601
|
Sokal A, Broketa M, Barba-Spaeth G, Meola A, Fernández I, Fourati S, Azzaoui I, de La Selle A, Vandenberghe A, Roeser A, Bouvier-Alias M, Crickx E, Languille L, Michel M, Godeau B, Gallien S, Melica G, Nguyen Y, Zarrouk V, Canoui-Poitrine F, Noizat-Pirenne F, Megret J, Pawlotsky JM, Fillatreau S, Simon-Lorière E, Weill JC, Reynaud CA, Rey FA, Bruhns P, Chappert P, Mahévas M. Analysis of mRNA vaccination-elicited RBD-specific memory B cells reveals strong but incomplete immune escape of the SARS-CoV-2 Omicron variant. Immunity 2022; 55:1096-1104.e4. [PMID: 35483354 PMCID: PMC8986479 DOI: 10.1016/j.immuni.2022.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/16/2022] [Accepted: 04/04/2022] [Indexed: 11/05/2022]
Abstract
The SARS-CoV-2 Omicron variant can escape neutralization by vaccine-elicited and convalescent antibodies. Memory B cells (MBCs) represent another layer of protection against SARS-CoV-2, as they persist after infection and vaccination and improve their affinity. Whether MBCs elicited by mRNA vaccines can recognize the Omicron variant remains unclear. We assessed the affinity and neutralization potency against the Omicron variant of several hundred naturally expressed MBC-derived monoclonal IgG antibodies from vaccinated COVID-19-recovered and -naive individuals. Compared with other variants of concern, Omicron evaded recognition by a larger proportion of MBC-derived antibodies, with only 30% retaining high affinity against the Omicron RBD, and the reduction in neutralization potency was even more pronounced. Nonetheless, neutralizing MBC clones could be found in all the analyzed individuals. Therefore, despite the strong immune escape potential of the Omicron variant, these results suggest that the MBC repertoire generated by mRNA vaccines still provides some protection against the Omicron variant in vaccinated individuals.
Collapse
|
602
|
Ao G, Li A, Wang Y, Tran C, Qi X. Lack of efficacy for sotrovimab use in patients with COVID-19: A meta-analysis. J Infect 2022; 85:e10-e12. [PMID: 35461909 PMCID: PMC9021041 DOI: 10.1016/j.jinf.2022.04.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 01/26/2023]
Affiliation(s)
- Guangyu Ao
- Department of Nephrology, Chengdu First People's Hospital, Chengdu, Sichuan, China
| | - Anthony Li
- School of Medicine, Queen's University, Kingston, Canada
| | - Yushu Wang
- Chengdu West China Clinical Research Center, Chengdu, Sichuan, China
| | - Carolyn Tran
- Schulich School of Medicine & Dentistry, Western University, London, Canada
| | - Xin Qi
- Department of Neurology, the Affiliated Hospital of Southwest Jiaotong University & the Third People's Hospital of Chengdu, Chengdu, Sichuan, China.
| |
Collapse
|
603
|
Behl T, Kaur I, Sehgal A, Singh S, Sharma N, Anwer MK, Makeen HA, Albratty M, Alhazmi HA, Bhatia S, Bungau S. There is nothing exempt from the peril of mutation - The Omicron spike. Biomed Pharmacother 2022; 148:112756. [PMID: 35228064 PMCID: PMC8872818 DOI: 10.1016/j.biopha.2022.112756] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
The 2019 corona virus disease (COVID-19) has caused a global chaos, where a novel Omicron variant has challenged the healthcare system, followed by which it has been referred to as a variant of concern (VOC) by the World Health Organization (WHO), owing to its alarming transmission and infectivity rate. The large number of mutations in the receptor binding domain (RBD) of the spike protein is responsible for strengthening of the spike-angiotensin-converting enzyme 2 (ACE2) interaction, thereby explaining the elevated threat. This is supplemented by enhanced resistance of the variant towards pre-existing antibodies approved for the COVID-19 therapy. The manuscript brings into light failure of existing therapies to provide the desired effect, however simultaneously discussing the novel possibilities on the verge of establishing suitable treatment portfolio. The authors entail the risks associated with omicron resistance against antibodies and vaccine ineffectiveness on one side, and novel approaches and targets - kinase inhibitors, viral protease inhibitors, phytoconstituents, entry pathways - on the other. The manuscript aims to provide a holistic picture about the Omicron variant, by providing comprehensive discussions related to multiple aspects of the mutated spike variant, which might aid the global researchers and healthcare experts in finding an optimised solution to this pandemic.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia; Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania.
| |
Collapse
|
604
|
Spensley KJ, Gleeson S, Martin P, Thomson T, Clarke CL, Pickard G, Thomas D, McAdoo SP, Randell P, Kelleher P, Bedi R, Lightstone L, Prendecki M, Willicombe M. Comparison of vaccine effectiveness against the Omicron (B.1.1.529) variant in haemodialysis patients. Kidney Int Rep 2022; 7:1406-1409. [PMID: 35434428 PMCID: PMC9006399 DOI: 10.1016/j.ekir.2022.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
|
605
|
Abas AH, Marfuah S, Idroes R, Kusumawaty D, Fatimawali, Park MN, Siyadatpanah A, Alhumaydhi FA, Mahmud S, Tallei TE, Emran TB, Kim B. Can the SARS-CoV-2 Omicron Variant Confer Natural Immunity against COVID-19? Molecules 2022; 27:2221. [PMID: 35408618 PMCID: PMC9000495 DOI: 10.3390/molecules27072221] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is still ongoing, with no signs of abatement in sight. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of this pandemic and has claimed over 5 million lives, is still mutating, resulting in numerous variants. One of the newest variants is Omicron, which shows an increase in its transmissibility, but also reportedly reduces hospitalization rates and shows milder symptoms, such as in those who have been vaccinated. As a result, many believe that Omicron provides a natural vaccination, which is the first step toward ending the COVID-19 pandemic. Based on published research and scientific evidence, we review and discuss how the end of this pandemic is predicted to occur as a result of Omicron variants being surpassed in the community. In light of the findings of our research, we believe that it is most likely true that the Omicron variant is a natural way of vaccinating the masses and slowing the spread of this deadly pandemic. While the mutation that causes the Omicron variant is encouraging, subsequent mutations do not guarantee that the disease it causes will be less severe. As the virus continues to evolve, humans must constantly adapt by increasing their immunity through vaccination.
Collapse
Affiliation(s)
- Abdul Hawil Abas
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia; (A.H.A.); (S.M.)
| | - Siti Marfuah
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia; (A.H.A.); (S.M.)
| | - Rinaldi Idroes
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Aceh, Indonesia;
| | - Diah Kusumawaty
- Department of Biology, Faculty of Mathematics and Natural Sciences Education, Universitas Pendidikan Indonesia, Bandung 40154, West Java, Indonesia;
| | - Fatimawali
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia;
| | - Moon Nyeo Park
- College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Korea;
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand 97178-53577, Iran;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Shafi Mahmud
- Department of Genome Science, John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia;
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia; (A.H.A.); (S.M.)
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Korea;
| |
Collapse
|
606
|
Antiviral Effects of Animal Toxins: Is There a Way to Drugs? Int J Mol Sci 2022; 23:ijms23073634. [PMID: 35408989 PMCID: PMC8998278 DOI: 10.3390/ijms23073634] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/18/2022] Open
Abstract
Viruses infect all types of organisms, causing viral diseases, which are very common in humans. Since viruses use the metabolic pathways of their host cells to replicate, they are difficult to eradicate without affecting the cells. The most effective measures against viral infections are vaccinations and antiviral drugs, which selectively inhibit the viral replication cycle. Both methods have disadvantages, which requires the development of new approaches to the treatment of viral diseases. In the study of animal venoms, it was found that, in addition to toxicity, venoms exhibit other types of biological activity, including an antiviral one, the first mention of which dates back to middle of the last century, but detailed studies of their antiviral activity have been conducted over the past 15 years. The COVID-19 pandemic has reinforced these studies and several compounds with antiviral activity have been identified in venoms. Some of them are very active and can be considered as the basis for antiviral drugs. This review discusses recent antiviral studies, the found compounds with high antiviral activity, and the possible mechanisms of their action. The prospects for using the animal venom components to create antiviral drugs, and the expected problems and possible solutions are also considered.
Collapse
|
607
|
GeurtsvanKessel CH, Geers D, Schmitz KS, Mykytyn AZ, Lamers MM, Bogers S, Scherbeijn S, Gommers L, Sablerolles RS, Nieuwkoop NN, Rijsbergen LC, van Dijk LL, de Wilde J, Alblas K, Breugem TI, Rijnders BJ, de Jager H, Weiskopf D, van der Kuy PHM, Sette A, Koopmans MP, Grifoni A, Haagmans BL, de Vries RD. Divergent SARS-CoV-2 Omicron-reactive T and B cell responses in COVID-19 vaccine recipients. Sci Immunol 2022; 7:eabo2202. [PMID: 35113647 PMCID: PMC8939771 DOI: 10.1126/sciimmunol.abo2202] [Citation(s) in RCA: 312] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
Abstract
The severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) Omicron variant is spreading rapidly, even in vaccinated individuals, raising concerns about immune escape. Here, we studied neutralizing antibodies and T cell responses targeting SARS-CoV-2 D614G [wild type (WT)] and the Beta, Delta, and Omicron variants of concern in a cohort of 60 health care workers after immunization with ChAdOx-1 S, Ad26.COV2.S, mRNA-1273, or BNT162b2. High binding antibody levels against WT SARS-CoV-2 spike (S) were detected 28 days after vaccination with both mRNA vaccines (mRNA-1273 or BNT162b2), which substantially decreased after 6 months. In contrast, antibody levels were lower after Ad26.COV2.S vaccination but did not wane. Neutralization assays showed consistent cross-neutralization of the Beta and Delta variants, but neutralization of Omicron was significantly lower or absent. BNT162b2 booster vaccination after either two mRNA-1273 immunizations or Ad26.COV2 priming partially restored neutralization of the Omicron variant, but responses were still up to 17-fold decreased compared with WT. SARS-CoV-2-specific T cells were detected up to 6 months after all vaccination regimens, with more consistent detection of specific CD4+ than CD8+ T cells. No significant differences were detected between WT- and variant-specific CD4+ or CD8+ T cell responses, including Omicron, indicating minimal escape at the T cell level. This study shows that vaccinated individuals retain T cell immunity to the SARS-CoV-2 Omicron variant, potentially balancing the lack of neutralizing antibodies in preventing or limiting severe COVID-19. Booster vaccinations are needed to further restore Omicron cross-neutralization by antibodies.
Collapse
Affiliation(s)
| | - Daryl Geers
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Anna Z. Mykytyn
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Mart M Lamers
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Susanne Bogers
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Lennert Gommers
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | | | | | | | - Janet de Wilde
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Kimberley Alblas
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Tim I. Breugem
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Bart J.A. Rijnders
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, Netherlands
| | - Herbert de Jager
- Department of Occupational Health Services, Erasmus MC, Rotterdam, Netherlands
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | | | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | | | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Bart L. Haagmans
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
608
|
Jung C, Kmiec D, Koepke L, Zech F, Jacob T, Sparrer KMJ, Kirchhoff F. Omicron: What Makes the Latest SARS-CoV-2 Variant of Concern So Concerning? J Virol 2022; 96:e0207721. [PMID: 35225672 PMCID: PMC8941872 DOI: 10.1128/jvi.02077-21] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/27/2022] [Indexed: 11/20/2022] Open
Abstract
Emerging strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic, that show increased transmission fitness and/or immune evasion are classified as "variants of concern" (VOCs). Recently, a SARS-CoV-2 variant first identified in November 2021 in South Africa has been recognized as a fifth VOC, termed "Omicron." What makes this VOC so alarming is the high number of changes, especially in the viral Spike protein, and accumulating evidence for increased transmission efficiency and escape from neutralizing antibodies. In an amazingly short time, the Omicron VOC has outcompeted the previously dominating Delta VOC. However, it seems that the Omicron VOC is overall less pathogenic than other SARS-CoV-2 VOCs. Here, we provide an overview of the mutations in the Omicron genome and the resulting changes in viral proteins compared to other SARS-CoV-2 strains and discuss their potential functional consequences.
