501
|
C-peptide: a new mediator of atherosclerosis in diabetes. Mediators Inflamm 2012; 2012:858692. [PMID: 22547909 PMCID: PMC3321614 DOI: 10.1155/2012/858692] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/11/2012] [Accepted: 01/11/2012] [Indexed: 12/31/2022] Open
Abstract
Diabetes type 2 and insulin resistance are the risk factors for cardiovascular disease. It is already known that atherosclerosis is an inflammatory disease, and a lot of different factors are involved in its onset. C-peptide is a cleavage product of proinsulin, an active substance with a number of effects within different complications of diabetes. In this paper we discuss the role of C-peptide and its effects in the development of atherosclerosis in type 2 diabetic patients.
Collapse
|
502
|
van der Meer AD, van den Berg A. Organs-on-chips: breaking the in vitro impasse. Integr Biol (Camb) 2012; 4:461-70. [PMID: 22388577 DOI: 10.1039/c2ib00176d] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In vitro models of biological tissues are indispensable tools for unraveling human physiology and pathogenesis. They usually consist of a single layer of a single cell type, which makes them robust and suitable for parallelized research. However, due to their simplicity, in vitro models are also less valid as true reflections of the complex biological tissues of the human body. Even though the realism of the models can be increased by including more cell types, this will inevitably lead to a decrease in robustness and throughput. The constant trade-off between realism and simplicity has led to an impasse in the development of new in vitro models. Organs-on-chips, a class of microengineered in vitro tissue models, have the potential to break the in vitro impasse. These models combine an artificially engineered, physiologically realistic cell culture microenvironment with the potential for parallelization and increased throughput. They are robust, because the engineered physiological, organ-level features such as tissue organization, geometry, soluble gradients and mechanical stimulation are well-defined and controlled. Moreover, their microfluidic properties and integrated sensors pave the way for high-throughput studies. In this review, we define the in vitro impasse, we explain why organs-on-chips have the potential to break the impasse and we formulate a view on the future of the field. We focus on the design philosophy of organs-on-chips, the integration of technology and biology and on how to connect to the potential end-users.
Collapse
Affiliation(s)
- Andries D van der Meer
- BIOS/Lab on a Chip group, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands
| | | |
Collapse
|
503
|
Reddy MA, Jin W, Villeneuve L, Wang M, Lanting L, Todorov I, Kato M, Natarajan R. Pro-inflammatory role of microrna-200 in vascular smooth muscle cells from diabetic mice. Arterioscler Thromb Vasc Biol 2012; 32:721-9. [PMID: 22247255 PMCID: PMC3288534 DOI: 10.1161/atvbaha.111.241109] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Vascular smooth muscle cells (VSMC) from type 2 diabetic db/db mice exhibit enhanced proinflammatory responses implicated in accelerated vascular complications. We examined the role of microRNA(miR)-200 family members and their target Zeb1, an E-box binding transcriptional repressor, in these events. METHODS AND RESULTS The expression levels of miR-200b, miR-200c, and miR-429 were increased, although protein levels of Zeb1 were decreased in VSMC and aortas from db/db mice relative to control db/+ mice. Transfection of miR-200 mimics into VSMC downregulated Zeb1 by targeting its 3'-UTR, upregulated the inflammatory genes cyclooxygenase-2 and monocyte chemoattractant protein-1, and promoted monocyte binding in db/+VSMC. In contrast, miR-200 inhibitors reversed the enhanced monocyte binding of db/dbVSMC. Zeb1 gene silencing with siRNAs also increased these proinflammatory responses in db/+VSMC confirming negative regulatory role of Zeb1. Both miR-200 mimics and Zeb1 siRNAs increased cyclooxygenase-2 promoter transcriptional activity. Chromatin immunoprecipitation showed that Zeb1 occupancy at inflammatory gene promoters was reduced in VSMC from type 2 diabetic db/db mice. Furthermore, Zeb1 knockdown increased miR-200 levels demonstrating a feedback regulatory loop. CONCLUSION Disruption of the reciprocal negative regulatory loop between miR-200 and Zeb1 under diabetic conditions enhances proinflammatory responses of VSMC implicated in vascular complications.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Aorta, Thoracic/immunology
- Aorta, Thoracic/metabolism
- Binding Sites
- Cells, Cultured
- Chemokine CCL2/genetics
- Chemokine CCL2/metabolism
- Chromatin Immunoprecipitation
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/metabolism
- Diabetic Angiopathies/genetics
- Diabetic Angiopathies/immunology
- Diabetic Angiopathies/metabolism
- Disease Models, Animal
- Down-Regulation
- Feedback, Physiological
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation Mediators/metabolism
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Male
- Mice
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/immunology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/immunology
- Myocytes, Smooth Muscle/metabolism
- RNA Interference
- Transfection
- Up-Regulation
- Zinc Finger E-box-Binding Homeobox 1
Collapse
Affiliation(s)
- Marpadga A Reddy
- Department of Diabetes, Beckman Research Institute of City Of Hope, Duarte, CA 91010
| | - Wen Jin
- Department of Diabetes, Beckman Research Institute of City Of Hope, Duarte, CA 91010
| | - Louisa Villeneuve
- Department of Diabetes, Beckman Research Institute of City Of Hope, Duarte, CA 91010
| | - Mei Wang
- Department of Diabetes, Beckman Research Institute of City Of Hope, Duarte, CA 91010
| | - Linda Lanting
- Department of Diabetes, Beckman Research Institute of City Of Hope, Duarte, CA 91010
| | - Ivan Todorov
- Department of Diabetes, Beckman Research Institute of City Of Hope, Duarte, CA 91010
| | - Mitsuo Kato
- Department of Diabetes, Beckman Research Institute of City Of Hope, Duarte, CA 91010
| | - Rama Natarajan
- Department of Diabetes, Beckman Research Institute of City Of Hope, Duarte, CA 91010
| |
Collapse
|
504
|
Liu S, Lv J, Han L, Ichikawa T, Wang W, Li S, Wang XL, Tang D, Cui T. A pro-inflammatory role of deubiquitinating enzyme cylindromatosis (CYLD) in vascular smooth muscle cells. Biochem Biophys Res Commun 2012; 420:78-83. [PMID: 22406061 DOI: 10.1016/j.bbrc.2012.02.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 02/18/2012] [Indexed: 12/17/2022]
Abstract
CYLD, a deubiquitinating enzyme (DUB), is a critical regulator of diverse cellular processes, ranging from proliferation and differentiation to inflammatory responses, via regulating multiple key signaling cascades such as nuclear factor kappa B (NF-κB) pathway. CYLD has been shown to inhibit vascular lesion formation presumably through suppressing NF-κB activity in vascular cells. However, herein we report a novel role of CYLD in mediating pro-inflammatory responses in vascular smooth muscle cells (VSMCs) via a mechanism independent of NF-κB activity. Adenoviral knockdown of Cyld inhibited basal and the tumor necrosis factor alpha (TNFα)-induced mRNA expression of pro-inflammatory cytokines including monocyte chemotactic protein-1 (Mcp-1), intercellular adhesion molecule (Icam-1) and interleukin-6 (Il-6) in rat adult aortic SMCs (RASMCs). The CYLD deficiency led to increases in the basal NF-κB transcriptional activity in RASMCs; however, did not affect the TNFα-induced NF-κB activity. Intriguingly, the TNFα-induced IκB phosphorylation was enhanced in the CYLD deficient RASMCs. While knocking down of Cyld decreased slightly the basal expression levels of IκBα and IκBβ proteins, it did not alter the kinetics of TNFα-induced IκB protein degradation in RASMCs. These results indicate that CYLD suppresses the basal NF-κB activity and TNFα-induced IκB kinase activation without affecting TNFα-induced NF-κB activity in VSMCs. In addition, knocking down of Cyld suppressed TNFα-induced activation of mitogen activated protein kinases (MAPKs) including extracellular signal-activated kinases (ERK), c-Jun N-terminal kinase (JNK), and p38 in RASMCs. TNFα-induced RASMC migration and monocyte adhesion to RASMCs were inhibited by the Cyld knockdown. Finally, immunochemical staining revealed a dramatic augment of CYLD expression in the injured coronary artery with neointimal hyperplasia. Taken together, our results uncover an unexpected role of CYLD in promoting inflammatory responses in VSMCs via a mechanism involving MAPK activation but independent of NF-κB activity, contributing to the pathogenesis of vascular disease.
Collapse
Affiliation(s)
- Shuai Liu
- Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012, China
| | | | | | | | | | | | | | | | | |
Collapse
|
505
|
Nazari-Jahantigh M, Wei Y, Schober A. The role of microRNAs in arterial remodelling. Thromb Haemost 2012; 107:611-8. [PMID: 22371089 DOI: 10.1160/th11-12-0826] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/13/2012] [Indexed: 01/13/2023]
Abstract
Adaptive alterations of the vessel wall architecture, called vascular remodelling, can be found in arterial hypertension, during the formation of aneurysms, in restenosis after vascular interventions, and in atherosclerosis. MicroRNAs (miR) critically affect the main cellular players in arterial remodelling and may either promote or inhibit the structural changes in the vessel wall. They regulate the phenotype of smooth muscle cells (SMCs) and control the inflammatory response in endothelial cells and macrophages. In SMCs, different sets of miRs induce either a synthetic or contractile phenotype, respectively. The conversion into a synthetic SMC phenotype is a crucial event in arterial remodelling. Therefore, reprogramming of the SMC phenotype by miR targeting can modulate the remodelling process. Furthermore, the effects of stimuli that induce remodelling, such as shear stress, angiotensin II, oxidised low-density lipoprotein, or apoptosis, on endothelial cells are mediated by miRs. The endothelial cell-specific miR-126, for example, is transferred in microvesicles from apoptotic endothelial cells and plays a protective role in atherogenesis. The inflammatory response of the innate immune system, especially through macrophages, promotes arterial remodelling. miR-155 induces the expression of inflammatory cytokines, whereas miR-146a and miR-147 are involved in the resolution phase of inflammation. However, in vivo data on the role of miRs in vascular remodelling are still scarce, which are required to test the therapeutic potential of the available, highly effective miR inhibitors.
Collapse
Affiliation(s)
- M Nazari-Jahantigh
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | | | | |
Collapse
|
506
|
Genomic research to identify novel pathways in the development of abdominal aortic aneurysm. Cardiol Res Pract 2012; 2012:852829. [PMID: 22400124 PMCID: PMC3286885 DOI: 10.1155/2012/852829] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/27/2011] [Indexed: 11/18/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a common disease with a large heritable component. There is a need to improve our understanding of AAA pathogenesis in order to develop novel treatment paradigms. Genomewide association studies have revolutionized research into the genetic variants that underpin the development of many complex diseases including AAA. This article reviews the progress that has been made to date in this regard, including mechanisms by which loci identified by GWAS may contribute to the development of AAA. It also highlights potential post-GWAS analytical strategies to improve our understanding of the disease further.
Collapse
|
507
|
Greig FH, Kennedy S, Spickett CM. Physiological effects of oxidized phospholipids and their cellular signaling mechanisms in inflammation. Free Radic Biol Med 2012; 52:266-80. [PMID: 22080084 DOI: 10.1016/j.freeradbiomed.2011.10.481] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/25/2011] [Accepted: 10/25/2011] [Indexed: 12/31/2022]
Abstract
Oxidized phospholipids, such as the products of the oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine by nonenzymatic radical attack, are known to be formed in a number of inflammatory diseases. Interest in the bioactivity and signaling functions of these compounds has increased enormously, with many studies using cultured immortalized and primary cells, tissues, and animals to understand their roles in disease pathology. Initially, oxidized phospholipids were viewed largely as culprits, in line with observations that they have proinflammatory effects, enhancing inflammatory cytokine production, cell adhesion and migration, proliferation, apoptosis, and necrosis, especially in vascular endothelial cells, macrophages, and smooth muscle cells. However, evidence has emerged that these compounds also have protective effects in some situations and cell types; a notable example is their ability to interfere with signaling by certain Toll-like receptors (TLRs) induced by microbial products that normally leads to inflammation. They also have protective effects via the stimulation of small GTPases and induce up-regulation of antioxidant enzymes and cytoskeletal rearrangements that improve endothelial barrier function. Oxidized phospholipids interact with several cellular receptors, including scavenger receptors, platelet-activating factor receptors, peroxisome proliferator-activated receptors, and TLRs. The various and sometimes contradictory effects that have been observed for oxidized phospholipids depend on their concentration, their specific structure, and the cell type investigated. Nevertheless, the underlying molecular mechanisms by which oxidized phospholipids exert their effects in various pathologies are similar. Although our understanding of the actions and mechanisms of these mediators has advanced substantially, many questions do remain about their precise interactions with components of cell signaling pathways.
