501
|
Metzger JM, Michele DE, Rust EM, Borton AR, Westfall MV. Sarcomere thin filament regulatory isoforms. Evidence of a dominant effect of slow skeletal troponin I on cardiac contraction. J Biol Chem 2003; 278:13118-23. [PMID: 12551900 DOI: 10.1074/jbc.m212601200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thin filament proteins tropomyosin (Tm), troponin T (TnT), and troponin I (TnI) form an allosteric regulatory complex that is required for normal cardiac contraction. Multiple isoforms of TnT, Tm, and TnI are differentially expressed in both cardiac development and disease, but concurrent TnI, Tm, and TnT isoform switching has hindered assignment of cellular function to these transitions. We systematically incorporated into the adult sarcomere the embryonic/fetal isoforms of Tm, TnT, and TnI by using gene transfer. In separate experiments, greater than 90% of native TnI and 40-50% of native Tm or TnT were specifically replaced. The Ca(2+) sensitivity of tension development was markedly enhanced by TnI replacement but not by TnT or Tm isoform replacement. Titration of TnI replacement from >90% to <30% revealed a dominant functional effect of slow skeletal TnI to modulate regulation. Over this range of isoform replacement, TnI, but not Tm or TnT embryonic isoforms, influenced calcium regulation of contraction, and this identifies TnI as a potential target to modify contractile performance in normal and diseased myocardium.
Collapse
Affiliation(s)
- Joseph M Metzger
- Department of Physiology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109-0622, USA.
| | | | | | | | | |
Collapse
|
502
|
Matsuura T, Ashizawa T. Spinocerebellar ataxia type 10: a disease caused by a large ATTCT repeat expansion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 516:79-97. [PMID: 12611436 DOI: 10.1007/978-1-4615-0117-6_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Tohru Matsuura
- Department of Neurology, Baylor College of Medicine and Veterans Affairs Medical Center, Houston, Texas 77030 USA
| | | |
Collapse
|
503
|
Timchenko LT, Tapscott SJ, Cooper TA, Monckton DG. Myotonic dystrophy: discussion of molecular basis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 516:27-45. [PMID: 12611434 DOI: 10.1007/978-1-4615-0117-6_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Lubov T Timchenko
- Section of Cardiovascular Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
504
|
Gromak N, Matlin AJ, Cooper TA, Smith CWJ. Antagonistic regulation of alpha-actinin alternative splicing by CELF proteins and polypyrimidine tract binding protein. RNA (NEW YORK, N.Y.) 2003; 9:443-56. [PMID: 12649496 PMCID: PMC1370411 DOI: 10.1261/rna.2191903] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2002] [Accepted: 01/14/2003] [Indexed: 05/21/2023]
Abstract
The alpha-actinin gene has a pair of alternatively spliced exons. The smooth muscle (SM) exon is repressed in most cell types by polypyrimidine tract binding protein (PTB). CELF (CUG-BP and ETR3-like factors) family proteins, splicing regulators whose activities are altered in myotonic dystrophy, were found to coordinately regulate selection of the two alpha-actinin exons. CUG-BP and ETR3 activated the SM exon, and along with CELF4 they were also able to repress splicing of the NM (nonmuscle) exon both in vivo and in vitro. Activation of SM exon splicing was associated with displacement of PTB from the polypyrimidine tract by binding of CUG-BP at adjacent sites. Our data provides direct evidence for the activity of CELF proteins as both activators and repressors of splicing within a single-model system of alternative splicing, and suggests a model whereby alpha-actinin alternative splicing is regulated by synergistic and antagonistic interactions between members of the CELF and PTB families.
Collapse
Affiliation(s)
- Natalia Gromak
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | | | | |
Collapse
|
505
|
Furling D, Lam LT, Agbulut O, Butler-Browne GS, Morris GE. Changes in myotonic dystrophy protein kinase levels and muscle development in congenital myotonic dystrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:1001-9. [PMID: 12598332 PMCID: PMC1868110 DOI: 10.1016/s0002-9440(10)63894-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Myotonic dystrophy (DM1) is caused by the expansion of a CTG repeat in the noncoding region of a protein kinase, DMPK, expressed in skeletal and cardiac muscles. The aim of the present study was to determine the effects of very large CTG expansions on DMPK expression and skeletal muscle development. In fetuses suffering from the severe congenital form of DM1 with large CTG expansions (1800 to 3700 repeats), the skeletal muscle level of DMPK was reduced to 57% of control levels and a similar reduction was observed in cultured DM1 muscle cells relative to control cultures. These results are consistent with greatly reduced DMPK expression from the mutant allele and normal expression from the unaffected allele in this autosomal dominant disorder. In normal fetuses, DMPK protein levels increased dramatically between 9 and 16 weeks and remained high throughout the remaining gestation period. DM1 fetuses showed impaired skeletal muscle development, characterized by a persistence of embryonic and fetal myosin heavy chains and almost total absence of slow myosin heavy chains at the end of gestation. DMPK expression, however, was similar in both fast and slow fibers from normal adult muscle. The reduced DMPK and the delayed slow fiber maturation in congenital DM1 may be two separate consequences of nuclear retention of DMPK RNA transcripts with expanded CUG repeats.
Collapse
Affiliation(s)
- Denis Furling
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 7000, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | | | | | | | | |
Collapse
|
506
|
Abstract
The management of individuals with a neuromuscular disorder is usually focused on the skeletal muscle weakness and resulting complications, such as respiratory failure. Long-term prognosis of a number of neuromuscular conditions is, however, also determined by the type and severity of cardiac involvement. Early recognition and treatment of the cardiovascular complications are part of the task of the multidisciplinary team involved in the care of these patients. Although for several of the common conditions, there is general consensus on the cardiac investigations and treatments, in the rarer disorders, evidence-based recommendations are not available, and suggestions from experts provide an acceptable solution. This review summarizes the recent advances in our understanding of the pathogenesis and phenotypic diversity of cardiac complications associated with pediatric myopathies and provides a rational framework for planning the monitoring and therapeutic intervention in individual conditions.
Collapse
Affiliation(s)
- Francesco Muntoni
- Dubowitz Neuromuscular Unit, Department of Paediatrics, Imperial College London, Hammersmith Hospital Campus, London, UK.
| |
Collapse
|
507
|
Sironi M, Cagliani R, Comi GP, Pozzoli U, Bardoni A, Giorda R, Bresolin N. Trans-acting factors may cause dystrophin splicing misregulation in BMD skeletal muscles. FEBS Lett 2003; 537:30-4. [PMID: 12606026 DOI: 10.1016/s0014-5793(03)00066-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We analyzed dystrophin alternative splicing events in a large number of Becker muscular dystrophy (BMD) affected individuals presenting major hot-spot deletions. Evidence is shown that altered splicing patterns in these patients do not directly result from the gene defect but probably derive from modifications in trans- rather than cis-acting factors. Several potential CUG-binding protein 2 (CUG-BP2) binding sites were found to be located in the dystrophin gene region encompassing exons 43-60 and CUG-BP2 transcript analysis indicated that not only expression levels are increased in dystrophic muscles but also that different CUG-BP2 isoforms are expressed. The possibility that CUG-BP2 might have a role in dystrophin splicing regulation is discussed.
Collapse
Affiliation(s)
- M Sironi
- IRCCS E. Medea, Associazione La Nostra Famiglia, Via Don Luigi Monza 20, 23842 Bosisio Parini (LC), Italy.
| | | | | | | | | | | | | |
Collapse
|
508
|
Affiliation(s)
- Nuno André Faustino
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
509
|
Mourtada-Maarabouni M, Sutherland LC, Meredith JM, Williams GT. Simultaneous acceleration of the cell cycle and suppression of apoptosis by splice variant delta-6 of the candidate tumour suppressor LUCA-15/RBM5. Genes Cells 2003; 8:109-19. [PMID: 12581154 DOI: 10.1046/j.1365-2443.2003.00619.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND The short arm of chromosome 3 is thought to include one or more tumour suppressor genes (TSGs), since carcinoma of various tissues display deletions in this region. Many genes mapping to this region have recently been identified, including the LUCA-15/RBM5 gene. RESULTS In this study we report the cloning from human bone marrow library of a splice variant of LUCA-15 which lacks exon 6, resulting in a frameshift and producing a truncated protein of 150 amino acids instead of 815 amino acids. This variant is widely expressed at a low level in normal tissues and is expressed at increased levels in T-leukaemic cell lines. Over-expression of this splice variant after electroporation both shortened the cell cycle and inhibited CD95-mediated apoptosis in CEM-C7 T-cells. In marked contrast, over-expression of the full length LUCA-15/RBM5 suppressed cell proliferation both by inducing apoptosis and by extending the G1 phase of the cell cycle. CONCLUSION These results, taken together with previous observations from ourselves and others, suggest that LUCA-15 is involved in the control of both apoptosis and the cell cycle. Since oncogenesis often relies on separate changes in molecules regulating apoptosis on the one hand, and proliferation, on the other, the discovery of a candidate tumour suppressor gene which affects both processes simultaneously is likely to be of major significance.
