501
|
Manfredi AA, Rovere-Querini P, D'Angelo A, Maugeri N. Low molecular weight heparins prevent the induction of autophagy of activated neutrophils and the formation of neutrophil extracellular traps. Pharmacol Res 2017; 123:146-156. [PMID: 28161237 DOI: 10.1016/j.phrs.2016.08.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/04/2016] [Accepted: 08/04/2016] [Indexed: 12/12/2022]
Abstract
The protection exerted by neutrophils against invading microbes is partially mediated via the generation of neutrophil extracellular traps (NETs). In sterile conditions NETs are damaging species, enriched in autoantigens and endowed with the ability to damage the vessel wall and bystander tissues, to promote thrombogenesis, and to impair wound healing. To identify and reposition agents that can be used to modulate the formation of NETs is a priority in the research agenda. Low molecular weight heparins (LMWH) are currently used, mostly on an empirical basis, in conditions in which NETs play a critical role, such as pregnancy complications associated to autoimmune disease. Here we report that LMWHs induce a profound change in the ability of human neutrophils to generate NETs and to mobilize the content of the primary granules in response to unrelated inflammatory stimuli, such as IL-8, PMA and HMGB1. Autophagy consistently accompanies NET generation in our system and autophagy inhibitors, 3-MA and wortmannin, prevent NET generation. Pretreatment with LMWH in vitro critically jeopardizes neutrophil ability to activate autophagy, a mechanism that might contribute to neutrophil unresponsiveness. Finally, we verified that treatment of healthy volunteers with a single prophylactic dose of parnaparin abrogated the ability of neutrophils to activate autophagy and to generate NETs. Together, these results support the contention that neutrophils, and NET generation in particular, might represent a preferential target of the anti-inflammatory action of LMWH.
Collapse
Affiliation(s)
- Angelo A Manfredi
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy; Vita-Salute San Raffaele University, Milano, Italy
| | - Patrizia Rovere-Querini
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy; Vita-Salute San Raffaele University, Milano, Italy
| | - Armando D'Angelo
- Coagulation Service and Thrombosis Research Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Norma Maugeri
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy.
| |
Collapse
|
502
|
|
503
|
Promyelocytic extracellular chromatin exacerbates coagulation and fibrinolysis in acute promyelocytic leukemia. Blood 2017; 129:1855-1864. [PMID: 28053193 DOI: 10.1182/blood-2016-09-739334] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/20/2016] [Indexed: 12/28/2022] Open
Abstract
Despite routine treatment of unselected acute promyelocytic leukemia (APL) with all-trans-retinoic acid (ATRA), early death because of hemorrhage remains unacceptably common, and the mechanism underlying this complication remains elusive. We have recently demonstrated that APL cells undergo a novel cell death program, termed ETosis, which involves release of extracellular chromatin. However, the role of promyelocytic extracellular chromatin in APL-associated coagulation remains unclear. Our objectives were to identify the novel role of ATRA-promoted extracellular chromatin in inducing a hypercoagulable and hyperfibrinolytic state in APL and to evaluate its interaction with fibrin and endothelial cells (ECs). Results from a series of coagulation assays have shown that promyelocytic extracellular chromatin increases thrombin and plasmin generation, causes a shortening of plasma clotting time of APL cells, and increases fibrin formation. DNase I but not anti-tissue factor antibody could inhibit these effects. Immunofluorescence staining showed that promyelocytic extracellular chromatin and phosphatidylserine on APL cells provide platforms for fibrin deposition and render clots more resistant to fibrinolysis. Additionally, coincubation assays revealed that promyelocytic extracellular chromatin is cytotoxic to ECs, converting them to a procoagulant phenotype. This cytotoxity was blocked by DNase I by 20% or activated protein C by 31%. Our current results thus delineate the pathogenic role of promyelocytic extracellular chromatin in APL coagulopathy. Furthermore, the remaining coagulation disturbance in high-risk APL patients after ATRA administration may be treatable by intrinsic pathway inhibition via accelerating extracellular chromatin degradation.
Collapse
|
504
|
Witmer CM, Takemoto CM. Pediatric Hospital Acquired Venous Thromboembolism. Front Pediatr 2017; 5:198. [PMID: 28975127 PMCID: PMC5610717 DOI: 10.3389/fped.2017.00198] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 08/29/2017] [Indexed: 11/13/2022] Open
Abstract
Pediatric hospital acquired venous thromboembolism (HA-VTE) is an increasing problem with an estimated increase from 5.3 events per 10,000 pediatric hospital admissions in the early 1990s to a current estimate of 30-58 events per 10,000 pediatric hospital admissions. Pediatric HA-VTE is associated with significant morbidity and mortality. The etiology is multifactorial but central venous catheters remain the predominant risk factor. Additional HA-VTE risk factors include both acquired (recent surgery, immobility, inflammation, and critical illness) and inherited risk factors. Questions remain regarding the most effective method to assess for HA-VTE risk in hospitalized pediatric patients and what preventative strategies should be implemented. While several risk-assessment models have been published in pediatric patients, these studies have limited power due to small sample size and require prospective validation. Potential thromboprophylactic measures include mechanical and pharmacologic methods both of which have associated harms, the most significant of which is bleeding from anticoagulation. Standard anticoagulation options in pediatric patients currently include unfractionated heparin, low molecular weight heparin, or warfarin all of which pose a monitoring burden. Ongoing pediatric studies with direct oral anticoagulants could potentially revolutionize the prevention and treatment of pediatric thrombosis with the possibility of a convenient route of administration and no requirement for monitoring. Further studies assessing clinical outcomes of venous thromboembolism (VTE) prevention strategies are critical to evaluate the effectiveness and harm of prophylactic interventions in children. Despite HA-VTE prevention efforts, thrombotic events can still occur, and it is important that clinicians have a high clinical suspicion to ensure prompt diagnosis and treatment to prevent further associated harms.
Collapse
Affiliation(s)
- Char M Witmer
- Department of Pediatrics, Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Clifford M Takemoto
- Pediatric Hematology, The Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
505
|
Podaza E, Sabbione F, Risnik D, Borge M, Almejún MB, Colado A, Fernández-Grecco H, Cabrejo M, Bezares RF, Trevani A, Gamberale R, Giordano M. Neutrophils from chronic lymphocytic leukemia patients exhibit an increased capacity to release extracellular traps (NETs). Cancer Immunol Immunother 2017; 66:77-89. [PMID: 27796477 PMCID: PMC11029506 DOI: 10.1007/s00262-016-1921-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 10/23/2016] [Indexed: 12/19/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by immune defects that contribute to a high rate of infections and autoimmune cytopenias. Neutrophils are the first line of innate immunity and respond to pathogens through multiple mechanisms, including the release of neutrophil extracellular traps (NETs). These web-like structures composed of DNA, histones, and granular proteins are also produced under sterile conditions and play important roles in thrombosis and autoimmune disorders. Here we show that neutrophils from CLL patients are more prone to release NETs compared to those from age-matched healthy donors (HD). Increased generation of NETs was not due to higher levels of elastase, myeloperoxidase, or reactive oxygen species production. Instead, we found that plasma from CLL patients was able to prime neutrophils from HD to generate higher amounts of NETs upon activation. Plasmatic IL-8 was involved in the priming effect since its depletion reduced plasma capacity to enhance NETs release. Finally, we found that culture with NETs delayed spontaneous apoptosis and increased the expression of activation markers on leukemic B cells. Our study provides new insights into the immune dysregulation in CLL and suggests that the chronic inflammatory environment typical of CLL probably underlies this inappropriate neutrophil priming.
Collapse
Affiliation(s)
- Enrique Podaza
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Florencia Sabbione
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Denise Risnik
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Mercedes Borge
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - María B Almejún
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Ana Colado
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | | | - María Cabrejo
- Servicio de Hematología, Sanatorio Municipal Dr. Julio Méndez, Buenos Aires, Argentina
| | - Raimundo F Bezares
- Servicio de Hematología, Hospital Municipal Dr. Teodoro Alvarez, Buenos Aires, Argentina
| | - Analía Trevani
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Romina Gamberale
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Mirta Giordano
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina.
| |
Collapse
|
506
|
Reiner MF, Stivala S, Limacher A, Bonetti NR, Méan M, Egloff M, Rodondi N, Aujesky D, von Schacky C, Lüscher TF, Camici GG, Beer JH. Omega-3 fatty acids predict recurrent venous thromboembolism or total mortality in elderly patients with acute venous thromboembolism. J Thromb Haemost 2017; 15:47-56. [PMID: 27790827 DOI: 10.1111/jth.13553] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Indexed: 01/02/2023]
Abstract
Essentials The role of omega-3 fatty acids (n-3 FAs) in recurrent venous thromboembolism (VTE) is unknown. Association of n-3 FAs with recurrent VTE or total mortality was investigated in 826 patients. Whole blood n-3 FAs were inversely correlated with recurrent VTE or total mortality. Major and non-major bleeding was not increased in patients with higher levels of n-3 FAs. SUMMARY Background The role of omega-3 fatty acids (n-3 FAs) in recurrent venous thromboembolism (VTE) remains unknown. Objectives To investigate the association of n-3 FAs with recurrent VTE or total mortality at 6 months and 3 years. Methods N-3 FAs were assessed in 826 patients aged ≥ 65 years, categorized into low, medium and high based on the 25th and 75th percentile. Mean follow-up was 29 months. Results At 6 months, subjects with medium (adjusted hazard ratio [HR], 0.37; 95% confidence interval [CI], 0.22-0.62) and high n-3 FA levels (adjusted HR, 0.36; 95% CI, 0.20-0.67) were less likely to develop recurrent VTE or total mortality, compared with those with low n-3 FAs. At 3 years, medium levels (adjusted HR, 0.67; 95% CI, 0.47-0.96) were associated with lower risk of recurrent VTE or total mortality. As compared with low n-3 FAs, the adjusted sub-hazard ratio [SHR] of recurrent VTE was 0.39 (95% CI, 0.15-0.99) in patients with medium and 0.17 (95% CI, 0.03-0.82) in patients with high n-3 FAs. The cumulative incidence of recurrent VTE was lower in the medium and high n-3 FA groups as compared with the low n-3 FA groups, but seems to have worn off after 3 years. The incidence of major and non-major bleeding was not greater in the high n-3 FA group. Conclusion Higher levels of n-3 FAs were associated with a lower risk of recurrent VTE or total mortality in elderly patients with VTE, but not with greater bleeding risk.
Collapse
Affiliation(s)
- M F Reiner
- Center for Molecular Cardiology, Laboratory for Platelet Research, University of Zurich, Schlieren, Switzerland
- Department of Internal Medicine, Cantonal Hospital of Baden, Baden, Switzerland
| | - S Stivala
- Center for Molecular Cardiology, Laboratory for Platelet Research, University of Zurich, Schlieren, Switzerland
- Department of Internal Medicine, Cantonal Hospital of Baden, Baden, Switzerland
| | - A Limacher
- Clinical Trials Unit Bern, Department of Clinical Research, and Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - N R Bonetti
- Center for Molecular Cardiology, Laboratory for Platelet Research, University of Zurich, Schlieren, Switzerland
- Department of Internal Medicine, Cantonal Hospital of Baden, Baden, Switzerland
| | - M Méan
- Division of General Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - M Egloff
- Department of Internal Medicine, Cantonal Hospital of Baden, Baden, Switzerland
| | - N Rodondi
- Department of General Internal Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
| | - D Aujesky
- Department of General Internal Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - C von Schacky
- Department of Preventive Cardiology, Ludwig-Maximilian University Munich, Munich, Germany
| | - T F Lüscher
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - G G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - J H Beer
- Center for Molecular Cardiology, Laboratory for Platelet Research, University of Zurich, Schlieren, Switzerland
- Department of Internal Medicine, Cantonal Hospital of Baden, Baden, Switzerland
| |
Collapse
|
507
|
Lipp P, Ruhnau J, Lange A, Vogelgesang A, Dressel A, Heckmann M. Less Neutrophil Extracellular Trap Formation in Term Newborns than in Adults. Neonatology 2017; 111:182-188. [PMID: 27884010 DOI: 10.1159/000452615] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/17/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Newborns are prone to infections, which are independent predictors of neonatal mortality and morbidity. Neutrophil extracellular traps (NETs) are structures composed of chromatin and antimicrobial molecules that capture and kill pathogens. NETs may play an important role in the innate immune system and, thus, might be associated with impaired neonatal immune function. OBJECTIVES This study aimed to compare NET formation between term neonates and healthy adults. We additionally investigated the effects of gestational age, birth weight, mode of delivery, gender, and perinatal infections. METHODS We collected cord blood from 57 term infants (mean gestational age, 39.1 weeks) and 9 late preterm infants (35 weeks), and peripheral blood from 18 healthy adult donors. Neutrophils were isolated, and then NET formation was induced using three different stimulants: N-formylmethionine-leucyl-phenylalanine, phorbol 12-myristate 13-acetate (PMA), or lipopolysaccharide. NETs were immunohistochemically stained and analyzed with regard to NET percentage and NET area. RESULTS With all three stimuli, healthy term infants showed a lower NET percentage than the adult control group (p < 0.0001 each). The groups also differed in NET area, but the significance level was lower. Following PMA stimulation, we observed greater reductions in NET percentage and NET area in preterm than term infants. CONCLUSIONS The lower NET formation observed in term infants compared to adults likely contributes to the reduced neonatal immune response. NET formation appeared to be even further decreased in late preterm neonates. There remains a need for further investigations of NET formation in more immature preterm infants.
