501
|
Caarls L, Pieterse CMJ, Van Wees SCM. How salicylic acid takes transcriptional control over jasmonic acid signaling. FRONTIERS IN PLANT SCIENCE 2015; 6:170. [PMID: 25859250 PMCID: PMC4373269 DOI: 10.3389/fpls.2015.00170] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/03/2015] [Indexed: 05/17/2023]
Abstract
Transcriptional regulation is a central process in plant immunity. The induction or repression of defense genes is orchestrated by signaling networks that are directed by plant hormones of which salicylic acid (SA) and jasmonic acid (JA) are the major players. Extensive cross-communication between the hormone signaling pathways allows for fine tuning of transcriptional programs, determining resistance to invaders and trade-offs with plant development. Here, we give an overview of how SA can control transcriptional reprogramming of JA-induced genes in Arabidopsis thaliana. SA can influence activity and/or localization of transcriptional regulators by post-translational modifications of transcription factors and co-regulators. SA-induced redox changes, mediated by thioredoxins and glutaredoxins, modify transcriptional regulators that are involved in suppression of JA-dependent genes, such as NPR1 and TGA transcription factors, which affects their localization or DNA binding activity. Furthermore, SA can mediate sequestering of JA-responsive transcription factors away from their target genes by stalling them in the cytosol or in complexes with repressor proteins in the nucleus. SA also affects JA-induced transcription by inducing degradation of transcription factors with an activating role in JA signaling, as was shown for the ERF transcription factor ORA59. Additionally, SA can induce negative regulators, among which WRKY transcription factors, that can directly or indirectly inhibit JA-responsive gene expression. Finally, at the DNA level, modification of histones by SA-dependent factors can result in repression of JA-responsive genes. These diverse and complex regulatory mechanisms affect important signaling hubs in the integration of hormone signaling networks. Some pathogens have evolved effectors that highjack hormone crosstalk mechanisms for their own good, which are described in this review as well.
Collapse
Affiliation(s)
| | | | - Saskia C. M. Van Wees
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht UniversityUtrecht, Netherlands
| |
Collapse
|
502
|
A maize jasmonate Zim-domain protein, ZmJAZ14, associates with the JA, ABA, and GA signaling pathways in transgenic Arabidopsis. PLoS One 2015; 10:e0121824. [PMID: 25807368 PMCID: PMC4373942 DOI: 10.1371/journal.pone.0121824] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/04/2015] [Indexed: 12/24/2022] Open
Abstract
Jasmonate (JA) is an important signaling molecule involved in the regulation of many physiological and stress-related processes in plants. Jasmonate ZIM-domain (JAZ) proteins have been implicated in regulating JA signaling pathways and the cross talk between various phytohormones. Maize is not only an important cereal crop, but also a model plant for monocotyledon studies. Although many JAZ proteins have been characterized in Arabidopsis and rice, few reports have examined the function of JAZ proteins in maize. In this report, we examined the phylogenetic relationship and expression pattern of JAZ family genes in maize. In addition, a tassel and endosperm-specific JAZ gene, ZmJAZ14, was identified using microarray data analysis and real-time RT-PCR, and its expression was induced by polyethylene glycol (PEG), jasmonate (JA), abscisic acid (ABA), and gibberellins (GAs). ZmJAZ14 was shown to be localized in the nucleus and possessed no transcriptional activating activity, suggesting that it functions as a transcriptional regulator. We found that overexpression of ZmJAZ14 in Arabidopsis enhanced plant tolerance to JA and ABA treatment, as well as PEG stress, while it promoted growth under GA stimulus. Moreover, ZmJAZ14 interacted with a subset of transcription factors in Arabidopsis, and the accumulation of several marker genes involved in JA, ABA, and GA signaling pathways were altered in the overexpression lines. These results suggest that ZmJAZ14 may serve as a hub for the cross talk among the JA, ABA, and GA signaling pathways. Our results can be used to further characterize the function of JAZ family proteins in maize, and the gene cloned in this study may serve as a candidate for drought tolerance and growth promotion regulation in maize.
Collapse
|
503
|
Pireyre M, Burow M. Regulation of MYB and bHLH transcription factors: a glance at the protein level. MOLECULAR PLANT 2015; 8:378-88. [PMID: 25667003 DOI: 10.1016/j.molp.2014.11.022] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/10/2014] [Accepted: 11/24/2014] [Indexed: 05/07/2023]
Abstract
In complex, constantly changing environments, plants have developed astonishing survival strategies. These elaborated strategies rely on rapid and precise gene regulation mediated by transcription factors (TFs). TFs represent a large fraction of plant genomes and among them, MYBs and basic helix-loop-helix (bHLHs) have unique inherent properties specific to plants. Proteins of these two TF families can act as homo- or heterodimers, associate with proteins from other protein families, or form MYB/bHLH complexes to regulate distinct cellular processes. The ability of MYBs and bHLHs to interact with multiple protein partners has evolved to keep up with the increased metabolic complexity of multi-cellular organisms. Association and disassociation of dynamic TF complexes in response to developmental and environmental cues are controlled through a plethora of regulatory mechanisms specifically modulating TF activity. Regulation of TFs at the protein level is critical for efficient and precise control of their activity, and thus provides the mechanistic basis for a rapid on-and-off switch of TF activity. In this review, examples of post-translational modifications, protein-protein interactions, and subcellular mobilization of TFs are discussed with regard to the relevance of these regulatory mechanisms for the specific activation of MYBs and bHLHs in response to a given environmental stimulus.
Collapse
Affiliation(s)
- Marie Pireyre
- DynaMo DNRF Center of Excellence, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Meike Burow
- DynaMo DNRF Center of Excellence, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
504
|
Wu H, Ye H, Yao R, Zhang T, Xiong L. OsJAZ9 acts as a transcriptional regulator in jasmonate signaling and modulates salt stress tolerance in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 232:1-12. [PMID: 25617318 DOI: 10.1016/j.plantsci.2014.12.010] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 05/21/2023]
Abstract
The basic functions of plant-specific TIFY proteins as transcriptional regulators have been reported in plants. Some TIFY genes are responsive to abiotic stresses, but the functions of these genes in stress tolerance have seldom been reported. OsJAZ9 is a member of the JAZ subfamily which belongs to the TIFY gene family in rice (Oryza sativa). Suppression of OsJAZ9 resulted in reduced salt tolerance. The altered salt tolerance was mainly due to changes in ion (especially K(+)) homeostasis, which was supported by the altered expression levels of several ion transporter genes. The OsJAZ9-suppression rice plants showed increased sensitivity to jasmonic acid (JA) treatment. OsJAZ9 interacts with OsCOI1a, a component of the SCF(COI1) E3 ubiquitin ligase complex, in a coronatine-dependent manner, suggesting that OsJAZ9 is involved in the regulation of JA signaling. OsJAZ9 interacts with several bHLH transcription factors including OsbHLH062 via the Jas domain. OsbHLH062 can bind to an E-box in the promoters of the ion transporter genes such as OsHAK21, and most of these ion transporter genes are responsive to JA treatment. We found that OsJAZ9 can also interact with OsNINJA, a rice homolog of the Arabidopsis thaliana transcriptional repressor NINJA in JA signaling. Both OsJAZ9 and OsNINJA (Novel Interactor of JAZ) repressed OsbHLH062-mediated transcription activation. These results together suggest that OsJAZ9 acts as a transcriptional regulator by forming a transcriptional regulation complex with OsNINJA and OsbHLH to fine tune the expression of JA-responsive genes involved in salt stress tolerance in rice.
Collapse
Affiliation(s)
- Hua Wu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Haiyan Ye
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruifeng Yao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tao Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
505
|
Neukermans J, Inzé A, Mathys J, De Coninck B, van de Cotte B, Cammue BPA, Van Breusegem F. ARACINs, Brassicaceae-specific peptides exhibiting antifungal activities against necrotrophic pathogens in Arabidopsis. PLANT PHYSIOLOGY 2015; 167:1017-29. [PMID: 25593351 PMCID: PMC4348783 DOI: 10.1104/pp.114.255505] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plants have developed a variety of mechanisms to cope with abiotic and biotic stresses. In a previous subcellular localization study of hydrogen peroxide-responsive proteins, two peptides with an unknown function (designated ARACIN1 and ARACIN2) have been identified. These peptides are structurally very similar but are transcriptionally differentially regulated during abiotic stresses during Botrytis cinerea infection or after benzothiadiazole and methyl jasmonate treatments. In Arabidopsis (Arabidopsis thaliana), these paralogous genes are positioned in tandem within a cluster of pathogen defense-related genes. Both ARACINs are small, cationic, and hydrophobic peptides, known characteristics for antimicrobial peptides. Their genes are expressed in peripheral cell layers prone to pathogen entry and are lineage specific to the Brassicaceae family. In vitro bioassays demonstrated that both ARACIN peptides have a direct antifungal effect against the agronomically and economically important necrotrophic fungi B. cinerea, Alternaria brassicicola, Fusarium graminearum, and Sclerotinia sclerotiorum and yeast (Saccharomyces cerevisiae). In addition, transgenic Arabidopsis plants that ectopically express ARACIN1 are protected better against infections with both B. cinerea and A. brassicicola. Therefore, we can conclude that both ARACINs act as antimicrobial peptides.
Collapse
Affiliation(s)
- Jenny Neukermans
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (J.N., A.I., B.D.C., B.v.d.C., B.P.A.C., F.V.B.); Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (J.N., A.I., B.v.d.C., F.V.B.); andCentre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium (J.N., J.M., B.D.C, B.P.A.C.)
| | - Annelies Inzé
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (J.N., A.I., B.D.C., B.v.d.C., B.P.A.C., F.V.B.); Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (J.N., A.I., B.v.d.C., F.V.B.); andCentre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium (J.N., J.M., B.D.C, B.P.A.C.)
| | - Janick Mathys
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (J.N., A.I., B.D.C., B.v.d.C., B.P.A.C., F.V.B.); Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (J.N., A.I., B.v.d.C., F.V.B.); andCentre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium (J.N., J.M., B.D.C, B.P.A.C.)
| | - Barbara De Coninck
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (J.N., A.I., B.D.C., B.v.d.C., B.P.A.C., F.V.B.); Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (J.N., A.I., B.v.d.C., F.V.B.); andCentre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium (J.N., J.M., B.D.C, B.P.A.C.)
| | - Brigitte van de Cotte
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (J.N., A.I., B.D.C., B.v.d.C., B.P.A.C., F.V.B.); Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (J.N., A.I., B.v.d.C., F.V.B.); andCentre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium (J.N., J.M., B.D.C, B.P.A.C.)
| | - Bruno P A Cammue
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (J.N., A.I., B.D.C., B.v.d.C., B.P.A.C., F.V.B.); Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (J.N., A.I., B.v.d.C., F.V.B.); andCentre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium (J.N., J.M., B.D.C, B.P.A.C.)
| | - Frank Van Breusegem
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (J.N., A.I., B.D.C., B.v.d.C., B.P.A.C., F.V.B.); Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (J.N., A.I., B.v.d.C., F.V.B.); andCentre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium (J.N., J.M., B.D.C, B.P.A.C.)
| |
Collapse
|
506
|
Hong G, Wang J, Hochstetter D, Gao Y, Xu P, Wang Y. Epigallocatechin-3-gallate functions as a physiological regulator by modulating the jasmonic acid pathway. PHYSIOLOGIA PLANTARUM 2015; 153:432-439. [PMID: 25124736 DOI: 10.1111/ppl.12256] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/05/2014] [Accepted: 06/12/2014] [Indexed: 05/28/2023]
Abstract
Flavonoids, a class of plant polyphenols derived from plant secondary metabolism, play important roles in plant development and have beneficial effects on human health. Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol, and its molecular and biochemical mechanism have been followed with interest. The shared signaling heritage or convergence of organisms has allowed us to extend this research into the model plant, Arabidopsis thaliana. Here, we showed that EGCG could promote jasmonic acid (JA) signaling in A. thaliana. EGCG not only inhibited seed germination but also elevated the resistance to necrotrophic Botrytis cinerea, partly by altering the relative strength of JA signaling. Accordingly, JA marker gene induction, seed germination inhibition and the increased resistance to B. cinerea were attenuated in the JA-insensitive coi1-2 mutant. The coi1-2 mutant was partially insensitive to the treatment of EGCG, further implicating the function of EGCG in JA signaling and/or perception. Our results indicate that EGCG, a member of the flavonoid class of polyphenols, affects signal processing in seed development and disease susceptibility via modulation of JA signaling.
