501
|
Hearps A, Jans D. HIV-1 integrase is capable of targeting DNA to the nucleus via an importin alpha/beta-dependent mechanism. Biochem J 2006; 398:475-84. [PMID: 16716146 PMCID: PMC1559465 DOI: 10.1042/bj20060466] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In addition to its well-documented role in integration of the viral genome, the HIV-1 enzyme IN (integrase) is thought to be involved in the preceding step of importing the viral cDNA into the nucleus. The ability of HIV to transport its cDNA through an intact nuclear envelope allows HIV-1 to infect non-dividing cells, which is thought to be crucial for the persistent nature of HIV/AIDS. Despite this, the mechanism utilized by HIV-1 to import its cDNA into the nucleus, and the viral proteins involved, remains ill-defined. In the present study we utilize in vitro techniques to assess the nuclear import properties of the IN protein, and show that IN interacts with members of the Imp (Importin) family of nuclear transport proteins with high affinity and exhibits rapid nuclear accumulation within an in vitro assay, indicating that IN possesses potent nucleophilic potential. IN nuclear import appears to be dependent on the Imp alpha/beta heterodimer and Ran GTP (Ran in its GTP-bound state), but does not require ATP. Importantly, we show that IN is capable of binding DNA and facilitating its import into the nucleus of semi-intact cells via a process that involves basic residues within amino acids 186-188 of IN. These results confirm IN as an efficient mediator of DNA nuclear import in vitro and imply the potential for IN to fulfil such a role in vivo. These results may not only aid in highlighting potential therapeutic targets for impeding the progression of HIV/AIDS, but may also be relevant for non-viral gene delivery.
Collapse
Affiliation(s)
- Anna C. Hearps
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - David A. Jans
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- To whom correspondence should be addressed (email )
| |
Collapse
|
502
|
Singhal PK, Rajendra Kumar P, Subba Rao MRK, Mahalingam S. Nuclear export of simian immunodeficiency virus Vpx protein. J Virol 2006; 80:12271-82. [PMID: 16987982 PMCID: PMC1676268 DOI: 10.1128/jvi.00563-06] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Lentiviruses, human immunodeficiency viruses (HIVs), and simian immunodeficiency viruses (SIVs) are distinguished from oncoretroviruses by their ability to infect nondividing cells such as macrophages. Retroviruses must gain access to the host cell nucleus for replication and propagation. HIV and SIV preintegration complexes (PIC) enter nuclei after traversing the central aqueous channel of the limiting nuclear pore complex without membrane breakdown. Among the nucleophilic proteins, namely, matrix, integrase, Vpx, and Vpr, present in HIV type 2/SIV PIC, Vpx is implicated in nuclear targeting and is also available for incorporation into budding virions at the plasma membrane. The mechanisms of these two opposite functions are not known. We demonstrate that Vpx is a nucleocytoplasmic shuttling protein and contains two novel noncanonical nuclear import signals and a leptomycin B-sensitive nuclear export signal. In addition, Vpx interacts with the cellular tyrosine kinase Fyn through its C-terminal proline-rich motif. Furthermore, our data indicate that Fyn kinase phosphorylates Vpx and regulates its export from nucleus. Replacement of conserved tryptophan residues within domain 41 to 63 and tyrosine residues at positions 66, 69, and 71 in Vpx impairs its nuclear export, virion incorporation, and SIV replication in macrophages. Nuclear export is essential to ensure the availability of Vpx in the cytoplasm for incorporation into virions, leading to efficient viral replication within nondividing cells.
Collapse
Affiliation(s)
- Prabhat K Singhal
- Laboratory of Molecular Virology, Centre for DNA Fingerprinting and Diagnostics (CDFD), ECIL Road, Nacharam, Hyderabad 500 076, India
| | | | | | | |
Collapse
|
503
|
Hallhuber M, Burkard N, Wu R, Buch MH, Engelhardt S, Hein L, Neyses L, Schuh K, Ritter O. Inhibition of nuclear import of calcineurin prevents myocardial hypertrophy. Circ Res 2006; 99:626-635. [PMID: 16931796 DOI: 10.1161/01.res.0000243208.59795.d8] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The time that transcription factors remain nuclear is a major determinant for transcriptional activity. It has recently been demonstrated that the phosphatase calcineurin is translocated to the nucleus with the transcription factor nuclear factor of activated T cells (NF-AT). This study identifies a nuclear localization sequence (NLS) and a nuclear export signal (NES) in the sequence of calcineurin. Furthermore we identified the nuclear cargo protein importinbeta(1) to be responsible for nuclear translocation of calcineurin. Inhibition of the calcineurin/importin interaction by a competitive peptide (KQECKIKYSERV), which mimicked the calcineurin NLS, prevented nuclear entry of calcineurin. A noninhibitory control peptide did not interfere with the calcineurin/importin binding. Using this approach, we were able to prevent the development of myocardial hypertrophy. In angiotensin II-stimulated cardiomyocytes, [(3)H]-leucine incorporation (159%+/-9 versus 111%+/-11; P<0.01) and cell size were suppressed significantly by the NLS peptide compared with a control peptide. The NLS peptide inhibited calcineurin/NF-AT transcriptional activity (227%+/-11 versus 133%+/-8; P<0.01), whereas calcineurin phosphatase activity was unaffected (298%+/-9 versus 270%+/-11; P=NS). We conclude that calcineurin is not only capable of dephosphorylating NF-AT, thus enabling its nuclear import, but the presence of calcineurin in the nucleus is also important for full NF-AT transcriptional activity.
Collapse
Affiliation(s)
- Matthias Hallhuber
- Department of Medicine I, DFG-Research Center for Experimental Biomedicine, University of Wuerzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
504
|
Davis JR, Kakar M, Lim CS. Controlling protein compartmentalization to overcome disease. Pharm Res 2006; 24:17-27. [PMID: 16969692 DOI: 10.1007/s11095-006-9133-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 07/20/2006] [Indexed: 01/08/2023]
Abstract
Over the past decade, considerable progress has been made to improve our understanding of the intracellular transport of proteins. Mechanisms of nuclear import and export involving classical receptors have been studied. Signal sequences required for directing a protein molecule to a specific cellular compartment have been defined. Knowledge of subcellular trafficking of proteins has also increased our understanding of diseases caused due to mislocalization of proteins. A specific protein on deviating from its native cellular compartment may result in disease due to loss of its normal functioning and aberrant activity in the "wrong" compartment. Mislocalization of proteins results in diseases that range from metabolic disorders to cancer. In this review we discuss some of the diseases caused due to mislocalization. We further focus on application of nucleocytoplasmic transport to drug delivery. Various rationales to treat diseases by exploiting intracellular transport machinery have been proposed. Although the pathways for intracellular movement of proteins have been defined, these have not been adequately utilized for management of diseases involving mislocalized proteins. This review stresses the need for designing drug delivery systems utilizing these mechanisms as this area is least exploited but offers great potential.