Collapse
Affiliation(s)
- Patrick Lipp
- Department of Neonatology and Pediatric Intensive Care, University Medicine Greifswald, Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
508
|
Jaffray J, Bauman M, Massicotte P. The Impact of Central Venous Catheters on Pediatric Venous Thromboembolism. Front Pediatr 2017; 5:5. [PMID: 28168186 PMCID: PMC5253371 DOI: 10.3389/fped.2017.00005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/09/2017] [Indexed: 12/12/2022] Open
Abstract
The use of central venous catheters (CVCs) in children is escalating, which is likely linked to the increased incidence of pediatric venous thromboembolism (VTE). In order to better understand the specific risk factors associated with CVC-VTE in children, as well as available prevention methods, a literature review was performed. The overall incidence of CVC-VTE was found to range from 0 to 74%, depending on the patient population, CVC type, imaging modality, and study design. Throughout the available literature, there was not a consistent determination regarding whether a particular type of central line (tunneled vs. non-tunneled vs. peripherally inserted vs. implanted), catheter material, insertion technique, or insertion location lead to an increased VTE risk. The patient populations who were found to be most at risk for CVC-VTE were those with cancer, congenital heart disease, gastrointestinal failure, systemic infection, intensive care unit admission, or involved in a trauma. Both mechanical and pharmacological prophylactic techniques have been shown to be successful in preventing VTE in adult patients, but studies in children have yet to be performed or are underpowered. In order to better determine true CVC-VTE risk factors and best preventative techniques, an increase in large, prospective pediatric trials needs to be performed.
Collapse
Affiliation(s)
- Julie Jaffray
- Children's Hospital Los Angeles, University of Southern California Keck School of Medicine , Los Angeles, CA , USA
| | - Mary Bauman
- University of Alberta, Stollery Children's Hospital , Edmonton, AB , Canada
| | - Patti Massicotte
- University of Alberta, Stollery Children's Hospital , Edmonton, AB , Canada
| |
Collapse
|
509
|
Shah BA, Migliori A, Kurihara I, Sharma S, Lim YP, Padbury J. Blood Level of Inter-Alpha Inhibitor Proteins Distinguishes Necrotizing Enterocolitis From Spontaneous Intestinal Perforation. J Pediatr 2017; 180:135-140.e1. [PMID: 27745748 PMCID: PMC5183497 DOI: 10.1016/j.jpeds.2016.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/10/2016] [Accepted: 09/08/2016] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To examine circulating levels of inter-alpha inhibitor protein (IaIp) in infants with necrotizing enterocolitis (NEC), spontaneous intestinal perforation (SIP), and matched controls to assess the diagnostic accuracy of IaIp to differentiate NEC from SIP and to compare receiver operating characteristics of IaIp for NEC with C-reactive protein (CRP). STUDY DESIGN A prospective, nested case-control study of infants with feeding intolerance was carried out. Blood and clinical data were collected from 27 infants diagnosed with NEC or SIP and from 26 matched controls admitted to our unit. Infants with modified Bell criteria stage 2 or greater were included as NEC. Clinical, radiologic, and/or surgical findings were used to identify infants with SIP. Controls were matched for gestational age, postnatal age, sex, and birth weight. RESULTS Mean ± SD IaIp blood levels were 147 ± 38 mg/L, 276 ± 67 mg/L, and 330 ± 100 mg/L in infants with NEC, SIP, and matched controls, respectively (P < .004 and P < .01). Receiver operating characteristics analysis to establish the predictive value of NEC demonstrated areas under curve of 0.98 and 0.63 for IaIp and CRP, respectively. CONCLUSIONS IaIp levels were significantly decreased in infants with NEC compared with SIP and matched controls. The diagnostic accuracy of IaIp for NEC was superior to that of CRP.
Collapse
Affiliation(s)
- Birju A Shah
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK; Department of Pediatrics, Women and Infants Hospital, Alpert Medical School of Brown University, Providence, RI.
| | - Alison Migliori
- Department of Pediatrics, Women and Infants Hospital, Alpert Medical School of Brown University, Providence RI
| | - Itsuka Kurihara
- Department of Pediatrics, Women and Infants Hospital, Alpert Medical School of Brown University, Providence RI
| | - Surendra Sharma
- Department of Pediatrics, Women and Infants Hospital, Alpert Medical School of Brown University, Providence RI
| | - Yow-Pin Lim
- ProThera Biologics Inc., Providence, RI,Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Providence RI
| | - James Padbury
- Department of Pediatrics, Women and Infants Hospital, Alpert Medical School of Brown University, Providence RI
| |
Collapse
|
510
|
Martinod K, Witsch T, Erpenbeck L, Savchenko A, Hayashi H, Cherpokova D, Gallant M, Mauler M, Cifuni SM, Wagner DD. Peptidylarginine deiminase 4 promotes age-related organ fibrosis. J Exp Med 2016; 214:439-458. [PMID: 28031479 PMCID: PMC5294849 DOI: 10.1084/jem.20160530] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 09/08/2016] [Accepted: 12/07/2016] [Indexed: 12/14/2022] Open
Abstract
Peptidylarginine deiminase 4 (PAD4) citrullinates proteins. In neutrophils, it causes chromatin decondensation and release of NETs, which are injurious. Martinod et al. show in this study that NETs promote fibrosis in a cardiac model and that PAD4-deficient mice have reduced age-related organ fibrosis. Aging promotes inflammation, a process contributing to fibrosis and decline in organ function. The release of neutrophil extracellular traps (NETs [NETosis]), orchestrated by peptidylarginine deiminase 4 (PAD4), damages organs in acute inflammatory models. We determined that NETosis is more prevalent in aged mice and investigated the role of PAD4/NETs in age-related organ fibrosis. Reduction in fibrosis was seen in the hearts and lungs of aged PAD4−/− mice compared with wild-type (WT) mice. An increase in left ventricular interstitial collagen deposition and a decline in systolic and diastolic function were present only in WT mice, and not in PAD4−/− mice. In an experimental model of cardiac fibrosis, cardiac pressure overload induced NETosis and significant platelet recruitment in WT but not PAD4−/− myocardium. DNase 1 was given to assess the effects of extracellular chromatin. PAD4 deficiency or DNase 1 similarly protected hearts from fibrosis. We propose a role for NETs in cardiac fibrosis and conclude that PAD4 regulates age-related organ fibrosis and dysfunction.
Collapse
Affiliation(s)
- Kimberly Martinod
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Thilo Witsch
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Luise Erpenbeck
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Alexander Savchenko
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Hideki Hayashi
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Deya Cherpokova
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Maureen Gallant
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Maximilian Mauler
- Faculty of Biology, University of Freiburg, 79106 Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center, University of Freiburg, 79106 Freiburg, Germany
| | - Stephen M Cifuni
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Denisa D Wagner
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115 .,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
511
|
Gajsiewicz JM, Smith SA, Morrissey JH. Polyphosphate and RNA Differentially Modulate the Contact Pathway of Blood Clotting. J Biol Chem 2016; 292:1808-1814. [PMID: 28007958 DOI: 10.1074/jbc.m116.754325] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/21/2016] [Indexed: 11/06/2022] Open
Abstract
The contact pathway of the plasma clotting cascade is dispensable for normal hemostasis, but contributes to thrombosis and serves as a bridge between inflammation and coagulation. This pathway is triggered upon exposure of plasma to certain anionic polymers and artificial surfaces. Recently, extracellular nucleic acids and inorganic polyphosphate (polyP) have been implicated as being important (patho)physiologically relevant activators of this pathway. However, mechanistic details regarding how nucleic acids or polyP modulate the individual reactions of the contact pathway have been lacking. In this study, we investigate the ability of RNA homopolymers and polyP to bind the primary constituents of the contact pathway: factor XIa, factor XIIa, and plasma kallikrein, in the presence and absence of high molecular weight kininogen (HK), an important cofactor in this pathway. We examine seven proteolytic activation reactions within the contact pathway and report that polyP greatly enhances the rate of all seven, while RNA is effective in supporting only a subset of these reactions. HK both enhances and suppresses these proteolytic activation reactions, depending on the specific reaction evaluated. Overall, we find that polyP is a potent mediator of contact pathway activation reactions in general, that RNA secondary structure may be important to its procoagulant activity, and that nucleic acids versus polyP may differentially modulate specific enzyme activation events within the contact pathway.
Collapse
Affiliation(s)
- Joshua M Gajsiewicz
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Stephanie A Smith
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - James H Morrissey
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.
| |
Collapse
|
512
|
Marin Oyarzún CP, Carestia A, Lev PR, Glembotsky AC, Castro Ríos MA, Moiraghi B, Molinas FC, Marta RF, Schattner M, Heller PG. Neutrophil extracellular trap formation and circulating nucleosomes in patients with chronic myeloproliferative neoplasms. Sci Rep 2016; 6:38738. [PMID: 27958278 PMCID: PMC5153854 DOI: 10.1038/srep38738] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/14/2016] [Indexed: 12/15/2022] Open
Abstract
The mechanisms underlying increased thrombotic risk in chronic myeloproliferative neoplasms (MPN) are incompletely understood. We assessed whether neutrophil extracellular traps (NETs), which promote thrombosis, contribute to the procoagulant state in essential thrombocythemia, polycythemia vera and myelofibrosis (MF) patients. Although MPN neutrophils showed increased basal reactive oxygen species (ROS), enhanced NETosis by unstimulated neutrophils was an infrequent finding, whereas PMA-triggered NETosis was impaired, particularly in MF, due to decreased PMA-triggered ROS production. Elevated circulating nucleosomes were a prominent finding and were higher in patients with advanced disease, which may have potential prognostic implication. Histone-MPO complexes, proposed as specific NET biomarker, were seldomly detected, suggesting NETs may not be the main source of nucleosomes in most patients, whereas their correlation with high LDH points to increased cell turn-over as a plausible origin. Lack of association of nucleosomes or NETs with thrombosis or activation markers does not support their use as predictors of thrombosis although prospective studies in a larger cohort may help define their potential contribution to MPN thrombosis. These results do not provide evidence for relevant in vivo NETosis in MPN patients under steady state conditions, although availability of standardized NET biomarkers may contribute to further research in this field.
Collapse
Affiliation(s)
- Cecilia P Marin Oyarzún
- Department of Hematology Research, Institute of Medical Research "Alfredo Lanari", University of Buenos Aires, National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Agostina Carestia
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine (IMEX)- CONICET, National Academy of Medicine, Buenos Aires, Argentina
| | - Paola R Lev
- Department of Hematology Research, Institute of Medical Research "Alfredo Lanari", University of Buenos Aires, National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Ana C Glembotsky
- Department of Hematology Research, Institute of Medical Research "Alfredo Lanari", University of Buenos Aires, National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | | | - Beatriz Moiraghi
- Department of Hematology, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Felisa C Molinas
- Department of Hematology Research, Institute of Medical Research "Alfredo Lanari", University of Buenos Aires, National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Rosana F Marta
- Department of Hematology Research, Institute of Medical Research "Alfredo Lanari", University of Buenos Aires, National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Mirta Schattner
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine (IMEX)- CONICET, National Academy of Medicine, Buenos Aires, Argentina
| | - Paula G Heller
- Department of Hematology Research, Institute of Medical Research "Alfredo Lanari", University of Buenos Aires, National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| |
Collapse
|
513
|
Ay C, Pabinger I, Cohen AT. Cancer-associated venous thromboembolism: Burden, mechanisms, and management. Thromb Haemost 2016; 117:219-230. [PMID: 27882374 DOI: 10.1160/th16-08-0615] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/28/2016] [Indexed: 11/05/2022]
Abstract
Venous thromboembolism (VTE) is a significant health problem in the general population but especially in cancer patients. In this review, we discuss the epidemiology and burden of the disease, the pathophysiology of cancer-associated VTE, and the clinical treatment options for both primary prevention and acute treatment. Overall, the development of VTE in cancer patients is related to increases in morbidity, mortality, and medical costs. However, the incidence of cancer-associated VTE varies due to patient-related factors (e.g. thrombophilia, comorbidities, performance status, history of venous diseases), tumour-related factors (e.g. cancer site, stage, grade), and treatment-related factors (e.g. surgery, chemotherapy, anti-angiogenesis treatment, hormonal and supportive treatment). Furthermore, blood count parameters (e.g. platelets and leukocytes) and biomarkers (e.g. soluble P-selectin and D-dimer) are predictive markers for the risk of VTE in cancer patients and have been used to enhance risk stratification. Evidence suggests that cancer itself is associated with a state of hypercoagulability, driven in part by the release of procoagulant factors, such as tissue factor, from malignant tissue as well as by inflammation-driven activation of endothelial cells, platelets, and leukocytes. In general, low-molecular-weight heparin (LWMH) monotherapy is the standard of care for the management of cancer-associated VTE, as vitamin K antagonists are less effective in cancer patients. Direct oral anticoagulants (DOACs) offer a potentially promising treatment option for cancer patients with VTE, but recommendations concerning the routine use of DOACs should await head-to-head studies with LMWH.
