451
|
Boivin N, Menasria R, Piret J, Rivest S, Boivin G. The combination of valacyclovir with an anti-TNF alpha antibody increases survival rate compared to antiviral therapy alone in a murine model of herpes simplex virus encephalitis. Antiviral Res 2014; 100:649-53. [PMID: 24416771 DOI: 10.1016/j.antiviral.2013.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The added benefit of combining valacyclovir (VACV), an antiviral agent, with etanercept (ETA), an anti-tumor necrosis factor alpha (TNF-α) antibody, for the treatment of herpes simplex virus type 1 (HSV-1) encephalitis (HSE) was evaluated in a mouse model. BALB/c mice were infected intranasally with 1.85 × 104 plaque forming units of HSV-1. Groups of mice received a single intraperitoneal injection of vehicle or ETA (400 μg/mouse) on day 3 post-infection combined or not with VACV (1 mg/ml of drinking water) from days 3 to 21 post-infection. On day 5 post-infection, groups of mice were sacrificed for determination of viral DNA load, detection of ETA in brain homogenates and for in situ hybridization. The survival rate of mice was significantly increased when VACV was administered in combination with ETA (38.5% for VACV vs 78.6% for combined treatment; P = 0.04) although VACV or ETA alone had no significant effect compared to the vehicle. The benefit of combined therapy was still present when treatment was delayed until day 4 post-infection. The viral DNA load was significantly reduced in mice treated with VACV alone (P < 0.01) or combined with ETA (P < 0.05) compared to the uninfected group whereas ETA alone had no effect. These results reinforce the notion that both virus-induced and immune-related mechanisms participate in the pathogenesis of HSE and suggest that potent antiviral agent could be combined with immune-based therapy, such as a TNF-α inhibitor, to improve prognosis of HSE.
Collapse
Affiliation(s)
- Nicolas Boivin
- Research Centers in Infectious Diseases CHUQ-CHUL and Laval University, Quebec City, QC, Canada
| | - Rafik Menasria
- Research Centers in Infectious Diseases CHUQ-CHUL and Laval University, Quebec City, QC, Canada
| | - Jocelyne Piret
- Research Centers in Infectious Diseases CHUQ-CHUL and Laval University, Quebec City, QC, Canada
| | - Serge Rivest
- Research Centers in Infectious Diseases CHUQ-CHUL and Laval University, Quebec City, QC, Canada
| | - Guy Boivin
- Research Centers in Infectious Diseases CHUQ-CHUL and Laval University, Quebec City, QC, Canada.
| |
Collapse
|
452
|
Romero-Ramos M, von Euler Chelpin M, Sanchez-Guajardo V. Vaccination strategies for Parkinson disease: induction of a swift attack or raising tolerance? Hum Vaccin Immunother 2014; 10:852-67. [PMID: 24670306 DOI: 10.4161/hv.28578] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Parkinson disease is the second most common neurodegenerative disease in the world, but there is currently no available cure for it. Current treatments only alleviate some of the symptoms for a few years, but they become ineffective in the long run and do not stop the disease. Therefore it is of outmost importance to develop therapeutic strategies that can prevent, stop, or cure Parkinson disease. A very promising target for these therapies is the peripheral immune system due to its probable involvement in the disease and its potential as a tool to modulate neuroinflammation. But for such strategies to be successful, we need to understand the particular state of the peripheral immune system during Parkinson disease in order to avoid its weaknesses. In this review we examine the available data regarding how dopamine regulates the peripheral immune system and how this regulation is affected in Parkinson disease; the specific cytokine profiles observed during disease progression and the alterations documented to date in patients' peripheral blood mononuclear cells. We also review the different strategies used in Parkinson disease animal models to modulate the adaptive immune response to salvage dopaminergic neurons from cell death. After analyzing the evidence, we hypothesize the need to prime the immune system to restore natural tolerance against α-synuclein in Parkinson disease, including at the same time B and T cells, so that T cells can reprogram microglia activation to a beneficial pattern and B cell/IgG can help neurons cope with the pathological forms of α-synuclein.
Collapse
Affiliation(s)
- Marina Romero-Ramos
- CNS disease modeling group; Department of Biomedicine; Aarhus University; Aarhus, Denmark; NEURODIN; Department of Biomedicine; Aarhus University; Aarhus, Denmark
| | - Marianne von Euler Chelpin
- CNS disease modeling group; Department of Biomedicine; Aarhus University; Aarhus, Denmark; NEURODIN; Department of Biomedicine; Aarhus University; Aarhus, Denmark; Neuroimmunology of Degenerative Diseases group; Department of Biomedicine; Aarhus University; Aarhus, Denmark
| | - Vanesa Sanchez-Guajardo
- NEURODIN; Department of Biomedicine; Aarhus University; Aarhus, Denmark; Neuroimmunology of Degenerative Diseases group; Department of Biomedicine; Aarhus University; Aarhus, Denmark
| |
Collapse
|
453
|
Mayer AMS, Hall ML, Holland M, De Castro C, Molinaro A, Aldulescu M, Frenkel J, Ottenhoff L, Rowley D, Powell J. Vibrio vulnificus MO6-24/O lipopolysaccharide stimulates superoxide anion, thromboxane B₂, matrix metalloproteinase-9, cytokine and chemokine release by rat brain microglia in vitro. Mar Drugs 2014; 12:1732-56. [PMID: 24675728 PMCID: PMC4012467 DOI: 10.3390/md12041732] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 02/26/2014] [Accepted: 02/26/2014] [Indexed: 12/15/2022] Open
Abstract
Although human exposure to Gram-negative Vibrio vulnificus (V. vulnificus) lipopolysaccharide (LPS) has been reported to result in septic shock, its impact on the central nervous system's innate immunity remains undetermined. The purpose of this study was to determine whether V. vulnificus MO6-24/O LPS might activate rat microglia in vitro and stimulate the release of superoxide anion (O₂⁻), a reactive oxygen species known to cause oxidative stress and neuronal injury in vivo. Brain microglia were isolated from neonatal rats, and then treated with either V. vulnificus MO6-24/O LPS or Escherichia coli O26:B6 LPS for 17 hours in vitro. O₂⁻ was determined by cytochrome C reduction, and matrix metalloproteinase-2 (MMP-2) and MMP-9 by gelatinase zymography. Generation of cytokines tumor necrosis factor alpha (TNF-α), interleukin-1 alpha (IL-1α), IL-6, and transforming growth factor-beta 1 (TGF-β1), chemokines macrophage inflammatory protein (MIP-1α)/chemokine (C-C motif) ligand 3 (CCL3), MIP-2/chemokine (C-X-C motif) ligand 2 (CXCL2), monocyte chemotactic protein-1 (MCP-1)/CCL2, and cytokine-induced neutrophil chemoattractant-2alpha/beta (CINC-2α/β)/CXCL3, and brain-derived neurotrophic factor (BDNF), were determined by specific immunoassays. Priming of rat microglia by V. vulnificus MO6-24/O LPS in vitro yielded a bell-shaped dose-response curve for PMA (phorbol 12-myristate 13-acetate)-stimulated O₂⁻ generation: (1) 0.1-1 ng/mL V. vulnificus LPS enhanced O₂⁻ generation significantly but with limited inflammatory mediator generation; (2) 10-100 ng/mL V. vulnificus LPS maximized O₂⁻ generation with concomitant release of thromboxane B2 (TXB2), matrix metalloproteinase-9 (MMP-9), and several cytokines and chemokines; (3) 1000-100,000 ng/mL V. vulnificus LPS, with the exception of TXB2, yielded both attenuated O₂⁻ production, and a progressive decrease in MMP-9, cytokines and chemokines investigated. Thus concentration-dependent treatment of neonatal brain microglia with V. vulnificus MO6-24/O LPS resulted in a significant rise in O₂⁻ production, followed by a progressive decrease in O₂⁻ release, with concomitant release of lactic dehydrogenase (LDH), and generation of TXB2, MMP-9, cytokines and chemokines. We hypothesize that the inflammatory mediators investigated may be cytotoxic to microglia in vitro, by an as yet undetermined autocrine mechanism. Although V. vulnificus LPS was less potent than E. coli LPS in vitro, inflammatory mediator release by the former was clearly more efficacious. Finally, we hypothesize that should V. vulnificus LPS gain entry into the CNS, it would be possible that microglia might become activated, resulting in high levels of O₂⁻ as well as neuroinflammatory TXB2, MMP-9, cytokines and chemokines.
Collapse
Affiliation(s)
- Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | - Mary L Hall
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | - Michael Holland
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | - Cristina De Castro
- Department of Chemical Sciences, University of Napoli, Via Cintia 4, 80126 Napoli, Italy.
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli, Via Cintia 4, 80126 Napoli, Italy.
| | - Monica Aldulescu
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | - Jeffrey Frenkel
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | - Lauren Ottenhoff
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | - David Rowley
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881, USA.
| | - Jan Powell
- Department of Epidemiology and Preventive Medicine, University of Maryland School of Medicine, 10 Pine St, Baltimore, MD 21201, USA.
| |
Collapse
|
454
|
Puimège L, Libert C, Van Hauwermeiren F. Regulation and dysregulation of tumor necrosis factor receptor-1. Cytokine Growth Factor Rev 2014; 25:285-300. [PMID: 24746195 DOI: 10.1016/j.cytogfr.2014.03.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/10/2014] [Indexed: 01/18/2023]
Abstract
TNF is an essential regulator of the immune system. Dysregulation of TNF plays a role in the pathology of many auto-immune diseases. TNF-blocking agents have proven successful in the treatment of such diseases. Development of novel, safer or more effective drugs requires a deeper understanding of the regulation of the pro-inflammatory activities of TNF and its receptors. The ubiquitously expressed TNFR1 is responsible for most TNF effects, while TNFR2 has a limited expression pattern and performs immune-regulatory functions. Despite extensive knowledge of TNFR1 signaling, the regulation of TNFR1 expression, its modifications, localization and processing are less clear and the data are scattered. Here we review the current knowledge of TNFR1 regulation and discuss the impact this has on the host.