Collapse
|
510
|
Banerjee H, Rahn A, Davis W, Singh R. Sex lethal and U2 small nuclear ribonucleoprotein auxiliary factor (U2AF65) recognize polypyrimidine tracts using multiple modes of binding. RNA (NEW YORK, N.Y.) 2003; 9:88-99. [PMID: 12554879 PMCID: PMC1370373 DOI: 10.1261/rna.2131603] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2002] [Accepted: 10/08/2002] [Indexed: 05/20/2023]
Abstract
The molecular basis for specific recognition of simple homopolymeric sequences like the polypyrimidine tract (Py tract) by multiple RNA recognition motifs (RRMs) is not well understood. The Drosophila splicing repressor Sex lethal (SXL), which has two RRMs, can directly compete with the essential splicing factor U2AF(65), which has three RRMs, for binding to specific Py tracts. We have combined site-specific photocross-linking and chemical cleavage of the proteins to biochemically map cross-linking of each of the uracils within the Py tract to specific RRMs. For both proteins, RRM1 and RRM2 together constitute the minimal Py-tract recognition domain. The RRM3 of U2AF(65) shows no cross-linking to the Py tract. Both RRM1 and RRM2 of U2AF(65) and SXL can be cross-linked to certain residues, with RRM2 showing a surprisingly high number of residues cross-linked. The cross-linking data eliminate the possibility that shorter Py tracts are bound by fewer RRMs. We present a model to explain how the binding affinity can nonetheless change as a function of the length of the Py tract. The results indicate that multiple modes of binding result in an ensemble of RNA-protein complexes, which could allow tuning of the binding affinity without changing sequence specificity.
Collapse
Affiliation(s)
- Hiren Banerjee
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, 80309, USA
| | | | | | | |
Collapse
|
511
|
Mukhopadhyay D, Houchen CW, Kennedy S, Dieckgraefe BK, Anant S. Coupled mRNA stabilization and translational silencing of cyclooxygenase-2 by a novel RNA binding protein, CUGBP2. Mol Cell 2003; 11:113-26. [PMID: 12535526 DOI: 10.1016/s1097-2765(03)00012-1] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cyclooxygenase-2 (COX-2) expression is translationally silenced in epithelial cells undergoing radiation-induced apoptosis. CUGBP2, a predominantly nuclear protein, is also rapidly induced in response to radiation and translocates to the cytoplasm. Antisense-mediated suppression of CUGBP2 renders radioprotection through a COX-2-dependent prostaglandin pathway, providing an in vivo demonstration of translation inhibition activity for CUGBP2. CUGBP2 binds to two sets of AU-rich sequences (AREs) located within the first sixty nucleotides of the COX-2 3' untranslated region (3'UTR). Upon binding, CUGBP2 stabilizes a chimeric luciferase-COX-2 3'UTR mRNA but inhibits its translation. These findings identify a novel paradigm for RNA binding proteins in facilitating opposing functions of mRNA stability and translation inhibition and reveal a mechanism for inhibiting COX-2 expression in cancer cells.
Collapse
Affiliation(s)
- Debnath Mukhopadhyay
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
512
|
Bönsch D, Neumann C, Lang-Roth R, Witte O, Lamprecht-Dinnesen A, Deufel T. PROMM and deafness: exclusion of ZNF9 as the disease gene in DFNA18 suggests a polygenic origin of the PROMM/DM2 phenotype. Clin Genet 2003; 63:73-5. [PMID: 12519376 DOI: 10.1034/j.1399-0004.2003.630112.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
513
|
Anant S, Blanc V, Davidson NO. Molecular regulation, evolutionary, and functional adaptations associated with C to U editing of mammalian apolipoproteinB mRNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 75:1-41. [PMID: 14604008 DOI: 10.1016/s0079-6603(03)75001-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
RNA editing encompasses an important class of co- or posttranscriptional nucleic acid modification that has expanded our understanding of the range of mechanisms that facilitate genetic plasticity. Since the initial description of RNA editing in trypanosome mitochondria, a model of gene regulation has emerged that now encompasses a diverse range of biochemical and genetic mechanisms by which nuclear, mitochondrial, and t-RNA sequences are modified from templated versions encoded in the genome. RNA editing is genetically and biochemically distinct from other RNA modifications such as splicing, capping, and polyadenylation although, as discussed in Section I, these modifications may have relevance to the regulation of certain types of mammalian RNA editing. This review will focus on C to U RNA editing, in particular, the biochemical and genetic mechanisms that regulate this process in mammals. These mechanisms will be examined in the context of the prototype model of C to U RNA editing, namely the posttranscriptional cytidine deamination targeting a single nucleotide in mammalian apolipoproteinB (apoB). Other examples of C to U RNA editing will be discussed and the molecular mechanisms--where known--contrasted with those regulating apoB RNA editing.
Collapse
Affiliation(s)
- Shrikant Anant
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
514
|
Amack JD, Reagan SR, Mahadevan MS. Mutant DMPK 3'-UTR transcripts disrupt C2C12 myogenic differentiation by compromising MyoD. J Cell Biol 2002; 159:419-29. [PMID: 12427866 PMCID: PMC2173077 DOI: 10.1083/jcb.200206020] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Myotonic dystrophy (DM) is caused by two similar noncoding repeat expansion mutations (DM1 and DM2). It is thought that both mutations produce pathogenic RNA molecules that accumulate in nuclear foci. The DM1 mutation is a CTG expansion in the 3' untranslated region (3'-UTR) of dystrophia myotonica protein kinase (DMPK). In a cell culture model, mutant transcripts containing a (CUG)200 DMPK 3'-UTR disrupt C2C12 myoblast differentiation; a phenotype similar to what is observed in myoblast cultures derived from DM1 patient muscle. Here, we have used our cell culture model to investigate how the mutant 3'-UTR RNA disrupts differentiation. We show that MyoD protein levels are compromised in cells that express mutant DMPK 3'-UTR transcripts. MyoD, a transcription factor required for the differentiation of myoblasts during muscle regeneration, activates differentiation-specific genes by binding E-boxes. MyoD levels are significantly reduced in myoblasts expressing the mutant 3'-UTR RNA within the first 6 h under differentiation conditions. This reduction correlates with blunted E-box-mediated gene expression at time points that are critical for initiating differentiation. Importantly, restoring MyoD levels rescues the differentiation defect. We conclude that mutant DMPK 3'-UTR transcripts disrupt myoblast differentiation by reducing MyoD levels below a threshold required to activate the differentiation program.
Collapse
Affiliation(s)
- Jeffrey D Amack
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
515
|
Bonnet-Corven S, Audic Y, Omilli F, Osborne HB. An analysis of the sequence requirements of EDEN-BP for specific RNA binding. Nucleic Acids Res 2002; 30:4667-74. [PMID: 12409457 PMCID: PMC135792 DOI: 10.1093/nar/gkf586] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
EDEN-BP (embryo deadenylation element-binding protein) binds specifically to the EDEN motif in the 3'-untranslated regions of maternal mRNAs and targets these mRNAs for deadenylation and translational repression in Xenopus laevis embryos. EDEN-BP contains three RNA recognition motifs (RRMs) and is related to the elav family of RNA-binding proteins. In the present study we show that the two N-terminal RRMs of EDEN-BP are necessary for the interaction with EDEN as well as a part of the linker region (between RRM2 and RRM3). Using a band shift assay we show that two different complexes are formed according to the size and, therefore, the functional nature of the EDEN motif. Finally, we show that EDEN-BP can form a dimer in a two-hybrid assay. Accordingly, we suggest that the functional configuration of EDEN-BP is a dimer.