Collapse
Affiliation(s)
- Gaojie Hong
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; Department of Tea Science, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | | | | |
Collapse
|
507
|
Lim CW, Yang SH, Shin KH, Lee SC, Kim SH. The AtLRK10L1.2, Arabidopsis ortholog of wheat LRK10, is involved in ABA-mediated signaling and drought resistance. PLANT CELL REPORTS 2015; 34:447-55. [PMID: 25533478 DOI: 10.1007/s00299-014-1724-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/18/2014] [Accepted: 12/01/2014] [Indexed: 05/18/2023]
Abstract
The loss-of-function mutants of the Arabidopsis orthologue of the wheat LRK10 gene shows ABA-insensitive and drought stress-sensitive phenotypes, suggesting that LRK10L1.2 is positively involved in ABA signaling. A subset of receptor-like kinases (RLKs) superfamily proteins play a key role in sensing internal and external signals. A gene encoding Arabidopsis thaliana Leaf rust 10 disease-resistance locus receptor-like protein kinase 1 (AtLRK10L1), most closely related to wheat LRK10, expresses two different transcripts, LRK10L1.1 and LRK10L1.2, using alternative promoters. The T-DNA insertion mutant, lrk10l1-2, that specifically shuts down LRK10L1.2 transcription displayed an abscisic acid (ABA)-insensitive phenotype in seed germination and seedling growth. However, the lrk10l1.2 mutant exhibited reduced tolerance to drought stress, compared with wild type, which is accompanied by alteration of stomatal apertures. The transgenic plants overexpressing full-length LRK10L1.2, which localizes to the plasma membrane (PM) complemented the phenotypes of lrk10l1-2 mutant background, while those expressing LRK10L1.2 Nu1, which switched its localization to the endoplasmic reticulum (ER) by skipping of a mini-exon, showed even higher ABA insensitivity and drought sensitivity than its mutant background. Our results suggest that ABA signaling involves the PM-localized LRK10L1.2.
Collapse
Affiliation(s)
- Chae Woo Lim
- School of Biological Sciences (BK21 Program), Chung-Ang University, Seoul, 156-756, Korea
| | | | | | | | | |
Collapse
|
508
|
Figueroa P, Browse J. Male sterility in Arabidopsis induced by overexpression of a MYC5-SRDX chimeric repressor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:849-60. [PMID: 25627909 DOI: 10.1111/tpj.12776] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 05/11/2023]
Abstract
Jasmonate hormone (JA) plays critical roles in both plant defense and reproductive development. Arabidopsis thaliana plants deficient in JA-biosynthesis or -signaling are male-sterile, with defects in stamen and pollen development. MYC2, MYC3 and MYC4 are JAZ-interacting bHLH transcription factors that play a major role in controlling JA responses in vegetative tissue, but are not likely to play a role in reproductive tissue. We found that a closely related transcription factor, MYC5 (bHLH28), was able to induce JAZ promoters that control some of the early JA-responsive genes in a Daucus carota (carrot) protoplast expression system. A G-box sequence in the JAZ2 promoter was necessary and sufficient for induction by MYC5 (as it is for MYC2, MYC3 and MYC4), and induction of JAZ genes was repressed by co-expression of a stabilized, JAZ1ΔJas repressor. Two allelic myc5 mutants exhibited no overt phenotype; however, transgenic lines expressing MYC5 fused to an SRDX (SUPERMAN repressive domain X) motif phenocopied mutants defective in JA signaling. In particular, MYC5-SRDX plants were male-sterile, with defects in stamen filament elongation, anther dehiscence and pollen viability. Importantly, expression of MYB21 and other transcription factors required for stamen and pollen maturation was strongly reduced in stamens of MYC5-SRDX plants relative to the wild type. Taken together, these results indicate that MYC5, probably together with other, redundant transcription factors, may be activated by JA signaling to induce the expression of MYB21 and components required for male fertility.
Collapse
Affiliation(s)
- Pablo Figueroa
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, USA
| | | |
Collapse
|
509
|
Wang F, Lin R, Feng J, Chen W, Qiu D, Xu S. TaNAC1 acts as a negative regulator of stripe rust resistance in wheat, enhances susceptibility to Pseudomonas syringae, and promotes lateral root development in transgenic Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2015; 6:108. [PMID: 25774162 PMCID: PMC4342887 DOI: 10.3389/fpls.2015.00108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/10/2015] [Indexed: 05/20/2023]
Abstract
Plant-specific NAC transcription factors (TFs) constitute a large family and play important roles in regulating plant developmental processes and responses to environmental stresses, but only some of them have been investigated for effects on disease reaction in cereal crops. Virus-induced gene silencing (VIGS) is an effective strategy for rapid functional analysis of genes in plant tissues. In this study, TaNAC1, encoding a new member of the NAC1 subgroup, was cloned from bread wheat and characterized. It is a TF localized in the cell nucleus, and contains an activation domain in its C-terminal. TaNAC1 was strongly expressed in wheat roots and was involved in responses to infection by the obligate pathogen Puccinia striiformis f. sp. tritici and defense-related hormone treatments such as salicylic acid (SA), methyl jasmonate, and ethylene. Knockdown of TaNAC1 with barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) enhanced stripe rust resistance. TaNAC1-overexpression in Arabidopsis thaliana plants gave enhanced susceptibility, attenuated systemic-acquired resistance to Pseudomonas syringae DC3000, and promoted lateral root development. Jasmonic acid-signaling pathway genes PDF1.2 and ORA59 were constitutively expressed in transgenic plants. TaNAC1 overexpression suppressed the expression levels of resistance-related genes PR1 and PR2 involved in SA signaling and AtWRKY70, which functions as a connection node between the JA- and SA-signaling pathways. Collectively, TaNAC1 is a novel NAC member of the NAC1 subgroup, negatively regulates plant disease resistance, and may modulate plant JA- and SA-signaling defense cascades.
Collapse
Affiliation(s)
| | - Ruiming Lin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing, China
| | | | | | | | | |
Collapse
|
510
|
Saito H, Oikawa T, Hamamoto S, Ishimaru Y, Kanamori-Sato M, Sasaki-Sekimoto Y, Utsumi T, Chen J, Kanno Y, Masuda S, Kamiya Y, Seo M, Uozumi N, Ueda M, Ohta H. The jasmonate-responsive GTR1 transporter is required for gibberellin-mediated stamen development in Arabidopsis. Nat Commun 2015; 6:6095. [PMID: 25648767 PMCID: PMC4347201 DOI: 10.1038/ncomms7095] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 12/14/2014] [Indexed: 12/20/2022] Open
Abstract
Plant hormones are transported across cell membranes during various physiological events. Recent identification of abscisic acid and strigolactone transporters suggests that transport of various plant hormones across membranes does not occur by simple diffusion but requires transporter proteins that are strictly regulated during development. Here, we report that a major glucosinolate transporter, GTR1/NPF2.10, is multifunctional and may be involved in hormone transport in Arabidopsis thaliana. When heterologously expressed in oocytes, GTR1 transports jasmonoyl-isoleucine and gibberellin in addition to glucosinolates. gtr1 mutants are severely impaired in filament elongation and anther dehiscence resulting in reduced fertility, but these phenotypes can be rescued by gibberellin treatment. These results suggest that GTR1 may be a multifunctional transporter for the structurally distinct compounds glucosinolates, jasmonoyl-isoleucine and gibberellin, and may positively regulate stamen development by mediating gibberellin supply. GTR1 is known to transport glucosinolates in Arabidopsis. Here, Saito et al. show that GTR1 also transports the plant hormones jasmonate and gibberellin when heterologously expressed in Xenopus oocytes, and that gtr1 mutant plants show a gibberellin-related fertility phenotype.
Collapse
Affiliation(s)
- Hikaru Saito
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
| | - Takaya Oikawa
- Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Shin Hamamoto
- Graduate School of Engineering, Tohoku University, 6-6-07, Aobayama, Aoba-ku, Sendai 980-8579, Japan
| | - Yasuhiro Ishimaru
- Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Miyu Kanamori-Sato
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
| | - Yuko Sasaki-Sekimoto
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tomoya Utsumi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
| | - Jing Chen
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shinji Masuda
- 1] Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan [2] Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
| | - Yuji Kamiya
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama 230-0045, Japan
| | - Nobuyuki Uozumi
- Graduate School of Engineering, Tohoku University, 6-6-07, Aobayama, Aoba-ku, Sendai 980-8579, Japan
| | - Minoru Ueda
- Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Hiroyuki Ohta
- 1] Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan [2] Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
511
|
Li X, Yin X, Wang H, Li J, Guo C, Gao H, Zheng Y, Fan C, Wang X. Genome-wide identification and analysis of the apple (Malus × domestica Borkh.) TIFY gene family. TREE GENETICS & GENOMES 2015. [PMID: 0 DOI: 10.1007/s11295-014-0808-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
|
512
|
de Ollas C, Arbona V, Gómez-Cadenas A. Jasmonic acid interacts with abscisic acid to regulate plant responses to water stress conditions. PLANT SIGNALING & BEHAVIOR 2015; 10:e1078953. [PMID: 26340066 PMCID: PMC4854360 DOI: 10.1080/15592324.2015.1078953] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/29/2015] [Accepted: 07/29/2015] [Indexed: 05/21/2023]
Abstract
Phytohormones are key players in signaling environmental stress conditions. Hormone profiling together with proline accumulation were studied in leaves and roots of different mutant lines of Arabidopsis. Regulation of proline accumulation in this system seems complex and JA-deficient (jar1-1) and JA-insensitive (jai1) lines accumulating high levels of proline despite their very low ABA levels seems to discard an ABA-dependent response. However, the pattern of proline accumulation in jai1 seedlings parallels that of ABA. Under stress conditions, there is an opposite pattern of ABA accumulation in roots of jar1-1/coi1-16 (in which ABA only slightly increase) and jai1 (in which ABA increase is even higher than in WT plants). This also makes JA-ABA crosstalk complex and discards any lineal pathway that could explain this hormonal interaction.
Collapse
Affiliation(s)
- Carlos de Ollas
- Departamento de Ciencias Agrarias y del Medio Natural; Universitat Jaume I; Castelló de la Plana, Spain
| | - Vicent Arbona
- Departamento de Ciencias Agrarias y del Medio Natural; Universitat Jaume I; Castelló de la Plana, Spain
| | - Aurelio Gómez-Cadenas
- Departamento de Ciencias Agrarias y del Medio Natural; Universitat Jaume I; Castelló de la Plana, Spain
- Correspondence to: Aurelio Gómez-Cadenas;
| |
Collapse
|
513
|
Jensen LM, Jepsen HSK, Halkier BA, Kliebenstein DJ, Burow M. Natural variation in cross-talk between glucosinolates and onset of flowering in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2015; 6:697. [PMID: 26442014 PMCID: PMC4561820 DOI: 10.3389/fpls.2015.00697] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/21/2015] [Indexed: 05/02/2023]
Abstract
Naturally variable regulatory networks control different biological processes including reproduction and defense. This variation within regulatory networks enables plants to optimize defense and reproduction in different environments. In this study we investigate the ability of two enzyme-encoding genes in the glucosinolate pathway, AOP2 and AOP3, to affect glucosinolate accumulation and flowering time. We have introduced the two highly similar enzymes into two different AOP (null) accessions, Col-0 and Cph-0, and found that the genes differ in their ability to affect glucosinolate levels and flowering time across the accessions. This indicated that the different glucosinolates produced by AOP2 and AOP3 serve specific regulatory roles in controlling these phenotypes. While the changes in glucosinolate levels were similar in both accessions, the effect on flowering time was dependent on the genetic background pointing to natural variation in cross-talk between defense chemistry and onset of flowering. This variation likely reflects an adaptation to survival in different environments.