Collapse
Affiliation(s)
- Fiona H Greig
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | | |
Collapse
|
508
|
Zhao H, Li M, Wang L, Su Y, Fang H, Lin J, Mohabeer N, Li D. Angiotensin II Induces TSLP via an AT1 Receptor/NF-KappaB Pathway, Promoting Th17 Differentiation. Cell Physiol Biochem 2012; 30:1383-97. [DOI: 10.1159/000343327] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2012] [Indexed: 12/28/2022] Open
|
509
|
Lang Y, Chen D, Li D, Zhu M, Xu T, Zhang T, Qian W, Luo Y. Luteolin inhibited hydrogen peroxide-induced vascular smooth muscle cells proliferation and migration by suppressing the Src and Akt signalling pathways. J Pharm Pharmacol 2011; 64:597-603. [PMID: 22420665 DOI: 10.1111/j.2042-7158.2011.01438.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract
Objectives
Luteolin is a naturally occurring flavonoid found in many vegetables, fruits and medicinal plants. The migration and proliferation of vascular smooth muscle cells (VSMCs) are the critical pathological processes in various cardiovascular diseases, such as atherosclerosis. In this study, we investigated the effect of luteolin and its latent mechanism on the proliferation and migration of VSMCs stimulated by hydrogen peroxide (H2O2).
Methods
VSMC proliferation and cell viability was assayed using the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) method or by cell counting, and H2O2-elicited migration of VSMCs was measured using a transwell migration assay. The phosphorylation levels of Src, 3-phosphoinositide-dependent kinase 1 (PDK1) and Akt (protein kinase B) were analysed by immunoblotting.
Key findings
This study demonstrated that luteolin showed a particularly inhibitory effect on H2O2-elicited VSMC proliferation and migration. In previous research, we originally explored the function of luteolin in blocking H2O2-triggered Src and Akt signalling pathways. The activation of Src, PDK1, Akt (308), Akt (473) in the luteolin-treated group was significantly lower than that seen in the H2O2 group.
Conclusions
These findings strongly suggested that luteolin suppresses H2O2-directed migration and proliferation in VSMCs partially due to down-regulation of the Akt and Src signalling pathways, which are important participants in the processes of migration and proliferation of VSMCs.
Collapse
Affiliation(s)
- Yasong Lang
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, China
| | - Dan Chen
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, China
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, China
| | - Manyi Zhu
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, China
| | - Tongda Xu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Tian Zhang
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, China
| | - Wenhao Qian
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Yuanyuan Luo
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| |
Collapse
|
510
|
Liu YM, Wang X, Nawaz A, Kong ZH, Hong Y, Wang CH, Zhang JJ. Wogonin ameliorates lipotoxicity-induced apoptosis of cultured vascular smooth muscle cells via interfering with DAG-PKC pathway. Acta Pharmacol Sin 2011; 32:1475-1482. [PMID: 21986573 PMCID: PMC4010212 DOI: 10.1038/aps.2011.120] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 07/25/2011] [Indexed: 02/08/2023]
Abstract
AIM To investigate the effects of wogonin (5,7-dihydroxy-8-methoxyflavone) extracted from Scutellaria baicalensis Georgi (S baicalensis) on lipotoxicity-induced apoptosis of vascular smooth muscle cells (VSMCs) and the underlying mechanisms. METHODS Cultured VSMCs were used. Apoptosis of VSMCs was induced by palmitate (0.75 mmol/L), and detected using TUNEL assay. The expression levels of protein and phosphorylated protein were measured using Western blot analysis. RESULTS Treatment of VSMCs with wogonin (10, 25 and 50 μmol/L) significantly attenuated the apoptosis and endoplasmic reticulum (ER) stress induced by palmitate in concentration- and time-dependent manners. Wogonin (50 μmol/L) decreased palmitate-induced reactive oxygen species (ROS) generation. The ER stress inhibitor 4-phenyl butyric acid (5 mmol/L) significantly decreased palmitate-induced apoptotic cells, and occluded the anti-apoptotic effect of wogonin (25 μmol/L). Wogonin (10, 25 and 50 μmol/L) significantly reduced the intracellular diacylglycerol (DAG) accumulation and expression levels of phosphorylated PKCs in palmitate-treated VSMCs. CONCLUSION Our results suggest that wogonin inhibits lipotoxicity-induced apoptosis of VSMCs via suppressing the intracellular DAG accumulation and subsequent inhibition of PKC phosphorylation. Wogonin has therapeutic potential for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yu-min Liu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiong Wang
- Department of Pathophysiology, Hubei University of Medicine, Shiyan 442000, China
| | - Ahmed Nawaz
- Department of Pathophysiology, Wuhan University School of Medicine, Wuhan 430070, China
| | - Zhao-hong Kong
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yan Hong
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chang-hua Wang
- Department of Pathophysiology, Wuhan University School of Medicine, Wuhan 430070, China
| | - Jun-jian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
511
|
Rensing KL, Reuwer AQ, Arsenault BJ, von der Thüsen JH, Hoekstra JBL, Kastelein JJP, Twickler TB. Reducing cardiovascular disease risk in patients with type 2 diabetes and concomitant macrovascular disease: can insulin be too much of a good thing? Diabetes Obes Metab 2011; 13:1073-87. [PMID: 21736687 DOI: 10.1111/j.1463-1326.2011.01468.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Despite improvement of microvascular outcomes as a consequence of optimal glucose control in patients with type 2 diabetes, prevention of macrovascular complications is still a major challenge. Of interest, large-scale intervention studies (Action to Control Cardiovascular Risk in Diabetes, Action in Diabetes and Vascular Disease-Preterax and Diamicron Modified Release Controlled Evaluation and Veterans Affairs Diabetes Trial) comparing standard therapy versus more intensive glucose-lowering therapy failed to report beneficial impacts on macrovascular outcomes. Consequently, it is currently under debate whether the high doses of exogenous insulin that were administered in these trials to achieve strict target glucose levels could be responsible for these unexpected outcomes. Additionally, a potential role for plasma insulin levels in predicting macrovascular outcomes has emerged in patients with or without type 2 diabetes. These observations, combined with evidence from in vitro and animal experiments, suggest that insulin might have intrinsic atherogenic effects. In this review, we summarize clinical trials, population-based studies as well as data emerging from basic science experiments that point towards the hypothesis that the administration of high insulin doses might not be beneficial in patients with type 2 diabetes and established macrovascular disease.
Collapse
Affiliation(s)
- K L Rensing
- Department of Vascular Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|
512
|
Cheng XW, Huang Z, Kuzuya M, Okumura K, Murohara T. Cysteine Protease Cathepsins in Atherosclerosis-Based Vascular Disease and Its Complications. Hypertension 2011; 58:978-86. [PMID: 21986502 DOI: 10.1161/hypertensionaha.111.180935] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xian Wu Cheng
- From the Departments of Cardiology (X.W.C., K.O., T.M.) and Geriatrics (Z.H., M.K.), Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Cardiology (X.W.C.), Yanbian University Hospital, Yanji, Jilin Province, China; Department of Internal Medicine (X.W.C.), Kyung Hee University Hospital, Seoul, Korea
| | - Zhe Huang
- From the Departments of Cardiology (X.W.C., K.O., T.M.) and Geriatrics (Z.H., M.K.), Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Cardiology (X.W.C.), Yanbian University Hospital, Yanji, Jilin Province, China; Department of Internal Medicine (X.W.C.), Kyung Hee University Hospital, Seoul, Korea
| | - Masafumi Kuzuya
- From the Departments of Cardiology (X.W.C., K.O., T.M.) and Geriatrics (Z.H., M.K.), Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Cardiology (X.W.C.), Yanbian University Hospital, Yanji, Jilin Province, China; Department of Internal Medicine (X.W.C.), Kyung Hee University Hospital, Seoul, Korea
| | - Kenji Okumura
- From the Departments of Cardiology (X.W.C., K.O., T.M.) and Geriatrics (Z.H., M.K.), Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Cardiology (X.W.C.), Yanbian University Hospital, Yanji, Jilin Province, China; Department of Internal Medicine (X.W.C.), Kyung Hee University Hospital, Seoul, Korea
| | - Toyoaki Murohara
- From the Departments of Cardiology (X.W.C., K.O., T.M.) and Geriatrics (Z.H., M.K.), Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Cardiology (X.W.C.), Yanbian University Hospital, Yanji, Jilin Province, China; Department of Internal Medicine (X.W.C.), Kyung Hee University Hospital, Seoul, Korea
| |
Collapse
|
513
|
Schuett H, Oestreich R, Waetzig GH, Annema W, Luchtefeld M, Hillmer A, Bavendiek U, von Felden J, Divchev D, Kempf T, Wollert KC, Seegert D, Rose-John S, Tietge UJF, Schieffer B, Grote K. Transsignaling of interleukin-6 crucially contributes to atherosclerosis in mice. Arterioscler Thromb Vasc Biol 2011; 32:281-90. [PMID: 22075248 DOI: 10.1161/atvbaha.111.229435] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Transsignaling of interleukin (IL)-6 is a central pathway in the pathogenesis of disorders associated with chronic inflammation, such as Crohn disease, rheumatoid arthritis, and inflammatory colon cancer. Notably, IL-6 also represents an independent risk factor for coronary artery disease (CAD) in humans and is crucially involved in vascular inflammatory processes. METHODS AND RESULTS In the present study, we showed that treatment with a fusion protein of the natural IL-6 transsignaling inhibitor soluble glycoprotein 130 (sgp130) and IgG1-Fc (sgp130Fc) dramatically reduced atherosclerosis in hypercholesterolemic Ldlr(-/-) mice without affecting weight gain and serum lipid levels. Moreover, sgp130Fc treatment even led to a significant regression of advanced atherosclerosis. Mechanistically, endothelial activation and intimal smooth muscle cell infiltration were decreased in sgp130Fc-treated mice, resulting in a marked reduction of monocyte recruitment and subsequent atherosclerotic plaque progression. Of note, patients with CAD exhibited significantly lower plasma levels of endogenous sgp130, suggesting that a compromised counterbalancing of IL-6 transsignaling may contribute to atherogenesis in humans. CONCLUSIONS These data clarify, for the first time, the critical involvement of, in particular, the transsignaling of IL-6 in CAD and warrant further investigation of sgp130Fc as a novel therapeutic for the treatment of CAD and related diseases.
Collapse
Affiliation(s)
- Harald Schuett
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
514
|
Vaspin prevents TNF-α-induced intracellular adhesion molecule-1 via inhibiting reactive oxygen species-dependent NF-κB and PKCθ activation in cultured rat vascular smooth muscle cells. Pharmacol Res 2011; 64:493-500. [DOI: 10.1016/j.phrs.2011.06.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 06/02/2011] [Accepted: 06/02/2011] [Indexed: 11/19/2022]
|
515
|
Huang D, Wang Y, Wang L, Zhang F, Deng S, Wang R, Zhang Y, Huang K. Poly(ADP-ribose) polymerase 1 is indispensable for transforming growth factor-β Induced Smad3 activation in vascular smooth muscle cell. PLoS One 2011; 6:e27123. [PMID: 22073128 PMCID: PMC3205050 DOI: 10.1371/journal.pone.0027123] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 10/11/2011] [Indexed: 12/31/2022] Open
Abstract
Background Transforming growth factor type-β (TGF-β)/Smad pathway plays an essential role in vascular fibrosis. Reactive oxygen species (ROS) generation also mediates TGF-β signaling-induced vascular fibrosis, suggesting that some sort of interaction exists between Smad and redox pathways. However, the underlying molecular mechanism is largely unknown. This study aims to investigate the influence of poly(ADP-ribose) polymerase 1 (PARP1), a downstream effector of ROS, on TGF-β signaling transduction through Smad3 pathway in rat vascular smooth muscle cells (VSMCs). Methods and Results TGF-β1 treatment promoted PARP1 activation through induction of ROS generation in rat VSMCs. TGF-β1-induced phosphorylation and nuclear accumulation of Smad3 was prevented by treatment of cells with PARP inhibitor, 3-aminobenzamide (3AB) or N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-2-(N,N-dimethylamino)acetami (PJ34), or PARP1 siRNA. TGF-β1 treatment promoted poly(ADP-ribosy)lation of Smad3 via activation of PARP1 in the nucleus. Poly(ADP-ribosy)lation enhanced Smad-Smad binding element (SBE) complex formation in nuclear extracts and increased DNA binding activity of Smad3. Pretreatment with 3AB, PJ34, or PARP1 siRNA prevented TGF-β1-induced Smad3 transactivation and expression of Smad3 target genes, including collagen Iα1, collagen IIIα1 and tissue inhibitor of metalloproteinase 1, in rat VSMCs. Conclusions PARP1 is indispensable for TGF-β1 induced Smad3 activation in rat VSMCs. Targeting PARP1 may be a promising therapeutic approach against vascular diseases induced by dysregulation of TGF-β/Smad3 pathway.