Collapse
Affiliation(s)
- Sylvie Bonnet-Corven
- UMR 6061 CNRS-Génétique et Développement, IFR 97, Université de Rennes 1, Faculté de Médecine, 2 Avenue Léon Bernard, CS 34317, 35043 Rennes Cedex, France
| | | | | | | |
Collapse
|
516
|
Stoilov P, Meshorer E, Gencheva M, Glick D, Soreq H, Stamm S. Defects in pre-mRNA processing as causes of and predisposition to diseases. DNA Cell Biol 2002; 21:803-18. [PMID: 12489991 DOI: 10.1089/104454902320908450] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Humans possess a surprisingly low number of genes and intensively use pre-mRNA splicing to achieve the high molecular complexity needed to sustain normal body functions and facilitate responses to altered conditions. Because hundreds of thousands of proteins are generated by 25,000 to 40,000 genes, pre-mRNA processing events are highly important for the regulation of human gene expression. Both inherited and acquired defects in pre-mRNA processing are increasingly recognized as causes of human diseases, and almost all pre-mRNA processing events are controlled by a combination of protein factors. This makes defects in these processes likely candidates for causes of diseases with complicated inheritance patterns that affect seemingly unrelated functions. The elucidation of genetic mechanisms regulating pre-mRNA processing, combined with the development of drugs targeted at consensus RNA sequences and/or corresponding proteins, can lead to novel diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Peter Stoilov
- University of Erlangen-Nurenberg, Institute of Biochemistry, 91054 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
517
|
Abstract
PURPOSE OF REVIEW To highlight recent advances in understanding the clinical manifestations and molecular genetics of myotonic syndromes, with particular emphasis on the myotonic dystrophies. RECENT FINDINGS Myotonic syndromes include the non-dystrophic myotonias, caused by mutations in genes encoding the chloride or sodium channels that are specific to skeletal muscle, and the myotonic dystrophies. Previous studies have shown that myotonic dystrophy type 1 is caused by the expansion of a CTG repeat in the gene. Recently, it was discovered that myotonic dystrophy type 2 (proximal myotonic myopathy) is also caused by a DNA expansion mutation. In both types of myotonic dystrophy the expanded repeat is transcribed and the RNA produced from the mutant allele is retained in nuclear inclusions. Recent studies suggest that the mutant RNA has a toxic effect on muscle fibers by interfering with the essential functions of the myonucleus, such as RNA processing. SUMMARY It now appears likely that myotonic dystrophy is the first instance of a genetic disease in which the harmful effect of a mutation involves the production of a pathogenic RNA. However, the exact mechanism is not understood, and it is unclear whether this RNA-mediated disease process is also responsible for the manifestations of myotonic dystrophy in non-muscle tissues.
Collapse
Affiliation(s)
- Ami Mankodi
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
518
|
Bakay M, Zhao P, Chen J, Hoffman EP. A web-accessible complete transcriptome of normal human and DMD muscle. Neuromuscul Disord 2002; 12 Suppl 1:S125-41. [PMID: 12206807 DOI: 10.1016/s0960-8966(02)00093-7] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present an assessment of the complete transcriptome of human skeletal muscle in Duchenne muscular dystrophy patient muscle and non-dystrophic controls (36 RNAs analyzed from ten Duchenne dystrophy and eight controls; approximately 65,000 gene/expressed sequence tag/probe sets queried on U95 five-GeneChip series and MuscleChip). The use of the multiple chip types allowed us to compare results from different probe sets for the same gene: we found excellent concordance between different probe sets on different microarrays. We found 30% of human genes expressed in muscle at detectable levels. Three percent of these showed differential regulation in dystrophin deficiency. Among 1,882 dysregulated probe sets, 1,324 corresponded to characterized genes/proteins (891 non-redundant transcript units), and 588 to expressed sequence tags or predicted genes. Data interpretation was limited to the insulin-like growth factor pathway members, an investigation of possible de-regulation towards a cardiac lineage, and identification of male- and female-specific transcripts. We found transcriptional upregulation of both IGF-I and IGF-II in dystrophic muscle, however the possible beneficial effects of the growth factors appear offset by transcriptional upregulation of inhibitory IGF-binding proteins and regulators (IGFBP-2, -4, -6 and -7; and PRSS11 [IGFBP-5 protease]). We hypothesize that the beneficial effects of IGF-I or IGF-II supplementation in dystrophic muscle may be the result of dose-dependent sequestration of inhibitory IGF-binding proteins. We also focused on six 'cardiac' genes expressed in muscle (alpha-cardiac actin, CARP, CASQ2, troponin T2 cardiac [TNNT2], CUGBP2, and connexin 43). Comparison to a 27 time point murine muscle regeneration series and mdx muscle profiles showed that CARP and Cx43 were macrophage-associated, and TNNT2 activated-myoblast-associated. Upregulation of cardiac actin and CUGBP2 was not associated with muscle regeneration profiles, suggesting a more specific dysregulation induced by dystrophin deficiency. We found two Y-linked genes expressed solely in male muscle (RPS4Y, DDX3Y), and two autosomal genes expressed much more highly in female muscle (GRO2, ZNF91) (all comparisons P<0.01). Finally, we present the first web-accessible expression profiling database for all data, including image files (.dat), processed image files (.cel), and complete comparison files which are publicly available through a novel queriable web site, that permits query-by-gene across all profiles (http://microarray.cnmcresearch.org/pga). These data enumerate the full range of molecular changes associated downstream of dystrophin deficiency, and provide a web-accessible platform to study the specificity of transcriptional pathway alterations in muscle disease.
Collapse
Affiliation(s)
- Marina Bakay
- Research Center for Genetic Medicine, George Washington University School of Medicine, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | | | | | | |
Collapse
|
519
|
Wakimoto H, Maguire CT, Sherwood MC, Vargas MM, Sarkar PS, Han J, Reddy S, Berul CI. Characterization of cardiac conduction system abnormalities in mice with targeted disruption of Six5 gene. J Interv Card Electrophysiol 2002; 7:127-35. [PMID: 12397222 DOI: 10.1023/a:1020881520353] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Myotonic dystrophy (DM) is an autosomal dominant multisystem disorder, caused by expansion of a CTG trinucleotide repeat in the 3' untranslated region of the myotonic dystrophy protein kinase gene (DMPK) on chromosome 19q13. Cardiac involvement in DM includes conduction abnormalities and functional deficits. Three hypotheses of molecular mechanisms for DM pathophysiology are; first, partial loss of myotonic dystrophy protein kinase (DMPK); second, decreased transcription of a neighboring homeodomain-encoding gene, Six5 (or DMAHP), and third, transdominant effects of the RNA and regulation of splicing associated with expression of expanded CUG repeats. However, the precise pathogenetic mechanism remains unresolved. We previously reported that dosage of Dm15, the mouse homologue of DMPK, strongly associates with the cardiac conduction abnormalities. For further distinction of the molecular mechanisms underlying the cardiac phenotype of DM, in the present study, we characterized the cardiac conduction findings of mice with targeted disruption of Six5 gene. Six5 heterozygous mice (adult and young) and their age matched wild type littermates were studied using in vivo electrophysiologic techniques, echocardiography, heart rate variability and exercise tolerance testing. No PR prolongation was detected, however, prolonged QRS duration and delayed infraHisian conduction were significant in adult Six5 heterozygous mice. By echocardiography, left ventricular (LV) end-diastolic dimension was enlarged in adult Six5 heterozygous mice, although neither fractioning shortening nor LV wall thickness showed significant differences. Six5 loss may partly contribute to conduction abnormalities in myotonic dystrophy, particularly infraHisian conduction delay, one of the initial phenotypes of adult-onset cardiac conduction abnormalities in DM patients.
Collapse
Affiliation(s)
- Hiroko Wakimoto
- Department of Cardiology, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
520
|
Timchenko LT, Iakova P, Welm AL, Cai ZJ, Timchenko NA. Calreticulin interacts with C/EBPalpha and C/EBPbeta mRNAs and represses translation of C/EBP proteins. Mol Cell Biol 2002; 22:7242-57. [PMID: 12242300 PMCID: PMC139801 DOI: 10.1128/mcb.22.20.7242-7257.2002] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2002] [Revised: 05/15/2002] [Accepted: 07/08/2002] [Indexed: 11/20/2022] Open
Abstract
We previously identified an RNA binding protein, CUGBP1, which binds to GCN repeats located within the 5' region of C/EBPbeta mRNAs and regulates translation of C/EBPbeta isoforms. To further investigate the role of RNA binding proteins in the posttranscriptional control of C/EBP proteins, we purified additional RNA binding proteins that interact with GC-rich RNAs and that may regulate RNA processing. In HeLa cells, the majority of GC-rich RNA binding proteins are associated with endogenous RNA transcripts. The separation of these proteins from endogenous RNA identified several proteins in addition to CUGBP1 that specifically interact with the GC-rich 5' region of C/EBPbeta mRNA. One of these proteins was purified to homogeneity and was identified as calreticulin (CRT). CRT is a multifunctional protein involved in several biological processes, including interaction with and regulation of rubella virus RNA processing. Our data demonstrate that both CUGBP1 and CRT interact with GCU repeats within myotonin protein kinase and with GCN repeats within C/EBPalpha and C/EBPbeta mRNAs. GCN repeats within these mRNAs form stable SL structures. The interaction of CRT with SL structures of C/EBPbeta and C/EBPalpha mRNAs leads to inhibition of translation of C/EBP proteins in vitro and in vivo. Deletions or mutations abolishing the formation of SL structures within C/EBPalpha and C/EBPbeta mRNAs lead to a failure of CRT to inhibit translation of C/EBP proteins. CRT-dependent inhibition of C/EBPalpha is sufficient to block the growth-inhibitory activity of C/EBPalpha. This finding further defines the molecular mechanism for posttranscriptional regulation of the C/EBPalpha and C/EBPbeta proteins.
