451
|
Deng K, Yao J, Huang J, Ding Y, Zuo J. Abnormal alternative splicing promotes tumor resistance in targeted therapy and immunotherapy. Transl Oncol 2021; 14:101077. [PMID: 33774500 PMCID: PMC8039720 DOI: 10.1016/j.tranon.2021.101077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Abnormal alternative splicing is involve in abnormal expression of genes in cancer. Abnormal alternative splicing events promote malignant progression of cancer. Abnormal alternative splicing develops tumor resistance to targeted therapy by changing the target point and signal transduction pathway. Abnormal alternative splicing develops tumor resistance to immunotherapy by changing cell surface antigens and protein structure.
Abnormally alternative splicing events are common hallmark of diverse types of cancers. Splicing variants with aberrant functions play an important role in cancer development. Most importantly, a growing body of evidence has supported that alternative splicing might play a significant role in the therapeutic resistance of tumors. Targeted therapy and immunotherapy are the future directions of tumor therapy; however, the loss of antigen targets on the tumor cells surface and alterations in drug efficacy have resulted in the failure of targeted therapy and immunotherapy. Interestingly, abnormal alternative splicing, as a strategy to regulate gene expression, is reportedly involved in the reprogramming of cell signaling pathways and epitopes on the tumor cell surface by changing splicing patterns of genes, thus rendering tumors resisted to targeted therapy and immunotherapy. Accordingly, increased knowledge regarding abnormal alternative splicing in tumors may help predict therapeutic resistance during targeted therapy and immunotherapy and lead to novel therapeutic approaches in cancer. Herein, we provide a brief synopsis of abnormal alternative splicing events in cancer progression and therapeutic resistance.
Collapse
Affiliation(s)
- Kun Deng
- The Laboratory of translational medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang, Hunan 421001, P R China
| | - Jingwei Yao
- The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421002, P R China
| | - Jialu Huang
- The Laboratory of translational medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang, Hunan 421001, P R China
| | - Yubo Ding
- The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421002, P R China
| | - Jianhong Zuo
- The Laboratory of translational medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang, Hunan 421001, P R China; The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421002, P R China; Clinical Laboratory, The Third Affiliated Hospital of University of South China, Hengyang, Hunan 421900, China.
| |
Collapse
|
452
|
Gomari MM, Farsimadan M, Rostami N, Mahmoudi Z, Fadaie M, Farhani I, Tarighi P. CD44 polymorphisms and its variants, as an inconsistent marker in cancer investigations. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2021; 787:108374. [PMID: 34083044 DOI: 10.1016/j.mrrev.2021.108374] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/23/2020] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
Among cell surface markers, CD44 is considered the main marker for identifying and isolating the cancer stem cells (CSCs) among other cells and has attracted significant attention in a variety of research areas. Many studies have shown the essential roles of CD44 in initiation, metastasis, and tumorigenesis in different types of cancer; however, the validity of CD44 as a therapeutic or diagnostic target has not been fully confirmed in some other studies. Whereas the association of specific single nucleotide polymorphisms (SNPs) in the CD44 gene and related variants with cancer risk have been observed in clinical investigations, the significance of these findings remains controversial. Here, we aimed to provide an up-to-date overview of recent studies on the association of CD44 polymorphisms and its variants with different kinds of cancer to determine whether or not it can be used as an appropriate candidate for cancer tracking.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marziye Farsimadan
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Neda Rostami
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Iran
| | - Zahra Mahmoudi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Fadaie
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ibrahim Farhani
- Department of Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Golestan, Iran
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
453
|
Yoshida GJ, Saya H. Molecular pathology underlying the robustness of cancer stem cells. Regen Ther 2021; 17:38-50. [PMID: 33869685 PMCID: PMC8024885 DOI: 10.1016/j.reth.2021.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Intratumoral heterogeneity is tightly associated with the failure of anticancer treatment modalities including conventional chemotherapy, radiation therapy, and molecularly targeted therapy. Such heterogeneity is generated in an evolutionary manner not only as a result of genetic alterations but also by the presence of cancer stem cells (CSCs). CSCs are proposed to exist at the top of a tumor cell hierarchy and are undifferentiated tumor cells that manifest enhanced tumorigenic and metastatic potential, self-renewal capacity, and therapeutic resistance. Properties that contribute to the robustness of CSCs include the abilities to withstand redox stress, to rapidly repair damaged DNA, to adapt to a hyperinflammatory or hyponutritious tumor microenvironment, and to expel anticancer drugs by the action of ATP-binding cassette transporters as well as plasticity with regard to the transition between dormant CSC and transit-amplifying progenitor cell phenotypes. In addition, CSCs manifest the phenomenon of metabolic reprogramming, which is essential for maintenance of their self-renewal potential and their ability to adapt to changes in the tumor microenvironment. Elucidation of the molecular underpinnings of these biological features of CSCs is key to the development of novel anticancer therapies. In this review, we highlight the pathological relevance of CSCs in terms of their hallmarks and identification, the properties of their niche—both in primary tumors and at potential sites of metastasis—and their resistance to oxidative stress dependent on system xc (−). Intratumoral heterogeneity driven by CSCs is responsible for therapeutic resistance. CTCs survive in the distant organs and achieve colonization, causing metastasis. E/M hybrid cancer cells due to partial EMT exhibit the highest metastatic potential. The CSC niche regulates stemness in metastatic disease as well as in primary tumor. Activation of system xc(-) by CD44 variant in CSCs is a promising therapeutic target.
Collapse
Key Words
- ABC, ATP-binding cassette
- ALDH, Aldehyde dehydrogenase
- BMP, Bone morphogenetic protein
- CAF, Cancer-associated fibroblast
- CD44 variant
- CD44v, CD44 variant
- CSC, Cancer stem cell
- CTC, Circulating tumor cell
- CagA, Cytotoxin-associated gene A
- Cancer stem cell
- DTC, Disseminated tumor cell
- E/M, Epithelial/mesenchymal
- ECM, Extracellular matrix
- EGF, Epidermal growth factor
- EMT, Epithelial-to-mesenchymal transition
- EpCAM, Epithelial cell adhesion moleculeE
- Epithelial-to-mesenchymal transition (EMT)
- GSC, Glioma stem cell
- GSH, reduced glutathione
- HGF, Hepatocyte growth factor
- HNSCC, Head and neck squamous cell cancer
- IL, Interleukin
- Intratumoral heterogeneity
- MAPK, mitogen-activated protein kinase
- MET, mesenchymal-to-epithelial transition
- NSCLC, non–small cell lung cancer
- Niche
- Nrf2, nuclear factor erythroid 2–related factor 2
- OXPHOS, Oxidative phosphorylation
- Plasticity
- Prrx1, Paired-related homeodomain transcription factor 1
- ROS, Reactive oxygen species
- SRP1, Epithelial splicing regulatory protein 1
- TGF-β, Transforming growth factor–β
Collapse
Affiliation(s)
- Go J Yoshida
- Division of Gene Regulation, Institute for Advanced Medical Research (IAMR), Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research (IAMR), Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
454
|
Kung WM, Lin MS. Beneficial Impacts of Alpha-Eleostearic Acid from Wild Bitter Melon and Curcumin on Promotion of CDGSH Iron-Sulfur Domain 2: Therapeutic Roles in CNS Injuries and Diseases. Int J Mol Sci 2021; 22:3289. [PMID: 33804820 PMCID: PMC8037269 DOI: 10.3390/ijms22073289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 02/05/2023] Open
Abstract
Neuroinflammation and abnormal mitochondrial function are related to the cause of aging, neurodegeneration, and neurotrauma. The activation of nuclear factor κB (NF-κB), exaggerating these two pathologies, underlies the pathogenesis for the aforementioned injuries and diseases in the central nervous system (CNS). CDGSH iron-sulfur domain 2 (CISD2) belongs to the human NEET protein family with the [2Fe-2S] cluster. CISD2 has been verified as an NFκB antagonist through the association with peroxisome proliferator-activated receptor-β (PPAR-β). This protective protein can be attenuated under circumstances of CNS injuries and diseases, thereby causing NFκB activation and exaggerating NFκB-provoked neuroinflammation and abnormal mitochondrial function. Consequently, CISD2-elevating plans of action provide pathways in the management of various disease categories. Various bioactive molecules derived from plants exert protective anti-oxidative and anti-inflammatory effects and serve as natural antioxidants, such as conjugated fatty acids and phenolic compounds. Herein, we have summarized pharmacological characters of the two phytochemicals, namely, alpha-eleostearic acid (α-ESA), an isomer of conjugated linolenic acids derived from wild bitter melon (Momordica charantia L. var. abbreviata Ser.), and curcumin, a polyphenol derived from rhizomes of Curcuma longa L. In this review, the unique function of the CISD2-elevating effect of α-ESA and curcumin are particularly emphasized, and these natural compounds are expected to serve as a potential therapeutic target for CNS injuries and diseases.
Collapse
Affiliation(s)
- Woon-Man Kung
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei 11114, Taiwan;
| | - Muh-Shi Lin
- Division of Neurosurgery, Department of Surgery, Kuang Tien General Hospital, Taichung 43303, Taiwan
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan
- Department of Biotechnology, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan
- Department of Health Business Administration, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan
| |
Collapse
|
455
|
Feng X, Huang YL, Zhang Z, Wang N, Yao Q, Pang LJ, Li F, Qi Y. The role of SYT-SSX fusion gene in tumorigenesis of synovial sarcoma. Pathol Res Pract 2021; 222:153416. [PMID: 33848939 DOI: 10.1016/j.prp.2021.153416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/09/2021] [Accepted: 03/20/2021] [Indexed: 12/29/2022]
Abstract
Synovial sarcoma (SS) is an aggressive malignancy of an unknown tissue origin that is characterized by biphasic differentiation. A possible basis of the pathogenesis of SS is pathognomonic t(X;18) (p11.2; q11.2) translocation, leading to the formation and expression of the SYT-SSX fusion gene. More than a quarter of the patients die of SS metastasis within 5 years after the diagnosis, but the pathogenic factors are unknown. Therefore, there is an urgent need to explore the pathogenesis, invasion, metastasis, and clinical treatment options for SS, especially molecular-targeted drug therapy. Recent studies have shown that the SYT-SSX fusion gene associated with SS may be regulated by different signaling pathways, microRNAs, and other molecules, which may produce stem cell characteristics or promote epithelial-mesenchymal transition, resulting in SS invasion and metastasis. This review article aims to show the relationship between the SYT-SSX fusion gene and the related pathway molecules as well as other molecules involved from different perspectives, which may provide a deeper and clearer understanding of the SYT-SSX fusion gene function. Therefore, this review may provide a more innovative and broader perspective of the current research, treatment options, and prognosis assessment of SS.
Collapse
Affiliation(s)
- Xiao Feng
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Ya-Lan Huang
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China; Department of Pathology Suining Central Hospital, Suining, Sichuan, China
| | - Zhen Zhang
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Ning Wang
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Qing Yao
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Li-Juan Pang
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Feng Li
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China; Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Yan Qi
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China; Department of Pathology, Central People's Hospital of Zhanjiang and Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
456
|
Single-cell sequencing technology in tumor research. Clin Chim Acta 2021; 518:101-109. [PMID: 33766554 DOI: 10.1016/j.cca.2021.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/24/2022]
Abstract
Tumor heterogeneity is a key characteristic of malignant tumors and a significant obstacle in cancer treatment and research. Although bulk tissue sequencing has wide coverage and high accuracy, it can only represent the dominant cell signal information of each sample, while masking the unique gene expression of rare cells; therefore it cannot represent genes that are unstable within a subgroup, but unchanged in a majority of cells. With the progress of genomic technology, the emergence of single-cell sequencing (SCS) has effectively solved the above problem. Genetic, transcriptomic and epigenetic sequencing at the single-cell level provides an important basis for us to correctly classify the cell subsets of heterogeneous tumor populations and to reveal the process of complex changes in tumor cells at the molecular level. Single-cell sequencing technology has been applied to the field of cancer, revealing exciting discoveries in the potential mechanisms of tumor driver gene mutation, clonal evolution, invasion and metastasis. It also provides favorable conditions for developing new tumor biomarkers and providing more accurate and individualized targeted tumor therapy. Herein, we review the steps and methods of single-cell sequencing and highlight the application of SCS in tumor diagnosis and clinical treatment.