Collapse
MESH Headings
- Animals
- Benzamides/pharmacology
- Blotting, Southwestern
- Blotting, Western
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cells, Cultured
- Electrophoretic Mobility Shift Assay
- Enzyme Inhibitors/pharmacology
- Enzyme-Linked Immunosorbent Assay
- Fluorescent Antibody Technique
- Immunoenzyme Techniques
- Immunoprecipitation
- Luciferases/metabolism
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Phenanthrenes/pharmacology
- Phosphorylation/drug effects
- Poly(ADP-ribose) Polymerase Inhibitors
- Poly(ADP-ribose) Polymerases/genetics
- Poly(ADP-ribose) Polymerases/metabolism
- Promoter Regions, Genetic
- Protein Binding
- RNA, Messenger/genetics
- RNA, Small Interfering/pharmacology
- Rats
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Real-Time Polymerase Chain Reaction
- Signal Transduction/drug effects
- Smad3 Protein/genetics
- Smad3 Protein/metabolism
- Trans-Activators
- Transcription, Genetic
- Transfection
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Dan Huang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Wang
- Central Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengxiao Zhang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Deng
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Wang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
- * E-mail: (KH); (YZ)
| | - Kai Huang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
- * E-mail: (KH); (YZ)
| |
Collapse
|
516
|
Fei J, Cook C, Gillespie M, Yu B, Fullen K, Santanam N. Atherogenic ω-6 Lipids Modulate PPAR- EGR-1 Crosstalk in Vascular Cells. PPAR Res 2011; 2011:753917. [PMID: 22135674 PMCID: PMC3205716 DOI: 10.1155/2011/753917] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 06/17/2011] [Accepted: 07/11/2011] [Indexed: 02/03/2023] Open
Abstract
Atherogenic ω-6 lipids are physiological ligands of peroxisome proliferator-activated receptors (PPARs) and elicit pro- and antiatherogenic responses in vascular cells. The objective of this study was to investigate if ω-6 lipids modulated the early growth response-1 (Egr-1)/PPAR crosstalk thereby altering vascular function. Rat aortic smooth muscle cells (RASMCs) were exposed to ω-6 lipids, linoleic acid (LA), or its oxidized form, 13-HPODE (OxLA) in the presence or absence of a PPARα antagonist (MK886) or PPARγ antagonist (GW9662) or PPAR-specific siRNA. Our results demonstrate that ω-6 lipids, induced Egr-1 and monocyte chemotactic protein-1 (MCP-1) mRNA and protein levels at the acute phase (1-4 hrs) when PPARα was downregulated and at subacute phase (4-12 hrs) by modulating PPARγ, thus resulting in altered monocyte adhesion to RASMCs. We provide novel insights into the mechanism of action of ω-6 lipids on Egr-1/PPAR interactions in vascular cells and their potential in altering vascular function.
Collapse
Affiliation(s)
- Jia Fei
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Carla Cook
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Miriah Gillespie
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Bangning Yu
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA, USA
| | - Khyra Fullen
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Nalini Santanam
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
517
|
Zhao W, Zhao SP, Peng DQ. The effects of myocyte enhancer factor 2A gene on the proliferation, migration and phenotype of vascular smooth muscle cells. Cell Biochem Funct 2011; 30:108-13. [PMID: 22028303 DOI: 10.1002/cbf.1823] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/18/2011] [Accepted: 09/27/2011] [Indexed: 11/10/2022]
Abstract
The genetic basis for the phenotypic switching of vascular smooth muscle cells (VSMCs) is unclear in atherosclerosis. Recent studies showed that the 21-base pair deletion mutation (Δ21) in myocyte enhancer factor 2A (MEF2A) gene could be an inherited marker for coronary artery disease. MEF2A mutation may affect the phenotypic switching of VSMCs. Human aortic VSMCs were used. Four groups of VSMCs transfected with green fluorescent protein plasmid (control group), MEF2A wild-type (WT) plasmid (WT group), MEF2A Δ21 plasmid (Δ21 group) or MEF2A siRNA (siRNA group) were studied. The proliferation of VSMCs was determined by methylthiazolyldiphenyl-tetrazolium bromide, and the migration of VSMCs was measured by Millicell chamber. The protein expressions of MEF2A, smooth muscle α-actin, SM22α, osteopontin and p38 mitogen-activated protein kinase signaling pathway were detected by Western blotting. MEF2A protein expression was knockdown by siRNA transfection. MEF2A protein was overexpressed in WT and Δ21 groups. Δ21 and siRNA groups obviously showed more proliferation (methylthiazolyldiphenyl-tetrazolium bromide, 0.63 vs 0.66 vs 0.31, P < 0.01) and migration (52.6 vs 58.0 vs 21.2, P < 0.01) of VSMCs as compared with the WT group. In addition, the transfection of Δ21 and siRNA could induce the down-regulation of smooth muscle α-actin and SM22α (P < 0.01) and the up-regulation of osteopontin (P < 0.01) in VSMCs. The phosphorylated p38 signaling pathway expression was significantly enhanced in the Δ21 and siRNA groups as compared with that of the WT group (P < 0.01). These results suggest that MEF2A dominant negative mutation and RNA silence could induce the phenotypic switching of VSMCs, leading to its increased proliferation and migration, and p38 mitogen-activated protein kinase signaling pathway may participate in it.
Collapse
Affiliation(s)
- Wang Zhao
- Department of Cardiology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | | | | |
Collapse
|
518
|
Kim SJ, Park JH, Kim KH, Lee WR, Kim KS, Park KK. Melittin inhibits atherosclerosis in LPS/high-fat treated mice through atheroprotective actions. J Atheroscler Thromb 2011; 18:1117-1126. [PMID: 22008474 DOI: 10.5551/jat.8474] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM Atherosclerosis is influenced by multiple environmental factors that involve a complex interaction between blood components and the arterial wall and is characterized by inflammatory reactions. Melittin has been used in treatment of various chronic inflammatory diseases. We investigated the effects of melittin regulated atherosclerotic changes in an animal model of atherosclerosis. METHODS Atherosclerotic mice were induced by intraperitoneal (i.p) injection of lipopolysaccharide (LPS, 2 mg/kg) three times a week and an atherogenic diet for 12 weeks. RESULTS Melittin (0.1 mg/kg) treatment was administered with i.p injection. Melittin treatment showed that total cholesterol and triglyceride levels decreased in atherosclerotic mice however, high-density lipoprotein cholesterol (HDL-C) levels were higher in atherosclerotic mice treated with melittin than in atherosclerotic mice. H&E staining showed that heart and descending aorta were significantly recovered by melittin, compared to atherosclerotic mice. In addition, melittin decreased the expression levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, vascular cell adhesion molecule (VCAM)-1, intercellular adhesion molecule (ICAM)-1, fibronectin and transforming growth factor (TGF)-β1 in atherosclerotic mice. In vitro, melittin decreased LPS-induced THP-1 cells-derived macrophages TNF-α and IL-1β expression levels and nuclear factor (NF)-κB signal pathway. CONCLUSIONS These results demonstrate that melittin has an anti-atherogenic effect by suppression of pro-inflammatory cytokines and adhesion molecules.
Collapse
Affiliation(s)
- Soo-Jung Kim
- Department of Pathology, School of Medicine, Catholic University of Daegu, Daegu, South Korea
| | | | | | | | | | | |
Collapse
|
519
|
Tsuchiya K, Banks AS, Liang CP, Tabas I, Tall AR, Accili D. Homozygosity for an allele encoding deacetylated FoxO1 protects macrophages from cholesterol-induced inflammation without increasing apoptosis. Arterioscler Thromb Vasc Biol 2011; 31:2920-8. [PMID: 21940942 DOI: 10.1161/atvbaha.110.219477] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Insulin resistance renders macrophages more prone to cholesterol-induced apoptosis by promoting nuclear localization of transcription factor forkhead box transcription factor (Fox) O1. However, FoxO1 also decreases macrophage inflammation, raising the question of how the balance between proapoptotic and antiinflammatory effects is determined. We sought to identify the mechanism whereby FoxO1 dampens inflammation without promoting apoptosis. We hypothesized that nutrient-dependent FoxO1 acetylation plays a role in this process. METHODS AND RESULTS We generated knock-in mice bearing alleles that encode constitutively deacetylated FoxO1 and studied the ex vivo response of primary peritoneal macrophages. We show that macrophages derived from mice homozygous for constitutively deacetylated FoxO1 alleles retain antiinflammatory properties in response to free cholesterol loading, without increasing apoptosis. Deacetylated FoxO1 inhibits free cholesterol-induced Akt phosphorylation and increases levels of the nuclear factor-κB precursor p105, decreasing nuclear translocation of nuclear factor-κB p65 subunit and dampening mitogen-activated protein/extracellular signal-regulated kinase activation to prevent inflammation. CONCLUSIONS Deacetylated FoxO1 regulates p105 to prevent macrophage inflammation without causing apoptosis, suggesting a potential novel therapeutic approach to atherosclerosis through FoxO1 deacetylation.
Collapse
Affiliation(s)
- Kyoichiro Tsuchiya
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
520
|
Ma L, Zhong J, Zhao Z, Luo Z, Ma S, Sun J, He H, Zhu T, Liu D, Zhu Z, Tepel M. Activation of TRPV1 reduces vascular lipid accumulation and attenuates atherosclerosis. Cardiovasc Res 2011; 92:504-13. [PMID: 21908651 DOI: 10.1093/cvr/cvr245] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Activation of transient receptor potential vanilloid type-1 (TRPV1) channels may affect lipid storage and the cellular inflammatory response. Now, we tested the hypothesis that activation of TRPV1 channels attenuates atherosclerosis in apolipoprotein E knockout mice (ApoE(-/-)) but not ApoE(-/-)TRPV1(-/-) double knockout mice on a high-fat diet. METHODS AND RESULTS Both TRPV1 mRNA and protein expression were identified in vascular smooth muscle cells (VSMC) and in aorta from C57BL/6J mice using RT-PCR, immunoblotting, and immunohistochemistry. In vitro, activation of TRPV1 by the specific agonists capsaicin and resiniferatoxin dose-dependently increased cytosolic calcium and significantly reduced the accumulation of lipids in VSMC from C57BL/6J mice but not from TRPV1(-/-) mice. TRPV1 activation increased ATP-binding cassette transporter A1 (ABCA1) expression and reduced low-density lipoprotein-related protein 1 (LRP1) expression in VSMC by calcium-dependent and calcineurin- and protein kinase A-dependent mechanisms. These results showed increased cellular cholesterol efflux and reduced cholesterol uptake. In vivo, long-term activation of TRPV1 by capsaicin for 24 weeks increased ABCA1 and reduced LRP1 expression in aorta from ApoE(-/-) mice on a high-fat diet. Long-term activation of TRPV1 significantly reduced lipid storage and atherosclerotic lesions in the aortic sinus and in the thoracoabdominal aorta from ApoE(-/-) mice but not from ApoE(-/-)TRPV1(-/-) mice on a high-fat diet. These findings indicated that TRPV1 activation ameliorates high-fat diet-induced atherosclerosis. CONCLUSION Activation of TRPV1 may be a novel therapeutic tool to attenuate atherosclerosis caused by a high-fat diet.
Collapse
Affiliation(s)
- Liqun Ma
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing 400042, People' s Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
521
|
Gizard F, Zhao Y, Findeisen HM, Qing H, Cohn D, Heywood EB, Jones KL, Nomiyama T, Bruemmer D. Transcriptional regulation of S phase kinase-associated protein 2 by NR4A orphan nuclear receptor NOR1 in vascular smooth muscle cells. J Biol Chem 2011; 286:35485-35493. [PMID: 21868379 DOI: 10.1074/jbc.m111.295840] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the NR4A subgroup of the nuclear hormone receptor superfamily have emerged as key transcriptional regulators of proliferation and inflammation. NOR1 constitutes a ligand-independent transcription factor of this subgroup and induces cell proliferation; however, the transcriptional mechanisms underlying this mitogenic role remain to be defined. Here, we demonstrate that the F-box protein SKP2 (S phase kinase-associated protein 2), the substrate-specific receptor of the ubiquitin ligase responsible for the degradation of p27(KIP1) through the proteasome pathway, constitutes a direct transcriptional target for NOR1. Mitogen-induced Skp2 expression is silenced in vascular smooth muscle cells (VSMC) isolated from Nor1-deficient mice or transfected with Nor1 siRNA. Conversely, adenovirus-mediated overexpression of NOR1 induces Skp2 expression in VSMC and decreases protein abundance of its target p27. Transient transfection experiments establish that NOR1 transactivates the Skp2 promoter through a nerve growth factor-induced clone B response element (NBRE). Electrophoretic mobility shift and chromatin immunoprecipitation assays further revealed that NOR1 is recruited to this NBRE site in the Skp2 promoter in response to mitogenic stimulation. In vivo Skp2 expression is increased during the proliferative response underlying neointima formation, and this transcriptional induction depends on the expression of NOR1. Finally, we demonstrate that overexpression of Skp2 rescues the proliferative arrest of Nor1-deficient VSMC. Collectively, these results characterize Skp2 as a novel NOR1-regulated target gene and detail a previously unrecognized transcriptional cascade regulating mitogen-induced VSMC proliferation.
