551
|
Wang Q, Ma C, Wang N, Mao H. Effects of quercetin on the DNA methylation pattern in tumor therapy: an updated review. Food Funct 2024; 15:3897-3907. [PMID: 38535893 DOI: 10.1039/d3fo03831a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Quercetin is a unique bioactive flavonoid, and is an excellent antioxidant and has anti-tumor effects by regulating different tumor-related processes like proliferation, apoptosis, invasion, and spread. The latest investigations reveal that quercetin may have the capability to influence DNA methylation modification, one of the primary factors in the development of tumors. Despite the fact that quercetin has significant therapeutic properties, its use as an anti-tumor medicine is constrained by its poor solubility, short half-life, and ineffective tumor targeting. Here, we review the structure and properties of quercetin, its capacity for DNA methylation modification in tumors, and the possibility of nanoscale delivery of quercetin for future tumor treatment.
Collapse
Affiliation(s)
- Qin Wang
- School of Pharmacy, Southwest Minzu University, Chengdu, Sichuan 610225, China.
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chen Ma
- School of Pharmacy, Southwest Minzu University, Chengdu, Sichuan 610225, China.
| | - Nan Wang
- School of Pharmacy, Southwest Minzu University, Chengdu, Sichuan 610225, China.
| | - Huixian Mao
- School of Pharmacy, Southwest Minzu University, Chengdu, Sichuan 610225, China.
| |
Collapse
|
552
|
Nahalka J. 1-L Transcription of SARS-CoV-2 Spike Protein S1 Subunit. Int J Mol Sci 2024; 25:4440. [PMID: 38674024 PMCID: PMC11049929 DOI: 10.3390/ijms25084440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The COVID-19 pandemic prompted rapid research on SARS-CoV-2 pathogenicity. Consequently, new data can be used to advance the molecular understanding of SARS-CoV-2 infection. The present bioinformatics study discusses the "spikeopathy" at the molecular level and focuses on the possible post-transcriptional regulation of the SARS-CoV-2 spike protein S1 subunit in the host cell/tissue. A theoretical protein-RNA recognition code was used to check the compatibility of the SARS-CoV-2 spike protein S1 subunit with mRNAs in the human transcriptome (1-L transcription). The principle for this method is elucidated on the defined RNA binding protein GEMIN5 (gem nuclear organelle-associated protein 5) and RNU2-1 (U2 spliceosomal RNA). Using the method described here, it was shown that 45% of the genes/proteins identified by 1-L transcription of the SARS-CoV-2 spike protein S1 subunit are directly linked to COVID-19, 39% are indirectly linked to COVID-19, and 16% cannot currently be associated with COVID-19. The identified genes/proteins are associated with stroke, diabetes, and cardiac injury.
Collapse
Affiliation(s)
- Jozef Nahalka
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dubravska Cesta 9, SK-84538 Bratislava, Slovakia;
- Institute of Chemistry, Centre of Excellence for White-Green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, SK-94976 Nitra, Slovakia
| |
Collapse
|
553
|
Martin-Caraballo M. Regulation of Molecular Biomarkers Associated with the Progression of Prostate Cancer. Int J Mol Sci 2024; 25:4171. [PMID: 38673756 PMCID: PMC11050209 DOI: 10.3390/ijms25084171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Androgen receptor signaling regulates the normal and pathological growth of the prostate. In particular, the growth and survival of prostate cancer cells is initially dependent on androgen receptor signaling. Exposure to androgen deprivation therapy leads to the development of castration-resistant prostate cancer. There is a multitude of molecular and cellular changes that occur in prostate tumor cells, including the expression of neuroendocrine features and various biomarkers, which promotes the switch of cancer cells to androgen-independent growth. These biomarkers include transcription factors (TP53, REST, BRN2, INSM1, c-Myc), signaling molecules (PTEN, Aurora kinases, retinoblastoma tumor suppressor, calcium-binding proteins), and receptors (glucocorticoid, androgen receptor-variant 7), among others. It is believed that genetic modifications, therapeutic treatments, and changes in the tumor microenvironment are contributing factors to the progression of prostate cancers with significant heterogeneity in their phenotypic characteristics. However, it is not well understood how these phenotypic characteristics and molecular modifications arise under specific treatment conditions. In this work, we summarize some of the most important molecular changes associated with the progression of prostate cancers and we describe some of the factors involved in these cellular processes.
Collapse
Affiliation(s)
- Miguel Martin-Caraballo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| |
Collapse
|
554
|
Song Y, Chen B, Jiao H, Yi L. Long noncoding RNA UNC5B-AS1 suppresses cell proliferation by sponging miR-24-3p in glioblastoma multiforme. BMC Med Genomics 2024; 17:83. [PMID: 38594690 PMCID: PMC11003007 DOI: 10.1186/s12920-024-01851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common primary CNS tumor, characterized by high mortality and heterogeneity. However, the related lncRNA signatures and their target microRNA (miRNA) for GBM are still mostly unknown. Therefore, it is critical that we discover lncRNA markers in GBM and their biological activities. MATERIALS AND METHODS GBM-related RNA-seq data were obtained from the Cancer Genome Atlas (TCGA) database. The "edger" R package was used for differently expressed lncRNAs (DELs) identification. Then, we forecasted prospective miRNAs that might bind to lncRNAs by Cytoscape software. Survival analysis of those miRNAs was examined by the starBase database, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the miRNAs' target genes was conducted by the Gene Set Enrichment Analysis (GSEA) database and R software. Moreover, the proliferative ability of unc-5 netrin receptor B antisense RNA 1 (UNC5B-AS1) cells was evaluated by Cell Counting Kit-8 (CCK-8) analysis. Mechanistically, the regulatory interaction between UNC5B-AS1 and miRNA in GBM biological processes was studied using CCK-8 analysis. RESULTS Our results indicated that overexpression of UNC5B-AS1 has been shown to suppress GBM cell growth. Mechanistically, miR-24-3p in GBM was able to alleviate the anti-oncogenic effects of UNC5B-AS1 on cell proliferation. CONCLUSION The discovery of the novel UNC5B-AS1-miR-24-3p network suggests possible lncRNA and miRNA roles in the development of GBM, which may have significant ramifications for the analysis of clinical prognosis and the development of GBM medications.
Collapse
Affiliation(s)
- Ying Song
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Baodong Chen
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Huili Jiao
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Li Yi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
555
|
Lei G, Zhuang L, Gan B. The roles of ferroptosis in cancer: Tumor suppression, tumor microenvironment, and therapeutic interventions. Cancer Cell 2024; 42:513-534. [PMID: 38593779 DOI: 10.1016/j.ccell.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
In cancer treatment, the recurrent challenge of inducing apoptosis through conventional therapeutic modalities, often thwarted by therapy resistance, emphasizes the critical need to explore alternative cell death pathways. Ferroptosis, an iron-dependent form of regulated cell death triggered by the lethal accumulation of lipid peroxides on cellular membranes, has emerged as one such promising frontier in oncology. Induction of ferroptosis not only suppresses tumor growth but also holds potential for augmenting immunotherapy responses and surmounting resistance to existing cancer therapies. This review navigates the role of ferroptosis in tumor suppression. Furthermore, we delve into the complex role of ferroptosis within the tumor microenvironment and its interplay with antitumor immunity, offering insights into the prospect of targeting ferroptosis as a strategic approach in cancer therapy.
Collapse
Affiliation(s)
- Guang Lei
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
556
|
Liao H, Wang Y, Zou L, Fan Y, Wang X, Tu X, Zhu Q, Wang J, Liu X, Dong C. Relationship of mTORC1 and ferroptosis in tumors. Discov Oncol 2024; 15:107. [PMID: 38583115 PMCID: PMC10999401 DOI: 10.1007/s12672-024-00954-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/28/2024] [Indexed: 04/08/2024] Open
Abstract
Ferroptosis is a novel form of programmed death, dependent on iron ions and oxidative stress, with a predominant intracellular form of lipid peroxidation. In recent years, ferroptosis has gained more and more interest of people in the treatment mechanism of targeted tumors. mTOR, always overexpressed in the tumor, and controlling cell growth and metabolic activities, has an important role in both autophagy and ferroptosis. Interestingly, the selective types of autophay plays an important role in promoting ferroptosis, which is related to mTOR and some metabolic pathways (especially in iron and amino acids). In this paper, we list the main mechanisms linking ferroptosis with mTOR signaling pathway and further summarize the current compounds targeting ferroptosis in these ways. There are growing experimental evidences that targeting mTOR and ferroptosis may have effective impact in many tumors, and understanding the mechanisms linking mTOR to ferroptosis could provide a potential therapeutic approach for tumor treatment.
Collapse
Affiliation(s)
- Huilin Liao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei, China, 443002
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China, 443002
| | - Yueqing Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei, China, 443002
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China, 443002
| | - Lili Zou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei, China, 443002
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China, 443002
| | - Yanmei Fan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei, China, 443002
| | - Xinyue Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei, China, 443002
| | - Xiancong Tu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei, China, 443002
| | - Qiaobai Zhu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei, China, 443002
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China, 443002
| | - Jun Wang
- The People's Hospital of China Three Gorges University and The First People's Hospital of Yichang, Yichang, Hubei, China, 443002
| | - Xiaowen Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang, Hubei, China, 443002.
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China, 443002.
| | - Chuanjiang Dong
- Department of Urology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China, 523000.
| |
Collapse
|
557
|
Aguilar-Martínez SY, Campos-Viguri GE, Medina-García SE, García-Flores RJ, Deas J, Gómez-Cerón C, Pedroza-Torres A, Bautista-Rodríguez E, Fernández-Tilapa G, Rodríguez-Dorantes M, Pérez-Plasencia C, Peralta-Zaragoza O. MiR-21 Regulates Growth and Migration of Cervical Cancer Cells by RECK Signaling Pathway. Int J Mol Sci 2024; 25:4086. [PMID: 38612895 PMCID: PMC11012906 DOI: 10.3390/ijms25074086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Expression of miR-21 has been found to be altered in almost all types of cancers, and it has been classified as an oncogenic microRNA. In addition, the expression of tumor suppressor gene RECK is associated with miR-21 overexpression in high-grade cervical lesions. In the present study, we analyze the role of miR-21 in RECK gene regulation in cervical cancer cells. To identify the downstream cellular target genes of upstream miR-21, we silenced endogenous miR-21 expression using siRNAs. We analyzed the expression of miR-21 and RECK, as well as functional effects on cell proliferation and migration. We found that in cervical cancer cells, there was an inverse correlation between miR-21 expression and RECK mRNA and protein expression. SiRNAs to miR-21 increased luciferase reporter activity in construct plasmids containing the RECK-3'-UTR microRNA response elements MRE21-1, MRE21-2, and MRE21-3. The role of miR-21 in cell proliferation was also analyzed, and cancer cells transfected with siRNAs exhibited a markedly reduced cell proliferation and migration. Our findings indicate that miR-21 post-transcriptionally down-regulates the expression of RECK to promote cell proliferation and cell migration inhibition in cervical cancer cell survival. Therefore, miR-21 and RECK may be potential therapeutic targets in gene therapy for cervical cancer.