Collapse
Affiliation(s)
- Lubov T Timchenko
- Department of Pathology and Huffington Center on Aging. Departments of Medicine and Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030,USA
| | | | | | | | | |
Collapse
|
521
|
Ranum LPW, Day JW. Myotonic dystrophy: clinical and molecular parallels between myotonic dystrophy type 1 and type 2. Curr Neurol Neurosci Rep 2002; 2:465-70. [PMID: 12169228 DOI: 10.1007/s11910-002-0074-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Myotonic dystrophy (DM) is a dominantly inherited disorder with a peculiar pattern of multisystemic clinical features affecting skeletal muscle, the heart, the eye, and the endocrine system. Two genetic loci have been associated with the DM phenotype: DM1 on chromosome 19, and DM2 on chromosome 3. In 1992, the mutation responsible for DM1 was identified as a CTG expansion located in the 3' untranslated region of the dystrophica myotonica-protein kinase gene (DMPK). How this untranslated CTG expansion causes DM1 has been a matter of controversy. The recent discovery that DM2 is caused by an untranslated CCTG expansion, along with other discoveries on DM1 pathogenesis, indicate that the clinical features common to both diseases are caused by a gain of function RNA mechanism in which the CUG and CCUG repeats alter cellular function, including alternative splicing of various genes.
Collapse
Affiliation(s)
- Laura P W Ranum
- Institute of Human Genetics, University of Minnesota, MMC 206, 420 Delaware Street SE, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
522
|
Schiavon G, Furlan S, Marin O, Salvatori S. Myotonic dystrophy protein kinase of the cardiac muscle: evaluation using an immunochemical approach. Microsc Res Tech 2002; 58:404-11. [PMID: 12226810 DOI: 10.1002/jemt.10223] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Myotonic dystrophy (DM) is an inherited multisystem disorder characterized by the presence of a high polymorphic expansion of trinucleotide (CTG) repeat in the 3' untranslated region of the DM protein kinase (DMPK) gene. However, the role of myotonic dystrophy protein kinase (DMPK) has yet to be elucidated. Studies aimed to discover possible physiological targets of DMPK indicated several subcellular localization sites, such as neuromuscular junctions, myotendinous junctions, and terminal cisternae of the sarcoplasmic reticulum in the skeletal muscle and intercalated discs in the cardiac muscle. Here, we extend our previous observations on the localization of DMPK at gap junction (GJ) level in the heart, taking advantage of the polyclonal peptide-specific anti-DMPK antibodies raised against two different domains of the protein. DMPK was detected by immunofluorescence at the intercalated disc level by both antibodies. Double immunofluorescence staining experiments performed with each anti-DMPK and anti-connexin43 showed colocalization of the two antigens. Immunoblot analysis of partially purified GJs showed co-sedimentation of DMPK and connexin43. We conclude that GJs are a genuine localization site of DMPK. Given the known regulation exerted by protein kinases on assembly, trafficking, gating, and disassembly of connexins, such a localization may be relevant to the functional role of connexins. DM is the most common muscular dystrophy in adults, and is known by the cardiac involvement that is a common feature in DM patients. Localization of DMPK at GJ in relation to DM is also briefly discussed.
Collapse
Affiliation(s)
- Giorgia Schiavon
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
| | | | | | | |
Collapse
|
523
|
Gromak N, Smith CWJ. A splicing silencer that regulates smooth muscle specific alternative splicing is active in multiple cell types. Nucleic Acids Res 2002; 30:3548-57. [PMID: 12177296 PMCID: PMC134246 DOI: 10.1093/nar/gkf480] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2002] [Revised: 07/01/2002] [Accepted: 07/01/2002] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing of alpha-tropomyosin (alpha-TM) involves mutually exclusive selection of exons 2 and 3. Selection of exon 2 in smooth muscle (SM) cells is due to inhibition of exon 3, which requires both binding sites for polypyrimidine tract-binding protein as well as UGC (or CUG) repeat elements on both sides of exon 3. Point mutations or substitutions of the UGC-containing upstream regulatory element (URE) with other UGC elements disrupted the alpha-TM splicing pattern in transfected cells. Multimerisation of the URE caused enhanced exon skipping in SM and various non-SM cells. In the presence of multiple UREs the degree of splicing regulation was decreased due to the high levels of exon skipping in non-SM cell lines. These results suggest that the URE is not an intrinsically SM- specific element, but that its functional strength is fine tuned to exploit differences in the activities of regulatory factors between SM and other cell types. Co-transfection of tropomyosin reporters with members of the CUG-binding protein family, which are candidate URE-binding proteins, indicated that these factors do not mediate repression of tropomyosin exon 3.
Collapse
Affiliation(s)
- Natalia Gromak
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | |
Collapse
|
524
|
Quintero-Mora ML, Depardon F, Cisneros B. Expanded CTG repeats inhibit neuronal differentiation of the PC12 cell line. Biochem Biophys Res Commun 2002; 295:289-94. [PMID: 12150945 DOI: 10.1016/s0006-291x(02)00660-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Myotonic dystrophy (DM) is a dominant neuromuscular disorder caused by the expansion of trinucleotide CTG repeats in the 3-untranslated region (3'-UTR) of the MtPK gene. Although DM-associated mental retardation suggests that neuronal functions are disturbed by the expansion mutation, the effect of this alteration in neuronal cells has not been approached. In this study we established stable transfectans of PC12 neuronal cell line expressing the reporter gene CAT alone (empty-vector clone) or fused to the MtPK 3'-UTR with 5, 60, or 90 CTG repeats (CTG5, CTG60, and CTG90 clones, respectively). CTG90 cells exhibited a suppression of NGF-induced neuronal differentiation while empty-vector, CTG5 and CTG60 clones differentiated normally. CTG90 cells displayed normal activation of early differentiation markers, ERK1/2, but the up-regulation of the late marker MAP2 was dramatically reduced. Our neuronal cell system provides the first information of how the mutant MtPK 3'-UTR mRNA affects neuronal functions.
Collapse
Affiliation(s)
- María Leonor Quintero-Mora
- Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del IPN, Avenida Instituto Politécnico Nacional 2508, Apartado Postal 14-740, C.P. 07000 Mexico D.F., Mexico
| | | | | |
Collapse
|
525
|
Charlet-B N, Savkur RS, Singh G, Philips AV, Grice EA, Cooper TA. Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell 2002; 10:45-53. [PMID: 12150906 DOI: 10.1016/s1097-2765(02)00572-5] [Citation(s) in RCA: 453] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a dominant multisystemic disorder caused by a CTG expansion in the 3' untranslated region of the DMPK gene. A predominant characteristic of DM1 is myotonia resulting from skeletal muscle membrane hyperexcitability. Here we demonstrate loss of the muscle-specific chloride channel (ClC-1) mRNA and protein in DM1 skeletal muscle tissue due to aberrant splicing of the ClC-1 pre-mRNA. The splicing regulator, CUG binding protein (CUG-BP), which is elevated in DM1 striated muscle, binds to the ClC-1 pre-mRNA, and overexpression of CUG-BP in normal cells reproduces the aberrant pattern of ClC-1 splicing observed in DM1 skeletal muscle. We propose that disruption of alternative splicing regulation causes a predominant pathological feature of DM1.
Collapse
Affiliation(s)
- Nicolas Charlet-B
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
526
|
Mankodi A, Takahashi MP, Jiang H, Beck CL, Bowers WJ, Moxley RT, Cannon SC, Thornton CA. Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell 2002; 10:35-44. [PMID: 12150905 DOI: 10.1016/s1097-2765(02)00563-4] [Citation(s) in RCA: 491] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In myotonic dystrophy (dystrophia myotonica, DM), expression of RNAs that contain expanded CUG or CCUG repeats is associated with degeneration and repetitive action potentials (myotonia) in skeletal muscle. Using skeletal muscle from a transgenic mouse model of DM, we show that expression of expanded CUG repeats reduces the transmembrane chloride conductance to levels well below those expected to cause myotonia. The expanded CUG repeats trigger aberrant splicing of pre-mRNA for ClC-1, the main chloride channel in muscle, resulting in loss of ClC-1 protein from the surface membrane. We also have identified a similar defect in ClC-1 splicing and expression in two types of human DM. We propose that a transdominant effect of mutant RNA on RNA processing leads to chloride channelopathy and membrane hyperexcitability in DM.