Collapse
Affiliation(s)
- Cihan Ay
- Dr. Cihan Ay, MD, Medical University of Vienna, Department of Medicine I,, Clinical Division of Haematology and Haemostaseology, Waehringer Guertel 18-20, A-1090 Vienna, Austria, Tel.: +43 1 40400 44100, Fax: +43 1 40400 40300, E-mail:
| | | | | |
Collapse
|
514
|
Jeffery U, Gray RD, LeVine DN. A Simple Fluorescence Assay for Quantification of Canine Neutrophil Extracellular Trap Release. J Vis Exp 2016. [PMID: 27911367 DOI: 10.3791/54726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Neutrophil extracellular traps are networks of DNA, histones and neutrophil proteins released in response to infectious and inflammatory stimuli. Although a component of the innate immune response, NETs are implicated in a range of disease processes including autoimmunity and thrombosis. This protocol describes a simple method for canine neutrophil isolation and quantification of NETs using a microplate fluorescence assay. Blood is collected using conventional venipuncture techniques. Neutrophils are isolated using dextran sedimentation and a density gradient using conditions optimized for dog blood. After allowing time for attachment to the wells of a 96 well plate, neutrophils are treated with NET-inducing agonists such as phorbol-12-myristate-13-acetate or platelet activating factor. DNA release is measured by the fluorescence of a cell-impermeable nucleic acid dye. This assay is a simple, inexpensive method for quantifying NET release, but NET formation rather than other causes of cell death must be confirmed with alternative methods.
Collapse
Affiliation(s)
- Unity Jeffery
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University
| | - Robert D Gray
- MRC Centre for Inflammation Research, University of Edinburgh
| | - Dana N LeVine
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University;
| |
Collapse
|
515
|
Joshi MB, Baipadithaya G, Balakrishnan A, Hegde M, Vohra M, Ahamed R, Nagri SK, Ramachandra L, Satyamoorthy K. Elevated homocysteine levels in type 2 diabetes induce constitutive neutrophil extracellular traps. Sci Rep 2016; 6:36362. [PMID: 27811985 PMCID: PMC5095649 DOI: 10.1038/srep36362] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/13/2016] [Indexed: 12/26/2022] Open
Abstract
Constitutively active neutrophil extracellular traps (NETs) and elevated plasma homocysteine are independent risk factors for Type 2 Diabetes (T2D) associated vascular diseases. Here, we show robust NETosis due to elevated plasma homocysteine levels in T2D subjects and increased components of NETs such as neutrophil elastase and cell free DNA. Cooperative NETs formation was observed in neutrophils exposed to homocysteine, IL-6 and high glucose suggesting acute temporal changes tightly regulate constitutive NETosis. Homocysteine induced NETs by NADPH oxidase dependent and independent mechanisms. Constitutively higher levels of calcium and mitochondrial superoxides under hyperglycemic conditions were further elevated in response to homocysteine leading to accelerated NETosis. Homocysteine showed robust interaction between neutrophils and platelets by inducing platelet aggregation and NETosis in an interdependent manner. Our data demonstrates that homocysteine can alter innate immune function by promoting NETs formation and disturbs homeostasis between platelets and neutrophils which may lead to T2D associated vascular diseases.
Collapse
Affiliation(s)
| | | | | | - Mangala Hegde
- School of Life Sciences, Manipal University, Manipal, India
| | - Manik Vohra
- School of Life Sciences, Manipal University, Manipal, India
| | - Rayees Ahamed
- School of Life Sciences, Manipal University, Manipal, India
| | - Shivashankara K Nagri
- Department of Medicine, Kasturba Medical College, Manipal University, Manipal, India
| | | | | |
Collapse
|
516
|
Yoo HJ, Lee JS, Kim JE, Gu J, Koh Y, Kim I, Kim HK. Extracellular Histone Released from Leukemic Cells Increases Their Adhesion to Endothelium and Protects them from Spontaneous and Chemotherapy-Induced Leukemic Cell Death. PLoS One 2016; 11:e0163982. [PMID: 27706246 PMCID: PMC5051947 DOI: 10.1371/journal.pone.0163982] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/16/2016] [Indexed: 12/15/2022] Open
Abstract
Introduction When leukocytes are stimulated by reactive oxygen species (ROS), they release nuclear contents into the extracellular milieu, called by extracellular traps (ET). The nuclear contents are mainly composed of the histone–DNA complex and neutrophil elastase. This study investigated whether leukemic cells could release ET and the released histone could induce endothelial activation, eventually resulting in leukemic progression. Methods The circulating ET were measured in 80 patients with hematologic diseases and 40 healthy controls. ET formation and ROS levels were investigated during leukemic cell proliferation in vitro. Histone-induced endothelial adhesion molecules expression and cell survival were measured by flow cytometry. Results Acute leukemia patients had high levels of ET, which correlated with peripheral blast count. Leukemic cells produced high ROS levels and released extracellular histone, which was significantly blocked by antioxidants. Histone significantly induced 3 endothelial adhesion molecules expression, and promoted leukemic cell adhesion to endothelial cells, which was inhibited by histone inhibitors (heparin, polysialic acid, and activated protein C), neutralizing antibodies against these adhesion molecules, and a Toll like receptor(TLR)9 antagonist. When leukemic cells were co-cultured with endothelial cells, adherent leukemic cells showed better survival than the non-adherent ones, demonstrating that histone-treated endothelial cells protected leukemic cells from both spontaneous and chemotherapy-induced death. Conclusion Our data demonstrate for the first time that extracellular histone can be released from leukemic cells through a ROS-dependent mechanism. The released histone promotes leukemic cell adhesion by inducting the surface expression of endothelial adhesion molecules and eventually protects leukemic cells from cell death.
Collapse
Affiliation(s)
- Hyun Ju Yoo
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jee-Soo Lee
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ji-Eun Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - JaYoon Gu
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Youngil Koh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Inho Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Kyung Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
517
|
Xu XR, Carrim N, Neves MAD, McKeown T, Stratton TW, Coelho RMP, Lei X, Chen P, Xu J, Dai X, Li BX, Ni H. Platelets and platelet adhesion molecules: novel mechanisms of thrombosis and anti-thrombotic therapies. Thromb J 2016; 14:29. [PMID: 27766055 PMCID: PMC5056500 DOI: 10.1186/s12959-016-0100-6] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Platelets are central mediators of thrombosis and hemostasis. At the site of vascular injury, platelet accumulation (i.e. adhesion and aggregation) constitutes the first wave of hemostasis. Blood coagulation, initiated by the coagulation cascades, is the second wave of thrombin generation and enhance phosphatidylserine exposure, can markedly potentiate cell-based thrombin generation and enhance blood coagulation. Recently, deposition of plasma fibronectin and other proteins onto the injured vessel wall has been identified as a new "protein wave of hemostasis" that occurs prior to platelet accumulation (i.e. the classical first wave of hemostasis). These three waves of hemostasis, in the event of atherosclerotic plaque rupture, may turn pathogenic, and cause uncontrolled vessel occlusion and thrombotic disorders (e.g. heart attack and stroke). Current anti-platelet therapies have significantly reduced cardiovascular mortality, however, on-treatment thrombotic events, thrombocytopenia, and bleeding complications are still major concerns that continue to motivate innovation and drive therapeutic advances. Emerging evidence has brought platelet adhesion molecules back into the spotlight as targets for the development of novel anti-thrombotic agents. These potential antiplatelet targets mainly include the platelet receptors glycoprotein (GP) Ib-IX-V complex, β3 integrins (αIIb subunit and PSI domain of β3 subunit) and GPVI. Numerous efforts have been made aiming to balance the efficacy of inhibiting thrombosis without compromising hemostasis. This mini-review will update the mechanisms of thrombosis and the current state of antiplatelet therapies, and will focus on platelet adhesion molecules and the novel anti-thrombotic therapies that target them.
Collapse
Affiliation(s)
- Xiaohong Ruby Xu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong People’s Republic of China
| | - Naadiya Carrim
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
- Canadian Blood Services, Toronto, ON Canada
| | - Miguel Antonio Dias Neves
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
| | - Thomas McKeown
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
| | - Tyler W. Stratton
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
| | - Rodrigo Matos Pinto Coelho
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
| | - Xi Lei
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
| | - Pingguo Chen
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
- Canadian Blood Services, Toronto, ON Canada
| | - Jianhua Xu
- CCOA Therapeutics Inc, Toronto, ON Canada
| | - Xiangrong Dai
- Lee’s Pharmaceutical holdings limited, Shatin Hong Kong, China
- Zhaoke Pharmaceutical co. limited, Hefei, Anhui China
| | - Benjamin Xiaoyi Li
- Lee’s Pharmaceutical holdings limited, Shatin Hong Kong, China
- Zhaoke Pharmaceutical co. limited, Hefei, Anhui China
- Hong Kong University of Science and technology, Hong Kong, China
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
- Canadian Blood Services, Toronto, ON Canada
- CCOA Therapeutics Inc, Toronto, ON Canada
- Department of Medicine and Department of Physiology, University of Toronto, Toronto, ON Canada
| |
Collapse
|
518
|
Pelletier MGH, Szymczak K, Barbeau AM, Prata GN, O'Fallon KS, Gaines P. Characterization of neutrophils and macrophages from ex vivo-cultured murine bone marrow for morphologic maturation and functional responses by imaging flow cytometry. Methods 2016; 112:124-146. [PMID: 27663441 DOI: 10.1016/j.ymeth.2016.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/19/2016] [Accepted: 09/13/2016] [Indexed: 12/23/2022] Open
Abstract
Neutrophils and macrophages differentiate from common myeloid progenitors in the bone marrow, where they undergo nuclear morphologic changes during maturation. During this process, both cell types acquire critical innate immune functions that include phagocytosis of pathogens, and for neutrophils the release of nuclear material called nuclear extracellular traps (NETs). Primary cells used to study these functions are typically purified from mature mouse tissues, but bone marrow-derived ex vivo cultures provide more abundant numbers of progenitors and functionally mature cells. Routine analyses of these cells use conventional microscopy and flow cytometry, which present limitations; microscopy is laborious and subjective, whereas flow cytometry lacks spatial resolution. Here we describe methods to generate enriched populations of neutrophils or macrophages from cryopreserved mouse bone marrow cultured ex vivo, and to use imaging flow cytometry that combines the resolution of microscopy with flow cytometry to analyze cells for morphologic features, phagocytosis, and NETosis.
Collapse
Affiliation(s)
- Margery G H Pelletier
- Department of Biological Sciences, Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, Lowell, MA, USA
| | - Klaudia Szymczak
- Department of Biological Sciences, Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, Lowell, MA, USA
| | - Anna M Barbeau
- Department of Biological Sciences, Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, Lowell, MA, USA
| | - Gianna N Prata
- Integrative Physiology Laboratory, Combat Feeding Directorate, U.S. Army Natick Soldier RDEC, Natick, MA, USA
| | - Kevin S O'Fallon
- Integrative Physiology Laboratory, Combat Feeding Directorate, U.S. Army Natick Soldier RDEC, Natick, MA, USA
| | - Peter Gaines
- Department of Biological Sciences, Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, Lowell, MA, USA.
| |
Collapse
|
519
|
Ramos JD, Casey MF, Bamias A, De Giorgi U, Bellmunt J, Harshman LC, Ladoire S, Wong YN, Alva AS, Rosenberg JE, Galsky MD, Yu EY. The Khorana Score in Predicting Venous Thromboembolism for Patients With Metastatic Urothelial Carcinoma and Variant Histology Treated With Chemotherapy. Clin Appl Thromb Hemost 2016; 23:755-760. [PMID: 27637910 DOI: 10.1177/1076029616668405] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The Khorana score is a predictive risk model for venous thromboembolism (VTE) in patients with cancer planning to receive chemotherapy. Urothelial carcinoma and variant histologies (UC/VH) were underrepresented in the model. We sought to evaluate whether the Khorana score predicts for VTE in a retrospective multinational data set of patients with metastatic UC/VH. METHODS Patients diagnosed with metastatic UC/VH who received chemotherapy were eligible. Those with incomplete or miscoded data were excluded. Khorana scores were calculated based on the pretreatment data and categorized into high (≥3) or intermediate (1-2) VTE risk. Other patient-, tumor-, and therapy-related factors were also analyzed. The χ2 and logistic regression analyses were used to assess differences in VTE rates based on the clinical characteristics. Subgroup analyses were performed to evaluate the Khorana score and associated variables for early (<3 months) and late (>3 months) VTE. RESULTS A total of 943 patients were eligible for analysis. The cumulative VTE rate was 9.9%. There was no statistical difference in overall VTE rate between Khorana high- and intermediate-risk groups ( P = .16). In the multivariate analysis, nonurothelial histology (odds ratio [OR] = 2.56; P = .002) and the presence of cardiovascular disease (CVD) or CVD risk factors (OR = 2.14; P = .002) were associated with increased VTE risk. In the first 3 months from initiation of chemotherapy, Khorana high risk (OR = 2.08; P = .04) was associated with higher VTE rates. White blood cell (WBC) count (OR = 1.05; P = .04) was the only significant Khorana variable for early VTE. CONCLUSIONS The Khorana score stratifies early but not overall VTE risk in patients with metastatic UC/VH. The WBC count drives the increased early VTE risk seen with the Khorana score.