Collapse
Affiliation(s)
- James R Davis
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84108, USA
| | | | | |
Collapse
|
505
|
Abstract
Serum amyloid A (SAA) is a family of proteins encoded by four related genes. Of the four, isoforms 1.1 and 2.1 are acute phase proteins synthesized by the liver. They become major components of the HDL plasma fraction during acute tissue injury and the HDL/SAA complex is readily taken up by macrophages. Herein we investigated the path SAA follows when presented to macrophages as HDL/SAA or in liposomes. Using antibodies specific to SAA and confocal microscopy, or EM autoradiography where only SAA is radio-labeled, we show that HDL/SAA is taken up rapidly by macrophages and within 30 min SAA, or fragments thereof, proceeds through the cytoplasm to the peri-nuclear region and then the nucleus. Within 45-60 min SAA, or fragments thereof, is found back in the cytoplasm and at the plasma membrane where it is subsequently extruded. The observation that SAA, or fragments thereof, traverse the nucleus is a novel finding and may implicate SAA in macrophage gene regulation. It also raises questions by what mechanism SAA enters and leaves the nucleus. We further investigated if both SAA isoforms traffic through the macrophage in a similar manner. Isoform differences were observed. Both isoforms bind well to the plasma membrane of macrophages at 4 degrees C, but at 37 degrees C only SAA2.1 is taken up by the cell in significant quantity, and is observed in the nucleus, suggesting that the two isoforms are handled differently and that they may have discrete physiological roles.
Collapse
Affiliation(s)
- Sarah M Kinkley
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
506
|
Zhou Y, Niu H, Brandizzi F, Fowke LC, Wang H. Molecular control of nuclear and subnuclear targeting of the plant CDK inhibitor ICK1 and ICK1-mediated nuclear transport of CDKA. PLANT MOLECULAR BIOLOGY 2006; 62:261-78. [PMID: 16845478 DOI: 10.1007/s11103-006-9019-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Accepted: 05/14/2006] [Indexed: 05/10/2023]
Abstract
ICK1 is the first member of a family of plant cyclin-dependent kinase (CDK) inhibitors. It has been shown that ICK1 is localized in the nuclei of transgenic Arabidopsis plants. Since cellular localization is important for the functions of cell cycle regulators, a comprehensive analysis was undertaken to identify specific sequences regulating the cellular localization of ICK1. Deletion and site-specific mutants fused to the green fluorescent protein (GFP) were used in transgenic Arabidopsis plants and transfected tobacco cells. Surprisingly, three separate sequences in the N-terminal, central and C-terminal regions of ICK1 could independently confer nuclear localization of the GFP fusion proteins. The central nuclear localization signal NLS(ICK1) could transport the much larger GUS (beta-glucuronidase)-GFP fusion protein into nuclei, while the other two sequences were unable to. These results suggest that NLS(ICK1) is a strong NLS that actively transports the fusion protein into nuclei, while the other two sequences are either a weaker NLS or confer the nuclear localization of GFP indirectly. It was further observed that the N-terminal sequence specifies a punctate pattern of subnuclear localization, while the C-terminal sequence suppresses it. Furthermore, co-expression of ICK1 and Arabidopsis CDKA, tagged with different GFP variants, showed that ICK1 could mediate the transport of CDKA into nuclei while a mutant ICK1(1-162) that does not interact with CDKA lost this ability. These results illustrate how the nuclear localization of ICK1 is regulated and also suggest a possible role of ICK1 in regulating the cellular distribution of CDKA.
Collapse
Affiliation(s)
- Yongming Zhou
- Department of Biology, University of Saskatchewan, Saskatoon, Canada S7N 5E2
| | | | | | | | | |
Collapse
|
507
|
Zhong H, Shio H, Yaseen NR. Ultrastructural nuclear import assay. Methods 2006; 39:309-15. [PMID: 16935003 DOI: 10.1016/j.ymeth.2006.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2006] [Indexed: 11/16/2022] Open
Abstract
Electron microscopy (EM) has been used for several decades to study the mechanisms of nuclear transport. In early studies of nuclear import, gold-conjugated nuclear proteins were microinjected into cells and followed by EM. As the components of the nuclear pore complex (NPC) and soluble mediators of nuclear import were cloned and characterized, gold-conjugated antibodies were utilized to sublocalize the components of the nuclear transport machinery by immuno-EM. Further, gold-conjugated recombinant proteins were used to probe permeabilized cells or isolated nuclear envelopes and characterize binding sites for these proteins at the NPC. More recently, recombinant gold-conjugated nuclear proteins were used in in vitro nuclear import assays to help dissect the mechanisms of nuclear import. We have used this ultrastructural nuclear import assay to study the nuclear import of the transcription factor PU.1. The results showed that this import requires energy but is carrier-independent. In the presence of energy, gold-conjugated PU.1 shifted to the nuclear side of the NPC and the inside of the nucleus. In conjunction with biochemical assays, these results indicated that this shift involved Ran-dependent binding of PU.1 to NUP153, a nucleoporin situated at the nuclear side of the NPC. Here we describe in detail the methods used in the ultrastructural nuclear import assay including preparation of recombinant protein, gold conjugation, in vitro nuclear import assay, electron microscopy, and data analysis.
Collapse
Affiliation(s)
- Hualin Zhong
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10021, USA
| | | | | |
Collapse
|
508
|
Gwóźdź T, Dutko-Gwóźdź J, Nieva C, Betańska K, Orłowski M, Kowalska A, Dobrucki J, Spindler-Barth M, Spindler KD, Ozyhar A. EcR and Usp, components of the ecdysteroid nuclear receptor complex, exhibit differential distribution of molecular determinants directing subcellular trafficking. Cell Signal 2006; 19:490-503. [PMID: 17011166 DOI: 10.1016/j.cellsig.2006.07.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 07/24/2006] [Accepted: 07/24/2006] [Indexed: 11/20/2022]
Abstract
Ecdysteroids coordinate development, reproduction and other essential biological processes in insects and other arthropods through the receptor which is a heterodimer of two members of the nuclear receptors superfamily, the ecdysteroid receptor (EcR) and the Ultraspiracle (Usp). Although the transcriptionally active EcR/Usp heterocomplex is believed to be the only functional form of the receptor, there are data indicating that EcR may be involved in the mediation of the non-genomic effects outside of the nucleus. Since the nucleocytoplasmic shuttling could be a key element determining participation of the single nuclear receptor molecule both in the genomic and non-genomic functions we have analyzed nuclear import and export properties of the EcR and Usp from Drosophila melanogaster. We show for the first time that both receptors exhibit differential distribution of the nuclear localization and nuclear export signals (NLSs and NESs). In particular, the Usp which exhibits exclusively nuclear localization in all cell types analyzed, contains apparently only NLS activity within the DNA-binding domain. In contrast, the three known EcR isoforms (A, B1 and B2) are mosaics of elements which can potentially mediate their nucleocytoplasmic shuttling. We have found two active NESs in ligand binding domain and NLS activity within the DNA-binding domain of all isoforms. Simultaneously we demonstrate that B1 and A isoforms possess an additional NLS activity localized in AB regions. We speculate that this characteristic, along with the previously reported structural pliability of the EcR molecule, allows the single receptor to evoke many different genomic as well as non-genomic ecdysteroid-dependent responses.