Collapse
Affiliation(s)
- Christoph Jung
- Institute of Electrochemistry, Ulm University, Ulm, Germany
| | - Dorota Kmiec
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Lennart Koepke
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, Ulm, Germany
| | | | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
609
|
Naranbhai V, Nathan A, Kaseke C, Berrios C, Khatri A, Choi S, Getz MA, Tano-Menka R, Ofoman O, Gayton A, Senjobe F, Zhao Z, St Denis KJ, Lam EC, Carrington M, Garcia-Beltran WF, Balazs AB, Walker BD, Iafrate AJ, Gaiha GD. T cell reactivity to the SARS-CoV-2 Omicron variant is preserved in most but not all individuals. Cell 2022; 185:1041-1051.e6. [PMID: 35202566 PMCID: PMC8810349 DOI: 10.1016/j.cell.2022.01.029] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/04/2022] [Accepted: 01/28/2022] [Indexed: 01/11/2023]
Abstract
The SARS-CoV-2 Omicron variant (B.1.1.529) contains mutations that mediate escape from antibody responses, although the extent to which these substitutions in spike and non-spike proteins affect T cell recognition is unknown. In this study, we show that T cell responses in individuals with prior infection, vaccination, both prior infection and vaccination, and boosted vaccination are largely preserved to Omicron spike and non-spike proteins. However, we also identify a subset of individuals (∼21%) with a >50% reduction in T cell reactivity to the Omicron spike. Evaluation of functional CD4+ and CD8+ memory T cell responses confirmed these findings and revealed that reduced recognition to Omicron spike is primarily observed within the CD8+ T cell compartment potentially due to escape from HLA binding. Booster vaccination enhanced T cell responses to Omicron spike. In contrast to neutralizing immunity, these findings suggest preservation of T cell responses to the Omicron variant, although with reduced reactivity in some individuals.
Collapse
Affiliation(s)
- Vivek Naranbhai
- Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA; Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for the AIDS Programme of Research in South Africa, Durban 4001, South Africa.
| | - Anusha Nathan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Program in Health Sciences & Technology, Harvard Medical School, Massachusetts Institute of Technology, Boston, MA 02115, USA
| | - Clarety Kaseke
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Cristhian Berrios
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ashok Khatri
- Massachusetts General Hospital Endocrine Division and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Shawn Choi
- Massachusetts General Hospital Endocrine Division and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Matthew A Getz
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Rhoda Tano-Menka
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Onosereme Ofoman
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alton Gayton
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Fernando Senjobe
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Zezhou Zhao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Program in Health Sciences & Technology, Harvard Medical School, Massachusetts Institute of Technology, Boston, MA 02115, USA
| | - Kerri J St Denis
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Evan C Lam
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Basic Science Program, Frederick National Laboratory for Cancer Research in the Laboratory of Integrative Cancer Immunology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Wilfredo F Garcia-Beltran
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Bruce D Walker
- Center for the AIDS Programme of Research in South Africa, Durban 4001, South Africa; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; The Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Institute for Medical Engineering and Science, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - A John Iafrate
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gaurav D Gaiha
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
610
|
Röltgen K, Nielsen SCA, Silva O, Younes SF, Zaslavsky M, Costales C, Yang F, Wirz OF, Solis D, Hoh RA, Wang A, Arunachalam PS, Colburg D, Zhao S, Haraguchi E, Lee AS, Shah MM, Manohar M, Chang I, Gao F, Mallajosyula V, Li C, Liu J, Shoura MJ, Sindher SB, Parsons E, Dashdorj NJ, Dashdorj ND, Monroe R, Serrano GE, Beach TG, Chinthrajah RS, Charville GW, Wilbur JL, Wohlstadter JN, Davis MM, Pulendran B, Troxell ML, Sigal GB, Natkunam Y, Pinsky BA, Nadeau KC, Boyd SD. Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell 2022; 185:1025-1040.e14. [PMID: 35148837 PMCID: PMC8786601 DOI: 10.1016/j.cell.2022.01.018] [Citation(s) in RCA: 282] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/03/2022] [Accepted: 01/20/2022] [Indexed: 01/07/2023]
Abstract
During the SARS-CoV-2 pandemic, novel and traditional vaccine strategies have been deployed globally. We investigated whether antibodies stimulated by mRNA vaccination (BNT162b2), including third-dose boosting, differ from those generated by infection or adenoviral (ChAdOx1-S and Gam-COVID-Vac) or inactivated viral (BBIBP-CorV) vaccines. We analyzed human lymph nodes after infection or mRNA vaccination for correlates of serological differences. Antibody breadth against viral variants is lower after infection compared with all vaccines evaluated but improves over several months. Viral variant infection elicits variant-specific antibodies, but prior mRNA vaccination imprints serological responses toward Wuhan-Hu-1 rather than variant antigens. In contrast to disrupted germinal centers (GCs) in lymph nodes during infection, mRNA vaccination stimulates robust GCs containing vaccine mRNA and spike antigen up to 8 weeks postvaccination in some cases. SARS-CoV-2 antibody specificity, breadth, and maturation are affected by imprinting from exposure history and distinct histological and antigenic contexts in infection compared with vaccination.
Collapse
Affiliation(s)
| | | | - Oscar Silva
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Sheren F Younes
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Maxim Zaslavsky
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Fan Yang
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Oliver F Wirz
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Daniel Solis
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Ramona A Hoh
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Aihui Wang
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Deana Colburg
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Shuchun Zhao
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Emily Haraguchi
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Alexandra S Lee
- Sean N. Parker Center for Allergy & Asthma Research, Stanford University, Stanford, CA, USA
| | - Mihir M Shah
- Sean N. Parker Center for Allergy & Asthma Research, Stanford University, Stanford, CA, USA
| | - Monali Manohar
- Sean N. Parker Center for Allergy & Asthma Research, Stanford University, Stanford, CA, USA
| | - Iris Chang
- Sean N. Parker Center for Allergy & Asthma Research, Stanford University, Stanford, CA, USA
| | - Fei Gao
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Vamsee Mallajosyula
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Chunfeng Li
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - James Liu
- Stanford Health Library, Stanford, CA, USA
| | - Massa J Shoura
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Sayantani B Sindher
- Sean N. Parker Center for Allergy & Asthma Research, Stanford University, Stanford, CA, USA
| | - Ella Parsons
- Sean N. Parker Center for Allergy & Asthma Research, Stanford University, Stanford, CA, USA
| | | | | | | | | | | | - R Sharon Chinthrajah
- Sean N. Parker Center for Allergy & Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, CA, USA
| | | | | | | | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Bali Pulendran
- Department of Pathology, Stanford University, Stanford, CA, USA; Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Megan L Troxell
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | | | - Benjamin A Pinsky
- Department of Pathology, Stanford University, Stanford, CA, USA; Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy & Asthma Research, Stanford University, Stanford, CA, USA; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, CA, USA
| | - Scott D Boyd
- Department of Pathology, Stanford University, Stanford, CA, USA; Sean N. Parker Center for Allergy & Asthma Research, Stanford University, Stanford, CA, USA.
| |
Collapse
|
611
|
O’Donnell KL, Gourdine T, Fletcher P, Shifflett K, Furuyama W, Clancy CS, Marzi A. VSV-Based Vaccines Reduce Virus Shedding and Viral Load in Hamsters Infected with SARS-CoV-2 Variants of Concern. Vaccines (Basel) 2022; 10:435. [PMID: 35335067 PMCID: PMC8951568 DOI: 10.3390/vaccines10030435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 12/11/2022] Open
Abstract
The continued progression of the COVID-19 pandemic can partly be attributed to the ability of SARS-CoV-2 to mutate and introduce new viral variants. Some of these variants with the potential to spread quickly and conquer the globe are termed variants of concern (VOC). The existing vaccines implemented on a global scale are based on the ancestral strain, which has resulted in increased numbers of breakthrough infections as these VOC have emerged. It is imperative to show protection against VOC infection with newly developed vaccines. Previously, we evaluated two vesicular stomatitis virus (VSV)-based vaccines expressing the SARS-CoV-2 spike protein alone (VSV-SARS2) or in combination with the Ebola virus glycoprotein (VSV-SARS2-EBOV) and demonstrated their fast-acting potential. Here, we prolonged the time to challenge; we vaccinated hamsters intranasally (IN) or intramuscularly 28 days prior to infection with three SARS-CoV-2 VOC-the Alpha, Beta, and Delta variants. IN vaccination with either the VSV-SARS2 or VSV-SARS2-EBOV resulted in the highest protective efficacy as demonstrated by decreased virus shedding and lung viral load of vaccinated hamsters. Histopathologic analysis of the lungs revealed the least amount of lung damage in the IN-vaccinated animals regardless of the challenge virus. This data demonstrates the ability of a VSV-based vaccine to not only protect from disease caused by SARS-CoV-2 VOC but also reduce viral shedding.
Collapse
Affiliation(s)
- Kyle L. O’Donnell
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA (T.G.); (P.F.); (K.S.); (W.F.)
| | - Tylisha Gourdine
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA (T.G.); (P.F.); (K.S.); (W.F.)
| | - Paige Fletcher
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA (T.G.); (P.F.); (K.S.); (W.F.)
| | - Kyle Shifflett
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA (T.G.); (P.F.); (K.S.); (W.F.)
| | - Wakako Furuyama
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA (T.G.); (P.F.); (K.S.); (W.F.)
| | - Chad S. Clancy
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA;
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA (T.G.); (P.F.); (K.S.); (W.F.)
| |
Collapse
|
612
|
Salleh MZ, Norazmi MN, Deris ZZ. Immunogenicity mechanism of mRNA vaccines and their limitations in promoting adaptive protection against SARS-CoV-2. PeerJ 2022; 10:e13083. [PMID: 35287350 PMCID: PMC8917804 DOI: 10.7717/peerj.13083] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/16/2022] [Indexed: 01/12/2023] Open
Abstract
Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19) in late 2019, hundreds of millions of people have been infected worldwide. There have been unprecedented efforts in acquiring effective vaccines to confer protection against the disease. mRNA vaccines have emerged as promising alternatives to conventional vaccines due to their high potency with the capacity for rapid development and low manufacturing costs. In this review, we summarize the currently available vaccines against SARS-CoV-2 in development, with the focus on the concepts of mRNA vaccines, their antigen selection, delivery and optimization to increase the immunostimulatory capability of mRNA as well as its stability and translatability. We also discuss the host immune responses to the SARS-CoV-2 infection and expound in detail, the adaptive immune response upon immunization with mRNA vaccines, in which high levels of spike-specific IgG and neutralizing antibodies were detected after two-dose vaccination. mRNA vaccines have been shown to induce a robust CD8+T cell response, with a balanced CD4+ TH1/TH2 response. We further discuss the challenges and limitations of COVID-19 mRNA vaccines, where newly emerging variants of SARS-CoV-2 may render currently deployed vaccines less effective. Imbalanced and inappropriate inflammatory responses, resulting from hyper-activation of pro-inflammatory cytokines, which may lead to vaccine-associated enhanced respiratory disease (VAERD) and rare cases of myocarditis and pericarditis also are discussed.