Collapse
Affiliation(s)
- Seidy Y. Aguilar-Martínez
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (S.Y.A.-M.); (G.E.C.-V.); (S.E.M.-G.); (R.J.G.-F.); (J.D.)
| | - Gabriela E. Campos-Viguri
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (S.Y.A.-M.); (G.E.C.-V.); (S.E.M.-G.); (R.J.G.-F.); (J.D.)
| | - Selma E. Medina-García
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (S.Y.A.-M.); (G.E.C.-V.); (S.E.M.-G.); (R.J.G.-F.); (J.D.)
| | - Ricardo J. García-Flores
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (S.Y.A.-M.); (G.E.C.-V.); (S.E.M.-G.); (R.J.G.-F.); (J.D.)
| | - Jessica Deas
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (S.Y.A.-M.); (G.E.C.-V.); (S.E.M.-G.); (R.J.G.-F.); (J.D.)
| | - Claudia Gómez-Cerón
- Department of Epidemiology of Cancer, Research Center Population Health, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico;
| | - Abraham Pedroza-Torres
- Programa Investigadoras e Investigadores por México, Consejo Nacional de Humanidades, Ciencias y Tecnologías, México City 14080, Mexico;
- Hereditary Cancer Clinic, Instituto Nacional de Cancerología, México City 14080, Mexico
| | | | - Gloria Fernández-Tilapa
- Clinical Research Laboratory, Faculty of Chemical Biological Sciences, Universidad Autónoma de Guerrero, Chilpancingo 39070, Mexico;
| | | | - Carlos Pérez-Plasencia
- Oncogenomics Laboratory, Instituto Nacional de Cancerología, México City 14080, Mexico;
- Biomedicine Unit, FES-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz 54090, Mexico
| | - Oscar Peralta-Zaragoza
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (S.Y.A.-M.); (G.E.C.-V.); (S.E.M.-G.); (R.J.G.-F.); (J.D.)
| |
Collapse
|
558
|
Yang X, Wang Z, Samovich SN, Kapralov AA, Amoscato AA, Tyurin VA, Dar HH, Li Z, Duan S, Kon N, Chen D, Tycko B, Zhang Z, Jiang X, Bayir H, Stockwell BR, Kagan VE, Gu W. PHLDA2-mediated phosphatidic acid peroxidation triggers a distinct ferroptotic response during tumor suppression. Cell Metab 2024; 36:762-777.e9. [PMID: 38309267 PMCID: PMC11209835 DOI: 10.1016/j.cmet.2024.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/14/2023] [Accepted: 01/10/2024] [Indexed: 02/05/2024]
Abstract
Although the role of ferroptosis in killing tumor cells is well established, recent studies indicate that ferroptosis inducers also sabotage anti-tumor immunity by killing neutrophils and thus unexpectedly stimulate tumor growth, raising a serious issue about whether ferroptosis effectively suppresses tumor development in vivo. Through genome-wide CRISPR-Cas9 screenings, we discover a pleckstrin homology-like domain family A member 2 (PHLDA2)-mediated ferroptosis pathway that is neither ACSL4-dependent nor requires common ferroptosis inducers. PHLDA2-mediated ferroptosis acts through the peroxidation of phosphatidic acid (PA) upon high levels of reactive oxygen species (ROS). ROS-induced ferroptosis is critical for tumor growth in the absence of common ferroptosis inducers; strikingly, loss of PHLDA2 abrogates ROS-induced ferroptosis and promotes tumor growth but has no obvious effect in normal tissues in both immunodeficient and immunocompetent mouse tumor models. These data demonstrate that PHLDA2-mediated PA peroxidation triggers a distinct ferroptosis response critical for tumor suppression and reveal that PHLDA2-mediated ferroptosis occurs naturally in vivo without any treatment from ferroptosis inducers.
Collapse
Affiliation(s)
- Xin Yang
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Zhe Wang
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Svetlana N Samovich
- Center for Free Radical and Antioxidant Health and Departments of Environmental Health, Chemistry, Pharmacology and Chemical Biology, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pediatrics, Division of Critical Care and Hospital Medicine, Redox Health Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alexander A Kapralov
- Center for Free Radical and Antioxidant Health and Departments of Environmental Health, Chemistry, Pharmacology and Chemical Biology, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Andrew A Amoscato
- Center for Free Radical and Antioxidant Health and Departments of Environmental Health, Chemistry, Pharmacology and Chemical Biology, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Vladimir A Tyurin
- Center for Free Radical and Antioxidant Health and Departments of Environmental Health, Chemistry, Pharmacology and Chemical Biology, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Haider H Dar
- Center for Free Radical and Antioxidant Health and Departments of Environmental Health, Chemistry, Pharmacology and Chemical Biology, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Zhiming Li
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Shoufu Duan
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Ning Kon
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Delin Chen
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Benjamin Tycko
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ 07110, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Department of Pediatrics and Department of Genetics and Development, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Hülya Bayir
- Center for Free Radical and Antioxidant Health and Departments of Environmental Health, Chemistry, Pharmacology and Chemical Biology, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pediatrics, Division of Critical Care and Hospital Medicine, Redox Health Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, New York, NY 10027, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health and Departments of Environmental Health, Chemistry, Pharmacology and Chemical Biology, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wei Gu
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
559
|
Amoah AS, Pestov NB, Korneenko TV, Prokhorenko IA, Kurakin GF, Barlev NA. Lipoxygenases at the Intersection of Infection and Carcinogenesis. Int J Mol Sci 2024; 25:3961. [PMID: 38612771 PMCID: PMC11011848 DOI: 10.3390/ijms25073961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The persisting presence of opportunistic pathogens like Pseudomonas aeruginosa poses a significant threat to many immunocompromised cancer patients with pulmonary infections. This review highlights the complexity of interactions in the host's defensive eicosanoid signaling network and its hijacking by pathogenic bacteria to their own advantage. Human lipoxygenases (ALOXs) and their mouse counterparts are integral elements of the innate immune system, mostly operating in the pro-inflammatory mode. Taking into account the indispensable role of inflammation in carcinogenesis, lipoxygenases have counteracting roles in this process. In addition to describing the structure-function of lipoxygenases in this review, we discuss their roles in such critical processes as cancer cell signaling, metastases, death of cancer and immune cells through ferroptosis, as well as the roles of ALOXs in carcinogenesis promoted by pathogenic infections. Finally, we discuss perspectives of novel oncotherapeutic approaches to harness lipoxygenase signaling in tumors.
Collapse
Affiliation(s)
- Abdul-Saleem Amoah
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (A.-S.A.); (N.A.B.)
- Laboratory of Molecular Oncology, Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Nikolay B. Pestov
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (A.-S.A.); (N.A.B.)
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (T.V.K.); (I.A.P.)
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
- Vavilov Institute of General Genetics, Moscow 119991, Russia
| | - Tatyana V. Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (T.V.K.); (I.A.P.)
| | - Igor A. Prokhorenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (T.V.K.); (I.A.P.)
| | - Georgy F. Kurakin
- Department of Biochemistry, Pirogov Russian National Research Medical University, Moscow 117513, Russia;
| | - Nickolai A. Barlev
- Institute of Biomedical Chemistry, Moscow 119121, Russia; (A.-S.A.); (N.A.B.)
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
| |
Collapse
|
560
|
He G, Zhang Y, Feng Y, Chen T, Liu M, Zeng Y, Yin X, Qu S, Huang L, Ke Y, Liang L, Yan J, Liu W. SBFI26 induces triple-negative breast cancer cells ferroptosis via lipid peroxidation. J Cell Mol Med 2024; 28:e18212. [PMID: 38516826 PMCID: PMC10958404 DOI: 10.1111/jcmm.18212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/13/2024] [Accepted: 02/09/2024] [Indexed: 03/23/2024] Open
Abstract
SBFI26, an inhibitor of FABP5, has been shown to suppress the proliferation and metastasis of tumour cells. However, the underlying mechanism by which SBFI26 induces ferroptosis in breast cancer cells remains largely unknown. Three breast cancer cell lines were treated with SBFI26 and CCK-8 assessed cytotoxicity. Transcriptome was performed on the Illumina platform and verified by qPCR. Western blot evaluated protein levels. Malondialdehyde (MDA), total superoxide dismutase (T-SOD), Fe, glutathione (GSH) and oxidized glutathione (GSSG) were measured. SBFI26 induced cell death time- and dose-dependent, with a more significant inhibitory effect on MDA-MB-231 cells. Fer-1, GSH and Vitamin C attenuated the effects but not erastin. RNA-Seq analysis revealed that SBFI26 treatment significantly enriched differentially expressed genes related to ferroptosis. Furthermore, SBFI26 increased intracellular MDA, iron ion, and GSSG levels while decreasing T-SOD, total glutathione (T-GSH), and GSH levels.SBFI26 dose-dependently up-regulates the expression of HMOX1 and ALOX12 at both gene and protein levels, promoting ferroptosis. Similarly, it significantly increases the expression of SAT1, ALOX5, ALOX15, ALOXE3 and CHAC1 that, promoting ferroptosis while downregulating the NFE2L2 gene and protein that inhibit ferroptosis. SBFI26 leads to cellular accumulation of fatty acids, which triggers excess ferrous ions and subsequent lipid peroxidation for inducing ferroptosis.
Collapse
Affiliation(s)
- Gang He
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Yiyuan Zhang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Yanjiao Feng
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Tangcong Chen
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Mei Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Yue Zeng
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Xiaojing Yin
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Shaokui Qu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Lifen Huang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Youqiang Ke
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Li Liang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Jun Yan
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| | - Wei Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education DepartmentSichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu UniversityChengduChina
| |
Collapse
|
561
|
Zhang Y, Shao Y, Ren J, Fang Y, Yang B, Lu S, Liu P. NCAPD3 exerts tumor-promoting effects in prostatic cancer via dual impact on miR-30a-5p by STAT3-MALAT1 and MYC. Cell Death Discov 2024; 10:159. [PMID: 38561330 PMCID: PMC10985108 DOI: 10.1038/s41420-024-01930-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
Non-SMC condensin II complex subunit D3 (NCAPD3) is a subunit of the non-structural maintenance of chromosomes condensin II complex, which involves chromosome condensation and segregation during mitosis. NCAPD3 has recently been demonstrated as a crucial oncogenic factor. However, the underlying mechanism of NCAPD3 in prostate cancer (PCa) remains not completely clear. In this study, we confirmed that lncRNA MALAT1 was induced by NCAPD3-STAT3, and the expression of miR-30a-5p was controlled by NCAPD3 in PCa cells by miRNA-seq. Through quantitative real-time PCR, fluorescence in situ hybridization, western blotting, and immunohistochemistry assay, we demonstrated that miR-30a-5p was lowly expressed in PCa cells and tissues compared to the controls, which was contrary to NCAPD3 expression and markedly downregulated by NCAPD3. Then, MALAT1 was analyzed for the complementary sequence in the potential interaction with miR-30a-5p by using the predicted target module of public databases. Dual-luciferase reporter assay and RNA immunoprecipitation were carried out to verify that MALAT1 functioned as a sponge for miR-30a-5p to reduce miR-30a-5p expression. Meanwhile, MYC acted as a transcriptional repressor to directly bind the promoter of the miR-30a-5p located gene and repress the miR-30a-5p expression. Furthermore, the upregulation of NCAPD3 on cell viability and migration was significantly attenuated in PC-3 cells when miR-30a-5p was overexpressed. NCAPD3 overexpression also accelerated tumor growth in the xenograft mouse model and repressed miR-30-5p. In summary, this work elucidates NCAPD3 inhibits miR-30a-5p through two pathways: increasing STAT3-MALAT1 to sponge miR-30a-5p and increasing MYC to directly inhibit miR-30a-5p transcription, which could serve as potential therapeutic targets for prostate cancer.
Collapse
Affiliation(s)
- Yi Zhang
- College of Life Sciences, Nanjing Normal University, 210023, Nanjing, Jiangsu, P. R. China
| | - Yingying Shao
- College of Life Sciences, Nanjing Normal University, 210023, Nanjing, Jiangsu, P. R. China
| | - Jia Ren
- College of Life Sciences, Nanjing Normal University, 210023, Nanjing, Jiangsu, P. R. China
| | - Yuanyuan Fang
- College of Life Sciences, Nanjing Normal University, 210023, Nanjing, Jiangsu, P. R. China
| | - Bolin Yang
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affliated Hospital of Nanjing University of Chinese Medicine, 210029, Nanjing, Jiangsu, P. R. China
| | - Shan Lu
- College of Life Sciences, Nanjing Normal University, 210023, Nanjing, Jiangsu, P. R. China.
| | - Ping Liu
- College of Life Sciences, Nanjing Normal University, 210023, Nanjing, Jiangsu, P. R. China.
| |
Collapse
|
562
|
Qian ZB, Li JF, Xiong WY, Mao XR. Ferritinophagy: A new idea for liver diseases regulated by ferroptosis. Hepatobiliary Pancreat Dis Int 2024; 23:160-170. [PMID: 37903710 DOI: 10.1016/j.hbpd.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/31/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND The discovery of regulatory cell death has led to a breakthrough in the therapeutic field. Various forms of cell death, such as necrosis, apoptosis, pyroptosis, autophagy, and ferroptosis, play an important role in the development of liver diseases. In general, more than one form of cell death pathways is responsible for the disease state. Therefore, it is particularly important to study the regulation and interaction of various cell death forms in liver diseases. DATA SOURCES We performed a PubMed search up to November 2022 with the following keywords: ferritinophagy, ferroptosis, and liver disease. We also used terms such as signal path, inducer, and inhibitor to supplement the query results. RESULTS This review summarized the basic characteristics of ferritinophagy and ferroptosis and the regulation of ferroptosis by ferritinophagy and reviewed the key targets and treatment strategies of ferroptosis in different liver diseases. CONCLUSIONS Ferritinophagy is a potential therapeutic target in ferroptosis-related liver diseases.