Collapse
|
457
|
Lei X, He Q, Li Z, Zou Q, Xu P, Yu H, Ding Y, Zhu W. Cancer stem cells in colorectal cancer and the association with chemotherapy resistance. Med Oncol 2021; 38:43. [PMID: 33738588 DOI: 10.1007/s12032-021-01488-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
The incidence and mortality of colorectal cancer (CRC) have always been among the highest in the world, although the diagnosis and treatment are becoming more and more advanced. At present, the main reason is that patients have acquired drug resistance after long-term conventional drug treatment. An increasing number of evidences confirm the existence of cancer stem cells (CSCs), which are a group of special cells in cancer, only a small part of cancer cells. These special cell populations are not eliminated by chemotherapeutic drugs and result in tumor recurrence and metastasis after drug treatment. CSCs have the ability of self-renewal and multidirectional differentiation, which is associated with the occurrence and development of cancer. CSCs can be screened and identified by related surface markers. In this paper, the characteristic surface markers of CSCs in CRC and the related mechanism of drug resistance will be discussed in detail. A better understanding of the mechanism of CSCs resistance to chemotherapy may lead to better targeted therapy.
Collapse
Affiliation(s)
- Xue Lei
- Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Qinglian He
- Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Ziqi Li
- Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Qian Zou
- Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Pingrong Xu
- Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Haibing Yu
- School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China
| | - Yuanlin Ding
- School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China
| | - Wei Zhu
- Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan, 523808, Guangdong Province, China.
| |
Collapse
|
458
|
Navarro-Marchal SA, Griñán-Lisón C, Entrena JM, Ruiz-Alcalá G, Tristán-Manzano M, Martin F, Pérez-Victoria I, Peula-García JM, Marchal JA. Anti-CD44-Conjugated Olive Oil Liquid Nanocapsules for Targeting Pancreatic Cancer Stem Cells. Biomacromolecules 2021; 22:1374-1388. [PMID: 33724003 DOI: 10.1021/acs.biomac.0c01546] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The latest trends in cancer research and nanomedicine focus on using nanocarriers to target cancer stem cells (CSCs). Specifically, lipid liquid nanocapsules are usually developed as nanocarriers for lipophilic drug delivery. Here, we developed olive oil liquid NCs (O2LNCs) functionalized by covalent coupling of an anti-CD44-fluorescein isothiocyanate antibody (αCD44). First, O2LNCs are formed by a core of olive oil surrounded by a shell containing phospholipids, a nonionic surfactant, and deoxycholic acid molecules. Then, O2LNCs were coated with an αCD44 antibody (αCD44-O2LNC). The optimization of an αCD44 coating procedure, a complete physicochemical characterization, as well as clear evidence of their efficacy in vitro and in vivo were demonstrated. Our results indicate the high targeted uptake of these αCD44-O2LNCs, and the increased antitumor efficacy (up to four times) of paclitaxel-loaded-αCD44-O2LNC compared to free paclitaxel in pancreatic CSCs (PCSCs). Also, αCD44-O2LNCs were able to selectively target PCSCs in an orthotopic xenotransplant in vivo model.
Collapse
Affiliation(s)
- Saúl A Navarro-Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18071 Granada, Spain.,Department of Applied Physics, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Carmen Griñán-Lisón
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18071 Granada, Spain
| | - José-Manuel Entrena
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, Armilla, 18100 Granada, Spain.,Animal Behavior Research Unit, Scientific Instrumentation Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, Armilla, 18100 Granada, Spain
| | - Gloria Ruiz-Alcalá
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18071 Granada, Spain
| | - María Tristán-Manzano
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Francisco Martin
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Ignacio Pérez-Victoria
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, 18016 Granada, Spain
| | - José Manuel Peula-García
- Biocolloids and Fluids Physics Group, Faculty of Sciences, University of Granada, 18014 Granada, Spain.,Department of Applied Physics II, University of Málaga, 29071 Málaga, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18071 Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
459
|
Xia H, Herrera J, Smith K, Yang L, Gilbertsen A, Benyumov A, Racila E, Bitterman PB, Henke CA. Hyaluronan/CD44 axis regulates S100A4-mediated mesenchymal progenitor cell fibrogenicity in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2021; 320:L926-L941. [PMID: 33719561 DOI: 10.1152/ajplung.00456.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite modest improvement in patient outcomes from recent advances in pharmacotherapy targeting fibrogenic signaling pathways, idiopathic pulmonary fibrosis (IPF) remains a major unsolved clinical problem. One reason for this is that available antifibrotic agents slow down but do not arrest fibrotic progression. To arrest fibrotic progression, its obligatory drivers need to be identified. We previously discovered that fibrogenic mesenchymal progenitor cells (MPCs) are key drivers of fibrotic progression in IPF, serving as cells of origin for disease-mediating myofibroblasts. IPF MPCs have high levels of nuclear S100A4, which interacts with the proteasome to promote p53 degradation and self-renewal. However, the mechanism underlying S100A4 accumulation in the nucleus of IPF MPCs remains unknown. Here we show that hyaluronan (HA) is present in the fibroblastic focus together with CD44-expressing MPCs and that ligation of CD44 by HA triggers S100A4 nuclear translocation to support IPF MPC self-renewal. The mechanism involves HA-mediated formation of a CD44/S100A4/transportin 1 complex, which promotes S100A4 nuclear import. In a humanized mouse model of pulmonary fibrosis, IPF MPC fibrogenicity was significantly attenuated by 1) knockdown of CD44 or 2) introduction of an S100A4 mutant construct that prevents S100A4 nuclear import. These data indicate that signaling through the HA/CD44/S100A4 axis is an integral component of IPF MPC fibrogenicity.
Collapse
Affiliation(s)
- Hong Xia
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Jeremy Herrera
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Karen Smith
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Libang Yang
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Adam Gilbertsen
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Alexy Benyumov
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Emilian Racila
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Peter B Bitterman
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Craig A Henke
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
460
|
Iannotti FA, Vitale RM. The Endocannabinoid System and PPARs: Focus on Their Signalling Crosstalk, Action and Transcriptional Regulation. Cells 2021; 10:586. [PMID: 33799988 PMCID: PMC8001692 DOI: 10.3390/cells10030586] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear receptors including PPARα, PPARγ, and PPARβ/δ, acting as transcription factors to regulate the expression of a plethora of target genes involved in metabolism, immune reaction, cell differentiation, and a variety of other cellular changes and adaptive responses. PPARs are activated by a large number of both endogenous and exogenous lipid molecules, including phyto- and endo-cannabinoids, as well as endocannabinoid-like compounds. In this view, they can be considered an extension of the endocannabinoid system. Besides being directly activated by cannabinoids, PPARs are also indirectly modulated by receptors and enzymes regulating the activity and metabolism of endocannabinoids, and, vice versa, the expression of these receptors and enzymes may be regulated by PPARs. In this review, we provide an overview of the crosstalk between cannabinoids and PPARs, and the importance of their reciprocal regulation and modulation by common ligands, including those belonging to the extended endocannabinoid system (or "endocannabinoidome") in the control of major physiological and pathophysiological functions.
Collapse
Affiliation(s)
- Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Rosa Maria Vitale
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| |
Collapse
|
461
|
van den Hoek AM, Verschuren L, Caspers MPM, Worms N, Menke AL, Princen HMG. Beneficial effects of elafibranor on NASH in E3L.CETP mice and differences between mice and men. Sci Rep 2021; 11:5050. [PMID: 33658534 PMCID: PMC7930243 DOI: 10.1038/s41598-021-83974-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/02/2021] [Indexed: 11/25/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is the most rapidly growing liver disease that is nevertheless without approved pharmacological treatment. Despite great effort in developing novel NASH therapeutics, many have failed in clinical trials. This has raised questions on the adequacy of preclinical models. Elafibranor is one of the drugs currently in late stage development which had mixed results for phase 2/interim phase 3 trials. In the current study we investigated the response of elafibranor in APOE*3Leiden.CETP mice, a translational animal model that displays histopathological characteristics of NASH in the context of obesity, insulin resistance and hyperlipidemia. To induce NASH, mice were fed a high fat and cholesterol (HFC) diet for 15 weeks (HFC reference group) or 25 weeks (HFC control group) or the HFC diet supplemented with elafibranor (15 mg/kg/d) from week 15–25 (elafibranor group). The effects on plasma parameters and NASH histopathology were assessed and hepatic transcriptome analysis was used to investigate the underlying pathways affected by elafibranor. Elafibranor treatment significantly reduced steatosis and hepatic inflammation and precluded the progression of fibrosis. The underlying disease pathways of the model were compared with those of NASH patients and illustrated substantial similarity with molecular pathways involved, with 87% recapitulation of human pathways in mice. We compared the response of elafibranor in the mice to the response in human patients and discuss potential pitfalls when translating preclinical results of novel NASH therapeutics to human patients. When taking into account that due to species differences the response to some targets, like PPAR-α, may be overrepresented in animal models, we conclude that elafibranor may be particularly useful to reduce hepatic inflammation and could be a pharmacologically useful agent for human NASH, but probably in combination with other agents.
Collapse
Affiliation(s)
- Anita M van den Hoek
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands.
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - Martien P M Caspers
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - Nicole Worms
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Aswin L Menke
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Hans M G Princen
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| |
Collapse
|
462
|
Garay-Sevilla ME, Gomez-Ojeda A, González I, Luévano-Contreras C, Rojas A. Contribution of RAGE axis activation to the association between metabolic syndrome and cancer. Mol Cell Biochem 2021; 476:1555-1573. [PMID: 33398664 DOI: 10.1007/s11010-020-04022-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
Far beyond the compelling proofs supporting that the metabolic syndrome represents a risk factor for diabetes and cardiovascular diseases, a growing body of evidence suggests that it is also a risk factor for different types of cancer. However, the involved molecular mechanisms underlying this association are not fully understood, and they have been mainly focused on the individual contributions of each component of the metabolic syndrome such as obesity, hyperglycemia, and high blood pressure to the development of cancer. The Receptor for Advanced Glycation End-products (RAGE) axis activation has emerged as an important contributor to the pathophysiology of many clinical entities, by fueling a chronic inflammatory milieu, and thus supporting an optimal microenvironment to promote tumor growth and progression. In the present review, we intend to highlight that RAGE axis activation is a crosswise element on the potential mechanistic contributions of some relevant components of metabolic syndrome into the association with cancer.