Collapse
Affiliation(s)
- Florence Gizard
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Yue Zhao
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536; Graduate Center for Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Hannes M Findeisen
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Hua Qing
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Dianne Cohn
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Elizabeth B Heywood
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Karrie L Jones
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Takashi Nomiyama
- Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University, Fukuoka City, Fukuoka 814-0180, Japan
| | - Dennis Bruemmer
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536; Graduate Center for Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky 40536.
| |
Collapse
|
522
|
Butoi ED, Gan AM, Manduteanu I, Stan D, Calin M, Pirvulescu M, Koenen RR, Weber C, Simionescu M. Cross talk between smooth muscle cells and monocytes/activated monocytes via CX3CL1/CX3CR1 axis augments expression of pro-atherogenic molecules. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:2026-35. [PMID: 21888931 DOI: 10.1016/j.bbamcr.2011.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 11/29/2022]
Abstract
OBJECTIVE In atherosclerotic lesions, fractalkine (CX3CL1) and its receptor (CX3CR1) expressed by smooth muscle cells (SMC) and monocytes/macrophages, mediate the heterotypic anchorage and chemotaxis of these cells. We questioned whether, during the close interaction of monocytes with SMC, the CX3CL1/CX3CR1 pair modulates the expression of pro-atherogenic molecules in these cells. METHODS AND RESULTS SMC were co-cultured with monocytes or LPS-activated monocytes (18h) and then the cells were separated and individually investigated for the gene and protein expression of TNFα, IL-1β, IL-6, CX3CR1 and metalloproteinases (MMP-2, MMP-9). We found that SMC-monocyte interaction induced, in each cell type, an increased mRNA and protein expression of TNFα, IL-1β, IL-6, CX3CR1, MMP-2 and MMP-9. Blocking the binding of fractalkine to CX3CR1 (by pre-incubation of monocytes with anti-CX3CR1 or by CX3CR1 siRNA transfection) before cell co-culture decreased the production of TNFα, CX3CR1 and MMP-9. Monocyte-SMC interaction induced the phosphorylation of p38MAPK and activation of AP-1 transcription factor. Silencing the p65 (NF-kB subunit) inhibited the IL-1β and IL-6 and silencing c-jun inhibited the TNFα, CX3CR1 and MMP-9 induced by SMC-monocyte interaction. CONCLUSIONS The cross-talk between SMC and monocytes augments the inflammatory response in both cell types as revealed by the increased expression of TNFα, IL-1β, IL-6, CX3CR1 and MMPs. Up-regulation of TNFα, CX3CR1 and MMP-9 is further increased upon interaction of SMC with activated monocytes and is dependent on fractalkine/CXRCR1 pair. These data imply that the fractalkine/CX3RCR1 axis may represent a therapeutic target to impede the inflammatory process associated with atherosclerosis.
Collapse
Affiliation(s)
- Elena Dragomir Butoi
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania.
| | | | | | | | | | | | | | | | | |
Collapse
|
523
|
Rautou PE, Vion AC, Amabile N, Chironi G, Simon A, Tedgui A, Boulanger CM. Microparticles, Vascular Function, and Atherothrombosis. Circ Res 2011; 109:593-606. [DOI: 10.1161/circresaha.110.233163] [Citation(s) in RCA: 291] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Membrane-shed submicron microparticles (MPs) are released after cell activation or apoptosis. High levels of MPs circulate in the blood of patients with atherothrombotic diseases, where they could serve as a useful biomarker of vascular injury and a potential predictor of cardiovascular mortality and major adverse cardiovascular events. Atherosclerotic lesions also accumulate large numbers of MPs of leukocyte, smooth muscle cell, endothelial, and erythrocyte origin. A large body of evidence supports the role of MPs at different steps of atherosclerosis development, progression, and complications. Circulating MPs impair the atheroprotective function of the vascular endothelium, at least partly, by decreased nitric oxide synthesis. Plaque MPs favor local inflammation by augmenting the expression of adhesion molecule, such as intercellular adhesion molecule -1 at the surface of endothelial cell, and monocyte recruitment within the lesion. In addition, plaque MPs stimulate angiogenesis, a key event in the transition from stable to unstable lesions. MPs also may promote local cell apoptosis, leading to the release and accumulation of new MPs, and thus creating a vicious circle. Furthermore, highly thrombogenic plaque MPs could increase thrombus formation at the time of rupture, together with circulating MPs released in this context by activated platelets and leukocytes. Finally, MPs also could participate in repairing the consequences of arterial occlusion and tissue ischemia by promoting postischemic neovascularization.
Collapse
Affiliation(s)
- Pierre-Emmanuel Rautou
- From the INSERM (P.E.R., A.C.V., N.A., G.C., A.S., A.T., C.M.B.), U970, Paris Cardiovascular Research Center PARCC, Paris, France; Université Paris Descartes, Sorbonne Paris Cité (P.E.R., A.C.V., N.A., G.C., A.S., A.T., C.M.B.), UMR-S970, Paris, France; Service de Cardiologie (N.A.), Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France; Centre de Médecine Préventive Cardiovasculaire (G.C., A.S.), AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | - Anne-Clémence Vion
- From the INSERM (P.E.R., A.C.V., N.A., G.C., A.S., A.T., C.M.B.), U970, Paris Cardiovascular Research Center PARCC, Paris, France; Université Paris Descartes, Sorbonne Paris Cité (P.E.R., A.C.V., N.A., G.C., A.S., A.T., C.M.B.), UMR-S970, Paris, France; Service de Cardiologie (N.A.), Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France; Centre de Médecine Préventive Cardiovasculaire (G.C., A.S.), AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | - Nicolas Amabile
- From the INSERM (P.E.R., A.C.V., N.A., G.C., A.S., A.T., C.M.B.), U970, Paris Cardiovascular Research Center PARCC, Paris, France; Université Paris Descartes, Sorbonne Paris Cité (P.E.R., A.C.V., N.A., G.C., A.S., A.T., C.M.B.), UMR-S970, Paris, France; Service de Cardiologie (N.A.), Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France; Centre de Médecine Préventive Cardiovasculaire (G.C., A.S.), AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | - Gilles Chironi
- From the INSERM (P.E.R., A.C.V., N.A., G.C., A.S., A.T., C.M.B.), U970, Paris Cardiovascular Research Center PARCC, Paris, France; Université Paris Descartes, Sorbonne Paris Cité (P.E.R., A.C.V., N.A., G.C., A.S., A.T., C.M.B.), UMR-S970, Paris, France; Service de Cardiologie (N.A.), Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France; Centre de Médecine Préventive Cardiovasculaire (G.C., A.S.), AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | - Alain Simon
- From the INSERM (P.E.R., A.C.V., N.A., G.C., A.S., A.T., C.M.B.), U970, Paris Cardiovascular Research Center PARCC, Paris, France; Université Paris Descartes, Sorbonne Paris Cité (P.E.R., A.C.V., N.A., G.C., A.S., A.T., C.M.B.), UMR-S970, Paris, France; Service de Cardiologie (N.A.), Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France; Centre de Médecine Préventive Cardiovasculaire (G.C., A.S.), AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | - Alain Tedgui
- From the INSERM (P.E.R., A.C.V., N.A., G.C., A.S., A.T., C.M.B.), U970, Paris Cardiovascular Research Center PARCC, Paris, France; Université Paris Descartes, Sorbonne Paris Cité (P.E.R., A.C.V., N.A., G.C., A.S., A.T., C.M.B.), UMR-S970, Paris, France; Service de Cardiologie (N.A.), Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France; Centre de Médecine Préventive Cardiovasculaire (G.C., A.S.), AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | - Chantal M. Boulanger
- From the INSERM (P.E.R., A.C.V., N.A., G.C., A.S., A.T., C.M.B.), U970, Paris Cardiovascular Research Center PARCC, Paris, France; Université Paris Descartes, Sorbonne Paris Cité (P.E.R., A.C.V., N.A., G.C., A.S., A.T., C.M.B.), UMR-S970, Paris, France; Service de Cardiologie (N.A.), Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France; Centre de Médecine Préventive Cardiovasculaire (G.C., A.S.), AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
524
|
Sommerville LJ, Kelemen SE, Ellison SP, England RN, Autieri MV. Increased atherosclerosis and vascular smooth muscle cell activation in AIF-1 transgenic mice fed a high-fat diet. Atherosclerosis 2011; 220:45-52. [PMID: 21862018 DOI: 10.1016/j.atherosclerosis.2011.07.095] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/22/2011] [Accepted: 07/13/2011] [Indexed: 02/02/2023]
Abstract
Allograft inflammatory factor-1 (AIF-1) is a cytoplasmic, scaffold signal transduction protein constitutively expressed in inflammatory cells, but inducible in vascular smooth muscle cells (VSMCs) in response to injury or inflammatory stimuli. Although several basic science and population studies have reported increased AIF-1 expression in human and experimental atherosclerosis, a direct causal effect of AIF-1 expression on development of atherosclerosis has not been reported. The purpose of this study is to establish a direct relationship between AIF-1 expression and development of atherosclerosis. AIF-1 expression is detected VSMC in atherosclerotic lesions from ApoE(-/-) mice, but not normal arteries from wild-type mice. AIF-1 expression can be induced in cultured VSMC by stimulation with oxidized LDL (ox-LDL). Transgenic mice in which AIF-1 expression is driven by the G/C modified SM22 alpha promoter to restrict AIF-1 expression to VSMC develop significantly increased atherosclerosis compared with wild-type control mice when fed a high-fat diet (P=0.022). Cultured VSMC isolated from Tg mice demonstrated significantly increased migration in response to ox-LDL compared with matched controls (P<0.001). VSMC isolated from Tg mice and cultured human VSMC which over express AIF-1 demonstrated increased expression of MMP-2 and MMP-9 mRNA and protein and increased NF-κB activation in response to ox-LDL as compared with wild-type control mice. VSMC which over express AIF-1 have significantly increased uptake of ox-LDL, and increased CD36 expression. Together, these data suggest a strong association between AIF-1 expression, NF-κB activation, and development of experimental atherosclerosis.
Collapse
Affiliation(s)
- Laura J Sommerville
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | | | | | | | | |
Collapse
|
525
|
Wang M, Li W, Chang GQ, Ye CS, Ou JS, Li XX, Liu Y, Cheang TY, Huang XL, Wang SM. MicroRNA-21 regulates vascular smooth muscle cell function via targeting tropomyosin 1 in arteriosclerosis obliterans of lower extremities. Arterioscler Thromb Vasc Biol 2011; 31:2044-53. [PMID: 21817107 DOI: 10.1161/atvbaha.111.229559] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The goal of this study was to determine the expression signature and the potential role of microRNAs in human arteries with arteriosclerosis obliterans (ASO). METHODS AND RESULTS The expression profiles of microRNAs in human arteries with ASO and in normal control arteries were determined by quantitative reverse transcription-polymerase chain reaction array. Among the 617 detected microRNAs, multiple microRNAs were aberrantly expressed in arteries with ASO. Some of these dysregulated microRNAs were further verified by quantitative reverse transcription-polymerase chain reaction. Among them, microRNA-21 (miR-21) was mainly located in arterial smooth muscle cells (ASMCs) and was increased by more than 7-fold in ASO that was related to hypoxia inducible factor 1-α. In cultured human ASMCs, cell proliferation and migration were significantly decreased by inhibition of miR-21. 3'-Untranslated region luciferase assay confirmed that tropomyosin 1 was a target of miR-21 that was involved in miR-21-mediated cellular effects, such as cell shape modulation. CONCLUSION The results suggest that miR-21 is able to regulate ASMC function by targeting tropomyosin 1. The hypoxia inducible factor-1 α/miR-21/tropomyosin 1 pathway may play a critical role in the pathogenesis of ASO. These findings might provide a new therapeutic target for human ASO.