Collapse
Affiliation(s)
- Zi-Bing Qian
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Jun-Feng Li
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; Institute of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Wan-Yuan Xiong
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Xiao-Rong Mao
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; Department of Infectious Disease, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
563
|
Zhou X, Wu D, Mi T, Li R, Guo T, Li W. Icaritin activates p53 and inhibits aerobic glycolysis in liver cancer cells. Chem Biol Interact 2024; 392:110926. [PMID: 38431053 DOI: 10.1016/j.cbi.2024.110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Metabolic reprogramming enables cancer cells to generate energy mainly through aerobic glycolysis, which is achieved by increasing the expression levels of glycolysis-related enzymes. Therefore, the development of drugs targeting aerobic glycolysis could be an effective strategy for cancer treatment. Icaritin (ICT) is an active ingredient from the Chinese herbal plant Epimedium with several biological activities, but its anti-cancer mechanism remains inconclusive. Using normal hepatocytes and hepatoma cells, our results showed that ICT suppressed cell proliferation and clonal formation and decreased glucose consumption and lactate production in liver cancer cells. In consistent, the mRNA and protein levels of several aerobic glycolysis-related genes were decreased upon ICT treatment. Furthermore, our results demonstrated that the expression levels of the aerobic glycolysis-related proteins were correlated with the p53 status in hepatoma cells. Using PFT-α or siRNA-p53, our results confirmed that ICT regulated aerobic glycolysis in a p53-dependent manner. In addition, ICT was found to stabilize p53 at the post-translational level which might be mediated by inhibiting MDM2 expression and affecting its interaction with p53. Finally, our results demonstrated that ICT increased the levels of ROS that activated p53 via the p38 MAPK pathway. In conclusion, ICT increased intracellular ROS levels in liver cancer cells, which promoted the stabilization and activation of p53, inhibiting the expression of aerobic glycolysis-related genes and glycolysis, and ultimately leading to the suppression of liver cancer development.
Collapse
Affiliation(s)
- Xiangyang Zhou
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding, Hebei, 071000, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, Hebei, 071000, China
| | - Di Wu
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding, Hebei, 071000, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, Hebei, 071000, China
| | - Tian Mi
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding, Hebei, 071000, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, Hebei, 071000, China
| | - Ruohan Li
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China
| | - Tao Guo
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding, Hebei, 071000, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, Hebei, 071000, China.
| | - Wenjuan Li
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding, Hebei, 071000, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, Hebei, 071000, China.
| |
Collapse
|
564
|
Gherman LM, Tomuleasa D, Cismaru A, Nutu A, Berindan-Neagoe I. Exploring the contrasts: in-depth analysis of human and canine mammary tumors - discoveries at the frontier. Med Pharm Rep 2024; 97:132-142. [PMID: 38746025 PMCID: PMC11090284 DOI: 10.15386/mpr-2733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
We have examined genomic and transcriptomic abnormalities in human and canine samples to evaluate the canine model's validity for breast cancer research, emphasizing similarities and differences. Both species commonly utilize serum tumor markers and noncoding microRNAs. Immunohistochemistry and immunocytochemistry were employed to illustrate and compare results based on histological diagnoses. In addition to these factors, similarities exist in spontaneous tumor occurrence, age of onset, hormonal influences, and disease progression, including tumor size, clinical stage, and lymph node involvement. Molecular traits such as hormone receptor status, Epidermal Growth Factor Receptor (EGFR), and proliferation markers (Ki67) further endorse the canine model's utility in breast cancer studies. The advancement of technologies facilitates the identification of new cancer-associated molecules, both coding and non-coding genes, underscoring their potential as prognostic/diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Luciana Madalina Gherman
- Experimental Centre of Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Tomuleasa
- MEDFUTURE - The Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei Cismaru
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Doctoral School, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
565
|
Zhu Y, He J, Wei R, Liu J. Construction and experimental validation of a novel ferroptosis-related gene signature for myelodysplastic syndromes. Immun Inflamm Dis 2024; 12:e1221. [PMID: 38578040 PMCID: PMC10996383 DOI: 10.1002/iid3.1221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/26/2024] [Accepted: 03/03/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Myelodysplastic syndromes (MDS) are clonal hematopoietic disorders characterized by morphological abnormalities and peripheral blood cytopenias, carrying a risk of progression to acute myeloid leukemia. Although ferroptosis is a promising target for MDS treatment, the specific roles of ferroptosis-related genes (FRGs) in MDS diagnosis have not been elucidated. METHODS MDS-related microarray data were obtained from the Gene Expression Omnibus database. A comprehensive analysis of FRG expression levels in patients with MDS and controls was conducted, followed by the use of multiple machine learning methods to establish prediction models. The predictive ability of the optimal model was evaluated using nomogram analysis and an external data set. Functional analysis was applied to explore the underlying mechanisms. The mRNA levels of the model genes were verified in MDS clinical samples by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS The extreme gradient boosting model demonstrated the best performance, leading to the identification of a panel of six signature genes: SREBF1, PTPN6, PARP9, MAP3K11, MDM4, and EZH2. Receiver operating characteristic curves indicated that the model exhibited high accuracy in predicting MDS diagnosis, with area under the curve values of 0.989 and 0.962 for the training and validation cohorts, respectively. Functional analysis revealed significant associations between these genes and the infiltrating immune cells. The expression levels of these genes were successfully verified in MDS clinical samples. CONCLUSION Our study is the first to identify a novel model using FRGs to predict the risk of developing MDS. FRGs may be implicated in MDS pathogenesis through immune-related pathways. These findings highlight the intricate correlation between ferroptosis and MDS, offering insights that may aid in identifying potential therapeutic targets for this debilitating disorder.
Collapse
Affiliation(s)
- Yidong Zhu
- Department of Traditional Chinese Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Jun He
- Department of Hematology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Rong Wei
- Department of Hematology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Jun Liu
- Department of Traditional Chinese Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| |
Collapse
|
566
|
Yu Y, Liu S, Yang L, Song P, Liu Z, Liu X, Yan X, Dong Q. Roles of reactive oxygen species in inflammation and cancer. MedComm (Beijing) 2024; 5:e519. [PMID: 38576456 PMCID: PMC10993368 DOI: 10.1002/mco2.519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/21/2024] [Accepted: 02/23/2024] [Indexed: 04/06/2024] Open
Abstract
Reactive oxygen species (ROS) constitute a spectrum of oxygenic metabolites crucial in modulating pathological organism functions. Disruptions in ROS equilibrium span various diseases, and current insights suggest a dual role for ROS in tumorigenesis and the immune response within cancer. This review rigorously examines ROS production and its role in normal cells, elucidating the subsequent regulatory network in inflammation and cancer. Comprehensive synthesis details the documented impacts of ROS on diverse immune cells. Exploring the intricate relationship between ROS and cancer immunity, we highlight its influence on existing immunotherapies, including immune checkpoint blockade, chimeric antigen receptors, and cancer vaccines. Additionally, we underscore the promising prospects of utilizing ROS and targeting ROS modulators as novel immunotherapeutic interventions for cancer. This review discusses the complex interplay between ROS, inflammation, and tumorigenesis, emphasizing the multifaceted functions of ROS in both physiological and pathological conditions. It also underscores the potential implications of ROS in cancer immunotherapy and suggests future research directions, including the development of targeted therapies and precision oncology approaches. In summary, this review emphasizes the significance of understanding ROS-mediated mechanisms for advancing cancer therapy and developing personalized treatments.
Collapse
Affiliation(s)
- Yunfei Yu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Shengzhuo Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Luchen Yang
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Pan Song
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Zhenghuan Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Xiaoyang Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Xin Yan
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Qiang Dong
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
567
|
Shin D, Lee J, Roh JL. Pioneering the future of cancer therapy: Deciphering the p53-ferroptosis nexus for precision medicine. Cancer Lett 2024; 585:216645. [PMID: 38280477 DOI: 10.1016/j.canlet.2024.216645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/21/2023] [Accepted: 01/11/2024] [Indexed: 01/29/2024]
Abstract
The TP53 gene, encoding the p53 protein, has been a focal point of research since its 1979 discovery, playing a crucial role in tumor suppression. Ferroptosis, a distinct form of cell death characterized by lipid peroxide accumulation, has gained prominence since its recognition in 2012. Recent studies have unveiled an intriguing connection between p53 and ferroptosis, with implications for cancer therapy. Recent research underscores p53 as a novel target for cancer therapy, influencing key metabolic processes in ferroptosis. Notably, p53 represses the expression of the cystine-glutamate antiporter SLC7A11, supporting p53-mediated tumor growth suppression. Furthermore, under metabolic stress, p53 mitigates ferroptosis sensitivity, aiding cancer cells in coping and delaying cell death. This dynamic interplay between p53 and ferroptosis has far-reaching implications for various diseases, particularly cancer. This review provides a comprehensive overview of ferroptosis in cancer cells, elucidating p53's role in regulating ferroptosis, and explores the potential of targeting p53 to induce ferroptosis for cancer therapy. Understanding this complex relationship between p53 and ferroptosis offers a promising avenue for developing innovative cancer treatments.
Collapse
Affiliation(s)
- Daiha Shin
- Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Pocheon, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Pocheon, Republic of Korea.
| |
Collapse
|
568
|
Zhou Y, Chen Z, Yang M, Chen F, Yin J, Zhang Y, Zhou X, Sun X, Ni Z, Chen L, Lv Q, Zhu F, Liu S. FERREG: ferroptosis-based regulation of disease occurrence, progression and therapeutic response. Brief Bioinform 2024; 25:bbae223. [PMID: 38742521 PMCID: PMC11091744 DOI: 10.1093/bib/bbae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/25/2024] [Accepted: 04/21/2024] [Indexed: 05/16/2024] Open
Abstract
Ferroptosis is a non-apoptotic, iron-dependent regulatory form of cell death characterized by the accumulation of intracellular reactive oxygen species. In recent years, a large and growing body of literature has investigated ferroptosis. Since ferroptosis is associated with various physiological activities and regulated by a variety of cellular metabolism and mitochondrial activity, ferroptosis has been closely related to the occurrence and development of many diseases, including cancer, aging, neurodegenerative diseases, ischemia-reperfusion injury and other pathological cell death. The regulation of ferroptosis mainly focuses on three pathways: system Xc-/GPX4 axis, lipid peroxidation and iron metabolism. The genes involved in these processes were divided into driver, suppressor and marker. Importantly, small molecules or drugs that mediate the expression of these genes are often good treatments in the clinic. Herein, a newly developed database, named 'FERREG', is documented to (i) providing the data of ferroptosis-related regulation of diseases occurrence, progression and drug response; (ii) explicitly describing the molecular mechanisms underlying each regulation; and (iii) fully referencing the collected data by cross-linking them to available databases. Collectively, FERREG contains 51 targets, 718 regulators, 445 ferroptosis-related drugs and 158 ferroptosis-related disease responses. FERREG can be accessed at https://idrblab.org/ferreg/.
Collapse
Affiliation(s)
- Yuan Zhou
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, and Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhen Chen
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Mengjie Yang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, and Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal University, Hangzhou, 311121, China
| | - Fengyun Chen
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, and Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jiayi Yin
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine
| | - Yintao Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xuheng Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiuna Sun
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Ziheng Ni
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, and Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal University, Hangzhou, 311121, China
| | - Lu Chen
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, and Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qun Lv
- Department of Respiratory, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, 311121, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Shuiping Liu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, and Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
569
|
Yin W, Ma H, Qu Y, Wang S, Zhao R, Yang Y, Guo ZN. Targeted exosome-based nanoplatform for new-generation therapeutic strategies. Biomed Mater 2024; 19:032002. [PMID: 38471163 DOI: 10.1088/1748-605x/ad3310] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Exosomes, typically 30-150 nm in size, are lipid-bilayered small-membrane vesicles originating in endosomes. Exosome biogenesis is regulated by the coordination of various mechanisms whereby different cargoes (e.g. proteins, nucleic acids, and lipids) are sorted into exosomes. These components endow exosomes with bioregulatory functions related to signal transmission and intercellular communication. Exosomes exhibit substantial potential as drug-delivery nanoplatforms owing to their excellent biocompatibility and low immunogenicity. Proteins, miRNA, siRNA, mRNA, and drugs have been successfully loaded into exosomes, and these exosome-based delivery systems show satisfactory therapeutic effects in different disease models. To enable targeted drug delivery, genetic engineering and chemical modification of the lipid bilayer of exosomes are performed. Stimuli-responsive delivery nanoplatforms designed with appropriate modifications based on various stimuli allow precise control of on-demand drug delivery and can be utilized in clinical treatment. In this review, we summarize the general properties, isolation methods, characterization, biological functions, and the potential role of exosomes in therapeutic delivery systems. Moreover, the effective combination of the intrinsic advantages of exosomes and advanced bioengineering, materials science, and clinical translational technologies are required to accelerate the development of exosome-based delivery nanoplatforms.