Collapse
Affiliation(s)
- Ma Eugenia Garay-Sevilla
- Department of Medical Science, Division of Health Science, University of Guanajuato, Campus León, Guanajuato, Mexico
| | - Armando Gomez-Ojeda
- Department of Medical Science, Division of Health Science, University of Guanajuato, Campus León, Guanajuato, Mexico
| | - Ileana González
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Claudia Luévano-Contreras
- Department of Medical Science, Division of Health Science, University of Guanajuato, Campus León, Guanajuato, Mexico
| | - Armando Rojas
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile.
| |
Collapse
|
463
|
Jung TW, Pyun DH, Kim TJ, Lee HJ, Park ES, Abd El-Aty A, Hwang EJ, Shin YK, Jeong JH. Meteorin-like protein (METRNL)/IL-41 improves LPS-induced inflammatory responses via AMPK or PPARδ-mediated signaling pathways. Adv Med Sci 2021; 66:155-161. [PMID: 33592358 DOI: 10.1016/j.advms.2021.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/12/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Meteorin-like protein (METRNL) (also known as IL-41), recently identified as a myokine, is released in response to muscle contraction. It improves the skeletal muscle insulin sensitivity through exerting a beneficial anti-inflammatory effect. However, no independent studies have been published to verify the effects of METRNL on human umbilical vein endothelial cells (HUVECs) and THP-1 human monocytes. MATERIALS AND METHODS The levels of NFκB and IκB phosphorylation as well as the expression of adhesion molecules were assessed by Western blotting analysis. Cell adhesion assay demonstrated the interactions between HUVEC and THP-1 cells. We used enzyme-linked immunosorbent assay (ELISA) to measure the levels of TNFα and MCP-1 in culture medium. RESULTS Treatment with METRNL suppressed the secretion of TNFα and MCP-1 as well as NFκB and IκB phosphorylation and inflammatory markers in lipopolysaccharide (LPS)-treated HUVECs and THP-1 cells. Furthermore, treatment with METRNL ameliorated LPS-induced attachment of THP-1 monocytes to HUVECs via inhibition of adhesion molecule expression and apoptosis. Treatment of HUVEC and THP-1 cells with METRNL enhanced AMPK phosphorylation and PPARδ expression in a dose-dependent manner. Small interference (si) RNA-mediated suppression of AMPK or PPARδ restored all these changes. CONCLUSIONS It has therefore been shown that METRNL ameliorates inflammatory responses through AMPK and PPARδ-dependent pathways in LPS-treated HUVEC. In sum, the current study may suggest the suppressive potential of METRNL against endothelial inflammation.
Collapse
|
464
|
Mirzaei S, Zarrabi A, Hashemi F, Zabolian A, Saleki H, Azami N, Hamzehlou S, Farahani MV, Hushmandi K, Ashrafizadeh M, Khan H, Kumar AP. Nrf2 Signaling Pathway in Chemoprotection and Doxorubicin Resistance: Potential Application in Drug Discovery. Antioxidants (Basel) 2021; 10:antiox10030349. [PMID: 33652780 PMCID: PMC7996755 DOI: 10.3390/antiox10030349] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Doxorubicin (DOX) is extensively applied in cancer therapy due to its efficacy in suppressing cancer progression and inducing apoptosis. After its discovery, this chemotherapeutic agent has been frequently used for cancer therapy, leading to chemoresistance. Due to dose-dependent toxicity, high concentrations of DOX cannot be administered to cancer patients. Therefore, experiments have been directed towards revealing underlying mechanisms responsible for DOX resistance and ameliorating its adverse effects. Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling is activated to increase levels of reactive oxygen species (ROS) in cells to protect them against oxidative stress. It has been reported that Nrf2 activation is associated with drug resistance. In cells exposed to DOX, stimulation of Nrf2 signaling protects cells against cell death. Various upstream mediators regulate Nrf2 in DOX resistance. Strategies, both pharmacological and genetic interventions, have been applied for reversing DOX resistance. However, Nrf2 induction is of importance for alleviating side effects of DOX. Pharmacological agents with naturally occurring compounds as the most common have been used for inducing Nrf2 signaling in DOX amelioration. Furthermore, signaling networks in which Nrf2 is a key player for protection against DOX adverse effects have been revealed and are discussed in the current review.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran 1477893855, Iran;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey; (A.Z.); (M.A.)
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417466191, Iran;
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran; (A.Z.); (H.S.); (N.A.); (S.H.); (M.V.F.)
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran; (A.Z.); (H.S.); (N.A.); (S.H.); (M.V.F.)
| | - Negar Azami
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran; (A.Z.); (H.S.); (N.A.); (S.H.); (M.V.F.)
| | - Soodeh Hamzehlou
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran; (A.Z.); (H.S.); (N.A.); (S.H.); (M.V.F.)
| | - Mahdi Vasheghani Farahani
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran; (A.Z.); (H.S.); (N.A.); (S.H.); (M.V.F.)
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417466191, Iran;
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey; (A.Z.); (M.A.)
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla 34956, Istanbul, Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Correspondence:
| |
Collapse
|
465
|
Lv L, Shi Y, Wu J, Li G. Nanosized Drug Delivery Systems for Breast Cancer Stem Cell Targeting. Int J Nanomedicine 2021; 16:1487-1508. [PMID: 33654398 PMCID: PMC7914063 DOI: 10.2147/ijn.s282110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/10/2021] [Indexed: 01/15/2023] Open
Abstract
Breast cancer stem cells (BCSCs), also known as breast cancer initiating cells, are reported to be responsible for the initiation, progression, therapeutic resistance, and relapse of breast cancer. Conventional therapeutic agents mainly kill the bulk of breast tumor cells and fail to eliminate BCSCs, even enhancing the fraction of BCSCs in breast tumors sometimes. Therefore, it is essential to develop specific and effective methods of eliminating BCSCs that will enhance the efficacy of killing breast tumor cells and thereby, increase the survival rates and quality of life of breast cancer patients. Despite the availability of an increasing number of anti-BCSC agents, their clinical translations are hindered by many issues, such as instability, low bioavailability, and off-target effects. Nanosized drug delivery systems (NDDSs) have the potential to overcome the drawbacks of anti-BCSC agents by providing site-specific delivery and enhancing of the stability and bioavailability of the delivered agents. In this review, we first briefly introduce the strategies and agents used against BCSCs and then highlight the mechanism of action and therapeutic efficacy of several state-of-the-art NDDSs that can be used to treat breast cancer by eliminating BCSCs.
Collapse
Affiliation(s)
- Li Lv
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Yonghui Shi
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China.,Department of Pharmacy, Zengcheng District People's Hospital of Guangzhou, Guangzhou, 511300, Guangdong, People's Republic of China
| | - Junyan Wu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Guocheng Li
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| |
Collapse
|
466
|
Du L, Cheng Q, Zheng H, Liu J, Liu L, Chen Q. Targeting stemness of cancer stem cells to fight colorectal cancers. Semin Cancer Biol 2021; 82:150-161. [PMID: 33631296 DOI: 10.1016/j.semcancer.2021.02.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/12/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Cancer initiating/ stem cells (CSCs) undergo self-renewal and differentiation that contributes to tumor initiation, recurrence and metastasis in colorectal cancer (CRC). Targeting of colorectal cancer stem cells (CCSCs) holds significant promise in eradicating cancer cells and ultimately curing patients with cancer. In this review, we will introduce the current progress of CCSC studies, including the specific surface markers of CCSCs, the intrinsic signaling pathways that regulate the stemness and differentiation characteristics of CCSCs, and the tumor organoid model for CCSC research. We will focus on how these studies will lead to the progress in targeting specific surface markers or signaling pathways on CCSCs by monoclonal antibodies, or by natural or synthetic compounds, or by immunotherapy. As CSCs are highly heterogeneous and plastic, we suggest that combinatory approaches that target the stemness network may represent an important strategy for eradicating cancers.
Collapse
Affiliation(s)
- Lei Du
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine. Beijing, 100101, China.
| | - Qi Cheng
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; The Graduate University of Chinese Academy of Sciences. Beijing, 100049, China
| | - Hao Zheng
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jinming Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lei Liu
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine. Beijing, 100101, China
| | - Quan Chen
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
467
|
Ma T, Yan B, Hu Y, Zhang Q. HOXA10 promotion of HDAC1 underpins the development of lung adenocarcinoma through the DNMT1-KLF4 axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:71. [PMID: 33596966 PMCID: PMC7891037 DOI: 10.1186/s13046-021-01867-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Previous research has highlighted the ability of Homeobox A10 (HOXA10) to the promote proliferation, migration, and epithelial-mesenchymal transformation of various cancers, including lung adenocarcinoma (LAD), which is characterized by an aggressive disease course that exhibits rapid proliferation and migration, with studies suggesting histone deacetylase 1 (HDAC1) to be a downstream mediator of HOXA10. The current study aimed to investigate the mechanism by which HOXA10-mediated HDAC1 influences the development of LAD. Methods The expression patterns of HOXA10, HDAC1, DNA methyltransferase 1 (DNMT1), and Kruppel-like factor 4 (KLF4) were determined. Additionally, the effect of HOXA10, HDAC1, or DNMT1 on invasive phenotypes of LAD was analyzed using depletion experiments. The interactions among HOXA10, HDAC1, DNMT1, and KLF4 were evaluated via chromatin immunoprecipitation, dual luciferase assay or co-immunoprecipitation. Furthermore, the tumorigenic ability of the LAD cells following HOXA10 silencing and/or HDAC1 overexpression in vivo was also investigated. Results In the LAD tissues and cells, HOXA10, HDAC1, and DNMT1 all exhibited high levels of expression, while KLF4 was poorly expressed. HOXA10 silencing inhibited the expression of HDAC1, reduced LAD cell proliferation, migration, and invasion, and promoted the apoptosis. HDAC1 promoted DNMT1 expression through deacetylation, and DNMT1 inhibited the KLF4 expression through DNA methyltransferase. The in vitro findings were further attested through the use of in vivo assays. Conclusion Taken together, the key observations of the current study highlight the role of HOXA10 and HDAC1 in promoting the proliferation and migration of LAD cells. HOXA10-induced upregulation of HDAC1 interacts with DNMT1-KLF4 axis, while the inhibition of HOXA10 or HDAC1 represents a promising anti-tumor therapy target for LAD. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01867-0.
Collapse
Affiliation(s)
- Tiangang Ma
- Department of Respiratory and Critical Care Medicine, the 2nd Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, P.R. China
| | - Bingdi Yan
- Department of Respiratory and Critical Care Medicine, the 2nd Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, P.R. China
| | - Yanbing Hu
- Department of Ultrasound, the 2nd Hospital of Jilin University, Changchun, 130041, P.R. China
| | - Qinghua Zhang
- Department of Respiratory and Critical Care Medicine, the 2nd Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, P.R. China.
| |
Collapse
|
468
|
Abstract
Therapy resistance is a major problem when treating cancer patients as cancer cells develop mechanisms that counteract the effect of therapeutic compounds, leading to fit and more aggressive clones that contribute to poor prognosis. Therapy resistance can be both intrinsic and/or acquired. These are multifactorial events, and some are related to factors including adaptations in cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), deregulation of key signaling pathways, drug efflux through ABC transporters, acquired mutations, evading apoptosis, and activation of DNA damage response among others. Among these factors, CSCs represent the major source of therapy resistance. CSCs are a subset of tumor cells that are capable of self-renewal and multilineage progenitor expansion that are known to be intrinsically resistant to anticancer treatments. Multiple clones of CSCs pre-exist, and some can adopt and expand easily to changes in the tumor microenvironment (TME) and/or in response to radio- and chemotherapy. A combination of both intrinsic and extrinsic factors contributes to CSC-mediated therapy resistance. In this review, we will focus on CSCs and therapy resistance as well as suggest strategies to eliminate CSCs and, therefore, overcome resistance. Video abstract.
Collapse
Affiliation(s)
- Yuan Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009 USA
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, 110001 People’s Republic of China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, 110001 People’s Republic of China
| | - Jaffer A. Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009 USA
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009 USA
| |
Collapse
|
469
|
Sidrat T, Rehman ZU, Joo MD, Lee KL, Kong IK. Wnt/β-catenin Pathway-Mediated PPARδ Expression during Embryonic Development Differentiation and Disease. Int J Mol Sci 2021; 22:ijms22041854. [PMID: 33673357 PMCID: PMC7918746 DOI: 10.3390/ijms22041854] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/19/2022] Open
Abstract
The Wnt/β-catenin signaling pathway plays a crucial role in early embryonic development. Wnt/β-catenin signaling is a major regulator of cell proliferation and keeps embryonic stem cells (ESCs) in the pluripotent state. Dysregulation of Wnt signaling in the early developmental stages causes several hereditary diseases that lead to embryonic abnormalities. Several other signaling molecules are directly or indirectly activated in response to Wnt/β-catenin stimulation. The crosstalk of these signaling factors either synergizes or opposes the transcriptional activation of β-catenin/Tcf4-mediated target gene expression. Recently, the crosstalk between the peroxisome proliferator-activated receptor delta (PPARδ), which belongs to the steroid superfamily, and Wnt/β-catenin signaling has been reported to take place during several aspects of embryonic development. However, numerous questions need to be answered regarding the function and regulation of PPARδ in coordination with the Wnt/β-catenin pathway. Here, we have summarized the functional activation of the PPARδ in co-ordination with the Wnt/β-catenin pathway during the regulation of several aspects of embryonic development, stem cell regulation and maintenance, as well as during the progression of several metabolic disorders.