Collapse
Affiliation(s)
- Jorge D Ramos
- 1 Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, USA
| | - Martin F Casey
- 2 Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ugo De Giorgi
- 4 Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | | | | | - Sylvain Ladoire
- 7 Georges François Leclerc Center, Dijon, France.,8 Université de Bourgogne, Dijon, France
| | - Yu-Ning Wong
- 9 Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | | | | | - Evan Y Yu
- 1 Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
520
|
Li RHL, Stern JA, Ho V, Tablin F, Harris SP. Platelet Activation and Clopidogrel Effects on ADP-Induced Platelet Activation in Cats with or without the A31P Mutation in MYBPC3. J Vet Intern Med 2016; 30:1619-1629. [PMID: 27615120 PMCID: PMC5032873 DOI: 10.1111/jvim.14568] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 05/23/2016] [Accepted: 08/02/2016] [Indexed: 01/14/2023] Open
Abstract
Background Clopidogrel is commonly prescribed to cats with perceived increased risk of thromboembolic events, but little information exists regarding its antiplatelet effects. Objective To determine effects of clopidogrel on platelet responsiveness in cats with or without the A31P mutation in the MYBPC3 gene. A secondary aim was to characterize variability in feline platelet responses to clopidogrel. Animals Fourteen healthy cats from a Maine Coon/outbred mixed Domestic cat colony: 8 cats homozygous for A31P mutation in the MYPBC3 gene and 6 wild‐type cats without the A31P mutation. Methods Ex vivo study. All cats received clopidogrel (18.75 mg PO q24h) for 14 days. Before and after clopidogrel treatment, adenosine diphosphate (ADP)‐induced P‐selectin expression was evaluated. ADP‐ and thrombin‐induced platelet aggregation was measured by optical aggregometry (OA). Platelet pVASP and ADP receptor response index (ARRI) were measured by Western blot analysis. Results Platelet activation from cats with the A31P mutation was significantly (P = .0095) increased [35.55% (18.58–48.55) to 58.90% (24.85–69.90)], in response to ADP. Clopidogrel treatment attenuated ADP‐induced P‐selectin expression and platelet aggregation. ADP‐ and PGE1‐treated platelets had a similar level of pVASP as PGE1‐treated platelets after clopidogrel treatment. Clopidogrel administration resulted in significantly lower ARRI [24.13% (12.46–35.50) to 11.30% (−7.383 to 23.27)] (P = .017). Two of 13 cats were nonresponders based on OA and flow cytometry. Conclusion and Clinical Importance Clopidogrel is effective at attenuating platelet activation and aggregation in some cats. Cats with A31P mutation had increased platelet activation relative to the variable response seen in wild‐type cats.
Collapse
Affiliation(s)
- R H L Li
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA.
| | - J A Stern
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, CA
| | - V Ho
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA
| | - F Tablin
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA
| | - S P Harris
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
521
|
Yoo HJ, Kim JE, Gu JY, Lee SB, Lee HJ, Hwang HY, Hwang Y, Kim YT, Kim HK. Porcine endothelium induces DNA-histone complex formation in human whole blood: a harmful effect of histone on coagulation and endothelial activation. Xenotransplantation 2016; 23:464-471. [PMID: 27613329 DOI: 10.1111/xen.12264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 06/20/2016] [Accepted: 08/14/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Neutrophils play a role in xenograft rejection. When neutrophils are stimulated, they eject the DNA-histone complex into the extracellular space, called neutrophil extracellular traps (NET). We investigated whether NET formation actively occurs in the xenograft and contributes to coagulation and endothelial activation. METHODS Human whole blood was incubated with porcine aortic endothelial cells (pEC) from wild-type or α1,3-galactosyltransferase gene-knockout (GTKO) pigs. In the supernatant plasma from human blood, the level of the DNA-histone complex was measured by ELISA, and thrombin generation was measured using a calibrated automated thrombogram. Histone-induced tissue factor and adhesion molecule expression were measured by flow cytometry. RESULTS pEC from both wild-type and GTKO pigs significantly induced DNA-histone complex formation in human whole blood. The DNA-histone complex produced shortened the thrombin generation time and clotting time. Histone alone dose-dependently induced tissue factor and adhesion molecule expression in pEC. Aurintricarboxylic acid pretreatment partially inhibited pEC-induced DNA-histone complex formation. CONCLUSIONS DNA-histone complex actively generated upon xenotransplantation is a novel target to inhibit coagulation and endothelial activation. To prevent tissue factor and adhesion molecule expression, a strategy to block soluble histone may be required in xenotransplantation.
Collapse
Affiliation(s)
- Hyun Ju Yoo
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea.,Xenotransplantation Research Center and Transplantation Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ji-Eun Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea.,Xenotransplantation Research Center and Transplantation Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ja Yoon Gu
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea.,Xenotransplantation Research Center and Transplantation Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Sae Bom Lee
- Xenotransplantation Research Center and Transplantation Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Joo Lee
- Xenotransplantation Research Center and Transplantation Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Ho Young Hwang
- Xenotransplantation Research Center and Transplantation Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Yoohwa Hwang
- Xenotransplantation Research Center and Transplantation Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Young Tae Kim
- Xenotransplantation Research Center and Transplantation Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Kyung Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea.,Xenotransplantation Research Center and Transplantation Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
522
|
Neutrophils and Granulocytic MDSC: The Janus God of Cancer Immunotherapy. Vaccines (Basel) 2016; 4:vaccines4030031. [PMID: 27618112 PMCID: PMC5041025 DOI: 10.3390/vaccines4030031] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 12/20/2022] Open
Abstract
Neutrophils are the most abundant circulating blood cell type in humans, and are the first white blood cells recruited at the inflammation site where they orchestrate the initial immune response. Although their presence at the tumor site was recognized in the 1970s, until recently these cells have been neglected and considered to play just a neutral role in tumor progression. Indeed, in recent years neutrophils have been recognized to play a dual role in tumor development by either assisting the growth, angiogenesis, invasion, and metastasis or by exerting tumoricidal action directly via the secretion of antitumoral compounds, or indirectly via the orchestration of antitumor immunity. Understanding the biology of these cells and influencing their polarization in the tumor micro- and macro-environment may be the key for the development of new therapeutic strategies, which may finally hold the promise of an effective immunotherapy for cancer.
Collapse
|
523
|
Singel KL, Segal BH. Neutrophils in the tumor microenvironment: trying to heal the wound that cannot heal. Immunol Rev 2016; 273:329-43. [PMID: 27558344 PMCID: PMC5477672 DOI: 10.1111/imr.12459] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neutrophils are the first responders to infection and injury and are critical for antimicrobial host defense. Through the generation of reactive oxidants, activation of granular constituents and neutrophil extracellular traps, neutrophils target microbes and prevent their dissemination. While these pathways are beneficial in the context of trauma and infection, their off-target effects in the context of tumor are variable. Tumor-derived factors have been shown to reprogram the marrow, skewing toward the expansion of myelopoiesis. This can result in stimulation of both neutrophilic leukocytosis and the release of immature granulocytic populations that accumulate in circulation and in the tumor microenvironment. While activated neutrophils have been shown to kill tumor cells, there is growing evidence for neutrophil activation driving tumor progression and metastasis through a number of pathways, including stimulation of thrombosis and angiogenesis, stromal remodeling, and impairment of T cell-dependent anti-tumor immunity. There is also growing appreciation of neutrophil heterogeneity in cancer, with distinct neutrophil populations promoting cancer control or progression. In addition to the effects of tumor on neutrophil responses, anti-neoplastic treatment, including surgery, chemotherapy, and growth factors, can influence neutrophil responses. Future directions for research are expected to result in more mechanistic knowledge of neutrophil biology in the tumor microenvironment that may be exploited as prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Kelly L. Singel
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Brahm H. Segal
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
- Department of Medicine, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| |
Collapse
|
524
|
Shiogama K, Onouchi T, Mizutani Y, Sakurai K, Inada KI, Tsutsumi Y. Visualization of Neutrophil Extracellular Traps and Fibrin Meshwork in Human Fibrinopurulent Inflammatory Lesions: I. Light Microscopic Study. Acta Histochem Cytochem 2016; 49:109-16. [PMID: 27682014 PMCID: PMC5011235 DOI: 10.1267/ahc.16015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/17/2016] [Indexed: 12/17/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are extracellular fibrillary structures composed of degraded chromatin and granules of neutrophil origin. In fibrinopurulent inflammation such as pneumonia and abscess, deposition of fibrillar eosinophilic material is a common histopathological finding under hematoxylin-eosin staining. Expectedly, not only fibrin fibrils but also NETs consist of the fibrillar material. The aim of the present study is to analyze immunohistochemically how NETs are involved in the inflammatory process. Archival formalin-fixed, paraffin-embedded sections accompanying marked neutrophilic infiltration were the target of analysis. Neutrophil-associated substances (citrullinated histone H3, lactoferrin, myeloperoxidase and neutrophil elastase) were evaluated as NETs markers, while fibrinogen gamma chain was employed as a fibrin marker. Light microscopically, the fibrils were categorized into three types: thin, thick and clustered thick. Lactoferrin represented a good and stable NETs marker. Thin fibrils belonged to NETs. Thick fibrils are composed of either mixed NETs and fibrin or fibrin alone. Clustered thick fibrils were solely composed of fibrin. Neutrophils were entrapped within the fibrilllar meshwork of the thin and thick types. Apoptotic cells immunoreactive to cleaved caspase 3 and cleaved actin were dispersed in the NETs. In conclusion, NETs and fibrin meshwork were consistently recognizable by immunostaining for lactoferrin and fibrinogen gamma chain.
Collapse
Affiliation(s)
- Kazuya Shiogama
- Department of Pathology, Fujita Health University School of Medicine
| | - Takanori Onouchi
- Department of Pathology, Fujita Health University School of Medicine
| | | | - Kouhei Sakurai
- Department of Diagnostic Pathology, Banbuntane-Houtokukai Hospital, Fujita Health University School of Medicine
| | - Ken-ichi Inada
- Department of Diagnostic Pathology, Banbuntane-Houtokukai Hospital, Fujita Health University School of Medicine
| | - Yutaka Tsutsumi
- Department of Pathology, Fujita Health University School of Medicine
| |
Collapse
|
525
|
Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood 2016; 128:2435-2449. [PMID: 27574188 DOI: 10.1182/blood-2016-04-710632] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/12/2016] [Indexed: 01/12/2023] Open
Abstract
Deep venous thrombosis (DVT) is one of the most common cardiovascular diseases, but its pathophysiology remains incompletely understood. Although sterile inflammation has recently been shown to boost coagulation during DVT, the underlying molecular mechanisms are not fully resolved, which could potentially identify new anti-inflammatory approaches to prophylaxis and therapy of DVT. Using a mouse model of venous thrombosis induced by flow reduction in the vena cava inferior, we identified blood-derived high-mobility group box 1 protein (HMGB1), a prototypical mediator of sterile inflammation, to be a master regulator of the prothrombotic cascade involving platelets and myeloid leukocytes fostering occlusive DVT formation. Transfer of platelets into Hmgb1-/- chimeras showed that this cell type is the major source of HMGB1, exposing reduced HMGB1 on their surface upon activation thereby enhancing the recruitment of monocytes. Activated leukocytes in turn support oxidation of HMGB1 unleashing its prothrombotic activity and promoting platelet aggregation. This potentiates the amount of HMGB1 and further nurtures the accumulation and activation of monocytes through receptor for advanced glycation end products (RAGE) and Toll-like receptor 2, leading to local delivery of monocyte-derived tissue factor and cytokines. Moreover, disulfide HMGB1 facilitates formation of prothrombotic neutrophil extracellular traps (NETs) mediated by RAGE, exposing additional HMGB1 on their extracellular DNA strands. Eventually, a vicious circle of coagulation and inflammation is set in motion leading to obstructive DVT formation. Therefore, platelet-derived disulfide HMGB1 is a central mediator of the sterile inflammatory process in venous thrombosis and could be an attractive target for an anti-inflammatory approach for DVT prophylaxis.
Collapse
|
526
|
Affiliation(s)
- Ralph Kettritz
- Experimental and Clinical Research Center; A joint cooperation between the Charité and the Max-Delbrück Center for Molecular Medicine (MDC) and Department of Nephrology and Intensive Care Medicine; Charité University Health Services; Berlin Germany
| |
Collapse
|
527
|
De Caterina R, D'Ugo E, Libby P. Inflammation and thrombosis - testing the hypothesis with anti-inflammatory drug trials. Thromb Haemost 2016; 116:1012-1021. [PMID: 27535617 DOI: 10.1160/th16-03-0246] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/16/2016] [Indexed: 12/17/2022]
Abstract
The hypothesis of atherosclerosis as an inflammatory process has been a leitmotiv in cardiology for the past 20 years, and has now led to the launch of clinical trials aimed at testing whether drugs that primarily target inflammation can reduce cardiovascular events. Inflammation indeed drives all phases of atherosclerosis, from inception, through progression, and ultimately acute thrombotic complications (plaque rupture and probably plaque erosion). Since plaque rupture and erosion cause most acute coronary syndromes, appropriately tuned anti-inflammatory treatments should limit myocardial infarction and cardiovascular death. Beyond interrupting inflammation-related plaque disruption, such treatments might, however, also ameliorate the propensity to thrombosis once the trigger (plaque rupture or erosion) has occurred. Several lines of evidence support this view: experimental data document the role of inflammation in platelet activation, tissue factor-mediated coagulation, hyperfibrinogenaemia, impaired activity of natural anticoagulants (including those expressed by endothelial cells), and reduced fibrinolytic activity. Supporting evidence also derives from the involvement of inflammation in venous thrombosis, a process that commonly occurs in the absence of traditional risk factors for atherosclerosis but is associated with several inflammatory diseases including obesity. Ongoing trials, in addition to evaluating effects on primary outcomes, will afford the opportunity to probe the possibility that anti-inflammatory interventions that yield salutary changes in biomarkers of the thrombotic/fibrinolytic balance also translate into reduction of clinical events.
