601
|
Sakamuri A, Sakamuri SSVP, Kona SR, Jeyapal S, Ibrahim A. Diets with low n-6:n-3 PUFA ratio protects rats from fructose-induced dyslipidemia and associated hepatic changes: Comparison between 18:3 n-3 and long-chain n-3 PUFA. Prostaglandins Leukot Essent Fatty Acids 2020; 155:102082. [PMID: 32169807 DOI: 10.1016/j.plefa.2020.102082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022]
Abstract
In the present study, we investigated the impact of substituting alpha-linolenic acid (ALA) or long-chain n-3 PUFA (eicosapentaenoic acid and docosahexaenoic acid) for linoleic acid and hence decreasing n-6:n-3 PUFA ratio on high-fructose diet-induced hypertriglyceridemia and associated hepatic changes. Weanling male Wistar rats were divided into four groups and fed with starch-diet (n-6:n-3 PUFA ratio 215:1) and high-fructose diets with different n-6:n-3 PUFA ratio (215:1, 2:1 with ALA and 5:1 with long-chain n-3 PUFA) for twenty-four weeks. Substitution of linoleic acid with ALA (n-6:n-3 PUFA ratio of 2) or long-chain n-3 PUFA (n-6:n-3 PUFA ratio of 5) protected the rats from fructose-induced dyslipidemia, hepatic oxidative stress and corrected lipogenic and proinflammatory gene expression. Both ALA and long-chain n-3 PUFA supplementation also reversed the fructose-induced upregulation of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) gene, which is involved in the generation of active glucocorticoids in tissues. Although both ALA and LC n-3 PUFA prevented fructose-induced dyslipidemia to a similar extent, compared to ALA, LC n-3 PUFA is more effective in preventing hepatic oxidative stress and inflammation.
Collapse
Affiliation(s)
- Anil Sakamuri
- Department of lipid chemistry, National Institute of Nutrition, Hyderabad, India
| | - Siva S V P Sakamuri
- Department of lipid chemistry, National Institute of Nutrition, Hyderabad, India
| | - Suryam Reddy Kona
- Department of lipid chemistry, National Institute of Nutrition, Hyderabad, India
| | - Sugeedha Jeyapal
- Department of lipid chemistry, National Institute of Nutrition, Hyderabad, India
| | - Ahamed Ibrahim
- Department of lipid chemistry, National Institute of Nutrition, Hyderabad, India.
| |
Collapse
|
602
|
Costa JAV, Freitas BCB, Moraes L, Zaparoli M, Morais MG. Progress in the physicochemical treatment of microalgae biomass for value-added product recovery. BIORESOURCE TECHNOLOGY 2020; 301:122727. [PMID: 31983577 DOI: 10.1016/j.biortech.2019.122727] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Interest in microalgae-derived products is growing, mostly due to their unique characteristics and range of industrial applications. To obtain different products, one must employ specific pretreatments that retain the properties of the biologically active compounds extracted from microalgae biomass; thus, new extraction techniques require frequent upgrades. Due to increased interest in economically viable and ecologically friendly processes, new extraction methods that can be incorporated into microalgae biorefinery systems have become the main focus of research. Therefore, this review aims to address the potential applications, future prospects, and economic scenario of the new physicochemical treatments used in the extraction of bioactive microalgae compounds.
Collapse
Affiliation(s)
- Jorge Alberto Vieira Costa
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande-RS, Brazil.
| | - Bárbara Catarina Bastos Freitas
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande-RS, Brazil
| | - Luiza Moraes
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande-RS, Brazil
| | - Munise Zaparoli
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande-RS, Brazil
| | - Michele Greque Morais
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande-RS, Brazil
| |
Collapse
|
603
|
Montenegro LF, Descalzo AM, Cunzolo SA, Pérez CD. Modification of the content of n-3 highly unsaturated fatty acid, chemical composition, and lipid nutritional indices in the meat of grass carp (Ctenopharyngodon idella) fed alfalfa (Medicago sativa) pellets. J Anim Sci 2020; 98:skaa084. [PMID: 32185374 PMCID: PMC7149549 DOI: 10.1093/jas/skaa084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/13/2020] [Indexed: 11/13/2022] Open
Abstract
A 120-d feeding trial was conducted to determine the effect of alfalfa (Medicago sativa) feeding on growth and chemical composition, fatty acid content, and nutritional and lipid indices of the meat of grass carp (Ctenopharyngodon idella). Two experimental diets were used: alfalfa pellet (AP) diet and artificial grain diet (GD). Final weight, feed conversion rate, and protein efficiency ratio were significantly greater in the GD group (P < 0.05). However, no differences in the length and condition factor were observed. The composition of the meat differed between treatments. The protein content was significantly greater in the AP group (P < 0.05), while the lipid and cholesterol contents were significantly greater in the GD group (P < 0.05). A greater proportion of saturated, n-6 polyunsaturated, and n-6 highly unsaturated fatty acids was obtained in the GD group. The AP group accumulated a greater concentration of eicosapentaenoic (EPA), docosapentaenoic (DPA), and docosahexaenoic (DHA) acids (P < 0.05). The fatty acid composition of the meat determined a significant decrease in the thrombogenicity index and saturation index (S/P) in the AP group (P < 0.05). The Elongase index was greater in the GD group (P < 0.05). In contrast, the AP group had a greater index of Δ9 Desaturase and Δ5 + Δ6 Desaturase for n-3 and n-6 fatty acids (P < 0.05). These results suggest that alfalfa feeding decreases the growth of C. idella but improves the quality of meat by increasing the protein, EPA, and DHA contents. It also reduces cholesterol content and improves nutritional indices.
Collapse
Affiliation(s)
- Luciano F Montenegro
- Centro de Investigaciones de Agroindustria, Instituto de Tecnología de los Alimentos, Instituto Nacional de Tecnología Agropecuaria (INTA), Morón, Buenos Aires, Argentina
- Universidad Nacional de Lomas de Zamora, Lomas de Zamora, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Adriana M Descalzo
- Centro de Investigaciones de Agroindustria, Instituto de Tecnología de los Alimentos, Instituto Nacional de Tecnología Agropecuaria (INTA), Morón, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sebastián A Cunzolo
- Centro de Investigaciones de Agroindustria, Instituto de Tecnología de los Alimentos, Instituto Nacional de Tecnología Agropecuaria (INTA), Morón, Buenos Aires, Argentina
- Universidad de Morón, Morón, Buenos Aires, Argentina
| | - Carolina D Pérez
- Centro de Investigaciones de Agroindustria, Instituto de Tecnología de los Alimentos, Instituto Nacional de Tecnología Agropecuaria (INTA), Morón, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Universidad de Morón, Morón, Buenos Aires, Argentina
| |
Collapse
|
604
|
Shoieb SM, El-Ghiaty MA, Alqahtani MA, El-Kadi AO. Cytochrome P450-derived eicosanoids and inflammation in liver diseases. Prostaglandins Other Lipid Mediat 2020; 147:106400. [DOI: 10.1016/j.prostaglandins.2019.106400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/08/2019] [Accepted: 11/12/2019] [Indexed: 02/08/2023]
|
605
|
Li X, Huang Y, Xing Y, Hu C, Zhang W, Tang Y, Su W, Huo X, Zhou A, Xia W, Xu S, Chen D, Li Y. Association of urinary cadmium, circulating fatty acids, and risk of gestational diabetes mellitus: A nested case-control study in China. ENVIRONMENT INTERNATIONAL 2020; 137:105527. [PMID: 32007690 DOI: 10.1016/j.envint.2020.105527] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Previous studies have observed that cadmium (Cd) exposure of pregnant women was associated with increased risk of gestational diabetes mellitus (GDM). However, the potential mechanism still remains unclear. In addition, various animal studies have suggested that Cd exposure could affect fatty acids (FAs) metabolism, but data on humans are scant. OBJECTIVES We conducted a nested case-control study to investigate the associations of urinary Cd concentrations with levels of circulating FAs and risk of GDM in pregnant women, and further to examine the role of FAs in mediating the relationship between Cd exposure and risk of GDM. METHODS A total of 305 GDM cases were matched to 305 controls on pregnant women's age (±2 years) and infant's gender from a birth cohort study conducted in Wuhan, China. Urinary Cd concentrations and levels of plasma FAs between 10 and 16 gestational weeks were measured using inductively coupled plasma mass spectrometry and gas chromatography-mass spectrometry, respectively. Conditional logistic regressions models were used to estimate the associations of Cd concentrations and levels of FAs with the risk of GDM. Multiple linear regression models were applied to estimate the associations between Cd concentrations and levels of FAs. Mediation analysis was used to assess the mediating role of FAs in the association of Cd with the risk of GDM. RESULTS Urinary concentrations of Cd in cases (median: 0.69 μg/L) were significantly higher than controls (median: 0.59 μg/L, P < 0.05). Cd concentrations were positively associated with the risk of GDM (Ptrend = 0.003). Compared to the first tertile of Cd, the adjusted odds ratios (95% confidence intervals) of GDM risk were 2.08 (1.29, 3.36) for the second tertile and 2.09 (1.32, 3.33) for the third tertile. Cd concentrations were positively correlated with levels of eicosadienoic acid and arachidonic acid/eicosapentaenoic acid ratio, but negatively correlated with levels of stearic acid, eicosapentaenoic acid, total odd-chain saturated fatty acids, total n-3 polyunsaturated fatty acids (PUFAs), and n-3 PUFAs/n-6 PUFAs ratio. We did not observe evidence that the association of Cd exposure and risk of GDM was mediated through FAs. CONCLUSIONS Our findings confirmed the association of higher Cd exposure with increased risk of GDM in pregnant women, and provided forceful epidemiological evidence for the relation of Cd concentrations and levels of FAs.