Collapse
Affiliation(s)
- Lea M. Jensen
- Department of Plant and Environmental Sciences, Faculty of Science, DNRF Center DynaMo, University of CopenhagenFrederiksberg, Denmark
- Department of Plant and Environmental Sciences, Faculty of Science, Copenhagen Plant Science Centre, University of CopenhagenFrederiksberg, Denmark
| | - Henriette S. K. Jepsen
- Department of Plant and Environmental Sciences, Faculty of Science, DNRF Center DynaMo, University of CopenhagenFrederiksberg, Denmark
- Department of Plant and Environmental Sciences, Faculty of Science, Copenhagen Plant Science Centre, University of CopenhagenFrederiksberg, Denmark
| | - Barbara A. Halkier
- Department of Plant and Environmental Sciences, Faculty of Science, DNRF Center DynaMo, University of CopenhagenFrederiksberg, Denmark
- Department of Plant and Environmental Sciences, Faculty of Science, Copenhagen Plant Science Centre, University of CopenhagenFrederiksberg, Denmark
| | - Daniel J. Kliebenstein
- Department of Plant and Environmental Sciences, Faculty of Science, DNRF Center DynaMo, University of CopenhagenFrederiksberg, Denmark
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Meike Burow
- Department of Plant and Environmental Sciences, Faculty of Science, DNRF Center DynaMo, University of CopenhagenFrederiksberg, Denmark
- Department of Plant and Environmental Sciences, Faculty of Science, Copenhagen Plant Science Centre, University of CopenhagenFrederiksberg, Denmark
- *Correspondence: Meike Burow, Department of Plant and Environmental Sciences, DNRF Center DynaMo, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| |
Collapse
|
514
|
Degani O, Drori R, Goldblat Y. Plant growth hormones suppress the development of Harpophora maydis, the cause of late wilt in maize. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2015; 21:137-49. [PMID: 25649030 PMCID: PMC4312332 DOI: 10.1007/s12298-014-0265-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/23/2014] [Accepted: 09/29/2014] [Indexed: 05/20/2023]
Abstract
Late wilt, a severe vascular disease of maize caused by the fungus Harpophora maydis, is characterized by rapid wilting of maize plants before tasseling and until shortly before maturity. The pathogen is currently controlled by resistant maize cultivars, but the disease is constantly spreading to new areas. The plant's late phenological stage at which the disease appears suggests that plant hormones may be involved in the pathogenesis. This work revealed that plant growth hormones, auxin (Indole-3-acetic acid) and cytokinin (kinetin), suppress H. maydis in culture media and in a detached root assay. Kinetin, and even more auxin, caused significant suppression of fungus spore germination. Gibberellic acid did not alter colony growth rate but had a signal suppressive effect on the pathogens' spore germination. In comparison, ethylene and jasmonic acid, plant senescing and defense response regulators, had minor effects on colony growth and spore germination rate. Their associate hormone, salicylic acid, had a moderate suppressive effect on spore germination and colony growth rate, and a strong influence when combined with auxin. Despite the anti-fungal auxin success in vitro, field experiments with dimethylamine salt of 2,4-dichlorophenoxyacetic acid (that mimics the influence of auxin) failed to suppress the late wilt. The lines of evidence presented here reveal the suppressive influence of the three growth hormones studied on fungal development and are important to encourage further and more in-depth examinations of this intriguing hormonal complex regulatory and its role in the maize-H. maydis interactions.
Collapse
Affiliation(s)
- Ofir Degani
- />Tel-Hai College, Upper Galilee, 12210 Tel-Hai, Israel
- />Migal – Galilee Research Institute, Southern Industrial Zone, P.O. Box 831, 11016 Kiryat Shmona, Israel
| | - Ran Drori
- />Migal – Galilee Research Institute, Southern Industrial Zone, P.O. Box 831, 11016 Kiryat Shmona, Israel
| | | |
Collapse
|
515
|
Naeem ul Hassan M, Zainal Z, Ismail I. Plant kelch containing F-box proteins: structure, evolution and functions. RSC Adv 2015. [DOI: 10.1039/c5ra01875g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Kelch repeat containing F-box proteins; a review on the progress of the research on these plant specific signalling proteins.
Collapse
Affiliation(s)
- M. Naeem ul Hassan
- School of Bioscience and Biotechnology
- Faculty of Science and Technology
- University Kebangsaan Malaysia
- Bangi, 43600
- Malaysia
| | - Zamri Zainal
- School of Bioscience and Biotechnology
- Faculty of Science and Technology
- University Kebangsaan Malaysia
- Bangi, 43600
- Malaysia
| | - Ismanizan Ismail
- School of Bioscience and Biotechnology
- Faculty of Science and Technology
- University Kebangsaan Malaysia
- Bangi, 43600
- Malaysia
| |
Collapse
|
516
|
Sharma M, Laxmi A. Jasmonates: Emerging Players in Controlling Temperature Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2015; 6:1129. [PMID: 26779205 PMCID: PMC4701901 DOI: 10.3389/fpls.2015.01129] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 11/29/2015] [Indexed: 05/17/2023]
Abstract
The sedentary life of plants has forced them to live in an environment that is characterized by the presence of numerous challenges in terms of biotic and abiotic stresses. Phytohormones play essential roles in mediating plant physiology and alleviating various environmental perturbations. Jasmonates are a group of oxylipin compounds occurring ubiquitously in the plant kingdom that play pivotal roles in response to developmental and environmental cues. Jasmonates (JAs) have been shown to participate in unison with key factors of other signal transduction pathway, including those involved in response to abiotic stress. Recent findings have furnished large body of information suggesting the role of jasmonates in cold and heat stress. JAs have been shown to regulate C-repeat binding factor (CBF) pathway during cold stress. The interaction between the integrants of JA signaling and components of CBF pathway demonstrates a complex relationship between the two. JAs have also been shown to counteract chilling stress by inducing ROS avoidance enzymes. In addition, several lines of evidence suggest the positive regulation of thermotolerance by JA. The present review provides insights into biosynthesis, signal transduction pathway of jasmonic acid and their role in response to temperature stress.
Collapse
|
517
|
Vos IA, Moritz L, Pieterse CMJ, Van Wees SCM. Impact of hormonal crosstalk on plant resistance and fitness under multi-attacker conditions. FRONTIERS IN PLANT SCIENCE 2015; 6:639. [PMID: 26347758 PMCID: PMC4538242 DOI: 10.3389/fpls.2015.00639] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/02/2015] [Indexed: 05/18/2023]
Abstract
The hormone salicylic acid (SA) generally induces plant defenses against biotrophic pathogens. Jasmonic acid (JA) and its oxylipin derivatives together with ethylene (ET) are generally important hormonal regulators of induced plant defenses against necrotrophic pathogens, whereas JAs together with abscisic acid (ABA) are implicated in induced plant defenses against herbivorous insects. Hormonal crosstalk between the different plant defense pathways has often been hypothesized to be a cost-saving strategy that has evolved as a means of the plant to reduce allocation costs by repression of unnecessary defenses, thereby minimizing trade-offs between plant defense and growth. However, proof for this hypothesis has not been demonstrated yet. In this study the impact of hormonal crosstalk on disease resistance and fitness of Arabidopsis thaliana when under multi-species attack was investigated. Induction of SA- or JA/ABA-dependent defense responses by the biotrophic pathogen Hyaloperonospora arabidopsidis or the herbivorous insect Pieris rapae, respectively, was shown to reduce the level of induced JA/ET-dependent defense against subsequent infection with the necrotrophic pathogen Botrytis cinerea. However, despite the enhanced susceptibility to this second attacker, no additional long-term negative effects were observed on plant fitness when plants had been challenged by multiple attackers. Similarly, when plants were grown in dense competition stands to enlarge fitness effects of induced defenses, treatment with a combination of SA and MeJA did not cause additional negative effects on plant fitness in comparison to the single MeJA treatment. Together, these data support the notion that hormonal crosstalk in plants during multi-attacker interactions allows plants to prioritize their defenses, while limiting the fitness costs associated with induction of defenses.
Collapse
Affiliation(s)
| | | | | | - Saskia C. M. Van Wees
- *Correspondence: Saskia C. M. Van Wees, Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, P. O. Box 800.56, Kruyt Building, Padualaan 8, 3508 TB Utrecht, Netherlands,
| |
Collapse
|
518
|
Lenka SK, Nims NE, Vongpaseuth K, Boshar RA, Roberts SC, Walker EL. Jasmonate-responsive expression of paclitaxel biosynthesis genes in Taxus cuspidata cultured cells is negatively regulated by the bHLH transcription factors TcJAMYC1, TcJAMYC2, and TcJAMYC4. FRONTIERS IN PLANT SCIENCE 2015; 6:115. [PMID: 25767476 PMCID: PMC4341510 DOI: 10.3389/fpls.2015.00115] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/11/2015] [Indexed: 05/18/2023]
Abstract
Taxus cell suspension culture is a sustainable technology for the industrial production of paclitaxel (Taxol®), a highly modified diterpene anti-cancer agent. The methyl jasmonate (MJ)-mediated paclitaxel biosynthetic pathway is not fully characterized, making metabolic engineering efforts difficult. Here, promoters of seven genes (TASY, T5αH, DBAT, DBBT, PAM, BAPT, and DBTNBT), encoding enzymes of the paclitaxel biosynthetic pathway were isolated and used to drive MJ-inducible expression of a GUS reporter construct in transiently transformed Taxus cells, showing that elicitation of paclitaxel production by MJ is regulated at least in part at the level of transcription. The paclitaxel biosynthetic pathway promoters contained a large number of E-box sites (CANNTG), similar to the binding sites for the key MJ-inducible transcription factor AtMYC2 from Arabidopsis thaliana. Three MJ-inducible MYC transcription factors similar to AtMYC2 (TcJAMYC1, TcJAMYC2, and TcJAMYC4) were identified in Taxus. Transcriptional regulation of paclitaxel biosynthetic pathway promoters by transient over expression of TcJAMYC transcription factors indicated a negative rather than positive regulatory role of TcJAMYCs on paclitaxel biosynthetic gene expression.
Collapse
Affiliation(s)
- Sangram K. Lenka
- Department of Biology, University of MassachusettsAmherst, MA, USA
| | - N. Ezekiel Nims
- Department of Biology, University of MassachusettsAmherst, MA, USA
- Plant Biology Graduate Program, University of MassachusettsAmherst, MA, USA
| | - Kham Vongpaseuth
- Plant Biology Graduate Program, University of MassachusettsAmherst, MA, USA
- Department of Chemical Engineering, University of MassachusettsAmherst, MA, USA
| | | | - Susan C. Roberts
- Plant Biology Graduate Program, University of MassachusettsAmherst, MA, USA
- Department of Chemical Engineering, University of MassachusettsAmherst, MA, USA
| | - Elsbeth L. Walker
- Department of Biology, University of MassachusettsAmherst, MA, USA
- Plant Biology Graduate Program, University of MassachusettsAmherst, MA, USA
- *Correspondence: Elsbeth L. Walker, Department of Biology, University of Massachusetts, 611 North Pleasant St., Amherst, MA 01003, USA e-mail:
| |
Collapse
|
519
|
Xia X, Shao Y, Jiang J, Ren L, Chen F, Fang W, Guan Z, Chen S. Gene expression profiles responses to aphid feeding in chrysanthemum (Chrysanthemum morifolium). BMC Genomics 2014; 15:1050. [PMID: 25466867 PMCID: PMC4265409 DOI: 10.1186/1471-2164-15-1050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/20/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Chrysanthemum is an important ornamental plant all over the world. It is easily attacked by aphid, Macrosiphoniella sanbourni. The molecular mechanisms of plant defense responses to aphid are only partially understood. Here, we investigate the gene expression changes in response to aphid feeding in chrysanthemum leaf by RNA-Seq technology. RESULTS Three libraries were generated from pooled leaf tissues of Chrysanthemum morifolium 'nannongxunzhang' that were collected at different time points with (Y) or without (CK) aphid infestations and mock puncture treatment (Z), and sequenced using an Illumina HiSeqTM 2000 platform. A total of 7,363,292, 7,215,860 and 7,319,841 clean reads were obtained in library CK, Y and Z, respectively. The proportion of clean reads was >97.29% in each library. Approximately 76.35% of the clean reads were mapped to a reference gene database including all known chrysanthemum unigene sequences. 1,157, 527 and 340 differentially expressed genes (DEGs) were identified in the comparison of CK-VS-Y, CK-VS-Z and Z-VS-Y, respectively. These DEGs were involved in phytohormone signaling, cell wall biosynthesis, photosynthesis, reactive oxygen species (ROS) pathway and transcription factor regulatory networks, and so on. CONCLUSIONS Changes in gene expression induced by aphid feeding are shown to be multifaceted. There are various forms of crosstalk between different pathways those genes belonging to, which would allow plants to fine-tune its defense responses.