Collapse
Affiliation(s)
- Wenjing Yin
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Hongyin Ma
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Siji Wang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Ruoyu Zhao
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
- Neuroscience Research Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| |
Collapse
|
570
|
GUO X, WANG T, XIA J, ZENG H, SHI W. [Role of Ferroptosis in Non-small Cell Lung Cancer and Progress
of Traditional Chinese Medicine Intervention]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:216-230. [PMID: 38590196 PMCID: PMC11002191 DOI: 10.3779/j.issn.1009-3419.2024.101.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Indexed: 04/10/2024]
Abstract
Non-small cell lung cancer (NSCLC) is one of the malignant tumors with high morbidity and mortality worldwide. Ferroptosis is a new type of programmed cell death caused by abnormal accumulation of iron-dependent reactive oxygen species (ROS) leading to lipid peroxidation. It involves the balance between iron metabolism, lipid metabolism, oxygen free radical reaction and lipid peroxidation. Recent studies have found that ferroptosis is closely related to the occurrence and development of NSCLC. Due to the emergence of chemotherapy resistance and radiotherapy resistance in the treatment of NSCLC, there is an urgent need to develop new effective drugs and treatment strategies. Traditional Chinese medicine has unique advantages in the prevention and treatment of NSCLC due to its multi-targets and minimal side effects. In this review, we summarize the mechanism of ferroptosis in NSCLC, and discuss the research status of active ingredients of traditional Chinese medicine, single-herb traditional Chinese medicine and Chinese herbal compounds in the intervention of NSCLC through ferroptosis, in order to provide a new theoretical basis for the research of ferroptosis pathway and the prevention and treatment of NSCLC by targeted ferroptosis of traditional Chinese medicine.
.
Collapse
|
571
|
Sun Y, Tang L, Kan X, Tan L, Song C, Qiu X, Liao Y, Nair V, Ding C, Liu X, Sun Y. Oncolytic Newcastle disease virus induced degradation of YAP through E3 ubiquitin ligase PRKN to exacerbate ferroptosis in tumor cells. J Virol 2024; 98:e0189723. [PMID: 38411946 PMCID: PMC10949840 DOI: 10.1128/jvi.01897-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/08/2024] [Indexed: 02/28/2024] Open
Abstract
Ferroptosis, a form of programmed cell death characterized by iron-dependent lipid peroxidation, has recently gained considerable attention in the field of cancer therapy. There is significant crosstalk between ferroptosis and several classical signaling pathways, such as the Hippo pathway, which suppresses abnormal growth and is frequently aberrant in tumor tissues. Yes-associated protein 1 (YAP), the core effector molecule of the Hippo pathway, is abnormally expressed and activated in a variety of malignant tumor tissues. We previously proved that the oncolytic Newcastle disease virus (NDV) activated ferroptosis to kill tumor cells. NDV has been used in tumor therapy; however, its oncolytic mechanism is not completely understood. In this study, we demonstrated that NDV exacerbated ferroptosis in tumor cells by inducing ubiquitin-mediated degradation of YAP at Lys90 through E3 ubiquitin ligase parkin (PRKN). Blocking YAP degradation suppressed NDV-induced ferroptosis by suppressing the expression of Zrt/Irt-like protein 14 (ZIP14), a metal ion transporter that regulates iron uptake. These findings demonstrate that NDV exacerbated ferroptosis in tumor cells by inducing YAP degradation. Our study provides new insights into the mechanism of NDV-induced ferroptosis and highlights the critical role that oncolytic viruses play in the treatment of drug-resistant cancers.IMPORTANCEThe oncolytic Newcastle disease virus (NDV) is being developed for use in cancer treatment; however, its oncolytic mechanism is still not completely understood. The Hippo pathway, which is a tumor suppressor pathway, is frequently dysregulated in tumor tissues due to aberrant yes-associated protein 1 (YAP) activation. In this study, we have demonstrated that NDV degrades YAP to induce ferroptosis and promote virus replication in tumor cells. Notably, NDV was found to induce ubiquitin-mediated degradation of YAP at Lys90 through E3 ubiquitin ligase parkin (PRKN). Our study reveals a new mechanism by which NDV induces ferroptosis and provides new insights into NDV as an oncolytic agent for cancer treatment.
Collapse
Affiliation(s)
- Yifan Sun
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Lanlan Tang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Xianjin Kan
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Lei Tan
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Cuiping Song
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Xusheng Qiu
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Ying Liao
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Venugopal Nair
- Avian Oncogenic viruses group, UK-China Centre of Excellence on Avian Disease Research, The Pirbright Institute, Guildford, United Kingdom
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| |
Collapse
|
572
|
Ramos-Velasco B, Naranjo R, Izquierdo JM. Bibliometric Overview on T-Cell Intracellular Antigens and Their Pathological Implications. BIOLOGY 2024; 13:195. [PMID: 38534464 DOI: 10.3390/biology13030195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
T-cell intracellular antigen 1 (TIA1) and TIA1-like/related protein (TIAL1/TIAR) are two members of the classical family of RNA binding proteins. Through their selective interactions with distinct RNAs and proteins, these multifunctional regulators are involved in chromatin remodeling, RNA splicing and processing and translation regulation, linking them to a wide range of diseases including neuronal disorders, cancer and other pathologies. From their discovery to the present day, many studies have focused on the behavior of these proteins in order to understand their impact on molecular and cellular processes and to understand their relationship to human pathologies. The volume of research on these proteins in various fields, including molecular biology, biochemistry, cell biology, immunology and cancer, has steadily increased, indicating a growing interest in these gene expression regulators among researchers. This information can be used to know the most productive institutions working in the field, understand the focus of research, identify key areas of involvement, delve deeper into their relationship and impact on different diseases, and to establish the level of study associated with them.
Collapse
Affiliation(s)
- Beatriz Ramos-Velasco
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Rocío Naranjo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - José M Izquierdo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
573
|
Abdullah K, Kaushal JB, Takkar S, Sharma G, Alsafwani ZW, Pothuraju R, Batra SK, Siddiqui JA. Copper metabolism and cuproptosis in human malignancies: Unraveling the complex interplay for therapeutic insights. Heliyon 2024; 10:e27496. [PMID: 38486750 PMCID: PMC10938126 DOI: 10.1016/j.heliyon.2024.e27496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
Copper, a vital trace element, orchestrates diverse cellular processes ranging from energy production to antioxidant defense and angiogenesis. Copper metabolism and cuproptosis are closely linked in the context of human diseases, with a particular focus on cancer. Cuproptosis refers to a specific type of copper-mediated cell death or copper toxicity triggered by disruptions in copper metabolism within the cells. This phenomenon encompasses a spectrum of mechanisms, such as oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, and perturbations in metal ion equilibrium. Mechanistically, cuproptosis is driven by copper binding to the lipoylated enzymes within the tricarboxylic acid (TCA) cycle. This interaction participates in protein aggregation and proteotoxic stress, ultimately culminating in cell death. Targeting copper metabolism and its associated pathways in cancer cells hold therapeutic potential by selectively targeting and eliminating cancerous cells. Strategies to modulate copper levels, enhance copper excretion, or interfere with cuproptotic pathways are being explored to identify novel therapeutic targets for cancer therapy and improve patient outcomes. Understanding the relationship between cuproptosis and copper metabolism in human malignancies remains an active area of research. This review provides a comprehensive overview of the association among copper metabolism, copper homeostasis, and carcinogenesis, explicitly emphasizing the cuproptosis mechanism and its implications for cancer pathogenesis. Additionally, we emphasize the therapeutic aspects of targeting copper and cuproptosis for cancer treatment.
Collapse
Affiliation(s)
- K.M. Abdullah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jyoti B. Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Simran Takkar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Zahraa W. Alsafwani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
574
|
Liu L, Zhang P, Liu Z, Sun T, Qiao H. Joint global and local interpretation method for CIN status classification in breast cancer. Heliyon 2024; 10:e27054. [PMID: 38562500 PMCID: PMC10982965 DOI: 10.1016/j.heliyon.2024.e27054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/10/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
Breast cancer is among the cancer types with the highest numbers of new cases. The study of this disease from a microscopic perspective has been a prominent research topic. Previous studies have shown that microRNAs (miRNAs) are closely linked to chromosomal instability (CIN). Correctly predicting CIN status from miRNAs can help to improve the survival of breast cancer patients. In this study, a joint global and local interpretation method called GL_XGBoost is proposed for predicting CIN status in breast cancer. GL_XGBoost integrates the eXtreme Gradient Boosting (XGBoost) and SHapley Additive exPlanation (SHAP) methods. XGBoost is used to predict CIN status from miRNA data, whereas SHAP is used to select miRNA features that have strong relationships with CIN. Furthermore, SHAP's rich visualization strategies enhance the interpretability of the entire model at the global and local levels. The performance of GL_XGBoost is validated on the TCGA-BRCA dataset, and it is shown to have an accuracy of 78.57% and an area under the curve value of 0.87. Rich visual analysis is used to explain the relationships between miRNAs and CIN status from different perspectives. Our study demonstrates an intuitive way of exploring the relationship between CIN and cancer from a microscopic perspective.
Collapse
Affiliation(s)
- Liangliang Liu
- College of Information and Management Science, Henan Agricultural University, Zhengzhou, Henan 450046, PR China
| | - Pei Zhang
- College of Information and Management Science, Henan Agricultural University, Zhengzhou, Henan 450046, PR China
| | - Zhihong Liu
- College of Information and Management Science, Henan Agricultural University, Zhengzhou, Henan 450046, PR China
| | - Tong Sun
- College of Information and Management Science, Henan Agricultural University, Zhengzhou, Henan 450046, PR China
| | - Hongbo Qiao
- College of Information and Management Science, Henan Agricultural University, Zhengzhou, Henan 450046, PR China
| |
Collapse
|
575
|
Basha NJ, Mohan RM. Insight on Heterocycles as p53‐MDM2 Protein‐Protein Interaction Inhibitors: Molecular Mechanism for p53 Activation. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202304525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/20/2024] [Indexed: 01/03/2025]
Abstract
AbstractTranscription factor p53, also known as tumor suppressor protein. Encoded by the TP53 gene, the guardian of genome p53 regulates many gene pathways. Nevertheless, the molecular mechanisms of p53 functioning have been known for a few decades, and the exact role of p53 in cancer therapy is unclear. Also, comprehensive literature on heterocycles as p53‐MDM2 protein‐protein interaction inhibitors is limited. This review covers the molecular mechanism for the p53‐MDM2 interaction and its inhibition by the heterocyclic small molecules. We hope the present comprehensive study will help to develop heterocycles as anticancer drugs that induce apoptosis in tumor cells.
Collapse
Affiliation(s)
- N. Jeelan Basha
- Department of Chemistry Indian Academy Degree College-Autonomous Bengaluru India- 560043
| | - R. M. Mohan
- Department of Chemistry Indian Academy Degree College-Autonomous Bengaluru India- 560043
| |
Collapse
|
576
|
Tang N, Wang Y, Miao J, Zhao Y, Cao Y, Sun W, Zhang J, Sui H, Li B. Potential pharmacological mechanisms of tanshinone IIA in the treatment of human neuroblastoma based on network pharmacological and molecular docking Technology. Front Pharmacol 2024; 15:1363415. [PMID: 38533261 PMCID: PMC10964018 DOI: 10.3389/fphar.2024.1363415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Tanshinone IIA (Tan-IIA) is the main bioactive component of Chinese herbal medicine salvia miltiorrhiza (Danshen). Sodium sulfonate of Tan-IIA is widely used in the treatment of cardiovascular and cerebrovascular diseases. Tan-IIA also has inhibitory effects on tumor cells such as gastric cancer, but its therapeutic effect and mechanism on human neuroblastoma have not been evaluated, so its pharmacological mechanism is systematically evaluated by the combined method of network pharmacology and molecular docking. PharmMapper and SwissTargetPrediction predicted 331 potential Tan-IIA-related targets, and 1,152 potential neuroblastoma-related targets were obtained from GeneCards, DisGeNET, DrugBank, OMIM and Therapeutic Target databases (TTD), 107 common targets for Tan-IIA and neuroblastoma. Through gene ontology (GO) functional annotation, Kyoto Encyclopedia of Genes and Genomesa (KEGG) pathway enrichment, protein-protein interaction (PPI) network and cytoHubba plug-in, 10 related signal pathways (Pathways in cancer, PI3K-Akt signaling pathway, Prostate cancer, etc.) and 10 hub genes were identified. The results of molecular docking showed that Tan-IIA could interact with 10 targets: GRB2, SRC, EGFR, PTPN1, ESR1, IGF1, MAPK1, PIK3R1, AKT1 and IGF1R. This study analyzed the related pathways and targets of Tan-IIA in the treatment of human neuroblastoma, as well as the potential anticancer and anti-tumor targets and related signaling pathways of Tan-IIA, which provides a reference for us to find and explore effective drugs for the treatment of human neuroblastoma.