Collapse
Affiliation(s)
- Raffaele De Caterina
- Raffaele De Caterina, MD, PhD, Institute of Cardiology, "G. d'Annunzio" University - Chieti, C/o Ospedale SS. Annunziata, Via dei Vestini, 66013 Chieti, Italy, Tel.: +39 0871 41512, Fax: +39 0871 402817, E-mail:
| | | | | |
Collapse
|
528
|
Aldabbous L, Abdul-Salam V, McKinnon T, Duluc L, Pepke-Zaba J, Southwood M, Ainscough AJ, Hadinnapola C, Wilkins MR, Toshner M, Wojciak-Stothard B. Neutrophil Extracellular Traps Promote Angiogenesis: Evidence From Vascular Pathology in Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2016; 36:2078-87. [PMID: 27470511 DOI: 10.1161/atvbaha.116.307634] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/15/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Inflammation and dysregulated angiogenesis are features of endothelial dysfunction in pulmonary hypertension. Neutrophil extracellular traps (NETs), produced by dying neutrophils, contribute to pathogenesis of numerous vascular disorders but their role in pulmonary hypertension has not been studied. We sought evidence of (NETs) formation in pulmonary hypertension and investigated the effect of NETs on endothelial function. APPROACH AND RESULTS Plasma and lung tissues of patients with pulmonary hypertension were analyzed for NET markers. The effects of NETs on endothelial function were studied in vitro and in vivo. Patients with chronic thromboembolic pulmonary hypertension and idiopathic pulmonary hypertension showed elevated plasma levels of DNA, neutrophil elastase, and myeloperoxidase. NET-forming neutrophils and extensive areas of NETosis were found in the occlusive plexiform lesions and vascularized intrapulmonary thrombi. NETs induced nuclear factor κB-dependent endothelial angiogenesis in vitro and increased vascularization of matrigel plugs in vivo. Angiogenic responses were associated with increased release of matrix metalloproteinase-9, heparin-binding epidermal growth factor-like growth factor, latency-associated peptide of the transforming growth factor β1, and urokinase-type plasminogen activator, accompanied by increased endothelial permeability and cell motility. NETs-induced responses depended on myeloperoxidase/H2O2-dependent activation of Toll-like receptor 4/nuclear factor κB signaling. NETs stimulated the release of endothelin-1 in HPAECs (human pulmonary artery endothelial cells) and stimulated pulmonary smooth muscle cell proliferation in vitro. CONCLUSIONS We are the first to implicate NETs in angiogenesis and provide a functional link between NETs and inflammatory angiogenesis in vitro and in vivo. We demonstrate the potential pathological relevance of this in 2 diseases of disordered vascular homeostasis, pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension.
Collapse
Affiliation(s)
- Lulwah Aldabbous
- From the Department of Medicine, Centre for Pharmacology and Therapeutics (L.A., V.A.-S., L.D., A.J.A., M.R.W., B.W.-S.) and Centre for Haematology (T.M.K.), Experimental Medicine, Imperial College London, United Kingdom; and Pulmonary Vascular Diseases Unit, Papworth Hospital NHS Foundation Trust, Papworth Everard Cambridge, United Kingdom (J.P.-Z., M.S., C.H., M.T.)
| | - Vahitha Abdul-Salam
- From the Department of Medicine, Centre for Pharmacology and Therapeutics (L.A., V.A.-S., L.D., A.J.A., M.R.W., B.W.-S.) and Centre for Haematology (T.M.K.), Experimental Medicine, Imperial College London, United Kingdom; and Pulmonary Vascular Diseases Unit, Papworth Hospital NHS Foundation Trust, Papworth Everard Cambridge, United Kingdom (J.P.-Z., M.S., C.H., M.T.)
| | - Tom McKinnon
- From the Department of Medicine, Centre for Pharmacology and Therapeutics (L.A., V.A.-S., L.D., A.J.A., M.R.W., B.W.-S.) and Centre for Haematology (T.M.K.), Experimental Medicine, Imperial College London, United Kingdom; and Pulmonary Vascular Diseases Unit, Papworth Hospital NHS Foundation Trust, Papworth Everard Cambridge, United Kingdom (J.P.-Z., M.S., C.H., M.T.)
| | - Lucie Duluc
- From the Department of Medicine, Centre for Pharmacology and Therapeutics (L.A., V.A.-S., L.D., A.J.A., M.R.W., B.W.-S.) and Centre for Haematology (T.M.K.), Experimental Medicine, Imperial College London, United Kingdom; and Pulmonary Vascular Diseases Unit, Papworth Hospital NHS Foundation Trust, Papworth Everard Cambridge, United Kingdom (J.P.-Z., M.S., C.H., M.T.)
| | - Joanna Pepke-Zaba
- From the Department of Medicine, Centre for Pharmacology and Therapeutics (L.A., V.A.-S., L.D., A.J.A., M.R.W., B.W.-S.) and Centre for Haematology (T.M.K.), Experimental Medicine, Imperial College London, United Kingdom; and Pulmonary Vascular Diseases Unit, Papworth Hospital NHS Foundation Trust, Papworth Everard Cambridge, United Kingdom (J.P.-Z., M.S., C.H., M.T.)
| | - Mark Southwood
- From the Department of Medicine, Centre for Pharmacology and Therapeutics (L.A., V.A.-S., L.D., A.J.A., M.R.W., B.W.-S.) and Centre for Haematology (T.M.K.), Experimental Medicine, Imperial College London, United Kingdom; and Pulmonary Vascular Diseases Unit, Papworth Hospital NHS Foundation Trust, Papworth Everard Cambridge, United Kingdom (J.P.-Z., M.S., C.H., M.T.)
| | - Alexander J Ainscough
- From the Department of Medicine, Centre for Pharmacology and Therapeutics (L.A., V.A.-S., L.D., A.J.A., M.R.W., B.W.-S.) and Centre for Haematology (T.M.K.), Experimental Medicine, Imperial College London, United Kingdom; and Pulmonary Vascular Diseases Unit, Papworth Hospital NHS Foundation Trust, Papworth Everard Cambridge, United Kingdom (J.P.-Z., M.S., C.H., M.T.)
| | - Charaka Hadinnapola
- From the Department of Medicine, Centre for Pharmacology and Therapeutics (L.A., V.A.-S., L.D., A.J.A., M.R.W., B.W.-S.) and Centre for Haematology (T.M.K.), Experimental Medicine, Imperial College London, United Kingdom; and Pulmonary Vascular Diseases Unit, Papworth Hospital NHS Foundation Trust, Papworth Everard Cambridge, United Kingdom (J.P.-Z., M.S., C.H., M.T.)
| | - Martin R Wilkins
- From the Department of Medicine, Centre for Pharmacology and Therapeutics (L.A., V.A.-S., L.D., A.J.A., M.R.W., B.W.-S.) and Centre for Haematology (T.M.K.), Experimental Medicine, Imperial College London, United Kingdom; and Pulmonary Vascular Diseases Unit, Papworth Hospital NHS Foundation Trust, Papworth Everard Cambridge, United Kingdom (J.P.-Z., M.S., C.H., M.T.)
| | - Mark Toshner
- From the Department of Medicine, Centre for Pharmacology and Therapeutics (L.A., V.A.-S., L.D., A.J.A., M.R.W., B.W.-S.) and Centre for Haematology (T.M.K.), Experimental Medicine, Imperial College London, United Kingdom; and Pulmonary Vascular Diseases Unit, Papworth Hospital NHS Foundation Trust, Papworth Everard Cambridge, United Kingdom (J.P.-Z., M.S., C.H., M.T.)
| | - Beata Wojciak-Stothard
- From the Department of Medicine, Centre for Pharmacology and Therapeutics (L.A., V.A.-S., L.D., A.J.A., M.R.W., B.W.-S.) and Centre for Haematology (T.M.K.), Experimental Medicine, Imperial College London, United Kingdom; and Pulmonary Vascular Diseases Unit, Papworth Hospital NHS Foundation Trust, Papworth Everard Cambridge, United Kingdom (J.P.-Z., M.S., C.H., M.T.).
| |
Collapse
|
529
|
Xu XR, Zhang D, Oswald BE, Carrim N, Wang X, Hou Y, Zhang Q, Lavalle C, McKeown T, Marshall AH, Ni H. Platelets are versatile cells: New discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond. Crit Rev Clin Lab Sci 2016; 53:409-30. [PMID: 27282765 DOI: 10.1080/10408363.2016.1200008] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Platelets are small anucleate blood cells generated from megakaryocytes in the bone marrow and cleared in the reticuloendothelial system. At the site of vascular injury, platelet adhesion, activation and aggregation constitute the first wave of hemostasis. Blood coagulation, which is initiated by the intrinsic or extrinsic coagulation cascades, is the second wave of hemostasis. Activated platelets can also provide negatively-charged surfaces that harbor coagulation factors and markedly potentiate cell-based thrombin generation. Recently, deposition of plasma fibronectin, and likely other plasma proteins, onto the injured vessel wall has been identified as a new "protein wave of hemostasis" that may occur even earlier than the first wave of hemostasis, platelet accumulation. Although no experimental evidence currently exists, it is conceivable that platelets may also contribute to this protein wave of hemostasis by releasing their granule fibronectin and other proteins that may facilitate fibronectin self- and non-self-assembly on the vessel wall. Thus, platelets may contribute to all three waves of hemostasis and are central players in this critical physiological process to prevent bleeding. Low platelet counts in blood caused by enhanced platelet clearance and/or impaired platelet production are usually associated with hemorrhage. Auto- and allo-immune thrombocytopenias such as idiopathic thrombocytopenic purpura and fetal and neonatal alloimmune thrombocytopenia may cause life-threatening bleeding such as intracranial hemorrhage. When triggered under pathological conditions such as rupture of an atherosclerotic plaque, excessive platelet activation and aggregation may result in thrombosis and vessel occlusion. This may lead to myocardial infarction or ischemic stroke, the major causes of mortality and morbidity worldwide. Platelets are also involved in deep vein thrombosis and thromboembolism, another leading cause of mortality. Although fibrinogen has been documented for more than half a century as essential for platelet aggregation, recent studies demonstrated that fibrinogen-independent platelet aggregation occurs in both gene deficient animals and human patients under physiological and pathological conditions (non-anti-coagulated blood). This indicates that other unidentified platelet ligands may play important roles in thrombosis and might be novel antithrombotic targets. In addition to their critical roles in hemostasis and thrombosis, emerging evidence indicates that platelets are versatile cells involved in many other pathophysiological processes such as innate and adaptive immune responses, atherosclerosis, angiogenesis, lymphatic vessel development, liver regeneration and tumor metastasis. This review summarizes the current knowledge of platelet biology, highlights recent advances in the understanding of platelet production and clearance, molecular and cellular events of thrombosis and hemostasis, and introduces the emerging roles of platelets in the immune system, vascular biology and tumorigenesis. The clinical implications of these basic science and translational research findings will also be discussed.
Collapse
Affiliation(s)
- Xiaohong Ruby Xu
- a Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , ON , Canada .,b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,c Department of Medicine , Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , P.R. China
| | - Dan Zhang
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,c Department of Medicine , Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , P.R. China
| | - Brigitta Elaine Oswald
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,d Canadian Blood Services , Toronto , ON , Canada .,e Department of Physiology , University of Toronto , Toronto , ON , Canada
| | - Naadiya Carrim
- a Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , ON , Canada .,b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,d Canadian Blood Services , Toronto , ON , Canada
| | - Xiaozhong Wang
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,f The Second Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , P.R. China
| | - Yan Hou
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,g Jilin Provincial Center for Disease Prevention and Control , Changchun , Jilin , P.R. China
| | - Qing Zhang
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,h State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University , Guangzhou , Guangdong , P.R. China , and
| | - Christopher Lavalle
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,e Department of Physiology , University of Toronto , Toronto , ON , Canada
| | - Thomas McKeown
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada
| | - Alexandra H Marshall
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada
| | - Heyu Ni
- a Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , ON , Canada .,b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,d Canadian Blood Services , Toronto , ON , Canada .,e Department of Physiology , University of Toronto , Toronto , ON , Canada .,i Department of Medicine , University of Toronto , Toronto , ON , Canada
| |
Collapse
|
530
|
Abstract
During apoptosis or activation, cells can release a subcellular structure, called a membrane microvesicle (also known as microparticle) into the extracellular environment. Microvesicles bud-off as a portion of cell membrane with its associated proteins and lipids surrounding a cytosolic core that contains intracellular proteins, lipids, and nucleic acids (DNA, RNA, siRNA, microRNA, lncRNA). Biologically active molecules on the microvesicle surface and encapsulated within can act on recipient cells as a novel mode of intercellular communication. Apoptosis has long been known to be involved in the development of diseases of autoimmunity. Abnormally persistent microvesicles, particularly apoptotic microvesicles, can accelerate autoimmune responses locally in specific organs and tissues as well as systemically. In this review, we focus on studies implicating microvesicles in the pathogenesis of autoimmune diseases and their complications.