Collapse
Affiliation(s)
- Leen Puimège
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Filip Van Hauwermeiren
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
455
|
Low PC, Manzanero S, Mohannak N, Narayana VK, Nguyen TH, Kvaskoff D, Brennan FH, Ruitenberg MJ, Gelderblom M, Magnus T, Kim HA, Broughton BRS, Sobey CG, Vanhaesebroeck B, Stow JL, Arumugam TV, Meunier FA. PI3Kδ inhibition reduces TNF secretion and neuroinflammation in a mouse cerebral stroke model. Nat Commun 2014; 5:3450. [PMID: 24625684 DOI: 10.1038/ncomms4450] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/13/2014] [Indexed: 01/01/2023] Open
Abstract
Stroke is a major cause of death worldwide and the leading cause of permanent disability. Although reperfusion is currently used as treatment, the restoration of blood flow following ischaemia elicits a profound inflammatory response mediated by proinflammatory cytokines such as tumour necrosis factor (TNF), exacerbating tissue damage and worsening the outcomes for stroke patients. Phosphoinositide 3-kinase delta (PI3Kδ) controls intracellular TNF trafficking in macrophages and therefore represents a prospective target to limit neuroinflammation. Here we show that PI3Kδ inhibition confers protection in ischaemia/reperfusion models of stroke. In vitro, restoration of glucose supply following an episode of glucose deprivation potentiates TNF secretion from primary microglia-an effect that is sensitive to PI3Kδ inhibition. In vivo, transient middle cerebral artery occlusion and reperfusion in kinase-dead PI3Kδ (p110δ(D910A/D910A)) or wild-type mice pre- or post-treated with the PI3Kδ inhibitor CAL-101, leads to reduced TNF levels, decreased leukocyte infiltration, reduced infarct size and improved functional outcome. These data identify PI3Kδ as a potential therapeutic target in ischaemic stroke.
Collapse
Affiliation(s)
- Pei Ching Low
- 1] Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia [2]
| | - Silvia Manzanero
- 1] School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia [2]
| | - Nika Mohannak
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Vinod K Narayana
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tam H Nguyen
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David Kvaskoff
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Faith H Brennan
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Marc J Ruitenberg
- 1] Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia [2] School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hyun Ah Kim
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Brad R S Broughton
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Christopher G Sobey
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Bart Vanhaesebroeck
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street London WC1E 6DD, UK
| | - Jennifer L Stow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Thiruma V Arumugam
- 1] School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia [2]
| | - Frédéric A Meunier
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
456
|
Qin B, Panickar KS, Anderson RA. Cinnamon polyphenols attenuate the hydrogen peroxide-induced down regulation of S100β secretion by regulating sirtuin 1 in C6 rat glioma cells. Life Sci 2014; 102:72-9. [PMID: 24631135 DOI: 10.1016/j.lfs.2014.02.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/18/2014] [Accepted: 02/27/2014] [Indexed: 01/09/2023]
Abstract
AIMS It is well established that the brain is particularly susceptible to oxidative damage due to its high consumption of oxygen. The objective of this study was to investigate the protective effects of a water soluble polyphenol-rich extract of cinnamon and the possible mechanisms, under conditions of oxidative stress-induced by hydrogen peroxide, in rat C6 glioma cells. MAIN METHODS After 24h of H2O2 incubation, the secretion and intracellular expression of S100β were determined by immunoprecitation/immunoblotting and immunofluorescence imaging. KEY FINDINGS Cinnamon polyphenols (CP) counteracted the oxidative effects of H2O2 on S100β secretion and expression. CP also enhanced the impaired protein levels of sirtuins 1, 2, and 3, which are deacetylases important in cell survival. H2O2 also induced the overexpression of the proinflammatory factors, TNF-α, phospho-NF-κB p65, as well as of Bcl-xl, Bax and Caspase-3, which are all the members of the Bcl-2 family. CP not only suppressed the expression of these proteins but also attenuated the phosphorylation induced by H2O2. CP also upregulated the decreased Bcl-2 protein levels in H2O2 treated C6 cells. The effects of CP on H2O2-induced downregulation of S100β secretion were blocked by SIRT1 siRNA demonstrating that SIRT1 plays a regulatory role in CP-mediated prevention by H2O2. SIGNIFICANCE These data demonstrate that Cinnamon polyphenols may exert neuroprotective effects in glial cells by the regulation of Bcl-2 family members and enhancing SIRT1 expression during oxidative stress.
Collapse
Affiliation(s)
- Bolin Qin
- IN Ingredients Inc, Columbia, TN 38401, USA(1); United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD 20705, USA.
| | - Kiran S Panickar
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD 20705, USA; Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Richard A Anderson
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD 20705, USA
| |
Collapse
|
457
|
Kamal MA, Priyamvada S, Anbazhagan AN, Jabir NR, Tabrez S, Greig NH. Linking Alzheimer's disease and type 2 diabetes mellitus via aberrant insulin signaling and inflammation. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2014; 13:338-46. [PMID: 24074448 PMCID: PMC5947865 DOI: 10.2174/18715273113126660137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 03/16/2013] [Accepted: 04/02/2013] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are two progressive and devastating health disorders afflicting millions of people worldwide. The probability and incidence of both have increased considerably in recent years consequent to increased longevity and population growth. Progressively more links are being continuously found between inflammation and central nervous system disorders like AD, Parkinson's disease, Huntington's disease, motor neuron disease, multiple sclerosis, stroke, traumatic brain injury and even cancers of the nervous tissue. The depth of the relationship depends on the timing and extent of anti- or pro-inflammatory gene expression. Inflammation has also been implicated in T2DM. Misfolding and fibrillization (of tissue specific and/or non-specific proteins) are features common to both AD and T2DM and are induced by as well as contribute to inflammation and stress (oxidative/ glycation). This review appraises the roles of inflammation and abnormalities in the insulin signaling system as important shared features of T2DM and AD. The capacity of anti-cholinesterases in reducing the level of certain common inflammatory markers in particular if they may provide therapeutic potential to mitigate awry mechanisms leading to AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Nigel H Greig
- Metabolomics & Enzymology Unit, Fundamental and Applied Biology Group, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
458
|
Babri S, Doosti MH, Salari AA. Tumor necrosis factor-alpha during neonatal brain development affects anxiety- and depression-related behaviors in adult male and female mice. Behav Brain Res 2014; 261:305-14. [DOI: 10.1016/j.bbr.2013.12.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/27/2013] [Accepted: 12/28/2013] [Indexed: 01/09/2023]
|
459
|
Williams SK, Maier O, Fischer R, Fairless R, Hochmeister S, Stojic A, Pick L, Haar D, Musiol S, Storch MK, Pfizenmaier K, Diem R. Antibody-mediated inhibition of TNFR1 attenuates disease in a mouse model of multiple sclerosis. PLoS One 2014; 9:e90117. [PMID: 24587232 PMCID: PMC3938650 DOI: 10.1371/journal.pone.0090117] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/28/2014] [Indexed: 12/02/2022] Open
Abstract
Tumour necrosis factor (TNF) is a proinflammatory cytokine that is known to regulate inflammation in a number of autoimmune diseases, including multiple sclerosis (MS). Although targeting of TNF in models of MS has been successful, the pathological role of TNF in MS remains unclear due to clinical trials where the non-selective inhibition of TNF resulted in exacerbated disease. Subsequent experiments have indicated that this may have resulted from the divergent effects of the two TNF receptors, TNFR1 and TNFR2. Here we show that the selective targeting of TNFR1 with an antagonistic antibody ameliorates symptoms of the most common animal model of MS, experimental autoimmune encephalomyelitis (EAE), when given following both a prophylactic and therapeutic treatment regime. Our results demonstrate that antagonistic TNFR1-specific antibodies may represent a therapeutic approach for the treatment of MS in the future.
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Female
- Gene Expression
- Immunotherapy
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Targeted Therapy
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/pathology
- Multiple Sclerosis/therapy
- Receptors, Tumor Necrosis Factor, Type I/antagonists & inhibitors
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type II/antagonists & inhibitors
- Receptors, Tumor Necrosis Factor, Type II/deficiency
- Receptors, Tumor Necrosis Factor, Type II/genetics
Collapse
Affiliation(s)
- Sarah K. Williams
- Department of Neuro-oncology, University Clinic Heidelberg, Heidelberg, Germany
- * E-mail:
| | - Olaf Maier
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Roman Fischer
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Richard Fairless
- Department of Neuro-oncology, University Clinic Heidelberg, Heidelberg, Germany
| | | | - Aleksandar Stojic
- Department of Neuro-oncology, University Clinic Heidelberg, Heidelberg, Germany
| | - Lara Pick
- Department of Neurology, University of the Saarland, Homburg/Saar, Germany
| | - Doreen Haar
- Department of Neurology, University of the Saarland, Homburg/Saar, Germany
| | - Sylvia Musiol
- Department of Neurology, University of the Saarland, Homburg/Saar, Germany
| | - Maria K. Storch
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Ricarda Diem
- Department of Neuro-oncology, University Clinic Heidelberg, Heidelberg, Germany
| |
Collapse
|
460
|
Affiliation(s)
- Sarah L Parylak
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Wei Deng
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
461
|
Gu Y, Chen J, Shen J. Herbal medicines for ischemic stroke: combating inflammation as therapeutic targets. J Neuroimmune Pharmacol 2014; 9:313-39. [PMID: 24562591 DOI: 10.1007/s11481-014-9525-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/27/2014] [Indexed: 12/23/2022]
Abstract
Stroke is a debilitating disease for which limited therapeutic approaches are available currently. Thus, there is an urgent need for developing novel therapies for stroke. Astrocytes, endothelial cells and pericytes constitute a neurovascular network for metabolic requirement of neurons. During ischemic stroke, these cells contribute to post-ischemic inflammation at multiple stages of ischemic cascades. Upon ischemia onset, activated resident microglia and astrocytes, and infiltrated immune cells release multiple inflammation factors including cytokines, chemokines, enzymes, free radicals and other small molecules, not only inducing brain damage but affecting brain repair. Recent progress indicates that anti-inflammation is an important therapeutic strategy for stroke. Given a long history with direct experience in the treatment of human subjects, Traditional Chinese Medicine and its related natural compounds are recognized as important sources for drug discovery. Last decade, a great progress has been made to identify active compounds from herbal medicines with the properties of modulating post-ischemic inflammation for neuroprotection. Herein, we discuss the inflammatory pathway in early stage and secondary response to injured tissues after stroke from initial artery occlusion to brain repair, and review the active ingredients from natural products with anti-inflammation and neuroprotection effects as therapeutic agents for ischemic stroke. Further studies on the post-ischemic inflammatory mechanisms and corresponding drug candidates from herbal medicine may lead to the development of novel therapeutic strategies in stroke treatment.