Collapse
Affiliation(s)
- Ning Tang
- Department of Integrative Medicine, Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, China
| | - Yan Wang
- Department of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jiarui Miao
- Department of Acupuncture and Massage, Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, China
| | - Yang Zhao
- Department of Integrative Medicine, Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, China
| | - Yue Cao
- Department of Integrative Medicine, Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, China
| | - Wentao Sun
- Department of Acupuncture and Massage, Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, China
| | - Jingke Zhang
- Department of Integrative Medicine, Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, China
| | - Hua Sui
- Department of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Bing Li
- Department of Integrative Medicine, Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, China
| |
Collapse
|
577
|
Zhou Q, Meng Y, Li D, Yao L, Le J, Liu Y, Sun Y, Zeng F, Chen X, Deng G. Ferroptosis in cancer: From molecular mechanisms to therapeutic strategies. Signal Transduct Target Ther 2024; 9:55. [PMID: 38453898 PMCID: PMC10920854 DOI: 10.1038/s41392-024-01769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/21/2024] [Accepted: 02/03/2024] [Indexed: 03/09/2024] Open
Abstract
Ferroptosis is a non-apoptotic form of regulated cell death characterized by the lethal accumulation of iron-dependent membrane-localized lipid peroxides. It acts as an innate tumor suppressor mechanism and participates in the biological processes of tumors. Intriguingly, mesenchymal and dedifferentiated cancer cells, which are usually resistant to apoptosis and traditional therapies, are exquisitely vulnerable to ferroptosis, further underscoring its potential as a treatment approach for cancers, especially for refractory cancers. However, the impact of ferroptosis on cancer extends beyond its direct cytotoxic effect on tumor cells. Ferroptosis induction not only inhibits cancer but also promotes cancer development due to its potential negative impact on anticancer immunity. Thus, a comprehensive understanding of the role of ferroptosis in cancer is crucial for the successful translation of ferroptosis therapy from the laboratory to clinical applications. In this review, we provide an overview of the recent advancements in understanding ferroptosis in cancer, covering molecular mechanisms, biological functions, regulatory pathways, and interactions with the tumor microenvironment. We also summarize the potential applications of ferroptosis induction in immunotherapy, radiotherapy, and systemic therapy, as well as ferroptosis inhibition for cancer treatment in various conditions. We finally discuss ferroptosis markers, the current challenges and future directions of ferroptosis in the treatment of cancer.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Lei Yao
- Department of General Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Jiayuan Le
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yihuang Liu
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
578
|
Cheng S, Li C, Liu L, Liu X, Li M, Zhuo J, Wang J, Zheng W, Wang Z. Dysregulation and antimetastatic function of circLRIG1 modulated by miR-214-3p/LRIG1 axis in bladder carcinoma. Biol Direct 2024; 19:20. [PMID: 38454507 PMCID: PMC10918934 DOI: 10.1186/s13062-023-00446-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/19/2023] [Indexed: 03/09/2024] Open
Abstract
CircLRIG1, a newly discovered circRNA, has yet to have its potential function and biological processes reported. This study explored the role of circLRIG1 in the development and progression of bladder carcinoma and its potential molecular mechanisms. Techniques such as qRT-PCR, Western blot, various cellular assays, and in vivo models were used to investigate mRNA and protein levels, cell behavior, molecular interactions, and tumor growth. The results showed that both circLRIG1 and LRIG1 were significantly reduced in bladder carcinoma tissues and cell lines. Low circLRIG1 expression was associated with poor patient prognosis. Overexpressing circLRIG1 inhibited bladder carcinoma cell growth, migration, and invasion, promoted apoptosis, and decreased tumor growth and metastasis in vivo. Importantly, circLRIG1 was found to sponge miR-214-3p, enhancing LRIG1 expression, and its overexpression also modulated protein levels of E-cadherin, N-cadherin, Vimentin, and LRIG1. Similar effects were observed with LRIG1 overexpression. Notably, a positive correlation was found between circLRIG1 and LRIG1 expression in bladder carcinoma tissues. Additionally, the tumor-suppressing effect of circLRIG1 was reversed by overexpressing miR-214-3p or silencing LRIG1. The study concludes that circLRIG1 suppresses bladder carcinoma progression by enhancing LRIG1 expression via sponging miR-214-3p, providing a potential strategy for early diagnosis and treatment of bladder carcinoma.
Collapse
Affiliation(s)
- Shiliang Cheng
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan Xingqi Medical Laboratory Co., Ltd., 12 Wuyingshan Middle Road, Jinan, 250000, Shandong, China.
| | - Chunguang Li
- Department of Digestive Oncology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, 44 Xiaoheyan Road, ShenyangLiaoning, 110042, China
| | - Lu Liu
- Department of Digestive Oncology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, 44 Xiaoheyan Road, ShenyangLiaoning, 110042, China
| | - Xinli Liu
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, 12 Wuyingshan Middle Road, Jinan, 250000, Shandong, China
| | - Meng Li
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, 12 Wuyingshan Middle Road, Jinan, 250000, Shandong, China
| | - Jinhua Zhuo
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, 12 Wuyingshan Middle Road, Jinan, 250000, Shandong, China
| | - Jue Wang
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, 12 Wuyingshan Middle Road, Jinan, 250000, Shandong, China
| | - Wen Zheng
- Department of Emergency, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, 12 Wuyingshan Middle Road, Jinan, 250000, Shandong, China.
| | - Zhongmin Wang
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, 225 Changhai Road, Shanghai, 200000, China.
| |
Collapse
|
579
|
Xu T, Zhu Y, Lin Z, Lei J, Li L, Zhu W, Wu D. Evidence of Cross-Kingdom Gene Regulation by Plant MicroRNAs and Possible Reasons for Inconsistencies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4564-4573. [PMID: 38391237 DOI: 10.1021/acs.jafc.3c09097] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The debate on whether cross-kingdom gene regulation by orally acquired plant miRNAs is possible has been ongoing for nearly 10 years without a conclusive answer. In this study, we categorized plant miRNAs into different groups, namely, extracellular vesicle (EV)-borne plant miRNAs, extracted plant miRNAs, herbal decoction-borne plant miRNAs, synthetic plant miRNA mimics, and plant tissue/juice-borne plant miRNAs. This categorization aimed to simplify the analysis and address the question more specifically. Our evidence suggests that EV-borne plant miRNAs, extracted plant miRNAs, herbal decoction-borne plant miRNAs, and synthetic plant miRNA mimics consistently facilitate cross-kingdom gene regulation. However, the results regarding the cross-kingdom gene regulation by plant tissue- and juice-borne plant miRNAs are inconclusive. This inconsistency may be due to variations in study methods, a low absorption rate of miRNAs and the selective absorption of plant miRNAs in the gastrointestinal tract. Overall, it is deduced that cross-kingdom gene regulation by orally acquired plant miRNAs can occur under certain circumstances, depending on factors such as the types of plant miRNAs, the delivery mechanism, and their concentrations in the plant.
Collapse
Affiliation(s)
- Tielong Xu
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang 330004, P.R. China
| | - Yating Zhu
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang 330004, P.R. China
| | - Ziqi Lin
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang 330004, P.R. China
| | - Jinyue Lei
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang 330004, P.R. China
| | - Longxue Li
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang 330004, P.R. China
| | - Weifeng Zhu
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang 330004, P.R. China
| | - Diyao Wu
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang 330004, P.R. China
| |
Collapse
|
580
|
You Y, Zhou X, Tang Q, Zhao T, Wang J, Huang H, Chen J, Qi Z, Li F. Echinatin mitigates sevoflurane-induced neurotoxicity through regulation of ferroptosis and iron homeostasis. Aging (Albany NY) 2024; 16:4670-4683. [PMID: 38446592 PMCID: PMC10968708 DOI: 10.18632/aging.205622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/27/2023] [Indexed: 03/08/2024]
Abstract
Surgery and anesthesia are vital medical interventions, but concerns over their potential cognitive side effects, particularly with the use of inhalational anesthetics like sevoflurane, have surfaced. This study delves into the neuroprotective potential of Echinatin against sevoflurane-induced neurotoxicity and the underlying mechanisms. Echinatin, a natural compound, has exhibited anti-inflammatory, antioxidant, and anticancer properties. Sevoflurane, while a popular anesthetic, is associated with perioperative neurocognitive disorders (PND) and neurotoxicity. Our investigation began with cellular models, where Echinatin demonstrated a significant reduction in sevoflurane-induced apoptosis. Mechanistically, we identified ferroptosis, a novel form of programmed cell death characterized by iron accumulation and lipid peroxidation, as a key player in sevoflurane-induced neuronal injury. Echinatin notably suppressed ferroptosis in sevoflurane-exposed cells, suggesting a pivotal role in neuroprotection. Expanding our research to a murine model, we observed perturbations in iron homeostasis, inflammatory cytokines, and antioxidants due to sevoflurane exposure. Echinatin treatment effectively restored iron balance, mitigated inflammation, and preserved antioxidant levels in vivo. Behavioral assessments using the Morris water maze further confirmed Echinatin's neuroprotective potential, as it ameliorated sevoflurane-induced spatial learning and memory impairments. In conclusion, our study unveils Echinatin as a promising candidate for mitigating sevoflurane-induced neurotoxicity. Through the regulation of ferroptosis, iron homeostasis, and inflammation, Echinatin demonstrates significant neuroprotection both in vitro and in vivo. These findings illuminate the potential for Echinatin to enhance the safety of surgical procedures involving sevoflurane anesthesia, minimizing the risk of cognitive deficits and neurotoxicity.
Collapse
Affiliation(s)
- Yanqiu You
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Xudong Zhou
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Qiuqin Tang
- Ruikang Hospital Affiliated of Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Tianshou Zhao
- Ruikang Hospital Affiliated of Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Juan Wang
- Ruikang Hospital Affiliated of Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Hanqin Huang
- Ruikang Hospital Affiliated of Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Jibing Chen
- Ruikang Hospital Affiliated of Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Zhongquan Qi
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Fujun Li
- Ruikang Hospital Affiliated of Guangxi University of Chinese Medicine, Nanning 530011, China
| |
Collapse
|
581
|
Liu Y, Wang Y, Feng H, Ma L, Liu Y. PANoptosis-related genes function as efficient prognostic biomarkers in colon adenocarcinoma. Front Endocrinol (Lausanne) 2024; 15:1344058. [PMID: 38501104 PMCID: PMC10944899 DOI: 10.3389/fendo.2024.1344058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND PANoptosis is a newly discovered cell death type, and tightly associated with immune system activities. To date, the mechanism, regulation and application of PANoptosis in tumor is largely unknown. Our aim is to explore the prognostic value of PANoptosis-related genes in colon adenocarcinoma (COAD). METHODS Analyzing data from The Cancer Genome Atlas-COAD (TCGA-COAD) involving 458 COAD cases, we concentrated on five PANoptosis pathways from the Molecular Signatures Database (MSigDB) and a comprehensive set of immune-related genes. Our approach involved identifying distinct genetic COAD subtype clusters and developing a prognostic model based on these parameters. RESULTS The research successfully identified two genetic subtype clusters in COAD, marked by distinct profiles in PANoptosis pathways and immune-related gene expression. A prognostic model, incorporating these findings, demonstrated significant predictive power for survival outcomes, underscoring the interplay between PANoptosis and immune responses in COAD. CONCLUSION This study enhances our understanding of COAD's genetic framework, emphasizing the synergy between cell death pathways and the immune system. The development of a prognostic model based on these insights offers a promising tool for personalized treatment strategies. Future research should focus on validating and refining this model in clinical settings to optimize therapeutic interventions in COAD.