Collapse
Affiliation(s)
- Xinping Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yichao Huang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Yuling Xing
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chen Hu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wenxin Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yi Tang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Weijie Su
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Xia Huo
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Aifen Zhou
- Wuhan Medical & Healthcare Center for Women and Children, Wuhan, Hubei, People's Republic of China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, People's Republic of China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
606
|
Autotrophic and Heterotrophic Growth Conditions Modify Biomolecole Production in the Microalga Galdieria sulphuraria (Cyanidiophyceae, Rhodophyta). Mar Drugs 2020; 18:md18030169. [PMID: 32197552 PMCID: PMC7143071 DOI: 10.3390/md18030169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
Algae have multiple similarities with fungi, with both belonging to the Thallophyte, a polyphyletic group of non-mobile organisms grouped together on the basis of similar characteristics, but not sharing a common ancestor. The main difference between algae and fungi is noted in their metabolism. In fact, although algae have chlorophyll-bearing thalloids and are autotrophic organisms, fungi lack chlorophyll and are heterotrophic, not able to synthesize their own nutrients. However, our studies have shown that the extremophilic microalga Galderia sulphuraria (GS) can also grow very well in heterotrophic conditions like fungi. This study was carried out using several approaches such as scanning electron microscope (SEM), gas chromatography/mass spectrometry (GC/MS), and infrared spectrophotometry (ATR-FTIR). Results showed that the GS, strain ACUF 064, cultured in autotrophic (AGS) and heterotrophic (HGS) conditions, produced different biomolecules. In particular, when grown in HGS, the algae (i) was 30% larger, with an increase in carbon mass that was 20% greater than AGS; (ii) produced higher quantities of stearic acid, oleic acid, monounsaturated fatty acids (MUFAs), and ergosterol; (iii) produced lower quantities of fatty acid methyl esters (FAMEs) such as methyl palmytate, and methyl linoleate, saturated fatty acids (SFAs), and poyliunsaturated fatty acids (PUFAs). ATR-FTIR and principal component analysis (PCA) statistical analysis confirmed that the macromolecular content of HGS was significantly different from AGS. The ability to produce different macromolecules by changing the trophic conditions may represent an interesting strategy to induce microalgae to produce different biomolecules that can find applications in several fields such as food, feed, nutraceutical, or energy production.
Collapse
|
607
|
Kaur A, Singh B, Kaur A, Singh N. Changes in chemical properties and oxidative stability of refined vegetable oils during short‐term deep‐frying cycles. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14445] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Amarbir Kaur
- Department of Food Science and Technology Guru Nanak Dev University Amritsar India
| | - Balwinder Singh
- P.G. Department of Biotechnology Khalsa College Amritsar India
| | - Amritpal Kaur
- Department of Food Science and Technology Guru Nanak Dev University Amritsar India
| | - Narpinder Singh
- Department of Food Science and Technology Guru Nanak Dev University Amritsar India
| |
Collapse
|
608
|
Tsachaki M, Strauss P, Dunkel A, Navrátilová H, Mladenovic N, Odermatt A. Impact of 17β-HSD12, the 3-ketoacyl-CoA reductase of long-chain fatty acid synthesis, on breast cancer cell proliferation and migration. Cell Mol Life Sci 2020; 77:1153-1175. [PMID: 31302749 PMCID: PMC7109200 DOI: 10.1007/s00018-019-03227-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 12/21/2022]
Abstract
Metabolic reprogramming of tumor cells involves upregulation of fatty acid (FA) synthesis to support high bioenergetic demands and membrane synthesis. This has been shown for cytosolic synthesis of FAs with up to 16 carbon atoms. Synthesis of long-chain fatty acids (LCFAs), including ω-6 and ω-3 polyunsaturated FAs, takes place at the endoplasmic reticulum. Despite increasing evidence for an important role of LCFAs in cancer, the impact of their synthesis in cancer cell growth has scarcely been studied. Here, we demonstrated that silencing of 17β-hydroxysteroid dehydrogenase type 12 (17β-HSD12), essentially catalyzing the 3-ketoacyl-CoA reduction step in LCFA production, modulates proliferation and migration of breast cancer cells in a cell line-dependent manner. Increased proliferation and migration after 17β-HSD12 knockdown were partly mediated by metabolism of arachidonic acid towards COX2 and CYP1B1-derived eicosanoids. Decreased proliferation was rescued by increased glucose concentration and was preceded by reduced ATP production through oxidative phosphorylation and spare respiratory capacity. In addition, 17β-HSD12 silencing was accompanied by alterations in unfolded protein response, including a decrease in CHOP expression and increase in eIF2α activation and the folding chaperone ERp44. Our study highlights the significance of LCFA biosynthesis for tumor cell physiology and unveils unknown aspects of breast cancer cell heterogeneity.
Collapse
Affiliation(s)
- Maria Tsachaki
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Pirmin Strauss
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Anja Dunkel
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Hana Navrátilová
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Natasa Mladenovic
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| |
Collapse
|
609
|
Gomes SV, Dias BV, Pereira RR, de Pádua Lúcio K, de Souza DMS, Talvani A, Brandão GC, Cosenza GP, de Queiroz KB, Costa DC. Different source of commercial vegetable oils may regulate metabolic, inflammatory and redox status in healthy rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
610
|
Kim M, Vogtmann E, Ahlquist DA, Devens ME, Kisiel JB, Taylor WR, White BA, Hale VL, Sung J, Chia N, Sinha R, Chen J. Fecal Metabolomic Signatures in Colorectal Adenoma Patients Are Associated with Gut Microbiota and Early Events of Colorectal Cancer Pathogenesis. mBio 2020; 11:e03186-19. [PMID: 32071266 PMCID: PMC7029137 DOI: 10.1128/mbio.03186-19] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/10/2020] [Indexed: 12/16/2022] Open
Abstract
Colorectal adenomas are precancerous lesions of colorectal cancer (CRC) that offer a means of viewing the events key to early CRC development. A number of studies have investigated the changes and roles of gut microbiota in adenoma and carcinoma development, highlighting its impact on carcinogenesis. However, there has been less of a focus on the gut metabolome, which mediates interactions between the host and gut microbes. Here, we investigated metabolomic profiles of stool samples from patients with advanced adenoma (n = 102), matched controls (n = 102), and patients with CRC (n = 36). We found that several classes of bioactive lipids, including polyunsaturated fatty acids, secondary bile acids, and sphingolipids, were elevated in the adenoma patients compared to the controls. Most such metabolites showed directionally consistent changes in the CRC patients, suggesting that those changes may represent early events of carcinogenesis. We also examined gut microbiome-metabolome associations using gut microbiota profiles in these patients. We found remarkably strong overall associations between the microbiome and metabolome data and catalogued a list of robustly correlated pairs of bacterial taxa and metabolomic features which included signatures of adenoma. Our findings highlight the importance of gut metabolites, and potentially their interplay with gut microbes, in the early events of CRC pathogenesis.IMPORTANCE Colorectal adenomas are precursors of CRC. Recently, the gut microbiota, i.e., the collection of microbes residing in our gut, has been recognized as a key player in CRC development. There have been a number of gut microbiota profiling studies for colorectal adenoma and CRC; however, fewer studies have considered the gut metabolome, which serves as the chemical interface between the host and gut microbiota. Here, we conducted a gut metabolome profiling study of colorectal adenoma and CRC and analyzed the metabolomic profiles together with paired microbiota composition profiles. We found several chemical signatures of colorectal adenoma that were associated with some gut microbes and potentially indicative of future CRC. This study highlights potential early-driver metabolites in CRC pathogenesis and guides further targeted experiments and thus provides an important stepping stone toward developing better CRC prevention strategies.