Collapse
Affiliation(s)
- Mohd Zulkifli Salleh
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bahru, Kelantan, Malaysia
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, Kota Bahru, Kelantan, Malaysia
| | - Zakuan Zainy Deris
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bahru, Kelantan, Malaysia
| |
Collapse
|
613
|
Um J, Choi YY, Kim G, Kim MK, Lee KS, Sung HK, Kim BC, Lee YK, Jang HC, Bang JH, Chung KH, Oh MD, Park JS, Jeon J. Booster BNT162b2 COVID-19 Vaccination Increases Neutralizing Antibody Titers Against the SARS-CoV-2 Omicron Variant in Both Young and Elderly Adults. J Korean Med Sci 2022; 37:e70. [PMID: 35257525 PMCID: PMC8901881 DOI: 10.3346/jkms.2022.37.e70] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/07/2022] [Indexed: 11/20/2022] Open
Abstract
Concerns about the effectiveness of current vaccines against the rapidly spreading severe acute respiratory syndrome-coronavirus-2 omicron (B.1.1.529) variant are increasing. This study aimed to assess neutralizing antibody activity against the wild-type (BetaCoV/Korea/KCDC03/2020), delta, and omicron variants after full primary and booster vaccinations with BNT162b2. A plaque reduction neutralization test was employed to determine 50% neutralizing dilution (ND50) titers in serum samples. ND50 titers against the omicron variant (median [interquartile range], 5.3 [< 5.0-12.7]) after full primary vaccination were lower than those against the wild-type (144.8 [44.7-294.0]) and delta (24.3 [14.3-81.1]) variants. Furthermore, 19/30 participants (63.3%) displayed lower ND50 titers than the detection threshold (< 10.0) against omicron after full primary vaccination. However, the booster vaccine significantly increased ND50 titers against BetaCoV/Korea/KCDC03/2020, delta, and omicron, although titers against omicron remained lower than those against the other variants (P < 0.001). Our study suggests that booster vaccination with BNT162b2 significantly increases humoral immunity against the omicron variant.
Collapse
Affiliation(s)
- Jihye Um
- Research Institute of Public Health, National Medical Center, Seoul, Korea
| | - Youn Young Choi
- Research Institute of Public Health, National Medical Center, Seoul, Korea
- Department of Pediatrics, National Medical Center, Seoul, Korea
| | - Gayeon Kim
- Department of Infectious Diseases, National Medical Center, Seoul, Korea
| | - Min-Kyung Kim
- Department of Infectious Diseases, National Medical Center, Seoul, Korea
| | - Kyung-Shin Lee
- Research Institute of Public Health, National Medical Center, Seoul, Korea
| | - Ho Kyung Sung
- Research Institute of Public Health, National Medical Center, Seoul, Korea
| | - Byung Chul Kim
- National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Korea
| | - Yoo-Kyoung Lee
- National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Korea
| | - Hee-Chang Jang
- National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Korea
| | - Ji Hwan Bang
- Division of Infectious Diseases, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Ki-Hyun Chung
- Department of Pediatrics, National Medical Center, Seoul, Korea
| | - Myoung-Don Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jun-Sun Park
- Research Institute of Public Health, National Medical Center, Seoul, Korea.
| | - Jaehyun Jeon
- Research Institute of Public Health, National Medical Center, Seoul, Korea
- Department of Infectious Diseases, National Medical Center, Seoul, Korea.
| |
Collapse
|
614
|
Adhikari P, Jawad B, Podgornik R, Ching WY. Mutations of Omicron Variant at the Interface of the Receptor Domain Motif and Human Angiotensin-Converting Enzyme-2. Int J Mol Sci 2022; 23:2870. [PMID: 35270013 PMCID: PMC8911136 DOI: 10.3390/ijms23052870] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
The most recent Omicron variant of SARS-CoV-2 has caused global concern and anxiety. The only thing certain about this strain, with a large number of mutations in the spike protein, is that it spreads quickly, seems to evade immune defense, and mitigates the benefits of existing vaccines. Based on the ultra-large-scale ab initio computational modeling of the receptor binding motif (RBM) and the human angiotensin-converting enzyme-2 (ACE2) interface, we provide the details of the effect of Omicron mutations at the fundamental atomic scale level. In-depth analysis anchored in the novel concept of amino acid-amino acid bond pair units (AABPU) indicates that mutations in the Omicron variant are connected with (i) significant changes in the shape and structure of AABPU components, together with (ii) significant increase in the positive partial charge, which facilitates the interaction with ACE2. We have identified changes in bonding due to mutations in the RBM. The calculated bond order, based on AABPU, reveals that the Omicron mutations increase the binding strength of RBM to ACE2. Our findings correlate with and are instrumental to explain the current observations and can contribute to the prediction of next potential new variant of concern.
Collapse
Affiliation(s)
- Puja Adhikari
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA; (P.A.); (B.J.)
| | - Bahaa Jawad
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA; (P.A.); (B.J.)
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| | - Rudolf Podgornik
- School of Physical Sciences and Kavli Institute of Theoretical Science, University of Chinese Academy of Sciences, Beijing 100049, China;
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100090, China
- Wenzhou Institute of the University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Wai-Yim Ching
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA; (P.A.); (B.J.)
| |
Collapse
|
615
|
Martínez-Salazar B, Holwerda M, Stüdle C, Piragyte I, Mercader N, Engelhardt B, Rieben R, Döring Y. COVID-19 and the Vasculature: Current Aspects and Long-Term Consequences. Front Cell Dev Biol 2022; 10:824851. [PMID: 35242762 PMCID: PMC8887620 DOI: 10.3389/fcell.2022.824851] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/20/2022] [Indexed: 12/11/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was first identified in December 2019 as a novel respiratory pathogen and is the causative agent of Corona Virus disease 2019 (COVID-19). Early on during this pandemic, it became apparent that SARS-CoV-2 was not only restricted to infecting the respiratory tract, but the virus was also found in other tissues, including the vasculature. Individuals with underlying pre-existing co-morbidities like diabetes and hypertension have been more prone to develop severe illness and fatal outcomes during COVID-19. In addition, critical clinical observations made in COVID-19 patients include hypercoagulation, cardiomyopathy, heart arrythmia, and endothelial dysfunction, which are indicative for an involvement of the vasculature in COVID-19 pathology. Hence, this review summarizes the impact of SARS-CoV-2 infection on the vasculature and details how the virus promotes (chronic) vascular inflammation. We provide a general overview of SARS-CoV-2, its entry determinant Angiotensin-Converting Enzyme II (ACE2) and the detection of the SARS-CoV-2 in extrapulmonary tissue. Further, we describe the relation between COVID-19 and cardiovascular diseases (CVD) and their impact on the heart and vasculature. Clinical findings on endothelial changes during COVID-19 are reviewed in detail and recent evidence from in vitro studies on the susceptibility of endothelial cells to SARS-CoV-2 infection is discussed. We conclude with current notions on the contribution of cardiovascular events to long term consequences of COVID-19, also known as “Long-COVID-syndrome”. Altogether, our review provides a detailed overview of the current perspectives of COVID-19 and its influence on the vasculature.
Collapse
Affiliation(s)
- Berenice Martínez-Salazar
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Melle Holwerda
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Chiara Stüdle
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Indre Piragyte
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Nadia Mercader
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Institute of Anatomy, University of Bern, Bern, Switzerland.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Bern Center of Precision Medicine BCPM, University of Bern, Bern, Switzerland
| | | | - Robert Rieben
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Yvonne Döring
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
616
|
Shapira G, Abu Hamad R, Weiner C, Rainy N, Sorek-Abramovich R, Benveniste-Levkovitz P, Rock R, Avnat E, Levtzion-Korach O, Bar Chaim A, Shomron N. Population differences in antibody response to SARS-CoV-2 infection and BNT162b2 vaccination. FASEB J 2022; 36:e22223. [PMID: 35239233 PMCID: PMC9111330 DOI: 10.1096/fj.202101492r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/24/2022] [Accepted: 02/10/2022] [Indexed: 12/14/2022]
Abstract
The concentration of SARS‐CoV‐2‐specific serum antibodies, elicited by vaccination or infection, is a primary determinant of anti‐viral immunity, which correlates with protection against infection and COVID‐19. Serum samples were obtained from 25 897 participants and assayed for anti‐SARS‐CoV‐2 spike protein RBD IgG antibodies. The cohort was composed of newly vaccinated BNT162b2 recipients, in the first month or 6 months after vaccination, COVID‐19 patients and a general sample of the Israeli population. Antibody levels of BNT162b2 vaccine recipients were negatively correlated with age, with a prominent decrease in recipients over 55 years old, which was most significant in males. This trend was observable within the first month and 6 months after vaccination, while younger participants were more likely to maintain stable levels of serum antibodies. The antibody concentration of participants previously infected with SARS‐CoV‐2 was lower than the vaccinated and had a more complex, non‐linear relation to age, sex and COVID‐19 symptoms. Taken together, our data supports age and sex as primary determining factors for both the magnitude and durability of humoral response to SARS‐CoV‐2 infection and the COVID‐19 vaccine. Our results could inform vaccination policies, prioritizing the most susceptible populations for repeated vaccination.
Collapse
Affiliation(s)
- Guy Shapira
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | | | - Chen Weiner
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Shamir Medical Center, Be'er Yaacov, Israel
| | - Nir Rainy
- Shamir Medical Center, Be'er Yaacov, Israel
| | | | | | | | - Eden Avnat
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
617
|
Schubert M, Bertoglio F, Steinke S, Heine PA, Ynga-Durand MA, Maass H, Sammartino JC, Cassaniti I, Zuo F, Du L, Korn J, Milošević M, Wenzel EV, Krstanović F, Polten S, Pribanić-Matešić M, Brizić I, Baldanti F, Hammarström L, Dübel S, Šustić A, Marcotte H, Strengert M, Protić A, Piralla A, Pan-Hammarström Q, Čičin-Šain L, Hust M. Human serum from SARS-CoV-2-vaccinated and COVID-19 patients shows reduced binding to the RBD of SARS-CoV-2 Omicron variant. BMC Med 2022; 20:102. [PMID: 35236358 PMCID: PMC8890955 DOI: 10.1186/s12916-022-02312-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/21/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The COVID-19 pandemic is caused by the betacoronavirus SARS-CoV-2. In November 2021, the Omicron variant was discovered and immediately classified as a variant of concern (VOC), since it shows substantially more mutations in the spike protein than any previous variant, especially in the receptor-binding domain (RBD). We analyzed the binding of the Omicron RBD to the human angiotensin-converting enzyme-2 receptor (ACE2) and the ability of human sera from COVID-19 patients or vaccinees in comparison to Wuhan, Beta, or Delta RBD variants. METHODS All RBDs were produced in insect cells. RBD binding to ACE2 was analyzed by ELISA and microscale thermophoresis (MST). Similarly, sera from 27 COVID-19 patients, 81 vaccinated individuals, and 34 booster recipients were titrated by ELISA on RBDs from the original Wuhan strain, Beta, Delta, and Omicron VOCs. In addition, the neutralization efficacy of authentic SARS-CoV-2 wild type (D614G), Delta, and Omicron by sera from 2× or 3× BNT162b2-vaccinated persons was analyzed. RESULTS Surprisingly, the Omicron RBD showed a somewhat weaker binding to ACE2 compared to Beta and Delta, arguing that improved ACE2 binding is not a likely driver of Omicron evolution. Serum antibody titers were significantly lower against Omicron RBD compared to the original Wuhan strain. A 2.6× reduction in Omicron RBD binding was observed for serum of 2× BNT162b2-vaccinated persons. Neutralization of Omicron SARS-CoV-2 was completely diminished in our setup. CONCLUSION These results indicate an immune escape focused on neutralizing antibodies. Nevertheless, a boost vaccination increased the level of anti-RBD antibodies against Omicron, and neutralization of authentic Omicron SARS-CoV-2 was at least partially restored. This study adds evidence that current vaccination protocols may be less efficient against the Omicron variant.