Collapse
Affiliation(s)
- Yang Liu
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yizhao Wang
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Huijin Feng
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States
| | - Lianjun Ma
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yanqing Liu
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States
| |
Collapse
|
582
|
Pandey R, Chiu CC, Wang LF. Immunotherapy Study on Non-small-Cell Lung Cancer (NSCLC) Combined with Cytotoxic T Cells and miRNA34a. Mol Pharm 2024; 21:1364-1381. [PMID: 38291993 PMCID: PMC10915804 DOI: 10.1021/acs.molpharmaceut.3c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
Immunotherapy has emerged as a promising approach for cancer treatment, and the use of microRNAs (miRNAs) as therapeutic agents has gained significant attention. In this study, we investigated the effectiveness of immunotherapy utilizing miRNA34a and Jurkat T cells in inducing cell death in non-small-cell lung cancer cells, specifically A549 cells. Moreover, we explored the impact of Jurkat T cell activation and miRNA34a delivery using iron oxide nanorods (IONRs) on the killing of cancer cells. A549 cells were cocultured with both activated and inactivated Jurkat T cells, both before and after the delivery of miRNA34a. Surprisingly, our results revealed that even inactive Jurkat T cells were capable of inducing cell death in cancer cells. This unexpected observation suggested the presence of alternative mechanisms by which Jurkat T cells can exert cytotoxic effects on cancer cells. We stimulated Jurkat T cells using anti-CD3/CD28 and analyzed their efficacy in killing A549 compared to that of the inactive Jurkat T cells in conjunction with miRNA34a. Our findings indicated that the activation of Jurkat T cells significantly enhanced their cytotoxic potential against cancer cells compared to their inactive counterparts. The combined treatment of A549 cells with activated Jurkat T cells and miRNA34a demonstrated the highest level of cancer cell death, suggesting a synergistic effect between Jurkat T cell activation and miRNA therapy. Besides the apoptosis mechanism for the Jurkat T cells' cytotoxic effects on A549 cells, we furthermore investigated the ferroptosis pathway, which was found to have an impact on the cancer cell killing due to the presence of miRNA34a and IONRs as the delivery agent inside the cancer cells.
Collapse
Affiliation(s)
- Richa Pandey
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, No. 100 Shih-Chuan first Road, Kaohsiung 80708, Taiwan
| | - Chien-Chih Chiu
- Department
of Biotechnology, Kaohsiung Medical University, No. 100 Shih-Chuan first Road, Kaohsiung 80708, Taiwan
- Department
of Medical Research, Kaohsiung Medical University
Hospital, No.100 Tzyou
first Road, Kaohsiung 80708, Taiwan
| | - Li-Fang Wang
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, No. 100 Shih-Chuan first Road, Kaohsiung 80708, Taiwan
- Department
of Medical Research, Kaohsiung Medical University
Hospital, No.100 Tzyou
first Road, Kaohsiung 80708, Taiwan
- Institute
of Medical Science and Technology, National
Sun Yat-Sen University, No.70 Lien-Hai Road, Kaohsiung 804201, Taiwan
| |
Collapse
|
583
|
Li J, Fang J, Jiang X, Zhang Y, Vidal-Puig A, Zhang CY. RNAkines are secreted messengers shaping health and disease. Trends Endocrinol Metab 2024; 35:201-218. [PMID: 38160178 PMCID: PMC7617407 DOI: 10.1016/j.tem.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Extracellular noncoding RNAs (ncRNAs) have crucial roles in intercellular communications. The process of ncRNA secretion is highly regulated, with specific ncRNA profiles produced under different physiological and pathological circumstances. These ncRNAs are transported primarily via extracellular vesicles (EVs) from their origin cells to target cells, utilising both endocrine and paracrine pathways. The intercellular impacts of extracellular ncRNAs are essential for maintaining homeostasis and the pathogenesis of various diseases. Given the unique aspects of extracellular ncRNAs, here we propose the term 'RNAkine' to describe these recently identified secreted factors. We explore their roles as intercellular modulators, particularly in their ability to regulate metabolism and influence tumorigenesis, highlighting their definition and importance as a distinct class of secreted factors.
Collapse
Affiliation(s)
- Jing Li
- Nanjing Drum Tower Hospital Centre of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Centre for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, PR China.
| | - Jingwen Fang
- Nanjing Drum Tower Hospital Centre of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Centre for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Xiaohong Jiang
- Nanjing Drum Tower Hospital Centre of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Centre for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Yujing Zhang
- Nanjing Drum Tower Hospital Centre of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Centre for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Antonio Vidal-Puig
- Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories, Cambridge, UK; Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, China.
| | - Chen-Yu Zhang
- Nanjing Drum Tower Hospital Centre of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Centre for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, PR China; Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210023, PR China; Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, PR China.
| |
Collapse
|
584
|
Guo J, Li R, Ouyang Z, Tang J, Zhang W, Chen H, Zhu Q, Zhang J, Zhu G. Insights into the mechanism of transcription factors in Pb 2+-induced apoptosis. Toxicology 2024; 503:153760. [PMID: 38387706 DOI: 10.1016/j.tox.2024.153760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
The health risks associated with exposure to heavy metals, such as Pb2+, are increasingly concerning the public. Pb2+ can cause significant harm to the human body through oxidative stress, autophagy, inflammation, and DNA damage, disrupting cellular homeostasis and ultimately leading to cell death. Among these mechanisms, apoptosis is considered crucial. It has been confirmed that transcription factors play a central role as mediators during the apoptosis process. Interestingly, these transcription factors have different effects on apoptosis depending on the concentration and duration of Pb2+ exposure. In this article, we systematically summarize the significant roles of several transcription factors in Pb2+-induced apoptosis. This information provides insights into therapeutic strategies and prognostic biomarkers for diseases related to Pb2+ exposure.
Collapse
Affiliation(s)
- Jingchong Guo
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Ruikang Li
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Zhuqing Ouyang
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Jiawen Tang
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Wei Zhang
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China
| | - Hui Chen
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China
| | - Qian Zhu
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China
| | - Jing Zhang
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China.
| | - Gaochun Zhu
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
585
|
Chen A, Li J, Shen N, Huang H, Hang Q. Vitamin K: New insights related to senescence and cancer metastasis. Biochim Biophys Acta Rev Cancer 2024; 1879:189057. [PMID: 38158025 DOI: 10.1016/j.bbcan.2023.189057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Several clinical trials and experimental studies have recently shown that vitamin K (VK) supplementation benefits the human body. Specifically, VK participates in coagulation and is associated with cellular senescence and cancer. VK has a potential anticancer effect in various cancers, such as pancreatic and prostate cancers. Through anti-inflammatory and antioxidant effects, VK can prevent senescence and inhibit cancer metastasis. Therefore, cancer prognosis can be improved by preventing cellular senescence. In addition, VK can inhibit the proliferation, growth, and differentiation of cancer cells through various mechanisms, including induction of c-myc and c-fos genes, regulation of B-cell lymphoma-2 (Bcl-2) and p21 genes, and angiogenesis inhibition. This review aims to discuss the relationship among VK, cellular senescence, and cancer metastasis and thus may improve comprehension of the specific functions of VK in human health. The potential application of VK as an adjuvant therapy for cancer (or in combination with traditional chemotherapy drugs or other vitamins) has also been highlighted.
Collapse
Affiliation(s)
- Anqi Chen
- Medical College, Yangzhou University, Yangzhou 225001, China
| | - Jialu Li
- Medical College, Yangzhou University, Yangzhou 225001, China
| | - Nianxuan Shen
- Medical College, Yangzhou University, Yangzhou 225001, China
| | - Haifeng Huang
- Department of Laboratory Medicine, The First People's Hospital of Yancheng, Yancheng 224006, China; Department of Laboratory Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng 224006, China.
| | - Qinglei Hang
- Department of Laboratory Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225001, China.
| |
Collapse
|
586
|
Ran D, Xin C, Ma Y, Lu Y. Increased risk of colorectal adenomas with metabolic-associated fatty liver disease components. Clin Res Hepatol Gastroenterol 2024; 48:102302. [PMID: 38365088 DOI: 10.1016/j.clinre.2024.102302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/21/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Metabolic (dysfunction)-associated fatty liver disease is the most common liver disease related to various metabolic disorders. Colorectal adenomas are related to metabolic dysregulation. Despite the proposed association between non-alcoholic fatty liver disease and colorectal adenomas, the influence of metabolic-associated fatty liver disease on colorectal adenomas has yet to be investigated. Our study investigates the relationship between metabolic-associated fatty liver disease and colorectal adenomas and evaluates the predictive value of fatty liver index for colorectal adenomas. METHODS A retrospective cross-sectional study was conducted on 650 inpatients at Qinghai Provincial People's Hospital. All participants underwent colonoscopy, abdominal ultrasound or CT, relevant laboratory tests, and physical examinations to ascertain baseline characteristics and overall health status. Multivariate logistic regression analysis examined the relationship between metabolic-associated fatty liver disease and colorectal adenomas. Lastly, the ability to identify, accuracy, and clinical applicability of predicting colorectal adenomas through fatty liver index were assessed using receiver operating characteristic curve area under the curve, calibration curve, and decision curve analysis. RESULT In both the colorectal adenomas and control groups, the prevalence of metabolic-associated fatty liver disease was 62.1 % and 35.7 %, respectively. Multivariate analysis indicates that metabolic-associated fatty liver disease was independently correlated with an increased risk of colorectal adenomas (OR, 1.565; 95 % CI, 1.057-2.319; P < 0.05). Further analysis revealed that the risk of colorectal adenomas increased with an increasing quantity of metabolic components in metabolic-associated fatty liver disease (Ptrend < 0.001). The area under the curve of the fatty liver index predictive model was 0.838, with a 95 % CI of 0.807-0.869. The calibration curve indicated excellent agreement, and the decision curve analysis revealed a higher net benefit. CONCLUSION The risk of colorectal adenomas was associated with metabolic-associated fatty liver disease, and the risk of developing colorectal adenomas increased with the presence of more metabolic-associated fatty liver disease metabolic components. Furthermore, fatty liver index served as a predictive indicator for screening colorectal adenomas.
Collapse
Affiliation(s)
- Dongsheng Ran
- Graduate School of Qinghai University, Xining Qinghai 810000, China
| | - ChunLing Xin
- Department of Paediatrics The Central Hospital of Xiaogan, Xiaogan HuBei 432000, China
| | - Yingcai Ma
- Department of Gastroenterology, Qinghai Provincial People's Hospital, Xining Qinghai 810000, China.
| | - Yanyan Lu
- Department of Gastroenterology, Qinghai Provincial People's Hospital, Xining Qinghai 810000, China.
| |
Collapse
|
587
|
Chen Y, Mao X, Xu Y, Li L, Geng J, Dai T, Wang Q, Xue L, Tao L, Liu X. PTOV1-AS1 desensitizes colorectal cancer cells to 5-FU through depressing miR-149-5p to activate the positive feedback loop with Wnt/β-catenin pathway. Phytother Res 2024; 38:1313-1328. [PMID: 38194947 DOI: 10.1002/ptr.8095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
5-Fluorouracil is a commonly used chemotherapy drug for colorectal cancer. Resistance to 5-Fluorouracil remains a challenge. This research aimed to explore the mechanism of 5-Fluorouracil resistance in colorectal cancer. RT-qPCR and Western blot were used to determine the RNA and protein expression in both cells and exosome. Assays in vitro and in vivo were performed to measure the role of miR-149-5p in colorectal cancer cells. RIP, luciferase activity report, and RNA pulldown assay were applied to detect the association of PTOV1-AS1, SUV39H1, miR-149-5p, and FOXM1. MiR-149-5p was down-expressed in 5-Fluorouracil-resistant cells. MiR-149-5p enhanced the effectiveness of 5-Fluorouracil both in vitro and in vivo. Sensitive colorectal cancer cells released exosomal miR-149-5p to sensitize resistant cells to chemotherapy. Mechanistically, miR-149-5p targeted the FOXM1 to inactivate Wnt/β-catenin pathway, and PTOV1-AS1 recruited SUV39H1 to suppress miR-149-5p transcription, in turn activating Wnt/β-catenin pathway, and forming a positive feedback loop with FOXM1. PTOV1-AS1 inhibits miR-149-5p by a positive feedback loop with FOXM1-mediated Wnt/β-catenin pathway, which provides insights into a potential novel target for enhancing the effectiveness of chemotherapy in colorectal cancer patients.