Collapse
Affiliation(s)
- Tomasz Gwóźdź
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeze Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
509
|
Sato H, Masuda M, Miura R, Yoneda M, Kai C. Morbillivirus nucleoprotein possesses a novel nuclear localization signal and a CRM1-independent nuclear export signal. Virology 2006; 352:121-30. [PMID: 16716375 DOI: 10.1016/j.virol.2006.04.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Revised: 01/23/2006] [Accepted: 04/03/2006] [Indexed: 11/17/2022]
Abstract
Morbilliviruses, which belong to the Mononegavirales, replicate its RNA genome in the cytoplasm of the host cell. However, they also form characteristic intranuclear inclusion bodies, consisting of nucleoprotein (N), in infected cells. To analyze the mechanisms of nucleocytoplasmic transport of N protein, we characterized the nuclear localization (NLS) and nuclear export (NES) signals of canine distemper virus (CDV) N protein by deletion mutation and alanine substitution of the protein. The NLS has a novel leucine/isoleucine-rich motif (TGILISIL) at positions 70-77, whereas the NES is composed of a leucine-rich motif (LLRSLTLF) at positions 4-11. The NLS and NES of the N proteins of other morbilliviruses, that is, measles virus (MV) and rinderpest virus (RPV), were also analyzed. The NLS of CDV-N protein is conserved at the same position in MV-N protein, whereas the NES of MV-N protein is located in the C-terminal region. The NES of RPV-N protein is also located at the same position as CDV-N protein, whereas the NLS motif is present not only at the same locus as CDV-N protein but also at other sites. Interestingly, the nuclear export of all these N proteins appears to proceed via a CRM1-independent pathway.
Collapse
Affiliation(s)
- Hiroki Sato
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
510
|
Paulillo SM, Powers MA, Ullman KS, Fahrenkrog B. Changes in nucleoporin domain topology in response to chemical effectors. J Mol Biol 2006; 363:39-50. [PMID: 16962132 DOI: 10.1016/j.jmb.2006.08.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 08/02/2006] [Accepted: 08/04/2006] [Indexed: 12/31/2022]
Abstract
Nucleoporins represent the molecular building blocks of nuclear pore complexes (NPCs), which mediate facilitated macromolecular trafficking between the cytoplasm and nucleus of eukaryotic cells. Phenylalanine-glycine (FG) repeat motifs are found in about one-third of the nucleoporins, and they provide major binding or docking sites for soluble transport receptors. We have shown recently that localization of the FG-repeat domains of vertebrate nucleoporins Nup153 and Nup214 within the NPC is influenced by its transport state. To test whether chemical effectors, such as calcium and ATP, influence the localization of the FG-repeat domains of Nup153 and Nup214 within the NPC, we performed immuno-electron microscopy of Xenopus oocyte nuclei using domain-specific antibodies against Nup153 and Nup214, respectively. Ca2+ and ATP are known to induce conformational changes in the NPC architecture, especially at the cytoplasmic face, but also at the nuclear basket of the NPC. We have found concentrations of calcium in the micromolar range or 1 mM ATP in the surrounding buffer leaves the spatial distribution of the FG-repeat of Nup153 and Nup214 largely unchanged. In contrast, ATP depletion, calcium store depletion by EGTA or thapsigargin, and high concentrations of divalent cation (i.e. 2 mM Ca2+ and 2 mM Mg2+) constrain the distribution of the FG-repeats of Nup153 and Nup214. Our data suggest that the location of the FG-repeat domains of Nup153 and Nup214 is sensitive to chemical changes within the near-field environment of the NPC.
Collapse
Affiliation(s)
- Sara M Paulillo
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | | | | |
Collapse
|
511
|
Abstract
The exchange of molecules between the nucleus and cytoplasm is mediated through nuclear pore complexes (NPCs) embedded in the nuclear envelope. Altering the interactions between transport receptors and their cargo has been shown to be a major regulatory mechanism to control traffic through NPCs. New evidence now suggests that NPC proteins play active roles in translocation, and that transport is also controlled by dynamic changes in NPC composition and architecture. This view of ever-changing NPCs necessitates the re-evaluation of current models of nuclear transport and how this process is regulated.
Collapse
Affiliation(s)
- Elizabeth J Tran
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, U-3209 MRBIII, 465 21st Avenue South, Nashville, TN 37232 USA
| | | |
Collapse
|
512
|
Abstract
Accurate cellular localization is crucial for the effective function of most signalling molecules and nuclear translocation is central to the function of transcription factors. The passage of large molecules between the cytoplasm and nucleus is restricted, and this restriction affords a mechanism to regulate transcription by controlling the access of transcription factors to the nucleus. In this Review, we focus on the signal transducer and activator of transcription (STAT) family of transcription factors. The regulation of the nuclear trafficking of STAT-family members is diverse. Some STAT proteins constitutively shuttle between the nucleus and cytoplasm, whereas others require tyrosine phosphorylation for nuclear localization. In either case, the regulation of nuclear trafficking can provide a target for therapeutic intervention.
Collapse
Affiliation(s)
- Nancy C Reich
- Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11777, USA.
| | | |
Collapse
|
513
|
Jakoby MJ, Weinl C, Pusch S, Kuijt SJH, Merkle T, Dissmeyer N, Schnittger A. Analysis of the subcellular localization, function, and proteolytic control of the Arabidopsis cyclin-dependent kinase inhibitor ICK1/KRP1. PLANT PHYSIOLOGY 2006; 141:1293-305. [PMID: 16766674 PMCID: PMC1533933 DOI: 10.1104/pp.106.081406] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Recent studies have shown that cyclin-dependent kinase (CDK) inhibitors can have a tremendous impact on cell cycle progression in plants. In animals, CDK inhibitors are tightly regulated, especially by posttranslational mechanisms of which control of nuclear access and regulation of protein turnover are particularly important. Here we address the posttranslational regulation of INHIBITOR/INTERACTOR OF CDK 1 (ICK1)/KIP RELATED PROTEIN 1 (KRP1), an Arabidopsis (Arabidopsis thaliana) CDK inhibitor. We show that ICK1/KRP1 exerts its function in the nucleus and its presence in the nucleus is controlled by multiple nuclear localization signals as well as by nuclear export. In addition, we show that ICK1/KRP1 localizes to different subnuclear domains, i.e. in the nucleoplasm and to the chromocenters, hinting at specific actions within the nuclear compartment. Localization to the chromocenters is mediated by an N-terminal domain, in addition we find that this domain may be involved in cyclin binding. Further we demonstrate that ICK1/KRP1 is an unstable protein and degraded by the 26S proteasome in the nucleus. This degradation is mediated by at least two domains indicating the presence of at least two different pathways impinging on ICK1/KRP1 protein stability.