Collapse
Affiliation(s)
- Yong Gu
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, SAR, China
| | | | | |
Collapse
|
462
|
Fujita KA, Ostaszewski M, Matsuoka Y, Ghosh S, Glaab E, Trefois C, Crespo I, Perumal TM, Jurkowski W, Antony PMA, Diederich N, Buttini M, Kodama A, Satagopam VP, Eifes S, del Sol A, Schneider R, Kitano H, Balling R. Integrating pathways of Parkinson's disease in a molecular interaction map. Mol Neurobiol 2014; 49:88-102. [PMID: 23832570 PMCID: PMC4153395 DOI: 10.1007/s12035-013-8489-4] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/13/2013] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is a major neurodegenerative chronic disease, most likely caused by a complex interplay of genetic and environmental factors. Information on various aspects of PD pathogenesis is rapidly increasing and needs to be efficiently organized, so that the resulting data is available for exploration and analysis. Here we introduce a computationally tractable, comprehensive molecular interaction map of PD. This map integrates pathways implicated in PD pathogenesis such as synaptic and mitochondrial dysfunction, impaired protein degradation, alpha-synuclein pathobiology and neuroinflammation. We also present bioinformatics tools for the analysis, enrichment and annotation of the map, allowing the research community to open new avenues in PD research. The PD map is accessible at http://minerva.uni.lu/pd_map .
Collapse
Affiliation(s)
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
- Integrated Biobank of Luxembourg, Luxembourg City, Luxembourg
| | | | - Samik Ghosh
- The Systems Biology Institute, Minato-ku, Tokyo, Japan
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Christophe Trefois
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Isaac Crespo
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Thanneer M. Perumal
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Wiktor Jurkowski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Paul M. A. Antony
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Nico Diederich
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
- Department of Neuroscience, Centre Hospitalier Luxembourg, Luxembourg City, Luxembourg
| | - Manuel Buttini
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Akihiko Kodama
- Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Venkata P. Satagopam
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
- Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Serge Eifes
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Antonio del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Reinhard Schneider
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
- Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Hiroaki Kitano
- The Systems Biology Institute, Minato-ku, Tokyo, Japan
- Sony Computer Science Laboratories, Shinagawa-ku, Tokyo, Japan
- Division of Systems Biology, Cancer Institute, Tokyo, Japan
- Open Biology Unit, Okinawa Institute of Science and Technology, Kunigami, Okinawa Japan
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
463
|
Greig NH, Tweedie D, Rachmany L, Li Y, Rubovitch V, Schreiber S, Chiang YH, Hoffer BJ, Miller J, Lahiri DK, Sambamurti K, Becker RE, Pick CG. Incretin mimetics as pharmacologic tools to elucidate and as a new drug strategy to treat traumatic brain injury. Alzheimers Dement 2014; 10:S62-75. [PMID: 24529527 PMCID: PMC4201593 DOI: 10.1016/j.jalz.2013.12.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/05/2013] [Indexed: 01/12/2023]
Abstract
Traumatic brain injury (TBI), either as an isolated injury or in conjunction with other injuries, is an increasingly common event. An estimated 1.7 million injuries occur within the USA each year and 10 million people are affected annually worldwide. Indeed, nearly one third (30.5%) of all injury-related deaths in the USA are associated with TBI, which will soon outpace many common diseases as the major cause of death and disability. Associated with a high morbidity and mortality and no specific therapeutic treatment, TBI has become a pressing public health and medical problem. The highest incidence of TBI occurs in young adults (15-24 years age) and in the elderly (≥75 years of age). Older individuals are particularly vulnerable to these types of injury, often associated with falls, and have shown increased mortality and worse functional outcome after lower initial injury severity. In addition, a new and growing form of TBI, blast injury, associated with the detonation of improvised explosive devices in the war theaters of Iraq and Afghanistan, are inflicting a wave of unique casualties of immediate impact to both military personnel and civilians, for which long-term consequences remain unknown and may potentially be catastrophic. The neuropathology underpinning head injury is becoming increasingly better understood. Depending on severity, TBI induces immediate neuropathologic effects that, for the mildest form, may be transient; however, with increasing severity, these injuries cause cumulative neural damage and degeneration. Even with mild TBI, which represents the majority of cases, a broad spectrum of neurologic deficits, including cognitive impairments, can manifest that may significantly influence quality of life. Further, TBI can act as a conduit to longer term neurodegenerative disorders. Prior studies of glucagon-like peptide-1 (GLP-1) and long-acting GLP-1 receptor agonists have demonstrated neurotrophic/neuroprotective activities across a broad spectrum of cellular and animal models of chronic neurodegenerative (Alzheimer's and Parkinson's diseases) and acute cerebrovascular (stroke) disorders. In view of the mechanisms underpinning these disorders as well as TBI, we review the literature and recent studies assessing GLP-1 receptor agonists as a potential treatment strategy for mild to moderate TBI.
Collapse
Affiliation(s)
- Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Lital Rachmany
- Department of Anatomy & Anthropology, Sackler School of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Yazhou Li
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Vardit Rubovitch
- Department of Anatomy & Anthropology, Sackler School of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Shaul Schreiber
- Department of Psychiatry, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yung-Hsiao Chiang
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei City, Taiwan, ROC; Graduate Institute of Neural Regenerative Medicine, Taipei Medical University, Taipei City, Taiwan, ROC
| | - Barry J Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jonathan Miller
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Debomoy K Lahiri
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kumar Sambamurti
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Robert E Becker
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA; Aristea Translational Medicine, Park City, UT, USA
| | - Chaim G Pick
- Department of Anatomy & Anthropology, Sackler School of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
464
|
Potential benefits of therapeutic use of β2-adrenergic receptor agonists in neuroprotection and Parkinsonμs disease. J Immunol Res 2014; 2014:103780. [PMID: 24741572 PMCID: PMC3987873 DOI: 10.1155/2014/103780] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 11/30/2022] Open
Abstract
The β2-adrenergic receptor (β2AR) is a seven-transmembrane (7TM) G-protein coupled receptor that is expressed on cells of the pulmonary, cardiac, skeletal muscle, and immune systems. Previous work has shown that stimulation of this receptor on immune cells has profound effects on the regulatory activity of both adaptive and innate immune cells. This review examines the functional dichotomy associated with stimulation of β2AR and microglial cells. As well, recent studies targeting these receptors with long-acting agonists are considered with respect to their therapeutic potential in management of Parkinsonμs disease.
Collapse
|
465
|
Tobinick E. Perispinal etanercept: a new therapeutic paradigm in neurology. Expert Rev Neurother 2014; 10:985-1002. [DOI: 10.1586/ern.10.52] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
466
|
Mahdy HM, Mohamed MR, Emam MA, Karim AM, Abdel-Naim AB, Abdel-Naim A, Khalifa AE. The anti-apoptotic and anti-inflammatory properties of puerarin attenuate 3-nitropropionic-acid induced neurotoxicity in rats. Can J Physiol Pharmacol 2014; 92:252-8. [PMID: 24593790 DOI: 10.1139/cjpp-2013-0398] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Puerarin (Pur), an isoflavonoid extracted from the dried roots of Pueraria lobata, has been reported to be useful in the treatment of various diseases. This study was designed to evaluate the anti-apoptotic and anti-inflammatory activities of Pur against 3-nitropropionic acid (3-NP) induced neurotoxicity. For 5 consecutive days, male Wistar rats were given Pur (200 mg/kg body mass) 30 min before treatment with 20 mg/kg body mass of 3-NP. The striata, hippocampi, and cortices of the 3-NP treated group showed apoptotic damage, inflammation, and energy deficit as well as histopathological lesions. The 3-NP-induced alteration in apoptotic biomarkers (caspase-3 activity/level, cytosolic cytochrome c, Bax/Bcl-2 levels) were significantly ameliorated by Pur treatment. Moreover, Pur pretreatment blocked 3-NP-induced inflammatory biomarkers (NF-κB, TNF-α, and iNOS) and prevented the energy deficit (ATP reduction). Nissl staining further confirmed Pur's neuroprotective effect. These results indicate that Pur may be a useful preventive approach to various neurodegenerative diseases with underlying apoptosis and neuroinflammation.
Collapse
Affiliation(s)
- Heba M Mahdy
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Monazamet Al-Wehdah Al-Efrikeya Street, Abbassia, Cairo, Egypt
| | | | | | | | | | | | | |
Collapse
|
467
|
Naegele M, Martin R. The good and the bad of neuroinflammation in multiple sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2014; 122:59-87. [PMID: 24507513 DOI: 10.1016/b978-0-444-52001-2.00003-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Multiple sclerosis (MS) is the most common inflammatory, demyelinating, neurodegenerative disorder of the central nervous system (CNS). It is widely considered a T-cell mediated autoimmune disease that develops in genetically susceptible individuals, possibly under the influence of certain environmental trigger factors. The invasion of autoreactive CD4+ T-cells into the CNS is thought to be a central step that initiates the disease. Several other cell types, including CD8+ T-cells, B-cells and phagocytes appear to be involved in causing inflammation and eventually neurodegeneration. But inflammation is not entirely deleterious in MS. Evidence has accumulated in the recent years that show the importance of regulatory immune mechanisms which restrain tissue damage and initiate regeneration. More insight into the beneficial aspects of neuroinflammation might allow us to develop new treatment strategies for this enigmatic disease.
Collapse
Affiliation(s)
- Matthias Naegele
- Institute for Neuroimmunology and Clinical Multiple Sclerosis Research, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roland Martin
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital, Zurich, Switzerland.
| |
Collapse
|
468
|
Hauser KF, Knapp PE. Interactions of HIV and drugs of abuse: the importance of glia, neural progenitors, and host genetic factors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:231-313. [PMID: 25175867 PMCID: PMC4304845 DOI: 10.1016/b978-0-12-801284-0.00009-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Considerable insight has been gained into the comorbid, interactive effects of HIV and drug abuse in the brain using experimental models. This review, which considers opiates, methamphetamine, and cocaine, emphasizes the importance of host genetics and glial plasticity in driving the pathogenic neuron remodeling underlying neuro-acquired immunodeficiency syndrome and drug abuse comorbidity. Clinical findings are less concordant than experimental work, and the response of individuals to HIV and to drug abuse can vary tremendously. Host-genetic variability is important in determining viral tropism, neuropathogenesis, drug responses, and addictive behavior. However, genetic differences alone cannot account for individual variability in the brain "connectome." Environment and experience are critical determinants in the evolution of synaptic circuitry throughout life. Neurons and glia both exercise control over determinants of synaptic plasticity that are disrupted by HIV and drug abuse. Perivascular macrophages, microglia, and to a lesser extent astroglia can harbor the infection. Uninfected bystanders, especially astroglia, propagate and amplify inflammatory signals. Drug abuse by itself derails neuronal and glial function, and the outcome of chronic exposure is maladaptive plasticity. The negative consequences of coexposure to HIV and drug abuse are determined by numerous factors including genetics, sex, age, and multidrug exposure. Glia and some neurons are generated throughout life, and their progenitors appear to be targets of HIV and opiates/psychostimulants. The chronic nature of HIV and drug abuse appears to result in sustained alterations in the maturation and fate of neural progenitors, which may affect the balance of glial populations within multiple brain regions.