Collapse
Affiliation(s)
- Mian Wang
- Division of Vascular Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
526
|
Wang XP, Chen YG, Qin WD, Zhang W, Wei SJ, Wang J, Liu FQ, Gong L, An FS, Zhang Y, Chen ZY, Zhang MX. Arginase I Attenuates Inflammatory Cytokine Secretion Induced by Lipopolysaccharide in Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2011; 31:1853-60. [DOI: 10.1161/atvbaha.111.229302] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Inflammation plays an important role in atherosclerosis. Arginase I (Arg I) promotes the proliferation of vascular smooth muscle cells; however, the effect of Arg I on inflammation remains unknown. The present study investigated the role of Arg I in inflammation in vitro and in vivo.
Methods and Results—
Quantitative reverse transcription–polymerase chain reaction and Western blot analysis demonstrated that Arg I inhibited tumor necrosis factor-α production induced by lipopolysaccharide in human aortic smooth muscle cells. Inducible nitric oxide synthase substrate competition and nuclear factor-κB activation were main contributors to lipopolysaccharide-mediated inflammatory cytokine generation. However, Arg I could attenuate the function of inducible nitric oxide synthase and inhibit the subsequent nuclear factor-κB activation, leading to inhibition of tumor necrosis factor-α generation. Furthermore, upregulation of Arg I significantly decreased macrophage infiltration and inflammation in atherosclerotic plaque of rabbits, whereas downregulation of Arg I aggravated these adverse effects.
Conclusion—
The results indicate the antiinflammatory effects of Arg I and suggest an unexpected beneficial role of Arg I in inflammatory disease.
Collapse
Affiliation(s)
- Xu-ping Wang
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University, Qilu Hospital, Jinan, Shandong, China (X.-p.W., Y.-g.C., W.-d.Q., W.Z., S.-j.W., J.W., F.S.A., Y.Z., M.-X.Z.); Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, Shandong, China (F.Q.L., L.G.); Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University
| | - Yu-guo Chen
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University, Qilu Hospital, Jinan, Shandong, China (X.-p.W., Y.-g.C., W.-d.Q., W.Z., S.-j.W., J.W., F.S.A., Y.Z., M.-X.Z.); Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, Shandong, China (F.Q.L., L.G.); Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University
| | - Wei-dong Qin
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University, Qilu Hospital, Jinan, Shandong, China (X.-p.W., Y.-g.C., W.-d.Q., W.Z., S.-j.W., J.W., F.S.A., Y.Z., M.-X.Z.); Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, Shandong, China (F.Q.L., L.G.); Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University
| | - Wei Zhang
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University, Qilu Hospital, Jinan, Shandong, China (X.-p.W., Y.-g.C., W.-d.Q., W.Z., S.-j.W., J.W., F.S.A., Y.Z., M.-X.Z.); Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, Shandong, China (F.Q.L., L.G.); Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University
| | - Shu-jian Wei
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University, Qilu Hospital, Jinan, Shandong, China (X.-p.W., Y.-g.C., W.-d.Q., W.Z., S.-j.W., J.W., F.S.A., Y.Z., M.-X.Z.); Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, Shandong, China (F.Q.L., L.G.); Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University
| | - Juan Wang
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University, Qilu Hospital, Jinan, Shandong, China (X.-p.W., Y.-g.C., W.-d.Q., W.Z., S.-j.W., J.W., F.S.A., Y.Z., M.-X.Z.); Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, Shandong, China (F.Q.L., L.G.); Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University
| | - Fu Qiang Liu
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University, Qilu Hospital, Jinan, Shandong, China (X.-p.W., Y.-g.C., W.-d.Q., W.Z., S.-j.W., J.W., F.S.A., Y.Z., M.-X.Z.); Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, Shandong, China (F.Q.L., L.G.); Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University
| | - Lei Gong
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University, Qilu Hospital, Jinan, Shandong, China (X.-p.W., Y.-g.C., W.-d.Q., W.Z., S.-j.W., J.W., F.S.A., Y.Z., M.-X.Z.); Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, Shandong, China (F.Q.L., L.G.); Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University
| | - Feng Shuang An
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University, Qilu Hospital, Jinan, Shandong, China (X.-p.W., Y.-g.C., W.-d.Q., W.Z., S.-j.W., J.W., F.S.A., Y.Z., M.-X.Z.); Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, Shandong, China (F.Q.L., L.G.); Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University
| | - Yun Zhang
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University, Qilu Hospital, Jinan, Shandong, China (X.-p.W., Y.-g.C., W.-d.Q., W.Z., S.-j.W., J.W., F.S.A., Y.Z., M.-X.Z.); Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, Shandong, China (F.Q.L., L.G.); Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University
| | - Zhe-Yu Chen
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University, Qilu Hospital, Jinan, Shandong, China (X.-p.W., Y.-g.C., W.-d.Q., W.Z., S.-j.W., J.W., F.S.A., Y.Z., M.-X.Z.); Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, Shandong, China (F.Q.L., L.G.); Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University
| | - Ming-Xiang Zhang
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University, Qilu Hospital, Jinan, Shandong, China (X.-p.W., Y.-g.C., W.-d.Q., W.Z., S.-j.W., J.W., F.S.A., Y.Z., M.-X.Z.); Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, Shandong, China (F.Q.L., L.G.); Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University
| |
Collapse
|
527
|
MicroRNAs and vascular (dys)function. Vascul Pharmacol 2011; 55:92-105. [PMID: 21802526 DOI: 10.1016/j.vph.2011.07.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 07/07/2011] [Accepted: 07/14/2011] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs, that control diverse cellular functions by either promoting degradation or inhibition of target messenger RNA translation. An aberrant expression profile of miRNAs has been linked to human diseases, including cardiovascular dysfunction. This review summarizes the latest insights in the identification of vascular-specific miRNAs and their targets, as well as their roles and mechanisms in the vasculature. Furthermore, we discuss how manipulation of these miRNAs could represent a novel therapeutic approach in the treatment of vascular dysfunction.
Collapse
|
528
|
Histological changes and risk factor associations in type 2 atherosclerotic lesions (fatty streaks) in young adults. Atherosclerosis 2011; 219:184-90. [PMID: 21831377 DOI: 10.1016/j.atherosclerosis.2011.07.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 07/07/2011] [Accepted: 07/11/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVES The purpose of this study was to investigate which histological changes associated with risk factors could contribute to the progression from the initial atherosclerotic lesions including fatty streaks to the advanced lesions. METHODS We examined the associations of histomorphometric findings in the determined anatomical sites of mid-thoracic aortas (TAs) and left anterior descending coronary arteries (LADs) with major risk factors for atherosclerosis, using a young autopsied series from the the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study. The histological classification by the American Heart Association was graded for 1013 TAs and 1009 LADs. Histometric study, including immunohistochemistry, was performed in type 2 lesions (fatty streaks) of TAs from 59 subjects and LADs from 45 ones. RESULTS For the progression from the initial lesions into the advanced atherosclerotic lesions, the most effective lipid profiles were low plasma HDL-C in TA and elevated serum non-HDL-C in LAD. This lipid profile of each artery correlated with number or density of intimal smooth muscle cell-derived foam cells, respectively. The serum concentration of non-HDL-C correlated with macrophage foam cells in TAs. Hypertension and hyperglycemia were associated with increase of intimal area and/or collagen content in both arteries, but not with either types of foam cell proliferation. Smoking correlated with increased collagen content in TAs. CONCLUSION There were histologically different ways of progressing from fatty streaks to advanced atherosclerotic lesions depending on the risk factors. For the atherosclerosis progression from type 2 lesions to advanced lesions, increase in number of smooth muscle cell-derived foam cells could be an important indicator.
Collapse
|
529
|
STAT1 as a novel therapeutical target in pro-atherogenic signal integration of IFNγ, TLR4 and IL-6 in vascular disease. Cytokine Growth Factor Rev 2011; 22:211-9. [PMID: 21752694 DOI: 10.1016/j.cytogfr.2011.06.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inflammation participates importantly in host defenses against infectious agents and injury, but it also contributes to the pathophysiology of atherosclerosis. Recruitment of blood leukocytes to the injured vascular endothelium characterizes the initiation and progression of atherosclerosis and involves many inflammatory mediators, modulated by cells of both innate and adaptive immunity. The pro-inflammatory cytokine, interferon (IFN)-γ derived from T cells, is vital for both innate and adaptive immunity and is also expressed at high levels in atherosclerotic lesions. As such IFN-γ plays a crucial role in the pathology of atherosclerosis through activation of signal transducer and activator of transcription (STAT) 1. Toll-like receptors (TLRs) are innate immune pattern recognition receptors (PRRs) expressed on a variety of cells, and thus initiate and sustain the inflammatory response in atherosclerosis. More recent studies have revealed that STAT1 is involved in the signaling events mediated by TLR4, leading to increased expression of several pro-inflammatory and pro-atherogenic mediators. By upregulating members of the Suppressors Of Cytokine Signaling (SOCS) family that regulate cellular responsiveness to immune signals, IFNγ and TLR4-activated pathways have also shown to inhibit IL-6 STAT3-dependent anti-inflammatory signaling and potentially shift IL-6 to a STAT1 activating pro-inflammatory cytokine. Consequently, STAT1 has been identified as a point of convergence for the cross-talk between the pro-atherogenic IFN-γ, TLR4 and IL-6 activated pathways in immune as well as vascular cells, as such amplifying pro-inflammatory signals. This results in augmented smooth muscle cell (SMC) and leukocyte migration, leukocyte to endothelial cell (EC) adhesion and foam cell formation, and could encompass a novel mechanism involved in the initiation and progression of atherosclerosis. Therefore, application of small inhibitory compounds that specifically interact with the SH2-phosphotyrosine pocket of STAT1, proposed here as a novel working mechanism for the known STAT1 inhibitor fludarabine, could be a promising tool in the development of a therapeutical strategy for atherosclerosis.
Collapse
|
530
|
Meloche J, Paulin R, Courboulin A, Lambert C, Barrier M, Bonnet P, Bisserier M, Roy M, Sussman MA, Agharazii M, Bonnet S. RAGE-dependent activation of the oncoprotein Pim1 plays a critical role in systemic vascular remodeling processes. Arterioscler Thromb Vasc Biol 2011; 31:2114-24. [PMID: 21680901 DOI: 10.1161/atvbaha.111.230573] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Vascular remodeling diseases (VRD) are mainly characterized by inflammation and a vascular smooth muscle cells (VSMCs) proproliferative and anti-apoptotic phenotype. Recently, the activation of the advanced glycation endproducts receptor (RAGE) has been shown to promote VSMC proliferation and resistance to apoptosis in VRD in a signal transducer and activator of transcription (STAT)3-dependant manner. Interestingly, we previously described in both cancer and VRD that the sustainability of this proproliferative and antiapoptotic phenotype requires activation of the transcription factor NFAT (nuclear factor of activated T-cells). In cancer, NFAT activation is dependent of the oncoprotein provirus integration site for Moloney murine leukemia virus (Pim1), which is regulated by STAT3 and activated in VRD. Therefore, we hypothesized that RAGE/STAT3 activation in VSMC activates Pim1, promoting NFAT and thus VSMC proliferation and resistance to apoptosis. Methods/Results- In vitro, freshly isolated human carotid VSMCs exposed to RAGE activator Nε-(carboxymethyl)lysine (CML) for 48 hours had (1) activated STAT3 (increased P-STAT3/STAT3 ratio and P-STAT3 nuclear translocation); (2) increased STAT3-dependent Pim1 expression resulting in NFATc1 activation; and (3) increased Pim1/NFAT-dependent VSMC proliferation (PCNA, Ki67) and resistance to mitochondrial-dependent apoptosis (TMRM, Annexin V, TUNEL). Similarly to RAGE inhibition (small interfering RNA [siRNA]), Pim1, STAT3 and NFATc1 inhibition (siRNA) reversed these abnormalities in human carotid VSMC. Moreover, carotid artery VSMCs isolated from Pim1 knockout mice were resistant to CML-induced VSMC proliferation and resistance to apoptosis. In vivo, RAGE inhibition decreases STAT3/Pim1/NFAT activation, reversing vascular remodeling in the rat carotid artery-injured model. CONCLUSIONS RAGE activation accounts for many features of VRD including VSMC proliferation and resistance to apoptosis by the activation of STAT3/Pim1/NFAT axis. Molecules aimed to inhibit RAGE could be of a great therapeutic interest for the treatment of VRD.