Collapse
Affiliation(s)
- Marc J Jakoby
- University group at the Max-Planck-Institute for Plant Breeding, Max-Delbrück-Laboratorium, Department of Botany III, University of Cologne, 50829 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
514
|
Abstract
Eukaryotic RNA polymerases are multisubunit assemblies, whose enzymatic function in the nucleus is intensively studied. However, little is known about the biogenesis of the three RNA polymerases and coupling to nucleo-cytoplasmic transport. Here, we show that Rpc128, the second largest subunit of RNA polymerase III, was mislocalized to the cytoplasm, when a short sequence in the N-terminal domain was deleted. Importantly, nuclear import of other, but not all, RNA polymerase III subunits was impaired in this RPC128DeltaN mutant. These data suggest that RNA polymerase III subunits are not imported independently into the nucleus but may require preassembly into cytoplasmic subcomplexes for coordinated nuclear uptake. We expect these studies to be a starting point to dissect the complex biogenesis pathway of eukaryotic RNA polymerases.
Collapse
Affiliation(s)
- Ulrike Hardeland
- Biochemie-Zentrum der Universitat Heidelberg, INF328, D-69120 Heidelberg, Germany
| | | |
Collapse
|
515
|
Drenan RM, Doupnik CA, Jayaraman M, Buchwalter AL, Kaltenbronn KM, Huettner JE, Linder ME, Blumer KJ. R7BP augments the function of RGS7*Gbeta5 complexes by a plasma membrane-targeting mechanism. J Biol Chem 2006; 281:28222-31. [PMID: 16867977 DOI: 10.1074/jbc.m604428200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RGS7 (R7) family of G protein regulators, Gbeta5, and R7BP form heterotrimeric complexes that potently regulate the kinetics of G protein-coupled receptor signaling. Reversible palmitoylation of R7BP regulates plasma membrane/nuclear shuttling of R7*Gbeta5*R7BP heterotrimers. Here we have investigated mechanisms whereby R7BP controls the function of the R7 family. We show that unpalmitoylated R7BP undergoes nuclear/cytoplasmic shuttling and that a C-terminal polybasic motif proximal to the palmitoylation acceptor sites of R7BP mediates nuclear localization, palmitoylation, and plasma membrane targeting. These results suggest a novel mechanism whereby palmitoyltransferases and nuclear import receptors both utilize the C-terminal domain of R7BP to determine the trafficking fate of R7*Gbeta5*R7BP heterotrimers. Analogous mechanisms may regulate other signaling proteins whose distribution between the plasma membrane and nucleus is controlled by palmitoylation. Lastly, we show that cytoplasmic RGS7*Gbeta5*R7BP heterotrimers and RGS7*Gbeta5 heterodimers are equivalently inefficient regulators of G protein-coupled receptor signaling relative to plasma membrane-bound heterotrimers bearing palmitoylated R7BP. Therefore, R7BP augments the function of the complex by a palmitoylation-regulated plasma membrane-targeting mechanism.
Collapse
Affiliation(s)
- Ryan M Drenan
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
516
|
Tao T, Lan J, Lukacs GL, Haché RJG, Kaplan F. Importin 13 regulates nuclear import of the glucocorticoid receptor in airway epithelial cells. Am J Respir Cell Mol Biol 2006; 35:668-80. [PMID: 16809634 DOI: 10.1165/rcmb.2006-0073oc] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Antiinflammatory effects of glucocorticoids are critical to treatment of airway inflammation in such common disorders as asthma. There is considerable variation in responsiveness to glucocorticoid, and prolonged exposure can result in glucocorticoid resistance. We cloned LGL2, a glucocorticoid-inducible gene in fetal rat lung. We described the characterization of lgl2 as a nuclear transport protein, classified as importin 13 (IPO13), and demonstrated developmental regulation of IPO13 nucleocytoplasmic shuttling. We now report on the identification of the glucocorticoid receptor (GR) as a cargo substrate for IPO13. Binding of GR and IPO13 was demonstrated by GR-GST pulldown and coimmunoprecipitation. To investigate the role of IPO13 in modulating GR signaling in the lung, we studied IPO13-regulated GR transport in airway epithelial cells. Small interfering RNAs that inhibited IPO13 synthesis prevented nuclear translocation of GR. Silencing of IPO13 also abrogated the ability of cortisol to inhibit synthesis of the inflammatory cytokine IL-8 after stimulation with TNF-alpha. Our findings support a role for IPO13 in promoting nuclear occupancy of GR in a way that strongly potentiates the antiinflammatory effects of glucocorticoids. We speculate that variation in cellular levels of IPO13 and intracellular IPO13 shuttling rates may contribute to glucocorticoid resistance.
Collapse
Affiliation(s)
- Tao Tao
- McGill University-Montreal Children's Hospital Research Institute, Montreal, PQ, Canada
| | | | | | | | | |
Collapse
|
517
|
Alcázar-Román AR, Tran EJ, Guo S, Wente SR. Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export. Nat Cell Biol 2006; 8:711-6. [PMID: 16783363 DOI: 10.1038/ncb1427] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 04/21/2006] [Indexed: 01/08/2023]
Abstract
Regulation of nuclear mRNA export is critical for proper eukaryotic gene expression. A key step in this process is the directional translocation of mRNA-ribonucleoprotein particles (mRNPs) through nuclear pore complexes (NPCs) that are embedded in the nuclear envelope. Our previous studies in Saccharomyces cerevisiae defined an in vivo role for inositol hexakisphosphate (InsP6) and NPC-associated Gle1 in mRNA export. Here, we show that Gle1 and InsP6 act together to stimulate the RNA-dependent ATPase activity of the essential DEAD-box protein Dbp5. Overexpression of DBP5 specifically suppressed mRNA export and growth defects of an ipk1 nup42 mutant defective in InsP6 production and Gle1 localization. In vitro kinetic analysis showed that InsP6 significantly increased Dbp5 ATPase activity in a Gle1-dependent manner and lowered the effective RNA concentration for half-maximal ATPase activity. Gle1 alone had minimal effects. Maximal InsP6 binding required both Dbp5 and Gle1. It has been suggested that Dbp5 requires unidentified cofactors. We now propose that Dbp5 activation at NPCs requires Gle1 and InsP6. This would facilitate spatial control of the remodelling of mRNP protein composition during directional transport and provide energy to power transport cycles.