Collapse
Affiliation(s)
- Minsuk Kim
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Emily Vogtmann
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - David A Ahlquist
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mary E Devens
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - John B Kisiel
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - William R Taylor
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Bryan A White
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Vanessa L Hale
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine, Columbus, Ohio, USA
| | - Jaeyun Sung
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Nicholas Chia
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Rashmi Sinha
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jun Chen
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
611
|
Seesaha PK, Chen X, Wu X, Xu H, Li C, Jheengut Y, Zhao F, Liu L, Zhang D. The interplay between dietary factors, gut microbiome and colorectal cancer: a new era of colorectal cancer prevention. Future Oncol 2020; 16:293-306. [PMID: 32067473 DOI: 10.2217/fon-2019-0552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer is the third most common cancer in the world and its incidence is on the rise. Dietary intervention has emerged as an attractive strategy to curtail its occurrence and progression. Diet is known to influence the gut microbiome, as dietary factors and gut bacteria can act in concert to cause or protect from colorectal cancer. Several studies have presented evidence for such interactions and have pointed out the different ways by which the diet and gut microbiome can be altered to produce beneficial effects. This review article aims to summarize the interrelationship between diet, gut flora and colorectal cancer so that a better preventive approach can be applied.
Collapse
Affiliation(s)
- Poshita Kumari Seesaha
- Oncology Department, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, PR China
| | - Xiaofeng Chen
- Oncology Department, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, PR China
| | - Xiaofeng Wu
- Hepatobiliary Center, The First Affiliated Hospital, Nanjing Medical University, Jiangsu, PR China
| | - Hongxia Xu
- Department of Nutrition, Third Military Medical University Daping Hospital & Research Institute of Surgery, Chongqing 400042, Sichuan, PR China
| | - Changxian Li
- Hepatobiliary Center, The First Affiliated Hospital, Nanjing Medical University, Jiangsu, PR China
| | - Yogesh Jheengut
- Oncology Department, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, PR China
| | - Fengjiao Zhao
- Oncology Department, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, PR China
| | - Li Liu
- School of Public Health, Guizhou Medical University, Guiyang, PR China
| | - Diancai Zhang
- Department of General Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, PR China
| |
Collapse
|
612
|
Cai F, Liu Y, Hettiarachichi D, Wang F, Li J, Sunderland B, Li D. Ximenynic Acid Regulation of n-3 PUFA Content in Liver and Brain. Lifestyle Genom 2020; 13:64-73. [DOI: 10.1159/000502773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 08/12/2019] [Indexed: 11/19/2022] Open
|
613
|
Munekata PES, Pateiro M, Domínguez R, Zhou J, Barba FJ, Lorenzo JM. Nutritional Characterization of Sea Bass Processing By-Products. Biomolecules 2020; 10:biom10020232. [PMID: 32033107 PMCID: PMC7072636 DOI: 10.3390/biom10020232] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/20/2022] Open
Abstract
The consumption of functional foods and nutraceuticals is gaining more importance in modern society. The exploration of alternative sources and the utilization of by-products coming from the food industry are gaining more importance. The present study aimed to characterize the nutritional value and potential use of sea bass by-products as a source of high-added-value compounds for the development of supplements. The chemical composition (moisture, protein, fat, and ash contents) and profiles of amino acids (high-performance liquid chromatography coupled to a scanning fluorescence detector), fatty acids (gas chromatography coupled to a flame ionization detector), and minerals (inductively coupled plasma optical emission spectroscopy) were determined for sea bass fillet and its by-products (skin, guts, gills, liver, head, and fish bones). The chemical composition assays revealed that by-products were rich sources of proteins (skin; 25.27 g/100 g), fat (guts and liver; 53.12 and 37.25 g/100 g, respectively), and minerals (gills, head, and fish bones; 5.81, 10.11, and 7.51 g/100 g, respectively). Regarding the amino-acid profile, the skin and liver were the main sources of essential amino acids with an essential amino-acid index of 208.22 and 208.07, respectively. In the case of the fatty-acid profile, all by-products displayed high amounts of unsaturated fatty acids, particularly monounsaturated (from 43.46 to 49.33 g/100 g fatty acids) and omega-3 fatty acids (in the range 10.85–14.10 g/100 g fatty acids). Finally, the evaluation of mineral profile indicated high contents of calcium and phosphorus in gills (1382.62 and 742.60 mg/100 g, respectively), head (2507.15 and 1277.01 mg/100 g, respectively), and fish bone (2093.26 and 1166.36 mg/100 g, respectively). Therefore, the main sources of monounsaturated, unsaturated, and long-chain omega-3 fatty acids were guts and liver. The most relevant source of minerals, particularly calcium, phosphorus, and manganese, were head, fish bones, and gills. The most promising source of proteins and amino acids was the skin of sea bass.
Collapse
Affiliation(s)
- Paulo E. S. Munekata
- Centro Tecnolóxico da Carne de Galicia, rúa Galicia n° 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
| | - Mirian Pateiro
- Centro Tecnolóxico da Carne de Galicia, rúa Galicia n° 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
| | - Rubén Domínguez
- Centro Tecnolóxico da Carne de Galicia, rúa Galicia n° 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
| | - Jianjun Zhou
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain; (J.Z.); (F.J.B.)
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain; (J.Z.); (F.J.B.)
| | - Jose M. Lorenzo
- Centro Tecnolóxico da Carne de Galicia, rúa Galicia n° 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
- Correspondence:
| |
Collapse
|
614
|
Coltell O, Sorlí JV, Asensio EM, Barragán R, González JI, Giménez-Alba IM, Zanón-Moreno V, Estruch R, Ramírez-Sabio JB, Pascual EC, Ortega-Azorín C, Ordovas JM, Corella D. Genome-Wide Association Study for Serum Omega-3 and Omega-6 Polyunsaturated Fatty Acids: Exploratory Analysis of the Sex-Specific Effects and Dietary Modulation in Mediterranean Subjects with Metabolic Syndrome. Nutrients 2020; 12:E310. [PMID: 31991592 PMCID: PMC7071282 DOI: 10.3390/nu12020310] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Many early studies presented beneficial effects of polyunsaturated fatty acids (PUFA) on cardiovascular risk factors and disease. However, results from recent meta-analyses indicate that this effect would be very low or nil. One of the factors that may contribute to the inconsistency of the results is that, in most studies, genetic factors have not been taken into consideration. It is known that fatty acid desaturase (FADS) gene cluster in chromosome 11 is a very important determinant of plasma PUFA, and that the prevalence of the single nucleotide polymorphisms (SNPs) varies greatly between populations and may constitute a bias in meta-analyses. Previous genome-wide association studies (GWAS) have been carried out in other populations and none of them have investigated sex and Mediterranean dietary pattern interactions at the genome-wide level. Our aims were to undertake a GWAS to discover the genes most associated with serum PUFA concentrations (omega-3, omega-6, and some fatty acids) in a scarcely studied Mediterranean population with metabolic syndrome, and to explore sex and adherence to Mediterranean diet (MedDiet) interactions at the genome-wide level. Serum PUFA were determined by NMR spectroscopy. We found strong robust associations between various SNPs in the FADS cluster and omega-3 concentrations (top-ranked in the adjusted model: FADS1-rs174547, p = 3.34 × 10-14; FADS1-rs174550, p = 5.35 × 10-14; FADS2-rs1535, p = 5.85 × 10-14; FADS1-rs174546, p = 6.72 × 10-14; FADS2-rs174546, p = 9.75 × 10-14; FADS2- rs174576, p = 1.17 × 10-13; FADS2-rs174577, p = 1.12 × 10-12, among others). We also detected a genome-wide significant association with other genes in chromosome 11: MYRF (myelin regulatory factor)-rs174535, p = 1.49 × 10-12; TMEM258 (transmembrane protein 258)-rs102275, p = 2.43 × 10-12; FEN1 (flap structure-specific endonuclease 1)-rs174538, p = 1.96 × 10-11). Similar genome-wide statistically significant results were found for docosahexaenoic fatty acid (DHA). However, no such associations were detected for omega-6 PUFAs or linoleic acid (LA). For total PUFA, we observed a consistent gene*sex interaction with the DNTTIP2 (deoxynucleotidyl transferase terminal interacting protein 2)-rs3747965 p = 1.36 × 10-8. For adherence to MedDiet, we obtained a relevant interaction with the ME1 (malic enzyme 1) gene (a gene strongly regulated by fat) in determining serum omega-3. The top-ranked SNP for this interaction was ME1-rs3798890 (p = 2.15 × 10-7). In the regional-wide association study, specifically focused on the FADS1/FASD2/FADS3 and ELOVL (fatty acid elongase) 2/ELOVL 5 regions, we detected several statistically significant associations at p < 0.05. In conclusion, our results confirm a robust role of the FADS cluster on serum PUFA in this population, but the associations vary depending on the PUFA. Moreover, the detection of some sex and diet interactions underlines the need for these associations/interactions to be studied in all specific populations so as to better understand the complex metabolism of PUFA.
