a hypothesis-driven, systems biology approach to identifying a small subset of proteins induced at the tissue-blood interface that are inherently accessible to antibodies injected intravenously. We use subcellular fractionation, subtractive proteomics and bioinformatics to identify endothelial cell surface proteins exhibiting restricted tissue distribution and apparent tissue modulation. Expression profiling and gamma-scintigraphic imaging with antibodies establishes two of these proteins, aminopeptidase-P and annexin A1, as selective in vivo targets for antibodies in lungs and solid tumours, respectively. Radio-immunotherapy to annexin A1 destroys tumours and increases animal survival. This analytical strategy can map tissue- and disease-specific expression of endothelial cell surface proteins to uncover novel accessible targets useful for imaging and therapy.
Collapse
Affiliation(s)
- Phil Oh
- Sidney Kimmel Cancer Center, 10835 Altman Row, San Diego, California 92121, USA
| | | | | | | | | | | | | | | |
Collapse
|
495
|
Lu J, Kunimoto S, Yamazaki Y, Kaminishi M, Esumi H. Kigamicin D, a novel anticancer agent based on a new anti-austerity strategy targeting cancer cells' tolerance to nutrient starvation. Cancer Sci 2004; 95:547-52. [PMID: 15182438 PMCID: PMC11158080 DOI: 10.1111/j.1349-7006.2004.tb03247.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 04/10/2004] [Accepted: 04/21/2004] [Indexed: 11/29/2022] Open
Abstract
Both tolerance to nutrient starvation and angiogenesis are essential for cancer progression because of the insufficient supply of nutrients to tumor tissue. Since chronic nutrient starvation seldom occurs in normal tissue, cancer's tolerance to nutrient starvation should provide a novel target for cancer therapy. In this study, we propose an anti-austerity strategy to exploit the ability of agents to eliminate cancer cells' tolerance to nutrient starvation. We established a simple screening method for agents that inhibit cancer cell viability preferentially during nutrient starvation, using PANC-1 cell line cultured in nutrient-rich and nutrient-deprived media. After screening over 2000 culture media of actinomycetes, we identified a new compound, kigamicin D (C(48)H(59)NO(19)), which shows preferential cytotoxicity to cancer cells under nutrient-deprived conditions, but hardly any cytotoxicity under nutrient-rich conditions. Both subcutaneous and oral administration of kigamicin D strongly suppressed the tumor growth of several tested pancreatic cancer cell lines in nude mice. Moreover, kigamicin D was observed to block the activation of Akt induced by nutrient starvation. Therefore, our results suggest that kigamicin D be a candidate for implementing our novel concept, anti-austerity, which may serve as a new strategy for cancer therapy.
Collapse
Affiliation(s)
- Jie Lu
- Investigative Treatment Division, National Cancer Center Research Institute East, Chiba 277-8577, Japan
| | | | | | | | | |
Collapse
|
496
|
Dixelius J, Jakobsson L, Genersch E, Bohman S, Ekblom P, Claesson-Welsh L. Laminin-1 Promotes Angiogenesis in Synergy with Fibroblast Growth Factor by Distinct Regulation of the Gene and Protein Expression Profile in Endothelial Cells. J Biol Chem 2004; 279:23766-72. [PMID: 15044497 DOI: 10.1074/jbc.m311675200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Laminins are widely distributed extracellular matrix proteins. Certain laminin isoforms are predominant in vascular basement membranes and may be critical in maintaining the stability of the mature vessel. On the other hand, formation of new vessels during angiogenesis requires degradation of the basement membrane, exposing the endothelial cells to other laminin isoforms in the surrounding extracellular matrix. We studied the effects of laminin-1 (LN-1) in different in vitro and in vivo models for angiogenesis. LN-1 induced angiogenesis in the chicken chorioallantoic membrane to the same extent as fibroblast growth factor-2 (FGF-2), and vascular development in embryoid bodies was stimulated in a synergistic manner by FGF-2 and LN-1. LN-1 promoted differentiation of endothelial cells in three-dimensional collagen gels, both in the absence and presence of FGF-2. Formation of tubular structures induced by LN-1 was accompanied by increased expression of Jagged-1, a marker of endothelial differentiation, and increased levels of FGF-2 and FGFR-1 transcripts. LN-1 did not regulate signal transduction pathways known to operate down stream of FGF-2. Thus, phosphorylation of ERK was detected in FGF-2- but not in LN-1-treated cells. Taken together, this suggests that laminins may play a fundamental role in angiogenesis by directly affecting gene and protein expression profiles in endothelial cells.