Collapse
Affiliation(s)
- Tabinda Sidrat
- Department of Animal Science, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (T.S.); (M.-D.J.)
| | - Zia-Ur Rehman
- Department of Microbiology, Hazara University, Mansehra 21310, Pakistan;
| | - Myeong-Don Joo
- Department of Animal Science, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (T.S.); (M.-D.J.)
| | - Kyeong-Lim Lee
- The King Kong Corp. Ltd., Gyeongsang National University, Jinju 52828, Korea;
| | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (T.S.); (M.-D.J.)
- The King Kong Corp. Ltd., Gyeongsang National University, Jinju 52828, Korea;
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-1942
| |
Collapse
|
470
|
Werle SD, Schwab JD, Tatura M, Kirchhoff S, Szekely R, Diels R, Ikonomi N, Sipos B, Sperveslage J, Gress TM, Buchholz M, Kestler HA. Unraveling the Molecular Tumor-Promoting Regulation of Cofilin-1 in Pancreatic Cancer. Cancers (Basel) 2021; 13:725. [PMID: 33578795 PMCID: PMC7916621 DOI: 10.3390/cancers13040725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/26/2021] [Accepted: 02/07/2021] [Indexed: 12/24/2022] Open
Abstract
Cofilin-1 (CFL1) overexpression in pancreatic cancer correlates with high invasiveness and shorter survival. Besides a well-documented role in actin remodeling, additional cellular functions of CFL1 remain poorly understood. Here, we unraveled molecular tumor-promoting functions of CFL1 in pancreatic cancer. For this purpose, we first show that a knockdown of CFL1 results in reduced growth and proliferation rates in vitro and in vivo, while apoptosis is not induced. By mechanistic modeling we were able to predict the underlying regulation. Model simulations indicate that an imbalance in actin remodeling induces overexpression and activation of CFL1 by acting on transcription factor 7-like 2 (TCF7L2) and aurora kinase A (AURKA). Moreover, we could predict that CFL1 impacts proliferation and apoptosis via the signal transducer and activator of transcription 3 (STAT3). These initial model-based regulations could be substantiated by studying protein levels in pancreatic cancer cell lines and human datasets. Finally, we identified the surface protein CD44 as a promising therapeutic target for pancreatic cancer patients with high CFL1 expression.
Collapse
Affiliation(s)
- Silke D. Werle
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany; (S.D.W.); (J.D.S.); (R.S.); (N.I.)
| | - Julian D. Schwab
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany; (S.D.W.); (J.D.S.); (R.S.); (N.I.)
| | - Marina Tatura
- Department of Gastroenterology, Endocrinology and Metabolism, Philipps-University Marburg, 35043 Marburg, Germany; (M.T.); (S.K.); (R.D.); (T.M.G.); (M.B.)
| | - Sandra Kirchhoff
- Department of Gastroenterology, Endocrinology and Metabolism, Philipps-University Marburg, 35043 Marburg, Germany; (M.T.); (S.K.); (R.D.); (T.M.G.); (M.B.)
| | - Robin Szekely
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany; (S.D.W.); (J.D.S.); (R.S.); (N.I.)
| | - Ramona Diels
- Department of Gastroenterology, Endocrinology and Metabolism, Philipps-University Marburg, 35043 Marburg, Germany; (M.T.); (S.K.); (R.D.); (T.M.G.); (M.B.)
| | - Nensi Ikonomi
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany; (S.D.W.); (J.D.S.); (R.S.); (N.I.)
| | - Bence Sipos
- Institute of Pathology, University of Tübingen, 72076 Tübingen, Germany; (B.S.); (J.S.)
| | - Jan Sperveslage
- Institute of Pathology, University of Tübingen, 72076 Tübingen, Germany; (B.S.); (J.S.)
| | - Thomas M. Gress
- Department of Gastroenterology, Endocrinology and Metabolism, Philipps-University Marburg, 35043 Marburg, Germany; (M.T.); (S.K.); (R.D.); (T.M.G.); (M.B.)
| | - Malte Buchholz
- Department of Gastroenterology, Endocrinology and Metabolism, Philipps-University Marburg, 35043 Marburg, Germany; (M.T.); (S.K.); (R.D.); (T.M.G.); (M.B.)
| | - Hans A. Kestler
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany; (S.D.W.); (J.D.S.); (R.S.); (N.I.)
| |
Collapse
|
471
|
Promotion of cancer cell stemness by Ras. Biochem Soc Trans 2021; 49:467-476. [PMID: 33544116 PMCID: PMC7925005 DOI: 10.1042/bst20200964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSC) may be the most relevant and elusive cancer cell population, as they have the exquisite ability to seed new tumors. It is plausible, that highly mutated cancer genes, such as KRAS, are functionally associated with processes contributing to the emergence of stemness traits. In this review, we will summarize the evidence for a stemness driving activity of oncogenic Ras. This activity appears to differ by Ras isoform, with the highly mutated KRAS having a particularly profound impact. Next to established stemness pathways such as Wnt and Hedgehog (Hh), the precise, cell cycle dependent orchestration of the MAPK-pathway appears to relay Ras activation in this context. We will examine how non-canonical activities of K-Ras4B (hereafter K-Ras) could be enabled by its trafficking chaperones calmodulin and PDE6D/PDEδ. Both dynamically localize to the cellular machinery that is intimately linked to cell fate decisions, such as the primary cilium and the centrosome. Thus, it can be speculated that oncogenic K-Ras disrupts fundamental polarized signaling and asymmetric apportioning processes that are necessary during cell differentiation.
Collapse
|
472
|
Chen YA, Lai YR, Wu HY, Lo YJ, Chang YF, Hung CL, Lin CJ, Lo UG, Lin H, Hsieh JT, Chiu CH, Lin YH, Lai CH. Bacterial Genotoxin-Coated Nanoparticles for Radiotherapy Sensitization in Prostate Cancer. Biomedicines 2021; 9:biomedicines9020151. [PMID: 33557143 PMCID: PMC7913852 DOI: 10.3390/biomedicines9020151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 12/25/2022] Open
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed cancers in men and usually becomes refractory because of recurrence and metastasis. CD44, a transmembrane glycoprotein, serves as a receptor for hyaluronic acid (HA). It has been found to be abundantly expressed in cancer stem cells (CSCs) that often exhibit a radioresistant phenotype. Cytolethal distending toxin (CDT), produced by Campylobacter jejuni, is a tripartite genotoxin composed of CdtA, CdtB, and CdtC subunits. Among the three, CdtB acts as a type I deoxyribonuclease (DNase I), which creates DNA double-strand breaks (DSBs). Nanoparticles loaded with antitumor drugs and specific ligands that recognize cancerous cell receptors are promising methods to overcome the therapeutic challenges. In this study, HA-decorated nanoparticle-encapsulated CdtB (HA-CdtB-NPs) were prepared and their targeted therapeutic activity in radioresistant PCa cells was evaluated. Our results showed that HA-CdtB-NPs sensitized radioresistant PCa cells by enhancing DSB and causing G2/M cell-cycle arrest, without affecting the normal prostate epithelial cells. HA-CdtB-NPs possess maximum target specificity and delivery efficiency of CdtB into the nucleus and enhance the effect of radiation in radioresistant PCa cells. These findings demonstrate that HA-CdtB-NPs exert target specificity accompanied with radiomimetic activity and can be developed as an effective strategy against radioresistant PCa.
Collapse
Affiliation(s)
- Yu-An Chen
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-A.C.); (Y.-R.L.); (H.-Y.W.); (Y.-J.L.); (Y.-F.C.)
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan;
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (C.-J.L.); (U.-G.L.); (J.-T.H.)
| | - Yi-Ru Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-A.C.); (Y.-R.L.); (H.-Y.W.); (Y.-J.L.); (Y.-F.C.)
| | - Hui-Yu Wu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-A.C.); (Y.-R.L.); (H.-Y.W.); (Y.-J.L.); (Y.-F.C.)
| | - Yen-Ju Lo
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-A.C.); (Y.-R.L.); (H.-Y.W.); (Y.-J.L.); (Y.-F.C.)
| | - Yu-Fang Chang
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-A.C.); (Y.-R.L.); (H.-Y.W.); (Y.-J.L.); (Y.-F.C.)
| | - Chiu-Lien Hung
- Targeted Drug and Delivery Technology Division, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 30011, Taiwan;
| | - Chun-Jung Lin
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (C.-J.L.); (U.-G.L.); (J.-T.H.)
| | - U-Ging Lo
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (C.-J.L.); (U.-G.L.); (J.-T.H.)
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (C.-J.L.); (U.-G.L.); (J.-T.H.)
- Department of Medical Research, School of Medicine, China Medical University and Hospital, Taichung 40447, Taiwan
| | - Cheng-Hsun Chiu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-A.C.); (Y.-R.L.); (H.-Y.W.); (Y.-J.L.); (Y.-F.C.)
- Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
- Correspondence: (C.-H.C.); (Y.-H.L.); (C.-H.L.)
| | - Yu-Hsin Lin
- Department of Medical Research, School of Medicine, China Medical University and Hospital, Taichung 40447, Taiwan
- Center for Advanced Pharmaceutics and Drug Delivery Research, Department and Institute of Pharmacology, Institute of Biopharmaceutical Sciences, Faculty of Pharmacy, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence: (C.-H.C.); (Y.-H.L.); (C.-H.L.)
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-A.C.); (Y.-R.L.); (H.-Y.W.); (Y.-J.L.); (Y.-F.C.)
- Department of Medical Research, School of Medicine, China Medical University and Hospital, Taichung 40447, Taiwan
- Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
- Department of Nursing, Asia University, Taichung 41354, Taiwan
- Correspondence: (C.-H.C.); (Y.-H.L.); (C.-H.L.)
| |
Collapse
|
473
|
CD44 and Tumor-Derived Extracellular Vesicles (TEVs). Possible Gateway to Cancer Metastasis. Int J Mol Sci 2021; 22:ijms22031463. [PMID: 33540535 PMCID: PMC7867195 DOI: 10.3390/ijms22031463] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer metastasis, the final stage of tumor progression, is a complex process governed by the interplay of multiple types of cells and the tumor microenvironment. One of the aspects of this interplay involves the release of various factors by the tumor cells alone or by forcing other cells to do so. As a consequence of these actions, tumor cells are prepared in favorable conditions for their dissemination and spread to other sites/organs, which guarantees their escape from immunosurveillance and further progression. Tumor-derived extracellular vesicles (TEVs) represent a heterogeneous population of membrane-bound vesicles that are being actively released by different tumors. The array of proteins (i.e., receptors, cytokines, chemokines, etc.) and nucleic acids (i.e., mRNA, miR, etc.) that TEVs can transfer to other cells is often considered beneficial for the tumor’s survival and proliferation. One of the proteins that is associated with many different tumors as well as their TEVs is a cluster of differentiation 44 in its standard (CD44s) and variant (CD44v) form. This review covers the present information regarding the TEVs-mediated CD44s/CD44v transfer/interaction in the context of cancer metastasis. The content and the impact of the transferred cargo by this type of TEVs also are discussed with regards to tumor cell dissemination.