Collapse
Affiliation(s)
- Ami Mankodi
- Department of Neurology, School of Medicine and Dentistry, University of Rochester, Box 673, 601 Elmwood Avenue, New York 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
527
|
Abstract
Dominantly inherited diseases are generally caused by mutations resulting in gain of function protein alterations. However, a CTG expansion located in the 3' untranslated portion of a kinase gene was found to cause myotonic dystrophy type 1, a multisystemic dominantly inherited disorder. The recent discovery that an untranslated CCTG expansion causes the same constellation of clinical features in myotonic dystrophy type 2 (DM2), along with other recent discoveries on DM1 pathogenesis, have led to the understanding that both DM1 and DM2 mutations are pathogenic at the RNA level. These findings indicate the existence of a new category of disease wherein repeat expansions in RNA alter cellular function. Pathogenic repeat expansions in RNA may also be involved in spinocerebellar ataxia types 8, 10 and 12, and Huntington's disease-like type 2.
Collapse
Affiliation(s)
- Laura P W Ranum
- Institute of Human Genetics, University of Minnesota, MMC 206, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
528
|
Simard MJ, Chabot B. SRp30c is a repressor of 3' splice site utilization. Mol Cell Biol 2002; 22:4001-10. [PMID: 12024014 PMCID: PMC133842 DOI: 10.1128/mcb.22.12.4001-4010.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2002] [Revised: 02/21/2002] [Accepted: 03/11/2002] [Indexed: 01/04/2023] Open
Abstract
Several intron elements influence exon 7B skipping in the mammalian hnRNP A1 pre-mRNA. We have shown previously that the 38-nucleotide CE9 element located in the intron separating alternative exon 7B from exon 8 can repress the use of a downstream 3' splice site. The ability of CE9 to act on heterologous substrates, combined with the results of competition and gel shift assays, indicates that the activity of CE9 is mediated by a trans-acting factor. UV cross-linking analysis revealed the specific association of a 25-kDa nuclear protein with CE9. Using RNA affinity chromatography, we isolated a 25-kDa protein that binds to CE9 RNA. This protein corresponds to SRp30c. Consistent with a role for SRp30c in the activity of CE9, recombinant SRp30c interacts specifically with CE9 and can promote splicing repression in vitro in a CE9-dependent manner. The closest homologue of SRp30c, ASF/SF2, does not bind to CE9 and does not repress splicing even when the intronic SRp30c binding sites are replaced with high-affinity ASF/SF2 binding sites. Only the first 7 nucleotides of CE9 are sufficient for binding to SRp30c, and mutations that abolish binding also prevent repression. Our results indicate that SRp30c can function as a repressor of 3' splice site utilization and suggest that the SRp30c-CE9 interaction may contribute to the control of hnRNP A1 alternative splicing.
Collapse
Affiliation(s)
- Martin J Simard
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | |
Collapse
|
529
|
Abstract
Hereditary unstable DNA is composed of strings of trinucleotide repeats, in which three nucleotides are repeated over and over (ie CAGCAGCAGCAG). These repeats are found in several sites within genes; depending on their location, the number of triplet repeats in a string can change as it is passed on to offspring. When the number of repeats increases to a critical size, it can have a variety of affects on gene function. The repeats may cause a loss in gene function (as in Fragile X) or may result in the gain of a new, abnormal protein and thus a new function (as in myotonic dystrophy and Huntington disease). Although a variety of trinucleotide repeat diseases have been reported and merit consideration, this discussion will focus primarily on Fragile X syndrome, myotonic dystrophy, and Huntington disease.
Collapse
Affiliation(s)
- Katharine D Wenstrom
- The University of Alabama at Birmingham, Department of Obstetrics and Gynecology, 35249-7333, USA.
| |
Collapse
|
530
|
Biesiadecki BJ, Jin JP. Exon skipping in cardiac troponin T of turkeys with inherited dilated cardiomyopathy. J Biol Chem 2002; 277:18459-68. [PMID: 11886865 DOI: 10.1074/jbc.m200788200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Troponin T is a central component of the thin filament-associated troponin-tropomyosin system and plays an essential role in the Ca(2+) regulation of striated muscle contraction. The importance of the structure and function of troponin T is evident in the regulated isoform expression during development and the point mutations resulting in familial hypertrophic and dilated cardiomyopathies. We report here that turkeys with inherited dilated cardiomyopathy and heart failure express an unusual low molecular weight cardiac troponin T missing 11 amino acids due to the splice out of the normally conserved exon 8-encoded segment. The deletion of a 9-bp segment from intron 7 of the turkey cardiac troponin T gene may be responsible for the weakened splicing of the downstream exon 8 during mRNA processing. The exclusion of the exon 8-encoded segment results in conformational changes in cardiac troponin T, an altered binding affinity for troponin I and tropomyosin, and an increased calcium sensitivity of the actomyosin ATPase. Expression of the exon 8-deleted cardiac troponin T prior to the development of cardiomyopathy in turkeys indicates a novel RNA splicing disease and provides evidence for the role of troponin T structure-function variation in myocardial pathogenesis and heart failure.
Collapse
Affiliation(s)
- Brandon J Biesiadecki
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4970, USA
| | | |
Collapse
|
531
|
Cáceres JF, Kornblihtt AR. Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet 2002; 18:186-93. [PMID: 11932019 DOI: 10.1016/s0168-9525(01)02626-9] [Citation(s) in RCA: 476] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Alternative splicing is an important mechanism for controlling gene expression. It allows large proteomic complexity from a limited number of genes. An interplay of cis-acting sequences and trans-acting factors modulates the splicing of regulated exons. Here, we discuss the roles of the SR and hnRNP families of proteins in this process. We also focus on the role of the transcriptional machinery in the regulation of alternative splicing, and on those alterations of alternative splicing that lead to human disease.
Collapse
Affiliation(s)
- Javier F Cáceres
- MRC Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, UK.
| | | |
Collapse
|
532
|
Abstract
Within the closing decade of the twentieth century, 14 neurological disorders were shown to result from the expansion of unstable trinucleotide repeats, establishing this once unique mutational mechanism as the basis of an expanding class of diseases. Trinucleotide repeat diseases can be categorized into two subclasses based on the location of the trinucleotide repeats: diseases involving noncoding repeats (untranslated sequences) and diseases involving repeats within coding sequences (exonic). The large body of knowledge accumulating in this fast moving field has provided exciting clues and inspired many unresolved questions about the pathogenesis of diseases caused by expanded trinucleotide repeats. This review summarizes the current understanding of the molecular pathology of each of these diseases, starting with a clinical picture followed by a focused description of the disease genes, the proteins involved, and the studies that have lent insight into their pathophysiology.
Collapse
Affiliation(s)
- C J Cummings
- Program in Cell and Molecular Biology, Department of Pediatrics, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
533
|
Suzuki H, Jin Y, Otani H, Yasuda K, Inoue K. Regulation of alternative splicing of alpha-actinin transcript by Bruno-like proteins. Genes Cells 2002; 7:133-41. [PMID: 11895477 DOI: 10.1046/j.1356-9597.2001.00506.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The Bruno-like or CELF proteins, such as mammalian CUGBP1 and Etr-3, Xenopus EDEN-BP, and Drosophila Bruno (Bru), are regulators of gene expression at the post-transcriptional level, and contain three RNA-recognition motifs (RRMs). It has been shown that mammalian CUGBP1 and Etr-3 regulate alternative splicing of cardiac troponin T pre-mRNA via binding to CUG-triplet repeats. RESULTS Using in vitro selection and UV-crosslinking experiments, we found that zebrafish Bruno-like proteins bound to repeat elements of uridine and purine (termed UREs). It is known that non-muscle (NM) and smooth muscle (SM) exons of the rat alpha-actinin gene are used in a mutually exclusive manner. Transfection experiments in mammalian cells showed that zebrafish Brul and Etr-3 induced the muscle-specific splicing of rat alpha-actinin pre-mRNA via binding to the URE at the branch point upstream of the NM exon. In contrast, zebrafish Etr-1 promoted skipping of both the NM and SM exons in a manner which was not dependent on URE-binding. CONCLUSIONS Our results showed that Bruno-like proteins bind to UREs and regulate the alternative splicing of alpha-actinin pre-mRNA. Members of the Bruno family play multiple roles in splicing regulation.