Collapse
Affiliation(s)
- Maren Schubert
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Federico Bertoglio
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Stephan Steinke
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Philip Alexander Heine
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Mario Alberto Ynga-Durand
- Helmholtz Centre for Infection Research, Department of Viral Immunology, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Henrike Maass
- Helmholtz Centre for Infection Research, Department of Viral Immunology, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Josè Camilla Sammartino
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100, Pavia, Italy
| | - Irene Cassaniti
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100, Pavia, Italy
| | - Fanglei Zuo
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Likun Du
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Janin Korn
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106, Braunschweig, Germany
- Abcalis GmbH, Science Campus Braunschweig-Süd, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Marko Milošević
- Department of Anesthesiology, Reanimation, Intensive Care and Emergency Medicine, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Esther Veronika Wenzel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106, Braunschweig, Germany
- Abcalis GmbH, Science Campus Braunschweig-Süd, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Fran Krstanović
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Saskia Polten
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106, Braunschweig, Germany
| | | | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Fausto Baldanti
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Lennart Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Stefan Dübel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Alan Šustić
- Department of Anesthesiology, Reanimation, Intensive Care and Emergency Medicine, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Harold Marcotte
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Monika Strengert
- Department of Epidemiology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Alen Protić
- Department of Anesthesiology, Reanimation, Intensive Care and Emergency Medicine, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Antonio Piralla
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | | | - Luka Čičin-Šain
- Helmholtz Centre for Infection Research, Department of Viral Immunology, Inhoffenstr. 7, 38124, Braunschweig, Germany
- Centre for Individualised Infection Medicine (CIIM), a joint venture of Helmholtz Centre for Infection Research and Medical School Hannover, Hannover, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106, Braunschweig, Germany.
| |
Collapse
|
618
|
Seaman MS, Siedner MJ, Boucau J, Lavine CL, Ghantous F, Liew MY, Mathews J, Singh A, Marino C, Regan J, Uddin R, Choudhary MC, Flynn JP, Chen G, Stuckwisch AM, Lipiner T, Kittilson A, Melberg M, Gilbert RF, Reynolds Z, Iyer SL, Chamberlin GC, Vyas TD, Vyas JM, Goldberg MB, Luban J, Li JZ, Barczak AK, Lemieux JE. Vaccine Breakthrough Infection with the SARS-CoV-2 Delta or Omicron (BA.1) Variant Leads to Distinct Profiles of Neutralizing Antibody Responses. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.03.02.22271731. [PMID: 35262094 PMCID: PMC8902886 DOI: 10.1101/2022.03.02.22271731] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
There is increasing evidence that the risk of SARS-CoV-2 infection among vaccinated individuals is variant-specific, suggesting that protective immunity against SARS-CoV-2 may differ by variant. We enrolled vaccinated (n = 39) and unvaccinated (n = 11) individuals with acute, symptomatic SARS-CoV-2 Delta or Omicron infection and performed SARS-CoV-2 viral load quantification, whole-genome sequencing, and variant-specific antibody characterization at the time of acute illness and convalescence. Viral load at the time of infection was inversely correlated with antibody binding and neutralizing antibody responses. Increases in antibody titers and neutralizing activity occurred at convalescence in a variant-specific manner. Across all variants tested, convalescent neutralization titers in unvaccinated individuals were markedly lower than in vaccinated individuals. For individuals infected with the Delta variant, neutralizing antibody responses were weakest against BA.2, whereas infection with Omicron BA.1 variant generated a broader response against all tested variants, including BA.2.
Collapse
Affiliation(s)
- Michael S Seaman
- Beth Israel Deaconess Medical Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Mark J Siedner
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA
| | - Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA
| | | | | | - May Y Liew
- Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Caitlin Marino
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - James Regan
- Brigham and Women's Hospital Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jatin M Vyas
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA
| | - Marcia B Goldberg
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA
| | - Jeremy Luban
- UMass Med School, Worcester, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Broad Institute, Cambridge, MA, USA
| | | | - Amy K Barczak
- Massachusetts General Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Jacob E Lemieux
- Harvard Medical School, Boston, MA
- Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| |
Collapse
|
619
|
Kim YI, Casel MAB, Choi YK. Transmissibility and pathogenicity of SARS-CoV-2 variants in animal models. J Microbiol 2022; 60:255-267. [PMID: 35235177 PMCID: PMC8890026 DOI: 10.1007/s12275-022-2033-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022]
Abstract
As of February 2022, SARS-CoV-2 is still one of the most serious public health threats due to its high mortality rate and rapid spread of novel variants. Since the first outbreak in 2019, general understanding of SARS-CoV-2 has been improved through basic and clinical studies; however, knowledge gaps still exist in our understanding of the emerging novel SARSCoV-2 variants, which impacts the corresponding development of vaccines and therapeutics. Especially, accumulation of mutations in SARS-CoV-2 and rapid spread in populations with previous immunity has resulted in selection of variants that evade the host immune response. This phenomenon threatens to render current SARS-CoV-2 vaccines ineffective for controlling the pandemic. Proper animal models are essential for detailed investigations into the viral etiology, transmission and pathogenesis mechanisms, as well as evaluation of the efficacy of vaccine candidates against recent SARS-CoV-2 variants. Further, the choice of animal model for each research topic is important for researchers to gain better knowledge of recent SARS-CoV-2 variants. Here, we review the advantages and limitations of each animal model, including mice, hamsters, ferrets, and non-human primates, to elucidate variant SARS-CoV-2 etiology and transmission and to evaluate therapeutic and vaccine efficacy.
Collapse
Affiliation(s)
- Young-Il Kim
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
| | - Mark Anthony B Casel
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Young Ki Choi
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea.
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
620
|
Abstract
The pandemic COVID-19 is certainly one of the most severe infectious diseases in human history. In the last 2 years, the COVID-19 pandemic has caused over 418.6 million confirmed cases and 5.8 million deaths worldwide. Young people make up the majority of all infected COVID-19 cases, but the mortality rate is relatively lower compared to older age groups. Currently, about 55.04% individuals have been fully vaccinated rapidly approaching to herd immunity globally. The challenge is that new SARS-CoV-2 variants with potential to evade immunity from natural infection or vaccine continue to emerge. Breakthrough infections have occurred in both SARS-CoV-2 naturally infected and vaccinated individuals, but breakthrough infections tended to exhibit mild or asymptomatic symptoms and lower mortality rates. Therefore, immunity from natural infection or vaccination can reduce SARS-CoV-2 pathogenicity, but neither can completely prevent SARS-CoV-2 infection/reinfection. Fortunately, the morbidity and mortality of COVID-19 continue to decline. The 7-day average cumulative case fatality of COVID-19 has decreased from 12.3% on the February 25, 2020, to 0.27% on January 09, 2022, which could be related to a decreased SARS-CoV-2 variant virulence, vaccine immunization, and/or better treatment of patients. In conclusion, elimination of SARS-CoV-2 in the world could be impossible or at least an arduous task with a long way to go. The best strategy to prevent COVID-19 pandemic is to expand inoculation rate of effective vaccines. As the population reaches herd immunity, the mortality rate of COVID-19 may continue to decrease, and COVID-19 could eventually become another common cold.
Collapse
|
621
|
Minka SO, Minka FH. A tabulated summary of the evidence on humoral and cellular responses to the SARS-CoV-2 Omicron VOC, as well as vaccine efficacy against this variant. Immunol Lett 2022; 243:38-43. [PMID: 35131373 PMCID: PMC8815275 DOI: 10.1016/j.imlet.2022.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/23/2022] [Accepted: 02/03/2022] [Indexed: 12/16/2022]
Abstract
INTRODUCTION SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is the virus responsible for COVID-19. It is one of the most mutating virus in the world. These mutations are responsible for the appearance of new variants, the most recent of which is Omicron (line B.1.1.529). This new variant was first identified in South Africa in November 2021. The main fear with this variant is that of an immune escape and ineffectiveness of vaccines currently available. OBJECTIVE We studied the response of our immune system and the effectiveness of current vaccines against SARS-CoV-2 Omicron VOC. METHODS We carried out a narrative review from 32 scientific articles from databases: MEDLINE (PubMed), Embase, BioRxiv and MedRxiv. RESULTS Faced with SARS-CoV-2 Omicron VOC: The humoral immune response decreased, while the cellular immune response was preserved. The booster vaccine provided protection against symptomatic or non-symptomatic infections, transmission, and serious forms. CONCLUSION In the end, according to these data, the 3rd dose appears to be the solution to be able to defeat SARS-CoV-2 Omicron VOC. But the health authorities must not forget to insist on the primary vaccination of individuals not yet vaccinated, as well as on an "equal" distribution of vaccines against COVID-19 throughout the world.
Collapse
Affiliation(s)
- S O Minka
- Emergency Department, Bichat Hospital, Public Assistance of Parisian Hospitals, Faculty of Medicine, University of Paris, 46 Rue Henri Huchard, 75018 Paris, France.
| | - F H Minka
- Emergency Department, Lariboisière Hospital, Public Assistance of Parisian Hospitals, Faculty of Medicine, University of Paris, 2 Rue Ambroise Pare, 75010 Paris, France
| |
Collapse
|
622
|
Molecular basis of receptor binding and antibody neutralization of Omicron. Nature 2022; 604:546-552. [DOI: 10.1038/s41586-022-04581-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/24/2022] [Indexed: 11/08/2022]
|
623
|
Chavda VP, Apostolopoulos V. Is Booster Dose Strategy Sufficient for Omicron Variant of SARS-CoV-2? Vaccines (Basel) 2022; 10:367. [PMID: 35334999 PMCID: PMC8950261 DOI: 10.3390/vaccines10030367] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023] Open
Abstract
The Omicron variant of SARS-CoV-2 is emerging in communities where people were previously infected with SARS-CoV-2 and are now being vaccinated, or where many people have received two or three coronavirus vaccination doses. More than 130 countries around the globe have implemented booster dose programs for tackling omicron endemics. Despite early findings shows that booster doses may improve omicron protection, more research is needed to establish vaccination efficacy. This short communication tries to critically discuss the research work findings around booster dose strategy for omicron endemics.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380008, Gujrat, India;
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| |
Collapse
|
624
|
Bhagavathula AS, Mahabadi MA, Tesfaye W, Nayar KR, Chattu VK. Healthcare Workers' Knowledge and Perception of the SARS-CoV-2 Omicron Variant: A Multinational Cross-Sectional Study. Healthcare (Basel) 2022; 10:438. [PMID: 35326916 PMCID: PMC8951382 DOI: 10.3390/healthcare10030438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022] Open
Abstract
In late November 2021, a new SARS-CoV-2 Variant of Concern (VOC) named Omicron (initially named B.1.1.529) was first detected in South Africa. The rapid spread of the SARS-CoV-2 Omicron variant became globally dominant, and the currently available COVID-19 vaccines showed less protection against this variant. This study aimed to investigate healthcare workers' (HCWs) knowledge and perceptions about the novel SARS-CoV-2 Omicron variant. A cross-sectional anonymous electronic survey concerning the SARS-CoV-2 Omicron variant was conducted among HCWs during the second week of January 2022. The survey instrument was distributed through social media among HCWs to explore awareness (2 items), knowledge (10 items), source of information (1 item), and perceptions (10 items). Respondents who answered ≥80% of the items correctly were considered as having good knowledge and perception. A total of 940 of the 1054 HCW participants completed the survey (response rate: 89.1%); they had a mean age of 31.2 ± 11.2 years, most were doctors (45.7%), and most were from Asia (64.3%). All the participants were aware of the SARS-CoV-2 Omicron variant (100%). Only 36.3% attended lectures/discussions about Omicron and used news media to obtain information. Only a quarter of the HCWs demonstrated good knowledge (24.3%, n = 228) and perception (20.6%) about Omicron. However, while significant differences were observed in the knowledge and perception among HCWs, only a small proportion of doctors exhibited good knowledge (13%) and perception (10%) about the Omicron variant. HCWs who had participated in training/discussion related to the Omicron variant were more likely to have higher knowledge and perception scores (odds ratio: 1.80; 95% confidence interval: 1.04-3.11). As the SARS-CoV-2 Omicron variant spreads rapidly across the globe, ongoing educational interventions are warranted to improve knowledge and perceptions of HCWs.