Collapse
Affiliation(s)
- Oscar Coltell
- Department of Computer Languages and Systems, Universitat Jaume I, 12071 Castellón, Spain;
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
| | - Jose V. Sorlí
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Eva M. Asensio
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Rocío Barragán
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - José I. González
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Ignacio M. Giménez-Alba
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Vicente Zanón-Moreno
- Area of Health Sciences, Valencian International University, 46002 Valencia, Spain;
- Red Temática de Investigación Cooperativa en Patología Ocular (OFTARED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Ophthalmology Research Unit “Santiago Grisolia”, Dr. Peset University Hospital, 46017 Valencia, Spain
| | - Ramon Estruch
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Internal Medicine, Hospital Clinic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain
| | | | - Eva C. Pascual
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
- Assisted Reproduction Unit of the University Hospital of Valencia, 46010 Valencia, Spain
| | - Carolina Ortega-Azorín
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Jose M. Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111 USA;
- Department of Cardiovascular Epidemiology and Population Genetics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- IMDEA Alimentación, 28049 Madrid, Spain
| | - Dolores Corella
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| |
Collapse
|
615
|
Balić A, Vlašić D, Žužul K, Marinović B, Bukvić Mokos Z. Omega-3 Versus Omega-6 Polyunsaturated Fatty Acids in the Prevention and Treatment of Inflammatory Skin Diseases. Int J Mol Sci 2020; 21:E741. [PMID: 31979308 PMCID: PMC7037798 DOI: 10.3390/ijms21030741] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/19/2022] Open
Abstract
Omega-3 (ω-3) and omega-6 (ω-6) polyunsaturated fatty acids (PUFAs) are nowadays desirable components of oils with special dietary and functional properties. Their therapeutic and health-promoting effects have already been established in various chronic inflammatory and autoimmune diseases through various mechanisms, including modifications in cell membrane lipid composition, gene expression, cellular metabolism, and signal transduction. The application of ω-3 and ω-6 PUFAs in most common skin diseases has been examined in numerous studies, but their results and conclusions were mostly opposing and inconclusive. It seems that combined ω-6, gamma-linolenic acid (GLA), and ω-3 long-chain PUFAs supplementation exhibits the highest potential in diminishing inflammatory processes, which could be beneficial for the management of inflammatory skin diseases, such as atopic dermatitis, psoriasis, and acne. Due to significant population and individually-based genetic variations that impact PUFAs metabolism and associated metabolites, gene expression, and subsequent inflammatory responses, at this point, we could not recommend strict dietary and supplementation strategies for disease prevention and treatment that will be appropriate for all. Well-balanced nutrition and additional anti-inflammatory PUFA-based supplementation should be encouraged in a targeted manner for individuals in need to provide better management of skin diseases but, most importantly, to maintain and improve overall skin health.
Collapse
Affiliation(s)
- Anamaria Balić
- Department of Dermatology and Venereology, University Hospital Centre Zagreb, School of Medicine University of Zagreb, Šalata 4, 10 000 Zagreb, Croatia; (A.B.); (B.M.)
| | - Domagoj Vlašić
- Department of Ophtalmology and Optometry, General Hospital Dubrovnik, Ulica dr. Roka Mišetića 2, 20000 Dubrovnik, Croatia;
| | - Kristina Žužul
- School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia;
| | - Branka Marinović
- Department of Dermatology and Venereology, University Hospital Centre Zagreb, School of Medicine University of Zagreb, Šalata 4, 10 000 Zagreb, Croatia; (A.B.); (B.M.)
| | - Zrinka Bukvić Mokos
- Department of Dermatology and Venereology, University Hospital Centre Zagreb, School of Medicine University of Zagreb, Šalata 4, 10 000 Zagreb, Croatia; (A.B.); (B.M.)
| |
Collapse
|
616
|
Menopause-Associated Lipid Metabolic Disorders and Foods Beneficial for Postmenopausal Women. Nutrients 2020; 12:nu12010202. [PMID: 31941004 PMCID: PMC7019719 DOI: 10.3390/nu12010202] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
Menopause is clinically diagnosed as a condition when a woman has not menstruated for one year. During the menopausal transition period, there is an emergence of various lipid metabolic disorders due to hormonal changes, such as decreased levels of estrogens and increased levels of circulating androgens; these may lead to the development of metabolic syndromes including cardiovascular diseases and type 2 diabetes. Dysregulation of lipid metabolism affects the body fat mass, fat-free mass, fatty acid metabolism, and various aspects of energy metabolism, such as basal metabolic ratio, adiposity, and obesity. Moreover, menopause is also associated with alterations in the levels of various lipids circulating in the blood, such as lipoproteins, apolipoproteins, low-density lipoproteins (LDLs), high-density lipoproteins (HDL) and triacylglycerol (TG). Alterations in lipid metabolism and excessive adipose tissue play a key role in the synthesis of excess fatty acids, adipocytokines, proinflammatory cytokines, and reactive oxygen species, which cause lipid peroxidation and result in the development of insulin resistance, abdominal adiposity, and dyslipidemia. This review discusses dietary recommendations and beneficial compounds, such as vitamin D, omega-3 fatty acids, antioxidants, phytochemicals—and their food sources—to aid the management of abnormal lipid metabolism in postmenopausal women.
Collapse
|
617
|
Comparative characteristics of oil composition in seeds of 31 Cucurbita varieties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-019-00339-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
618
|
Hellenthal K, Wagner NM. Soybean Versus Marine Fats: New Fuel to an Ongoing Debate Fishing for Evidence. Anesth Analg 2020; 130:34-36. [PMID: 31842170 DOI: 10.1213/ane.0000000000004356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Katharina Hellenthal
- From the Department for Anesthesiology, Operative Intensive Care Medicine and Pain Therapy, University Hospital Münster, Münster, Germany
| | | |
Collapse
|
619
|
Fintini D, Cianfarani S, Cofini M, Andreoletti A, Ubertini GM, Cappa M, Manco M. The Bones of Children With Obesity. Front Endocrinol (Lausanne) 2020; 11:200. [PMID: 32390939 PMCID: PMC7193990 DOI: 10.3389/fendo.2020.00200] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Excess adiposity in childhood may affect bone development, ultimately leading to bone frailty. Previous reports showing an increased rate of extremity fractures in children with obesity support this fear. On the other hand, there is also evidence suggesting that bone mineral content is higher in obese children than in normal weight peers. Both adipocytes and osteoblasts derive from multipotent mesenchymal stem cells (MSCs) and obesity drives the differentiation of MSCs toward adipocytes at the expense of osteoblast differentiation. Furthermore, adipocytes in bone marrow microenvironment release a number of pro-inflammatory and immunomodulatory molecules that up-regulate formation and activation of osteoclasts, thus favoring bone frailty. On the other hand, body adiposity represents a mechanical load, which is beneficial for bone accrual. In this frame, bone quality, and structure result from the balance of inflammatory and mechanical stimuli. Diet, physical activity and the hormonal milieu at puberty play a pivotal role on this balance. In this review, we will address the question whether the bone of obese children and adolescents is unhealthy in comparison with normal-weight peers and discuss mechanisms underlying the differences in bone quality and structure. We anticipate that many biases and confounders affect the clinical studies conducted so far and preclude us from achieving robust conclusions. Sample-size, lack of adequate controls, heterogeneity of study designs are the major drawbacks of the existing reports. Due to the increased body size of children with obesity, dual energy absorptiometry might overestimate bone mineral density in these individuals. Magnetic resonance imaging, peripheral quantitative CT (pQCT) scanning and high-resolution pQCT are promising techniques for the accurate estimate of bone mineral content in obese children. Moreover, no longitudinal study on the risk of incident osteoporosis in early adulthood of children and adolescents with obesity is available. Finally, we will address emerging dietary issues (i.e., the likely benefits for the bone health of polyunsaturated fatty acids and polyphenols) since an healthy diet (i.e., the Mediterranean diet) with balanced intake of certain nutrients associated with physical activity remain the cornerstones for achieving an adequate bone accrual in young individuals regardless of their adiposity degree.
Collapse
Affiliation(s)
- Danilo Fintini
- Endocrinology Unit, Pediatric University Department, Bambino Gesù Children's Hospital, Rome, Italy
- *Correspondence: Danilo Fintini
| | - Stefano Cianfarani
- Diabetes and Growth Disorders Unit, Dipartimento Pediatrico Universitario Ospedaliero Bambino Gesù Children's Hospital, Tor Vergata University, Rome, Italy
- Department of Women's and Children's Health, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Marta Cofini
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Angela Andreoletti
- Pediatric Resident, Pediatric Clinic, University of Brescia, Brescia, Italy
| | - Grazia Maria Ubertini
- Endocrinology Unit, Pediatric University Department, Bambino Gesù Children's Hospital, Rome, Italy
| | - Marco Cappa
- Endocrinology Unit, Pediatric University Department, Bambino Gesù Children's Hospital, Rome, Italy
| | - Melania Manco
- Research Area for Multifactorial Diseases, Bambino Gesù Children's Hospital, Rome, Italy
- Melania Manco
| |
Collapse
|
620
|
Alekos NS, Moorer MC, Riddle RC. Dual Effects of Lipid Metabolism on Osteoblast Function. Front Endocrinol (Lausanne) 2020; 11:578194. [PMID: 33071983 PMCID: PMC7538543 DOI: 10.3389/fendo.2020.578194] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
The skeleton is a dynamic and metabolically active organ with the capacity to influence whole body metabolism. This newly recognized function has propagated interest in the connection between bone health and metabolic dysfunction. Osteoblasts, the specialized mesenchymal cells responsible for the production of bone matrix and mineralization, rely on multiple fuel sources. The utilization of glucose by osteoblasts has long been a focus of research, however, lipids and their derivatives, are increasingly recognized as a vital energy source. Osteoblasts possess the necessary receptors and catabolic enzymes for internalization and utilization of circulating lipids. Disruption of these processes can impair osteoblast function, resulting in skeletal deficits while simultaneously altering whole body lipid homeostasis. This article provides an overview of the metabolism of postprandial and stored lipids and the osteoblast's ability to acquire and utilize these molecules. We focus on the requirement for fatty acid oxidation and the pathways regulating this function as well as the negative impact of dyslipidemia on the osteoblast and skeletal health. These findings provide key insights into the nuances of lipid metabolism in influencing skeletal homeostasis which are critical to appreciate the extent of the osteoblast's role in metabolic homeostasis.