Collapse
|
474
|
Aramini B, Masciale V, Grisendi G, Banchelli F, D'Amico R, Maiorana A, Morandi U, Dominici M, Haider KH. Cancer stem cells and macrophages: molecular connections and future perspectives against cancer. Oncotarget 2021; 12:230-250. [PMID: 33613850 PMCID: PMC7869576 DOI: 10.18632/oncotarget.27870] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) have been considered the key drivers of cancer initiation and progression due to their unlimited self-renewal capacity and their ability to induce tumor formation. Macrophages, particularly tumor-associated macrophages (TAMs), establish a tumor microenvironment to protect and induce CSCs development and dissemination. Many studies in the past decade have been performed to understand the molecular mediators of CSCs and TAMs, and several studies have elucidated the complex crosstalk that occurs between these two cell types. The aim of this review is to define the complex crosstalk between these two cell types and to highlight potential future anti-cancer strategies.
Collapse
Affiliation(s)
- Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Masciale
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Grisendi
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federico Banchelli
- Center of Statistic, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto D'Amico
- Center of Statistic, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonino Maiorana
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Uliano Morandi
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
475
|
Wang H, Pan J, Barsky L, Jacob JC, Zheng Y, Gao C, Wang S, Zhu W, Sun H, Lu L, Jia H, Zhao Y, Bruns C, Vago R, Dong Q, Qin L. Characteristics of pre-metastatic niche: the landscape of molecular and cellular pathways. MOLECULAR BIOMEDICINE 2021; 2:3. [PMID: 35006432 PMCID: PMC8607426 DOI: 10.1186/s43556-020-00022-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023] Open
Abstract
Metastasis is a major contributor to cancer-associated deaths. It involves complex interactions between primary tumorigenic sites and future metastatic sites. Accumulation studies have revealed that tumour metastasis is not a disorderly spontaneous incident but the climax of a series of sequential and dynamic events including the development of a pre-metastatic niche (PMN) suitable for a subpopulation of tumour cells to colonize and develop into metastases. A deep understanding of the formation, characteristics and function of the PMN is required for developing new therapeutic strategies to treat tumour patients. It is rapidly becoming evident that therapies targeting PMN may be successful in averting tumour metastasis at an early stage. This review highlights the key components and main characteristics of the PMN and describes potential therapeutic strategies, providing a promising foundation for future studies.
Collapse
Affiliation(s)
- Hao Wang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Junjie Pan
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Livnat Barsky
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Yan Zheng
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Chao Gao
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Shun Wang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Wenwei Zhu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Haoting Sun
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Lu Lu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Huliang Jia
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Yue Zhao
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Cologne, Germany
| | - Christiane Bruns
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Cologne, Germany
| | - Razi Vago
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
| |
Collapse
|
476
|
PPARs in liver physiology. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166097. [PMID: 33524529 DOI: 10.1016/j.bbadis.2021.166097] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and transcriptional modulators with crucial functions in hepatic and whole-body energy homeostasis. Besides their well-documented roles in lipid and glucose metabolism, emerging evidence also implicate PPARs in the control of other processes such as inflammatory responses. Recent technological advances, such as single-cell RNA sequencing, have allowed to unravel an unexpected complexity in the regulation of PPAR expression, activity and downstream signaling. Here we provide an overview of the latest advances in the study of PPARs in liver physiology, with a specific focus on formerly neglected aspects of PPAR regulation, such as tissular zonation, cellular heterogeneity, circadian rhythms, sexual dimorphism and species-specific features.
Collapse
|
477
|
Using Elevated Cholesterol Synthesis as a Prognostic Marker in Wilms' Tumor: A Bioinformatic Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8826286. [PMID: 33628817 PMCID: PMC7886595 DOI: 10.1155/2021/8826286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/20/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022]
Abstract
Background Wilms tumor is the most common renal malignancy of children. Identifying factors that could predict the prognosis of patients with Wilms tumor is clinically meaningful. Many studies found tumors with elevated cholesterol synthesis that are featured with dismal prognosis. Even in some clinical trials, people with excessive dietary cholesterol intake and high plasma low-density lipoprotein levels are observed to have increased risk for cancer. However, the role of cholesterol biosynthesis in Wilms tumor has not yet been well clarified. Methods RNA sequencing transcriptome data and all corresponding clinicopathological information used in our study were downloaded from the TARGET database. High-throughput sequencing (Fragments Per Kilobase of transcript per Million fragments mapped) data sets of 130 tumor samples and 6 normal samples were obtained for further analysis. Results Wilms tumor samples with higher activity of cholesterol synthesis are characterized with worse overall survival (P < 0.05). In addition, Wilms tumor samples with mitigated activity of cholesterol synthesis are featured with better dendritic cell (DC) function and cytolytic activity (P < 0.05). Furthermore, we constructed a prognosis model based on differential expressed cholesterol synthesis-related genes (DECSG), which could predict the OS of patients with Wilms tumor accurately. KEGG and GO analysis of differential expressed genes between tumor samples with high and low cholesterol synthesis indicated that DECSGs are highly enriched in “mitosis nuclear division,” “nuclear division,” “chromosome segregation,” “cell cycle,” “Spliceosome,” and “RNA transport.” Conclusions In conclusion, our study reported increased cholesterol synthesis in Wilms tumor predicts a worse prognosis and mitigated cytolytic activity, DC function, and MHC I signature in the tumor microenvironment. We also constructed a prognosis model for predicting the OS of patients with good accuracy, which is promising in clinical translation. Future studies should focus on the detailed mechanism that caused increasing cholesterol which promotes tumor progression and undermines patients' survival.
Collapse
|
478
|
Shan NL, Shin Y, Yang G, Furmanski P, Suh N. Breast cancer stem cells: A review of their characteristics and the agents that affect them. Mol Carcinog 2021; 60:73-100. [PMID: 33428807 DOI: 10.1002/mc.23277] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
The evolving concept that cancer stem cells (CSCs) are the driving element in cancer development, evolution and heterogeneity, has overridden the previous model of a tumor consisting of cells all with similar sequentially acquired mutations and a similar potential for renewal, invasion and metastasis. This paradigm shift has focused attention on therapeutically targeting CSCs directly as a means of eradicating the disease. In breast cancers, CSCs can be identified by cell surface markers and are characterized by their ability to self-renew and differentiate, resist chemotherapy and radiation, and initiate new tumors upon serial transplantation in xenografted mice. These functional properties of CSCs are regulated by both intracellular and extracellular factors including pluripotency-related transcription factors, intracellular signaling pathways and external stimuli. Several classes of natural products and synthesized compounds have been studied to target these regulatory elements and force CSCs to lose stemness and/or terminally differentiate and thereby achieve a therapeutic effect. However, realization of an effective treatment for breast cancers, focused on the biological effects of these agents on breast CSCs, their functions and signaling, has not yet been achieved. In this review, we delineate the intrinsic and extrinsic factors identified to date that control or promote stemness in breast CSCs and provide a comprehensive compilation of potential agents that have been studied to target breast CSCs, transcription factors and stemness-related signaling. Our aim is to stimulate further study of these agents that could become the basis for their use as stand-alone treatments or components of combination therapies effective against breast cancers.
Collapse
Affiliation(s)
- Naing L Shan
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Yoosub Shin
- Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Ge Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Philip Furmanski
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
479
|
Trailblazing perspectives on targeting breast cancer stem cells. Pharmacol Ther 2021; 223:107800. [PMID: 33421449 DOI: 10.1016/j.pharmthera.2021.107800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer (BCa) is one of the most prevalent malignant tumors affecting women's health worldwide. The recurrence and metastasis of BCa have made it a long-standing challenge to achieve remission-persistent or disease-undetectable clinical outcomes. Cancer stem cells (CSCs) possess the ability to self-renew and generate heterogeneous tumor bulk. The existence of CSCs has been found to be vital in the initiation, metastasis, therapy resistance, and recurrence of tumors across cancer types. Because CSCs grow slowly in their dormant state, they are insensitive to conventional chemotherapies; however, when CSCs emerge from their dormant state and become clinically evident, they usually acquire genetic traits that make them resistant to existing therapies. Moreover, CSCs also show evidence of acquired drug resistance in synchrony with tumor relapses. The concept of CSCs provides a new treatment strategy for BCa. In this review, we highlight the recent advances in research on breast CSCs and their association with epithelial-mesenchymal transition (EMT), circulating tumor cells (CTCs), plasticity of tumor cells, tumor microenvironment (TME), T-cell modulatory protein PD-L1, and non-coding RNAs. On the basis that CSCs are associated with multiple dysregulated biological processes, we envisage that increased understanding of disease sub-classification, selected combination of conventional treatment, molecular aberration directed therapy, immunotherapy, and CSC targeting/sensitizing strategy might improve the treatment outcome of patients with advanced BCa. We also discuss novel perspectives on new drugs and therapeutics purposing the potent and selective expunging of CSCs.
Collapse
|
480
|
Li J, Zhang Y, Cui Y, Jin H, Lin Z, Piao Y, Jin J. CD44 enhances adriamycin resistance in chronic myelogenous leukaemia cells K562. Int J Lab Hematol 2021; 43:983-989. [PMID: 33411349 DOI: 10.1111/ijlh.13455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/23/2020] [Accepted: 12/16/2020] [Indexed: 11/27/2022]
Abstract
INTRODUCTION To investigate CD44 effects on the adriamycin-resistant in chronic myelogenous leukaemia cells K562, we explored the role of CD44 in the K562 cells migration and apoptosis. METHODS GeneChip® screening is used for elucidating various chemoresistance-related gene expression in the adriamycin-resistant leukaemia cells K562/ADR. We constructed K562/CD44 cells by transfection of an EGFP-SV40-CD44 plasmid, and adriamycin-resistant ability was confirmed by detecting migration and apoptosis-related proteins and mRNA expression using Western blotting and Real-time PCR respectively. RESULTS K562/CD44 cells were generated by the transfection of an EGFP-SV40-CD44 plasmid with high CD44 expression. mRNA expression levels of CD44 and P-glycoprotein (P-gp), along with the proliferation rate, were increased, while the apoptosis rate of K562/CD44 cells was decreased. Migration-associated proteins such as MMP-2 and MMP-9 were upregulated, whereas apoptosis-related protein Bax was downregulated and Bcl-2 protein was not significantly altered in the K562/CD44 cells. CONCLUSIONS CD44 might be involved in adriamycin resistance via regulation of P-gp, MMP-2, MMP-9, and Bcl-2/Bax.
Collapse
Affiliation(s)
- Juan Li
- Department of Internal Medicine, The Affiliated Hospital of Yanbian University, Yanji, China.,Department of Rheumatology and Immunology, The First Affiliated Hospital of Luohe Medical College (Luohe Central Hospital), Luohe, China
| | - Yanfang Zhang
- Department of Internal Medicine, The Affiliated Hospital of Yanbian University, Yanji, China.,Department of Rheumatology and Immunology, Zhejiang Hospital, Hangzhou, China
| | - Yubo Cui
- Department of Internal Medicine, The Affiliated Hospital of Yanbian University, Yanji, China.,Department of Respiratory, Yanbian No. 2 People's Hospital, Yanji, China
| | - Honghua Jin
- Department of Internal Medicine, The Affiliated Hospital of Yanbian University, Yanji, China
| | - Zhenhua Lin
- Department of Internal Medicine, The Affiliated Hospital of Yanbian University, Yanji, China.,Key Laboratory of the Science and Technology Department (Jilin Province), Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Yingshi Piao
- Key Laboratory of the Science and Technology Department (Jilin Province), Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Jingchun Jin
- Department of Internal Medicine, The Affiliated Hospital of Yanbian University, Yanji, China.,Key Laboratory of the Science and Technology Department (Jilin Province), Cancer Research Center, Yanbian University Medical College, Yanji, China
| |
Collapse
|
481
|
Medrano-González PA, Rivera-Ramírez O, Montaño LF, Rendón-Huerta EP. Proteolytic Processing of CD44 and Its Implications in Cancer. Stem Cells Int 2021; 2021:6667735. [PMID: 33505471 PMCID: PMC7811561 DOI: 10.1155/2021/6667735] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/04/2020] [Accepted: 12/24/2020] [Indexed: 01/16/2023] Open
Abstract
CD44 is a transmembrane glycoprotein expressed in several healthy and tumor tissues. Modifications in its structure contribute differently to the activity of this molecule. One modification that has provoked interest is the consecutive cleavage of the CD44 extracellular ectodomain by enzymes that belong mainly to the family of metalloproteases. This process releases biologically active substrates, via alternative splice forms of CD44, that generate CD44v3 or v6 isoforms which participate in the transcriptional regulation of genes and proteins associated to signaling pathways involved in the development of cancer. These include the protooncogene tyrosine-protein kinase Src (c-Src)/signal transducer and activator of transcription 3 (STAT3), the epithelial growth factor receptor, the estrogen receptor, Wnt/βcatenin, or Hippo signaling pathways all of which are associated to cell proliferation, differentiation, or cancer progression. Whereas CD44 still remains as a very useful prognostic cell marker in different pathologies, the main topic is that the generation of CD44 intracellular fragments assists the regulation of transcriptional proteins involved in the cell cycle, cell metabolism, and most importantly, the regulation of some stem cell-associated markers.