Collapse
Affiliation(s)
- Hitoshi Suzuki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | | | | | | | | |
Collapse
|
534
|
Savić D, Rakocvic-Stojanovic V, Keckarevic D, Culjkovic B, Stojkovic O, Mladenovic J, Todorovic S, Apostolski S, Romac S. 250 CTG repeats in DMPK is a threshold for correlation of expansion size and age at onset of juvenile-adult DM1. Hum Mutat 2002; 19:131-9. [PMID: 11793472 DOI: 10.1002/humu.10027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is associated with an expansion of CTG repeats in the 3'UTR of the DMPK gene. It is accepted, as in other trinucleotide diseases, that the number of the repeats is correlated with age at onset and severity of the disease. However, assessment of genotype-phenotype correlation in DM1 is complicated with the expansion-biased somatic instability of mutant alleles over time and difficulties in precise assessment of the number of repeats by standard Southern blot hybridization. In order to clarify this issue we defined DM1 expansion size in lymphocytes by three parameters: size of progenitor, average, and largest allele, using a more precise small-pool/long-range PCR technique. We found a negative linear correlation of age at onset and average expansion size in juvenile-adult DM1 patients (35 out of 46) whose progenitor allele is less than 245 repeats long. Our result favors the hypothesis of the existence of a threshold in the progenitor allele size beyond which number of CTG repeats does not influence age at onset. Potential clinical significance is that the average allele size could be a useful indicator for the age at onset in juvenile-adult DM1 patients with relatively short progenitor allele. To test whether somatic instability of mutant alleles influences the progression of DM1, patients were divided in three phenotypic classes according to the severity of neuromuscular symptoms. We showed that the largest expansion in each DM1 phenotypic class reflects somatic instability of mutant allele over time independently of progenitor allele size and patient's age at sampling. The mean of the largest expansion was significantly different between phenotypic classes, implying the possible association between expansion-biased somatic instability of mutant alleles over time and progression of neuromuscular symptoms.
Collapse
Affiliation(s)
- Dusanka Savić
- Faculty of Biology, University of Belgrade, Belgrade, Yugoslavia
| | | | | | | | | | | | | | | | | |
Collapse
|
535
|
Paillard L, Legagneux V, Maniey D, Osborne HB. c-Jun ARE targets mRNA deadenylation by an EDEN-BP (embryo deadenylation element-binding protein)-dependent pathway. J Biol Chem 2002; 277:3232-5. [PMID: 11707455 DOI: 10.1074/jbc.m109362200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammalian cells, certain mRNAs encoding cytokines or proto-oncogenes are especially unstable, because of the presence of a particular sequence element in their 3'-untranslated region named ARE (A/U-rich element). AREs cause this instability by provoking the rapid shortening of the poly(A) tail of the mRNA. The deadenylation of mRNAs mediated by AREs containing repeats of the AUUUA motif (class I/II AREs) is conserved in Xenopus embryos. Here, we first extend these observations by showing that c-Jun ARE, a representative of class III (non-AUUUA) AREs, also provokes the deadenylation of a reporter RNA in Xenopus embryos. Next, by immunodepletion and immunoneutralization experiments, we show that, in Xenopus, the rapid deadenylation of RNAs that contain the c-Jun ARE, but not an AUUUA ARE, requires EDEN-BP. This RNA-binding protein was previously shown to provoke the rapid deadenylation of certain Xenopus maternal RNAs. Finally, we show that CUG-BP, the human homologue of EDEN-BP, specifically binds to c-Jun ARE. Together, these results identify CUG-BP as a plausible deadenylation factor responsible for the post-transcriptional control of c-Jun proto-oncogene mRNA in mammalian cells.
Collapse
Affiliation(s)
- Luc Paillard
- CNRS UMR 6061, Université de Rennes 1, Faculté de Médecine, 2 Avenue Léon Bernard, 35043 Rennes Cedex, France.
| | | | | | | |
Collapse
|
536
|
Benson KF, Chada K. Molecular characterization of the mouse In(10)17Rk inversion and identification of a novel muscle-specific gene at the proximal breakpoint. Genetics 2002; 160:279-87. [PMID: 11805063 PMCID: PMC1461926 DOI: 10.1093/genetics/160.1.279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chromosomal rearrangements provide an important resource for molecular characterization of mutations in the mouse. In(10)17Rk mice contain a paracentric inversion of approximately 50 Mb on chromosome 10. Homozygous In(10)17Rk mice exhibit a pygmy phenotype, suggesting that the distal inversion breakpoint is within the pygmy locus. The pygmy mutation, originally isolated in 1944, is an autosomal recessive trait causing a dwarf phenotype in homozygous mice and has been mapped to the distal region of chromosome 10. The pygmy phenotype has subsequently been shown to result from disruption of the Hmgi-c gene. To identify the In(10)17Rk distal inversion breakpoint, In(10)17Rk DNA was subjected to RFLP analysis with single copy sequences derived from the wild-type pygmy locus. This analysis localized the In(10)17Rk distal inversion breakpoint to intron 3 of Hmgi-c and further study determined that a fusion transcript between novel 5' sequence and exons 4 and 5 of Hmgi-c is created. We employed 5' RACE to isolate the 5' end of the fusion transcript and this sequence was localized to the proximal end of chromosome 10 between markers Cni-rs2 and Mtap7. Northern blot analysis of individual tissues of wild-type mice determined that the gene at the In(10)17Rk proximal inversion breakpoint is a novel muscle-specific gene and its disruption does not lead to a readily observable phenotype.
Collapse
Affiliation(s)
- Kathleen F Benson
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA.
| | | |
Collapse
|
537
|
Smith PJ, Spurrell EL, Coakley J, Hinds CJ, Ross RJM, Krainer AR, Chew SL. An exonic splicing enhancer in human IGF-I pre-mRNA mediates recognition of alternative exon 5 by the serine-arginine protein splicing factor-2/alternative splicing factor. Endocrinology 2002; 143:146-54. [PMID: 11751603 DOI: 10.1210/endo.143.1.8598] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human IGF-I gene has six exons, four of which are alternatively spliced. Variations in splicing involving exon 5 may occur, depending on the tissue type and hormonal environment. To study the regulation of splicing to IGF-I exon 5, we established an in vitro splicing assay, using a model pre-mRNA containing IGF-I exons 4 and 5 and part of the intervening intron. Using a series of deletion mutants, we identified an 18-nucleotide purine-rich splicing enhancer in exon 5 that increases the splicing efficiency of the upstream intron from 6 to 35%. We show that the serine-arginine protein splicing factor-2/alternative splicing factor specifically promotes splicing in cultured cells and in vitro and is recruited to the spliceosome in an enhancer-specific manner. Our findings are consistent with a role for splicing factor-2/alternative splicing factor in the regulation of splicing of IGF-I alternative exon 5 via a purine-rich exonic splicing enhancer.
Collapse
Affiliation(s)
- Philip J Smith
- Department of Endocrinology, St. Bartholomew's Hospital, Queen Mary, University of London, London EC1A 7BE, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
538
|
Le Guiner C, Lejeune F, Galiana D, Kister L, Breathnach R, Stévenin J, Del Gatto-Konczak F. TIA-1 and TIAR activate splicing of alternative exons with weak 5' splice sites followed by a U-rich stretch on their own pre-mRNAs. J Biol Chem 2001; 276:40638-46. [PMID: 11514562 DOI: 10.1074/jbc.m105642200] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TIA-1 has recently been shown to activate splicing of specific pre-mRNAs transcribed from transiently transfected minigenes, and of some 5' splice sites in vitro, but has not been shown to activate splicing of any endogenous pre-mRNA. We show here that overexpression of TIA-1 or the related protein TIAR has little effect on splicing of several endogenous pre-mRNAs containing alternative exons, but markedly activates splicing of some normally rarely used alternative exons on the TIA-1 and TIAR pre-mRNAs. These exons have weak 5' splice sites followed by U-rich stretches. When the U-rich stretch following the 5' splice site of a TIA-1 alternative exon was deleted, TIAR overexpression induced use of a cryptic 5' splice site also followed by a U-rich stretch in place of the original splice site. Using in vitro splicing assays, we have shown that TIA-1 is directly involved in activating the 5' splice sites of the TIAR alternative exons. Activation requires a downstream U-rich stretch of at least 10 residues. Our results confirm that TIA-1 activates 5' splice sites followed by U-rich sequences and show that TIAR exerts a similar activity. They suggest that both proteins may autoregulate their expression at the level of splicing.