Collapse
Affiliation(s)
- Jolyane Meloche
- Department of Medicine, Université Laval, Québec City, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
531
|
Emeto TI, Moxon JV, Rush C, Woodward L, Golledge J. Relevance of urocortins to cardiovascular disease. J Mol Cell Cardiol 2011; 51:299-307. [PMID: 21689660 DOI: 10.1016/j.yjmcc.2011.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/26/2011] [Accepted: 06/02/2011] [Indexed: 11/19/2022]
Abstract
Acquired cardiovascular diseases such as coronary heart disease, peripheral artery disease and related vascular problems contribute to more than one-third of worldwide morbidity and mortality. In many instances, particularly in the under developed world, cardiovascular diseases are diagnosed at a late stage limiting the scope for improving outcomes. A range of therapies already exist for established cardiovascular disease, although there is significant interest in further understanding disease pathogenesis in order to improve diagnosis and achieve primary and secondary therapeutic goals. The urocortins are a group of recently defined peptide members of the corticotrophin-releasing factor family. Previous pre-clinical work and human association studies suggest that urocortins have potential to exert some beneficial and other detrimental effects on the heart and major blood vessels. More current evidence however favours beneficial effects of urocortins, for example these peptides have been shown to inhibit production of reactive oxygen species and vascular cell apoptosis, and thus may have potential to antagonise the progression of cardiovascular disease. This review summarises published data on the potential role of urocortins in cardiovascular disease.
Collapse
Affiliation(s)
- Theophilus I Emeto
- Vascular Biology Unit, School of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | | | | | | | | |
Collapse
|
532
|
Subtoxicdose of Chlorpyrifos Down Regulates ABCA1 Expression and Accelerates Formation of Atherosclerosis Induced by The High Fat Diet in New Zealand Rabbits*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2010.00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
533
|
Zhaorigetu S, Yang Z, Toma I, McCaffrey TA, Hu CAA. Apolipoprotein L6, induced in atherosclerotic lesions, promotes apoptosis and blocks Beclin 1-dependent autophagy in atherosclerotic cells. J Biol Chem 2011; 286:27389-98. [PMID: 21646352 DOI: 10.1074/jbc.m110.210245] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inflammatory cytokine-regulated apoptosis and autophagy play pivotal roles in plaque rupture and thrombosis of atherosclerotic lesions. However, the molecular interplay between apoptosis and autophagy in vascular cells has not been investigated. Our prior study showed that human apolipoprotein L6 (ApoL6), a pro-apoptotic BH3-only member of the Bcl-2 family, was one of the downstream targets of interferon-γ (INFγ), which sensitizes atherosclerotic lesion-derived cells (LDCs) to Fas-induced apoptosis. To investigate whether ApoL6 plays a causal role in atherosclerotic apoptosis and autophagy, in this study, we demonstrate that IFNγ treatment itself strongly induces ApoL6, and ApoL6 is highly expressed and partially co-localized with activated caspase 3 in activated smooth muscle cells in atherosclerotic lesions. In addition, overexpression of ApoL6 promotes reactive oxygen species (ROS) generation, caspase activation, and subsequent apoptosis, which can be blocked by pan caspase inhibitor and ROS scavenger. Knockdown of ApoL6 expression by siApoL6 suppresses INFγ- and Fas-mediated apoptosis. Further, ApoL6 binds Bcl-X(L), one of the most abundant anti-death proteins in LDCs. Interestingly, forced ApoL6 expression in LDCs induces degradation of Beclin 1, accumulation of p62, and subsequent attenuation of LC3-II formation and translocation and thus autophagy, whereas siApoL6 treatment reverts the phenotype. Taken together, our results suggest that ApoL6 regulates both apoptosis and autophagy in SMCs. IFNγ-initiated, ApoL6-induced apoptosis in vascular cells may be an important factor causing plaque instability and a potential therapeutic target for treating atherosclerosis and cardiovascular disease.
Collapse
Affiliation(s)
- Siqin Zhaorigetu
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, USA
| | | | | | | | | |
Collapse
|
534
|
Minear MA, Crosslin DR, Sutton BS, Connelly JJ, Nelson SC, Gadson-Watson S, Wang T, Seo D, Vance JM, Sketch MH, Haynes C, Goldschmidt-Clermont PJ, Shah SH, Kraus WE, Hauser ER, Gregory SG. Polymorphic variants in tenascin-C (TNC) are associated with atherosclerosis and coronary artery disease. Hum Genet 2011; 129:641-54. [PMID: 21298289 PMCID: PMC3576662 DOI: 10.1007/s00439-011-0959-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/23/2011] [Indexed: 01/01/2023]
Abstract
Tenascin-C (TNC) is an extracellular matrix protein implicated in biological processes important for atherosclerotic plaque development and progression, including smooth muscle cell migration and proliferation. Previously, we observed differential expression of TNC in atherosclerotic aortas compared with healthy aortas. The goal of this study was to investigate whether common genetic variation within TNC is associated with risk of atherosclerosis and coronary artery disease (CAD) in three independent datasets. We genotyped 35 single nucleotide polymorphisms (SNPs), including 21 haplotype tagging SNPs, in two of these datasets: human aorta tissue samples (n = 205) and the CATHGEN cardiovascular study (n = 1,325). Eleven of these 35 SNPs were then genotyped in a third dataset, the GENECARD family study of early-onset CAD (n = 879 families). Three SNPs representing a block of linkage disequilibrium, rs3789875, rs12347433, and rs4552883, were significantly associated with atherosclerosis in multiple datasets and demonstrated consistent, but suggestive, genetic effects in all analyses. In combined analysis rs3789875 and rs12347433 were statistically significant after Bonferroni correction for 35 comparisons, p = 2 × 10(-6) and 5 × 10(-6), respectively. The SNP rs12347433 is a synonymous coding SNP and may be biologically relevant to the mechanism by which tenascin-C influences the pathophysiology of CAD and atherosclerosis. This is the first report of genetic association between polymorphisms in TNC and atherosclerosis or CAD.
Collapse
Affiliation(s)
- Mollie A. Minear
- Center for Human Genetics, Duke University Medical Center, 905 S. La Salle Street DUMC 3445, Durham, NC 27710, USA
| | - David R. Crosslin
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Beth S. Sutton
- School of Pharmacy, Campbell University, Morrisvillie, NC, USA
| | - Jessica J. Connelly
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Sarah C. Nelson
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Shera Gadson-Watson
- Center for Human Genetics, Duke University Medical Center, 905 S. La Salle Street DUMC 3445, Durham, NC 27710, USA
| | - Tianyuan Wang
- Institute for Genome Sciences and Policy, Duke University, Durham, NC, USA
| | - David Seo
- Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Michael H. Sketch
- Department of Medicine, Duke University Medical Center, Duhram, NC, USA
| | - Carol Haynes
- Center for Human Genetics, Duke University Medical Center, 905 S. La Salle Street DUMC 3445, Durham, NC 27710, USA
| | | | - Svati H. Shah
- Center for Human Genetics, Duke University Medical Center, 905 S. La Salle Street DUMC 3445, Durham, NC 27710, USA; Department of Medicine, Duke University Medical Center, Duhram, NC, USA
| | - William E. Kraus
- Department of Medicine, Duke University Medical Center, Duhram, NC, USA
| | - Elizabeth R. Hauser
- Center for Human Genetics, Duke University Medical Center, 905 S. La Salle Street DUMC 3445, Durham, NC 27710, USA; Department of Medicine, Duke University Medical Center, Duhram, NC, USA
| | - Simon G. Gregory
- Center for Human Genetics, Duke University Medical Center, 905 S. La Salle Street DUMC 3445, Durham, NC 27710, USA; Department of Medicine, Duke University Medical Center, Duhram, NC, USA
| |
Collapse
|
535
|
Virtue A, Mai J, Yin Y, Meng S, Tran T, Jiang X, Wang H, Yang XF. Structural evidence of anti-atherogenic microRNAs. Front Biosci (Landmark Ed) 2011; 16:3133-45. [PMID: 21622224 DOI: 10.2741/3901] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Our research attempted to address two important questions--how microRNAs modulate atherogenic inflammatory genes from a panoramic viewpoint and whether their augmented expression results from reduced microRNAs suppression. To resolve these knowledge gaps, we employed a novel database mining technique in conjunction with statistical analysis criteria established from experimentally verified microRNAs. We found that the expression of 33 inflammatory genes up-regulated in atherosclerotic lesions contain structural features in the 3'UTR of their mRNAs for potential microRNAs regulation. Additionally, the binding features governing the interactions between the microRNAs and the inflammatory gene mRNA were statistically identical to the features of experimentally verified microRNAs. Furthermore, 21 of the 33 inflammatory genes (64%) were targeted by highly expressed microRNAs and 10 of these (48%) were targeted by a single microRNA, suggesting microRNA regulation specificity. Supplementing our findings, 7 out of the 20 unique microRNAs (35%) were previously confirmed to be down-regulated when treated with pro-atherogenic factors. These results indicate a critical role of anti-inflammatory microRNAs in suppressing pro-atherogenic inflammatory gene expression.
Collapse
Affiliation(s)
- Anthony Virtue
- Department of Pharmacology and Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | |
Collapse
|
536
|
Begum N, Hockman S, Manganiello VC. Phosphodiesterase 3A (PDE3A) deletion suppresses proliferation of cultured murine vascular smooth muscle cells (VSMCs) via inhibition of mitogen-activated protein kinase (MAPK) signaling and alterations in critical cell cycle regulatory proteins. J Biol Chem 2011; 286:26238-49. [PMID: 21632535 DOI: 10.1074/jbc.m110.214155] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cyclic nucleotide phosphodiesterase 3 (PDE3) is an important regulator of cyclic adenosine monophosphate (cAMP) signaling within the cardiovascular system. In this study, we examined the role of PDE3A and PDE3B isoforms in regulation of growth of cultured vascular smooth muscle cells (VSMCs) and the mechanisms by which they may affect signaling pathways that mediate mitogen-induced VSMC proliferation. Serum- and PDGF-induced DNA synthesis in VSMCs grown from aortas of PDE3A-deficient (3A-KO) mice was markedly less than that in VSMCs from PDE3A wild type (3A-WT) and PDE3B-deficient (3B-KO) mice. The reduced growth response was accompanied by significantly less phosphorylation of extracellular signal-regulated kinase (ERK) in 3A-KO VSMCs, most likely due to a combination of greater site-specific inhibitory phosphorylation of Raf-1(Ser-²⁵⁹) by protein kinase A (PKA) and enhanced dephosphorylation of ERKs due to elevated mitogen-activated protein kinase phosphatase 1 (MKP-1). Furthermore, 3A-KO VSMCs, compared with 3A-WT, exhibited higher basal PKA activity and cAMP response element-binding protein (CREB) phosphorylation, higher levels of p53 and p53 phosphorylation, and elevated p21 protein together with lower levels of Cyclin-D1 and retinoblastoma (Rb) protein and Rb phosphorylation. Adenoviral overexpression of inactive CREB partially restored growth effects of serum in 3A-KO VSMCs. In contrast, exposure of 3A-WT VSMCs to VP16 CREB (active CREB) was associated with inhibition of serum-induced DNA synthesis similar to that in untreated 3A-KO VSMCs. Transfection of 3A-KO VSMCs with p53 siRNA reduced p21 and MKP-1 levels and completely restored growth without affecting amounts of Cyclin-D1 and Rb phosphorylation. We conclude that PDE3A regulates VSMC growth via two complementary pathways, i.e. PKA-catalyzed inhibitory phosphorylation of Raf-1 with resulting inhibition of MAPK signaling and PKA/CREB-mediated induction of p21, leading to G₀/G₁ cell cycle arrest, as well as by increased accumulation of p53, which induces MKP-1, p21, and WIP1, leading to inhibition of G₁ to S cell cycle progression.
Collapse
Affiliation(s)
- Najma Begum
- Cardiovascular-Pulmonary Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
537
|
Yang WS, Chang JW, Han NJ, Park SK. Darbepoetin alfa suppresses tumor necrosis factor-α-induced endothelin-1 production through antioxidant action in human aortic endothelial cells: role of sialic acid residues. Free Radic Biol Med 2011; 50:1242-51. [PMID: 21334436 DOI: 10.1016/j.freeradbiomed.2011.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 02/07/2011] [Accepted: 02/08/2011] [Indexed: 12/18/2022]
Abstract
Recombinant human erythropoietin (r-HuEPO) is widely used to correct anemia in end-stage renal disease patients, who commonly suffer from atherosclerosis. Endothelin-1 (ET-1) has been implicated in the pathogenesis of atherosclerosis. Here, we tested whether darbepoetin alfa, a hypersialylated analogue of r-HuEPO, regulates tumor necrosis factor-α (TNF-α)-induced ET-1 production in human aortic endothelial cells, and sought to identify the signal pathways involved. Darbepoetin alfa attenuated TNF-α-induced ET-1 production. It also diminished TNF-α-induced reactive oxygen species (ROS) accumulation and subsequent activation of c-Jun NH2-terminal kinase (JNK), which regulates the DNA-binding activities of both AP-1 and NF-κB required for ET-1 gene transcription. Like a JNK inhibitor, darbepoetin alfa did not affect IκBα degradation or p65 nuclear translocation, but did inhibit mitogen- and stress-activated protein kinase 1 (MSK1) activation and attenuated p65 phosphorylation (serine 276), effects that may account for the reduction in NF-κB DNA-binding activity. Desialylation completely abolished darbepoetin alfa's inhibitory effects on TNF-α-induced ROS accumulation, MSK1 activation, and ET-1 gene expression, without affecting its stimulation of STAT5 activity. These data demonstrate that darbepoetin alfa suppresses TNF-α-induced ET-1 production through its antioxidant action and suggest that the sialic acid residues of darbepoetin alfa are essential for its antioxidant effect, possibly by scavenging ROS.