Collapse
Affiliation(s)
- Nathalie S. Alekos
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Megan C. Moorer
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Baltimore Veterans Administration Medical Center, Baltimore, MD, United States
| | - Ryan C. Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Baltimore Veterans Administration Medical Center, Baltimore, MD, United States
- *Correspondence: Ryan C. Riddle
| |
Collapse
|
621
|
Lordan R, Redfern S, Tsoupras A, Zabetakis I. Inflammation and cardiovascular disease: are marine phospholipids the answer? Food Funct 2020; 11:2861-2885. [DOI: 10.1039/c9fo01742a] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review presents the latest research on the cardioprotective effects of n-3 fatty acids (FA) and n-3 FA bound to polar lipids (PL). Overall, n-3 PL may have enhanced bioavailability and potentially bioactivityversusfree FA and ester forms of n-3 FA.
Collapse
Affiliation(s)
- Ronan Lordan
- Department of Biological Sciences
- University of Limerick
- Limerick
- Ireland
- Health Research Institute (HRI)
| | - Shane Redfern
- Department of Biological Sciences
- University of Limerick
- Limerick
- Ireland
| | - Alexandros Tsoupras
- Department of Biological Sciences
- University of Limerick
- Limerick
- Ireland
- Health Research Institute (HRI)
| | - Ioannis Zabetakis
- Department of Biological Sciences
- University of Limerick
- Limerick
- Ireland
- Health Research Institute (HRI)
| |
Collapse
|
622
|
Shenghua P, Ziqin Z, Shuyu T, Huixia Z, Xianglu R, Jiao G. An integrated fecal microbiome and metabolome in the aged mice reveal anti-aging effects from the intestines and biochemical mechanism of FuFang zhenshu TiaoZhi(FTZ). Biomed Pharmacother 2020; 121:109421. [DOI: 10.1016/j.biopha.2019.109421] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/17/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
|
623
|
Zhan Q, Tian Y, Han L, Wang K, Wang J, Xue C. The opposite effects of Antarctic krill oil and arachidonic acid-rich oil on bone resorption in ovariectomized mice. Food Funct 2020; 11:7048-7060. [DOI: 10.1039/d0fo00884b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The opposite effects and mechanism of AKO and AAO in the regulation of bone resorption in postmenopausal osteoporosis were systematically investigated to support the recommendations on fatty acid types in dietary oils for people with osteoporosis.
Collapse
Affiliation(s)
- Qiping Zhan
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
- College of Food Science and Engineering
| | - Yingying Tian
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
- Marine Biomedical Research Institute of Qingdao
| | - Lihua Han
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
| | - Kai Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
| | - Jingfeng Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
| | - Changhu Xue
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
| |
Collapse
|
624
|
Association between Plasma N-6 Polyunsaturated Fatty Acids Levels and the Risk of Cardiovascular Disease in a Community-based Cohort Study. Sci Rep 2019; 9:19298. [PMID: 31848413 PMCID: PMC6917802 DOI: 10.1038/s41598-019-55686-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
Most studies support that saturated fatty acid replacement with polyunsaturated fatty acids (PUFAs) may reduce the risk of cardiovascular diseases (CVDs) and put emphasis on the effects of N-3 PUFAs. The reported relationships between N-6 PUFAs and CVD risks vary. We aimed to examine the associations between N-6 PUFA concentrations and CVD risks. In this community-based prospective cohort study on CVD-free patients at baseline (N = 1835, age: 60.6 ± 10.5 years, women: 44.5%), we measured the fatty acid concentrations in the blood using gas chromatography. Four hundred twenty-four participants developed CVDs during follow up. The total N-6 PUFA concentration was inversely associated with the CVD risk, with a 48% lower risk in the highest N-6 PUFA concentration quartile (hazard ratio = 0.52; P for trend <0.001). The estimated population attributable risk of N-6 PUFAs indicated that approximately 20.7% of CVD events would have been prevented if the plasma N-6 PUFA concentration had been higher than the median value. The total N-6 PUFA concentration presented the highest net reclassification improvement (NRI = 7.2%, P = 0.03) for predicting incident CVD. Further studies on N-6 PUFAs, diet habits, and their relationships with healthcare are warranted.
Collapse
|
625
|
Alexi N, Kogiannou D, Oikonomopoulou I, Kalogeropoulos N, Byrne DV, Grigorakis K. Culinary preparation effects on lipid and sensory quality of farmed gilthead seabream (Sparus aurata) and meagre (Argyrosomus regius): An inter-species comparison. Food Chem 2019; 301:125263. [PMID: 31377622 DOI: 10.1016/j.foodchem.2019.125263] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/28/2019] [Accepted: 07/25/2019] [Indexed: 12/01/2022]
Abstract
The nutritional and sensory quality of a fish fillet is subject to alterations depending on the culinary method used for preparation. The current study aimed to explore the effects of custom culinary preparation methods (steaming, oven-cooking, frying) on the fillet lipid and sensory quality of two important Mediterranean farmed fish species varying in their tissue fat content. These included, lean meagre and medium-fat gilthead seabream. The results indicated that culinary treatment effects on lipid quality differed among species, especially for frying. Frying created unique sensory profiles, whereas steam- and oven-cooking resulted in similar sensory profiles per species. The variable effects of culinary treatments on the lipid and sensory quality indicate that the choice of preparation method should be related to the fish species and its fat content.
Collapse
Affiliation(s)
- Niki Alexi
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Agios Kosmas Hellinikon, 16777 Athens, Greece; Department of Food Science, Faculty of Science and Technology, Aarhus University, Kirstinebjergvej 10, DK-5792 Åslev, Denmark.
| | - Dimitra Kogiannou
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Agios Kosmas Hellinikon, 16777 Athens, Greece.
| | - Ioanna Oikonomopoulou
- Department of Science of Dietetics-Nutrition, Harokopio University, 17 671 Athens, Greece
| | - Nick Kalogeropoulos
- Department of Science of Dietetics-Nutrition, Harokopio University, 17 671 Athens, Greece.
| | - Derek V Byrne
- Department of Food Science, Faculty of Science and Technology, Aarhus University, Kirstinebjergvej 10, DK-5792 Åslev, Denmark.
| | - Kriton Grigorakis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Agios Kosmas Hellinikon, 16777 Athens, Greece.
| |
Collapse
|
626
|
Ahmmed MK, Ahmmed F, Tian HS, Carne A, Bekhit AED. Marine omega-3 (n-3) phospholipids: A comprehensive review of their properties, sources, bioavailability, and relation to brain health. Compr Rev Food Sci Food Saf 2019; 19:64-123. [PMID: 33319514 DOI: 10.1111/1541-4337.12510] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/06/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022]
Abstract
For several decades, there has been considerable interest in marine-derived long chain n-3 fatty acids (n-3 LCPUFAs) due to their outstanding health benefits. n-3 LCPUFAs can be found in nature either in triglycerides (TAGs) or in phospholipid (PL) form. From brain health point of view, PL n-3 is more bioavailable and potent compared to n-3 in TAG form, as only PL n-3 is able to cross the blood-brain barrier and can be involved in brain biochemical reactions. However, PL n-3 has been ignored in the fish oil industry and frequently removed as an impurity during degumming processes. As a result, PL products derived from marine sources are very limited compared to TAG products. Commercially, PLs are being used in pharmaceutical industries as drug carriers, in food manufacturing as emulsifiers and in cosmetic industries as skin care agents, but most of the PLs used in these applications are produced from vegetable sources that contain less (without EPA, DPA, and DHA) or sometimes no n-3 LCPUFAs. This review provides a comprehensive account of the properties, structures, and major sources of marine PLs, and provides focussed discussion of their relationship to brain health. Epidemiological, laboratory, and clinical studies on n-3 LCPUFAs enriched PLs using different model systems in relation to brain and mental health that have been published over the past few years are discussed in detail.