Collapse
Affiliation(s)
- Priscila Anhel Medrano-González
- Lab. Inmunobiología, Depto. Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edif. D, 1 piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, 04510 Mexico, Mexico
| | - Osmar Rivera-Ramírez
- Lab. Inmunobiología, Depto. Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico, Mexico
| | - Luis Felipe Montaño
- Lab. Inmunobiología, Depto. Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico, Mexico
| | - Erika P. Rendón-Huerta
- Lab. Inmunobiología, Depto. Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico, Mexico
| |
Collapse
|
482
|
Tsuchiya H, Shiota G. Clinical and Biological Implications of Cancer Stem Cells in Hepatocellular Carcinoma. Yonago Acta Med 2021; 64:1-11. [PMID: 33642898 DOI: 10.33160/yam.2021.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with poor prognosis, and is one of the leading causes of cancer-related deaths worldwide. Recently, the development of therapeutic drugs via novel mechanisms of action, involving molecular-targeted drugs and immune checkpoint inhibitors, has progressed in the field of HCC. However, the recurrence rate remains high, and further improvement of the prognosis of patients with HCC is urgently needed. Cancer stem cells (CSCs) are a promising target for further development of novel anti-cancer drugs because they are reportedly involved in tumor initiation, maintenance, recurrence, and resistance to conventional therapies. Although several studies have already been conducted, the functions and roles of CSCs in the development and progression of tumors remain to be elucidated. In this review article, we will clarify the fundamental knowledge of CSCs necessary for the understanding of CSCs and will outline so-far identified markers specific to liver CSCs and the pathological and therapeutic implications of CSCs in HCC.
Collapse
Affiliation(s)
- Hiroyuki Tsuchiya
- Division of Medical Genetics and Regenerative Medicine, Department of Genomic Medicine and Regenerative Therapy, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Goshi Shiota
- Division of Medical Genetics and Regenerative Medicine, Department of Genomic Medicine and Regenerative Therapy, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| |
Collapse
|
483
|
Glycosylation of Stem Cells. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
484
|
Khan F, Gurung S, Gunassekaran GR, Vadevoo SMP, Chi L, Permpoon U, Haque ME, Lee YK, Lee SW, Kim S, Lee B. Identification of novel CD44v6-binding peptides that block CD44v6 and deliver a pro-apoptotic peptide to tumors to inhibit tumor growth and metastasis in mice. Am J Cancer Res 2021; 11:1326-1344. [PMID: 33391537 PMCID: PMC7738880 DOI: 10.7150/thno.50564] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
CD44v6, a splice variant of the cell surface glycoprotein CD44, acts as a co-receptor for c-Met and is upregulated in tumors with high metastatic potential. Methods: We screened a phage-displayed peptide library for peptides that selectively bind to CD44v6-overexpressing cells and exploited them to block CD44v6 and deliver a pro-apoptotic peptide to tumors for cancer therapy. Results: CNLNTIDTC (NLN) and CNEWQLKSC (NEW) peptides bound preferentially to CD44v6-high cells than to CD44v6-low cells. The binding affinities of NLN and NEW to CD44v6 protein were 253 ± 79 and 85 ± 18 nM, respectively. Peptide binding to CD44v6-high cells was inhibited by the knockdown of CD44v6 gene expression and competition with an anti-CD44v6 antibody. A pull-down assay with biotin-labeled peptides enriched CD44v6 from cell lysates. NLN and NEW induced CD44v6 internalization and inhibited hepatocyte growth factor-induced c-Met internalization, c-Met and Erk phosphorylation, and cell migration and invasion. In mice harboring tumors, intravenously administered NLN and NEW homed to the tumors and inhibited metastasis to the lungs. When combined with crizotinib, a c-Met inhibitor, treatment with each peptide inhibited metastatic growth more efficiently than each peptide or crizotinib alone. In addition, KLAKLAKKLAKLAK pro-apoptotic peptide guided by NLN (NLN-KLA) or NEW (NEW-KLA) killed tumor cells and inhibited tumor growth and metastasis. No significant systemic side effects were observed after treatments. Conclusions: These results suggest that NLN and NEW are promising metastasis-inhibiting peptide therapeutics and targeting moieties for CD44v6-expressing metastases.
Collapse
|
485
|
Molecular and Functional Imaging and Theranostics of the Tumor Microenvironment. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
486
|
Liao C, An J, Tan Z, Xu F, Liu J, Wang Q. Changes in Protein Glycosylation in Head and Neck Squamous Cell Carcinoma. J Cancer 2021; 12:1455-1466. [PMID: 33531990 PMCID: PMC7847636 DOI: 10.7150/jca.51604] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Glycosylation is an important posttranslational modification of proteins, and it has a profound influence on diverse life processes. An abnormal polysaccharide structure and mutation of the glycosylation pathway are closely correlated with human cancer progression. Glycoproteins such as EGFR, E-cadherin, CD44, PD-1/PD-L1, B7-H3 and Muc1 play important roles in the progression of head and neck squamous cell carcinoma (HNSCC), and their levels of glycosylation and changes in glycosyl structure are closely linked to HNSCC progression and malignant transformation. The regulation of protein glycosylation in HNSCC provides potential strategies to control cancer stem cell (CSC) subgroup expansion, epithelial-mesenchymal transition (EMT), tumor-related immunity escape and autophagy. Glycoproteins with altered glycosylation can be used as biomarkers for the early diagnosis, monitoring and prognostication of HNSCC. However, the glycobiology of cancer is still a new field that needs to be deeply studied, especially in HNSCC.
Collapse
Affiliation(s)
- Chengcheng Liao
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Zhangxue Tan
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Fangping Xu
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Jianguo Liu
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Qian Wang
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi 563006, China.,Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
487
|
Zeng X, Liu C, Yao J, Wan H, Wan G, Li Y, Chen N. Breast cancer stem cells, heterogeneity, targeting therapies and therapeutic implications. Pharmacol Res 2021; 163:105320. [PMID: 33271295 DOI: 10.1016/j.phrs.2020.105320] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
Both hereditary and sporadic breast cancer are suggested to develop from a stem cell subcomponent retaining most key stem cell properties but with dysregulation of self-renewal pathways, which drives tumorigenic differentiation and cellular heterogeneity. Cancer stem cells (CSCs), characterized by their self-renewal and differentiation potential, have been reported to contribute to chemo-/radio-resistance and tumor initiation and to be the main reason for the failure of current therapies in breast cancer and other CSC-bearing cancers. Thus, CSC-targeted therapies, such as those inducing CSC apoptosis and differentiation, inhibiting CSC self-renewal and division, and targeting the CSC niche to combat CSC activity, are needed and may become an important component of multimodal treatment. To date, the understanding of breast cancer has been extended by advances in CSC biology, providing more accurate prognostic and predictive information upon diagnosis. Recent improvements have enhanced the prospect of targeting breast cancer stem cells (BCSCs), which has shown promise for increasing the breast cancer remission rate. However, targeted therapy for breast cancer remains challenging due to tumor heterogeneity. One major challenge is determining the CSC properties that can be exploited as therapeutic targets. Another challenge is identifying suitable BCSC biomarkers to assess the efficacy of novel BCSC-targeted therapies. This review focuses mainly on the characteristics of BCSCs and the roles of BCSCs in the formation, maintenance and recurrence of breast cancer; self-renewal signaling pathways in BCSCs; the BCSC microenvironment; potential therapeutic targets related to BCSCs; and current therapies and clinical trials targeting BCSCs.
Collapse
Affiliation(s)
- Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, PR China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School of Shenzhen University, Shenzhen, Guangdong Province, 518037, PR China
| | - Chengxiao Liu
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, PR China
| | - Jie Yao
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, PR China
| | - Haoqiang Wan
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, PR China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School of Shenzhen University, Shenzhen, Guangdong Province, 518037, PR China; Department of Gastroenterology, (Longhua Branch), Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, Guangdong Province, 518120, PR China
| | - Guoqing Wan
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, PR China
| | - Yingpeng Li
- Department of Gastroenterology, (Longhua Branch), Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, Guangdong Province, 518120, PR China.
| | - Nianhong Chen
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, PR China; Department of Cell Biology & University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, PA, 15261, USA; Laboratory of Signal Transduction, Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, 10065, USA.
| |
Collapse
|
488
|
Videira NB, Dias MMG, Terra MF, de Oliveira VM, García-Arévalo M, Avelino TM, Torres FR, Batista FAH, Figueira ACM. PPAR Modulation Through Posttranslational Modification Control. NUCLEAR RECEPTORS 2021:537-611. [DOI: 10.1007/978-3-030-78315-0_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
489
|
Francque S, Szabo G, Abdelmalek MF, Byrne CD, Cusi K, Dufour JF, Roden M, Sacks F, Tacke F. Nonalcoholic steatohepatitis: the role of peroxisome proliferator-activated receptors. Nat Rev Gastroenterol Hepatol 2021; 18:24-39. [PMID: 33093663 DOI: 10.1038/s41575-020-00366-5] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
The increasing epidemic of obesity worldwide is linked to serious health effects, including increased prevalence of type 2 diabetes mellitus, cardiovascular disease and nonalcoholic fatty liver disease (NAFLD). NAFLD is the liver manifestation of the metabolic syndrome and includes the spectrum of liver steatosis (known as nonalcoholic fatty liver) and steatohepatitis (known as nonalcoholic steatohepatitis), which can evolve into progressive liver fibrosis and eventually cause cirrhosis. Although NAFLD is becoming the number one cause of chronic liver diseases, it is part of a systemic disease that affects many other parts of the body, including adipose tissue, pancreatic β-cells and the cardiovascular system. The pathomechanism of NAFLD is multifactorial across a spectrum of metabolic derangements and changes in the host microbiome that trigger low-grade inflammation in the liver and other organs. Peroxisome proliferator-activated receptors (PPARs) are a group of nuclear regulatory factors that provide fine tuning for key elements of glucose and fat metabolism and regulate inflammatory cell activation and fibrotic processes. This Review summarizes and discusses the current literature on NAFLD as the liver manifestation of the systemic metabolic syndrome and focuses on the role of PPARs in the pathomechanisms as well as in the potential targeting of disease.