Collapse
Affiliation(s)
- Kurt F Hauser
- Department of Pharmacology & Toxicology, Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, USA.
| | - Pamela E Knapp
- Department of Pharmacology & Toxicology, Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, USA; Department of Anatomy & Neurobiology, Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
469
|
Chen Y, Won SJ, Xu Y, Swanson RA. Targeting microglial activation in stroke therapy: pharmacological tools and gender effects. Curr Med Chem 2014; 21:2146-55. [PMID: 24372213 PMCID: PMC4076056 DOI: 10.2174/0929867321666131228203906] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/02/2013] [Accepted: 06/03/2013] [Indexed: 12/20/2022]
Abstract
Ischemic stroke is caused by critical reductions in blood flow to brain or spinal cord. Microglia are the resident immune cells of the central nervous system, and they respond to stroke by assuming an activated phenotype that releases cytotoxic cytokines, reactive oxygen species, proteases, and other factors. This acute, innate immune response may be teleologically adapted to limit infection, but in stroke this response can exacerbate injury by further damaging or killing nearby neurons and other cell types, and by recruiting infiltration of circulating cytotoxic immune cells. The microglial response requires hours to days to fully develop, and this time interval presents a clinically accessible time window for initiating therapy. Because of redundancy in cytotoxic microglial responses, the most effective therapeutic approach may be to target the global gene expression changes involved in microglial activation. Several classes of drugs can do this, including histone deacetylase inhibitors, minocycline and other PARP inhibitors, corticosteroids, and inhibitors of TNFα and scavenger receptor signaling. Here we review the pre-clinical studies in which these drugs have been used to suppress microglial activation after stroke. We also review recent advances in the understanding of sex differences in the CNS inflammatory response, as these differences are likely to influence the efficacy of drugs targeting post-stroke brain inflammation.
Collapse
Affiliation(s)
| | | | | | - R A Swanson
- Dept. of Neurology, University of California San Francisco; and Neurology Service, San Francisco Veterans Affairs Medical Center, 4150 Clement St, San Francisco, CA 94121, USA.
| |
Collapse
|
470
|
Faustman DL, Davis M. TNF Receptor 2 and Disease: Autoimmunity and Regenerative Medicine. Front Immunol 2013; 4:478. [PMID: 24391650 PMCID: PMC3870411 DOI: 10.3389/fimmu.2013.00478] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/08/2013] [Indexed: 12/13/2022] Open
Abstract
The regulatory cytokine tumor necrosis factor (TNF) exerts its effects through two receptors: TNFR1 and TNFR2. Defects in TNFR2 signaling are evident in a variety of autoimmune diseases. One new treatment strategy for autoimmune disease is selective destruction of autoreactive T cells by administration of TNF, TNF inducers, or TNFR2 agonism. A related strategy is to rely on TNFR2 agonism to induce T-regulatory cells (Tregs) that suppress cytotoxic T cells. Targeting TNFR2 as a treatment strategy is likely superior to TNFR1 because of its more limited cellular distribution on T cells, subsets of neurons, and a few other cell types, whereas TNFR1 is expressed throughout the body. This review focuses on TNFR2 expression, structure, and signaling; TNFR2 signaling in autoimmune disease; treatment strategies targeting TNFR2 in autoimmunity; and the potential for TNFR2 to facilitate end organ regeneration.
Collapse
Affiliation(s)
- Denise L Faustman
- Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School , Boston, MA , USA
| | - Miriam Davis
- Immunobiology Laboratory, Massachusetts General Hospital , Boston, MA , USA
| |
Collapse
|
471
|
Becker D, Zahn N, Deller T, Vlachos A. Tumor necrosis factor alpha maintains denervation-induced homeostatic synaptic plasticity of mouse dentate granule cells. Front Cell Neurosci 2013; 7:257. [PMID: 24385951 PMCID: PMC3866521 DOI: 10.3389/fncel.2013.00257] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/26/2013] [Indexed: 01/07/2023] Open
Abstract
Neurons which lose part of their input respond with a compensatory increase in excitatory synaptic strength. This observation is of particular interest in the context of neurological diseases, which are accompanied by the loss of neurons and subsequent denervation of connected brain regions. However, while the cellular and molecular mechanisms of pharmacologically induced homeostatic synaptic plasticity have been identified to a certain degree, denervation-induced homeostatic synaptic plasticity remains not well understood. Here, we employed the entorhinal denervation in vitro model to study the role of tumor necrosis factor alpha (TNFα) on changes in excitatory synaptic strength of mouse dentate granule cells following partial deafferentation. Our experiments disclose that TNFα is required for the maintenance of a compensatory increase in excitatory synaptic strength at 3-4 days post lesion (dpl), but not for the induction of synaptic scaling at 1-2 dpl. Furthermore, laser capture microdissection combined with quantitative PCR demonstrates an increase in TNFα-mRNA levels in the denervated zone, which is consistent with our previous finding on a local, i.e., layer-specific increase in excitatory synaptic strength at 3-4 dpl. Immunostainings for the glial fibrillary acidic protein and TNFα suggest that astrocytes are a source of TNFα in our experimental setting. We conclude that TNFα-signaling is a major regulatory system that aims at maintaining the homeostatic synaptic response of denervated neurons.
Collapse
Affiliation(s)
- Denise Becker
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt Frankfurt, Germany
| | - Nadine Zahn
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt Frankfurt, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt Frankfurt, Germany
| | - Andreas Vlachos
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt Frankfurt, Germany
| |
Collapse
|
472
|
Vidal PM, Lemmens E, Avila A, Vangansewinkel T, Chalaris A, Rose-John S, Hendrix S. ADAM17 is a survival factor for microglial cells in vitro and in vivo after spinal cord injury in mice. Cell Death Dis 2013; 4:e954. [PMID: 24336074 PMCID: PMC3877539 DOI: 10.1038/cddis.2013.466] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/16/2013] [Accepted: 10/23/2013] [Indexed: 02/05/2023]
Abstract
A disintegrin and metalloprotease 17 (ADAM17) is a sheddase with important substrates including tumor necrosis factor-α (TNF-α) and its receptors, the p75 neurotrophin receptor (p75NTR), and members of the epidermal growth factor family. The rationale of this study was to inhibit ADAM17-induced shedding of soluble TNF-α in order to reduce detrimental inflammation after spinal cord injury (SCI). However, using the specific ADAM17 blocker BMS-561392 in neuronal and glial cell cultures, we show that proper functioning of ADAM17 is vital for oligodendrocyte and microglia survival in a p44 MAPK-dependent manner. In contrast, genetic ablation of ADAM17 specifically increases microglial death. Surprisingly, although blocking ADAM17 in vivo does not substantially change the ratio between membrane-bound and soluble TNF-α, it increases expression of the pro-apoptotic marker Bax and microglial apoptosis while impairing functional recovery after SCI. These data suggest that ADAM17 is a key survival factor for microglial cells after SCI.
Collapse
Affiliation(s)
- P M Vidal
- Department of Morphology & Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - E Lemmens
- Department of Morphology & Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - A Avila
- 1] Department of Physiology & Biomedical Research Institute, Hasselt University, Hasselt, Belgium [2] Developmental Neurology Unit, GIGA-Neurosciences, University of Liège, Liège, Belgium [3] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, Liège, Belgium
| | - T Vangansewinkel
- Department of Morphology & Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - A Chalaris
- Institute of Biochemistry, Christian Albrechts University, Kiel, Germany
| | - S Rose-John
- Institute of Biochemistry, Christian Albrechts University, Kiel, Germany
| | - S Hendrix
- Department of Morphology & Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| |
Collapse
|
473
|
Fischer R, Wajant H, Kontermann R, Pfizenmaier K, Maier O. Astrocyte-specific activation of TNFR2 promotes oligodendrocyte maturation by secretion of leukemia inhibitory factor. Glia 2013; 62:272-83. [PMID: 24310780 DOI: 10.1002/glia.22605] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/05/2013] [Accepted: 11/06/2013] [Indexed: 01/06/2023]
Abstract
Tumor necrosis factor (TNF) and its receptors TNFR1 and TNFR2 have pleiotropic effects in neurodegenerative disorders. For example, while TNFR1 mediates neurodegenerative effects in multiple sclerosis, TNFR2 is protective and contributes to remyelination. The exact mode of TNFR2 action, however, is poorly understood. Here, we show that TNFR2-mediated activation of the PI3K-PKB/Akt pathway in primary astrocytes increased the expression of neuroprotective genes, including that encoding the neurotrophic cytokine leukemia inhibitory factor (LIF). To investigate whether intercellular signaling between TNFR2-stimulated astrocytes and oligodendrocytes plays a role in oligodendrocyte maturation, we established an astrocyte-oligodendrocyte coculture model, composed of primary astrocytes from huTNFR2-transgenic (tgE1335) mice and oligodendrocyte progenitor cells (OPCs) from wild-type mice, capable of differentiating into mature myelinating oligodendrocytes. In this model, selective stimulation of human TNFR2 on astrocytes, promoted differentiation of cocultured OPCs to myelin basic protein-positive mature oligodendrocytes. Addition of LIF neutralizing antibodies inhibited oligodendrocyte differentiation, indicating a crucial role of TNFR2-induced astrocyte derived LIF for oligodendrocyte maturation.