Collapse
Affiliation(s)
- Mirja Kaizer Ahmmed
- Department of Food Science, University of Otago, Dunedin, New Zealand.,Department of Fishing and Post-Harvest Technology, Faculty of Fisheries, Chittagong Veterinary and Animal Sciences University, Khulshi, Bangladesh
| | - Fatema Ahmmed
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | | | - Alan Carne
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
627
|
Shahid MS, Wu Y, Xiao Z, Raza T, Dong X, Yuan J. Duration of the flaxseed diet promotes deposition of n-3 fatty acids in the meat and skin of Peking ducks. Food Nutr Res 2019; 63:3590. [PMID: 31839790 PMCID: PMC6901031 DOI: 10.29219/fnr.v63.3590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/26/2019] [Accepted: 10/14/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Polyunsaturated fatty acids (PUFA), particularly n-3, have beneficial effects on human health, and for this reason foodstuffs with increased content of n-3 PUFA are now very common and widely available. DESIGN This study was conducted to investigate the effect of the duration of a flaxseed diet on Peking duck's growth performance, antioxidant status, gene expression, and fatty acid profile of the meat. A total of 792 12-day-old white Peking ducks were divided into four groups. In the control group, animals were provided with a basal diet. In the three experimental groups, animals were fed a 10% flax seed diet with vitamin E at 13, 23, and 33 days of age for 30, 20, and 10 days, respectively. RESULTS The growth performance of the ducks decreased with flaxseed diet's duration. Both body weight and body weight gain decreased linearly while Feed conversion ratios (FCR) increased in the group of ducks fed flaxseed compared to control ducks. Serum triglycerides (TG), very low density lipoprotein (VLDL), low density lipoprotein cholesterol (LDL-C), and aspartate aminotransferase (AST) linearly decreased while high density lipoprotein cholesterol (HDL-C) and lipopolysaccharide (LPS) levels increased by feeding flaxseed up to 30 days. The expression of lipin-1 gene (LPIN-1) and fatty acid desaturase 2 (FADS2) linearly increased in ducks fed flaxseed for 30 days. Linolenic acid (n-3) and its long-chain metabolites like eicosatetraenoic acid (ETA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and total n-3 fatty acids (FA) linearly increased while the ratio of n-6 to n-3 was reduced with increased duration of flaxseed supplementation. CONCLUSION Overall, we found that increasing the duration of flaxseed diet with vitamin E for more than 10 days had a mild adverse effect on duck's growth performance but enrichedits meat with long-chain PUFA and decreased the n-6 to n-3 ratio, providing quality meat for health-conscious consumers. A period of 20 days is good for producing n-3 enriched Peking duck meat and skin.
Collapse
Affiliation(s)
- Muhammad Suhaib Shahid
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuqin Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhibin Xiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tausif Raza
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaoyu Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
628
|
Dulf FV, Vodnar DC, Toşa MI, Dulf EH. Simultaneous enrichment of grape pomace with γ-linolenic acid and carotenoids by solid-state fermentation with Zygomycetes fungi and antioxidant potential of the bioprocessed substrates. Food Chem 2019; 310:125927. [PMID: 31835232 DOI: 10.1016/j.foodchem.2019.125927] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/18/2022]
Abstract
Two filamentous fungi (Actinomucor elegans and Umbelopsis isabellina), were tested for their ability to enrich white grape pomace simultaneously with both γ-linolenic acid (GLA) and carotenoids through solid-state fermentation (SSF) processes. U. isabellina presented higher ability to produce GLA-rich lipids (composed mainly of neutral fractions) than A. elegans (the 6-th day of SSF: 378.85 mg/100 g of pomace -U. isabellina and 193.36 mg/100 g of pomace- A. elegans). The amounts of β-carotene and lutein for both SSFs gradually increased until the end of the fermentation processes. The effect of fermentation time on the phenolic content and antioxidant activity of grape pomace was also studied. The SSF with A. elegans increased significantly total phenolic and flavonoid contents and DPPH scavenging activity of grape popmace. These bioprocessed grape pomaces with significant amounts of carotenoids and GLA-rich lipids (>94% nutritionally-valuable polyunsaturated fatty acids at the sn-2 position) could be very attractive for food industry.
Collapse
Affiliation(s)
- Francisc Vasile Dulf
- Faculty of Agriculture, Department of Environmental and Plant Protection, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372, Romania.
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372, Romania.
| | - Monica Ioana Toşa
- Faculty of Chemistry and Chemical Engineering, University Babeş-Bolyai, Biocatalysis Research Group, Arany János 11, 400028 Cluj-Napoca, Romania
| | - Eva-Henrietta Dulf
- Faculty of Automation and Computer Science, Department of Automation, Technical University of Cluj-Napoca, G. Baritiu 26-28, 400027 Cluj-Napoca, Romania
| |
Collapse
|
629
|
Zirnheld KH, Warner DR, Warner JB, Hardesty JE, McClain CJ, Kirpich IA. Dietary fatty acids and bioactive fatty acid metabolites in alcoholic liver disease. LIVER RESEARCH 2019. [DOI: 10.1016/j.livres.2019.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
630
|
Magrone T, Russo MA, Jirillo E. Dietary Approaches to Attain Fish Health with Special Reference to their Immune System. Curr Pharm Des 2019; 24:4921-4931. [PMID: 30608037 DOI: 10.2174/1381612825666190104121544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/25/2018] [Accepted: 12/28/2018] [Indexed: 02/08/2023]
Abstract
Fish despite their low collocation in the vertebrate phylum possess a complete immune system. In teleost fish both innate and adaptive immune responses have been described with melanomacrophage centers (MMCs) equivalent to mammalian germinal centers. Primary lymphoid organs are represented by the thymus and kidney, while spleen and mucosa-associated lymphoid tissues act as secondary lymphoid organs. Functions of either innate immune cells (e.g., macrophages and dendritic cells) or adaptive immune cells (T and B lymphocytes) will be described in detail, even including their products, such as cytokines and antibodies. In spite of a robust immune arsenal, fish are very much exposed to infectious agents (marine bacteria, parasites, fungi, and viruses) and, consequentially, mortality is very much enhanced especially in farmed fish. In fact, in aquaculture stressful events (overcrowding), microbial infections very frequently lead to a high rate of mortality. With the aim to reduce mortality of farmed fish through the reinforcement of their immune status the current trend is to administer natural products together with the conventional feed. Then, in the second part of the present review emphasis will be placed on a series of products, such as prebiotics, probiotics and synbiotics, β-glucans, vitamins, fatty acids and polyphenols all used to feed farmed fish. With special reference to polyphenols, results of our group using red grape extracts to feed farmed European sea bass will be illustrated. In particular, determination of cytokine production at intestinal and splenic levels, areas of MMCs and development of hepatopancreas will represent the main biomarkers considered. All together, our own data and those of current literature suggests that natural product administration to farmed fish for their beneficial effects may, in part, solve the problem of fish mortality in aquaculture, enhancing their immune responses.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, School of Medicine, Bari, Italy
| | - Matteo A Russo
- MEBIC Consortium, San Raffaele Open University of Rome and IRCCS San Raffaele Pisana of Rome, Rome, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, School of Medicine, Bari, Italy
| |
Collapse
|
631
|
Oliveira Perucci L, Pereira Santos TA, Campi Santos P, Ribeiro Teixeira LC, Nessralla Alpoim P, Braga Gomes K, Pires Sousa L, Sant'Ana Dusse LM, Talvani A. Pre-eclampsia is associated with reduced resolvin D1 and maresin 1 to leukotriene B4 ratios in the plasma. Am J Reprod Immunol 2019; 83:e13206. [PMID: 31679164 DOI: 10.1111/aji.13206] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/16/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022] Open
Abstract
PROBLEM Omega-3 and omega-6 fatty acids can be endogenously converted into mediators with pro-inflammatory (eg, leukotriene B4/LTB4) or anti-inflammatory/pro-resolving activities (eg, resolvin D1/RvD1 and maresin 1/MaR1). Recent data indicate an imbalance of LTB4 and MaR1 levels in pre-eclampsia (PE), but the relative production of these mediators, including RvD1, and the role of these mediators in the disease pathogenesis remain unclear. Therefore, this study aimed to investigate the plasma levels of LTB4, RvD1, and MaR1 in pregnant women with or without PE and non-pregnant controls and their association with clinical/laboratory parameters of PE women. METHOD OF STUDY LTB4, RvD1, and MaR1 plasma levels were measured by competitive enzyme immunoassay in 19 non-pregnant, 20 normotensive pregnant, and 21 PE women. RESULTS Plasma concentrations of LTB4 were higher and RvD1 were lower in PE women than in normotensive pregnant women, who presented higher levels of LTB4 and similar levels of RvD1 to non-pregnant women. MaR1 levels did not differ among the groups. Pre-eclampsia women had decreased RvD1/LTB4 and MaR1/LTB4 ratios. Considering only the PE group, positive correlations were observed among all the mediators tested, between LTB4 and white blood cell count and between RvD1 and creatinine levels. However, all lipid mediators correlated negatively with body mass index before pregnancy. LTB4 also correlated negatively with maternal age. CONCLUSION Our findings suggest that the PE state results in systemic overproduction of LTB4 in relation to RvD1 and MaR1, and that these lipid mediators may be involved with the disease pathogenesis.