Collapse
Affiliation(s)
- Johan Dixelius
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsvaüg 20, S-751 85 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
497
|
Hughes GC, Biswas SS, Yin B, Coleman RE, DeGrado TR, Landolfo CK, Lowe JE, Annex BH, Landolfo KP. Therapeutic angiogenesis in chronically ischemic porcine myocardium: comparative effects of bFGF and VEGF. Ann Thorac Surg 2004; 77:812-8. [PMID: 14992878 DOI: 10.1016/j.athoracsur.2003.09.060] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/08/2003] [Indexed: 12/16/2022]
Abstract
BACKGROUND Both vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) have been used in preclinical studies to induce new blood vessel growth in ischemic cardiac muscle with promising results. However, clinical trials have been much less convincing and further work is needed. This study expands on prior work by comparing the long-term proangiogenic effects of direct intramyocardial (IM) injection of bFGF, as well as IM and intravenous (IV) VEGF in a porcine model of chronic hibernating myocardium. METHODS Mini-swine with proximal 90% left circumflex (LCx) coronary stenosis subtending chronically ischemic, viable (hibernating) myocardium by positron emission tomography (PET) and dobutamine stress echocardiography (DSE) were randomized to IM bFGF (n = 5), IM VEGF(165) (n = 5), IV VEGF(165) (n = 5), IM vehicle (n = 5), or sham redo-thoracotomy (n = 4). The bFGF protein was administered in a total dose of 1.35 microg divided into 30 IM injections. IM VEGF(165) protein was administered in a total dose of 15 microg/kg divided into 30 injections; IV VEGF(165) was given at a dose of 50 ng. kg(-1). min(-1) for 200 minutes at three 72-hour intervals (30 microg/kg total dose). After 3 and 6 months the PET and DSE studies were repeated, and the animals were sacrificed for tissue vascular density and angiogenic protein analysis. RESULTS Myocardial blood flow (MBF) by PET was significantly improved 3 months posttreatment in the IM bFGF and IM VEGF(165) groups, differences that were sustained at 6 months. There was no significant increase in MBF 3-months posttreatment in the IV VEGF(165) group; however, at 6 months MBF was significantly improved. No change in MBF was seen in the IM vehicle or sham groups. Regional wall motion at rest and peak stress in the LCx region demonstrated small but statistically significant improvements by 6 months in the IM bFGF and IV VEGF(165) groups only; no improvement was seen in the IM VEGF(165), IM vehicle, or sham groups. Quantitative vascular density was significantly increased in the LCx regions of all treatment groups (IM bFGF, IM VEGF(165), IV VEGF(165)) 6-months postoperatively. No significant increase in LCx region myocardial bFGF or VEGF protein levels was seen in the treated animals at 6 months. CONCLUSIONS The IM bFGF, IM VEGF(165), and IV VEGF(165) all improve regional perfusion and vascular density 6-months posttherapy in the animal model utilized. Functional improvements were less consistent. Both bFGF and VEGF(165) may be useful therapies for improving regional perfusion in chronically ischemic myocardium, although combination therapy with additional growth factors or cellular therapies may be necessary if concomitant improvements in function are to be seen.
Collapse
Affiliation(s)
- G Chad Hughes
- Departments of Surgery and Medicine, Divisions of Cardiovascular and Thoracic Surgery, Duke University Medical Center, Durham, NC, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
498
|
Mycielska ME, Djamgoz MBA. Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease. J Cell Sci 2004; 117:1631-9. [PMID: 15075225 DOI: 10.1242/jcs.01125] [Citation(s) in RCA: 239] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Endogenous direct-current electric fields (dcEFs) occur in vivo in the form of epithelial transcellular potentials or neuronal field potentials, and a variety of cells respond to dcEFs in vitro by directional movement. This is termed galvanotaxis. The passive influx of Ca2+ on the anodal side should increase the local intracellular Ca2+ concentration, whereas passive efflux and/or intracellular redistribution decrease the local intracellular Ca2+ concentration on the cathodal side. These changes could give rise to `push-pull' effects, causing net movement of cells towards the cathode. However, such effects would be complicated in cells that possess voltage-gated Ca2+ channels and/or intracellular Ca2+ stores. Moreover, voltage-gated Na+ channels, protein kinases, growth factors, surface charge and electrophoresis of proteins have been found to be involved in galvanotaxis. Galvanotactic mechanisms might operate in both the short term (seconds to minutes) and the long term (minutes to hours), and recent work has shown that they might be involved in metastatic disease. The galvanotactic responses of strongly metastatic prostate and breast cancer cells are much more prominent, and the cells move in the opposite direction compared with corresponding weakly metastatic cells. This could have important implications for the metastatic process and has clinical implications. Galvanotaxis could thus play a significant role in both cellular physiology and pathophysiology.
Collapse
Affiliation(s)
- Maria E Mycielska
- Department of Biological Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London, SW7 2AZ, UK
| | | |
Collapse
|
499
|
|
500
|
Mantzaris NV, Webb S, Othmer HG. Mathematical modeling of tumor-induced angiogenesis. J Math Biol 2004; 49:111-87. [PMID: 15293017 DOI: 10.1007/s00285-003-0262-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2003] [Indexed: 01/06/2023]
Affiliation(s)
- Nikos V Mantzaris
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|