Collapse
Affiliation(s)
- Abel R Alcázar-Román
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, U-3209 MRBIII, 465 21st Avenue South, Nashville, TN 37232-8240, USA
| | | | | | | |
Collapse
|
518
|
Arnold M, Nath A, Hauber J, Kehlenbach RH. Multiple importins function as nuclear transport receptors for the Rev protein of human immunodeficiency virus type 1. J Biol Chem 2006; 281:20883-20890. [PMID: 16704975 DOI: 10.1074/jbc.m602189200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rev protein of human immunodeficiency virus type 1 is an RNA-binding protein that is required for nuclear export of unspliced and partially spliced viral mRNAs. Nuclear import of human immunodeficiency virus type 1 Rev has been suggested to depend on the classic nuclear transport receptor importin beta, but not on the adapter protein importin alpha. We now show that, similar to importin alpha, Rev is able to dissociate RanGTP from recycling importin beta, a reaction that leads to the formation of a novel import complex. Besides importin beta, the transport receptors transportin, importin 5, and importin 7 specifically interact with Rev and promote its nuclear import in digitonin-permeabilized cells. A single arginine-rich nuclear localization sequence of Rev is required for interaction with all importins tested so far. In contrast to the importin beta-binding domain of importin alpha, Rev interacts with an N-terminal fragment of importin beta. Transportin contains two independent binding sites for Rev. Hence, the mode of interaction of importin beta and transportin with Rev is clearly distinct from that with their classic import cargoes. Taken together, the viral protein takes advantage of multiple cellular transport pathways for its nuclear accumulation.
Collapse
Affiliation(s)
- Marc Arnold
- Universität Heidelberg, Abteilung Virologie, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; Universität Göttingen, Zentrum für Biochemie und Molekulare Zellbiologie, Humboldtallee 23, 37073 Göttingen, Germany
| | - Annegret Nath
- Universität Göttingen, Zentrum für Biochemie und Molekulare Zellbiologie, Humboldtallee 23, 37073 Göttingen, Germany
| | - Joachim Hauber
- Heinrich Pette Institute for Experimental Virology and Immunology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Ralph H Kehlenbach
- Universität Heidelberg, Abteilung Virologie, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; Universität Göttingen, Zentrum für Biochemie und Molekulare Zellbiologie, Humboldtallee 23, 37073 Göttingen, Germany.
| |
Collapse
|
519
|
Radtke K, Döhner K, Sodeik B. Viral interactions with the cytoskeleton: a hitchhiker's guide to the cell. Cell Microbiol 2006; 8:387-400. [PMID: 16469052 DOI: 10.1111/j.1462-5822.2005.00679.x] [Citation(s) in RCA: 274] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The actin and microtubule cytoskeleton play important roles in the life cycle of every virus. During attachment, internalization, endocytosis, nuclear targeting, transcription, replication, transport of progeny subviral particles, assembly, exocytosis, or cell-to-cell spread, viruses make use of different cellular cues and signals to enlist the cytoskeleton for their mission. Viruses induce rearrangements of cytoskeletal filaments so that they can utilize them as tracks or shove them aside when they represent barriers. Viral particles recruit molecular motors in order to hitchhike rides to different subcellular sites which provide the proper molecular environment for uncoating, replicating and packaging viral genomes. Interactions between subviral components and cytoskeletal tracks also help to orchestrate virus assembly, release and efficient cell-to-cell spread. There is probably not a single virus that does not use cytoskeletal and motor functions in its life cycle. Being well informed intracellular passengers, viruses provide us with unique tools to decipher how a particular cargo recruits one or several motors, how these are activated or tuned down depending on transport needs, and how cargoes switch from actin tracks to microtubules to nuclear pores and back.
Collapse
Affiliation(s)
- Kerstin Radtke
- Institute of Virology, OE5230, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | | | | |
Collapse
|
520
|
Kaláb P, Pralle A, Isacoff EY, Heald R, Weis K. Analysis of a RanGTP-regulated gradient in mitotic somatic cells. Nature 2006; 440:697-701. [PMID: 16572176 DOI: 10.1038/nature04589] [Citation(s) in RCA: 289] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Accepted: 01/18/2006] [Indexed: 11/08/2022]
Abstract
The RanGTPase cycle provides directionality to nucleocytoplasmic transport, regulating interactions between cargoes and nuclear transport receptors of the importin-beta family. The Ran-importin-beta system also functions in mitotic spindle assembly and nuclear pore and nuclear envelope formation. The common principle underlying these diverse functions throughout the cell cycle is thought to be anisotropy of the distribution of RanGTP (the RanGTP gradient), driven by the chromatin-associated guanine nucleotide exchange factor RCC1 (refs 1, 4, 5). However, the existence and function of a RanGTP gradient during mitosis in cells is unclear. Here we examine the Ran-importin-beta system in cells by conventional and fluorescence lifetime microscopy using a biosensor, termed Rango, that increases its fluorescence resonance energy transfer signal when released from importin-beta by RanGTP. Rango is predominantly free in mitotic cells, but is further liberated around mitotic chromatin. In vitro experiments and modelling show that this localized increase of free cargoes corresponds to changes in RanGTP concentration sufficient to stabilize microtubules in extracts. In cells, the Ran-importin-beta-cargo gradient kinetically promotes spindle formation but is largely dispensable once the spindle has been established. Consistent with previous reports, we observe that the Ran system also affects spindle pole formation and chromosome congression in vivo. Our results demonstrate that conserved Ran-regulated pathways are involved in multiple, parallel processes required for spindle function, but that their relative contribution differs in chromatin- versus centrosome/kinetochore-driven spindle assembly systems.
Collapse
Affiliation(s)
- Petr Kaláb
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA
| | | | | | | | | |
Collapse
|
521
|
Affiliation(s)
- Lucy F Pemberton
- Department of Microbiology, Center for Cell Signaling, University of Virginia, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
522
|
Lidsky PV, Hato S, Bardina MV, Aminev AG, Palmenberg AC, Sheval EV, Polyakov VY, van Kuppeveld FJM, Agol VI. Nucleocytoplasmic traffic disorder induced by cardioviruses. J Virol 2006; 80:2705-17. [PMID: 16501080 PMCID: PMC1395435 DOI: 10.1128/jvi.80.6.2705-2717.2006] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Some picornaviruses, for example, poliovirus, increase bidirectional permeability of the nuclear envelope and suppress active nucleocytoplasmic transport. These activities require the viral protease 2A(pro). Here, we studied nucleocytoplasmic traffic in cells infected with encephalomyocarditis virus (EMCV; a cardiovirus), which lacks the poliovirus 2A(pro)-related protein. EMCV similarly enhanced bidirectional nucleocytoplasmic traffic. By using the fluorescent "Timer" protein, which contains a nuclear localization signal, we showed that the cytoplasmic accumulation of nuclear proteins in infected cells was largely due to the nuclear efflux of "old" proteins rather than impaired active nuclear import of newly synthesized molecules. The nuclear envelope of digitonin-treated EMCV-infected cells permitted rapid efflux of a nuclear marker protein. Inhibitors of poliovirus 2A(pro) did not prevent the EMCV-induced efflux. Extracts from EMCV-infected cells and products of in vitro translation of viral RNAs contained an activity increasing permeability of the nuclear envelope of uninfected cells. This activity depended on the expression of the viral leader protein. Mutations disrupting the zinc finger motif of this protein abolished its efflux-inducing ability. Inactivation of the L protein phosphorylation site (Thr47-->Ala) resulted in a delayed efflux, while a phosphorylation-mimicking (Thr47-->Asp) replacement did not significantly impair the efflux-inducing ability. Such activity of extracts from EMCV-infected cells was suppressed by the protein kinase inhibitor staurosporine. As evidenced by electron microscopy, cardiovirus infection resulted in alteration of the nuclear pores, but it did not trigger degradation of the nucleoporins known to be degraded in the poliovirus-infected cells. Thus, two groups of picornaviruses, enteroviruses and cardioviruses, similarly alter the nucleocytoplasmic traffic but achieve this by strikingly different mechanisms.