Collapse
Affiliation(s)
- Luiza Oliveira Perucci
- Nucleus of Research on Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Talita Adriana Pereira Santos
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Patrícia Campi Santos
- Departament of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lívia Cristina Ribeiro Teixeira
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Patrícia Nessralla Alpoim
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Karina Braga Gomes
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia Pires Sousa
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luci Maria Sant'Ana Dusse
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - André Talvani
- Nucleus of Research on Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil.,Departament of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
632
|
Some Biogenetic Considerations Regarding the Marine Natural Product (-)-Mucosin. Molecules 2019; 24:molecules24224147. [PMID: 31731797 PMCID: PMC6891381 DOI: 10.3390/molecules24224147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023] Open
Abstract
Recently, the identity of the marine hydrindane natural product (−)-mucosin was revised to the trans-fused structure 6, thereby providing a biogenetic puzzle that remains to be solved. We are now disseminating some of our insights with regard to the possible machinery delivering the established architecture. Aspects with regard to various modes of cyclization in terms of concerted versus stepwise processes are held up against the enzymatic apparatus known to be working on arachidonic acid (8). To provide a contrast to the tentative polyunsaturated fatty acid biogenesis, the structural pattern featured in (−)-mucosin (6) is compared to some marine hydrinane natural products of professed polyketide descent. Our appraisal points to a different origin and strengthens the hypothesis of a polyunsaturated fatty acids (PUFA) as the progenitor of (−)-mucosin (6).
Collapse
|
633
|
Derbyshire E. Oily Fish and Omega-3s Across the Life Stages: A Focus on Intakes and Future Directions. Front Nutr 2019; 6:165. [PMID: 31781570 PMCID: PMC6861329 DOI: 10.3389/fnut.2019.00165] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/04/2019] [Indexed: 01/20/2023] Open
Abstract
Background: There is a tendency to report oily fish intakes for adults collectively. This means that certain population groups tend to be overlooked. The purpose of the present article is to derive and evaluate oily fish and omega-3 intakes across the lifespan. Methods: A secondary analysis of the UK National Diet and Nutrition Survey (years 2008–2016) was undertaken. Data from n = 2,949 participants ≥4 years was analyzed. Alongside this, data was extracted from surveys published within the last 5-years reporting omega-3 intakes. Results: Overall, only a quarter (25.2%) of the UK population are oily fish consumers. Amongst those eating oily fish only 7.3% of children, 12.8% of teenagers, and 15.6% of young adults (20–29 years) met oily fish recommendations. Mean intakes of oily fish ranged between 3.4 and 19.1 g/day. Females aged 30–39 and 60–69 years had significantly lower daily oily fish intakes than males (P = 0.05 and P = 0.049) although their intakes were higher than men in their fifties (P = 0.048). Between 2008 and 2016 oily fish intakes have remained relatively stable although a significant decline was seen amongst those aged 50–59 years (P = 0.048). Survey data (n = 10 publications) showed that EPA and DHA intakes were consistently lower than guidelines, with children, teenagers, females, and pregnant women having some of the largest dietary gaps. Conclusions: Younger generations, women of childbearing age and pregnant mothers appear to be at particular risk of oily fish and omega-3 shortfalls. Declining EPA and DHA profiles of farmed fish and plant-based food movements are only likely to exacerbate already inadequate intakes. Urgent public health campaigns are needed to improve UK intakes, which should include a combined approach of dietary and supplemental sources.
Collapse
|
634
|
Comprehensive sterol and fatty acid analysis in nineteen nuts, seeds, and kernel. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1576-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
635
|
Chemical composition of industrially and laboratory processed Cyperus esculentus rhizomes. Food Chem 2019; 297:124896. [DOI: 10.1016/j.foodchem.2019.05.170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 02/08/2023]
|
636
|
Naoe S, Tsugawa H, Takahashi M, Ikeda K, Arita M. Characterization of Lipid Profiles after Dietary Intake of Polyunsaturated Fatty Acids Using Integrated Untargeted and Targeted Lipidomics. Metabolites 2019; 9:E241. [PMID: 31640217 PMCID: PMC6836067 DOI: 10.3390/metabo9100241] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 12/25/2022] Open
Abstract
Illuminating the comprehensive lipid profiles after dietary supplementation of polyunsaturated fatty acids (PUFAs) is crucial to revealing the tissue distribution of PUFAs in living organisms, as well as to providing novel insights into lipid metabolism. Here, we performed lipidomic analyses on mouse plasma and nine tissues, including the liver, kidney, brain, white adipose, heart, lung, small intestine, skeletal muscle, and spleen, with the dietary intake conditions of arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) as the ethyl ester form. We incorporated targeted and untargeted approaches for profiling oxylipins and complex lipids such as glycerol (phospho) lipids, sphingolipids, and sterols, respectively, which led to the characterization of 1026 lipid molecules from the mouse tissues. The lipidomic analysis indicated that the intake of PUFAs strongly impacted the lipid profiles of metabolic organs such as the liver and kidney, while causing less impact on the brain. Moreover, we revealed a unique lipid modulation in most tissues, where phospholipids containing linoleic acid were significantly decreased in mice on the ARA-supplemented diet, and bis(monoacylglycero)phosphate (BMP) selectively incorporated DHA over ARA and EPA. We comprehensively studied the lipid profiles after dietary intake of PUFAs, which gives insight into lipid metabolism and nutrition research on PUFA supplementation.
Collapse
Affiliation(s)
- Satoko Naoe
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.
| | - Hiroshi Tsugawa
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.
- Metabolome informatics research team, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan.
| | - Mikiko Takahashi
- Metabolome informatics research team, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan.
| | - Kazutaka Ikeda
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan.
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan.
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo 105-8512, Japan.
| |
Collapse
|
637
|
Chen F, Wang Y, Wang H, Dong Z, Wang Y, Zhang M, Li J, Shao S, Yu C, Huan Z, Xu J. Flaxseed oil ameliorated high-fat-diet-induced bone loss in rats by promoting osteoblastic function in rat primary osteoblasts. Nutr Metab (Lond) 2019; 16:71. [PMID: 31636691 PMCID: PMC6798477 DOI: 10.1186/s12986-019-0393-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/06/2019] [Indexed: 12/19/2022] Open
Abstract
Background α-Linolenic acid (ALA) is a plant-derived omega-3 unsaturated fatty acid that is rich in flaxseed oil (FO). The effect of FO on bone health is controversial. This study aims to evaluate the effect of FO on bone damage induced by a high-fat diet (HFD) and to explore the possible mechanism. Methods Male Sprague-Dawley rats were fed a normal control diet (NC, 10% fat), FO diet (NY, 10% fat), HFD (60% fat), or HFD containing 10% FO (HY, 60% fat) for 22 weeks. Micro CT and three-point bending tests were conducted to evaluate bone microstructure and biomechanics. Serum was collected for the detection of ALP, P1NP, and CTX-1. Rat primary osteoblasts (OBs) were treated with different concentrations of ALA with or without palmitic acid (PA) treatment. The ALP activity, osteogenic-related gene and protein expression were measured. Results Rats in the HFD group displayed decreased biomechanical properties, such as maximum load, maximum fracture load, ultimate tensile strength, stiffness, energy absorption, and elastic modulus, compared with the NC group (p < 0.05). However, HY attenuated the HFD-induced decreases in bone biomechanical properties, including maximum load, maximum fracture load, and ultimate tensile strength (p < 0.05). Trabecular bone markers such as trabecular volume bone mineral density (Tb. vBMD), trabecular bone volume/total volume (Tb. BV/TV), trabecular number (Tb. N), trabecular thickness (Tb. Th) were decreased, trabecular separation (Tb. Sp) and the structure model index (SMI) were increased in the HFD group compared with the NC group, and all parameters were remarkably improved in the HY group compared to the HFD group (p < 0.05). However, cortical bone markers such as cortical volume bone mineral density (Ct. vBMD), cortical bone volume/total volume (Ct. BV/TV) and cortical bone thickness (Ct. Th) were not significantly different among all groups. Moreover, the serum bone formation markers ALP and P1NP were higher and the bone resorption marker CTX-1 was lower in the HY group compared with levels in the HFD group. Compared with the NC group, the NY group had no difference in the above indicators. In rat primary OBs, PA treatment significantly decreased ALP activity and osteogenic gene and protein (β-catenin, RUNX2, and osterix) expression, and ALA dose-dependently restored the inhibition induced by PA. Conclusions FO might be a potential therapeutic agent for HFD-induced bone loss, most likely by promoting osteogenesis.