Collapse
Affiliation(s)
- Roman Fischer
- Institute of Cell Biology and Immunology, University Stuttgart, Stuttgart, Germany
| | | | | | | | | |
Collapse
|
474
|
Antidepressants suppress neuropathic pain by a peripheral β2-adrenoceptor mediated anti-TNFα mechanism. Neurobiol Dis 2013; 60:39-50. [DOI: 10.1016/j.nbd.2013.08.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/26/2013] [Accepted: 08/14/2013] [Indexed: 01/08/2023] Open
|
475
|
TNF-α and its receptors modulate complex behaviours and neurotrophins in transgenic mice. Psychoneuroendocrinology 2013; 38:3102-14. [PMID: 24094876 DOI: 10.1016/j.psyneuen.2013.09.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 09/09/2013] [Accepted: 09/09/2013] [Indexed: 02/01/2023]
Abstract
UNLABELLED Tumour necrosis factor-α (TNF-α) plays an important role not only in immunity but also in the normal functioning of the central nervous system (CNS). At physiological levels, studies have shown TNF-α is essential to maintain synaptic scaling and thus influence learning and memory formation while also playing a role in modulating pathological states of anxiety and depression. TNF-α signals mainly through its two receptors, TNF-R1 and TNF-R2, however the exact role that these receptors play in TNF-α mediated behavioural phenotypes is yet to be determined. METHODS We have assessed TNF(-/-), TNF-R1(-/-) and TNF-R2(-/-) mice against C57BL/6 wild-type (WT) mice from 12 weeks of age in order to evaluate measures of spatial memory and learning in the Barnes maze (BM) and Y-maze, as well as other behaviours such as exploration, social interaction, anxiety and depression-like behaviour in a battery of tests. We have also measured hippocampal and prefrontal cortex levels of the neurotrophins nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) as well as used immunohistochemical analyses to measure number of proliferating cells (Ki67) and immature neurons (DCX) within the dentate gyrus. RESULTS We have shown that young adult TNF(-/-) and TNF-R1(-/-) mice displayed impairments in learning and memory in the BM and Y-maze, while TNF-R2(-/-) mice showed good memory but slow learning in these tests. TNF(-/-)and TNF-R2(-/-) mice also demonstrated a decrease in anxiety like behaviour compared to WT mice. ELISA analyses showed TNF(-/-) and TNF-R2(-/-) mice had lower levels of NGF compared to WT mice. CONCLUSION These results indicate that while lack of TNF-α can decrease anxiety-like behaviour in mice, certain basal levels of TNF-α are required for the development of normal cognition. Furthermore our results suggest that both TNF-R1 and TNF-R2 signalling play a role in normal CNS function, with knockout of either receptor impairing cognition on the Barnes maze.
Collapse
|
476
|
TNF-α downregulates inhibitory neurotransmission through protein phosphatase 1-dependent trafficking of GABA(A) receptors. J Neurosci 2013; 33:15879-93. [PMID: 24089494 DOI: 10.1523/jneurosci.0530-13.2013] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Inflammation has been implicated in the progression of neurological disease, yet precisely how inflammation affects neuronal function remains unclear. Tumor necrosis factor-α (TNFα) is a proinflammatory cytokine that regulates synapse function by controlling neurotransmitter receptor trafficking and homeostatic synaptic plasticity. Here we characterize the mechanisms through which TNFα regulates inhibitory synapse function in mature rat and mouse hippocampal neurons. Acute application of TNFα induces a rapid and persistent decrease of inhibitory synaptic strength and downregulation of cell-surface levels of GABA(A)Rs containing α1, α2, β2/3, and γ2 subunits. We show that trafficking of GABA(A)Rs in response to TNFα is mediated by neuronally expressed TNF receptor 1 and requires activation of p38 MAPK, phosphatidylinositol 3-kinase, protein phosphatase 1 (PP1), and dynamin GTPase. Furthermore, TNFα enhances the association of PP1 with GABA(A)R β3 subunits and dephosphorylates a site on β3 known to regulate phospho-dependent interactions with the endocytic machinery. Conversely, we find that calcineurin and PP2A are not essential components of the signaling pathway and that clustering of the scaffolding protein gephyrin is only reduced after the initial receptor endocytosis. Together, these findings demonstrate a distinct mechanism of regulated GABA(A)R endocytosis that may contribute to the disruption of circuit homeostasis under neuroinflammatory conditions.
Collapse
|
477
|
Qin B, Panickar KS, Anderson RA. Cinnamon polyphenols regulate S100β, sirtuins, and neuroactive proteins in rat C6 glioma cells. Nutrition 2013; 30:210-7. [PMID: 24239092 DOI: 10.1016/j.nut.2013.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 06/26/2013] [Accepted: 07/02/2013] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Increasing evidence suggests that cinnamon has many health benefits when used in herbal medicine and as a dietary ingredient. The aim of this study was to investigate the effects of an aqueous extract of cinnamon, high in type A polyphenols, on molecular targets in rat C6 glioma cells that underlie their protective effects. METHODS C6 rat glioma cells were seeded in 35-mm culture dishes or six-well plates, then were incubated with cinnamon polyphenols at doses of 10 and 20 μg/mL for 24 h. The targeting protein expression, secretion, and phosphorylation were evaluated by immunoprecitation/immunoblotting and immunofluorescence imaging. RESULTS Cinnamon polyphenols significantly enhanced secretion of S100β, a Ca(2+)-binding protein, and increased intracellular S100β expression after 24 h of incubation, in rat C6 glioma cells. Cinnamon polyphenols also enhanced protein levels of sirtuin 1, 2, and 3, deacetylases important in cell survival, and the tumor suppressor protein, p53, and inhibited the inflammatory factors, tumor necrosis factor alpha, and phospho-p65, a subunit of nuclear factor-κβ. Cinnamon polyphenols also up-regulated levels of phospho-p38, extracellular signal-regulated protein and mitogen-activated protein and kinase-activated protein kinases that may be important for prosurvival functions. CONCLUSION Our results indicate that the effects of cinnamon polyphenols on upregulating prosurvival proteins, activating mitogen-activated protein kinase pathways, and decreasing proinflammatory cytokines may contribute to their neuroprotective effects.
Collapse
Affiliation(s)
- Bolin Qin
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, USA; Integrity Nutraceuticals International, Spring Hill, TN, USA.
| | - Kiran S Panickar
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, USA; Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Richard A Anderson
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, USA
| |
Collapse
|
478
|
Remifentanil preconditioning alleviating brain damage of cerebral ischemia reperfusion rats by regulating the JNK signal pathway and TNF-α/TNFR1 signal pathway. Mol Biol Rep 2013; 40:6997-7006. [DOI: 10.1007/s11033-013-2819-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 10/19/2013] [Indexed: 12/21/2022]
|
479
|
Bhaskar K, Maphis N, Xu G, Varvel NH, Kokiko-Cochran ON, Weick JP, Staugaitis SM, Cardona A, Ransohoff RM, Herrup K, Lamb BT. Microglial derived tumor necrosis factor-α drives Alzheimer's disease-related neuronal cell cycle events. Neurobiol Dis 2013; 62:273-85. [PMID: 24141019 DOI: 10.1016/j.nbd.2013.10.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 10/01/2013] [Accepted: 10/06/2013] [Indexed: 01/06/2023] Open
Abstract
Massive neuronal loss is a key pathological hallmark of Alzheimer's disease (AD). However, the mechanisms are still unclear. Here we demonstrate that neuroinflammation, cell autonomous to microglia, is capable of inducing neuronal cell cycle events (CCEs), which are toxic for terminally differentiated neurons. First, oligomeric amyloid-beta peptide (AβO)-mediated microglial activation induced neuronal CCEs via the tumor-necrosis factor-α (TNFα) and the c-Jun Kinase (JNK) signaling pathway. Second, adoptive transfer of CD11b+ microglia from AD transgenic mice (R1.40) induced neuronal cyclin D1 expression via TNFα signaling pathway. Third, genetic deficiency of TNFα in R1.40 mice (R1.40-Tnfα(-/-)) failed to induce neuronal CCEs. Finally, the mitotically active neurons spatially co-exist with F4/80+ activated microglia in the human AD brain and that a portion of these neurons are apoptotic. Together our data suggest a cell-autonomous role of microglia, and identify TNFα as the responsible cytokine, in promoting neuronal CCEs in the pathogenesis of AD.
Collapse
Affiliation(s)
- Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, University of New Mexico, MSC08 4660, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Nicole Maphis
- Department of Molecular Genetics and Microbiology, University of New Mexico, MSC08 4660, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Guixiang Xu
- Department of Neurosciences, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Nicholas H Varvel
- Department of Cellular Neurology, University of Tübingen, Hertie Institute for Clinical Brain Research, Otfried-Müller-Straße 27, 72076 Tübingen, Germany.
| | - Olga N Kokiko-Cochran
- Department of Neurosciences, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Jason P Weick
- Department of Neurosciences, University of New Mexico, MSC08 4740, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Susan M Staugaitis
- Department of Neurosciences, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Astrid Cardona
- Department of Biology, University of Texas San Antonio, West Campus/Tobin lab MBT 1.216, San Antonio, TX 78249, USA.
| | - Richard M Ransohoff
- Department of Neurosciences, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Karl Herrup
- Department of Cell Biology and Neuroscience, Rutgers University, Nelson Hall, Busch Campus, Piscataway, NJ 08855, USA.
| | - Bruce T Lamb
- Department of Neurosciences, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
480
|
Naude PJW, Dobos N, van der Meer D, Mulder C, Pawironadi KGD, den Boer JA, van der Zee EA, Luiten PGM, Eisel ULM. Analysis of cognition, motor performance and anxiety in young and aged tumor necrosis factor alpha receptor 1 and 2 deficient mice. Behav Brain Res 2013; 258:43-51. [PMID: 24135018 DOI: 10.1016/j.bbr.2013.10.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/03/2013] [Accepted: 10/06/2013] [Indexed: 12/19/2022]
Abstract
TNF-α plays important functional roles in the central nervous system during normal physiological circumstances via intricate signaling mechanisms between its receptors, TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2). Although the roles of TNFR1 and TNFR2 in the diseased brain have received considerable attention, their functions on behavior and cognition in a non-inflammatory physiological aged environment are still unknown. In the present study we investigated the functional roles of TNFR1 and TNFR2 in learning and memory, motor performance and anxiety-like behavior via several behavioral and cognitive assessments in young and aged mice, deficient of either TNFR1 or TNFR2. Results from this study show that deletion of TNFR2 impairs novel object recognition, spatial memory recognition, contextual fear conditioning, motor performance and can increase anxiety-like behavior in young adult mice. Concerning the functions of TNFR1 and TNFR2 functioning in an aged environment, age caused memory impairment in spatial memory recognition independent of genotype. However, both young and aged mice deficient of TNFR2 performed poorly in the contextual fear conditioning test. These mice displayed decreased anxiety-like behavior, whereas mice deficient of TNFR1 were insusceptible to the effect of aging on anxiety-like behavior. This study provides novel knowledge on TNFR1 and TNFR2 functioning in behavior and cognition in young and aged mice in a non-inflammatory physiological environment.