Collapse
Affiliation(s)
- Won Seok Yang
- Division of Nephrology, Department of Internal Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 138-736, Korea
| | | | | | | |
Collapse
|
538
|
Qin Y, Shi GP. Cysteinyl cathepsins and mast cell proteases in the pathogenesis and therapeutics of cardiovascular diseases. Pharmacol Ther 2011; 131:338-50. [PMID: 21605595 DOI: 10.1016/j.pharmthera.2011.04.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 01/10/2023]
Abstract
The initiation and progression of cardiovascular diseases involve extensive arterial wall matrix protein degradation. Proteases are essential to these pathological events. Recent discoveries suggest that proteases do more than catabolize matrix proteins. During the pathogenesis of atherosclerosis, abdominal aortic aneuryms, and associated complications, cysteinyl cathepsins and mast cell tryptases and chymases participate importantly in vascular cell apoptosis, foam cell formation, matrix protein gene expression, and pro-enzyme, latent cytokine, chemokine, and growth factor activation. Experimental animal disease models have been invaluable in examining each of these protease functions. Deficiency and pharmacological inhibition of cathepsins or mast cell proteases have allowed their in vivo evaluation in the setting of pathological conditions. Recent discoveries of highly selective and potent inhibitors of cathepsins, chymase, and tryptase, and their applications in vascular diseases in animal models and non-vascular diseases in human trials, have led to the hypothesis that selective inhibition of cathepsins, chymases, and tryptase will benefit patients suffering from cardiovascular diseases. This review highlights recent discoveries from in vitro cell-based studies to experimental animal cardiovascular disease models, from protease knockout mice to treatments with recently developed selective and potent protease inhibitors, and from patients with cathepsin-associated non-vascular diseases to those affected by cardiovascular complications.
Collapse
Affiliation(s)
- Yanwen Qin
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | | |
Collapse
|
539
|
Voisard R, Münder U, von Müller L, Baur R, Hombach V. Direct inhibitory effects of Ganciclovir on ICAM-1 expression and proliferation in human coronary vascular cells (SI/MPL-ratio: >1). Med Sci Monit 2011; 17:PI1-6. [PMID: 21169918 PMCID: PMC3524678 DOI: 10.12659/msm.881310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Treatment of the human cytomegalovirus (HCMV) infection with ganciclovir has beneficial indirect effects on the complex interactions of HCMV with restenosis, atherosclerosis, and transplant vascular sclerosis. The current study reports on direct effects of ganciclovir on expression of ICAM-1 and cell proliferation, key events of coronary atherosclerosis/restenosis. A potential clinical relevance of the data will be evaluated with the help of SI/MPL-ratio’s. Material/Methods Definition of the SI/MPL-ratio: relation between significant inhibitory effects in vitro/ex vivo and the maximal plasma level after systemic administration in vivo (ganciclovir: 9 μg/ml). Part I of the study investigated in cytoflow studies the effect of ganciclovir (0.05–5000 μg/mL) on TNF-a induced expression of intercellular adhesion molecule 1 (ICAM-1) in endothelial cells derived from umbilical veins (HUVEC), human coronary endothelial cells (HCAEC), and human coronary smooth muscle cells (HCMSMC). Part II of the study analysed the effect of ganciclovir (0.05–5000 μg/mL) on cell proliferation (HUVEC, HCAEC, and HCMSMC). In part III cytotoxic effects of ganciclovir (0.05–5000 μg/mL) were studied (HUVEC, HCAEC, and HCMSMC). Results Ganciclovir caused slight but significant inhibitory effects on expression of ICAM-1 in HUVEC, HCAEC, and HCMSMC. In all three cell types studied strong dose depending significant antiproliferative effects of ganciclovir were detected. Partially, the antiproliferative effects of ganciclovir were caused by cytotoxic effects. Conclusions SI/MPL-ratio’s >1 in HCAEC and HCMSMC indicate that the inhibitory effects of gancliclovir on ICAM-1-expression and cell proliferation may only be expected in vivo following local high dose administration e.g. in drug eluting stents (DES).
Collapse
Affiliation(s)
- Rainer Voisard
- Department of Internal Medicine II-Cardiology, University of Ulm, Ulm, Germany.
| | | | | | | | | |
Collapse
|
540
|
Ma S, Yang D, Li D, Tang B, Yang Y. Oleic acid induces smooth muscle foam cell formation and enhances atherosclerotic lesion development via CD36. Lipids Health Dis 2011; 10:53. [PMID: 21486455 PMCID: PMC3083368 DOI: 10.1186/1476-511x-10-53] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 04/12/2011] [Indexed: 11/14/2022] Open
Abstract
Background Elevated plasma free fatty acid (FFA) levels have been linked to the development of atherosclerosis. However, how FFA causes atherosclerosis has not been determined. Because fatty acid translocase (FAT/CD36) is responsible for the uptake of FFA, we hypothesized that the atherogenic effects of FFA may be mediated via CD36. Results We tested this hypothesis using cultured rat aortic smooth muscle cells (SMCs) treated with oleic acid (OA). We found that OA induces lipid accumulation in SMCs in a dose dependent manner. Rat aortic SMCs treated for 48 hours with OA (250 μmol/L) became foam cells based on morphological (Oil Red O staining) and biochemical (5 times increase in cellular triglyceride) criteria. Moreover, specific inhibition of CD36 by sulfo-N-succinimidyl oleate significantly attenuated OA induced lipid accumulation and foam cell formation. To confirm these results in vivo, we used ApoE-deficient mice fed with normal chow (NC), OA diet, NC plus lipolysis inhibitor acipimox or OA plus acipimox. OA-fed mice showed increased plasma FFA levels and enhanced atherosclerotic lesions in the aortic sinus compared to the NC group (both p < 0.01). This effect was partially reversed by acipimox (lesion area: OA: 3.09 ± 0.10 ×105 μm2 vs. OA plus acipimox: 2.60 ± 0.10 ×105 μm2, p < 0.05; FFA: OA: 0.91 ± 0.03 mmol/L vs. OA plus acipimox: 0.78 ± 0.03 mmol/L, p < 0.05). Conclusions These findings suggest that OA induces smooth muscle foam cell formation and enhances atherosclerotic lesions in part though CD36. Furthermore, these findings provide a novel model for the investigation of atherosclerosis.
Collapse
Affiliation(s)
- Shuangtao Ma
- Department of Cardiology, General Hospital of PLA Chengdu Military Area Command, PR China
| | | | | | | | | |
Collapse
|
541
|
Zaima N, Sasaki T, Tanaka H, Cheng XW, Onoue K, Hayasaka T, Goto-Inoue N, Enomoto H, Unno N, Kuzuya M, Setou M. Imaging mass spectrometry-based histopathologic examination of atherosclerotic lesions. Atherosclerosis 2011; 217:427-32. [PMID: 21514591 DOI: 10.1016/j.atherosclerosis.2011.03.044] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/18/2011] [Accepted: 03/30/2011] [Indexed: 01/28/2023]
Abstract
AIMS Imaging mass spectrometry (IMS) enables the visualization of individual molecules present on tissue sections. We attempted to identify and visualize specific markers for aortic atherosclerotic lesions. METHODS AND RESULTS Atherosclerotic lesions were obtained from aortic roots of apolipoprotein E (ApoE)-deficient mice at 60 weeks of age and from femoral arteries of humans with peripheral artery occlusive disease. IMS was performed with a matrix-assisted laser desorption/ionization mass spectrometry time-of-flight (TOF)/TOF-type instrument. The molecular ions at m/z 671.6 and 673.6 were found to be specific molecules in the mouse and human lipid-rich regions. These molecules were assigned as cholesterol linoleate (CE 18:2) and cholesterol oleate (CE 18:1). In the case of the human samples, triacylglycerol was also localized in the lipid-rich regions. The distributions of the molecular ions at m/z 804.5 and 832.5 were the same as the distribution of both the mouse and the human SMCs. These molecules were assigned as phosphatidylcholine (PC) (diacyl 16:0/20:4) and PC (diacyl 18:0/20:4). The molecular ion at m/z 566.9 was localized in the mouse calcified regions, and the molecular ions at m/z 539.0 were localized in the human calcified regions. CONCLUSIONS The IMS-based histopathologic examination (IbHE) revealed the characteristic peaks of lipid-rich regions, SMCs, and calcified regions in the atherosclerotic lesions. In addition, IbHE revealed the characteristic distribution of lipids in human atherosclerotic lesions. These data indicate that an IMS-based pathologic approach is of considerable value as a new histopathologic examination.
Collapse
Affiliation(s)
- Nobuhiro Zaima
- Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
542
|
Leeper NJ, Raiesdana A, Kojima Y, Chun HJ, Azuma J, Maegdefessel L, Kundu RK, Quertermous T, Tsao PS, Spin JM. MicroRNA-26a is a novel regulator of vascular smooth muscle cell function. J Cell Physiol 2011; 226:1035-43. [PMID: 20857419 PMCID: PMC3108574 DOI: 10.1002/jcp.22422] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Aberrant smooth muscle cell (SMC) plasticity has been implicated in a variety of vascular disorders including atherosclerosis, restenosis, and abdominal aortic aneurysm (AAA) formation. While the pathways governing this process remain unclear, epigenetic regulation by specific microRNAs (miRNAs) has been demonstrated in SMCs. We hypothesized that additional miRNAs might play an important role in determining vascular SMC phenotype. Microarray analysis of miRNAs was performed on human aortic SMCs undergoing phenotypic switching in response to serum withdrawal, and identified 31 significantly regulated entities. We chose the highly conserved candidate miRNA-26a for additional studies. Inhibition of miRNA-26a accelerated SMC differentiation, and also promoted apoptosis, while inhibiting proliferation and migration. Overexpression of miRNA-26a blunted differentiation. As a potential mechanism, we investigated whether miRNA-26a influences TGF-β-pathway signaling. Dual-luciferase reporter assays demonstrated enhanced SMAD signaling with miRNA-26a inhibition, and the opposite effect with miRNA-26a overexpression in transfected human cells. Furthermore, inhibition of miRNA-26a increased gene expression of SMAD-1 and SMAD-4, while overexpression inhibited SMAD-1. MicroRNA-26a was also found to be downregulated in two mouse models of AAA formation (2.5- to 3.8-fold decrease, P < 0.02) in which enhanced switching from contractile to synthetic phenotype occurs. In summary, miRNA-26a promotes vascular SMC proliferation while inhibiting cellular differentiation and apoptosis, and alters TGF-β pathway signaling. MicroRNA-26a represents an important new regulator of SMC biology and a potential therapeutic target in AAA disease.