Collapse
Affiliation(s)
- Xiaolong Xia
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 China
| | - Yafeng Shao
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 China
| | - Liping Ren
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 China
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095 China
| |
Collapse
|
520
|
Geng X, Jin L, Shimada M, Kim MG, Mackey D. The phytotoxin coronatine is a multifunctional component of the virulence armament of Pseudomonas syringae. PLANTA 2014; 240:1149-65. [PMID: 25156488 PMCID: PMC4228168 DOI: 10.1007/s00425-014-2151-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/08/2014] [Indexed: 05/20/2023]
Abstract
Plant pathogens deploy an array of virulence factors to suppress host defense and promote pathogenicity. Numerous strains of Pseudomonas syringae produce the phytotoxin coronatine (COR). A major aspect of COR function is its ability to mimic a bioactive jasmonic acid (JA) conjugate and thus target the JA-receptor COR-insensitive 1 (COI1). Biological activities of COR include stimulation of JA-signaling and consequent suppression of SA-dependent defense through antagonistic crosstalk, antagonism of stomatal closure to allow bacterial entry into the interior of plant leaves, contribution to chlorotic symptoms in infected plants, and suppression of plant cell wall defense through perturbation of secondary metabolism. Here, we review the virulence function of COR, including updates on these established activities as well as more recent findings revealing COI1-independent activity of COR and shedding light on cooperative or redundant defense suppression between COR and type III effector proteins.
Collapse
Affiliation(s)
- Xueqing Geng
- Department of Horticulture and Crop Science, Ohio State University, Columbus, OH 43210 USA
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Lin Jin
- Department of Horticulture and Crop Science, Ohio State University, Columbus, OH 43210 USA
| | - Mikiko Shimada
- Department of Horticulture and Crop Science, Ohio State University, Columbus, OH 43210 USA
| | - Min Gab Kim
- College of Pharmacy, Research Institute of Pharmaceutical Science, PMBBRC Gyeongsang National University, Jinju daero, Jinju, 660-751 Republic of Korea
| | - David Mackey
- Department of Horticulture and Crop Science, Ohio State University, Columbus, OH 43210 USA
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
521
|
Kato K, Shoji T, Hashimoto T. Tobacco nicotine uptake permease regulates the expression of a key transcription factor gene in the nicotine biosynthesis pathway. PLANT PHYSIOLOGY 2014; 166:2195-204. [PMID: 25344505 PMCID: PMC4256872 DOI: 10.1104/pp.114.251645] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/22/2014] [Indexed: 05/24/2023]
Abstract
The down-regulation of a tobacco (Nicotiana tabacum) plasma membrane-localized nicotine uptake permease, NUP1, was previously reported to reduce total alkaloid levels in tobacco plants. However, it was unclear how this nicotine transporter affected the biosynthesis of the alkaloid nicotine. When NUP1 expression was suppressed in cultured tobacco cells treated with jasmonate, which induces nicotine biosynthesis, the NICOTINE2-locus transcription factor gene ETHYLENE RESPONSE FACTOR189 (ERF189) and its target structural genes, which function in nicotine biosynthesis and transport, were strongly suppressed, resulting in decreased total alkaloid levels. Conversely, NUP1 overexpression had the opposite effect. In these experiments, the expression levels of the MYC2 transcription factor gene and its jasmonate-inducible target gene were not altered. Inhibiting tobacco alkaloid biosynthesis by suppressing the expression of genes encoding enzymes in the nicotine pathway did not affect the expression of ERF189 and other nicotine pathway genes, indicating that ERF189 is not regulated by cellular alkaloid levels. Suppressing the expression of jasmonate signaling components in cultured tobacco cells showed that NUP1 acts downstream of the CORONATINE INSENSITIVE1 receptor and MYC2, but upstream of ERF189. These results suggest that although jasmonate-activated expression of MYC2 induces the expression of both NUP1 and ERF189, expression of ERF189 may actually be mediated by NUP1. Furthermore, NUP1 overexpression in tobacco plants inhibited the long-range transport of nicotine from the roots to the aerial parts. Thus, NUP1 not only mediates the uptake of tobacco alkaloids into root cells, but also positively controls the expression of ERF189, a key gene in the biosynthesis of these alkaloids.
Collapse
Affiliation(s)
- Keita Kato
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Tsubasa Shoji
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takashi Hashimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
522
|
Sham A, Al-Azzawi A, Al-Ameri S, Al-Mahmoud B, Awwad F, Al-Rawashdeh A, Iratni R, AbuQamar S. Transcriptome analysis reveals genes commonly induced by Botrytis cinerea infection, cold, drought and oxidative stresses in Arabidopsis. PLoS One 2014; 9:e113718. [PMID: 25422934 PMCID: PMC4244146 DOI: 10.1371/journal.pone.0113718] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/30/2014] [Indexed: 12/01/2022] Open
Abstract
Signaling pathways controlling biotic and abiotic stress responses may interact synergistically or antagonistically. To identify the similarities and differences among responses to diverse stresses, we analyzed previously published microarray data on the transcriptomic responses of Arabidopsis to infection with Botrytis cinerea (a biotic stress), and to cold, drought, and oxidative stresses (abiotic stresses). Our analyses showed that at early stages after B. cinerea inoculation, 1498 genes were up-regulated (B. cinerea up-regulated genes; BUGs) and 1138 genes were down-regulated (B. cinerea down-regulated genes; BDGs). We showed a unique program of gene expression was activated in response each biotic and abiotic stress, but that some genes were similarly induced or repressed by all of the tested stresses. Of the identified BUGs, 25%, 6% and 12% were also induced by cold, drought and oxidative stress, respectively; whereas 33%, 7% and 5.5% of the BDGs were also down-regulated by the same abiotic stresses. Coexpression and protein-protein interaction network analyses revealed a dynamic range in the expression levels of genes encoding regulatory proteins. Analysis of gene expression in response to electrophilic oxylipins suggested that these compounds are involved in mediating responses to B. cinerea infection and abiotic stress through TGA transcription factors. Our results suggest an overlap among genes involved in the responses to biotic and abiotic stresses in Arabidopsis. Changes in the transcript levels of genes encoding components of the cyclopentenone signaling pathway in response to biotic and abiotic stresses suggest that the oxylipin signal transduction pathway plays a role in plant defense. Identifying genes that are commonly expressed in response to environmental stresses, and further analyzing the functions of their encoded products, will increase our understanding of the plant stress response. This information could identify targets for genetic modification to improve plant resistance to multiple stresses.
Collapse
Affiliation(s)
- Arjun Sham
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Ahmed Al-Azzawi
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Salma Al-Ameri
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bassam Al-Mahmoud
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Falah Awwad
- Department of Electrical Engineering, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Ahmed Al-Rawashdeh
- Department of Mathematical Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Synan AbuQamar
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
523
|
miR408 overexpression causes increased drought tolerance in chickpea. Gene 2014; 555:186-93. [PMID: 25445265 DOI: 10.1016/j.gene.2014.11.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/28/2014] [Accepted: 11/02/2014] [Indexed: 12/31/2022]
Abstract
Drought stress limits yield severely in most of the crops. Plants utilize complex gene regulation mechanisms to tolerate water deficiency as well as other abiotic stresses. MicroRNAs (miRNAs) are a class of small non-coding RNAs that are progressively recognized as important regulators of gene expression acting at post-transcriptional level. miR408, conserved in terrestrial plants, targets copper related genes. Although, expression level of miR408 is influenced by various environmental factors including drought stress, the biological action of miR408 is still unclear. To examine the miR408 function upon drought stress in chickpea, transgenic lines overexpressing the miR408 were generated. Induced tolerance was observed in the plants with enhanced miR408 expression upon 17-day water deficiency. Expression levels of miR408 target gene together with seven drought responsive genes were measured using qRT-PCR. Here, the involvement of miR408 in drought stress response has been reported. The overexpression leading plantacyanin transcript repression caused regulation of DREB and other drought responsive genes.
Collapse
|
524
|
Zhu Z. Molecular basis for jasmonate and ethylene signal interactions in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5743-8. [PMID: 25165148 DOI: 10.1093/jxb/eru349] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Jasmonate (JA) and ethylene (ET) are considered to be two essential plant hormones helping plants to tolerate infections by necrotrophic fungi. Phenotypic observations and marker gene expression analysis suggest that JA and ET act synergistically and interdependently in these defence responses. However, JA and ET also interact in an antagonistic way. JA represses ET-induced apical hook formation, while ET inhibits JA-controlled wounding responses. Although these physiological observations have been reported for more than a decade, only recently have the underlying molecular mechanisms been uncovered. Here, I review the recent advances in the understanding of these two hormone interactions and further discuss the biological significance of these apparently opposite interactions between these two hormones in orchestrating plant growth and development.
Collapse
Affiliation(s)
- Ziqiang Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
525
|
Yan H, Yoo MJ, Koh J, Liu L, Chen Y, Acikgoz D, Wang Q, Chen S. Molecular Reprogramming of Arabidopsis in Response to Perturbation of Jasmonate Signaling. J Proteome Res 2014; 13:5751-66. [DOI: 10.1021/pr500739v] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Huizhuan Yan
- Department
of Horticulture, Zhejiang University, Hangzhou 310058, China
| | | | | | - Lihong Liu
- Department
of Horticulture, Zhejiang University, Hangzhou 310058, China
| | | | | | - Qiaomei Wang
- Department
of Horticulture, Zhejiang University, Hangzhou 310058, China
| | | |
Collapse
|
526
|
Zhu Y, Schluttenhoffer CM, Wang P, Fu F, Thimmapuram J, Zhu JK, Lee SY, Yun DJ, Mengiste T. CYCLIN-DEPENDENT KINASE8 differentially regulates plant immunity to fungal pathogens through kinase-dependent and -independent functions in Arabidopsis. THE PLANT CELL 2014; 26:4149-70. [PMID: 25281690 PMCID: PMC4247566 DOI: 10.1105/tpc.114.128611] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/28/2014] [Accepted: 09/17/2014] [Indexed: 05/18/2023]
Abstract
CYCLIN-DEPENDENT KINASE8 (CDK8) is a widely studied component of eukaryotic Mediator complexes. However, the biological and molecular functions of plant CDK8 are not well understood. Here, we provide evidence for regulatory functions of Arabidopsis thaliana CDK8 in defense and demonstrate its functional and molecular interactions with other Mediator and non-Mediator subunits. The cdk8 mutant exhibits enhanced resistance to Botrytis cinerea but susceptibility to Alternaria brassicicola. The contributions of CDK8 to the transcriptional activation of defensin gene PDF1.2 and its interaction with MEDIATOR COMPLEX SUBUNIT25 (MED25) implicate CDK8 in jasmonate-mediated defense. Moreover, CDK8 associates with the promoter of AGMATINE COUMAROYLTRANSFERASE to promote its transcription and regulate the biosynthesis of the defense-active secondary metabolites hydroxycinnamic acid amides. CDK8 also interacts with the transcription factor WAX INDUCER1, implying its additional role in cuticle development. In addition, overlapping functions of CDK8 with MED12 and MED13 and interactions between CDK8 and C-type cyclins suggest the conserved configuration of the plant Mediator kinase module. In summary, while CDK8's positive transcriptional regulation of target genes and its phosphorylation activities underpin its defense functions, the impaired defense responses in the mutant are masked by its altered cuticle, resulting in specific resistance to B. cinerea.