Collapse
Affiliation(s)
- Petrus J W Naude
- Department of Molecular Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands; Department of Neurology and Alzheimer Research Center, University of Groningen, University Medical Center Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
481
|
Microglial responses after ischemic stroke and intracerebral hemorrhage. Clin Dev Immunol 2013; 2013:746068. [PMID: 24223607 PMCID: PMC3810327 DOI: 10.1155/2013/746068] [Citation(s) in RCA: 294] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/06/2013] [Accepted: 08/28/2013] [Indexed: 12/18/2022]
Abstract
Stroke is a leading cause of death worldwide. Ischemic stroke is caused by blockage of blood vessels in the brain leading to tissue death, while intracerebral hemorrhage (ICH) occurs when a blood vessel ruptures, exposing the brain to blood components. Both are associated with glial toxicity and neuroinflammation. Microglia, as the resident immune cells of the central nervous system (CNS), continually sample the environment for signs of injury and infection. Under homeostatic conditions, they have a ramified morphology and phagocytose debris. After stroke, microglia become activated, obtain an amoeboid morphology, and release inflammatory cytokines (the M1 phenotype). However, microglia can also be alternatively activated, performing crucial roles in limiting inflammation and phagocytosing tissue debris (the M2 phenotype). In rodent models, microglial activation occurs very early after stroke and ICH; however, their specific roles in injury and repair remain unclear. This review summarizes the literature on microglial responses after ischemic stroke and ICH, highlighting the mediators of microglial activation and potential therapeutic targets for each condition.
Collapse
|
482
|
Poon VY, Choi S, Park M. Growth factors in synaptic function. Front Synaptic Neurosci 2013; 5:6. [PMID: 24065916 PMCID: PMC3776238 DOI: 10.3389/fnsyn.2013.00006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/29/2013] [Indexed: 12/15/2022] Open
Abstract
Synapses are increasingly recognized as key structures that malfunction in disorders like schizophrenia, mental retardation, and neurodegenerative diseases. The importance and complexity of the synapse has fuelled research into the molecular mechanisms underlying synaptogenesis, synaptic transmission, and plasticity. In this regard, neurotrophic factors such as netrin, Wnt, transforming growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α), and others have gained prominence for their ability to regulate synaptic function. Several of these factors were first implicated in neuroprotection, neuronal growth, and axon guidance. However, their roles in synaptic development and function have become increasingly clear, and the downstream signaling pathways employed by these factors have begun to be elucidated. In this review, we will address the role of these factors and their downstream effectors in synaptic function in vivo and in cultured neurons.
Collapse
Affiliation(s)
- Vivian Y Poon
- Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School Singapore, Singapore
| | | | | |
Collapse
|
483
|
Sama DM, Norris CM. Calcium dysregulation and neuroinflammation: discrete and integrated mechanisms for age-related synaptic dysfunction. Ageing Res Rev 2013; 12:982-95. [PMID: 23751484 PMCID: PMC3834216 DOI: 10.1016/j.arr.2013.05.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/27/2013] [Accepted: 05/30/2013] [Indexed: 12/30/2022]
Abstract
Some of the best biomarkers of age-related cognitive decline are closely linked to synaptic function and plasticity. This review highlights several age-related synaptic alterations as they relate to Ca(2+) dyshomeostasis, through elevation of intracellular Ca(2+), and neuroinflammation, through production of pro-inflammatory cytokines including interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α). Though distinct in many ways, Ca(2+) and neuroinflammatory signaling mechanisms exhibit extensive cross-talk and bidirectional interactions. For instance, cytokine production in glial cells is strongly dependent on the Ca(2+) dependent protein phosphatase calcineurin, which shows elevated activity in animal models of aging and disease. In turn, pro-inflammatory cytokines, such as TNF, can augment the expression/activity of L-type voltage sensitive Ca(2+) channels in neurons, leading to Ca(2+) dysregulation, hyperactive calcineurin activity, and synaptic depression. Thus, in addition to discussing unique contributions of Ca(2+) dyshomeostasis and neuroinflammation, this review emphasizes how these processes interact to hasten age-related synaptic changes.
Collapse
Affiliation(s)
- Diana M Sama
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| | | |
Collapse
|
484
|
Abstract
Alzheimer’s disease (AD) is complicated and difficult to fully understand, it might need multiple drug-discovery strategies to combat the disease. Regardless of the cause of AD, neuronal death in the brain plays a key role in AD progression and is directly linked to neuroinflammation. Thus, the regulation of neuroinflammatory processes might be a practical strategy for the treatment of AD. This review highlights the development of anti-neuroinflammatory agents that have shown promise in vitro or in vivo by attenuating microglial activation or cognitive decline. The agents are categorized based on the related signaling pathways, including the receptor for advanced glycation end products, p38 MAPKs, NF-κB and peroxisome proliferator-activated receptor γ; and inhibitors against microglial activation lacking clear mechanisms. These anti-neuroinflammatory agents support the concept and represent important chemical probes for the development of anti-neuroinflammatory drugs for the treatment of AD.
Collapse
|
485
|
Egashira Y, Suzuki Y, Azuma Y, Takagi T, Mishiro K, Sugitani S, Tsuruma K, Shimazawa M, Yoshimura S, Kashimata M, Iwama T, Hara H. The growth factor progranulin attenuates neuronal injury induced by cerebral ischemia-reperfusion through the suppression of neutrophil recruitment. J Neuroinflammation 2013; 10:105. [PMID: 23972823 PMCID: PMC3765381 DOI: 10.1186/1742-2094-10-105] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 08/14/2013] [Indexed: 01/05/2023] Open
Abstract
Background To improve the clinical outcome of patients who suffered ischemic stroke, cerebral ischemia-reperfusion (I/R) injury is one of the major concerns that should be conquered. Inflammatory reactions are considered a major contributor to brain injury following cerebral ischemia, and I/R exacerbates these reactions. The aim of this study was to investigate the possible ameliorative effects of progranulin (PGRN) against I/R injury in mice. Methods In vivo I/R was induced in four-week-old male ddY mice by 2 h of MCAO (middle cerebral artery occlusion) followed by 22 h of reperfusion. We evaluate expression of PGRN in I/R brain, efficacy of recombinant-PGRN (r-PGRN) treatment and its therapeutic time-window on I/R injury. Two hours after MCAO, 1.0 ng of r-PRGN or PBS was administered via intracerebroventricular. We assess neutrophil infiltration, expression of tumor necrosis factor (TNF)-α, matrix metalloproteinase-9 (MMP-9) and phosphorylation of nuclear factor-κB (NF-κB) by immunofluorescense staining and Western blotting. We also investigate neutrophil chemotaxis and intercellular adhesion molecule-1 (ICAM-1) expression in vitro inflammation models using isolated neutrophils and endothelial cells. Results We found that expression of PGRN was decreased in the I/R mouse brain. r-PGRN treatment at 2 h after MCAO resulted in a reduction in the infarct volume and decreased brain swelling; this led to an improvement in neurological scores and to a reduction of mortality rate at 24 h and 7 d after MCAO, respectively. Immunohistochemistry, Western blotting, and gelatin zymography also confirmed that r-PGRN treatment suppressed neutrophil recruitment into the I/R brain, and this led to a reduction of NF-κB and MMP-9 activation. In the in vitro inflammation models, PGRN suppressed both the neutrophil chemotaxis and ICAM-1 expression caused by TNF-α in endothelial cells. Conclusions PGRN exerted ameliorative effects against I/R-induced inflammation, and these effects may be due to the inhibition of neutrophil recruitment into the I/R brain.
Collapse
Affiliation(s)
- Yusuke Egashira
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
486
|
Stevens CW, Aravind S, Das S, Davis RL. Pharmacological characterization of LPS and opioid interactions at the toll-like receptor 4. Br J Pharmacol 2013; 168:1421-9. [PMID: 23083095 DOI: 10.1111/bph.12028] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 10/03/2012] [Accepted: 10/10/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Previous work in our laboratory showed opioid agents inhibit cytokine expression in astrocytes. Recently, Watkins and colleagues hypothesized that opioid agonists activate toll-like receptor 4 (TLR4) signalling, which leads to neuroinflammation. To test this hypothesis, we characterized LPS and opioid effects on TLR4 signalling in reporter cells. EXPERIMENTAL APPROACH NF-κB reporter cells expressing high levels of TLR4 were used to compare LPS and opioid effects on NF-κB activation, a pathway activated by TLR4 stimulation. KEY RESULTS LPS increased TLR4 signalling in a concentration-dependent manner and was antagonized by LPS antagonist (LPS-RS, from Rhodobacter sphaeroides). A concentration ratio analysis showed that LPS-RS was a competitive antagonist. The opioid agonists, morphine and fentanyl, produced minor activation of TLR4 signalling when given alone. When tested following LPS stimulation, opioid agonists inhibited NF-κB activation but this inhibition was not blocked by the general opioid antagonist, naloxone, nor by the selective μ opioid receptor antagonist, β-FNA. Indeed, both naloxone and β-FNA also inhibited NF-κB activation in reporter cells. Further examination of fentanyl and β-FNA effects revealed that both opioid agents inhibited LPS signalling in a non-competitive fashion. CONCLUSIONS AND IMPLICATIONS These results show that LPS-RS is a competitive antagonist at the TLR4 complex, and that both opioid agonists and antagonists inhibit LPS signalling in a non-competitive fashion through a non-GPCR, opioid site(s) in the TLR4 signalling pathway. If confirmed, existing opioid agents or other drug molecules more selective at this novel site may provide a new therapeutic approach to the treatment of neuroinflammation.