Collapse
Affiliation(s)
- Peter V Lidsky
- M. P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, Moscow Region, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
523
|
Tschöp K, Müller GA, Grosche J, Engeland K. Human cyclin B3. mRNA expression during the cell cycle and identification of three novel nonclassical nuclear localization signals. FEBS J 2006; 273:1681-95. [PMID: 16623705 DOI: 10.1111/j.1742-4658.2006.05184.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cyclins form complexes with cyclin-dependent kinases. By controlling activity of the enzymes, cyclins regulate progression through the cell cycle. A- and B-type cyclins were discovered due to their distinct appearance in S and G(2) phases and their rapid proteolytic destruction during mitosis. Transition from G(2) to mitosis is basically controlled by B-type cyclins. In mammals, two cyclin B proteins are well characterized, cyclin B1 and cyclin B2. Recently, a human cyclin B3 gene was described. In contrast to the expression pattern of other B-type cyclins, we find cyclin B3 mRNA expressed not only in S and G(2)/M cells but also in G(0) and G(1). Human cyclin B3 is expressed in different variants. We show that one isoform remains in the cytoplasm, whereas the other variant is translocated to the nucleus. Transport to the nucleus is dependent on three autonomous nonclassical nuclear localization signals that where previously not implicated in nuclear translocation. It had been shown that cyclin B3 coimmunoprecipitates with cdk2; but this complex does not exhibit any kinase activity. Furthermore, a degradation-resistant version of cyclin B3 can arrest cells in G(1) and G(2). Taken together with the finding that cyclin B3 mRNA is not only expressed in G(2)/M but is also detected in significant amounts in resting cells and in G(1) cells. This may suggest a dominant-negative function of human cyclin B3 in competition with activating cyclins in G(0) and the G(1) phase of the cell cycle.
Collapse
Affiliation(s)
- Katrin Tschöp
- Innere Medizin II, Max-Bürger-Forschungszentrum, Universität Leipzig, Germany
| | | | | | | |
Collapse
|
524
|
Mustafa H, Strasser B, Rauth S, Irving RA, Wark KL. Identification of a functional nuclear export signal in the green fluorescent protein asFP499. Biochem Biophys Res Commun 2006; 342:1178-82. [PMID: 16516151 DOI: 10.1016/j.bbrc.2006.02.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Accepted: 02/08/2006] [Indexed: 10/25/2022]
Abstract
The green fluorescent protein (GFP) asFP499 from Anemonia sulcata is a distant homologue of the GFP from Aequorea victoria. We cloned the asFP499 gene into a mammalian expression vector and showed that this protein was expressed in the human lymphoblast cell line Ramos RA1 and in the embryonic kidney 293T cell line (HEK 293T). In HEK 293T cells, asFP499 was localized mainly in the cytoplasm, suggesting that the protein was excluded from the nucleus. We identified (194)LRMEKLNI(201) as a candidate nuclear export signal in asFP499 and mutated the isoleucine at position 201 to an alanine. Unlike the wildtype form, the mutant protein was distributed throughout the cytoplasm and nucleus. This is the first report of a GFP that contains a functional NES.
Collapse
Affiliation(s)
- Huseyin Mustafa
- Cooperative Research Centre for Diagnostics at CSIRO Molecular and Health Technologies, 343 Royal Parade, Parkville, Vic. 3052, Australia.
| | | | | | | | | |
Collapse
|
525
|
van der Aa MAEM, Mastrobattista E, Oosting RS, Hennink WE, Koning GA, Crommelin DJA. The Nuclear Pore Complex: The Gateway to Successful Nonviral Gene Delivery. Pharm Res 2006; 23:447-59. [PMID: 16525863 DOI: 10.1007/s11095-005-9445-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 11/10/2005] [Indexed: 02/04/2023]
Abstract
One of the limiting steps in the efficiency of nonviral gene delivery is transport of genetic material across the nuclear membrane. Trafficking of nuclear proteins from the cytoplasm into the nucleus occurs via the nuclear pore complex and is mediated by nuclear localization signals and their nuclear receptors. Several strategies employing this transport mechanism have been designed and explored to improve nonviral gene delivery. In this article, we review the mechanism of nuclear import through the nuclear pore complex and the strategies used to facilitate nuclear import of exogenous DNA and improve gene expression.
Collapse
Affiliation(s)
- Marieke A E M van der Aa
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
526
|
Rastogi S, Joshi B, Fusaro G, Chellappan S. Camptothecin induces nuclear export of prohibitin preferentially in transformed cells through a CRM-1-dependent mechanism. J Biol Chem 2006; 281:2951-9. [PMID: 16319068 DOI: 10.1074/jbc.m508669200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Prohibitin is a growth-suppressive protein that has multiple functions in the nucleus and the mitochondria. Our earlier studies had shown that prohibitin represses the activity of E2F transcription factors while enhancing p53-mediated transcription. At the same time, prohibitin has been implicated in mediating the proper folding of mitochondrial proteins. We had found that treatment of cells with camptothecin, a topoisomerase 1 inhibitor, led to the export of prohibitin and p53 from the nucleus to the mitochondria. Here we show that the camptothecin-induced export of prohibitin occurs preferentially in transformed cell lines, but not in untransformed or primary cells. Cells that did not display the translocation of prohibitin were refractive to the apoptotic effects of camptothecin. The translocation was mediated by a putative nuclear export signal at the C-terminal region of prohibitin; fusion of the nuclear export signal (NES) of prohibitin to green fluorescence protein led to its export from the nucleus. Leptomycin B could inhibit the nuclear export of prohibitin showing that it was a CRM-1-dependent event driven by Ran GTPase. Confirming this, prohibitin was found to physically interact with CRM-1, and this interaction was significantly higher in transformed cells. Delivery of a peptide corresponding to the NES of prohibitin prevented the export of prohibitin to cytoplasm and protected cells from apoptosis. These results suggest that the regulated translocation of prohibitin from the nucleus to the mitochondria facilitates its pleiotropic functions and might contribute to its anti-proliferative and tumor suppressive properties.