Collapse
Affiliation(s)
- Yingfang Zhu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | | | - Pengcheng Wang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Fuyou Fu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | | | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Sang Yeol Lee
- Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju City 660-701, Korea
| | - Dae-Jin Yun
- Division of Applied Life Sciences (BK21 Plus Program), Gyeongsang National University, Jinju City 660-701, Korea
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
527
|
Im JH, Cho YH, Kim GD, Kang GH, Hong JW, Yoo SD. Inverse modulation of the energy sensor Snf1-related protein kinase 1 on hypoxia adaptation and salt stress tolerance in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2014; 37:2303-2312. [PMID: 24890857 DOI: 10.1111/pce.12375] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 06/03/2023]
Abstract
Terrestrial plants are exposed to complex stresses of high salt-induced abscisic acid (ABA) and submergence-induced hypoxia when seawater floods fields. Many studies have investigated plant responses to individual stress conditions, but not so much for coupled or sequentially imposed stresses. We examined molecular regulatory mechanisms of gene expression underlying the cellular responses involved in crosstalk between salt and hypoxia stresses. Salt/ABA- and AtMYC2-dependent induction of a synthetic ABA-responsive element and the native RD22 promoters were utilized in our cell-based functional assays. Such promoter-based reporter induction was largely inhibited by hypoxia and hypoxia-inducible AKIN10 activity. Biochemical analyses showed that AKIN10 negatively modulates AtMYC2 protein accumulation via proteasome activity upon AKIN10 kinase activity-dependent protein modification. Further genetic analysis using transgenic plants expressing AKIN10 provided evidence that AKIN10 activity undermined AtMYC2-dependent salt tolerance. Our findings unravel a novel molecular interaction between the key signalling constituents leading crosstalk between salt and hypoxia stresses in Arabidopsis thaliana under the detrimental condition of submergence in saltwater.
Collapse
Affiliation(s)
- Jong Hee Im
- College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, South Korea
| | | | | | | | | | | |
Collapse
|
528
|
Wang H, Ding C, Du H, Liu H, Wang Y, Yu D. Identification of soybean MYC2-like transcription factors and overexpression of GmMYC1 could stimulate defense mechanism against common cutworm in transgenic tobacco. Biotechnol Lett 2014; 36:1881-92. [PMID: 24863293 DOI: 10.1007/s10529-014-1549-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/08/2014] [Indexed: 10/25/2022]
Abstract
MYC2 is a basic helix-loop-helix Leu zipper transcription factor (TF). Here, 22 putative soybean MYC-like TFs were identified bioinformatically. Of these TFs, seven MYC2-like genes without introns were isolated and characterized. All seven GmMYCs displayed transactivation activity in yeast cells. Six genes (excepting GmMYC3) were expressed in the roots, stems, leaves, flowers, and seed wall but not in the developing seeds and up-regulated after insect feeding. The GmMYC1 transgenic tobacco rejected common cutworm (CCW, Spodoptera litura Fabricius) more strongly and lost less leaf area than the control (2.94 ± 2.36 vs 7.84 ± 4.63 cm(2)). The average relative growth rate of CCW feeding on transgenic tobacco leaves was lower than on control tobacco leaves (136 ± 60 vs 271 ± 76 %). These results indicated that GmMYC could stimulate the defense mechanism against insects in plants.
Collapse
Affiliation(s)
- Hui Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | |
Collapse
|
529
|
Frerigmann H, Berger B, Gigolashvili T. bHLH05 is an interaction partner of MYB51 and a novel regulator of glucosinolate biosynthesis in Arabidopsis. PLANT PHYSIOLOGY 2014; 166:349-69. [PMID: 25049362 PMCID: PMC4149720 DOI: 10.1104/pp.114.240887] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 07/20/2014] [Indexed: 05/18/2023]
Abstract
By means of yeast (Saccharomyces cerevisiae) two-hybrid screening, we identified basic helix-loop-helix transcription factor05 (bHLH05) as an interacting partner of MYB51, the key regulator of indolic glucosinolates (GSLs) in Arabidopsis (Arabidopsis thaliana). Furthermore, we show that bHLH04, bHLH05, and bHLH06/MYC2 also interact with other R2R3-MYBs regulating GSL biosynthesis. Analysis of bhlh loss-of-function mutants revealed that the single bhlh mutants retained GSL levels that were similar to those in wild-type plants, whereas the triple bhlh04/05/06 mutant was depleted in the production of GSL. Unlike bhlh04/06 and bhlh05/06 mutants, the double bhlh04/05 mutant was strongly affected in the production of GSL, pointing to a special role of bHLH04 and bHLH05 in the control of GSL levels in the absence of jasmonic acid. The combination of two specific gain-of-function alleles of MYB and bHLH proteins had an additive effect on GSL levels, as demonstrated by the analysis of the double MYB34-1D bHLH05D94N mutant, which produces 20-fold more indolic GSLs than bHLH05D94N and ecotype Columbia-0 of Arabidopsis. The amino acid substitution D94N in bHLH05D94N negatively affects the interaction with JASMONATE-ZIM DOMAIN protein, thereby resulting in constitutive activation of bHLH05 and mimicking jasmonic acid treatment. Our study revealed the bHLH04, bHLH05, and bHLH06/MYC2 factors as novel regulators of GSL biosynthesis in Arabidopsis.
Collapse
Affiliation(s)
- Henning Frerigmann
- Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, BioCenter, D-50674 Cologne, Germany (H.F., T.G.); the Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae SA 5064, Australia (B.B.)
| | - Bettina Berger
- Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, BioCenter, D-50674 Cologne, Germany (H.F., T.G.); the Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae SA 5064, Australia (B.B.)
| | - Tamara Gigolashvili
- Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, BioCenter, D-50674 Cologne, Germany (H.F., T.G.); the Plant Accelerator, Australian Plant Phenomics Facility, University of Adelaide, Urrbrae SA 5064, Australia (B.B.)
| |
Collapse
|
530
|
Menzel TR, Weldegergis BT, David A, Boland W, Gols R, van Loon JJA, Dicke M. Synergism in the effect of prior jasmonic acid application on herbivore-induced volatile emission by Lima bean plants: transcription of a monoterpene synthase gene and volatile emission. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4821-31. [PMID: 25318119 PMCID: PMC4144767 DOI: 10.1093/jxb/eru242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Jasmonic acid (JA) plays a central role in induced plant defence e.g. by regulating the biosynthesis of herbivore-induced plant volatiles that mediate the attraction of natural enemies of herbivores. Moreover, exogenous application of JA can be used to elicit plant defence responses similar to those induced by biting-chewing herbivores and mites that pierce cells and consume their contents. In the present study, we used Lima bean (Phaseolus lunatus) plants to explore how application of a low dose of JA followed by minor herbivory by spider mites (Tetranychus urticae) affects transcript levels of P. lunatus (E)-β-ocimene synthase (PlOS), emission of (E)-β-ocimene and nine other plant volatiles commonly associated with herbivory. Furthermore, we investigated the plant's phytohormonal response. Application of a low dose of JA increased PlOS transcript levels in a synergistic manner when followed by minor herbivory for both simultaneous and sequential infestation. Emission of (E)-β-ocimene was also increased, and only JA, but not SA, levels were affected by treatments. Projection to latent structures-discriminant analysis (PLS-DA) of other volatiles showed overlap between treatments. Thus, a low-dose JA application results in a synergistic effect on gene transcription and an increased emission of a volatile compound involved in indirect defence after herbivore infestation.
Collapse
Affiliation(s)
- Tila R Menzel
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| | - Berhane T Weldegergis
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| | - Anja David
- Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, D-07745 Jena, Germany
| | - Wilhelm Boland
- Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, D-07745 Jena, Germany
| | - Rieta Gols
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands
| |
Collapse
|
531
|
Rehrig EM, Appel HM, Jones AD, Schultz JC. Roles for jasmonate- and ethylene-induced transcription factors in the ability of Arabidopsis to respond differentially to damage caused by two insect herbivores. FRONTIERS IN PLANT SCIENCE 2014; 5:407. [PMID: 25191332 PMCID: PMC4137388 DOI: 10.3389/fpls.2014.00407] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/31/2014] [Indexed: 05/24/2023]
Abstract
Plant responses to insects and wounding involve substantial transcriptional reprogramming that integrates hormonal, metabolic, and physiological events. The ability to respond differentially to various stresses, including wounding, generally involves hormone signaling and trans-acting regulatory factors. Evidence of the importance of transcription factors (TFs) in responses to insects is also accumulating. However, the relationships among hormone signaling, TF activity, and ability to respond specifically to different insects are uncertain. We examined transcriptional and hormonal changes in Arabidopsis thaliana after herbivory by larvae of two lepidopteran species, Spodoptera exigua (Hübner) and Pieris rapae L. over a 24-h time course. Transcriptional responses to the two insects differed and were frequently weaker or absent in response to the specialist P. rapae. Using microarray analysis and qRT-PCR, we found 141 TFs, including many AP2/ERFs (Ethylene Response Factors) and selected defense-related genes, to be differentially regulated in response to the two insect species or wounding. Jasmonic Acid (JA), JA-isoleucine (JA-IL), and ethylene production by Arabidopsis plants increased after attack by both insect species. However, the amounts and timing of ethylene production differed between the two herbivory treatments. Our results support the hypothesis that the different responses to these two insects involve modifications of JA-signaling events and activation of different subsets of ERF TFs, resulting in different degrees of divergence from responses to wounding alone.
Collapse
Affiliation(s)
- Erin M. Rehrig
- Department of Biology and Chemistry, Fitchburg State UniversityFitchburg, MA, USA
| | - Heidi M. Appel
- Plant Sciences, Bond Life Sciences Center, The University of MissouriColumbia, MO, USA
| | - A. Daniel Jones
- Department of Biochemistry and Molecular Biology, Department of Chemistry, Michigan State UniversityEast Lansing, MI, USA
| | - Jack C. Schultz
- Plant Sciences, Bond Life Sciences Center, The University of MissouriColumbia, MO, USA
| |
Collapse
|
532
|
Meesters C, Mönig T, Oeljeklaus J, Krahn D, Westfall CS, Hause B, Jez JM, Kaiser M, Kombrink E. A chemical inhibitor of jasmonate signaling targets JAR1 in Arabidopsis thaliana. Nat Chem Biol 2014; 10:830-6. [PMID: 25129030 DOI: 10.1038/nchembio.1591] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 06/12/2014] [Indexed: 12/11/2022]
Abstract
Jasmonates are lipid-derived plant hormones that regulate plant defenses and numerous developmental processes. Although the biosynthesis and molecular function of the most active form of the hormone, (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile), have been unraveled, it remains poorly understood how the diversity of bioactive jasmonates regulates such a multitude of plant responses. Bioactive analogs have been used as chemical tools to interrogate the diverse and dynamic processes of jasmonate action. By contrast, small molecules impairing jasmonate functions are currently unknown. Here, we report on jarin-1 as what is to our knowledge the first small-molecule inhibitor of jasmonate responses that was identified in a chemical screen using Arabidopsis thaliana. Jarin-1 impairs the activity of JA-Ile synthetase, thereby preventing the synthesis of the active hormone, JA-Ile, whereas closely related enzymes are not affected. Thus, jarin-1 may serve as a useful chemical tool in search for missing regulatory components and further dissection of the complex jasmonate signaling networks.