Collapse
Affiliation(s)
- C W Stevens
- Department of Pharmacology and Physiology, Oklahoma State University-Center for Health Sciences, Tulsa, OK 74107, USA.
| | | | | | | |
Collapse
|
487
|
Xiong J, Kielian T. Microglia in juvenile neuronal ceroid lipofuscinosis are primed toward a pro-inflammatory phenotype. J Neurochem 2013; 127:245-58. [PMID: 23919525 DOI: 10.1111/jnc.12385] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 12/11/2022]
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL) is a lysosomal storage disease caused by an autosomal recessive mutation in CLN3. Regions of microglial activation precede and predict areas of neuronal loss in JNCL; however, the functional role of activated microglia remains to be defined. The inflammasome is a key molecular pathway for activating pro-IL-1β in microglia, and IL-1β is elevated in the brains of JNCL patients and can induce neuronal cell death. Here, we utilized primary microglia isolated from CLN3(Δex7/8) mutant and wild-type (WT) mice to examine the impact of CLN3 mutation on microglial activation and inflammasome function. Treatment with neuronal lysates and ceramide, a lipid intermediate elevated in the JNCL brain, led to inflammasome activation and IL-1β release in CLN3(Δex7/8) microglia but not WT cells, as well as increased expression of additional pro-inflammatory mediators. Similar effects were observed following either TNF-α or IL-1β treatment, suggesting that CLN3(Δex7/8) microglia exist in primed state and hyper-respond to several inflammatory stimuli compared to WT cells. CLN3(Δex7/8) microglia displayed constitutive caspase-1 activity that when blocked led to increased glutamate release that coincided with hemichannel opening. Conditioned medium from activated CLN3(Δex7/8) or WT microglia induced significant cell death in CLN3(Δex7/8) but not WT neurons, demonstrating that intrinsically diseased CLN3(Δex7/8) neurons are less equipped to withstand cytotoxic insults generated by activated microglia. Collectively, aberrant microglial activation may contribute to the pathological chain of events leading to neurodegeneration during later stages of JNCL.
Collapse
Affiliation(s)
- Juan Xiong
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | |
Collapse
|
488
|
Progranulin does not bind tumor necrosis factor (TNF) receptors and is not a direct regulator of TNF-dependent signaling or bioactivity in immune or neuronal cells. J Neurosci 2013; 33:9202-13. [PMID: 23699531 DOI: 10.1523/jneurosci.5336-12.2013] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Progranulin (PGRN) is a secreted glycoprotein expressed in neurons and glia that is implicated in neuronal survival on the basis that mutations in the GRN gene causing haploinsufficiency result in a familial form of frontotemporal dementia (FTD). Recently, a direct interaction between PGRN and tumor necrosis factor receptors (TNFR I/II) was reported and proposed to be a mechanism by which PGRN exerts anti-inflammatory activity, raising the possibility that aberrant PGRN-TNFR interactions underlie the molecular basis for neuroinflammation in frontotemporal lobar degeneration pathogenesis. Here, we report that we find no evidence for a direct physical or functional interaction between PGRN and TNFRs. Using coimmunoprecipitation and surface plasmon resonance (SPR) we replicated the interaction between PGRN and sortilin and that between TNF and TNFRI/II, but not the interaction between PGRN and TNFRs. Recombinant PGRN or transfection of a cDNA encoding PGRN did not antagonize TNF-dependent NFκB, Akt, and Erk1/2 pathway activation; inflammatory gene expression; or secretion of inflammatory factors in BV2 microglia and bone marrow-derived macrophages (BMDMs). Moreover, PGRN did not antagonize TNF-induced cytotoxicity on dopaminergic neuroblastoma cells. Last, co-addition or pre-incubation with various N- or C-terminal-tagged recombinant PGRNs did not alter lipopolysaccharide-induced inflammatory gene expression or cytokine secretion in any cell type examined, including BMDMs from Grn+/- or Grn-/- mice. Therefore, the neuroinflammatory phenotype associated with PGRN deficiency in the CNS is not a direct consequence of the loss of TNF antagonism by PGRN, but may be a secondary response by glia to disrupted interactions between PGRN and Sortilin and/or other binding partners yet to be identified.
Collapse
|
489
|
Abstract
Ischemic stroke predominates in all types of stroke and none neuroprotective agents success in the clinical trial. MicroRNAs are small endogenous noncoding RNA molecules that act as negative or positive regulators of gene expressions by binding completely or partially to complementary target sequences in the mRNAs. The genes which could be modulated by microRNAs play a role in the etiology and pathophysiology ischemic stroke. Therefore, microRNAs may have function on ischemic stroke. A lot of previous studies have investigated the roles of microRNAs in the ischemic stroke. This mini review would highlight the recent progress of microRNAs on the ischemic stroke. Accumulating evidence demonstrated that microRNAs contributed to the etiology of ischemic stroke and modulated the pathophysiological process such as brain edema, local inflammation, and apoptosis in the brain tissues after stroke. And we also discussed the potential application of microRNAs in ischemic stroke such as a biomarker of stroke and drug target. In conclusion, microRNAs play an important role in stroke etiology, pathophysiology, diagnosis, and therapy for ischemic stroke. It needs further research to investigate the biological function in ischemic stroke before it enters the clinical practice.
Collapse
|
490
|
Tumor necrosis factor in traumatic brain injury: effects of genetic deletion of p55 or p75 receptor. J Cereb Blood Flow Metab 2013; 33:1182-9. [PMID: 23611870 PMCID: PMC3734767 DOI: 10.1038/jcbfm.2013.65] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 03/18/2013] [Accepted: 03/22/2013] [Indexed: 12/18/2022]
Abstract
The role of tumor necrosis factor (TNF) and its receptors after traumatic brain injury (TBI) remains unclear. We evaluated the effects of genetic deletion of either p55 or p75 TNF receptor on neurobehavioral outcome, histopathology, DNA damage and apoptosis-related cell death/survival gene expression (bcl-2/bax), and microglia/macrophage (M/M) activation in wild-type (WT) and knockout mice after TBI. Injured p55 (-/-) mice showed a significant attenuation while p75 (-/-) mice showed a significant worsening of sensorimotor deficits compared with WT mice over 4 weeks postinjury. At the same time point, contusion volume in p55 (-/-) mice (11.1±3.3 mm(3)) was significantly reduced compared with WT (19.7±3.4 mm(3)) and p75 (-/-) mice (20.9±3.2 mm(3)). At 4 hours postinjury, bcl-2/bax ratio mRNA expression was increased in p55 (-/-) compared with p75 (-/-) mice and was associated with reduced DNA damage terminal deoxynucleotidyl transferaseYmediated dUTP nick end labeling (TUNEL-positivity), reduced CD11b expression and increased Ym1 expression at 24 hours postinjury in p55 (-/-) compared with p75 (-/-) mice, indicative of a protective M/M response. These data suggest that TNF may exacerbate neurobehavioral deficits and tissue damage via p55 TNF receptor whose inhibition may represent a specific therapeutic target after TBI.
Collapse
|
491
|
Tian X, Hua F, Sandhu HK, Chao D, Balboni G, Salvadori S, He X, Xia Y. Effect of δ-opioid receptor activation on BDNF-TrkB vs. TNF-α in the mouse cortex exposed to prolonged hypoxia. Int J Mol Sci 2013; 14:15959-76. [PMID: 23912236 PMCID: PMC3759895 DOI: 10.3390/ijms140815959] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/25/2013] [Accepted: 07/25/2013] [Indexed: 12/15/2022] Open
Abstract
We investigated whether δ-opioid receptor (DOR)-induced neuroprotection involves the brain-derived neurotrophic factor (BDNF) pathway. We studied the effect of DOR activation on the expression of BDNF and other proteins in the cortex of C57BL/6 mice exposed to hypoxia (10% of oxygen) for 1–10 days. The results showed that: (1) 1-day hypoxia had no appreciable effect on BDNF expression, while 3- and 10-day hypoxia progressively decreased BDNF expression, resulting in 37.3% reduction (p < 0.05) after 10-day exposure; (2) DOR activation with UFP-512 (1 mg/kg, i.p., daily) partially reversed the hypoxia-induced reduction of BDNF expression in the 3- or 10-day exposed cortex; (3) DOR activation partially reversed the hypoxia-induced reduction in functional TrkB (140-kDa) and attenuated hypoxia-induced increase in truncated TrkB (90-kDa) in the 3- or 10-day hypoxic cortex; and (4) prolonged hypoxia (10 days) significantly increased TNF-α level and decreased CD11b expression in the cortex, which was completely reversed following DOR activation; and (5) there was no significant change in pCREB and pATF-1 levels in the hypoxic cortex. We conclude that prolonged hypoxia down-regulates BDNF-TrkB signaling leading to an increase in TNF-α in the cortex, while DOR activation up-regulates BDNF-TrkB signaling thereby decreasing TNF-α levels in the hypoxic cortex.
Collapse
Affiliation(s)
- Xuesong Tian
- The Vivan L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA; E-Mails: (X.T.); (H.K.S.); (D.C.)
| | - Fei Hua
- Research Institute of Modern Medicine, The Third Medical College of Soochow University, Changzhou, Jiangsu 213002, China; E-Mail:
| | - Harleen K Sandhu
- The Vivan L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA; E-Mails: (X.T.); (H.K.S.); (D.C.)
| | - Dongman Chao
- The Vivan L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA; E-Mails: (X.T.); (H.K.S.); (D.C.)
| | - Gianfranco Balboni
- Department of Life and Environment Sciences, University of Cagliari, Cagliari I-09124, Italy; E-Mail:
| | - Severo Salvadori
- Department of Pharmaceutical Sciences, University of Ferrara, Ferrara I-44100, Italy; E-Mail:
| | - Xiaozhou He
- Research Institute of Modern Medicine, The Third Medical College of Soochow University, Changzhou, Jiangsu 213002, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (X.H.); (Y.X.); Tel./Fax: +1-713-500-6288 (Y.X.)
| | - Ying Xia
- The Vivan L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA; E-Mails: (X.T.); (H.K.S.); (D.C.)
- Authors to whom correspondence should be addressed; E-Mails: (X.H.); (Y.X.); Tel./Fax: +1-713-500-6288 (Y.X.)
| |
Collapse
|
492
|
Sloka S, Metz LM, Hader W, Starreveld Y, Yong VW. Reduction of microglial activity in a model of multiple sclerosis by dipyridamole. J Neuroinflammation 2013; 10:89. [PMID: 23866809 PMCID: PMC3724584 DOI: 10.1186/1742-2094-10-89] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 07/02/2013] [Indexed: 01/01/2023] Open
Abstract
Background Despite extensive and persistent activation of microglia in multiple sclerosis (MS), microglia inhibitors have not yet been identified for treatment of the disorder. We sought to identify medications already in clinical use that could inhibit the activation of microglia. On the basis of the reported inhibitory effects of dipyridamole on phosphodiesterase activity that result in the production of various anti-inflammatory outcomes, we selected it for study. Dipyridamole is used clinically for secondary prevention in stroke. In this study, dipyridamole was examined using microglia in culture and in the mouse model of MS, experimental autoimmune encephalomyelitis (EAE). Results We found that dipyridamole attenuated the elevation of several cytokines and chemokines in human microglia caused by Toll-like receptor stimulation. Morphological characteristics of activated microglia in culture were also normalized by dipyridamole. In mice, dipyridamole decreased the clinical severity of EAE and reduced microglial activity and other histological indices of EAE in the spinal cord. Conclusions Dipyridamole is an inhibitor of microglia activation and may have a role in MS and other neurological conditions to attenuate microglial activity.