Collapse
Affiliation(s)
- Nicholas J Leeper
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
543
|
Giannakopoulos TG, Avgerinos ED, Moulakakis KG, Kadoglou NP, Preza O, Papapetrou A, Papasideris C, Liapis CD. Biomarkers for diagnosis of the vulnerable atherosclerotic plaque. Interv Cardiol 2011. [DOI: 10.2217/ica.11.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
544
|
Sima AV, Botez GM, Stancu CS, Manea A, Raicu M, Simionescu M. Effect of irreversibly glycated LDL in human vascular smooth muscle cells: lipid loading, oxidative and inflammatory stress. J Cell Mol Med 2011; 14:2790-802. [PMID: 19818091 PMCID: PMC3822729 DOI: 10.1111/j.1582-4934.2009.00933.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The major complication of diabetes is accelerated atherosclerosis, the progression of which entails complex interactions between the modified low-density lipoproteins (LDL) and the cells of the arterial wall. Advanced glycation end product-modified-LDL (AGE-LDL) that occurs at high rate in diabetes contributes to diabetic atherosclerosis, but the underlying mechanisms are not fully understood. The aim of this study was to assess the direct effect of AGE-LDL on human vascular smooth muscle cells (hSMC) dysfunction. Cultured hSMC incubated (24 hrs) with human AGE-LDL, native LDL (nLDL) or oxidized LDL (oxLDL) were subjected to: (i) quantification of the expression of the receptors for modified LDL and AGE proteins (LRP1, CD36, RAGE) and estimation of lipid loading, (ii) determination of NADPH oxidase activity and reactive oxygen species (ROS) production and (iii) evaluation of the expression of monocyte chemoattractant protein-1 (MCP-1). The results show that exposure of hSMC to AGE-LDL (compared to nLDL) induced: (a) increased NADPH oxidase activity (30%) and ROS production (28%) by up-regulation of NOX1, NOX4, p22phox and p67phox expression, (b) accumulation of intracellular cholesteryl esters, (c) enhanced gene expression of LRP1 (160%) and CD36 (35%), and protein expression of LRP1, CD36 and RAGE, (d) increased MCP-1 gene expression (160%) and protein secretion (300%) and (e) augmented cell proliferation (30%). In conclusion, AGE-LDL activates hSMC (increasing CD36, LRP1, RAGE), inducing a pro-oxidant state (activation of NADPHox), lipid accumulation and a pro-inflammatory state (expression of MCP-1). These results may partly explain the contribution of AGE-LDL and hSMC to the accelerated atherosclerosis in diabetes.
Collapse
Affiliation(s)
- Anca V Sima
- Department of Lipoproteins and Atherosclerosis, Institute of Cellular Biology and Pathology 'Nicolae Simionescu', Bucharest, Romania.
| | | | | | | | | | | |
Collapse
|
545
|
Cho Y, Lee SE, Lee HC, Hur J, Lee S, Youn SW, Lee J, Lee HJ, Lee TK, Park J, Hwang SJ, Kwon YW, Cho HJ, Oh BH, Park YB, Kim HS. Adipokine resistin is a key player to modulate monocytes, endothelial cells, and smooth muscle cells, leading to progression of atherosclerosis in rabbit carotid artery. J Am Coll Cardiol 2011; 57:99-109. [PMID: 21185508 DOI: 10.1016/j.jacc.2010.07.035] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 07/06/2010] [Accepted: 07/12/2010] [Indexed: 01/06/2023]
Abstract
OBJECTIVES We investigated the effects of human resistin on atherosclerotic progression and clarified its underlying mechanisms. BACKGROUND Resistin is an adipokine first identified as a mediator of insulin resistance in murine obesity models. But, its role in human pathology is under debate. Although a few recent studies suggested the relationship between resistin and atherosclerosis in humans, the causal relationship and underlying mechanism have not been clarified. METHODS We cloned rabbit resistin, which showed 78% identity to human resistin at the complementary deoxyribonucleic acid level, and its expression was examined in 3 different atherosclerotic rabbit models. To evaluate direct role of resistin on atherosclerosis, collared rabbit carotid arteries were used. Histological and cell biologic analyses were performed. RESULTS Rabbit resistin was expressed by macrophages of the plaque in the 3 different atherosclerotic models. Peri-adventitial resistin gene transfer induced macrophage infiltration and expression of various inflammatory cytokines, resulting in the acceleration of plaque growth and destabilization. In vitro experiments elucidated that resistin increased monocyte-endothelial cell adhesion by upregulating very late antigen-4 on monocytes and their counterpart vascular cell adhesion molecule-1 on endothelial cells. Resistin augmented monocyte infiltration in collagen by direct chemoattractive effect as well as by enhancing migration toward monocyte chemotactic protein-1. Administration of connecting segment-1 peptide, which blocks very late antigen-4 × vascular cell adhesion molecule-1 interaction, ameliorated neointimal growth induced by resistin in vivo. CONCLUSIONS Our results indicate that resistin aggravates atherosclerosis by stimulating monocytes, endothelial cells, and vascular smooth muscle cells to induce vascular inflammation. These findings provide the first insight on the causal relationship between resistin and atherosclerosis.
Collapse
Affiliation(s)
- Youngjin Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
546
|
Esfandiarei M, Lam JTN, Yazdi SA, Kariminia A, Dorado JN, Kuzeljevic B, Syyong HT, Hu K, van Breemen C. Diosgenin modulates vascular smooth muscle cell function by regulating cell viability, migration, and calcium homeostasis. J Pharmacol Exp Ther 2011; 336:925-39. [PMID: 21177478 DOI: 10.1124/jpet.110.172684] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
In this study, we compared the potencies of diosgenin, a plant-derived sapogenin structurally similar to estrogen and progesterone, on vascular smooth muscle functions ranging from contraction and migration to apoptosis. The effects of diosgenin on vascular smooth muscle cell viability and migration were measured using a primary mouse aortic smooth muscle cell culture. The effects of diosgenin on smooth muscle cell contraction and calcium signaling were investigated in the isolated mouse aorta using wire myography and confocal microscopy, respectively. Here, we report that in cultured cells diosgenin (≥ 25 μM) induces apoptosis as measured by the number of annexin V-positive cells and caspase-3 cleavage, while decreasing cell viability as indicated by protein kinase B/Akt phosphorylation. In addition, diosgenin blocks smooth muscle cell migration in a transwell Boyden chamber in response to serum treatment and response to injury in a cell culture system. Diosgenin (≥ 25 μM) also significantly blocks receptor-mediated calcium signals and smooth muscle contraction in the isolated aorta. There is no difference in the inhibitory effects of diosgenin on vascular smooth muscle contraction between the endothelium-intact and endothelium-denuded aortic segments, indicating that they are caused by altered smooth muscle activity. Our findings suggest that over the concentration range of 10 to 15 μM diosgenin may provide overall beneficial effects on diseased vascular smooth muscle cells by blocking migration and contraction without any significant cytopathic effects, implying a potential therapeutic value for diosgenin in vascular disorders.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium/physiology
- Cell Movement/drug effects
- Cell Movement/physiology
- Cell Survival/drug effects
- Cell Survival/physiology
- Cells, Cultured
- Diosgenin/pharmacology
- Dose-Response Relationship, Drug
- Homeostasis/drug effects
- Homeostasis/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/physiology
Collapse
Affiliation(s)
- Mitra Esfandiarei
- Child and Family Research Institute, Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
547
|
Sikorski K, Chmielewski S, Przybyl L, Heemann U, Wesoly J, Baumann M, Bluyssen HAR. STAT1-mediated signal integration between IFNγ and LPS leads to increased EC and SMC activation and monocyte adhesion. Am J Physiol Cell Physiol 2011; 300:C1337-44. [PMID: 21346151 DOI: 10.1152/ajpcell.00276.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Inflammation plays an important role in host defenses against infectious agents and injury, but it also contributes to the pathophysiology of atherosclerosis. Signal transducer and activated transcription 1 (STAT1) has been identified as a point of convergence for the cross talk between the pro-inflammatory cytokine interferon γ (IFNγ) and the Toll-like receptor-4 (TLR4) ligand LPS in immune cells. However, there is no information available on the role of STAT1 in TLR4-mediated progression of atherosclerosis and on potential synergism between lipopolysaccharides (LPS) and IFNγ signaling in cells from the vasculature. Cultured human microvascular endothelial cells (HMECs) exposed to LPS activated STAT1 in a delayed manner that was inhibited by cycloheximide treatment. Pretreatment of HMECs as well as primary vascular smooth muscle cells (VSMCs) with IFNγ followed by LPS resulted in a significant increase in STAT1 phosphorylation compared with both factors alone. Increased STAT1 protein levels, strictly mediated by IFNγ, correlated with the augmented STAT1 phosphorylation that was absent in TLR4(-/-) cells. As assessed by PCR, Western analysis, and ELISA, this coincided with increased expression of the chemokine interferon gamma-induced protein 10 kDa (IP-10) and the adhesion molecule ICAM-1 in a TLR4-dependent manner.The STAT1-inhibitor fludarabine markedly reduced these effects as well as IFNγ and LPS-dependent adhesion of U937 cells to endothelial cells, emphasizing the potential importance of STAT1 in the integration of both signals. With the established roles of IFNγ and TLRs in atherosclerotic pathology, the STAT1-dependent signal integration between IFNγ and TLR in ECs and VSMCs in response to exogenous and endogenous atherogenic ligands could result in amplification of pro-inflammatory responses in the damaged vessel and be a novel mechanism involved in the initiation and progression of atherosclerosis.
Collapse
Affiliation(s)
- Krzysztof Sikorski
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, Poznan, Poland
| | | | | | | | | | | | | |
Collapse
|
548
|
Goto H, Nomiyama T, Mita T, Yasunari E, Azuma K, Komiya K, Arakawa M, Jin WL, Kanazawa A, Kawamori R, Fujitani Y, Hirose T, Watada H. Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces intimal thickening after vascular injury. Biochem Biophys Res Commun 2011; 405:79-84. [DOI: 10.1016/j.bbrc.2010.12.131] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 12/29/2010] [Indexed: 12/01/2022]
|
549
|
Yu ML, Wang JF, Wang GK, You XH, Zhao XX, Jing Q, Qin YW. Vascular smooth muscle cell proliferation is influenced by let-7d microRNA and its interaction with KRAS. Circ J 2011; 75:703-9. [PMID: 21266788 DOI: 10.1253/circj.cj-10-0393] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Several microRNAs (miRNAs) have been reported to regulate cardiovascular biological and pathological processes through inhibiting the translation of certain RNA transcripts. However, little is known about the association between miRNAs and vascular smooth muscle cell (VSMC) proliferation. The aim was to investigate the role of miRNAs in VSMC growth and the potential mechanism. METHODS AND RESULTS Primary VSMCs were isolated from the medial layer of the thoracic aorta obtained from spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY). miRNA microarrays were used to analyze the difference in miRNA expression between VSMCs of SHR and WKY rats and were validated using TaqMan real-time PCR. Of the potentially related genes under the influence of let-7d identified through literature search, KRAS was verified by western blot and functionally analyzed using miRNA mimics transfection and analysis of transfectants by cell enumeration was made using CCK-8 and flow cytometric analysis of cell cycle progression. let-7d-transfected VSMCs from SHR, WKY and human coronary arteries expressed significantly lower amounts of KRAS protein, displayed reduced cell growth and led to a greater number of cells in the G1 phase than the G2/M phases of the cell cycle. CONCLUSIONS let-7d was significantly downregulated in VSMCs as an important regulator of cell proliferation. RAS might be involved in the proliferation regulation by let-7d.
Collapse
Affiliation(s)
- Man-Li Yu
- Department of Cardiology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
550
|
Golej DL, Askari B, Kramer F, Barnhart S, Vivekanandan-Giri A, Pennathur S, Bornfeldt KE. Long-chain acyl-CoA synthetase 4 modulates prostaglandin E₂ release from human arterial smooth muscle cells. J Lipid Res 2011; 52:782-93. [PMID: 21242590 DOI: 10.1194/jlr.m013292] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Long-chain acyl-CoA synthetases (ACSLs) catalyze the thioesterification of long-chain FAs into their acyl-CoA derivatives. Purified ACSL4 is an arachidonic acid (20:4)-preferring ACSL isoform, and ACSL4 is therefore a probable regulator of lipid mediator production in intact cells. Eicosanoids play important roles in vascular homeostasis and disease, yet the role of ACSL4 in vascular cells is largely unknown. In the present study, the ACSL4 splice variant expressed in human arterial smooth muscle cells (SMCs) was identified as variant 1. To investigate the function of ACSL4 in SMCs, ACSL4 variant 1 was overexpressed, knocked-down by small interfering RNA, or its enzymatic activity acutely inhibited in these cells. Overexpression of ACSL4 resulted in a markedly increased synthesis of arachidonoyl-CoA, increased 20:4 incorporation into phosphatidylethanolamine, phosphatidylinositol, and triacylglycerol, and reduced cellular levels of unesterified 20:4. Accordingly, secretion of prostaglandin E₂ (PGE₂) was blunted in ACSL4-overexpressing SMCs compared with controls. Conversely, acute pharmacological inhibition of ACSL4 activity resulted in increased release of PGE₂. However, long-term downregulation of ACSL4 resulted in markedly reduced PGE₂ secretion. Thus, ACSL4 modulates PGE₂ release from human SMCs. ACSL4 may regulate a number of processes dependent on the release of arachidonic acid-derived lipid mediators in the arterial wall.
Collapse
Affiliation(s)
- Deidre L Golej
- Department of Pathology, Diabetes and Obesity Center of Excellence, University of Washington School of Medicine, Seattle, WA 98109, USA
| | | | | | | | | | | | | |
Collapse
|