Collapse
Affiliation(s)
- Akshaya Srikanth Bhagavathula
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | | | - Wubshet Tesfaye
- Sydney Pharmacy School, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Kesavan Rajasekharan Nayar
- Global Institute of Public Health, Ananthapuri Hospitals and Research Institute, Thiruvananthapuram 695024, India;
| | - Vijay Kumar Chattu
- School of Public Health, University of Alberta, Edmonton, AB T6G 1C9, Canada;
- Center for Transdisciplinary Research, Saveetha Institute of Medical and Technological Sciences, Saveetha University, Chennai 600077, India
- Department of Community Medicine, Faculty of Medicine, Datta Meghe Institute of Medical Sciences, Wardha 442107, India
| |
Collapse
|
625
|
Chen J, Wei GW. Omicron BA.2 (B.1.1.529.2): high potential to becoming the next dominating variant. RESEARCH SQUARE 2022:rs.3.rs-1362445. [PMID: 35233567 PMCID: PMC8887081 DOI: 10.21203/rs.3.rs-1362445/v1] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly replaced the Delta variant as a dominating SARS-CoV-2 variant because of natural selection, which favors the variant with higher infectivity and stronger vaccine breakthrough ability. Omicron has three lineages or subvariants, BA.1 (B.1.1.529.1), BA.2 (B.1.1.529.2), and BA.3 (B.1.1.529.3). Among them, BA.1 is the currently prevailing subvariant. BA.2 shares 32 mutations with BA.1 but has 28 distinct ones. BA.3 shares most of its mutations with BA.1 and BA.2 except for one. BA.2 is found to be able to alarmingly reinfect patients originally infected by Omicron BA.1. An important question is whether BA.2 or BA.3 will become a new dominating ``variant of concern''. Currently, no experimental data has been reported about BA.2 and BA.3. We construct a novel algebraic topology-based deep learning model trained with tens of thousands of mutational and deep mutational data to systematically evaluate BA.2's and BA.3's infectivity, vaccine breakthrough capability, and antibody resistance. Our comparative analysis of all main variants namely, Alpha, Beta, Gamma, Delta, Lambda, Mu, BA.1, BA.2, and BA.3, unveils that BA.2 is about 1.5 and 4.2 times as contagious as BA.1 and Delta, respectively. It is also 30% and 17-fold more capable than BA.1 and Delta, respectively, to escape current vaccines. Therefore, we project that Omicron BA.2 is on its path to becoming the next dominating variant. We forecast that like Omicron BA.1, BA.2 will also seriously compromise most existing mAbs, except for sotrovimab developed by GlaxoSmithKline.
Collapse
Affiliation(s)
- Jiahui Chen
- Department of Mathematics, Michigan State University, MI 48824, USA
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA
| |
Collapse
|
626
|
Khamees A, Bani-Issa J, Zoubi MSA, Qasem T, AbuAlArjah MI, Alawadin SA, Al-Shami K, Hussein FE, Hussein E, Bashayreh IH, Tambuwala MM, Al-Saghir M, Cornelison CT. SARS-CoV-2 and Coronavirus Disease Mitigation: Treatment Options, Vaccinations and Variants. Pathogens 2022; 11:275. [PMID: 35215217 PMCID: PMC8876838 DOI: 10.3390/pathogens11020275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 01/27/2023] Open
Abstract
COVID-19 is caused by a novel coronavirus (2019-nCoV), which was declared as a pandemic after it emerged in China 2019. A vast international effort has been conducted to prevent and treat COVID-19 due to its high transmissibility and severe morbidity and mortality rates, particularly in individuals with chronic co-morbidities. In addition, polymorphic variants increased the need for proper vaccination to overcome the infectivity of new variants that are emerging across the globe. Many treatment options have been proposed and more than 25 vaccines are in various stages of development; however, the infection peaks are oscillating periodically, which raises a significant question about the effectiveness of the prevention measures and the persistence of this pandemic disease. In this review, we are exploring the most recent knowledge and advances in the treatment and vaccination options as well as the new emerging variants of 2019-nCoV and the possible mitigation of one of the most aggressive pandemics in the last centuries.
Collapse
Affiliation(s)
- Almu’atasim Khamees
- Department of Clinical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan; (A.K.); (J.B.-I.); (K.A.-S.); (F.E.H.)
| | - Jamal Bani-Issa
- Department of Clinical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan; (A.K.); (J.B.-I.); (K.A.-S.); (F.E.H.)
| | - Mazhar Salim Al Zoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan; (M.S.A.Z.); (T.Q.); (M.I.A.)
| | - Taqwa Qasem
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan; (M.S.A.Z.); (T.Q.); (M.I.A.)
| | - Manal Issam AbuAlArjah
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan; (M.S.A.Z.); (T.Q.); (M.I.A.)
| | | | - Khayry Al-Shami
- Department of Clinical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan; (A.K.); (J.B.-I.); (K.A.-S.); (F.E.H.)
| | - Farah E. Hussein
- Department of Clinical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan; (A.K.); (J.B.-I.); (K.A.-S.); (F.E.H.)
| | - Emad Hussein
- Department of Food Science and Human Nutrition, A’Sharqiyah University, P.O. Box 42, Ibra 400, Oman;
- Department of Biological Sciences, Faculty of Sciences, Yarmouk University, Irbid 211-63, Jordan
| | - Ibrahim H. Bashayreh
- Nursing Department, Fatima College of Health Sciences, Al-Ain Campus, P.O. Box 24162, Abu-Dhabi 31201, United Arab Emirates;
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, UK;
| | - Mohannad Al-Saghir
- Department of Biological Sciences, Ohio University, Zanesville, OH 43701, USA;
| | | |
Collapse
|
627
|
Ameratunga R, Woon ST, Lea E, Steele R, Lehnert K, Leung E, Brooks AES. The (apparent) antibody paradox in COVID-19. Expert Rev Clin Immunol 2022; 18:335-345. [PMID: 35184669 PMCID: PMC8935454 DOI: 10.1080/1744666x.2022.2044797] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland New Zealand
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland
| | - Edward Lea
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
- Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand Wilkins Centre, University of Auckland
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anna E. S. Brooks
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand Wilkins Centre, University of Auckland
| |
Collapse
|
628
|
Allosteric Determinants of the SARS-CoV-2 Spike Protein Binding with Nanobodies: Examining Mechanisms of Mutational Escape and Sensitivity of the Omicron Variant. Int J Mol Sci 2022; 23:ijms23042172. [PMID: 35216287 PMCID: PMC8877688 DOI: 10.3390/ijms23042172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Structural and biochemical studies have recently revealed a range of rationally engineered nanobodies with efficient neutralizing capacity against the SARS-CoV-2 virus and resilience against mutational escape. In this study, we performed a comprehensive computational analysis of the SARS-CoV-2 spike trimer complexes with single nanobodies Nb6, VHH E, and complex with VHH E/VHH V nanobody combination. We combined coarse-grained and all-atom molecular simulations and collective dynamics analysis with binding free energy scanning, perturbation-response scanning, and network centrality analysis to examine mechanisms of nanobody-induced allosteric modulation and cooperativity in the SARS-CoV-2 spike trimer complexes with these nanobodies. By quantifying energetic and allosteric determinants of the SARS-CoV-2 spike protein binding with nanobodies, we also examined nanobody-induced modulation of escaping mutations and the effect of the Omicron variant on nanobody binding. The mutational scanning analysis supported the notion that E484A mutation can have a significant detrimental effect on nanobody binding and result in Omicron-induced escape from nanobody neutralization. Our findings showed that SARS-CoV-2 spike protein might exploit the plasticity of specific allosteric hotspots to generate escape mutants that alter response to binding without compromising activity. The network analysis supported these findings showing that VHH E/VHH V nanobody binding can induce long-range couplings between the cryptic binding epitope and ACE2-binding site through a broader ensemble of communication paths that is less dependent on specific mediating centers and therefore may be less sensitive to mutational perturbations of functional residues. The results suggest that binding affinity and long-range communications of the SARS-CoV-2 complexes with nanobodies can be determined by structurally stable regulatory centers and conformationally adaptable hotspots that are allosterically coupled and collectively control resilience to mutational escape.
Collapse
|
629
|
Arora S, Grover V, Saluja P, Algarni YA, Saquib SA, Asif SM, Batra K, Alshahrani MY, Das G, Jain R, Ohri A. Literature Review of Omicron: A Grim Reality Amidst COVID-19. Microorganisms 2022; 10:451. [PMID: 35208905 PMCID: PMC8876621 DOI: 10.3390/microorganisms10020451] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) first emerged in Wuhan city in December 2019, and became a grave global concern due to its highly infectious nature. The Severe Acute Respiratory Coronavirus-2, with its predecessors (i.e., MERS-CoV and SARS-CoV) belong to the family of Coronaviridae. Reportedly, COVID-19 has infected 344,710,576 people around the globe and killed nearly 5,598,511 persons in the short span of two years. On November 24, 2021, B.1.1.529 strain, later named Omicron, was classified as a Variant of Concern (VOC). SARS-CoV-2 has continuously undergone a series of unprecedented mutations and evolved to exhibit varying characteristics. These mutations have largely occurred in the spike (S) protein (site for antibody binding), which attribute high infectivity and transmissibility characteristics to the Omicron strain. Although many studies have attempted to understand this new challenge in the COVID-19 strains race, there is still a lot to be demystified. Therefore, the purpose of this review was to summarize the structural or virologic characteristics, burden, and epidemiology of the Omicron variant and its potential to evade the immune response.
Collapse
Affiliation(s)
- Suraj Arora
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha 61321, Saudi Arabia;
| | - Vishakha Grover
- Department of Periodontology and Oral Implantology, Dr. H.S.J. Institute of Dental Sciences, Panjab University, Chandigarh 160014, India; (V.G.); (A.O.)
| | - Priyanka Saluja
- Department of Conservative Dentistry and Endodontics, JCD Dental College, Sirsa 125055, India
| | - Youssef Abdullah Algarni
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha 61321, Saudi Arabia;
| | - Shahabe Abullais Saquib
- Department of Periodontics and Community Dental Sciences, College of Dentistry, King Khalid University, Abha 61321, Saudi Arabia;
| | - Shaik Mohammed Asif
- Department of Diagnostic Sciences and Oral Biology, College of Dentistry, King Khalid University, Abha 61321, Saudi Arabia;
| | - Kavita Batra
- Biomedical Statistician, Office of Research, Kirk Kerkorian School of Medicine at University of Nevada, 2040 W. Charleston Blvd., Las Vegas, NV 89102, USA;
| | - Mohammed Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61321, Saudi Arabia;
| | - Gotam Das
- Department of Prosthodontics, College of Dentistry, King Khalid University, Abha 61321, Saudi Arabia
| | - Rajni Jain
- Department of Prosthodontics, Dr. H.S.J. Institute of Dental Sciences & Hospital, Punjab University, Chandigarh 160014, India;
| | - Anchal Ohri
- Department of Periodontology and Oral Implantology, Dr. H.S.J. Institute of Dental Sciences, Panjab University, Chandigarh 160014, India; (V.G.); (A.O.)
| |
Collapse
|
630
|
Main protease mutants of SARS-CoV-2 variants remain susceptible to nirmatrelvir. Bioorg Med Chem Lett 2022; 62:128629. [PMID: 35182772 PMCID: PMC8856729 DOI: 10.1016/j.bmcl.2022.128629] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 12/25/2022]
Abstract
The COVID-19 pandemic continues to be a public health threat. Multiple mutations in the spike protein of emerging variants of SARS-CoV-2 appear to impact on the effectiveness of available vaccines. Specific antiviral agents are keenly anticipated but their efficacy may also be compromised in emerging variants. One of the most attractive coronaviral drug targets is the main protease (Mpro). A promising Mpro inhibitor of clinical relevance is the peptidomimetic nirmatrelvir (PF-07321332). We expressed Mpro of six SARS-CoV-2 lineages (C.37 Lambda, B.1.1.318, B.1.2, B.1.351 Beta, B.1.1.529 Omicron, P.2 Zeta), each of which carries a strongly prevalent missense mutation (G15S, T21I, L89F, K90R, P132H, L205V). Enzyme kinetics reveal that these Mpro variants are catalytically competent to a similar degree as the wildtype. We show that nirmatrelvir has similar potency against the variants as the wildtype. Our in vitro data suggest that the efficacy of the specific Mpro inhibitor nirmatrelvir is not compromised in current COVID-19 variants.