Collapse
|
531
|
Scharf RE. Do we need antiplatelet therapy in thrombocytosis? Contra. Proposal for an individualized risk-adapted treatment. Hamostaseologie 2016; 36:241-260. [PMID: 27414763 DOI: 10.5482/hamo-16-06-0016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/04/2016] [Indexed: 01/08/2023] Open
Abstract
Thrombocytosis is a frequent laboratory finding but not a diagnosis. Therefore, elevated platelet counts (>450 x 109/l) require careful diagnostic work-up to differentiate between reactive thrombocytosis (RT), caused by various conditions, and essential thrombocythemia (ET), a myeloproliferative neoplasm (MPN). In either setting, aspirin is widely used in clinical practice. However, RT (even at platelet counts >1000 x 109/l) has never been shown to cause thrombosis or bleeding due to acquired von Willebrand factor defects in association with high platelet counts. Identification of reactive conditions and appropriate therapy of the underlying disorder are most relevant. By contrast to RT, ET and related MPN can be associated with thrombosis and/or hemorrhage. Current recommendations suggest the use of low-dose aspirin in all patients with ET unless contraindicated. However, the strength of this recommendation is weak, i. e. evidence level IIb grade B. A potential benefit of aspirin used for primary thromboprophylaxis in ET is mostly derived from the ECLAP study in polycythemia vera (PV). However, translating study results from PV to ET appears to be highly questionable and may be biased. In the absence of robust data regarding the benefit-risk balance of aspirin in ET, it appears reasonable (1) to stratify patients according to their individual thrombotic and bleeding risk, (2) to restrict the use of aspirin to high-risk categories and patients with microcirculatory disturbances, (3) to test for pharmacological efficacy (COX-1 inhibition; measurement of TXB2), and (4) to modify the aspirin dosing regimen (twice instead of once daily) if required.
Collapse
Affiliation(s)
- Rüdiger E Scharf
- Rüdiger E. Scharf, M.D., Ph.D., F.A.H.A., Dept. of Experimental and Clinical Hemostasis, Hemotherapy and Transfusion Medicine and Hemophilia Comprehensive Care Center, Heinrich Heine, Univ. Medical Center Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany, Tel. +49/( 0)211/ 811 73-44 / -45, Fax +49/( 0)211/ 811 62 21,
| |
Collapse
|
532
|
Thachil J. Disseminated intravascular coagulation - new pathophysiological concepts and impact on management. Expert Rev Hematol 2016; 9:803-14. [PMID: 27314681 DOI: 10.1080/17474086.2016.1203250] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Disseminated intravascular coagulation (DIC) is an intermediary mechanism of disease which develops secondary to many causes including sepsis, trauma and malignancies. This review attempts to summarise the new pathophysiological developments and the impact they have on the current and future management of DIC. AREAS COVERED Several publications detailing the pathophysiology of DIC and the clinical management were identified using a pubmed search. Expert commentary: In recent years, on the initiatives of the international society of thrombosis and haemostasis, important advances have been made on the diagnostic aspect of DIC. In addition, several researchers have focused on the pathophysiology of the condition which is likely to provide better diagnostic markers and targeted therapy. However, some confusion still exists in the definition and management of DIC since various specialists understands the mechanisms involved in DIC from different perspectives.
Collapse
Affiliation(s)
- Jecko Thachil
- a Department of Haematology , Central Manchester University Hospitals NHS Foundation Trust , Manchester , UK
| |
Collapse
|
533
|
Ma R, Li T, Cao M, Si Y, Wu X, Zhao L, Yao Z, Zhang Y, Fang S, Deng R, Novakovic VA, Bi Y, Kou J, Yu B, Yang S, Wang J, Zhou J, Shi J. Extracellular DNA traps released by acute promyelocytic leukemia cells through autophagy. Cell Death Dis 2016; 7:e2283. [PMID: 27362801 PMCID: PMC5108337 DOI: 10.1038/cddis.2016.186] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 12/30/2022]
Abstract
Acute promyelocytic leukemia (APL) cells exhibit disrupted regulation of cell death and differentiation, and therefore the fate of these leukemic cells is unclear. Here, we provide the first evidence that a small percentage of APL cells undergo a novel cell death pathway by releasing extracellular DNA traps (ETs) in untreated patients. Both APL and NB4 cells stimulated with APL serum had nuclear budding of vesicles filled with chromatin that leaked to the extracellular space when nuclear and cell membranes ruptured. Using immunofluorescence, we found that NB4 cells undergoing ETosis extruded lattice-like structures with a DNA-histone backbone. During all-trans retinoic acid (ATRA)-induced cell differentiation, a subset of NB4 cells underwent ETosis at days 1 and 3 of treatment. The levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were significantly elevated at 3 days, and combined treatment with TNF-α and IL-6 stimulated NB4 cells to release ETs. Furthermore, inhibition of autophagy by pharmacological inhibitors or by small interfering RNA against Atg7 attenuated LC3 autophagy formation and significantly decreased ET generation. Our results identify a previously unrecognized mechanism for death in promyelocytes and suggest that ATRA may accelerate ET release through increased cytokines and autophagosome formation. Targeting this cellular death pathway in addition to conventional chemotherapy may provide new therapeutic modalities for APL.
Collapse
Affiliation(s)
- R Ma
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - T Li
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - M Cao
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - Y Si
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - X Wu
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
| | - L Zhao
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
| | - Z Yao
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
| | - Y Zhang
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
| | - S Fang
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - R Deng
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
| | - V A Novakovic
- Department of Research, Brigham and Women's Hospital, VA Boston Healthcare System, and Harvard Medical School, Boston, MA, USA
| | - Y Bi
- Department of Cardiology of the First Hospital, Harbin Medical University, Harbin, China
| | - J Kou
- Department of Cardiology of the Second Hospital, Harbin Medical University, Harbin, China
| | - B Yu
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - S Yang
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang Province, Harbin, China
| | - J Wang
- Department of Hematology of the Second Hospital, Harbin Medical University, Harbin, China
| | - J Zhou
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
| | - J Shi
- Department of Hematology of the First Hospital, Harbin Medical University, Harbin, China
- Department of Surgery, Brigham and Women's Hospital, VA Boston Healthcare System, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
534
|
Kimball AS, Obi AT, Diaz JA, Henke PK. The Emerging Role of NETs in Venous Thrombosis and Immunothrombosis. Front Immunol 2016; 7:236. [PMID: 27446071 PMCID: PMC4921471 DOI: 10.3389/fimmu.2016.00236] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/02/2016] [Indexed: 12/11/2022] Open
Abstract
Venous thrombosis (VT), a leading cause of morbidity and mortality worldwide, has recently been linked to neutrophil activation and release of neutrophil extracellular traps (NETs) via a process called NETosis. The use of various in vivo thrombosis models and genetically modified mice has more precisely defined the exact role of NETosis in the pathogenesis of VT. Translational large animal VT models and human studies have confirmed the presence of NETs in pathologic VT. Activation of neutrophils, with subsequent NETosis, has also been linked to acute infection. This innate immune response, while effective for bacterial clearance from the host by formation of an intravascular bactericidal "net," also triggers thrombosis. Intravascular thrombosis related to such innate immune mechanisms has been coined immunothrombosis. Dysregulated immunothrombosis has been proposed as a mechanism of pathologic micro- and macrovascular thrombosis in sepsis and autoimmune disease. In this focused review, we will address the dual role of NETs in the pathogenesis of VT and immunothrombosis.
Collapse
Affiliation(s)
- Andrew S Kimball
- Section of Vascular Surgery, Conrad Jobst Vascular Research Laboratories, Department of Surgery, University of Michigan , Ann Arbor, MI , USA
| | - Andrea T Obi
- Section of Vascular Surgery, Conrad Jobst Vascular Research Laboratories, Department of Surgery, University of Michigan , Ann Arbor, MI , USA
| | - Jose A Diaz
- Section of Vascular Surgery, Conrad Jobst Vascular Research Laboratories, Department of Surgery, University of Michigan , Ann Arbor, MI , USA
| | - Peter K Henke
- Section of Vascular Surgery, Conrad Jobst Vascular Research Laboratories, Department of Surgery, University of Michigan , Ann Arbor, MI , USA
| |
Collapse
|
535
|
Rabadi M, Kim M, D'Agati V, Lee HT. Peptidyl arginine deiminase-4-deficient mice are protected against kidney and liver injury after renal ischemia and reperfusion. Am J Physiol Renal Physiol 2016; 311:F437-49. [PMID: 27335376 PMCID: PMC5008675 DOI: 10.1152/ajprenal.00254.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/13/2016] [Indexed: 11/22/2022] Open
Abstract
We previously demonstrated that renal peptidyl arginine deiminase-4 (PAD4) is induced after renal ischemia and reperfusion (I/R) injury and exacerbates acute kidney injury (AKI) by increasing the renal tubular inflammatory response. Here, we tested whether genetic ablation of PAD4 attenuates renal injury and inflammation after I/R in mice. After renal I/R, PAD4 wild-type mice develop severe AKI with large increases in plasma creatinine, neutrophil infiltration, as well as significant renal tubular necrosis, apoptosis, and proinflammatory cytokine generation. In contrast, PAD4-deficient mice are protected against ischemic AKI with reduced real tubular neutrophil infiltration, renal tubular necrosis, and apoptosis. In addition, hepatic injury and inflammation observed in PAD4 wild-type mice after renal I/R are significantly attenuated in PAD4-deficient mice. We also show that increased renal tubular PAD4 expression after renal I/R is associated with translocation of PAD4 from the nucleus to the cytosol. Consistent with PAD4 cytosolic translocation, we show increased renal tubular cytosolic peptidyl-citrullination after ischemic AKI. Mechanistically, recombinant PAD4 treatment increased nuclear translocation of NF-κB in cultured human as well as murine proximal tubule cells that is inhibited by a PAD4 inhibitor (2-chloroamidine). Taken together, our studies further support the hypothesis that renal tubular PAD4 plays a critical role in renal I/R injury by increasing the renal tubular inflammatory response and neutrophil infiltration after renal I/R perhaps by interacting with the proinflammatory transcription factor NF-κB in the cytosol and promoting its nuclear translocation.
Collapse
Affiliation(s)
- May Rabadi
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York; and
| | - Mihwa Kim
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York; and
| | - Vivette D'Agati
- Department of Pathology, College of Physicians and Surgeons of Columbia University, New York, New York
| | - H Thomas Lee
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York; and
| |
Collapse
|
536
|
Kim JE, Yoo HJ, Gu JY, Kim HK. Histones Induce the Procoagulant Phenotype of Endothelial Cells through Tissue Factor Up-Regulation and Thrombomodulin Down-Regulation. PLoS One 2016; 11:e0156763. [PMID: 27258428 PMCID: PMC4892514 DOI: 10.1371/journal.pone.0156763] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 05/19/2016] [Indexed: 01/11/2023] Open
Abstract
The high circulating levels of histones found in various thrombotic diseases may compromise the anticoagulant barrier of endothelial cells. We determined how histones affect endothelial procoagulant tissue factor (TF) and anticoagulant thrombomodulin (TM). Surface antigens, soluble forms, and mRNA levels of TF and TM were measured by flow cytometry, ELISA, and real-time RT-PCR, respectively. TF and TM activity were measured using procoagulant activity, thrombin generation, or chromogenic assays. Involvement of the toll-like receptor (TLR) was assessed using the neutralizing antibodies. Histones dose-dependently induced surface antigens, activity and mRNA levels of endothelial TF. Histone-treated endothelial cells significantly shortened the lag time and enhanced the endogenous thrombin potential of normal plasma, which was normalized by a TF neutralizing antibody. Histones induced phosphatidylserine and protein-disulfide isomerase expression in endothelial cells. Histones also reduced the surface antigen, activity, and mRNA levels of endothelial TM. Polysialic acid and heparin reversed the histone-induced TF up-regulation and TM down-regulation. Activated protein C did not affect the TF up-regulation, but interrupted TM down-regulation. TLR2, and TLR4 inhibitors partially blocked the TF up-regulation. Histones induced the endothelial procoagulant phenotype through TF up-regulation and TM down-regulation. The effects of histones were partly mediated by TLR2, TLR4. Strategies to inhibit the harmful effects of histones in endothelial cells may be required in order to prevent a thrombotic environment.