Collapse
Affiliation(s)
- Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium. .,Translational Research in Inflammation and Immunology (TWI2N), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
| | - Gyongyi Szabo
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Manal F Abdelmalek
- Division of Gastroenterology and Hepatology, Department of Medicine, Duke University Health System, Durham, NC, USA
| | - Christopher D Byrne
- Nutrition & Metabolism, Human Development & Health, Faculty of Medicine, University Hospital Southampton, Southampton, UK
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL, USA
| | - Jean-François Dufour
- Hepatology, Department of Clinical Research, University Hospital of Bern, Bern, Switzerland.,University Clinic for Visceral Surgery and Medicine, Inselspital, Bern, Switzerland
| | - Michael Roden
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, University Clinics Düsseldorf, Düsseldorf, Germany.,Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Frank Sacks
- Departments of Nutrition and Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Channing Division, Department of Medicine Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité University Medical Center, Berlin, Germany
| |
Collapse
|
490
|
Dmitrieva MD, Voitova AA, Dymova MA, Richter VA, Kuligina EV. Tumor-Targeting Peptides Search Strategy for the Delivery of Therapeutic and Diagnostic Molecules to Tumor Cells. Int J Mol Sci 2020; 22:ijms22010314. [PMID: 33396774 PMCID: PMC7796297 DOI: 10.3390/ijms22010314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 02/04/2023] Open
Abstract
Background: The combination of the unique properties of cancer cells makes it possible to find specific ligands that interact directly with the tumor, and to conduct targeted tumor therapy. Phage display is one of the most common methods for searching for specific ligands. Bacteriophages display peptides, and the peptides themselves can be used as targeting molecules for the delivery of diagnostic and therapeutic agents. Phage display can be performed both in vitro and in vivo. Moreover, it is possible to carry out the phage display on cells pre-enriched for a certain tumor marker, for example, CD44 and CD133. Methods: For this work we used several methods, such as phage display, sequencing, cell sorting, immunocytochemistry, phage titration. Results: We performed phage display using different screening systems (in vitro and in vivo), different phage libraries (Ph.D-7, Ph.D-12, Ph.D-C7C) on CD44+/CD133+ and without enrichment U-87 MG cells. The binding efficiency of bacteriophages displayed tumor-targeting peptides on U-87 MG cells was compared in vitro. We also conducted a comparative analysis in vivo of the specificity of the accumulation of selected bacteriophages in the tumor and in the control organs (liver, brain, kidney and lungs). Conclusions: The screening in vivo of linear phage peptide libraries for glioblastoma was the most effective strategy for obtaining tumor-targeting peptides providing targeted delivery of diagnostic and therapeutic agents to glioblastoma.
Collapse
|
491
|
The effects of endurance training and estrogen-related receptor α disruption on mitofusin 1 and 2, GLUT2, PPARβ/δ and SCD1 expression in the liver of diabetic rats. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.06.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
492
|
Bazzolo B, Sieni E, Zamuner A, Roso M, Russo T, Gloria A, Dettin M, Conconi MT. Breast Cancer Cell Cultures on Electrospun Poly(ε-Caprolactone) as a Potential Tool for Preclinical Studies on Anticancer Treatments. Bioengineering (Basel) 2020; 8:bioengineering8010001. [PMID: 33375053 PMCID: PMC7822015 DOI: 10.3390/bioengineering8010001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/09/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022] Open
Abstract
During anticancer drug development, most compounds selected by in vitro screening are ineffective in in vivo studies and clinical trials due to the unreliability of two-dimensional (2D) in vitro cultures that are unable to mimic the cancer microenvironment. Herein, HCC1954 cell cultures on electrospun polycaprolactone (PCL) were characterized by morphological analysis, cell viability assays, histochemical staining, immunofluorescence, and RT-PCR. Our data showed that electrospun PCL allows the in vitro formation of cultures characterized by mucopolysaccharide production and increased cancer stem cell population. Moreover, PCL-based cultures were less sensitive to doxorubicin and electroporation/bleomycin than those grown on polystyrene plates. Collectively, our data indicate that PCL-based cultures may be promising tools for preclinical studies.
Collapse
Affiliation(s)
- Bianca Bazzolo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padova, Italy; (B.B.); (M.T.C.)
| | - Elisabetta Sieni
- Department of Theoretical and Applied Sciences, University of Insubria, via Dunant, 3, 21100 Varese, Italy
- Correspondence:
| | - Annj Zamuner
- Department of Industrial Engineering, University of Padova, via Marzolo, 9, 35131 Padova, Italy; (A.Z.); (M.R.); (M.D.)
| | - Martina Roso
- Department of Industrial Engineering, University of Padova, via Marzolo, 9, 35131 Padova, Italy; (A.Z.); (M.R.); (M.D.)
| | - Teresa Russo
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54-Mostra d’Oltremare Pad. 20, 80125 Naples, Italy; (T.R.); (A.G.)
| | - Antonio Gloria
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54-Mostra d’Oltremare Pad. 20, 80125 Naples, Italy; (T.R.); (A.G.)
| | - Monica Dettin
- Department of Industrial Engineering, University of Padova, via Marzolo, 9, 35131 Padova, Italy; (A.Z.); (M.R.); (M.D.)
| | - Maria Teresa Conconi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padova, Italy; (B.B.); (M.T.C.)
| |
Collapse
|
493
|
Fusco P, Mattiuzzo E, Frasson C, Viola G, Cimetta E, Esposito MR, Tonini GP. Verteporfin induces apoptosis and reduces the stem cell-like properties in Neuroblastoma tumour-initiating cells through inhibition of the YAP/TAZ pathway. Eur J Pharmacol 2020; 893:173829. [PMID: 33347823 DOI: 10.1016/j.ejphar.2020.173829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
Neuroblastoma is an embryonal malignancy of early childhood arising from the embryonic sympatho-adrenal lineage of the neural crest. About half of all cases are currently classified as high-risk of disease recurrence, with an overall survival rate of less than 40% at 5 years despite intensive therapy. Recent studies on matched primary tumours and at the relapse revealed downregulation of genes transcriptionally silenced by YAP as significant association with neuroblastoma relapse. Here, we evaluated the pharmacological targeting of YAP/TAZ with the YAP/TAZ-TEAD inhibitor Verteporfin (VP) in Tumour Initiating Cells (TICs) derived from High-Risk Neuroblastoma patients. VP treatment suppresses YAP/TAZ expression, induces apoptosis and causes the re-organization of the cytoskeleton reducing cells migration and clonogenic ability. Moreover, VP reduces the percentage of side population cells and ABC transporters involved in drug resistance, and the percentage of stem cell subpopulations CD133+ and CD44+ of TICs. Finally, we demonstrated that VP sensitizes TICs to the standard drugs used for neuroblastoma therapy etoposide and cis-platin opening the way to use VP as drug repositioning candidate for recurrent neuroblastoma.
Collapse
Affiliation(s)
- Pina Fusco
- Fondazione Istituto di Ricerca Pediatrica Città Della Speranza (IRP) - Neuroblastoma Laboratory, Corso Stati Uniti 4, 35127, Padova, Italy.
| | - Elena Mattiuzzo
- Department of Women's and Children's Health, University of Padova, Italy.
| | - Chiara Frasson
- Fondazione Istituto di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padova, Italy.
| | - Giampietro Viola
- Department of Women's and Children's Health, University of Padova, Italy.
| | - Elisa Cimetta
- Fondazione Istituto di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padova, Italy; University of Padua, Department of Industrial Engineering (DII), Via Marzolo 9, 35131, Padova, Italy.
| | - Maria Rosaria Esposito
- Fondazione Istituto di Ricerca Pediatrica Città Della Speranza (IRP) - Neuroblastoma Laboratory, Corso Stati Uniti 4, 35127, Padova, Italy.
| | - Gian Paolo Tonini
- Fondazione Istituto di Ricerca Pediatrica Città Della Speranza (IRP) - Neuroblastoma Laboratory, Corso Stati Uniti 4, 35127, Padova, Italy
| |
Collapse
|
494
|
Liu RZ, Godbout R. An Amplified Fatty Acid-Binding Protein Gene Cluster in Prostate Cancer: Emerging Roles in Lipid Metabolism and Metastasis. Cancers (Basel) 2020; 12:E3823. [PMID: 33352874 PMCID: PMC7766576 DOI: 10.3390/cancers12123823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022] Open
Abstract
Treatment for early stage and localized prostate cancer (PCa) is highly effective. Patient survival, however, drops dramatically upon metastasis due to drug resistance and cancer recurrence. The molecular mechanisms underlying PCa metastasis are complex and remain unclear. It is therefore crucial to decipher the key genetic alterations and relevant molecular pathways driving PCa metastatic progression so that predictive biomarkers and precise therapeutic targets can be developed. Through PCa cohort analysis, we found that a fatty acid-binding protein (FABP) gene cluster (containing five FABP family members) is preferentially amplified and overexpressed in metastatic PCa. All five FABP genes reside on chromosome 8 at 8q21.13, a chromosomal region frequently amplified in PCa. There is emerging evidence that these FABPs promote metastasis through distinct biological actions and molecular pathways. In this review, we discuss how these FABPs may serve as drivers/promoters for PCa metastatic transformation using patient cohort analysis combined with a review of the literature.
Collapse
Affiliation(s)
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
| |
Collapse
|
495
|
Wei H, Beeson GC, Ye Z, Zhang J, Yao H, Damon B, Morad M. Activation of Wnt/β-catenin signalling and HIF1α stabilisation alters pluripotency and differentiation/proliferation properties of human-induced pluripotent stem cells. Biol Cell 2020; 113:133-145. [PMID: 33275284 DOI: 10.1111/boc.202000055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/05/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND INFORMATION Wnt/β-catenin signalling, in the microenvironment of pluripotent stem cells (PSCs), plays a critical role in their differentiation and proliferation. Contradictory reports on the role of Wnt/β-catenin signalling in PSCs self-renewal and differentiation, however, render these mechanisms largely unclear. RESULTS Wnt/β-catenin signalling pathway in human-induced pluripotent stem cells (hiPSCs) was activated by inhibiting glycogen synthase kinase 3 (GSK3), driving the cells into a mesodermal/mesenchymal state, exhibiting proliferative, invasive and anchorage-independent growth properties, where over 70% of cell population became CD 44 (+)/CD133 (+). Wnt/β-catenin signalling activation also altered the metabolic state of hiPSCs from aerobic glycolysis to oxidative metabolism and changed their drug and oxidative stress sensitivities. These effects of GSK3 inhibition were suppressed in HIF1α-stabilised cells. CONCLUSIONS Persistent activation of Wnt/β-catenin signalling endows hiPSCs with proliferative/invasive 'teratoma-like' states, shifting their metabolic dependence and allowing HIF1α-stabilisation to inhibit their proliferative/invasive properties. SIGNIFICANCE The hiPSC potential to differentiate into 'teratoma-like' cells suggest that stem cells may exist in two states with differential metabolic and drug dependency.
Collapse
Affiliation(s)
- Hua Wei
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, and Clemson University, Charleston, SC, 29425, USA
| | - Gyda C Beeson
- Department of Drug Discovery and Biomedical Science, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Zhiwei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Hai Yao
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA.,Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Brooke Damon
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Martin Morad
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, and Clemson University, Charleston, SC, 29425, USA
| |
Collapse
|
496
|
Wu S, Tseng IC, Huang WC, Su CW, Lai YH, Lin C, Lee AYL, Kuo CY, Su LY, Lee MC, Hsu TC, Yu CH. Establishment of an Immunocompetent Metastasis Rat Model with Hepatocyte Cancer Stem Cells. Cancers (Basel) 2020; 12:cancers12123721. [PMID: 33322441 PMCID: PMC7764036 DOI: 10.3390/cancers12123721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer mortality. Cancer stem cells (CSCs) are responsible for the maintenance, metastasis, and relapse of various tumors. The effects of CSCs on the tumorigenesis of HCC are still not fully understood, however. We have recently established two new rat HCC cell lines HTC and TW-1, which we isolated from diethylnitrosamine-induced rat liver cancer. Results showed that TW-1 expressed the genetic markers of CSCs, including CD133, GSTP1, CD44, CD90, and EpCAM. Moreover, TW-1 showed higher tolerance to sorafenib than HTC did. In addition, tumorigenesis and metastasis were observed in nude mice and wild-type rats with TW-1 xenografts. Finally, we combined highly expressed genes in TW-1/HTC with well-known biomarkers from recent HCC studies to predict HCC-related biomarkers and able to identify HCC with AUCs > 0.9 after machine learning. These results indicated that TW-1 was a novel rat CSC line, and the mice or rat models we established with TW-1 has great potential on HCC studies in the future.