Collapse
|
631
|
Tubiana J, Xiang Y, Fan L, Wolfson HJ, Chen K, Schneidman-Duhovny D, Shi Y. Reduced antigenicity of Omicron lowers host serologic response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.15.480546. [PMID: 35194608 PMCID: PMC8863144 DOI: 10.1101/2022.02.15.480546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SARS-CoV-2 Omicron variant of concern (VOC) contains fifteen mutations on the receptor binding domain (RBD), evading most neutralizing antibodies from vaccinated sera. Emerging evidence suggests that Omicron breakthrough cases are associated with substantially lower antibody titers than other VOC cases. However, the mechanism remains unclear. Here, using a novel geometric deep-learning model, we discovered that the antigenic profile of Omicron RBD is distinct from the prior VOCs, featuring reduced antigenicity in its remodeled receptor binding sites (RBS). To substantiate our deep-learning prediction, we immunized mice with different recombinant RBD variants and found that the Omicron's extensive mutations can lead to a drastically attenuated serologic response with limited neutralizing activity in vivo , while the T cell response remains potent. Analyses of serum cross-reactivity and competitive ELISA with epitope-specific nanobodies revealed that the antibody response to Omicron was reduced across RBD epitopes, including both the variable RBS and epitopes without any known VOC mutations. Moreover, computational modeling confirmed that the RBS is highly versatile with a capacity to further decrease antigenicity while retaining efficient receptor binding. Longitudinal analysis showed that this evolutionary trend of decrease in antigenicity was also found in hCoV229E, a common cold coronavirus that has been circulating in humans for decades. Thus, our study provided unprecedented insights into the reduced antibody titers associated with Omicron infection, revealed a possible trajectory of future viral evolution and may inform the vaccine development against future outbreaks.
Collapse
Affiliation(s)
- Jérôme Tubiana
- Blavatnik School of Computer Science, Tel Aviv University, Israel
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel
| | - Yufei Xiang
- Department of Cell Biology, University of Pittsburgh, USA
- Current address: Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, USA
| | - Li Fan
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, USA
| | - Haim J. Wolfson
- Blavatnik School of Computer Science, Tel Aviv University, Israel
| | - Kong Chen
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, USA
| | | | - Yi Shi
- Department of Cell Biology, University of Pittsburgh, USA
- Current address: Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, USA
| |
Collapse
|
632
|
Tiecco G, Storti S, Degli Antoni M, Focà E, Castelli F, Quiros-Roldan E. Omicron Genetic and Clinical Peculiarities That May Overturn SARS-CoV-2 Pandemic: A Literature Review. Int J Mol Sci 2022; 23:1987. [PMID: 35216104 PMCID: PMC8876558 DOI: 10.3390/ijms23041987] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic poses a great threat to global public health. The original wild-type strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has genetically evolved, and several variants of concern (VOC) have emerged. On 26 November 2021, a new variant named Omicron (B.1.1.529) was designated as the fifth VOC, revealing that SARS-CoV-2 has the potential to go beyond the available therapies. The high number of mutations harboured on the spike protein make Omicron highly transmissible, less responsive to several of the currently used drugs, as well as potentially able to escape immune protection elicited by both vaccines and previous infection. We reviewed the latest publication and the most recent available literature on the Omicron variant, enlightening both reasons for concern and high hopes for new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Eugenia Quiros-Roldan
- Unit of Infectious and Tropical Diseases, Department of Clinical and Experimental Sciences, ASST Spedali Civili di Brescia and University of Brescia, 25123 Brescia, Italy; (G.T.); (S.S.); (M.D.A.); (E.F.); (F.C.)
| |
Collapse
|
633
|
Chen J, Wei GW. Omicron BA.2 (B.1.1.529.2): high potential to becoming the next dominating variant. ARXIV 2022:arXiv:2202.05031v1. [PMID: 35169598 PMCID: PMC8845508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly replaced the Delta variant as a dominating SARS-CoV-2 variant because of natural selection, which favors the variant with higher infectivity and stronger vaccine breakthrough ability. Omicron has three lineages or subvariants, BA.1 (B.1.1.529.1), BA.2 (B.1.1.529.2), and BA.3 (B.1.1.529.3). Among them, BA.1 is the currently prevailing subvariant. BA.2 shares 32 mutations with BA.1 but has 28 distinct ones. BA.3 shares most of its mutations with BA.1 and BA.2 except for one. BA.2 is found to be able to alarmingly reinfect patients originally infected by Omicron BA.1. An important question is whether BA.2 or BA.3 will become a new dominating "variant of concern". Currently, no experimental data has been reported about BA.2 and BA.3. We construct a novel algebraic topology-based deep learning model trained with tens of thousands of mutational and deep mutational data to systematically evaluate BA.2's and BA.3's infectivity, vaccine breakthrough capability, and antibody resistance. Our comparative analysis of all main variants namely, Alpha, Beta, Gamma, Delta, Lambda, Mu, BA.1, BA.2, and BA.3, unveils that BA.2 is about 1.5 and 4.2 times as contagious as BA.1 and Delta, respectively. It is also 30% and 17-fold more capable than BA.1 and Delta, respectively, to escape current vaccines. Therefore, we project that Omicron BA.2 is on its path to becoming the next dominating variant. We forecast that like Omicron BA.1, BA.2 will also seriously compromise most existing mAbs, except for sotrovimab developed by GlaxoSmithKline.
Collapse
Affiliation(s)
- Jiahui Chen
- Department of Mathematics, Michigan State University, MI 48824, USA
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA
| |
Collapse
|
634
|
Bednarski E, Del Rio Estrada PM, DaSilva J, Boukadida C, Zhang F, Luna-Villalobos YA, Rodríguez-Rangel X, Pitén-Isidro E, Luna-García E, Rivera DD, López-Sánchez DM, Tapia-Trejo D, Soto-Nava M, Astorga-Castañeda M, Martínez-Moreno JO, Urbina-Granados GS, Jiménez-Jacinto JA, Serna Alvarado FJ, Enriquez-López YE, López-Arellano O, Reyes-Teran G, Bieniasz PD, Avila-Rios S, Hatziioannou T. Antibody and memory B-cell immunity in a heterogeneously SARS-CoV-2 infected and vaccinated population. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022. [PMID: 35169812 PMCID: PMC8845433 DOI: 10.1101/2022.02.07.22270626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Global population immunity to SARS-CoV-2 is accumulating through heterogenous combinations of infection and vaccination. Vaccine distribution in low- and middle-income countries has been variable and reliant on diverse vaccine platforms. We studied B-cell immunity in Mexico, a middle-income country where five different vaccines have been deployed to populations with high SARS-CoV-2 incidence. Levels of antibodies that bound a stabilized prefusion spike trimer, neutralizing antibody titers and memory B-cell expansion correlated with each other across vaccine platforms. Nevertheless, the vaccines elicited variable levels of B-cell immunity, and the majority of recipients had undetectable neutralizing activity against the recently emergent omicron variant. SARS-CoV-2 infection, experienced prior to or after vaccination potentiated B-cell immune responses and enabled the generation of neutralizing activity against omicron and SARS-CoV for all vaccines in nearly all individuals. These findings suggest that broad population immunity to SARS-CoV-2 will eventually be achieved, but by heterogenous paths
Collapse
Affiliation(s)
- Eva Bednarski
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Perla M Del Rio Estrada
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Justin DaSilva
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Celia Boukadida
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Fengwen Zhang
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Yara A Luna-Villalobos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Ximena Rodríguez-Rangel
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Elvira Pitén-Isidro
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Edgar Luna-García
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Dafne Díaz Rivera
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Dulce M López-Sánchez
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Daniela Tapia-Trejo
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Maribel Soto-Nava
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | | | - José O Martínez-Moreno
- Jurisdicción Sanitaria Coyoacán, Servicios de Salud Pública de la Ciudad de México, Mexico
| | | | - José A Jiménez-Jacinto
- Jurisdicción Sanitaria Magdalena Contreras, Servicios de Salud Pública de la Ciudad de México, Mexico
| | | | | | | | - Gustavo Reyes-Teran
- Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Secretaría de Salud de México, Mexico
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA.,Howard Hughes Medical Institute
| | - Santiago Avila-Rios
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | | |
Collapse
|
635
|
Dächert C, Muenchhoff M, Graf A, Autenrieth H, Bender S, Mairhofer H, Wratil PR, Thieme S, Krebs S, Grzimek-Koschewa N, Blum H, Keppler OT. Rapid and sensitive identification of omicron by variant-specific PCR and nanopore sequencing: paradigm for diagnostics of emerging SARS-CoV-2 variants. Med Microbiol Immunol 2022; 211:71-77. [PMID: 35061086 PMCID: PMC8780046 DOI: 10.1007/s00430-022-00728-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 12/19/2022]
Abstract
On November 26, 2021, the World Health Organization classified B.1.1.529 as a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern (VoC), named omicron. Spike-gene dropouts in conventional SARS-CoV-2 PCR systems have been reported over the last weeks as indirect diagnostic evidence for the identification of omicron. Here, we report the combination of PCRs specific for heavily mutated sites in the spike gene and nanopore-based full-length genome sequencing for the rapid and sensitive identification of the first four COVID-19 patients diagnosed in Germany to be infected with omicron on November 28, 2021. This study will assist the unambiguous laboratory-based diagnosis and global surveillance for this highly contagious VoC with an unprecedented degree of humoral immune escape. Moreover, we propose that specialized diagnostic laboratories should continuously update their assays for variant-specific PCRs in the spike gene of SARS-CoV-2 to readily detect and diagnose emerging variants of interest and VoCs. The combination with established nanopore sequencing procedures allows both the rapid confirmation by whole genome sequencing as well as the sensitive identification of newly emerging variants of this pandemic β-coronavirus in years to come.