Collapse
Affiliation(s)
- Christian Meesters
- 1] Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Köln, Germany. [2] Center for Medical Biotechnology, Department of Chemical Biology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Timon Mönig
- Center for Medical Biotechnology, Department of Chemical Biology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Julian Oeljeklaus
- Center for Medical Biotechnology, Department of Chemical Biology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Daniel Krahn
- Center for Medical Biotechnology, Department of Chemical Biology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Corey S Westfall
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Joseph M Jez
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Markus Kaiser
- Center for Medical Biotechnology, Department of Chemical Biology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Erich Kombrink
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Köln, Germany
| |
Collapse
|
533
|
Sun H, Wang L, Zhang B, Ma J, Hettenhausen C, Cao G, Sun G, Wu J, Wu J. Scopoletin is a phytoalexin against Alternaria alternata in wild tobacco dependent on jasmonate signalling. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4305-15. [PMID: 24821958 PMCID: PMC4112635 DOI: 10.1093/jxb/eru203] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Alternaria alternata (tobacco pathotype) is a necrotrophic fungus causing severe losses in Nicotiana species by infection of mature leaves. Similar to what has been observed in cultivated tobacco, N. tabacum, young leaves of wild tobacco, N. attenuata, were more resistant to A. alternata than mature leaves, and this was correlated with stronger blue fluorescence induced after infection. However, the nature of the fluorescence-emitting compound, its role in defence, and its regulation were not clear. Silencing feruloyl-CoA 6'-hydroxylase 1 (F6'H1), the gene encoding the key enzyme for scopoletin biosynthesis, by virus-induced gene silencing (VIGS) revealed that the blue fluorescence was mainly emitted by scopoletin and its β-glycoside form, scopolin. Further analysis showed that scopoletin exhibited strong antifungal activity against A. alternata in vitro and in vivo. Importantly, jasmonic acid (JA) levels were highly elicited in young leaves but much less in mature leaves after infection; and fungus-elicited scopoletin was absent in JA-deficient plants, but was largely restored with methyl jasmonate treatments. Consistent with this, plants strongly impaired in JA biosynthesis and perception were highly susceptible to A. alternata in the same way scopoletin/scopolin-depleted VIGS F6'H1 plants. Furthermore, silencing MYC2, a master regulator of most JA responses, reduced A. alternata-induced NaF6'H1 transcripts and scopoletin. Thus, it is concluded that JA signalling is activated in N. attenuata leaves after infection, which subsequently regulates scopoletin biosynthesis for the defence against A. alternata partly through MYC2, and higher levels of scopoletin accumulated in young leaves account for their strong resistance.
Collapse
Affiliation(s)
- Huanhuan Sun
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201, Kunming, China
| | - Lei Wang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201, Kunming, China
| | - Baoqin Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Junhong Ma
- Yunnan Academy of Tobacco Agricultural Science, Yuantong Street 33, 650031, Kunming, China
| | - Christian Hettenhausen
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201, Kunming, China
| | - Guoyan Cao
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201, Kunming, China
| | - Guiling Sun
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201, Kunming, China
| | - Jianqiang Wu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201, Kunming, China
| | - Jinsong Wu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201, Kunming, China
| |
Collapse
|
534
|
Sethi V, Raghuram B, Sinha AK, Chattopadhyay S. A mitogen-activated protein kinase cascade module, MKK3-MPK6 and MYC2, is involved in blue light-mediated seedling development in Arabidopsis. THE PLANT CELL 2014; 26:3343-57. [PMID: 25139007 PMCID: PMC4371833 DOI: 10.1105/tpc.114.128702] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/18/2014] [Accepted: 08/03/2014] [Indexed: 05/20/2023]
Abstract
Mitogen-activated protein kinase (MAPK) pathways are involved in several signal transduction processes in eukaryotes. Light signal transduction pathways have been extensively studied in plants; however, the connection between MAPK and light signaling pathways is currently unknown. Here, we show that MKK3-MPK6 is activated by blue light in a MYC2-dependent manner. MPK6 physically interacts with and phosphorylates a basic helix-loop-helix transcription factor, MYC2, and is phosphorylated by a MAPK kinase, MKK3. Furthermore, MYC2 binds to the MPK6 promoter and regulates its expression in a feedback regulatory mechanism in blue light signaling. We present mutational and physiological studies that illustrate the function of the MKK3-MPK6-MYC2 module in Arabidopsis thaliana seedling development and provide a revised mechanistic view of photomorphogenesis.
Collapse
Affiliation(s)
- Vishmita Sethi
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Badmi Raghuram
- National Institute of Plant Genome Research, New Delhi 110067, India
| | | | - Sudip Chattopadhyay
- National Institute of Plant Genome Research, New Delhi 110067, India Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| |
Collapse
|
535
|
Okazaki Y, Saito K. Roles of lipids as signaling molecules and mitigators during stress response in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:584-96. [PMID: 24844563 DOI: 10.1111/tpj.12556] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 04/30/2014] [Accepted: 05/06/2014] [Indexed: 05/20/2023]
Abstract
Lipids are the major constituents of biological membranes that can sense extracellular conditions. Lipid-mediated signaling occurs in response to various environmental stresses, such as temperature change, salinity, drought and pathogen attack. Lysophospholipid, fatty acid, phosphatidic acid, diacylglycerol, inositol phosphate, oxylipins, sphingolipid, and N-acylethanolamine have all been proposed to function as signaling lipids. Studies on these stress-inducible lipid species have demonstrated that each lipid class has specific biological relevance, biosynthetic mechanisms and signaling cascades, which activate defense reactions at the transcriptional level. In addition to their roles in signaling, lipids also function as stress mitigators to reduce the intensity of stressors. To mitigate particular stresses, enhanced syntheses of unique lipids that accumulate in trace quantities under normal growth conditions are often observed under stressed conditions. The accumulation of oligogalactolipids and glucuronosyldiacylglycerol has recently been found to mitigate freezing and nutrition-depletion stresses, respectively, during lipid remodeling. In addition, wax, cutin and suberin, which are not constituents of the lipid bilayer, but are components derived from lipids, contribute to the reduction of drought stress and tissue injury. These features indicate that lipid-mediated defenses against environmental stress contributes to plant survival.
Collapse
Affiliation(s)
- Yozo Okazaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | |
Collapse
|
536
|
Rational design of a ligand-based antagonist of jasmonate perception. Nat Chem Biol 2014; 10:671-6. [PMID: 24997606 DOI: 10.1038/nchembio.1575] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 04/21/2014] [Indexed: 01/30/2023]
Abstract
(+)-7-iso-Jasmonoyl-L-isoleucine (JA-Ile) regulates developmental and stress responses in plants. Its perception involves the formation of a ternary complex with the F-box COI1 and a member of the JAZ family of co-repressors and leads to JAZ degradation. Coronatine (COR) is a bacterial phytotoxin that functionally mimics JA-Ile and interacts with the COI1-JAZ co-receptor with higher affinity than JA-Ile. On the basis of the co-receptor structure, we designed ligand derivatives that spatially impede the interaction of the co-receptor proteins and, therefore, should act as competitive antagonists. One derivative, coronatine-O-methyloxime (COR-MO), has strong activity in preventing the COI1-JAZ interaction, JAZ degradation and the effects of JA-Ile or COR on several JA-mediated responses in Arabidopsis thaliana. Moreover, it potentiates plant resistance, preventing the effect of bacterially produced COR during Pseudomonas syringae infections in different plant species. In addition to the utility of COR-MO for plant biology research, our results underscore its biotechnological potential for safer and sustainable agriculture.
Collapse
|
537
|
The Evolution of Ethylene Signaling in Plant Chemical Ecology. J Chem Ecol 2014; 40:700-16. [DOI: 10.1007/s10886-014-0474-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/19/2014] [Accepted: 06/26/2014] [Indexed: 01/10/2023]
|
538
|
Du M, Zhai Q, Deng L, Li S, Li H, Yan L, Huang Z, Wang B, Jiang H, Huang T, Li CB, Wei J, Kang L, Li J, Li C. Closely related NAC transcription factors of tomato differentially regulate stomatal closure and reopening during pathogen attack. THE PLANT CELL 2014; 26:3167-84. [PMID: 25005917 PMCID: PMC4145139 DOI: 10.1105/tpc.114.128272] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 06/18/2014] [Accepted: 06/26/2014] [Indexed: 05/18/2023]
Abstract
To restrict pathogen entry, plants close stomata as an integral part of innate immunity. To counteract this defense, Pseudomonas syringae pv tomato produces coronatine (COR), which mimics jasmonic acid (JA), to reopen stomata for bacterial entry. It is believed that abscisic acid (ABA) plays a central role in regulating bacteria-triggered stomatal closure and that stomatal reopening requires the JA/COR pathway, but the downstream signaling events remain unclear. We studied the stomatal immunity of tomato (Solanum lycopersicum) and report here the distinct roles of two homologous NAC (for NAM, ATAF1,2, and CUC2) transcription factors, JA2 (for jasmonic acid2) and JA2L (for JA2-like), in regulating pathogen-triggered stomatal movement. ABA activates JA2 expression, and genetic manipulation of JA2 revealed its positive role in ABA-mediated stomatal closure. We show that JA2 exerts this effect by regulating the expression of an ABA biosynthetic gene. By contrast, JA and COR activate JA2L expression, and genetic manipulation of JA2L revealed its positive role in JA/COR-mediated stomatal reopening. We show that JA2L executes this effect by regulating the expression of genes involved in the metabolism of salicylic acid. Thus, these closely related NAC proteins differentially regulate pathogen-induced stomatal closure and reopening through distinct mechanisms.
Collapse
Affiliation(s)
- Minmin Du
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China College of Horticulture, Northeast Agricultural University, Harbin 150030, China
| | - Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuyu Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongshuang Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liuhua Yan
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhuo Huang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bao Wang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongling Jiang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tingting Huang
- Institute of Vegetable, Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Chang-Bao Li
- Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jianing Wei
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - Jingfu Li
- College of Horticulture, Northeast Agricultural University, Harbin 150030, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
539
|
Baccelli I, Lombardi L, Luti S, Bernardi R, Picciarelli P, Scala A, Pazzagli L. Cerato-platanin induces resistance in Arabidopsis leaves through stomatal perception, overexpression of salicylic acid- and ethylene-signalling genes and camalexin biosynthesis. PLoS One 2014; 9:e100959. [PMID: 24968226 PMCID: PMC4072723 DOI: 10.1371/journal.pone.0100959] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/30/2014] [Indexed: 12/31/2022] Open
Abstract
Microbe-associated molecular patterns (MAMPs) lead to the activation of the first line of plant defence. Few fungal molecules are universally qualified as MAMPs, and proteins belonging to the cerato-platanin protein (CPP) family seem to possess these features. Cerato-platanin (CP) is the name-giving protein of the CPP family and is produced by Ceratocystis platani, the causal agent of the canker stain disease of plane trees (Platanus spp.). On plane tree leaves, the biological activity of CP has been widely studied. Once applied on the leaf surface, CP acts as an elicitor of defence responses. The molecular mechanism by which CP elicits leaves is still unknown, and the protective effect of CP against virulent pathogens has not been clearly demonstrated. In the present study, we tried to address these questions in the model plant Arabidopsis thaliana. Our results suggest that stomata rapidly sense CP since they responded to the treatment with ROS signalling and stomatal closure, and that CP triggers salicylic acid (SA)- and ethylene (ET)-signalling pathways, but not the jasmonic acid (JA)-signalling pathway, as revealed by the expression pattern of 20 marker genes. Among these, EDS1, PAD4, NPR1, GRX480, WRKY70, ACS6, ERF1a/b, COI1, MYC2, PDF1.2a and the pathogenesis-related (PR) genes 1–5. CP rapidly induced MAPK phosphorylation and induced the biosynthesis of camalexin within 12 hours following treatment. The induction of localised resistance was shown by a reduced susceptibility of the leaves to the infection with Botrytis cinerea and Pseudomonas syringae pv. tomato. These results contribute to elucidate the key steps of the signalling process underlying the resistance induction in plants by CP and point out the central role played by the stomata in this process.