Collapse
Affiliation(s)
- Yanan Chen
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaobei Mao
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yichen Xu
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lin Li
- Department of Health, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jian Geng
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tingting Dai
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qian Wang
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lijun Xue
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Medical Oncology, Jinling Hospital, First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Leilei Tao
- Department of Medical Oncology, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Medical Oncology, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, China
| | - Xiaobei Liu
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Medical Oncology, Jinling Hospital, First School of Clinical Medicine, Southern Medical University, Nanjing, China
| |
Collapse
|
588
|
Zhou D, Liang Q, Ge X, Xu J. Allogeneic platelet-rich plasma inhibits ferroptosis in promoting wound repair of type 2 diabetic ulcers. Free Radic Biol Med 2024; 215:37-47. [PMID: 38408545 DOI: 10.1016/j.freeradbiomed.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Increasing evidence has revealed the emerging role of ferroptosis in the pathophysiology of type 2 diabetes mellitus (T2DM) and its complications. Platelet-rich plasma (PRP) has been demonstrated to facilitate the healing of T2DM ulcers. However, the mechanism by which PRP repairs T2DM ulcers remains unclear. Here, we sought to investigate the interaction between PRP and ferroptosis in repairing T2DM ulcers. The results showed that the cellular activity, proliferation, and migration of fibroblasts were down-regulated, and the cellular activity and normal function of vascular endothelial cells were impaired in the high glucose environment or under RSL3 conditions (a GSH peroxidase 4 inhibitor and ferroptosis inducer). Additionally, both cells experienced over-activation of multiple forms of reactive oxygen species (ROS) and lipid peroxidation. In the T2DM rat model, we observed a decreased rate of ulcer wound healing, impaired proliferative capacity, diminished vascular regeneration, and marked inflammation and hyperfibrosis. More importantly, there was typical damage to mitochondria, increased levels of iron ions, and consistent alterations in protein expression of ferroptosis-related factors. These factors include cyclooxygenase-2 (COX2), glutathione peroxidase 4 (GPX4), transferrin receptor (TFRC), and Solute Carrier Family 7 Member 11 (SLC7A11), among others. Due to the strong association between ferroptosis and T2DM ulcers, the use of allogeneic platelet-rich plasma (Al-PRP) exhibited physiological effects similar to those of the ferroptosis inhibitor Ferrostatin-1 (Fer-1). In vivo experiments, both drugs inhibited a range of impediments to wound healing caused by T2DM and ameliorated the adverse effects associated with ferroptosis. Moreover, Al-PRP attenuated the impairment of normal cellular function, activation of ROS and lipid peroxidation induced by high glucose or RSL3. These results suggested that ferroptosis was involved in the development of T2DM ulcers, which could be treated with Al-PRP by inhibiting ferroptosis, and inhibition of ferroptosis may be a suitable treatment strategy for T2DM ulcers.
Collapse
Affiliation(s)
- Danlian Zhou
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China; Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, Anhui, China
| | - Qiu Liang
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China; Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiuyu Ge
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China; Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, Anhui, China
| | - Jing Xu
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China; Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, Anhui, China.
| |
Collapse
|
589
|
Singh P, Solanki R, Tasneem A, Suri S, Kaur H, Shah SR, Dohare R. Screening of miRNAs as prognostic biomarkers and their associated hub targets across Hepatocellular carcinoma using survival-based bioinformatics approach. J Genet Eng Biotechnol 2024; 22:100337. [PMID: 38494261 PMCID: PMC11630632 DOI: 10.1016/j.jgeb.2023.100337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
BACKGROUND The hepatocellular carcinoma (HCC) incident rate is gradually increasing yearly despite all the research and efforts taken by scientific communities and governing bodies. Approximately 90% of all liver cancer cases belong to HCC. Usually, HCC patients approach the treatment in the late stages of this malignancy which becomes the primary cause of high mortality rate. The knowledge about molecular pathogenesis of HCC is limited and needs more attention from researchers to identify the driver genes and miRNAs, which causes to translate this information into clinical practice. Therefore, the key regulators identification of miRNA-mRNA regulatory network is essential to identify HCC-associated genes. METHODOLOGY We extracted microRNA (miRNA) and messenger RNA (mRNA) expression datasets of normal and tumor HCC patient samples from UCSC Xena followed by identifying differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs). Univariate and multivariate cox-proportional hazard models were utilized to identify DEMs having significant association with overall survival (OS). Kaplan-Meier (KM) plotter was used to validate the presence of prognostic DEMs. A risk-score model was used to evaluate the effectiveness of KM-plotter validated DEMs combination on risk of samples. Target DEGs of prognostic miRNAs were identified via sources such as miRTargetLink and miRWalk followed by their validation in an external microarray cohort and enrichment analysis. RESULTS 562 DEGs and 388 DEMs were identified followed by seven prognostic miRNAs (i.e., miR-19a, miR-19b, miR-30d-5p, miR-424-5p, miR-3677-5p, miR-3913-5p, miR-7705) post univariate, multivariate, risk-score model evaluation and KM-plotter analyses. ANLN, MRO, CPEB3 were their targets and were also validated in GSE84005 dataset. CONCLUSIONS The findings of this study decipher that most significant miRNAs and their identified target genes have association with apoptosis, inflammation, cell cycle regulation and cancer-related pathways, which appear to contribute to HCC pathogenesis and therefore, the discovery of new targets.
Collapse
Affiliation(s)
- Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Rubi Solanki
- School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Alvea Tasneem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Simran Suri
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Harleen Kaur
- Department of Computer Science and Engineering, School of Engineering Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Sapna Ratan Shah
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
590
|
Nie A, Shen C, Zhou Z, Wang J, Sun B, Zhu C. Ferroptosis: Potential opportunities for natural products in cancer therapy. Phytother Res 2024; 38:1173-1190. [PMID: 38116870 DOI: 10.1002/ptr.8088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023]
Abstract
Cancer cells often exhibit defects in the execution of cell death, resulting in poor clinical outcomes for patients with many cancer types. Ferroptosis is a newly discovered form of programmed cell death characterized by intracellular iron overload and lipid peroxidation in the cell membrane. Increasing evidence suggests that ferroptosis is closely associated with a wide variety of physiological and pathological processes, particularly in cancer. Notably, various bioactive natural products have been shown to induce the initiation and execution of ferroptosis in cancer cells, thereby exerting anticancer effects. In this review, we summarize the core regulatory mechanisms of ferroptosis and the multifaceted roles of ferroptosis in cancer. Importantly, we focus on natural products that regulate ferroptosis in cancer cells, such as terpenoids, polyphenols, alkaloids, steroids, quinones, and polysaccharides. The clinical efficacy, adverse effects, and drug-drug interactions of these natural products need to be evaluated in further high-quality studies to accelerate their application in cancer treatment.
Collapse
Affiliation(s)
- Anzheng Nie
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaozan Shen
- Department of Clinical Pharmacy, The Second People's Hospital of Huaihua, Huaihua, China
| | - Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juan Wang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chunsheng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
591
|
Song B, Yang P, Zhang S. Cell fate regulation governed by p53: Friends or reversible foes in cancer therapy. Cancer Commun (Lond) 2024; 44:297-360. [PMID: 38311377 PMCID: PMC10958678 DOI: 10.1002/cac2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Targeted therapies aimed at key oncogenic driver mutations in combination with chemotherapy and radiotherapy as well as immunotherapy have benefited cancer patients considerably. Tumor protein p53 (TP53), a crucial tumor suppressor gene encoding p53, regulates numerous downstream genes and cellular phenotypes in response to various stressors. The affected genes are involved in diverse processes, including cell cycle arrest, DNA repair, cellular senescence, metabolic homeostasis, apoptosis, and autophagy. However, accumulating recent studies have continued to reveal novel and unexpected functions of p53 in governing the fate of tumors, for example, functions in ferroptosis, immunity, the tumor microenvironment and microbiome metabolism. Among the possibilities, the evolutionary plasticity of p53 is the most controversial, partially due to the dizzying array of biological functions that have been attributed to different regulatory mechanisms of p53 signaling. Nearly 40 years after its discovery, this key tumor suppressor remains somewhat enigmatic. The intricate and diverse functions of p53 in regulating cell fate during cancer treatment are only the tip of the iceberg with respect to its equally complicated structural biology, which has been painstakingly revealed. Additionally, TP53 mutation is one of the most significant genetic alterations in cancer, contributing to rapid cancer cell growth and tumor progression. Here, we summarized recent advances that implicate altered p53 in modulating the response to various cancer therapies, including chemotherapy, radiotherapy, and immunotherapy. Furthermore, we also discussed potential strategies for targeting p53 as a therapeutic option for cancer.
Collapse
Affiliation(s)
- Bin Song
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Ping Yang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanP. R. China
- Laboratory of Radiation MedicineNHC Key Laboratory of Nuclear Technology Medical TransformationWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduSichuanP. R. China
| |
Collapse
|
592
|
Dalakouras A, Koidou V, Papadopoulou K. DsRNA-based pesticides: Considerations for efficiency and risk assessment. CHEMOSPHERE 2024; 352:141530. [PMID: 38401868 DOI: 10.1016/j.chemosphere.2024.141530] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
In view of the ongoing climate change and the ever-growing world population, novel agricultural solutions are required to ensure sustainable food supply. Microbials, natural substances, semiochemicals and double stranded RNAs (dsRNAs) are all considered potential low risk pesticides. DsRNAs function at the molecular level, targeting specific regions of specific genes of specific organisms, provided that they share a minimal sequence complementarity of approximately 20 nucleotides. Thus, dsRNAs may offer a great alternative to conventional chemicals in environmentally friendly pest control strategies. Any low-risk pesticide needs to be efficient and exhibit low toxicological potential and low environmental persistence. Having said that, in the current review, the mode of dsRNA action is explored and the parameters that need to be taken into consideration for the development of efficient dsRNA-based pesticides are highlighted. Moreover, since dsRNAs mode of action differs from those of synthetic pesticides, custom-made risk assessment schemes may be required and thus, critical issues related to the risk assessment of dsRNA pesticides are discussed here.
Collapse
Affiliation(s)
| | - Venetia Koidou
- ELGO-DIMITRA, Institute of Industrial and Forage Crops, Larissa, Greece; University of Thessaly, Department of Biochemistry and Biotechnology, Larissa, Greece
| | - Kalliope Papadopoulou
- University of Thessaly, Department of Biochemistry and Biotechnology, Larissa, Greece
| |
Collapse
|
593
|
Liu Y, Jiang N, Chen W, Zhang W, Shen X, Jia B, Chen G. TRIM59-mediated ferroptosis enhances neuroblastoma development and chemosensitivity through p53 ubiquitination and degradation. Heliyon 2024; 10:e26014. [PMID: 38434050 PMCID: PMC10906161 DOI: 10.1016/j.heliyon.2024.e26014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024] Open
Abstract
Neuroblastoma, predominantly afflicting young individuals, is characterized as an embryonal tumor, with poor prognosis primarily attributed to chemoresistance. This study delved into the impact of tripartite motif (TRIM) 59, an E3 ligase, on neuroblastoma development and chemosensitivity through mediating ferroptosis and the involvement of the tumor suppressor p53. Clinical samples were assessed for TRIM59 and p53 levels to explore their correlation with neuroblastoma differentiation. In neuroblastoma cells, modulation of TRIM59 expression, either through overexpression or knockdown, was coupled with doxorubicin hydrochloride (DOX) or ferrostatin-1 (Fer-1) therapy. In vivo assessments examined the influence of TRIM59 knockdown on neuroblastoma chemosensitivity to DOX. Co-immunoprecipitation and ubiquitination assays investigated the association between TRIM59 and p53. Proliferation was gauged with Cell Counting Kit-8, lipid reactive oxygen species (ROS) were assessed via flow cytometry, and protein levels were determined by Western blotting. TRIM59 expression was inversely correlated with neuroblastoma differentiation and positively linked to cell proliferation in response to DOX. Moreover, TRIM59 impeded lipid ROS generation and ferroptosis by directly interacting with p53, promoting its ubiquitination and degradation in DOX-exposed neuroblastoma cells. Fer-1 countered the impact of TRIM59 knockdown on neuroblastoma, while TRIM59 knockdown enhanced the therapeutic efficacy of DOX in xenograph mice. This study underscores TRIM59 as an oncogene in neuroblastoma, fostering growth and chemoresistance by suppressing ferroptosis through p53 ubiquitination and degradation. TRIM59 emerges as a potential strategy for neuroblastoma therapy.