Collapse
Affiliation(s)
- Christopher Dächert
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Pettenkoferstr. 9a, 80336, Munich, Germany
| | - Maximilian Muenchhoff
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Pettenkoferstr. 9a, 80336, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Alexander Graf
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Pettenkoferstr. 9a, 80336, Munich, Germany
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Hanna Autenrieth
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Pettenkoferstr. 9a, 80336, Munich, Germany
| | - Sabine Bender
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Pettenkoferstr. 9a, 80336, Munich, Germany
| | - Helga Mairhofer
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Pettenkoferstr. 9a, 80336, Munich, Germany
| | - Paul R Wratil
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Pettenkoferstr. 9a, 80336, Munich, Germany
| | - Susanne Thieme
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Natascha Grzimek-Koschewa
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Pettenkoferstr. 9a, 80336, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Oliver T Keppler
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Pettenkoferstr. 9a, 80336, Munich, Germany.
| |
Collapse
|
636
|
Lu J, Yin Q, Pei R, Zhang Q, Qu Y, Pan Y, Sun L, Gao D, Liang C, Yang J, Wu W, Li J, Cui Z, Wang Z, Li X, Li D, Wang S, Duan K, Guan W, Liang M, Yang X. Nasal delivery of broadly neutralizing antibodies protects mice from lethal challenge with SARS-CoV-2 delta and omicron variants. Virol Sin 2022; 37:238-247. [PMID: 35527227 PMCID: PMC8855614 DOI: 10.1016/j.virs.2022.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/16/2022] [Indexed: 12/19/2022] Open
Abstract
Multiple new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have constantly emerged, as the delta and omicron variants, which have developed resistance to currently gained neutralizing antibodies. This highlights a critical need to discover new therapeutic agents to overcome the variants mutations. Despite the availability of vaccines against coronavirus disease 2019 (COVID-19), the use of broadly neutralizing antibodies has been considered as an alternative way for the prevention or treatment of SARS-CoV-2 variants infection. Here, we show that the nasal delivery of two previously characterized broadly neutralizing antibodies (F61 and H121) protected K18-hACE2 mice against lethal challenge with SARS-CoV-2 variants. The broadly protective efficacy of the F61 or F61/F121 cocktail antibodies was evaluated by lethal challenge with the wild strain (WIV04) and multiple variants, including beta (B.1.351), delta (B.1.617.2), and omicron (B.1.1.529) at 200 or 1000 TCID50, and the minimum antibody administration doses (5–1.25 mg/kg body weight) were also evaluated with delta and omicron challenge. Fully prophylactic protections were found in all challenged groups with both F61 and F61/H121 combination at the administration dose of 20 mg/kg body weight, and corresponding mice lung viral RNA showed negative, with almost all alveolar septa and cavities remaining normal. Furthermore, low-dose antibody treatment induced significant prophylactic protection against lethal challenge with delta and omicron variants, whereas the F61/H121 combination showed excellent results against omicron infection. Our findings indicated the potential use of broadly neutralizing monoclonal antibodies as prophylactic and therapeutic agent for protection of current emerged SARS-CoV-2 variants infection. The mAbs could be detected in lungs shortly after nasal spray and kept in the lungs for a long time. High dose mAbs nasal delivery could fully prophylactic protection mice from omicron lethal challenged. Significant enhancement of broadly neutralizing activity against variants were confirmed in F61 and H121 combination use.
Collapse
|
637
|
Salehi-Vaziri M, Fazlalipour M, Seyed Khorrami SM, Azadmanesh K, Pouriayevali MH, Jalali T, Shoja Z, Maleki A. The ins and outs of SARS-CoV-2 variants of concern (VOCs). Arch Virol 2022; 167:327-344. [PMID: 35089389 PMCID: PMC8795292 DOI: 10.1007/s00705-022-05365-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2, a newly emerging coronavirus that caused the COVID-19 epidemic, has been spreading quickly throughout the world. Despite immunization and some fairly effective therapeutic regimens, SARS-CoV-2 has been ravaging patients, health workers, and the economy. SARS-CoV-2 mutates and evolves to adapt to its host as a result of extreme selection pressure. As a consequence, new SARS-CoV-2 variants have emerged, some of which are classified as variants of concern (VOC) because they exhibit greater transmissibility, cause more-severe disease, are better able to escape immunity, or cause higher mortality than the original Wuhan strain. Here, we introduce these VOCs and review their characteristics, such as transmissibility, immune escape, mortality risk, and diagnostics.
Collapse
Affiliation(s)
- Mostafa Salehi-Vaziri
- COVID-19 National Reference Laboratory, Pasteur Institute of Iran, 69 Pasteur Ave, 1316943551, Tehran, Iran
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
- Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Fazlalipour
- COVID-19 National Reference Laboratory, Pasteur Institute of Iran, 69 Pasteur Ave, 1316943551, Tehran, Iran
| | | | - Kayhan Azadmanesh
- Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Hassan Pouriayevali
- COVID-19 National Reference Laboratory, Pasteur Institute of Iran, 69 Pasteur Ave, 1316943551, Tehran, Iran
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | - Tahmineh Jalali
- COVID-19 National Reference Laboratory, Pasteur Institute of Iran, 69 Pasteur Ave, 1316943551, Tehran, Iran
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | - Zabihollah Shoja
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Maleki
- COVID-19 National Reference Laboratory, Pasteur Institute of Iran, 69 Pasteur Ave, 1316943551, Tehran, Iran.
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
638
|
Cameroni E, Bowen JE, Rosen LE, Saliba C, Zepeda SK, Culap K, Pinto D, VanBlargan LA, De Marco A, di Iulio J, Zatta F, Kaiser H, Noack J, Farhat N, Czudnochowski N, Havenar-Daughton C, Sprouse KR, Dillen JR, Powell AE, Chen A, Maher C, Yin L, Sun D, Soriaga L, Bassi J, Silacci-Fregni C, Gustafsson C, Franko NM, Logue J, Iqbal NT, Mazzitelli I, Geffner J, Grifantini R, Chu H, Gori A, Riva A, Giannini O, Ceschi A, Ferrari P, Cippà PE, Franzetti-Pellanda A, Garzoni C, Halfmann PJ, Kawaoka Y, Hebner C, Purcell LA, Piccoli L, Pizzuto MS, Walls AC, Diamond MS, Telenti A, Virgin HW, Lanzavecchia A, Snell G, Veesler D, Corti D. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature 2022; 602:664-670. [PMID: 35016195 PMCID: PMC9531318 DOI: 10.1038/s41586-021-04386-2] [Citation(s) in RCA: 785] [Impact Index Per Article: 261.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 12/23/2021] [Indexed: 02/03/2023]
Abstract
The recently emerged SARS-CoV-2 Omicron variant encodes 37 amino acid substitutions in the spike protein, 15 of which are in the receptor-binding domain (RBD), thereby raising concerns about the effectiveness of available vaccines and antibody-based therapeutics. Here we show that the Omicron RBD binds to human ACE2 with enhanced affinity, relative to the Wuhan-Hu-1 RBD, and binds to mouse ACE2. Marked reductions in neutralizing activity were observed against Omicron compared to the ancestral pseudovirus in plasma from convalescent individuals and from individuals who had been vaccinated against SARS-CoV-2, but this loss was less pronounced after a third dose of vaccine. Most monoclonal antibodies that are directed against the receptor-binding motif lost in vitro neutralizing activity against Omicron, with only 3 out of 29 monoclonal antibodies retaining unaltered potency, including the ACE2-mimicking S2K146 antibody1. Furthermore, a fraction of broadly neutralizing sarbecovirus monoclonal antibodies neutralized Omicron through recognition of antigenic sites outside the receptor-binding motif, including sotrovimab2, S2X2593 and S2H974. The magnitude of Omicron-mediated immune evasion marks a major antigenic shift in SARS-CoV-2. Broadly neutralizing monoclonal antibodies that recognize RBD epitopes that are conserved among SARS-CoV-2 variants and other sarbecoviruses may prove key to controlling the ongoing pandemic and future zoonotic spillovers.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/metabolism
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antigenic Drift and Shift/genetics
- Antigenic Drift and Shift/immunology
- Broadly Neutralizing Antibodies/immunology
- COVID-19 Vaccines/immunology
- Cell Line
- Convalescence
- Epitopes, B-Lymphocyte/immunology
- Humans
- Immune Evasion
- Mice
- Neutralization Tests
- SARS-CoV-2/chemistry
- SARS-CoV-2/classification
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Vesiculovirus/genetics
Collapse
Affiliation(s)
- Elisabetta Cameroni
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - John E Bowen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - Christian Saliba
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Samantha K Zepeda
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Katja Culap
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Dora Pinto
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Laura A VanBlargan
- Department of Medicine, Washington University of School of Medicine, St Louis, MO, USA
| | - Anna De Marco
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | - Fabrizia Zatta
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | | | | | | | | | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | | | - Alex Chen
- Vir Biotechnology, San Francisco, CA, USA
| | | | - Li Yin
- Vir Biotechnology, San Francisco, CA, USA
| | - David Sun
- Vir Biotechnology, San Francisco, CA, USA
| | | | - Jessica Bassi
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | | | - Nicholas M Franko
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Jenni Logue
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Najeeha Talat Iqbal
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Ignacio Mazzitelli
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Helen Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Andrea Gori
- Infectious Disease Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Agostino Riva
- Department of Biomedical and Clinical Sciences 'L.Sacco' (DIBIC), Università di Milano, Milan, Italy
| | - Olivier Giannini
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Department of Medicine, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Alessandro Ceschi
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Clinical Trial Unit, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Division of Clinical Pharmacology and Toxicology, Institute of Pharmacological Sciences of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | - Paolo Ferrari
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Pietro E Cippà
- Department of Medicine, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | | | - Christian Garzoni
- Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco, Lugano, Switzerland
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | | | | | - Luca Piccoli
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Michael S Diamond
- Department of Medicine, Washington University of School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | | | - Herbert W Virgin
- Vir Biotechnology, San Francisco, CA, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Antonio Lanzavecchia
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
- National Institute of Molecular Genetics, Milan, Italy
| | | | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland.
| |
Collapse
|
639
|
Gobeil SMC, Henderson R, Stalls V, Janowska K, Huang X, May A, Speakman M, Beaudoin E, Manne K, Li D, Parks R, Barr M, Deyton M, Martin M, Mansouri K, Edwards RJ, Sempowski GD, Saunders KO, Wiehe K, Williams W, Korber B, Haynes BF, Acharya P. Structural diversity of the SARS-CoV-2 Omicron spike. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.25.477784. [PMID: 35118469 PMCID: PMC8811902 DOI: 10.1101/2022.01.25.477784] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Aided by extensive spike protein mutation, the SARS-CoV-2 Omicron variant overtook the previously dominant Delta variant. Spike conformation plays an essential role in SARS-CoV-2 evolution via changes in receptor binding domain (RBD) and neutralizing antibody epitope presentation affecting virus transmissibility and immune evasion. Here, we determine cryo-EM structures of the Omicron and Delta spikes to understand the conformational impacts of mutations in each. The Omicron spike structure revealed an unusually tightly packed RBD organization with long range impacts that were not observed in the Delta spike. Binding and crystallography revealed increased flexibility at the functionally critical fusion peptide site in the Omicron spike. These results reveal a highly evolved Omicron spike architecture with possible impacts on its high levels of immune evasion and transmissibility.
Collapse
|
640
|
Shuai H, Chan JFW, Hu B, Chai Y, Yuen TTT, Yin F, Huang X, Yoon C, Hu JC, Liu H, Shi J, Liu Y, Zhu T, Zhang J, Hou Y, Wang Y, Lu L, Cai JP, Zhang AJ, Zhou J, Yuan S, Brindley MA, Zhang BZ, Huang JD, To KKW, Yuen KY, Chu H. Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature 2022; 603:693-699. [PMID: 35062016 DOI: 10.1038/s41586-022-04442-5] [Citation(s) in RCA: 460] [Impact Index Per Article: 153.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 11/09/2022]
Abstract
SARS-CoV-2 Omicron emerged in November 2021 and is rapidly spreading among the human population1. While recent reports reveal that the Omicron variant robustly escapes from vaccine and therapeutic neutralization antibodies2-10, the pathogenicity of the virus remains unknown. Here we show that the replication of the Omicron variant is dramatically attenuated in Calu3 and Caco2 cells. Further mechanistic investigations reveal that the Omicron variant is inefficient in transmembrane serine protease 2 (TMPRSS2) usage in comparison to that of WT and previous variants, which may explain its reduced replication in Calu3 and Caco2 cells. Omicron replication is markedly attenuated in both the upper and lower respiratory tract of infected K18-hACE2 mice in comparison to that of WT and Delta variant, which results in its dramatically ameliorated lung pathology. When compared with SARS-CoV-2 WT, Alpha, Beta, and Delta variant, infection by the Omicron variant causes the least body weight loss and mortality rate. Overall, our study demonstrates that the Omicron variant is attenuated in virus replication and pathogenicity in mice in comparison with WT and previous variants.