Collapse
Affiliation(s)
- Shipra Rastogi
- Drug Discovery Program, Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | |
Collapse
|
527
|
Nacerddine K, Lehembre F, Bhaumik M, Artus J, Cohen-Tannoudji M, Babinet C, Pandolfi PP, Dejean A. The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev Cell 2006; 9:769-79. [PMID: 16326389 DOI: 10.1016/j.devcel.2005.10.007] [Citation(s) in RCA: 424] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 07/21/2005] [Accepted: 10/13/2005] [Indexed: 12/19/2022]
Abstract
Covalent modification by SUMO regulates a wide range of cellular processes, including transcription, cell cycle, and chromatin dynamics. To address the biological function of the SUMO pathway in mammals, we generated mice deficient for the SUMO E2-conjugating enzyme Ubc9. Ubc9-deficient embryos die at the early postimplantation stage. In culture, Ubc9 mutant blastocysts are viable, but fail to expand after 2 days and show apoptosis of the inner cell mass. Loss of Ubc9 leads to major chromosome condensation and segregation defects. Ubc9-deficient cells also show severe defects in nuclear organization, including nuclear envelope dysmorphy and disruption of nucleoli and PML nuclear bodies. Moreover, RanGAP1 fails to accumulate at the nuclear pore complex in mutant cells that show a collapse in Ran distribution. Together, these findings reveal a major role for Ubc9, and, by implication, for the SUMO pathway, in nuclear architecture and function, chromosome segregation, and embryonic viability in mammals.
Collapse
Affiliation(s)
- Karim Nacerddine
- Unité d'Organisation Nucléaire et Oncogénèse, INSERM U 579, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | |
Collapse
|
528
|
Abstract
The International Symposium on Ran and the Cell Cycle was held on October 1-4, 2005, at the Awaji Island Resort near Osaka, to celebrate the career and scientific achievements of Professor Takeharu Nishimoto. One hundred of his former lab members, collaborators and other scientific colleagues from around the world attended the symposium organized by Mary Dasso (National Institutes of Health) and Yoshihiro Yoneda (Osaka University). The program was divided into sessions on cell cycle and chromosomes, nuclear import and export of proteins and RNA, nuclear envelope and the nuclear pore complex, and RCC1 and chromatin. Dr. Nishimoto's retirement from Kyushu University is a perfect time to look back at the history of Ran and RCC1, assess the current state of the field, and discuss the challenges that remain in order to unravel the complexities of the Ran GTPase system.
Collapse
Affiliation(s)
- Shelley Sazer
- Verna and Marrs Mclean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
529
|
Arnold M, Nath A, Wohlwend D, Kehlenbach RH. Transportin is a major nuclear import receptor for c-Fos: a novel mode of cargo interaction. J Biol Chem 2006; 281:5492-9. [PMID: 16407315 DOI: 10.1074/jbc.m513281200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
c-Fos, a component of the transcription factor AP-1, is rapidly imported into the nucleus after translation. We established an in vitro system using digitonin-permeabilized cells to analyze nuclear import of c-Fos in detail. Two import receptors of the importin beta superfamily, importin beta itself and transportin, promote import of c-Fos in vitro. Under conditions where importin beta-dependent transport was blocked, c-Fos still accumulated in the nucleus in the presence of cytosol. Inhibition of the transportin-dependent pathway, in contrast, abolished import of c-Fos. Furthermore, c-Fos mutants that interact with transportin but not with importin beta were efficiently imported in the presence of cytosol. Hence, transportin appears to be the predominant import receptor for c-Fos. A detailed biochemical characterization revealed that the interaction of transportin with c-Fos is distinct from the interaction with its established import cargoes, the M9 sequence of heterogeneous nuclear ribonucleoprotein A1 or the nuclear localization sequence of some basic proteins. Likewise, the binding sites on importin beta for its classic import cargo and for c-Fos can be separated. In summary, c-Fos employs a novel mode of receptor-cargo interaction. Hence, transportin may be as versatile as importin beta in recognizing different nuclear import cargoes.
Collapse
Affiliation(s)
- Marc Arnold
- Zentrum für Biochemie und Molekulare Zellbiologie, Universität Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | | | | | | |
Collapse
|
530
|
Improving Functional Modularity in Protein-Protein Interactions Graphs Using Hub-Induced Subgraphs. LECTURE NOTES IN COMPUTER SCIENCE 2006. [DOI: 10.1007/11871637_36] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
531
|
Ilmarinen T, Melén K, Kangas H, Julkunen I, Ulmanen I, Eskelin P. The monopartite nuclear localization signal of autoimmune regulator mediates its nuclear import and interaction with multiple importin alpha molecules. FEBS J 2006; 273:315-24. [PMID: 16403019 DOI: 10.1111/j.1742-4658.2005.05065.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Autoimmune regulator (AIRE) is a transcriptional regulator involved in establishing immunological self-tolerance. Mutations in the AIRE gene lead to the development of the autosomal, recessively inherited, organ-specific autoimmune disease, autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED). The AIRE protein is mainly localized in the cell nucleus where it is associated with nuclear bodies. The N-terminal part of AIRE has been previously shown to mediate nuclear localization of the protein. However, the functional nuclear localization signal (NLS) and nuclear import mechanisms of AIRE have not been identified. We show that, although the amino-acid sequence of AIRE contains a potential bipartite NLS consisting of amino acids 110-114 and 131-133, only the latter part constitutes a functional NLS. Furthermore, we show by in vitro binding assays that AIRE interacts with multiple members of the nuclear transport receptor importin alpha family, mainly alpha1, alpha3, and alpha5, and that these interactions depend on the intactness of the Arg-Lys-rich NLS of AIRE. In addition, we found that AIRE binds to the 'minor' NLS-binding site of importin alpha3 and alpha5 proteins consisting of the C-terminal armadillo repeats 7-9. Our findings strongly suggest that the nuclear import of AIRE is mediated by the classical importin alpha/beta pathway through binding to several importin alpha family members.
Collapse
Affiliation(s)
- Tanja Ilmarinen
- Department of Molecular Medicine, National Public Health Institute, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
532
|
Cohen S, Panté N. Pushing the envelope: microinjection of Minute virus of mice into Xenopus oocytes causes damage to the nuclear envelope. J Gen Virol 2005; 86:3243-3252. [PMID: 16298969 DOI: 10.1099/vir.0.80967-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parvoviruses are small DNA viruses that replicate in the nucleus of their host cells. It has been largely assumed that parvoviruses enter the nucleus through the nuclear pore complex (NPC). However, the details of this mechanism remain undefined. To study this problem, the parvovirus Minute virus of mice (MVM) was microinjected into the cytoplasm of Xenopus oocytes and a transmission electron microscope was used to visualize the effect of the virus on the host cell. It was found that MVM caused damage to the nuclear envelope (NE) in a time- and concentration-dependent manner. Damage was predominantly to the outer nuclear membrane and was often near the NPCs. However, microinjection experiments in which the NPCs were blocked showed that NE damage induced by MVM was independent of the NPC. To address the question of whether this effect of MVM is specific to the NE, purified organelles were incubated with MVM. Visualization by electron microscopy revealed that MVM did not affect all intracellular membranes. These data represent a novel form of virus-induced damage to host cell nuclear structure and suggest that MVM is imported into the nucleus using a unique mechanism that is independent of the NPC, and involves disruption of the NE and import through the resulting breaks.