Collapse
Affiliation(s)
- Semon Wu
- Department of Life Science, Chinese Culture University, Taipei 11114, Taiwan;
- Correspondence: (S.W.); (C.-H.Y.); Tel.: +886-2-2861-0511(ext. 26234) (S.W.); +886-2-66289779 (C.-H.Y.); Fax: +886-2-2862-3724 (S.W.); +886-2-66289009 (C.-H.Y.)
| | - I-Chieh Tseng
- Department of Life Science, Chinese Culture University, Taipei 11114, Taiwan;
| | - Wen-Cheng Huang
- License Biotech, Co., Ltd., Taipei 10690, Taiwan; (W.-C.H.); (C.-W.S.)
| | - Cheng-Wen Su
- License Biotech, Co., Ltd., Taipei 10690, Taiwan; (W.-C.H.); (C.-W.S.)
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan;
| | - Che Lin
- Department of Electrical Engineering and Graduate Institute of Communication Engineering, National Taiwan University, Taipei 10617, Taiwan;
| | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan;
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 23142, Taiwan; (C.-Y.K.); (L.-Y.S.); (M.-C.L.)
| | - Li-Yu Su
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 23142, Taiwan; (C.-Y.K.); (L.-Y.S.); (M.-C.L.)
| | - Ming-Cheng Lee
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 23142, Taiwan; (C.-Y.K.); (L.-Y.S.); (M.-C.L.)
| | - Te-Cheng Hsu
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taipei 30013, Taiwan;
| | - Chun-Hsien Yu
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 23142, Taiwan
- Department of Pediatrics, School of Medicine, Tzu Chi University, Hualien 97071, Taiwan
- Correspondence: (S.W.); (C.-H.Y.); Tel.: +886-2-2861-0511(ext. 26234) (S.W.); +886-2-66289779 (C.-H.Y.); Fax: +886-2-2862-3724 (S.W.); +886-2-66289009 (C.-H.Y.)
| |
Collapse
|
497
|
Xu H, Niu M, Yuan X, Wu K, Liu A. CD44 as a tumor biomarker and therapeutic target. Exp Hematol Oncol 2020; 9:36. [PMID: 33303029 PMCID: PMC7727191 DOI: 10.1186/s40164-020-00192-0] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022] Open
Abstract
CD44, a complex transmembrane glycoprotein, exists in multiple molecular forms, including the standard isoform CD44s and CD44 variant isoforms. CD44 participates in multiple physiological processes, and aberrant expression and dysregulation of CD44 contribute to tumor initiation and progression. CD44 represents a common biomarker of cancer stem cells, and promotes epithelial-mesenchymal transition. CD44 is involved in the regulation of diverse vital signaling pathways that modulate cancer proliferation, invasion, metastasis and therapy-resistance, and it is also modulated by a variety of molecules in cancer cells. In addition, CD44 can serve as an adverse prognostic marker among cancer population. The pleiotropic roles of CD44 in carcinoma potentially offering new molecular target for therapeutic intervention. Preclinical and clinical trials for evaluating the pharmacokinetics, efficacy and drug-related toxicity of CD44 monoclonal antibody have been carried out among tumors with CD44 expression. In this review, we focus on current data relevant to CD44, and outline CD44 structure, the regulation of CD44, functional properties of CD44 in carcinogenesis and cancer progression as well as the potential CD44-targeting therapy for cancer management.
Collapse
Affiliation(s)
- Hanxiao Xu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengke Niu
- Department of Medical Oncology, The Affiliated Tumor Hospital of Zhengzhou University: Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Xun Yuan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Medical Oncology, The Affiliated Tumor Hospital of Zhengzhou University: Henan Cancer Hospital, Zhengzhou, 450008, China. .,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Aiguo Liu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
498
|
Xu F, Guan Y, Xue L, Huang S, Gao K, Yang Z, Chong T. The effect of a novel glycolysis-related gene signature on progression, prognosis and immune microenvironment of renal cell carcinoma. BMC Cancer 2020; 20:1207. [PMID: 33287763 PMCID: PMC7720455 DOI: 10.1186/s12885-020-07702-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Background Glycolysis is a central metabolic pathway for tumor cells. However, the potential roles of glycolysis-related genes in renal cell carcinoma (RCC) have not been investigated. Methods Seven glycolysis-related gene sets were selected from MSigDB and were analyzed through GSEA. Using TCGA database, the glycolysis-related gene signature was constructed. Prognostic analyses were based on the Kaplan–Meier method. The cBioPortal database was employed to perform the mutation analyses. The CIBERSORT algorithm and TIMER database were used to determine the immunological effect of glycolytic gene signature. The expressions in protein level of eight glycolytic risk genes were determined by HPA database. Finally, qPCR, MTT and Transwell invasion assays were conducted to validate the roles of core glycolytic risk genes (CD44, PLOD1 and PLOD2) in RCC. Results Four glycolysis-related gene sets were significantly enriched in RCC samples. The glycolytic risk signature was constructed (including CD44, PLOD2, KIF20A, IDUA, PLOD1, HMMR, DEPDC1 and ANKZF1) and identified as an independent RCC prognostic factor (HR = 1.204). Moreover, genetic alterations of glycolytic risk genes were uncommon in RCC (10.5%) and glycolytic risk signature can partially affect immune microenvironment of RCC. Six glycolytic risk genes (except for IDUA and HMMR) were over-expression in A498 and 786-O renal cancer cells through qPCR test. MTT and Transwell assays revealed that silencing of CD44, PLOD1 and PLOD2 suppressed the proliferation and invasion of renal cancer cells. Conclusions The glycolysis-related risk signature is closely associated with RCC prognosis, progression and immune microenvironment. CD44, PLOD1 and PLOD2 may serve as RCC oncogenes. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-020-07702-7.
Collapse
Affiliation(s)
- Fangshi Xu
- Department of Medicine, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yibing Guan
- Department of Medicine, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Li Xue
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Five Road, Xi'an, 710000, Shaanxi, China
| | - Shanlong Huang
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Five Road, Xi'an, 710000, Shaanxi, China
| | - Ke Gao
- Department of Medicine, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Zhen Yang
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Five Road, Xi'an, 710000, Shaanxi, China
| | - Tie Chong
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Five Road, Xi'an, 710000, Shaanxi, China.
| |
Collapse
|
499
|
Andreadis D, Poulopoulos A, Epivatianos A, Nomikos A, Parlitsis D, Christidis K, Barbatis C, Kavvadas D, Toskas A, Papamitsou T, Antoniades D. Cell adhesion molecules' altered profile in benign and malignant salivary gland tumors. The paradigm of beta4-integrin, desmoglein-2, ICAM-1 and CD44s. ACTA ACUST UNITED AC 2020; 27:18. [PMID: 33372636 PMCID: PMC7720471 DOI: 10.1186/s40709-020-00130-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 11/29/2020] [Indexed: 12/21/2022]
Abstract
Background Alterations in intercellular and cell-extracellular matrix connections contribute to tumour development. This study investigates the expression of specific cell adhesion molecules (CAMs) in salivary gland tumors (SGTs). Methods Formalin–fixed, paraffin– embedded tissue specimens of different types of 34 benign and 31 malignant SGTs and normal salivary glands were studied using Envision/HRP immunohistochemical technique for Desmoglein-2 (Dsg-2), beta4-integrin, CD44s and ICAM-1. Intensity of staining was evaluated in a semi-quantitative manner. Results were analyzed using Kendall’s τ and Spearman’s ρ as correlation criteria. Results Dsg-2 in intercellular space, beta4-integrin in cell-basal membrane, and CD44s in both types of contacts were strongly expressed in normal acinar and ductal cells, whereas ICAM-1 was expressed only at the endothelium and sparse stromal cells and monocytes. Strong correlation was found between Dsg-2 expression in adenomas and controls and between adenocarcinomas and controls. In adenomas, a distinct cytoplasmic presence of Dsg-2 was observed in addition to the usual membranous expression, with decreased expression in comparison with normal tissue. In malignant SGTs, Dsg-2 expression was absent. In most SGTs, beta4-integrin was expressed also with a distinct pattern, involving the cytoplasm and the unpolarised membrane, while CD44 was found only on the membrane. Strong correlation between beta4-integrin expression in adenomas and controls was noted, while CD44 expression was found to be correlated significantly between adenocarcinomas and controls (p < 0.001). Regarding ICAM-1, its expression was found increased in adenomas, with non-specific distribution in malignant SGTs and strong correlation between the histological subtypes and controls (p < 0.001). Conclusion The different expression profile of CAMs in SGTs could possibly suggest a role on their pathogenesis, representing a model of how neoplastic cells can take advantage of normal tissue architecture and cell-extracellular matrix interactions.
Collapse
Affiliation(s)
- Dimitrios Andreadis
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Athanasios Poulopoulos
- Department of Oral Medicine/Maxillofacial Pathology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Apostolos Epivatianos
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Alexandros Nomikos
- Department of Histopathology, Asklipion" Hospital of Athens, Athens, 10564, Greece
| | - Dimitrios Parlitsis
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | | | - Calypso Barbatis
- Pathology, External Consultant, HISTO-BIO-DIAGNOSIS-HBD, Athens, 11526, Greece
| | - Dimitrios Kavvadas
- Laboratory of Histology and Embryology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Alexandros Toskas
- Laboratory of Histology and Embryology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Theodora Papamitsou
- Laboratory of Histology and Embryology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece.
| | - Dimitrios Antoniades
- Department of Oral Medicine/Maxillofacial Pathology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| |
Collapse
|
500
|
Radiosensitivity of Cancer Stem Cells Has Potential Predictive Value for Individual Responses to Radiotherapy in Locally Advanced Rectal Cancer. Cancers (Basel) 2020; 12:cancers12123672. [PMID: 33297488 PMCID: PMC7762426 DOI: 10.3390/cancers12123672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Radiotherapy is often used as a neo-adjuvant treatment in locally advanced rectal cancer. While treatment generally induces an improvement in the outcome, some patients show resistance to treatment for reasons that still have to be elucidated. In this work, we report an in vitro and in vivo model based on patient-derived cancer stem cells. This model is able to predict individual responses to radiotherapy. The results indicate that cells found to be radiation-sensitive in vitro generated radiation-sensitive tumor xenografts upon subcutaneous implantation. Analogously, cancer stem cells (CSCs) that did not respond to in vitro radiation treatment generated radiation-resistant tumor xenografts. Moreover, radioresistant CSCs were generally isolated via biopsies of patients with poor responses to neo-adjuvant radiotherapy. This suggests that a cell-based in vitro test may itself be sufficient to predict outcomes in donor patients. Abstract Neo-adjuvant radiotherapy is frequently employed in the therapeutic management of locally advanced rectal cancer (LARC). Radiotherapy can both reduce local recurrence and improve the success of surgical procedures by reducing tumor mass size. However, some patients show a poor response to treatment, which results in primary resistance or relapse after apparent curative surgery. In this work, we report in vitro and in vivo models based on patient-derived cancer stem cells (CSCs); these models are able to predict individual responses to radiotherapy in LARC. CSCs isolated from colorectal cancer biopsies were subjected to in vitro irradiation with the same clinical protocol used for LARC patients. Animal models, generated by CSC xenotransplantation, were also obtained and treated with the same radiotherapy protocol. The results indicate that CSCs isolated from rectal cancer needle biopsies possess an intrinsic grade of sensitivity to treatment, which is also maintained in the animal model. Notably, the specific CSCs’ in vitro and in vivo sensitivity values correspond to patients’ responses to radiotherapy. This evidence suggests that an in vitro radiotherapy response predictivity assay could support clinical decisions for the management of LARC patients, thus avoiding radiation toxicity to resistant patients and reducing the treatment costs.
Collapse
|