Collapse
Affiliation(s)
| | | | - Weicheng Chen
- Department of Cardiothoracic Surgery, Children's Hospital of Fudan University. No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Wenbo Zhang
- Department of Cardiothoracic Surgery, Children's Hospital of Fudan University. No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Xiao Shen
- Department of Cardiothoracic Surgery, Children's Hospital of Fudan University. No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Bing Jia
- Department of Cardiothoracic Surgery, Children's Hospital of Fudan University. No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Gang Chen
- Department of Cardiothoracic Surgery, Children's Hospital of Fudan University. No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China
| |
Collapse
|
594
|
Sun H, Yu W, Li H, Hu X, Wang X. Bioactive Components of Areca Nut: An Overview of Their Positive Impacts Targeting Different Organs. Nutrients 2024; 16:695. [PMID: 38474823 PMCID: PMC10935369 DOI: 10.3390/nu16050695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Areca catechu L. is a widely cultivated tropical crop in Southeast Asia, and its fruit, areca nut, has been consumed as a traditional Chinese medicinal material for more than 10,000 years, although it has recently attracted widespread attention due to potential hazards. Areca nut holds a significant position in traditional medicine in many areas and ranks first among the four southern medicines in China. Numerous bioactive compounds have been identified in areca nuts, including alkaloids, polyphenols, polysaccharides, and fatty acids, which exhibit diverse bioactive functions, such as anti-bacterial, deworming, anti-viral, anti-oxidant, anti-inflammatory, and anti-tumor effects. Furthermore, they also display beneficial impacts targeting the nervous, digestive, and endocrine systems. This review summarizes the pharmacological functions and underlying mechanisms of the bioactive ingredients in areca nut. This helps to ascertain the beneficial components of areca nut, discover its medicinal potential, and guide the utilization of the areca nut.
Collapse
Affiliation(s)
- Huihui Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.S.); (W.Y.); (X.H.)
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100083, China;
| | - Wenzhen Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.S.); (W.Y.); (X.H.)
| | - Hu Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100083, China;
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.S.); (W.Y.); (X.H.)
| | - Xiaofei Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.S.); (W.Y.); (X.H.)
| |
Collapse
|
595
|
Punziano C, Trombetti S, Cesaro E, Grosso M, Faraonio R. Antioxidant Systems as Modulators of Ferroptosis: Focus on Transcription Factors. Antioxidants (Basel) 2024; 13:298. [PMID: 38539832 PMCID: PMC10967371 DOI: 10.3390/antiox13030298] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 10/28/2024] Open
Abstract
Ferroptosis is a type of programmed cell death that differs from apoptosis, autophagy, and necrosis and is related to several physio-pathological processes, including tumorigenesis, neurodegeneration, senescence, blood diseases, kidney disorders, and ischemia-reperfusion injuries. Ferroptosis is linked to iron accumulation, eliciting dysfunction of antioxidant systems, which favor the production of lipid peroxides, cell membrane damage, and ultimately, cell death. Thus, signaling pathways evoking ferroptosis are strongly associated with those protecting cells against iron excess and/or lipid-derived ROS. Here, we discuss the interaction between the metabolic pathways of ferroptosis and antioxidant systems, with a particular focus on transcription factors implicated in the regulation of ferroptosis, either as triggers of lipid peroxidation or as ferroptosis antioxidant defense pathways.
Collapse
Affiliation(s)
- Carolina Punziano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (S.T.); (E.C.)
| | - Silvia Trombetti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (S.T.); (E.C.)
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Elena Cesaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (S.T.); (E.C.)
| | - Michela Grosso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (S.T.); (E.C.)
| | - Raffaella Faraonio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (S.T.); (E.C.)
| |
Collapse
|
596
|
Struyf N, Österroos A, Vesterlund M, Arnroth C, James T, Sunandar S, Mermelekas G, Bohlin A, Hamberg Levedahl K, Bengtzén S, Jafari R, Orre LM, Lehtiö J, Lehmann S, Östling P, Kallioniemi O, Seashore-Ludlow B, Erkers T. Delineating functional and molecular impact of ex vivo sample handling in precision medicine. NPJ Precis Oncol 2024; 8:38. [PMID: 38374206 PMCID: PMC10876937 DOI: 10.1038/s41698-024-00528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
Consistent handling of samples is crucial for achieving reproducible molecular and functional testing results in translational research. Here, we used 229 acute myeloid leukemia (AML) patient samples to assess the impact of sample handling on high-throughput functional drug testing, mass spectrometry-based proteomics, and flow cytometry. Our data revealed novel and previously described changes in cell phenotype and drug response dependent on sample biobanking. Specifically, myeloid cells with a CD117 (c-KIT) positive phenotype decreased after biobanking, potentially distorting cell population representations and affecting drugs targeting these cells. Additionally, highly granular AML cell numbers decreased after freezing. Secondly, protein expression levels, as well as sensitivity to drugs targeting cell proliferation, metabolism, tyrosine kinases (e.g., JAK, KIT, FLT3), and BH3 mimetics were notably affected by biobanking. Moreover, drug response profiles of paired fresh and frozen samples showed that freezing samples can lead to systematic errors in drug sensitivity scores. While a high correlation between fresh and frozen for the entire drug library was observed, freezing cells had a considerable impact at an individual level, which could influence outcomes in translational studies. Our study highlights conditions where standardization is needed to improve reproducibility, and where validation of data generated from biobanked cohorts may be particularly important.
Collapse
Affiliation(s)
- Nona Struyf
- Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden.
| | - Albin Österroos
- Department of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden
| | - Mattias Vesterlund
- Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
| | - Cornelia Arnroth
- Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
| | - Tojo James
- Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
| | - Stephanie Sunandar
- Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
| | - Georgios Mermelekas
- Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
| | - Anna Bohlin
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | | | - Sofia Bengtzén
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Rozbeh Jafari
- Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
| | - Lukas M Orre
- Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
| | - Janne Lehtiö
- Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
| | - Sören Lehmann
- Department of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Päivi Östling
- Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
| | - Olli Kallioniemi
- Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Brinton Seashore-Ludlow
- Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
| | - Tom Erkers
- Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden.
| |
Collapse
|
597
|
Ao X, Jiang T, Li Y, Lai W, Lian Z, Wang L, Huang M, Zhang Z. n-3 polyunsaturated fatty acids delay intervertebral disc degeneration by inhibiting nuclear receptor coactivator 4-mediated iron overload. iScience 2024; 27:108721. [PMID: 38303704 PMCID: PMC10830877 DOI: 10.1016/j.isci.2023.108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/24/2023] [Accepted: 12/11/2023] [Indexed: 02/03/2024] Open
Abstract
n-3 polyunsaturated fatty acids (PUFAs) are closely related to the progression of numerous chronic inflammatory diseases, but the role of n-3 PUFAs in the intervertebral disc degeneration (IVDD) remains unclear. In this study, male C57BL/6 wildtype mice (WT group, n = 30) and fat-1 transgenic mice (TG group, n = 30) were randomly selected to construct the IVDD model. The results demonstrated that the optimized composition of PUFAs in the TG mice had a significant impact on delaying IVDD and cellular senescence of intervertebral disc (IVD). Mechanismly, n-3 PUFAs inhibited IVD senescence by alleviating NCOA4-mediated iron overload. NCOA4 overexpression promoted iron overload and weakened the pro-proliferation and anti-senescence effect of DHA on the IVD cells. Furthermore, this study futher revealed n-3 PUFAs downregulated NCOA4 expression by inactiviting the LGR5/β-catenin signaling pathway. This study provides an important theoretical basis for preventing and treating IVDD and low back pain.
Collapse
Affiliation(s)
- Xiang Ao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Tao Jiang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yuan Li
- Department of Spine Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
- Academy of Orthopaedics·Guangdong Province, Guangzhou, Guangdong, P.R. China
| | - Weiyi Lai
- Department of Spine Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
- Academy of Orthopaedics·Guangdong Province, Guangzhou, Guangdong, P.R. China
| | - Zhengnan Lian
- Department of Spine Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
- Academy of Orthopaedics·Guangdong Province, Guangzhou, Guangdong, P.R. China
| | - Liang Wang
- Department of Spine Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
- Academy of Orthopaedics·Guangdong Province, Guangzhou, Guangdong, P.R. China
| | - Minjun Huang
- Department of Spine Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
- Academy of Orthopaedics·Guangdong Province, Guangzhou, Guangdong, P.R. China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
598
|
Dibra D, Xiong S, Moyer SM, El-Naggar AK, Qi Y, Su X, Kong EK, Korkut A, Lozano G. Mutant p53 protects triple-negative breast adenocarcinomas from ferroptosis in vivo. SCIENCE ADVANCES 2024; 10:eadk1835. [PMID: 38354236 PMCID: PMC10866549 DOI: 10.1126/sciadv.adk1835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
The TP53 tumor suppressor gene is mutated early in most of the patients with triple-negative breast cancer (TNBC). The most frequent TP53 alterations are missense mutations that contribute to tumor aggressiveness. Here, we used an autochthonous somatic TNBC mouse model, in which mutant p53 can be toggled on and off genetically while leaving the tumor microenvironment intact and wild-type for p53 to identify physiological dependencies on mutant p53. In TNBCs that develop in this model, deletion of two different hotspot p53R172H and p53R245W mutants triggers ferroptosis in vivo, a cell death mechanism involving iron-dependent lipid peroxidation. Mutant p53 protects cells from ferroptosis inducers, and ferroptosis inhibitors reverse the effects of mutant p53 loss in vivo. Single-cell transcriptomic data revealed that mutant p53 protects cells from undergoing ferroptosis through NRF2-dependent regulation of Mgst3 and Prdx6, which encode two glutathione-dependent peroxidases that detoxify lipid peroxides. Thus, mutant p53 protects TNBCs from ferroptotic death.
Collapse
Affiliation(s)
- Denada Dibra
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shunbin Xiong
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sydney M. Moyer
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Genetics and Epigenetics Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Adel K. El-Naggar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuan Qi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoping Su
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elisabeth K. Kong
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anil Korkut
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guillermina Lozano
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Genetics and Epigenetics Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
599
|
Liang D, Jiang X. When CDK4/6i meets GPX4i: Stop dividing to die iron hard. Cell Chem Biol 2024; 31:187-189. [PMID: 38364774 PMCID: PMC11298777 DOI: 10.1016/j.chembiol.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/18/2024]
Abstract
In this issue of Cell Chemical Biology, Rodencal et al.1 report that cell-cycle arrest by p53 stabilizers or CDK4/6 inhibitors (CDK4/6i) can lead to phospholipid remodeling and hence sensitize cancer cells to GPX4 inhibitor (GPX4i)-triggered ferroptosis. This study suggests a novel cancer therapeutic strategy combining CDK4/6i with GPX4i.
Collapse
Affiliation(s)
- Deguang Liang
- Chinese Institutes for Medical Research, Beijing, China; Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
600
|
Chen Y, Zhao T, Han M, Chen Y. miR-143 promotes cell proliferation, invasion and migration via directly binding to BRD2 in lens epithelial cells. Am J Transl Res 2024; 16:446-457. [PMID: 38463605 PMCID: PMC10918123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/23/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVE Cataract causes the greatest number of blindnesses worldwide. This study aims to investigate the role of miR-143 in lens epithelial cells. METHODS Clustering analysis was conducted to systematically compare miRNA expression levels across cataract and myopia. The levels of miR-143 and Bromodomain containing 2 (BRD2) were determined using real-time quantitative PCR (RT-qPCR) assay in lens epithelial cells. Transwell and wound healing assays were conducted to detect cell invasive and migratory abilities. The regulation relationship between MiR-143 and BRD2 was assessed using dual-luciferase reporter gene assays. BRD2 was knocked down using siRNA-BRD2, and siRNA-BRD2, and miR-143 inhibitors were transfected into cells with lipofectamine 2000. RESULTS Through retrieving five databases, 2690 miRNAs were selected. Volcano plot results demonstrated that 200 miRNAs were differentially expressed between cataract and myopia, in which 152 miRNAs were upregulated and 48 miRNAs downregulated in myopia compared with cataract. MiR-143 was upregulated in cataract compared with myopia (P<0.05). MiR-143 inhibitor suppressed the proliferation, invasion and migration of lens epithelial cells (all P<0.05). Luciferase reporter assays confirmed that BRD2 was a miR-143 target gene in SRA01/04 cells. Knockdown of BRD2 promoted SRA01/04 cell proliferation, invasion and migration (all P<0.05). In addition, silencing of BRD2 partially reversed the functions of miR-143 inhibitor on proliferation, invasion and migration (all P<0.05). CONCLUSION MiR-143 suppresses lens epithelial cell proliferation, invasion and migration by regulating BRD2, which may support a novel therapeutic strategy for cataract patients.
Collapse
Affiliation(s)
- You Chen
- Department of Ophthalmology, China-Japan Friendship Hospital Beijing 100029, China
| | - Tong Zhao
- Department of Ophthalmology, China-Japan Friendship Hospital Beijing 100029, China
| | - Mengyu Han
- Department of Ophthalmology, China-Japan Friendship Hospital Beijing 100029, China
| | - Yi Chen
- Department of Ophthalmology, China-Japan Friendship Hospital Beijing 100029, China
| |
Collapse
|