Collapse
Affiliation(s)
- Sarah Cohen
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
| | - Nelly Panté
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
533
|
Lévesque L, Bor YC, Matzat LH, Jin L, Berberoglu S, Rekosh D, Hammarskjöld ML, Paschal BM. Mutations in tap uncouple RNA export activity from translocation through the nuclear pore complex. Mol Biol Cell 2005; 17:931-43. [PMID: 16314397 PMCID: PMC1356601 DOI: 10.1091/mbc.e04-07-0634] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Interactions between transport receptors and phenylalanine-glycine (FG) repeats on nucleoporins drive the translocation of receptor-cargo complexes through nuclear pores. Tap, a transport receptor that mediates nuclear export of cellular mRNAs, contains a UBA-like and NTF2-like folds that can associate directly with FG repeats. In addition, two nuclear export sequences (NESs) within the NTF2-like region can also interact with nucleoporins. The Tap-RNA complex was shown to bind to three nucleoporins, Nup98, p62, and RanBP2, and these interactions were enhanced by Nxt1. Mutations in the Tap-UBA region abolished interactions with all three nucleoporins, whereas the effect of point mutations within the NTF2-like domain of Tap known to disrupt Nxt1 binding or nucleoporin binding were nucleoporin dependent. A mutation in any of these Tap domains was sufficient to reduce RNA export but was not sufficient to disrupt Tap interaction with the NPC in vivo or its nucleocytoplasmic shuttling. However, shuttling activity was reduced or abolished by combined mutations within the UBA and either the Nxt1-binding domain or NESs. These data suggest that Tap requires both the UBA- and NTF2-like domains to mediate the export of RNA cargo, but can move through the pores independently of these domains when free of RNA cargo.
Collapse
Affiliation(s)
- Lyne Lévesque
- Department of Cell and Developmental Biology, University of Illinois in Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | | | | | | | | | | | |
Collapse
|
534
|
De Ganck A, Hubert T, Van Impe K, Geelen D, Vandekerckhove J, De Corte V, Gettemans J. A monopartite nuclear localization sequence regulates nuclear targeting of the actin binding protein myopodin. FEBS Lett 2005; 579:6673-80. [PMID: 16309678 DOI: 10.1016/j.febslet.2005.10.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 09/09/2005] [Accepted: 10/27/2005] [Indexed: 11/29/2022]
Abstract
Myopodin is an actin bundling protein that shuttles between nucleus and cytoplasm in response to cell stress or during differentiation. Here, we show that the myopodin sequence 58KKRRRRARK66, when tagged to either enhanced green fluorescent protein (EGFP) or to enhanced cyan fluorescent protein-CapG (ECFPCapG), is able to target these proteins to the nucleolus in HeLa or HEK293T cells. By contrast, 58KKRR61-ECFP-CapG accumulates in the nucleus. Mutation of 58KKRRRRARK66 into alanine residues blocks myopodin nuclear import and promotes formation of cytoplasmic actin filaments. A second putative nuclear localization sequence, 612KTSKKKGKK620, displays much weaker activity in a heterologous context, and appears not to be functional in the full length protein. Thus myopodin nuclear translocation is dependent on a monopartite nuclear localization sequence.
Collapse
Affiliation(s)
- Ariane De Ganck
- Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology (V.I.B.), Ghent University, Faculty of Medicine and Health Sciences, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
535
|
Luo M, Jones SM, Flamand N, Aronoff DM, Peters-Golden M, Brock TG. Phosphorylation by protein kinase a inhibits nuclear import of 5-lipoxygenase. J Biol Chem 2005; 280:40609-16. [PMID: 16230355 DOI: 10.1074/jbc.m507045200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzyme 5-lipoxygenase initiates the synthesis of leukotrienes from arachidonic acid. Protein kinase A phosphorylates 5-lipoxygenase on Ser(523), and this reduces its activity. We report here that phosphorylation of Ser(523) also shifts the subcellular distribution of 5-lipoxygenase from the nucleus to the cytoplasm. Phosphorylation and redistribution of 5-lipoxygenase could be produced by overexpression of the protein kinase A catalytic subunit alpha, by pharmacological activators of protein kinase A, and by prostaglandin E(2). Mimicking phosphorylation by replacing Ser(523) with glutamic acid caused cytoplasmic localization; replacement of Ser(523) with alanine prevented phosphorylation and redistribution in response to protein kinase A activation. Because Ser(523) is positioned within the nuclear localization sequence-518 of 5-lipoxygenase, the ability of protein kinase A to phosphorylate and alter the localization of green fluorescent protein fused to the nuclear localization sequence-518 peptide was also tested. Site-directed replacement of Ser(523) with glutamic acid within the peptide impaired nuclear accumulation; overexpression of the protein kinase A catalytic subunit alpha and pharmacological activation of protein kinase caused phosphorylation of the fusion protein at Ser(523), and the phosphorylated protein was found chiefly in the cytoplasm. Taken together, these results indicate that phosphorylation of Ser(523) inhibits the nuclear import function of a nuclear localization sequence, resulting in the accumulation of 5-lipoxygenase enzyme in the cytoplasm. As cytoplasmic localization can be associated with reduced leukotriene synthetic capacity, phosphorylation of Ser(523) serves to inhibit leukotriene production by both impairing catalytic activity and by placing the enzyme in a site that is unfavorable for action.
Collapse
Affiliation(s)
- Ming Luo
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
536
|
Abstract
The nuclear localization of a number of growth factors, cytokine ligands and their receptors has been reported in various cell lines and tissues. These include members of the fibroblast growth factor (FGF), epidermal growth factor and growth hormone families. Accordingly, a number of nuclear functions have begun to emerge for these protein families. The demonstration of functional interactions of these proteins with the nuclear import machinery has further supported their functions as nuclear signal transducers. Here, we review the membrane- trafficking machinery and pathways demonstrated to regulate this cell surface to nucleus-trafficking event and highlight the many remaining unanswered questions. We focus on the FGF family, which is providing many of the clues as to the process of this unusual phenomenon.
Collapse
Affiliation(s)
- David M Bryant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
537
|
Abstract
Activation of cytosolic phosphoinositide-3 kinase (PI-3K) signaling pathway has been well established to regulate gene expression, cell cycle, and survival by feeding signals to the nucleus. In addition, strong evidences accumulated over the past few years indicate the presence of an autonomous inositol lipid metabolism and PI-3K signaling within the nucleus. Much less, however, is known about the role and regulation of this nuclear PI-3K pathway. Components of the PI-3K signaling pathway, including PI 3-kinase and its downstream kinase Akt, have been identified at the nuclear level. Consistent with the presence of a complete PI-3K signaling pathway in the nucleus, we have recently found that phosphoinositide-dependent kinase 1 (PDK1), a kinase functioning downstream of PI-3K and upstream of Akt, is a nucleo-cytoplasmic shuttling protein. In the present review, we update our current knowledge on the regulatory mechanisms and the functional roles of PDK1 nuclear translocation. We also summarize some of the kinase-independent activities of PDK1 in cell signaling.
Collapse
Affiliation(s)
- Chintan K Kikani
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | |
Collapse
|