Collapse
Affiliation(s)
- C Le Guiner
- INSERM U463, Institut de Biologie-CHR, 9 Quai Moncousu, 44093 Nantes Cedex 1, France
| | | | | | | | | | | | | |
Collapse
|
539
|
Furling D, Lemieux D, Taneja K, Puymirat J. Decreased levels of myotonic dystrophy protein kinase (DMPK) and delayed differentiation in human myotonic dystrophy myoblasts. Neuromuscul Disord 2001; 11:728-35. [PMID: 11595515 DOI: 10.1016/s0960-8966(01)00226-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Muscle cell cultures derived from a myotonic dystrophy (DM1) fetus were established in order to determine on the one hand, whether the differentiation of DM1 myoblasts is altered and, on the other hand, whether the levels of myotonic dystrophy protein kinase (DMPK) protein is decreased in DM1 muscle cells. DM1 myoblasts isolated from a quadriceps of a 12-weeks old fetus proliferate at a similar rate as normal myoblasts isolated from a quadriceps of an unaffected 15-weeks old fetus but their maturation is altered as shown by the decreased levels in slow myosin heavy chain protein. In contrast, no change was observed in the expression of vimentin, myogenin and embryonic myosin heavy chain. The levels of DMPK transcripts sharply increased during myoblast differentiation and the mutant DMPK transcripts are retained in discrete foci in the nuclei of muscle cells. The levels of 85-kDa DMPK protein was reduced by about 50% in DM1 cells compared with normal cells. Our study demonstrates that delay in DM1 myoblast maturation is associated with nuclear retention of mutant DMPK transcripts and decreased levels of DMPK protein.
Collapse
Affiliation(s)
- D Furling
- Laboratory of Human Genetics, Department of Medicine, Laval University Medical Research Center, CHUQ, 2705 Boulevard Laurier, Ste-Foy, Quebec, Canada
| | | | | | | |
Collapse
|
540
|
Cooper TA. Highlights of alternative splicing regulation session: yes, no, maybe--a history of paradigm shifts. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:pe35. [PMID: 11675513 DOI: 10.1126/stke.2001.105.pe35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Highlights from the Sixth Annual Meeting of the RNA Society, Banff, Alberta, Canada, 29 May to 3 June 2001. Cooper summarizes the discussions and presentations from the session entitled "Control of Splice Site Selection" held at the Sixth Annual Meeting of the RNA Society. Paradigms are shifting as experiments show that some of the proteins involved in regulating splicing can act as splicing enhancers or repressors, depending on the cellular context. The complex interactions among the ribonucleoproteins (RNPs) and proteins, and the role of cis elements, in controlling cell-specific splicing are highlighted. The importance of properly regulated splicing is emphasized by examples of disease pathologies in which alternative splicing is aberrant.
Collapse
Affiliation(s)
- T A Cooper
- Departments of Pathology and Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
541
|
Siciliano G, Mancuso M, Tedeschi D, Manca ML, Renna MR, Lombardi V, Rocchi A, Martelli F, Murri L. Coenzyme Q10, exercise lactate and CTG trinucleotide expansion in myotonic dystrophy. Brain Res Bull 2001; 56:405-10. [PMID: 11719279 DOI: 10.1016/s0361-9230(01)00653-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Steinert's myotonic dystrophy (DM) is a genetic autosomal dominant disease and the most frequent muscular dystrophy in adulthood. Although causative mutation is recognized as a CTG trinucleotide expansion on 19q13.3, pathogenic mechanisms of multisystem involvement of DM are still under debate. It has been suggested that mitochondrial abnormalities can occur in this disease and deficiency of coenzyme Q 10 (CoQ10) has been considered one possible cause for this. The aim of this investigation was to evaluate, in 35 DM patients, CoQ10 blood levels and relate them to the degree of CTG expansion as well as to the amount of lactate production in exercising muscle as indicator of mitochondrial dysfunction. CoQ10 concentrations appeared significantly reduced with respect to normal controls: 0.85 +/- 0.25 vs. 1.58 +/- 0.28 microg/ml (p < 0.05). Mean values of blood lactate were significantly higher in DM patients than controls (p < 0.05) both in resting conditions (2.9 +/- 0.55 vs. 1.44 +/- 1.11 mmol/L) and at the exercise peak (6.77 +/- 1.79 vs. 4.90 +/- 0.59 mmol/L), while exercise lactate threshold was anticipated (30-50% vs. 60-70% of the predicted normal maximal power output, p < 0.05). Statistical analysis showed that serum CoQ10 levels were significantly (p < 0.05) inversely correlated with both CTG expansion degree and lactate values at exercise lactate threshold level. Our data indicates the occurrence of reduced CoQ10 levels in DM, possibly related to disease pathogenic mechanisms associated with abnormal CTG trinucleotide amplification.
Collapse
Affiliation(s)
- G Siciliano
- Department of Neuroscience, Neurological Clinics, University of Pisa, Pisa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
542
|
Galvão R, Mendes-Soares L, Câmara J, Jaco I, Carmo-Fonseca M. Triplet repeats, RNA secondary structure and toxic gain-of-function models for pathogenesis. Brain Res Bull 2001; 56:191-201. [PMID: 11719250 DOI: 10.1016/s0361-9230(01)00651-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ten years after the discovery of human diseases caused by trinucleotide repeat expansions, searching for mechanistic links between gene mutation and pathological phenotype remains a fundamental and unsolved issue. Evidence accumulated so far indicates that the pathogenesis of repeat disorders is complex and multi-factorial. Diseases caused by CAG expansions coding for polyglutamine tracts have been extensively studied, and in most cases a toxic gain-of-function of the mutant protein was demonstrated. Most recently, tracking the effects of repeats along the pathway of gene expression is providing additional clues to understand how a triplet repeat expansion can cause disease. Expanded repeats form DNA secondary structures that confer genetic instability, and most likely contribute to alter the local chromatin configuration leading to transcriptional silencing. At the level of RNA, the expanded repeat may either interfere with processing of the primary transcript, resulting in deficit of the corresponding protein, or interact with RNA-binding proteins altering their normal activity. The latter mechanism, termed RNA gain-of-function, has no precedents in human genetics. Recent evidence suggests that expanded RNAs and associated RNA-binding proteins are potential contributors to the pathogenesis of several triplet repeat diseases.
Collapse
Affiliation(s)
- R Galvão
- Institute of Histology and Embryology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | | | | | | | | |
Collapse
|
543
|
Abstract
Myotonic dystrophy (DM1) is the most common form of adult muscular dystrophy with an estimated incidence of 1/8000 births. The mutation responsible for this condition is an expanded CTG repeat within the 3' untranslated region of the protein kinase gene DMPK. Strong nucleosome positioning signals created by this expanded repeat cause a reduction in gene expression within the region. This "field effect" is further confounded by the retention of DMPK expansion containing transcripts, which acquire a toxic gain of function. Thus, the various manifestations exhibited by DM1 patients can be explained as a result of gene silencing, nuclear retention and sequestration of nuclear factors by the CUG containing transcript.
Collapse
Affiliation(s)
- K Larkin
- Department of Genetics, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
544
|
Abstract
Tissue-specific alternative splicing profoundly effects animal physiology, development and disease, and this is nowhere more evident than in the nervous system. Alternative splicing is a versatile form of genetic control whereby a common pre-mRNA is processed into multiple mRNA isoforms differing in their precise combination of exon sequences. In the nervous system, thousands of alternatively spliced mRNAs are translated into their protein counterparts where specific isoforms play roles in learning and memory, neuronal cell recognition, neurotransmission, ion channel function, and receptor specificity. The essential nature of this process is underscored by the finding that its misregulation is a common characteristic of human disease. This review highlights the current views of the biological phenomenon of alternative splicing, and describes evidence for its intricate underlying biochemical mechanisms. The roles of RNA binding proteins and their tissue-specific properties are discussed. Why does alternative splicing occur in cosmic proportions in the nervous system? How does it affect integrated cellular functions? How are region-specific, cell-specific and developmental differences in splicing directed? How are the control mechanisms that operate in the nervous system distinct from those of other tissues? Although there are many unanswered questions, substantial progress has been made in showing that alternative splicing is of major importance in generating proteomic diversity, and in modulating protein activities in a temporal and spatial manner. The relevance of alternative splicing to diseases of the nervous system is also discussed.