Collapse
Affiliation(s)
- Ivan Baccelli
- Department of Agri-food Production and Environmental Sciences, University of Florence, Florence, Italy
- * E-mail:
| | - Lara Lombardi
- Department of Biology, University of Pisa, Pisa, Italy
| | - Simone Luti
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Rodolfo Bernardi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Piero Picciarelli
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Aniello Scala
- Department of Agri-food Production and Environmental Sciences, University of Florence, Florence, Italy
| | - Luigia Pazzagli
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
540
|
Schluttenhofer C, Pattanaik S, Patra B, Yuan L. Analyses of Catharanthus roseus and Arabidopsis thaliana WRKY transcription factors reveal involvement in jasmonate signaling. BMC Genomics 2014; 15:502. [PMID: 24950738 PMCID: PMC4099484 DOI: 10.1186/1471-2164-15-502] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 06/13/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND To combat infection to biotic stress plants elicit the biosynthesis of numerous natural products, many of which are valuable pharmaceutical compounds. Jasmonate is a central regulator of defense response to pathogens and accumulation of specialized metabolites. Catharanthus roseus produces a large number of terpenoid indole alkaloids (TIAs) and is an excellent model for understanding the regulation of this class of valuable compounds. Recent work illustrates a possible role for the Catharanthus WRKY transcription factors (TFs) in regulating TIA biosynthesis. In Arabidopsis and other plants, the WRKY TF family is also shown to play important role in controlling tolerance to biotic and abiotic stresses, as well as secondary metabolism. RESULTS Here, we describe the WRKY TF families in response to jasmonate in Arabidopsis and Catharanthus. Publically available Arabidopsis microarrays revealed at least 30% (22 of 72) of WRKY TFs respond to jasmonate treatments. Microarray analysis identified at least six jasmonate responsive Arabidopsis WRKY genes (AtWRKY7, AtWRKY20, AtWRKY26, AtWRKY45, AtWRKY48, and AtWRKY72) that have not been previously reported. The Catharanthus WRKY TF family is comprised of at least 48 members. Phylogenetic clustering reveals 11 group I, 32 group II, and 5 group III WRKY TFs. Furthermore, we found that at least 25% (12 of 48) were jasmonate responsive, and 75% (9 of 12) of the jasmonate responsive CrWRKYs are orthologs of AtWRKYs known to be regulated by jasmonate. CONCLUSION Overall, the CrWRKY family, ascertained from transcriptome sequences, contains approximately 75% of the number of WRKYs found in other sequenced asterid species (pepper, tomato, potato, and bladderwort). Microarray and transcriptomic data indicate that expression of WRKY TFs in Arabidopsis and Catharanthus are under tight spatio-temporal and developmental control, and potentially have a significant role in jasmonate signaling. Profiling of CrWRKY expression in response to jasmonate treatment revealed potential associations with secondary metabolism. This study provides a foundation for further characterization of WRKY TFs in jasmonate responses and regulation of natural product biosynthesis.
Collapse
Affiliation(s)
- Craig Schluttenhofer
- />Department of Plant and Soil Science, University of Kentucky, Lexington, KY 40546 USA
| | - Sitakanta Pattanaik
- />Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546 USA
| | - Barunava Patra
- />Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546 USA
| | - Ling Yuan
- />Department of Plant and Soil Science, University of Kentucky, Lexington, KY 40546 USA
- />Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546 USA
| |
Collapse
|
541
|
Le Roux C, Del Prete S, Boutet-Mercey S, Perreau F, Balagué C, Roby D, Fagard M, Gaudin V. The hnRNP-Q protein LIF2 participates in the plant immune response. PLoS One 2014; 9:e99343. [PMID: 24914891 DOI: 10.1371/journal.pone.0099343.s007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/02/2014] [Indexed: 05/25/2023] Open
Abstract
Eukaryotes have evolved complex defense pathways to combat invading pathogens. Here, we investigated the role of the Arabidopsis thaliana heterogeneous nuclear ribonucleoprotein (hnRNP-Q) LIF2 in the plant innate immune response. We show that LIF2 loss-of-function in A. thaliana leads to changes in the basal expression of the salicylic acid (SA)- and jasmonic acid (JA)- dependent defense marker genes PR1 and PDF1.2, respectively. Whereas the expression of genes involved in SA and JA biosynthesis and signaling was also affected in the lif2-1 mutant, no change in SA and JA hormonal contents was detected. In addition, the composition of glucosinolates, a class of defense-related secondary metabolites, was altered in the lif2-1 mutant in the absence of pathogen challenge. The lif2-1 mutant exhibited reduced susceptibility to the hemi-biotrophic pathogen Pseudomonas syringae and the necrotrophic ascomycete Botrytis cinerea. Furthermore, the lif2-1 sid2-2 double mutant was less susceptible than the wild type to P. syringae infection, suggesting that the lif2 response to pathogens was independent of SA accumulation. Together, our data suggest that lif2-1 exhibits a basal primed defense state, resulting from complex deregulation of gene expression, which leads to increased resistance to pathogens with various infection strategies. Therefore, LIF2 may function as a suppressor of cell-autonomous immunity. Similar to its human homolog, NSAP1/SYNCRIP, a trans-acting factor involved in both cellular processes and the viral life cycle, LIF2 may regulate the conflicting aspects of development and defense programs, suggesting that a conserved evolutionary trade-off between growth and defense pathways exists in eukaryotes.
Collapse
Affiliation(s)
- Clémentine Le Roux
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
| | - Stefania Del Prete
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
| | - Stéphanie Boutet-Mercey
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
| | - François Perreau
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
| | - Claudine Balagué
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Dominique Roby
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Mathilde Fagard
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
| | - Valérie Gaudin
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
| |
Collapse
|
542
|
Le Roux C, Del Prete S, Boutet-Mercey S, Perreau F, Balagué C, Roby D, Fagard M, Gaudin V. The hnRNP-Q protein LIF2 participates in the plant immune response. PLoS One 2014; 9:e99343. [PMID: 24914891 PMCID: PMC4051675 DOI: 10.1371/journal.pone.0099343] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/02/2014] [Indexed: 12/21/2022] Open
Abstract
Eukaryotes have evolved complex defense pathways to combat invading pathogens. Here, we investigated the role of the Arabidopsis thaliana heterogeneous nuclear ribonucleoprotein (hnRNP-Q) LIF2 in the plant innate immune response. We show that LIF2 loss-of-function in A. thaliana leads to changes in the basal expression of the salicylic acid (SA)- and jasmonic acid (JA)- dependent defense marker genes PR1 and PDF1.2, respectively. Whereas the expression of genes involved in SA and JA biosynthesis and signaling was also affected in the lif2-1 mutant, no change in SA and JA hormonal contents was detected. In addition, the composition of glucosinolates, a class of defense-related secondary metabolites, was altered in the lif2-1 mutant in the absence of pathogen challenge. The lif2-1 mutant exhibited reduced susceptibility to the hemi-biotrophic pathogen Pseudomonas syringae and the necrotrophic ascomycete Botrytis cinerea. Furthermore, the lif2-1 sid2-2 double mutant was less susceptible than the wild type to P. syringae infection, suggesting that the lif2 response to pathogens was independent of SA accumulation. Together, our data suggest that lif2-1 exhibits a basal primed defense state, resulting from complex deregulation of gene expression, which leads to increased resistance to pathogens with various infection strategies. Therefore, LIF2 may function as a suppressor of cell-autonomous immunity. Similar to its human homolog, NSAP1/SYNCRIP, a trans-acting factor involved in both cellular processes and the viral life cycle, LIF2 may regulate the conflicting aspects of development and defense programs, suggesting that a conserved evolutionary trade-off between growth and defense pathways exists in eukaryotes.
Collapse
Affiliation(s)
- Clémentine Le Roux
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
| | - Stefania Del Prete
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
| | - Stéphanie Boutet-Mercey
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
| | - François Perreau
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
| | - Claudine Balagué
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Dominique Roby
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Mathilde Fagard
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
| | - Valérie Gaudin
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
- * E-mail:
| |
Collapse
|
543
|
Xu E, Brosché M. Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling. BMC PLANT BIOLOGY 2014; 14:155. [PMID: 24898702 PMCID: PMC4057906 DOI: 10.1186/1471-2229-14-155] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/29/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND Reactive oxygen species (ROS) are used by plants as signaling molecules during stress and development. Given the amount of possible challenges a plant face from their environment, plants need to activate and prioritize between potentially conflicting defense signaling pathways. Until recently, most studies on signal interactions have focused on phytohormone interaction, such as the antagonistic relationship between salicylic acid (SA)-jasmonic acid and cytokinin-auxin. RESULTS In this study, we report an antagonistic interaction between SA signaling and apoplastic ROS signaling. Treatment with ozone (O3) leads to a ROS burst in the apoplast and induces extensive changes in gene expression and elevation of defense hormones. However, Arabidopsis thaliana dnd1 (defense no death1) exhibited an attenuated response to O3. In addition, the dnd1 mutant displayed constitutive expression of defense genes and spontaneous cell death. To determine the exact process which blocks the apoplastic ROS signaling, double and triple mutants involved in various signaling pathway were generated in dnd1 background. Simultaneous elimination of SA-dependent and SA-independent signaling components from dnd1 restored its responsiveness to O3. Conversely, pre-treatment of plants with SA or using mutants that constitutively activate SA signaling led to an attenuation of changes in gene expression elicited by O3. CONCLUSIONS Based upon these findings, we conclude that plants are able to prioritize the response between ROS and SA via an antagonistic action of SA and SA signaling on apoplastic ROS signaling.
Collapse
Affiliation(s)
- Enjun Xu
- Division of Plant Biology, Department of Biosciences, University of Helsinki, P.O. Box 65 (Viikinkaari 1), FI-00014 Helsinki, Finland
| | - Mikael Brosché
- Division of Plant Biology, Department of Biosciences, University of Helsinki, P.O. Box 65 (Viikinkaari 1), FI-00014 Helsinki, Finland
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| |
Collapse
|
544
|
Ruduś I, Terai H, Shimizu T, Kojima H, Hattori K, Nishimori Y, Tsukagoshi H, Kamiya Y, Seo M, Nakamura K, Kępczyński J, Ishiguro S. Wound-induced expression of DEFECTIVE IN ANTHER DEHISCENCE1 and DAD1-like lipase genes is mediated by both CORONATINE INSENSITIVE1-dependent and independent pathways in Arabidopsis thaliana. PLANT CELL REPORTS 2014; 33:849-860. [PMID: 24430866 DOI: 10.1007/s00299-013-1561-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/23/2013] [Accepted: 12/29/2013] [Indexed: 06/03/2023]
Abstract
Endogenous JA production is not necessary for wound-induced expression of JA-biosynthetic lipase genes such as DAD1 in Arabidopsis. However, the JA-Ile receptor COI1 is often required for their JA-independent induction. Wounding is a serious event in plants that may result from insect feeding and increase the risk of pathogen infection. Wounded plants produce high amounts of jasmonic acid (JA), which triggers the expression of insect and pathogen resistance genes. We focused on the transcriptional regulation of DEFECTIVE IN ANTHER DEHISCENCE1 and six of its homologs including DONGLE (DGL) in Arabidopsis, which encode lipases involved in JA biosynthesis. Plants constitutively expressing DAD1 accumulated a higher amount of JA than control plants after wounding, indicating that the expression of these lipase genes contributes to determining JA levels. We found that the expression of DAD1, DGL, and other DAD1-LIKE LIPASE (DALL) genes is induced upon wounding. Some DALLs were also expressed in unwounded leaves. Further experiments using JA-biosynthetic and JA-response mutants revealed that the wound induction of these genes is regulated by several distinct pathways. DAD1 and most of its homologs other than DALL4 were fully induced without relying on endogenous JA-Ile production and were only partly affected by JA deficiency, indicating that positive feedback by JA is not necessary for induction of these genes. However, DAD1 and DGL required CORONATINE INSENSITIVE1 (COI1) for their expression, suggesting that a molecule other than JA might act as a regulator of COI1. Wound induction of DALL1, DALL2, and DALL3 did not require COI1. This differential regulation of DAD1 and its homologs might explain their functions at different time points after wounding.