Collapse
Affiliation(s)
- Ji Eun Kim
- Department of Hemato-oncology, Healthcare Innovation Park, Seoul National University Bundang Hospital, Gyeonggi-do, South Korea
| | - Hyun Ju Yoo
- Department of Laboratory Medicine and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ja Yoon Gu
- Department of Laboratory Medicine and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Kyung Kim
- Department of Laboratory Medicine and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
537
|
|
538
|
Characterizing the Mechanistic Pathways of the Instant Blood-Mediated Inflammatory Reaction in Xenogeneic Neonatal Islet Cell Transplantation. Transplant Direct 2016; 2:e77. [PMID: 27500267 PMCID: PMC4946518 DOI: 10.1097/txd.0000000000000590] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/31/2016] [Indexed: 11/26/2022] Open
Abstract
Supplemental digital content is available in the text. Introduction The instant blood-mediated inflammatory reaction (IBMIR) causes major loss of islets after transplantation and consequently represents the initial barrier to survival of porcine neonatal islet cell clusters (NICC) after xenotransplantation. Methods This study used novel assays designed to characterize the various immunologic components responsible for xenogeneic IBMIR to identify initiators and investigate processes of IBMIR-associated coagulation, complement activation and neutrophil infiltration. The IBMIR was induced in vitro by exposing NICC to platelet-poor or platelet-rich human plasma or isolated neutrophils. Results We found that xenogeneic IBMIR was characterized by rapid, platelet-independent thrombin generation, with addition of platelets both accelerating and exacerbating this response. Platelet-independent complement activation was observed as early as 30 minutes after NICC exposure to plasma. However, membrane attack complex formation was not observed in NICC histopathology sections until after 60 minutes. We demonstrated for the first time that NICC-mediated complement activation was necessary for neutrophil activation in the xenogeneic IBMIR setting. Finally, using the Seahorse extracellular flux analyzer, we identified substantial loss of islet function (up to 40%) after IBMIR with surviving NICC showing evidence of mitochondrial damage. Conclusions This study used novel assays to describe multiple key pathways by which xenogeneic IBMIR causes islet destruction, allowing further refinement of future interventions aimed at resolving the issue of IBMIR in xenotransplantation.
Collapse
|
539
|
Riegger J, Byrne RA, Joner M, Chandraratne S, Gershlick AH, Ten Berg JM, Adriaenssens T, Guagliumi G, Godschalk TC, Neumann FJ, Trenk D, Feldman LJ, Steg PG, Desmet W, Alfonso F, Goodall AH, Wojdyla R, Dudek D, Philippi V, Opinaldo S, Titova A, Malik N, Cotton J, Jhagroe DA, Heestermans AACM, Sinnaeve P, Vermeersch P, Valina C, Schulz C, Kastrati A, Massberg S. Histopathological evaluation of thrombus in patients presenting with stent thrombosis. A multicenter European study: a report of the prevention of late stent thrombosis by an interdisciplinary global European effort consortium. Eur Heart J 2016; 37:1538-1549. [PMID: 26761950 PMCID: PMC4872283 DOI: 10.1093/eurheartj/ehv419] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 07/27/2015] [Accepted: 08/06/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Stent thrombosis (ST) is a rare but serious complication following percutaneous coronary intervention. Analysis of thrombus composition from patients undergoing catheter thrombectomy may provide important insights into the pathological processes leading to thrombus formation. We performed a large-scale multicentre study to evaluate thrombus specimens in patients with ST across Europe. METHODS Patients presenting with ST and undergoing thrombus aspiration were eligible for inclusion. Thrombus collection was performed according to a standardized protocol and specimens were analysed histologically at a core laboratory. Serial tissue cross sections were stained with haematoxylin-eosin (H&E), Carstairs and Luna. Immunohistochemistry was performed to identify leukocyte subsets, prothrombotic neutrophil extracellular traps (NETs), erythrocytes, platelets, and fibrinogen. RESULTS Overall 253 thrombus specimens were analysed; 79 (31.2%) from patients presenting with early ST, 174 (68.8%) from late ST; 79 (31.2%) were from bare metal stents, 166 (65.6%) from drug-eluting stents, 8 (3.2%) were from stents of unknown type. Thrombus specimens displayed heterogeneous morphology with platelet-rich thrombus and fibrin/fibrinogen fragments most abundant; mean platelet coverage was 57% of thrombus area. Leukocyte infiltrations were hallmarks of both early and late ST (early: 2260 ± 1550 per mm(2) vs. late: 2485 ± 1778 per mm(2); P = 0.44); neutrophils represented the most prominent subset (early: 1364 ± 923 per mm(2) vs. late: 1428 ± 1023 per mm(2); P = 0.81). Leukocyte counts were significantly higher compared with a control group of patients with thrombus aspiration in spontaneous myocardial infarction. Neutrophil extracellular traps were observed in 23% of samples. Eosinophils were present in all stent types, with higher numbers in patients with late ST in sirolimus-and everolimus-eluting stents. CONCLUSION In a large-scale study of histological thrombus analysis from patients presenting with ST, thrombus specimens displayed heterogeneous morphology. Recruitment of leukocytes, particularly neutrophils, appears to be a hallmark of ST. The presence of NETs supports their pathophysiological relevance. Eosinophil recruitment suggests an allergic component to the process of ST.
Collapse
Affiliation(s)
- Julia Riegger
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Marchioninistrasse 15, Munich 81377, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Robert A Byrne
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany Deutsches Herzzentrum München, Klinik an der Technische, Universität München, Lazarettstrasse 36, Munich 80636, Germany
| | - Michael Joner
- Deutsches Herzzentrum München, Klinik an der Technische, Universität München, Lazarettstrasse 36, Munich 80636, Germany CVPath Institute, Gaithersburg, USA
| | - Sue Chandraratne
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Marchioninistrasse 15, Munich 81377, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Anthony H Gershlick
- Department of Cardiovascular Sciences, University of Leicester and Leicester NIHR Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
| | - Jurrien M Ten Berg
- Department of Cardiology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Tom Adriaenssens
- Department of Cardiology, University Hospitals Leuven, Leuven, Belgium Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | | | - Thea C Godschalk
- Department of Cardiology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | | | - Dietmar Trenk
- Universitäts-Herzzentrum Freiburg Bad Krozingen, Germany
| | - Laurent J Feldman
- INSERM, U-1148, Paris, France DHU FIRE, Hôpital Bichat, AP-HP, Paris, France Université Paris-Diderot, Sorbonne Paris-Cité, Paris, France
| | - Philippe Gabriel Steg
- INSERM, U-1148, Paris, France DHU FIRE, Hôpital Bichat, AP-HP, Paris, France Université Paris-Diderot, Sorbonne Paris-Cité, Paris, France NHLI, Royal Brompton Hospital, Imperial College, London, UK
| | - Walter Desmet
- Department of Cardiology, University Hospitals Leuven, Leuven, Belgium Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | | | - Alison H Goodall
- Department of Cardiovascular Sciences, University of Leicester and Leicester NIHR Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
| | - Roman Wojdyla
- Samodzielny Publiczny Zaklad Opieki Zdrowotnej Szpital Uniwersytecki w Krakowie, Krakow, Poland
| | - Dariusz Dudek
- Samodzielny Publiczny Zaklad Opieki Zdrowotnej Szpital Uniwersytecki w Krakowie, Krakow, Poland
| | - Vanessa Philippi
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Marchioninistrasse 15, Munich 81377, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Sheryl Opinaldo
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Marchioninistrasse 15, Munich 81377, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Anna Titova
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Marchioninistrasse 15, Munich 81377, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Nikesh Malik
- Department of Cardiovascular Sciences, University of Leicester and Leicester NIHR Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
| | - James Cotton
- The Royal Wolverhampton Hospitals NHS Trust, Heart and Lung Centre, New Cross Hospital, Wolverhampton WV10 0QP, UK
| | - Darshni A Jhagroe
- Department of Cardiology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | | | - Peter Sinnaeve
- Department of Cardiology, University Hospitals Leuven, Leuven, Belgium Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Paul Vermeersch
- Antwerp Cardiovascular Institute, ZNA Middelheim, Lindendreef 1, Antwerpen B-2020, Belgium
| | | | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Marchioninistrasse 15, Munich 81377, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Adnan Kastrati
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany Deutsches Herzzentrum München, Klinik an der Technische, Universität München, Lazarettstrasse 36, Munich 80636, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Marchioninistrasse 15, Munich 81377, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
540
|
Hinz C, Aldrovandi M, Uhlson C, Marnett LJ, Longhurst HJ, Warner TD, Alam S, Slatter DA, Lauder SN, Allen-Redpath K, Collins PW, Murphy RC, Thomas CP, O'Donnell VB. Human Platelets Utilize Cycloxygenase-1 to Generate Dioxolane A3, a Neutrophil-activating Eicosanoid. J Biol Chem 2016; 291:13448-64. [PMID: 27129261 PMCID: PMC4919433 DOI: 10.1074/jbc.m115.700609] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Indexed: 11/07/2022] Open
Abstract
Eicosanoids are important mediators of fever, pain, and inflammation that modulate cell signaling during acute and chronic disease. We show by using lipidomics that thrombin-activated human platelets generate a new type of eicosanoid that both stimulates and primes human neutrophil integrin (Mac-1) expression, in response to formylmethionylleucylphenylalanine. Detailed characterization proposes a dioxolane structure, 8-hydroxy-9,11-dioxolane eicosatetraenoic acid (dioxolane A3, DXA3). The lipid is generated in nanogram amounts by platelets from endogenous arachidonate during physiological activation, with inhibition by aspirin in vitro or in vivo, implicating cyclooxygenase-1 (COX). Pharmacological and genetic studies on human/murine platelets revealed that DXA3 formation requires protease-activated receptors 1 and 4, cytosolic phospholipase A2 (cPLA2), Src tyrosine kinases, p38 MAPK, phospholipase C, and intracellular calcium. From data generated by purified COX isoforms and chemical oxidation, we propose that DXA3 is generated by release of an intermediate from the active site followed by oxygenation at C8. In summary, a new neutrophil-activating platelet-derived lipid generated by COX-1 is presented that can activate or prime human neutrophils, suggesting a role in innate immunity and acute inflammation.
Collapse
Affiliation(s)
- Christine Hinz
- From the Systems Immunity Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Maceler Aldrovandi
- From the Systems Immunity Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Charis Uhlson
- the Department of Pharmacology, University of Colorado at Denver, Aurora, Colorado 80045
| | - Lawrence J Marnett
- the Vanderbilt Institute of Chemical Biology, Centre in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee 37232-0146, and
| | - Hilary J Longhurst
- the William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Timothy D Warner
- the William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Saydul Alam
- From the Systems Immunity Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - David A Slatter
- From the Systems Immunity Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Sarah N Lauder
- From the Systems Immunity Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Keith Allen-Redpath
- From the Systems Immunity Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Peter W Collins
- From the Systems Immunity Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Robert C Murphy
- the Department of Pharmacology, University of Colorado at Denver, Aurora, Colorado 80045
| | - Christopher P Thomas
- From the Systems Immunity Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Valerie B O'Donnell
- From the Systems Immunity Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom,
| |
Collapse
|
541
|
Alhamdi Y, Toh CH. The role of extracellular histones in haematological disorders. Br J Haematol 2016; 173:805-11. [PMID: 27062156 DOI: 10.1111/bjh.14077] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/05/2016] [Accepted: 02/06/2016] [Indexed: 12/22/2022]
Abstract
Over the past decades, chromosomal alterations have been extensively investigated for their pathophysiological relevance in haematological malignancies. In particular, epigenetic modifications of intra-nuclear histones are now known as key regulators of healthy cell cycles that have also evolved into novel therapeutic targets for certain blood cancers. Thus, for most haematologists, histones are DNA-chained proteins that are buried deep within chromatin. However, the plot has deepened with recent revelations on the function of histones when unchained and released extracellularly upon cell death or from activated neutrophils as part of neutrophil extracellular traps (NETs). Extracellular histones and NETs are increasingly recognized for profound cytotoxicity and pro-coagulant effects. This article highlights the importance of recognizing this new paradigm of extracellular histones as a key player in host defence through its damage-associated molecular patterns, which could translate into novel diagnostic and therapeutic biomarkers in various haematological and critical disorders.
Collapse
Affiliation(s)
- Yasir Alhamdi
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Cheng-Hock Toh
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Roald Dahl Haemostasis & Thrombosis Centre, Royal Liverpool University Hospital, Liverpool, UK
| |
Collapse
|
542
|
Murphy AJ, Tall AR. Disordered haematopoiesis and athero-thrombosis. Eur Heart J 2016; 37:1113-21. [PMID: 26869607 PMCID: PMC4823636 DOI: 10.1093/eurheartj/ehv718] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/22/2015] [Accepted: 12/07/2015] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis, the major underlying cause of cardiovascular disease, is characterized by a lipid-driven infiltration of inflammatory cells in large and medium arteries. Increased production and activation of monocytes, neutrophils, and platelets, driven by hypercholesterolaemia and defective high-density lipoproteins-mediated cholesterol efflux, tissue necrosis and cytokine production after myocardial infarction, or metabolic abnormalities associated with diabetes, contribute to atherogenesis and athero-thrombosis. This suggests that in addition to traditional approaches of low-density lipoproteins lowering and anti-platelet drugs, therapies directed at abnormal haematopoiesis, including anti-inflammatory agents, drugs that suppress myelopoiesis, and excessive platelet production, rHDL infusions and anti-obesity and anti-diabetic agents, may help to prevent athero-thrombosis.