Collapse
Affiliation(s)
- P J Grabowski
- Department of Biological Sciences, Howard Hughes Medical Institute, A507LH, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA.
| | | |
Collapse
|
545
|
Timchenko NA, Iakova P, Cai ZJ, Smith JR, Timchenko LT. Molecular basis for impaired muscle differentiation in myotonic dystrophy. Mol Cell Biol 2001; 21:6927-38. [PMID: 11564876 PMCID: PMC99869 DOI: 10.1128/mcb.21.20.6927-6938.2001] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Differentiation of skeletal muscle is affected in myotonic dystrophy (DM) patients. Analysis of cultured myoblasts from DM patients shows that DM myoblasts lose the capability to withdraw from the cell cycle during differentiation. Our data demonstrate that the expression and activity of the proteins responsible for cell cycle withdrawal are altered in DM muscle cells. Skeletal muscle cells from DM patients fail to induce cytoplasmic levels of a CUG RNA binding protein, CUGBP1, while normal differentiated cells accumulate CUGBP1 in the cytoplasm. In cells from normal patients, CUGBP1 up-regulates p21 protein during differentiation. Several lines of evidence show that CUGBP1 induces the translation of p21 via binding to a GC-rich sequence located within the 5' region of p21 mRNA. Failure of DM cells to accumulate CUGBP1 in the cytoplasm leads to a significant reduction of p21 and to alterations of other proteins responsible for the cell cycle withdrawal. The activity of cdk4 declines during differentiation of cells from control patients, while in DM cells cdk4 is highly active during all stages of differentiation. In addition, DM cells do not form Rb/E2F repressor complexes that are abundant in differentiated cells from normal patients. Our data provide evidence for an impaired cell cycle withdrawal in DM muscle cells and suggest that alterations in the activity of CUGBP1 causes disruption of p21-dependent control of cell cycle arrest.
Collapse
Affiliation(s)
- N A Timchenko
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
546
|
Eriksson M, Hedberg B, Carey N, Ansved T. Decreased DMPK transcript levels in myotonic dystrophy 1 type IIA muscle fibers. Biochem Biophys Res Commun 2001; 286:1177-82. [PMID: 11527424 DOI: 10.1006/bbrc.2001.5516] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Myotonic dystrophy 1 is caused by the expansion of a CTG trinucleotide repeat on chromosome 19q13.3. The repeat lies in the 3' untranslated region of the myotonic dystrophy protein kinase gene (DMPK), and it has been hypothesised that the expansion alters the expression levels of DMPK and/or its neighbouring genes, DMWD and SIX5. Published data remain controversial, partly due to the mixed cell populations found in most tissues examined. We have microdissected human skeletal muscle biopsies from myotonic dystrophy 1 patients and controls and analysed gene expression at this locus for type I and type IIA fibres, using quantitative real-time reverse transcription-polymerase chain reaction. Levels of DMPK expression were specifically decreased in the type IIA fibres of myotonic dystrophy patients, below the levels found in controls. This suggests that DMPK expression is altered in this disease, suggesting significant pathological consequences.
Collapse
Affiliation(s)
- M Eriksson
- Department of Molecular Medicine, Karolinska Institutet, Karolinska Hospital, Stockholm, 171 76, Sweden.
| | | | | | | |
Collapse
|
547
|
Wilkinson MF, Shyu AB. Multifunctional regulatory proteins that control gene expression in both the nucleus and the cytoplasm. Bioessays 2001; 23:775-87. [PMID: 11536290 DOI: 10.1002/bies.1113] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The multistep pathway of eukaryotic gene expression involves a series of highly regulated events in the nucleus and cytoplasm. In the nucleus, genes are transcribed into pre-messenger RNAs which undergo a series of nuclear processing steps. Mature mRNAs are then transported to the cytoplasm, where they are translated into protein and degraded at a rate dictated by transcript- and cell-type-specific cues. Until recently, these individual nuclear and cytoplasmic events were thought to be primarily regulated by different RNA- and DNA-binding proteins that are localized either only in the nucleus or only the cytoplasm. Here, we describe multifunctional proteins that control both nuclear and cytoplasmic steps of gene expression. One such class of multifunctional proteins (e.g., Bicoid and Y-box proteins) regulates both transcription and translation whereas another class (e.g., Sex-lethal) regulates both nuclear RNA processing and translation. Other events controlled by multifunctional proteins include assembly of spliceosome components, spliceosome recycling, RNA editing, cytoplasmic mRNA localization, and cytoplasmic RNA stability. The existence of multifunctional proteins may explain the paradoxical involvement of the nucleus in an RNA surveillance pathway (nonsense-mediated decay) that detects cytoplasmic signals (premature termination codons). We speculate that shuttling multifunctional proteins serve to efficiently link RNA metabolism in the cytoplasmic and nuclear compartments.
Collapse
Affiliation(s)
- M F Wilkinson
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.
| | | |
Collapse
|
548
|
Frisch R, Singleton KR, Moses PA, Gonzalez IL, Carango P, Marks HG, Funanage VL. Effect of triplet repeat expansion on chromatin structure and expression of DMPK and neighboring genes, SIX5 and DMWD, in myotonic dystrophy. Mol Genet Metab 2001; 74:281-91. [PMID: 11592825 DOI: 10.1006/mgme.2001.3229] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Myotonic dystrophy (DM), an autosomal dominant neuromuscular disease, is associated with expansion of a polymorphic (CTG)n repeat in the 3'-untranslated region of the DM protein kinase (DMPK) gene. The repeat expansion results in decreased levels of DMPK mRNA and protein, but the mechanism for this decreased expression is unknown. Loss of a nuclease-hypersensitive site in the region of the repeat expansion has been observed in muscle and skin fibroblasts from DM patients, indicating a change in local chromatin structure. This change in chromatin structure has been proposed as a mechanism whereby the expression of DMPK and neighboring genes, sine oculis homeobox (Drosophila) homolog 5 (SIX5) and dystrophia myotonica-containing WD repeat motif (DMWD), might be affected. We have developed a polymerase chain reaction (PCR)-based method to assay the chromatin sensitivity of the region adjacent to the repeat expansion in somatic cell hybrids carrying either normal or affected DMPK alleles and show that hybrids carrying expanded alleles exhibit decreased sensitivity to PvuII digestion in this region. Semiquantitative multiplex reverse transcriptase PCR (RT/PCR) assays of gene expression from the chromosomes carrying the expanded alleles showed marked reduction of DMPK mRNA, partial inhibition of SIX5 expression from a congenital DM chromosome, and no reduction of DMWD mRNA. Nested RT/PCR analysis of DMPK mRNA from somatic cell hybrids carrying the repeat expansions revealed that most of the DMPK transcripts expressed from the expanded alleles lacked exons 13 and 14, whereas full-length transcripts were expressed predominantly from the normal alleles. These results suggest that the CTG repeat expansion leads to a decrease in DMPK mRNA levels by affecting splicing at the 3' end of the DMPK pre-mRNA transcript.
Collapse
Affiliation(s)
- R Frisch
- Department of Medical Research, Nemours Children's Clinic, Wilmington, Delaware 19803, USA
| | | | | | | | | | | | | |
Collapse
|
549
|
Savkur RS, Philips AV, Cooper TA. Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet 2001; 29:40-7. [PMID: 11528389 DOI: 10.1038/ng704] [Citation(s) in RCA: 585] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is caused by a CTG trinucleotide expansion in the 3' untranslated region of the DM protein kinase gene. People with DM1 have an unusual form of insulin resistance caused by a defect in skeletal muscle. Here we demonstrate that alternative splicing of the insulin receptor (IR) pre-mRNA is aberrantly regulated in DM1 skeletal muscle tissue, resulting in predominant expression of the lower-signaling nonmuscle isoform (IR-A). IR-A also predominates in DM1 skeletal muscle cultures, which exhibit a decreased metabolic response to insulin relative to cultures from normal controls. Steady-state levels of CUG-BP, a regulator of pre-mRNA splicing proposed to mediate some aspects of DM1 pathogenesis, are increased in DM1 skeletal muscle; overexpression of CUG-BP in normal cells induces a switch to IR-A. The CUG-BP protein mediates this switch through an intronic element located upstream of the alternatively spliced exon 11, and specifically binds within this element in vitro. These results support a model in which increased expression of a splicing regulator contributes to insulin resistance in DM1 by affecting IR alternative splicing.
Collapse
Affiliation(s)
- R S Savkur
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| | | | | |
Collapse
|
550
|
Liquori CL, Ricker K, Moseley ML, Jacobsen JF, Kress W, Naylor SL, Day JW, Ranum LP. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 2001; 293:864-7. [PMID: 11486088 DOI: 10.1126/science.1062125] [Citation(s) in RCA: 871] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Myotonic dystrophy (DM), the most common form of muscular dystrophy in adults, can be caused by a mutation on either chromosome 19q13 (DM1) or 3q21 (DM2/PROMM). DM1 is caused by a CTG expansion in the 3' untranslated region of the dystrophia myotonica-protein kinase gene (DMPK). Several mechanisms have been invoked to explain how this mutation, which does not alter the protein-coding portion of a gene, causes the specific constellation of clinical features characteristic of DM. We now report that DM2 is caused by a CCTG expansion (mean approximately 5000 repeats) located in intron 1 of the zinc finger protein 9 (ZNF9) gene. Parallels between these mutations indicate that microsatellite expansions in RNA can be pathogenic and cause the multisystemic features of DM1 and DM2.
Collapse
Affiliation(s)
- C L Liquori
- Institute of Human Genetics; MMC 206, 420 Delaware Street SE, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|