Collapse
Affiliation(s)
- Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, Hong Kong, People's Republic of China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, Hong Kong, People's Republic of China
| | - Bingjie Hu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, Hong Kong, People's Republic of China
| | - Yue Chai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, Hong Kong, People's Republic of China
| | - Terrence Tsz-Tai Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, Hong Kong, People's Republic of China
| | - Feifei Yin
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China.,Academician Workstation of Hainan Province, Hainan Medical University, Haikou, Hainan, People's Republic of China.,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, Hong Kong, China
| | - Xiner Huang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, Hong Kong, People's Republic of China
| | - Chaemin Yoon
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, Hong Kong, People's Republic of China
| | - Jing-Chu Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Huan Liu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, Hong Kong, People's Republic of China
| | - Jialu Shi
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, Hong Kong, People's Republic of China
| | - Yuanchen Liu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, Hong Kong, People's Republic of China
| | - Tianrenzheng Zhu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, Hong Kong, People's Republic of China
| | - Jinjin Zhang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, Hong Kong, People's Republic of China
| | - Yuxin Hou
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, Hong Kong, People's Republic of China
| | - Yixin Wang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, Hong Kong, People's Republic of China
| | - Lu Lu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, Hong Kong, People's Republic of China
| | - Jian-Piao Cai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, Hong Kong, People's Republic of China
| | - Anna Jinxia Zhang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, Hong Kong, People's Republic of China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People's Republic of China
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, Hong Kong, People's Republic of China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People's Republic of China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, Hong Kong, People's Republic of China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People's Republic of China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital; Shenzhen, Guangdong, People's Republic of China
| | - Melinda A Brindley
- Department of Infectious Diseases, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Bao-Zhong Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, Hong Kong, People's Republic of China
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, Hong Kong, People's Republic of China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People's Republic of China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital; Shenzhen, Guangdong, People's Republic of China.,Department of Microbiology, Queen Mary Hospital; Pokfulam, Hong Kong Special Administrative Region, Hong Kong, People's Republic of China.,Guangzhou Laboratory, Guangzhou, Guangdong Province, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, Hong Kong, People's Republic of China. .,Academician Workstation of Hainan Province, Hainan Medical University, Haikou, Hainan, People's Republic of China. .,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, Hong Kong, China. .,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People's Republic of China. .,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital; Shenzhen, Guangdong, People's Republic of China. .,Department of Microbiology, Queen Mary Hospital; Pokfulam, Hong Kong Special Administrative Region, Hong Kong, People's Republic of China. .,Guangzhou Laboratory, Guangzhou, Guangdong Province, China.
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, Hong Kong, People's Republic of China. .,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People's Republic of China. .,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital; Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
641
|
Abstract
Less than a month after the sequence of the SARS-CoV-2 Omicron variant was first announced, a number of articles in Nature and Cell examine its immune evasion characteristics.
Collapse
|
642
|
Naranbhai V, Nathan A, Kaseke C, Berrios C, Khatri A, Choi S, Getz MA, Tano-Menka R, Ofoman O, Gayton A, Senjobe F, Denis KJS, Lam EC, Garcia-Beltran WF, Balazs AB, Walker BD, Iafrate AJ, Gaiha GD. T cell reactivity to the SARS-CoV-2 Omicron variant is preserved in most but not all prior infected and vaccinated individuals. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.01.04.21268586. [PMID: 35018386 PMCID: PMC8750712 DOI: 10.1101/2022.01.04.21268586] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The SARS-CoV-2 Omicron variant (B.1.1.529) contains mutations that mediate escape from infection and vaccine-induced antibody responses, although the extent to which these substitutions in spike and non-spike proteins affect T cell recognition is unknown. Here we show that T cell responses in individuals with prior infection, vaccination, both prior infection and vaccination, and boosted vaccination are largely preserved to Omicron spike and non-spike proteins. However, we also identify a subset of individuals (∼21%) with a >50% reduction in T cell reactivity to the Omicron spike. Evaluation of functional CD4 + and CD8 + memory T cell responses confirmed these findings and reveal that reduced recognition to Omicron spike is primarily observed within the CD8 + T cell compartment. Booster vaccination substantially enhanced T cell responses to Omicron spike. In contrast to neutralizing immunity, these findings suggest preservation of T cell responses to the Omicron variant, although with reduced reactivity in some individuals.
Collapse
|
643
|
Huntington KE, Carlsen L, So EY, Piesche M, Liang O, El-Deiry WS. Integrin/TGF-β1 inhibitor GLPG-0187 blocks SARS-CoV-2 Delta and Omicron pseudovirus infection of airway epithelial cells which could attenuate disease severity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.01.02.22268641. [PMID: 35018385 PMCID: PMC8750711 DOI: 10.1101/2022.01.02.22268641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As COVID-19 continues to pose major risk for vulnerable populations including the elderly, immunocompromised, patients with cancer, and those with contraindications to vaccination, novel treatment strategies are urgently needed. SARS-CoV-2 infects target cells via RGD-binding integrins either independently or as a co-receptor with surface receptor angiotensin-converting enzyme 2 (ACE2). We used pan-integrin inhibitor GLPG-0187 to demonstrate blockade of SARS-CoV-2 pseudovirus infection of target cells. Omicron pseudovirus infected normal human small airway epithelial (HSAE) cells significantly less than D614G or Delta variant pseudovirus, and GLPG-0187 effectively blocked SARS-CoV-2 pseudovirus infection in a dose-dependent manner across multiple viral variants. GLPG-0187 inhibited Omicron and Delta pseudovirus infection of HSAE cells more significantly than other variants. Pre-treatment of HSAE cells with MEK inhibitor (MEKi) VS-6766 enhanced inhibition of pseudovirus infection by GLPG-0187. Because integrins activate TGF-β signaling, we compared plasma levels of active and total TGF-β in COVID-19+ patients. Plasma TGF-β1 levels correlated with age, race, and number of medications upon presentation with COVID-19, but not with sex. Total plasma TGF-β1 levels correlated with activated TGF-β1 levels. In our preclinical studies, Omicron infects lower airway lung cells less efficiently than other COVID-19 variants. Moreover, inhibition of integrin signaling prevents SARS-CoV-2 Delta and Omicron pseudovirus infectivity, and may mitigate COVID-19 severity through decreased TGF-β1 activation. This therapeutic strategy may be further explored through clinical testing in vulnerable and unvaccinated populations.
Collapse
Affiliation(s)
- Kelsey E. Huntington
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Lindsey Carlsen
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Eui-Young So
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Hematology-Oncology Division, Department of Medicine, Lifespan Health System and Warren Alpert Medical School, Brown University, Providence, RI, 02912
| | - Matthias Piesche
- Biomedical Research Laboratories, Medicine Faculty, Universidad Católica del Maule, Talca, Chile
- Oncology Center, Medicine Faculty, Universidad Católica del Maule, Talca, Chile
| | - Olin Liang
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Hematology-Oncology Division, Department of Medicine, Lifespan Health System and Warren Alpert Medical School, Brown University, Providence, RI, 02912
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Hematology-Oncology Division, Department of Medicine, Lifespan Health System and Warren Alpert Medical School, Brown University, Providence, RI, 02912
| |
Collapse
|
644
|
Hossen ML, Baral P, Sharma T, Gerstman BS, Chapagain P. Significance of the RBD mutations in the SARS-CoV-2 Omicron: from spike opening to antibody escape and cell attachment. Phys Chem Chem Phys 2022; 24:9123-9129. [DOI: 10.1039/d2cp00169a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We computationally investigated the role of the Omicron RBD mutations on its structure and interactions with surrounding domains in the spike trimer as well as with ACE2. Our results suggest...
Collapse
|
645
|
Aparicio B, Ruiz M, Casares N, Silva L, Egea J, Pérez P, Albericio G, Esteban M, García-Arriaza J, Lasarte JJ, Sarobe P. Enhanced cross-recognition of SARS-CoV-2 Omicron variant by peptide vaccine-induced antibodies. Front Immunol 2022; 13:1044025. [PMID: 36761163 PMCID: PMC9902865 DOI: 10.3389/fimmu.2022.1044025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023] Open
Abstract
Current vaccines against SARS-CoV-2, based on the original Wuhan sequence, induce antibodies with different degrees of cross-recognition of new viral variants of concern. Despite potent responses generated in vaccinated and infected individuals, the Omicron (B.1.1.529) variant causes breakthrough infections, facilitating viral transmission. We previously reported a vaccine based on a cyclic peptide containing the 446-488 S1 sequence (446-488cc) of the SARS-CoV-2 spike (S) protein from Wuhan isolate. To provide the best immunity against Omicron, here we compared Omicron-specific immunity induced by a Wuhan-based 446-488cc peptide, by a Wuhan-based recombinant receptor-binding domain (RBD) vaccine and by a new 446-488cc peptide vaccine based on the Omicron sequence. Antibodies induced by Wuhan peptide 446-488cc in three murine strains not only recognized the Wuhan and Omicron 446-488 peptides similarly, but also Wuhan and Omicron RBD protein variants. By contrast, antibodies induced by the Wuhan recombinant RBD vaccine showed a much poorer cross-reactivity for the Omicron RBD despite similar recognition of Wuhan and Omicron peptide variants. Finally, although the Omicron-based 446-488cc peptide vaccine was poorly immunogenic in mice due to the loss of T cell epitopes, co-immunization with Omicron peptide 446-488cc and exogenous T cell epitopes induced strong cross-reactive antibodies that neutralized Omicron SARS-CoV-2 virus. Since mutations occurring within this sequence do not alter T cell epitopes in humans, these results indicate the robust immunogenicity of 446-488cc-based peptide vaccines that induce antibodies with a high cross-recognition capacity against Omicron, and suggest that this sequence could be included in future vaccines targeting the Omicron variant.
Collapse
Affiliation(s)
- Belén Aparicio
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| | - Marta Ruiz
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| | - Noelia Casares
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| | - Leyre Silva
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| | - Josune Egea
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| | - Patricia Pérez
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Guillermo Albericio
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mariano Esteban
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Juan García-Arriaza
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Juan J Lasarte
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| | - Pablo Sarobe
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
646
|
Kang H, Kim D, Min K, Park M, Kim SH, Sohn EJ, Choi BH, Hwang I. Recombinant proteins of spike protein of SARS-CoV-2 with the Omicron receptor-binding domain induce production of highly Omicron-specific neutralizing antibodies. Clin Exp Vaccine Res 2022; 11:285-289. [DOI: 10.7774/cevr.2022.11.3.285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Hyangju Kang
- BioApplications Inc., Pohang Technopark Complex, Pohang, Korea
| | - Daniel Kim
- BioApplications Inc., Pohang Technopark Complex, Pohang, Korea
| | - Kyungmin Min
- BioApplications Inc., Pohang Technopark Complex, Pohang, Korea
| | - Minhee Park
- BioApplications Inc., Pohang Technopark Complex, Pohang, Korea
| | | | - Eun-Ju Sohn
- BioApplications Inc., Pohang Technopark Complex, Pohang, Korea
| | - Bo-Hwa Choi
- BioApplications Inc., Pohang Technopark Complex, Pohang, Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| |
Collapse
|