Collapse
Affiliation(s)
- Izabela Ruduś
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
545
|
Singh P, Yekondi S, Chen PW, Tsai CH, Yu CW, Wu K, Zimmerli L. Environmental History Modulates Arabidopsis Pattern-Triggered Immunity in a HISTONE ACETYLTRANSFERASE1-Dependent Manner. THE PLANT CELL 2014; 26:2676-2688. [PMID: 24963055 PMCID: PMC4114959 DOI: 10.1105/tpc.114.123356] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/13/2014] [Accepted: 06/02/2014] [Indexed: 05/17/2023]
Abstract
In nature, plants are exposed to a fluctuating environment, and individuals exposed to contrasting environmental factors develop different environmental histories. Whether different environmental histories alter plant responses to a current stress remains elusive. Here, we show that environmental history modulates the plant response to microbial pathogens. Arabidopsis thaliana plants exposed to repetitive heat, cold, or salt stress were more resistant to virulent bacteria than Arabidopsis grown in a more stable environment. By contrast, long-term exposure to heat, cold, or exposure to high concentrations of NaCl did not provide enhanced protection against bacteria. Enhanced resistance occurred with priming of Arabidopsis pattern-triggered immunity (PTI)-responsive genes and the potentiation of PTI-mediated callose deposition. In repetitively stress-challenged Arabidopsis, PTI-responsive genes showed enrichment for epigenetic marks associated with transcriptional activation. Upon bacterial infection, enrichment of RNA polymerase II at primed PTI marker genes was observed in environmentally challenged Arabidopsis. Finally, repetitively stress-challenged histone acetyltransferase1-1 (hac1-1) mutants failed to demonstrate enhanced resistance to bacteria, priming of PTI, and increased open chromatin states. These findings reveal that environmental history shapes the plant response to bacteria through the development of a HAC1-dependent epigenetic mark characteristic of a primed PTI response, demonstrating a mechanistic link between the primed state in plants and epigenetics.
Collapse
Affiliation(s)
- Prashant Singh
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Shweta Yekondi
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Po-Wen Chen
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Chia-Hong Tsai
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Chun-Wei Yu
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Keqiang Wu
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Laurent Zimmerli
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
546
|
Spyropoulou EA, Haring MA, Schuurink RC. RNA sequencing on Solanum lycopersicum trichomes identifies transcription factors that activate terpene synthase promoters. BMC Genomics 2014; 15:402. [PMID: 24884371 PMCID: PMC4041997 DOI: 10.1186/1471-2164-15-402] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/09/2014] [Indexed: 12/02/2022] Open
Abstract
Background Glandular trichomes are production and storage organs of specialized metabolites such as terpenes, which play a role in the plant’s defense system. The present study aimed to shed light on the regulation of terpene biosynthesis in Solanum lycopersicum trichomes by identification of transcription factors (TFs) that control the expression of terpene synthases. Results A trichome transcriptome database was created with a total of 27,195 contigs that contained 743 annotated TFs. Furthermore a quantitative expression database was obtained of jasmonic acid-treated trichomes. Sixteen candidate TFs were selected for further analysis. One TF of the MYC bHLH class and one of the WRKY class were able to transiently transactivate S. lycopersicum terpene synthase promoters in Nicotiana benthamiana leaves. Strikingly, SlMYC1 was shown to act synergistically with a previously identified zinc finger-like TF, Expression of Terpenoids 1 (SlEOT1) in transactivating the SlTPS5 promoter. Conclusions High-throughput sequencing of tomato stem trichomes led to the discovery of two transcription factors that activated several terpene synthase promoters. Our results identified new elements of the transcriptional regulation of tomato terpene biosynthesis in trichomes, a largely unexplored field. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-402) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands.
| |
Collapse
|
547
|
Smith JE, Mengesha B, Tang H, Mengiste T, Bluhm BH. Resistance to Botrytis cinerea in Solanum lycopersicoides involves widespread transcriptional reprogramming. BMC Genomics 2014; 15:334. [PMID: 24885798 PMCID: PMC4035065 DOI: 10.1186/1471-2164-15-334] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 04/25/2014] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Tomato (Solanum lycopersicum), one of the world's most important vegetable crops, is highly susceptible to necrotrophic fungal pathogens such as Botrytis cinerea and Alternaria solani. Improving resistance through conventional breeding has been hampered by a shortage of resistant germplasm and difficulties in introgressing resistance into elite germplasm without linkage drag. The goal of this study was to explore natural variation among wild Solanum species to identify new sources of resistance to necrotrophic fungi and dissect mechanisms underlying resistance against B. cinerea. RESULTS Among eight wild species evaluated for resistance against B. cinerea and A. solani, S. lycopersicoides expressed the highest levels of resistance against both pathogens. Resistance against B. cinerea manifested as containment of pathogen growth. Through next-generation RNA sequencing and de novo assembly of the S. lycopersicoides transcriptome, changes in gene expression were analyzed during pathogen infection. In response to B. cinerea, differentially expressed transcripts grouped into four categories: genes whose expression rapidly increased then rapidly decreased, genes whose expression rapidly increased and plateaued, genes whose expression continually increased, and genes with decreased expression. Homology-based searches also identified a limited number of highly expressed B. cinerea genes. Almost immediately after infection by B. cinerea, S. lycopersicoides suppressed photosynthesis and metabolic processes involved in growth, energy generation, and response to stimuli, and simultaneously induced various defense-related genes, including pathogenesis-related protein 1 (PR1), a beta-1,3-glucanase (glucanase), and a subtilisin-like protease, indicating a shift in priority towards defense. Moreover, cluster analysis revealed novel, uncharacterized genes that may play roles in defense against necrotrophic fungal pathogens in S. lycopersicoides. The expression of orthologous defense-related genes in S. lycopersicum after infection with B. cinerea revealed differences in the onset and intensity of induction, thus illuminating a potential mechanism explaining the increased susceptibility. Additionally, metabolic pathway analyses identified putative defense-related categories of secondary metabolites. CONCLUSIONS In sum, this study provided insight into resistance against necrotrophic fungal pathogens in the Solanaceae, as well as novel sequence resources for S. lycopersicoides.
Collapse
Affiliation(s)
- Jonathon E Smith
- />Department of Plant Pathology, University of Arkansas Division of Agriculture, 217 Plant Sciences, Fayetteville, AR 72701 USA
| | - Bemnet Mengesha
- />Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN USA
| | - Hua Tang
- />Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN USA
| | - Tesfaye Mengiste
- />Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN USA
| | - Burton H Bluhm
- />Department of Plant Pathology, University of Arkansas Division of Agriculture, 217 Plant Sciences, Fayetteville, AR 72701 USA
| |
Collapse
|
548
|
Chico JM, Fernández-Barbero G, Chini A, Fernández-Calvo P, Díez-Díaz M, Solano R. Repression of Jasmonate-Dependent Defenses by Shade Involves Differential Regulation of Protein Stability of MYC Transcription Factors and Their JAZ Repressors in Arabidopsis. THE PLANT CELL 2014; 26:1967-1980. [PMID: 24824488 PMCID: PMC4079362 DOI: 10.1105/tpc.114.125047] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Reduction of the red/far-red (R/FR) light ratio that occurs in dense canopies promotes plant growth to outcompete neighbors but has a repressive effect on jasmonate (JA)-dependent defenses. The molecular mechanism underlying this trade-off is not well understood. We found that the JA-related transcription factors MYC2, MYC3, and MYC4 are short-lived proteins degraded by the proteasome, and stabilized by JA and light, in Arabidopsis thaliana. Dark and CONSTITUTIVE PHOTOMORPHOGENIC1 destabilize MYC2, MYC3, and MYC4, whereas R and blue (B) lights stabilize them through the activation of the corresponding photoreceptors. Consistently, phytochrome B inactivation by monochromatic FR light or shade (FR-enriched light) destabilizes these three proteins and reduces their stabilization by JA. In contrast to MYCs, simulated shade conditions stabilize seven of their 10 JAZ repressors tested and reduce their degradation by JA. MYC2, MYC3, and MYC4 are required for JA-mediated defenses against the necrotrophic pathogen Botrytis cinerea and for the shade-triggered increased susceptibility, indicating that this negative effect of shade on defense is likely mediated by shade-triggered inactivation of MYC2, MYC3, and MYC4. The opposite regulation of protein stability of MYCs and JAZs by FR-enriched light help explain (on the molecular level) the long-standing observation that canopy shade represses JA-mediated defenses, facilitating reallocation of resources from defense to growth.
Collapse
Affiliation(s)
- José-Manuel Chico
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Gemma Fernández-Barbero
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Andrea Chini
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Patricia Fernández-Calvo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Mónica Díez-Díaz
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Roberto Solano
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| |
Collapse
|
549
|
Choi D, Choi J, Kang B, Lee S, Cho YH, Hwang I, Hwang D. iNID: an analytical framework for identifying network models for interplays among developmental signaling in Arabidopsis. MOLECULAR PLANT 2014; 7:792-813. [PMID: 24380880 DOI: 10.1093/mp/sst173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Integration of internal and external cues into developmental programs is indispensable for growth and development of plants, which involve complex interplays among signaling pathways activated by the internal and external factors (IEFs). However, decoding these complex interplays is still challenging. Here, we present a web-based platform that identifies key regulators and Network models delineating Interplays among Developmental signaling (iNID) in Arabidopsis. iNID provides a comprehensive resource of (1) transcriptomes previously collected under the conditions treated with a broad spectrum of IEFs and (2) protein and genetic interactome data in Arabidopsis. In addition, iNID provides an array of tools for identifying key regulators and network models related to interplays among IEFs using transcriptome and interactome data. To demonstrate the utility of iNID, we investigated the interplays of (1) phytohormones and light and (2) phytohormones and biotic stresses. The results revealed 34 potential regulators of the interplays, some of which have not been reported in association with the interplays, and also network models that delineate the involvement of the 34 regulators in the interplays, providing novel insights into the interplays collectively defined by phytohormones, light, and biotic stresses. We then experimentally verified that BME3 and TEM1, among the selected regulators, are involved in the auxin-brassinosteroid (BR)-blue light interplay. Therefore, iNID serves as a useful tool to provide a basis for understanding interplays among IEFs.
Collapse
Affiliation(s)
- Daeseok Choi
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, 790-784, Pohang, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
550
|
Wasternack C. Perception, signaling and cross-talk of jasmonates and the seminal contributions of the Daoxin Xie's lab and the Chuanyou Li's lab. PLANT CELL REPORTS 2014; 33:707-718. [PMID: 24691578 DOI: 10.1007/s00299-014-1608-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 03/22/2014] [Indexed: 06/03/2023]
Abstract
Jasmonates (JAs) are lipid-derived signals in plant responses to biotic and abiotic stresses and in development. The most active JA compound is (+)-7-iso-JA-Ile, a JA conjugate with isoleucine. Biosynthesis, metabolism and key components of perception and signal transduction have been identified and numerous JA-induced gene expression data collected. For JA-Ile perception, the SCF(COI1)-JAZ co-receptor complex has been identified and crystalized. Activators such as MYC2 and repressors such as JAZs including their targets were found. Involvement of JA-Ile in response to herbivores and pathogens and in root growth inhibition is among the most studied aspects of JA-Ile signaling. There are an increasing number of examples, where JA-Ile shows cross-talk with other plant hormones. Seminal contributions in JA/JA-Ile research were given by Daoxin Xie's lab and Chuanyou Li's lab, both in Beijing. Here, characterization was done regarding components of the JA-Ile receptor, such as COI1 (JAI1) and SCF, regarding activators (MYCs, MYBs) and repressors (JAV1, bHLH IIId's) of JA-regulated gene expression, as well as regarding components of auxin biosynthesis and action, such as the transcription factor PLETHORA active in the root stem cell niche. This overview reflects the work of both labs in the light of our present knowledge on biosynthesis, perception and signal transduction of JA/JA-Ile and its cross-talk to other hormones.
Collapse
Affiliation(s)
- Claus Wasternack
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany,
| |
Collapse
|