Collapse
Affiliation(s)
- Scott Sloka
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Drive, Calgary, AB T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
493
|
Bao L, Xu F. Fundamental research progress of mild hypothermia in cerebral protection. SPRINGERPLUS 2013; 2:306. [PMID: 23888277 PMCID: PMC3710408 DOI: 10.1186/2193-1801-2-306] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 07/03/2013] [Indexed: 11/27/2022]
Abstract
Through the years, the clinical application of mild hypothermia has been carried out worldwide and is built from the exploration and cognition of neuroprotection mechanisms by hypothermia. However, within the last decade, extensive and fundamental researches in this area have been conducted. In addition to aspects of the previous findings, scholars have discovered several new contents and uncertain results. This article reviews and summarizes this decade’s progression of mild hypothermia in lowering the cerebral oxygen metabolism, protecting the blood–brain-barrier, regulating the inflammatory response, regulating the excessive release of neurotransmitters, inhibiting calcium overload, and reducing neuronal apoptosis. In many aspects, particularly in regulating inflammatory reverse reaction, various results have been reported and therefore guide scholars to conduct more detailed analysis and investigation in order to discover the inherent theories surrounding the effect of mild hypothermia, and for better clinical services.
Collapse
Affiliation(s)
- Long Bao
- Department of Emergency medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | | |
Collapse
|
494
|
Different changes in cortical tumor necrosis factor-α-related pathways in schizophrenia and mood disorders. Mol Psychiatry 2013; 18:767-73. [PMID: 22801413 DOI: 10.1038/mp.2012.95] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The growing body of evidence implicating tumor necrosis factor-α (TNFα) in the pathophysiology of psychiatric disorders led us to measure levels of that protein in the cortex of subjects with major depressive disorders (MDD). Having reported an increase (458%) in the levels of the transmembrane (tmTNFα), but not the soluble (sTNFα), form of the protein in Brodmann's area (BA) 46, but not 24, in people with the disorder, we decided to examine additional components of TNFα-related pathways in the same regions in people with MDD and extend our studies to the same cortical regions of people with schizophrenia (Sz) and bipolar disorders (BD). Using postmortem tissue, western blots and quantitative PCR, we have now shown there is a significant increase (305%) in tmTNFα in Brodmann's area 24, but not 46, from subjects with BD, and that levels of the protein were not altered in Sz. Levels of sTNFα were not altered in BD or Sz. In addition, we have shown that levels of TNF receptor 1 (TNFR1) mRNA are increased in BA 24 (53%) and BA 46 (82%) in people with Sz, whereas levels of TNFR2 mRNA was decreased in BA 46 in people with mood disorders (MDD=-51%; BD=-67%). Levels of proteins frequently used as surrogate markers of neuronal, astrocytic and microglia numbers, as well as levels of the pro-inflammatory marker (interleukin 1β), were not changed in the cortex of people with mood disorders. Our data suggest there are differential changes in TNFα-related markers in the cortex of people with MDD, BD and Sz that may not be related to classical inflammation and may cause changes in different TNFα-related signaling pathways.
Collapse
|
495
|
Chang C, Lang H, Geng N, Wang J, Li N, Wang X. Exosomes of BV-2 cells induced by alpha-synuclein: important mediator of neurodegeneration in PD. Neurosci Lett 2013; 548:190-5. [PMID: 23792198 DOI: 10.1016/j.neulet.2013.06.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 01/12/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease. Alpha-synuclein aggregation, which can activate microglia to enhance its dopaminergic neurotoxicity, plays a central role in the progression of PD. However the mechanism is still unclear. To investigate how alpha-synuclein affects the neuron, exosomes were derived from alpha-synuclein treated mouse microglia cell line BV-2 cells by differential centrifugation and ultracentrifugation. We found that alpha-synuclein can induce an increase of exosomal secretion by microglia. These activated exosomes expressed a high level of MHC class II molecules and membrane TNF-α. In addition, the activated exosomes cause increased apoptosis. Exosomes secreted from activated microglias might be important mediator of alpha-synuclein-induced neurodegeneration in PD.
Collapse
Affiliation(s)
- Chongwang Chang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, PR China
| | | | | | | | | | | |
Collapse
|
496
|
Peripheral elevation of TNF-α leads to early synaptic abnormalities in the mouse somatosensory cortex in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2013; 110:10306-11. [PMID: 23733958 DOI: 10.1073/pnas.1222895110] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sensory abnormalities such as numbness and paresthesias are often the earliest symptoms in neuroinflammatory diseases including multiple sclerosis. The increased production of various cytokines occurs in the early stages of neuroinflammation and could have detrimental effects on the central nervous system, thereby contributing to sensory and cognitive deficits. However, it remains unknown whether and when elevation of cytokines causes changes in brain structure and function under inflammatory conditions. To address this question, we used a mouse model for experimental autoimmune encephalomyelitis (EAE) to examine the effect of inflammation and cytokine elevation on synaptic connections in the primary somatosensory cortex. Using in vivo two-photon microscopy, we found that the elimination and formation rates of dendritic spines and axonal boutons increased within 7 d of EAE induction--several days before the onset of paralysis--and continued to rise during the course of the disease. This synaptic instability occurred before T-cell infiltration and microglial activation in the central nervous system and was in conjunction with peripheral, but not central, production of TNF-α. Peripheral administration of a soluble TNF inhibitor prevented abnormal turnover of dendritic spines and axonal boutons in presymptomatic EAE mice. These findings indicate that peripheral production of TNF-α is a key mediator of synaptic instability in the primary somatosensory cortex and may contribute to sensory and cognitive deficits seen in autoimmune diseases.
Collapse
|
497
|
Karasinska JM, de Haan W, Franciosi S, Ruddle P, Fan J, Kruit JK, Stukas S, Lütjohann D, Gutmann DH, Wellington CL, Hayden MR. ABCA1 influences neuroinflammation and neuronal death. Neurobiol Dis 2013; 54:445-55. [DOI: 10.1016/j.nbd.2013.01.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 01/04/2013] [Accepted: 01/17/2013] [Indexed: 11/29/2022] Open
|
498
|
Affiliation(s)
- Yi-Bing Ouyang
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA 94305-5117, USA.
| |
Collapse
|
499
|
Crain JM, Nikodemova M, Watters JJ. Microglia express distinct M1 and M2 phenotypic markers in the postnatal and adult central nervous system in male and female mice. J Neurosci Res 2013; 91:1143-51. [PMID: 23686747 DOI: 10.1002/jnr.23242] [Citation(s) in RCA: 283] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/20/2013] [Accepted: 03/29/2013] [Indexed: 12/11/2022]
Abstract
Although microglial activation is associated with all CNS disorders, many of which are sexually dimorphic or age-dependent, little is known about whether microglial basal gene expression is altered with age in the healthy CNS or whether it is sex dependent. Analysis of microglia from the brains of 3-day (P3)- to 12-month-old male and female C57Bl/6 mice revealed distinct gene expression profiles during postnatal development that differ significantly from those in adulthood. Microglia at P3 are characterized by relatively high iNOS, TNFα and arginase-I mRNA levels, whereas P21 microglia have increased expression of CD11b, TLR4, and FcRγI. Adult microglia (2-4 months) are characterized by low proinflammatory cytokine expression, which increases by 12 months of age. Age-dependent differences in gene expression suggest that microglia likely undergo phenotypic changes during ontogenesis, although in the healthy brain they did not express exclusively either M1 or M2 phenotypic markers at any time. Interestingly, microglia were sexually dimorphic only at P3, when females had higher expression of inflammatory cytokines than males, although there were no sex differences in estrogen receptor expression at this or any other time evaluated here. Compared with microglia in vivo, primary microglia prepared from P3 mice had considerably altered gene expression, with higher levels of TNFα, CD11b, arginase-I, and VEGF, suggesting that culturing may significantly alter microglial properties. In conclusion, age- and sex-specific variances in basal gene expression may allow differential microglial responses to the same stimulus at different ages, perhaps contributing to altered CNS vulnerabilities and/or disease courses.
Collapse
Affiliation(s)
- Jessica M Crain
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison, Wisconsin, USA
| | | | | |
Collapse
|
500
|
Felger JC, Lotrich FE. Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience 2013; 246:199-229. [PMID: 23644052 DOI: 10.1016/j.neuroscience.2013.04.060] [Citation(s) in RCA: 763] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/08/2013] [Accepted: 04/27/2013] [Indexed: 12/28/2022]
Abstract
Mounting evidence indicates that inflammatory cytokines contribute to the development of depression in both medically ill and medically healthy individuals. Cytokines are important for development and normal brain function, and have the ability to influence neurocircuitry and neurotransmitter systems to produce behavioral alterations. Acutely, inflammatory cytokine administration or activation of the innate immune system produces adaptive behavioral responses that promote conservation of energy to combat infection or recovery from injury. However, chronic exposure to elevated inflammatory cytokines and persistent alterations in neurotransmitter systems can lead to neuropsychiatric disorders and depression. Mechanisms of cytokine behavioral effects involve activation of inflammatory signaling pathways in the brain that results in changes in monoamine, glutamate, and neuropeptide systems, and decreases in growth factors, such as brain-derived neurotrophic factor. Furthermore, inflammatory cytokines may serve as mediators of both environmental (e.g. childhood trauma, obesity, stress, and poor sleep) and genetic (functional gene polymorphisms) factors that contribute to depression's development. This review explores the idea that specific gene polymorphisms and neurotransmitter systems can confer protection from or vulnerability to specific symptom dimensions of cytokine-related depression. Additionally, potential therapeutic strategies that target inflammatory cytokine signaling or the consequences of cytokines on neurotransmitter systems in the brain to prevent or reverse cytokine effects on behavior are discussed.
Collapse
Affiliation(s)
- J C Felger
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30306, United States.
| | | |
Collapse
|