Collapse
Affiliation(s)
- Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia Department of Immunology, Monash University, Melbourne, Victoria 3165, Australia
| | - Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY 10032, USA
| |
Collapse
|
543
|
Tarantino E, Amadio P, Squellerio I, Porro B, Sandrini L, Turnu L, Cavalca V, Tremoli E, Barbieri SS. Role of thromboxane-dependent platelet activation in venous thrombosis: Aspirin effects in mouse model. Pharmacol Res 2016; 107:415-425. [PMID: 27063941 DOI: 10.1016/j.phrs.2016.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/31/2016] [Accepted: 04/02/2016] [Indexed: 12/30/2022]
Abstract
Recent trials suggest that Aspirin (ASA) reduces the incidence of venous thromboembolism in human. However, the molecular mechanisms underlying this effect are still unclear. In this study we assessed the effects of ASA in venous thrombosis mouse model induced by inferior vena cava (IVC) ligation and we investigated the mechanisms responsible for this effect. ASA (3mg/kg daily for 2 days) treatment decreased the thrombus size, the amounts of tissue factor activity in plasma microvesicles (TF-MP) and the levels of 2,3-dinor Thromboxane B2 (TXB-M) in urine compared to control mice. Interestingly, the thrombus size positively correlated with both TF-MP activity and TXB-M. In addition, positive correlation was observed between TF-MP activity and TXB-M. A reduced number of neutrophils and monocytes, and of TF-positive cells accompanied to a lower amount of fibrin and neutrophil extracellular traps (NETs) were also found in thrombi of ASA-treated mice. Similar results were obtained when mice were treated 24h before IVC ligation with SQ29548 (1mg/kg), a selective thromboxane receptor antagonist. In addition, transfusion of platelets in SQ29548 treated-mice excluded the likelihood of a redundant role of platelet-TP receptor in this context. Finally, incubation of macrophages and neutrophils with SQ29548 prevented TF activity and/or NETs formation induced by supernatant of activated platelets or by IBOP, a selective thromboxane analogue. In conclusion, ASA, suppressing TXA2, prevents macrophages and neutrophils activation and markedly reduces thrombus size with a mechanism most likely dependent of the inhibition of TF activity and NETs formation. These results provide a new link between platelet-produced thromboxane and the occurrence of venous thrombosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Linda Turnu
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Viviana Cavalca
- Centro Cardiologico Monzino, IRCCS, Milan, Italy; Dipartimento di Scienze Cliniche e di Comunità, University of Milan, Milan, Italy
| | | | | |
Collapse
|
544
|
Links between coagulation, inflammation, regeneration, and fibrosis in kidney pathology. J Transl Med 2016; 96:378-90. [PMID: 26752746 DOI: 10.1038/labinvest.2015.164] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/22/2015] [Indexed: 12/14/2022] Open
Abstract
Acute kidney injury (AKI) involves nephron injury leading to irreversible nephron loss, ie, chronic kidney disease (CKD). Both AKI and CKD are associated with distinct histological patterns of tissue injury, but kidney atrophy in CKD involves tissue remodeling with interstitial inflammation and scarring. No doubt, nephron atrophy, inflammation, fibrosis, and renal dysfunction are associated with each other, but their hierarchical relationships remain speculative. To better understand the pathophysiology, we provide an overview of the fundamental danger response programs that assure host survival upon traumatic injury from as early as the first multicellular organisms, ie, bleeding control by coagulation, infection control by inflammation, epithelial barrier restoration by re-epithelialization, and tissue stabilization by mesenchymal repair. Although these processes assure survival in the majority of the populations, their dysregulation causes kidney disease in a minority. We discuss how, in genetically heterogeneous population, genetic variants shift balances and modulate danger responses toward kidney disease. We further discuss how classic kidney disease entities develop from an insufficient or overshooting activation of these danger response programs. Finally, we discuss molecular pathways linking, for example, inflammation and regeneration or inflammation and fibrosis. Understanding the causative and hierarchical relationships and the molecular links between the danger response programs should help to identify molecular targets to modulate kidney injury and to improve outcomes for kidney disease patients.
Collapse
|
545
|
The origin of Pasteurella multocida impacts pathology and inflammation when assessed in a mouse model. Res Vet Sci 2016; 105:139-42. [DOI: 10.1016/j.rvsc.2016.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 02/06/2023]
|
546
|
Role of platelets, neutrophils, and factor XII in spontaneous venous thrombosis in mice. Blood 2016; 127:2630-7. [PMID: 26932804 DOI: 10.1182/blood-2015-10-672766] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/18/2016] [Indexed: 12/26/2022] Open
Abstract
Recently, platelets, neutrophils, and factor XII (FXII) have been implicated as important players in the pathophysiology of venous thrombosis. Their role became evident in mouse models in which surgical handling was used to provoke thrombosis. Inhibiting anticoagulation in mice by using small interfering RNA (siRNA) targeting Serpinc1 and Proc also results in a thrombotic phenotype, which is spontaneous (no additional triggers) and reproducibly results in clots in the large veins of the head and fibrin deposition in the liver. This thrombotic phenotype is fatal but can be fully rescued by thrombin inhibition. The mouse model was used in this study to investigate the role of platelets, neutrophils, and FXII. After administration of siRNAs targeting Serpinc1 and Proc, antibody-mediated depletion of platelets fully abrogated the clinical features as well as microscopic aspects in the head. This was corroborated by strongly reduced fibrin deposition in the liver. Whereas neutrophils were abundant in siRNA-triggered thrombotic lesions, antibody-mediated depletion of circulating Ly6G-positive neutrophils did not affect onset, severity, or thrombus morphology. In addition, absence of circulating neutrophils did not affect quantitative liver fibrin deposition. Remarkably, siRNA-mediated depletion of plasma FXII accelerated the onset of the clinical phenotype; mice were affected with more severe thrombotic lesions. To summarize, in this study, onset and severity of the thrombotic phenotype are dependent on the presence of platelets but not circulating neutrophils. Unexpectedly, FXII has a protective effect. This study challenges the proposed roles of neutrophils and FXII in venous thrombosis pathophysiology.
Collapse
|
547
|
Martinod K, Witsch T, Farley K, Gallant M, Remold-O’Donnell E, Wagner DD. Neutrophil elastase-deficient mice form neutrophil extracellular traps in an experimental model of deep vein thrombosis. J Thromb Haemost 2016; 14:551-8. [PMID: 26712312 PMCID: PMC4785059 DOI: 10.1111/jth.13239] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Indexed: 12/12/2022]
Abstract
UNLABELLED ESSENTIALS: Neutrophil elastase (NE) plays a role in extracellular trap formation (NETosis) triggered by microbes. The contribution of NE was evaluated in mouse NETosis models of sterile inflammation and thrombosis. NE is not required for mouse neutrophil NET production in vitro with non-infectious stimuli. NE deficiency had no significant effect on thrombosis in the inferior vena cava stenosis model. SUMMARY BACKGROUND Neutrophil serine proteases have been implicated in coagulation and neutrophil extracellular trap (NET) formation. In human neutrophils, neutrophil elastase (NE) translocates to the nucleus during NETosis and cleaves histones, thus aiding in chromatin decondensation. NE(-/-) mice were shown not to release NETs in response to microbes. However, mouse studies evaluating the role of NE in NET formation in sterile inflammation and thrombosis are lacking. OBJECTIVE We wished to establish if neutrophils from NE(-/-) mice have a defect in NETosis, similar to peptidylarginine deiminase 4 (PAD4(-/-)) mice, and how this might have an impact on venous thrombosis, a model where NETs are produced and are crucial to thrombus development. METHODS We performed in vitro NET assays using neutrophils from wild-type (WT), NE(-/-), SerpinB1 (SB1)(-/-) and NE(-/-) SB1(-/-) mice. We compared WT and NE(-/-) animals using the inferior vena cava stenosis model of deep vein thrombosis (DVT). RESULTS Neutrophil elastase deficiency resulted in a small reduction in ionomycin-induced NET formation in vitro without affecting histone citrullination. However, NET production in response to phorbol 12-myristate 13-acetate or platelet activating factor was normal in neutrophils from two independent NE-deficient mouse lines, and in NE(-/-) SB1(-/-) as compared with SB1(-/-) neutrophils. NE deficiency or inhibition did not prevent NETosis in vivo or DVT outcome. CONCLUSIONS Neutrophil elastase is not required for NET formation in mice. NE(-/-) mice, which form pathological venous thrombi containing NETs, do not phenocopy PAD4(-/-) mice in in vitro NETosis assays or experimental venous thrombosis. Our study suggests that NET-targeted therapies need to be highly effective to have an impact on DVT.
Collapse
Affiliation(s)
- Kimberly Martinod
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Thilo Witsch
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Kalamo Farley
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Maureen Gallant
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Eileen Remold-O’Donnell
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Denisa D. Wagner
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
548
|
Demers M, Wong SL, Martinod K, Gallant M, Cabral JE, Wang Y, Wagner DD. Priming of neutrophils toward NETosis promotes tumor growth. Oncoimmunology 2016; 5:e1134073. [PMID: 27467952 DOI: 10.1080/2162402x.2015.1134073] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 01/09/2023] Open
Abstract
Neutrophils play a major role in cancer biology and both pro- and antitumoral functions of tumor-infiltrating neutrophils have been described. We have shown that tumors, by releasing G-CSF into the bloodstream, prime circulating neutrophils to form neutrophil extracellular traps (NETs) and we have detected the presence of NETs within the tumor microenvironment. Here, we report, using PAD4-deficient mice with a defect in neutrophil chromatin decondensation and NET formation, that the priming of neutrophils toward NETosis favors tumor growth. Interestingly, in a tumor model that does not release G-CSF and in which neutrophils are not primed for NETosis, PAD4-deficiency did not reduce tumor growth. However, supplying exogenous G-CSF to the wild-type (WT) host promoted intratumoral NETosis and tumor growth. Taken together, our results suggest that the priming of neutrophils for NETosis by the tumor or its environment leads to the accumulation of intratumoral NETs and a growth advantage to the tumor. Our work unveiled a pro-tumoral role for NETs which strengthens their potential as a new target in the fight against cancer.
Collapse
Affiliation(s)
- Mélanie Demers
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Siu Ling Wong
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Kimberly Martinod
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Maureen Gallant
- Program in Cellular and Molecular Medicine, Boston Children's Hospital , Boston, MA, USA
| | - Jessica E Cabral
- Program in Cellular and Molecular Medicine, Boston Children's Hospital , Boston, MA, USA
| | - Yanming Wang
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, PA, USA
| | - Denisa D Wagner
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
549
|
Langer F. [Haemostatic aspects in clinical oncology]. Hamostaseologie 2016; 35:152-64; quiz 165. [PMID: 25943078 DOI: 10.5482/hamo-14-11-0057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/09/2014] [Indexed: 12/31/2022] Open
Abstract
The clinical link between cancer and thrombosis has been recognized by Armand Trousseau in 1865. It has become clear that activation of coagulation and fibrinolysis plays an important role not only in the pathophysiology of Trousseau's syndrome, but also in the progression of solid malignancies. In particular, tissue factor is critical for both primary tumour growth and haematogenous metastasis. Haemostatic perturbations in cancer patients are, at least in part, controlled by defined genetic events in molecular tumourigenesis, including activating and inactivating mutations of oncogenes and tumour suppressor genes, respectively. While long-term treatment with low-molecular-weight heparin (LMWH) is considered standard therapy for established venous thromboembolism (VTE), pharmacological VTE prophylaxis in ambulatory cancer patients and the management of complex systemic coagulopathies remain a challenge and have to be decided on an individual basis and in a risk-adapted manner. Experimental and preclinical studies further suggest that LMWH may be beneficial in cancer therapy, but this innovative concept has not yet been proven beyond doubt in rigorously designed clinical trials.
Collapse
Affiliation(s)
- F Langer
- Priv.-Doz. Dr. med. Florian Langer, II. Medizinische Klinik und Poliklinik, Hubertus-Wald-Tumorzentrum - Universitäres Cancer Center Hamburg (UCCH), Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Tel. 040/74 105-24 53, -06 64, Fax -51 93, E-Mail:
| |
Collapse
|
550
|
Nel JG, Theron AJ, Pool R, Durandt C, Tintinger GR, Anderson R. Neutrophil extracellular traps and their role in health and disease. S AFR J SCI 2016. [DOI: 10.17159/sajs.2016/20150072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Abstract The human innate immune system is indispensable for protection against potentially invasive microbial and viral pathogens, either neutralising them or containing their spread until effective mobilisation of the slower, adaptive (specific), immune response. Until fairly recently, it was believed that the human innate immune system possessed minimal discriminatory activity in the setting of a rather limited range of microbicidal or virucidal mechanisms. However, recent discoveries have revealed that the innate immune system possesses an array of novel pathogen recognition mechanisms, as well as a resourceful and effective alternative mechanism of phagocyte (predominantly neutrophil)-mediated, anti-infective activity known as NETosis. The process of NETosis involves an unusual type of programmed, purposeful cell death, resulting in the extracellular release of a web of chromatin heavily impregnated with antimicrobial proteins. These structures, known as neutrophil extracellular traps (NETs), immobilise and contribute to the eradication of microbial pathogens, ensuring that the anti-infective potential of neutrophils is sustained beyond the lifespan of these cells. The current review is focused on the mechanisms of NETosis and the role of this process in host defence. Other topics reviewed include the potential threats to human health posed by poorly controlled, excessive formation of NETs, specifically in relation to development of autoimmune and cardiovascular diseases, as well as exacerbation of acute and chronic inflammatory disorders of the airways.
Collapse
|