Collapse
Affiliation(s)
- Fulian Chen
- 1Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021 People's Republic of China.,2Department of Endocrinology, Affiliated Yidu Central Hospital of Weifang Medical College, Weifang, Shandong 262500 People's Republic of China
| | - Yan Wang
- 1Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021 People's Republic of China.,Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong 271000 People's Republic of China
| | - Hongwei Wang
- 1Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021 People's Republic of China.,4Department of Endocrinology, People's Hospital of Rizhao, Rizhao, Shandong 276800 People's Republic of China
| | - Zhenhua Dong
- 1Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021 People's Republic of China.,5Department of Endocrinology, Jinan Central Hospital affiliated to Shandong University, Jinan, Shandong 250021 People's Republic of China
| | - Yan Wang
- 1Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021 People's Republic of China
| | - Mengqi Zhang
- 1Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021 People's Republic of China
| | - Jiaxuan Li
- 1Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021 People's Republic of China
| | - Shanshan Shao
- 1Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021 People's Republic of China
| | - Chunxiao Yu
- 1Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021 People's Republic of China
| | - Zhikun Huan
- 1Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021 People's Republic of China
| | - Jin Xu
- 1Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021 People's Republic of China
| |
Collapse
|
638
|
Lamers D, Visscher B, Weusthuis RA, Francke C, Wijffels RH, Lokman C. Overexpression of delta-12 desaturase in the yeast Schwanniomyces occidentalis enhances the production of linoleic acid. BIORESOURCE TECHNOLOGY 2019; 289:121672. [PMID: 31234072 DOI: 10.1016/j.biortech.2019.121672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
The oleaginous yeast Schwanniomyces occidentalis was previously isolated because of its excellent suitability to convert lignocellulosic hydrolysates into triacyl glycerides: it is able to use a broad range of sugars and is able to tolerate high concentrations of lignocellulosic hydrolysate inhibitors. Compared to other oleaginous yeasts S. occidentalis however produces a low content of unsaturated fatty acids. We show here that the linoleic acid content can be significantly improved by (over)expression Δ12-desaturases derived from S. occidentalis and Fusarium moniliforme. Expression was stable for the homologous expression but decreased during heterologous expression. Both homologous and heterologous expression of mCherry-Δ12-desaturase led to a 4-fold increase in linoleic acid from 0.02 g/g biomass to 0.08 g/g biomass resulting in the production of 2.23 g/L and 2.05 g/L of linoleic acid.
Collapse
Affiliation(s)
- Dennis Lamers
- HAN BioCentre, University of Applied Sciences, P.O. Box 6960, 6503 GL Nijmegen, The Netherlands; Bioprocess Engineering, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands.
| | - Bram Visscher
- HAN BioCentre, University of Applied Sciences, P.O. Box 6960, 6503 GL Nijmegen, The Netherlands.
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands.
| | - Christof Francke
- HAN BioCentre, University of Applied Sciences, P.O. Box 6960, 6503 GL Nijmegen, The Netherlands.
| | - René H Wijffels
- Bioprocess Engineering, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; Faculty of Biosciences and Aquaculture, Nord University, P.O. Box 1409, 8049 Bodø, Norway.
| | - Christien Lokman
- HAN BioCentre, University of Applied Sciences, P.O. Box 6960, 6503 GL Nijmegen, The Netherlands.
| |
Collapse
|
639
|
Liebig M, Dannenberger D, Vollmar B, Abshagen K. Endogenously increased n-3 PUFA levels in fat-1 transgenic mice do not protect from non-alcoholic steatohepatitis. Hepatobiliary Surg Nutr 2019; 8:447-458. [PMID: 31673534 DOI: 10.21037/hbsn.2019.04.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, ranging from simple steatosis to non-alcoholic steatohepatitis (NASH) and fibrosis. Possible reasons for the NAFLD epidemic in industrialized countries are the high intake of pro-inflammatory n-6 polyunsaturated fatty acids (n-6 PUFAs) and low consumption of healthy n-3 PUFAs. Due to their anti-inflammatory properties, n-3 PUFAs may have the potential to alleviate chronic liver disease. Herein, we examined the therapeutic effect of increased n-3 PUFA tissue levels in fat-1 transgenic mice on progressive NASH. Methods Disease was induced in mice by streptozotocin and high fat diet (STZ/HFD) resulting in NASH. NAFLD in 6 and 8 weeks old wild type and fat-1 transgenic STZ/HFD treated mice was analyzed. Unlike all other mammals, fat-1 transgenic mice ubiquitously express an n-3 fatty acid desaturase, which converts n-6 to n-3 PUFAs, leading to increased n-3 and decreased n-6 PUFA tissue contents. Results Liver damage, NAFLD activity score (NAS), hepatic lipid accumulation and inflammation were significantly reduced in fat-1 transgenic STZ/HFD treated mice in the early (6 weeks) but not late (8 weeks) phase of NASH. Simultaneously, mRNA expression of genes involved in fatty acid uptake and storage (Cd36 and Plin3, respectively) was significantly down-regulated in 6 week old but not 8 week old fat-1 transgenic STZ/HFD treated mice. Conclusions Endogenously elevated n-3 PUFA levels in fat-1 transgenic mice transiently delay the onset of STZ/HFD induced NASH but failed to efficiently protect from NASH development.
Collapse
Affiliation(s)
- Marie Liebig
- Rudolf-Zenker-Institute for Experimental Surgery, University Medicine Rostock, 18057 Rostock, Germany
| | - Dirk Dannenberger
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute for Experimental Surgery, University Medicine Rostock, 18057 Rostock, Germany
| | - Kerstin Abshagen
- Rudolf-Zenker-Institute for Experimental Surgery, University Medicine Rostock, 18057 Rostock, Germany
| |
Collapse
|
640
|
Stevens-Barrón JC, de la Rosa LA, Wall-Medrano A, Álvarez-Parrilla E, Rodríguez-Ramirez R, Robles-Zepeda RE, Astiazaran-García H. Chemical Composition and In Vitro Bioaccessibility of Antioxidant Phytochemicals from Selected Edible Nuts. Nutrients 2019; 11:E2303. [PMID: 31569705 PMCID: PMC6836022 DOI: 10.3390/nu11102303] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/27/2022] Open
Abstract
The ultimate health benefits of peanuts and tree nuts partially depend on the effective gastrointestinal delivery of their phytochemicals. The chemical composition and in vitro bioaccessibility of tocopherols, tocotrienols and phenolic compounds from peanuts and seven tree nuts were evaluated by analytical and chemometric methods. Total fat and dietary fiber (g 100 g-1) ranged from 34.2 (Emory oak acorn) to 72.5 (pink pine nut; PPN) and from 1.2 (PPN) to 22.5 (pistachio). Samples were rich in oleic and linoleic acids (56-87 g 100 g-1 oil). Tocopherols and tocotrienols (mg·kg-1) ranged from 48.1 (peanut) to 156.3 (almond) and 0 (almond, pecan) to 22.1 (PPN) and hydrophilic phenolics from 533 (PPN) to 12,896 (Emory oak acorn); flavonoids and condensed tannins (mg CE.100 g-1) ranged from 142 (white pine nut) to 1833 (Emory oak acorn) and 14 (PPN) to 460 (Emory oak acorn). Three principal components explained 90% of the variance associated with the diversity of antioxidant phytochemicals in samples. In vitro bioaccessibility of tocopherols, tocotrienols, hydrophilic phenolics, flavonoids, and condensed tannins ranged from 11-51%, 16-79%, 25-55%, 0-100%, and 0-94%, respectively. Multiple regression analyses revealed a potential influence of dietary fiber, fats and/or unsaturated fatty acids on phytochemical bioaccessibility, in a structure-specific manner.
Collapse
Affiliation(s)
- Jazmín C Stevens-Barrón
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, 32310 Ciudad Juárez, Mexico.
| | - Laura A de la Rosa
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, 32310 Ciudad Juárez, Mexico.
| | - Abraham Wall-Medrano
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, 32310 Ciudad Juárez, Mexico.
| | - Emilio Álvarez-Parrilla
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, 32310 Ciudad Juárez, Mexico.
| | - Roberto Rodríguez-Ramirez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 85000 Ciudad Obregón, Mexico.
| | - Ramón E Robles-Zepeda
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, 83000 Hermosillo, Mexico.
| | - Humberto Astiazaran-García
- Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo, 83304 A.C. Hermosillo, Mexico.
| |
Collapse
|
641
|
Tabassum R, Rämö JT, Ripatti P, Koskela JT, Kurki M, Karjalainen J, Palta P, Hassan S, Nunez-Fontarnau J, Kiiskinen TTJ, Söderlund S, Matikainen N, Gerl MJ, Surma MA, Klose C, Stitziel NO, Laivuori H, Havulinna AS, Service SK, Salomaa V, Pirinen M, Jauhiainen M, Daly MJ, Freimer NB, Palotie A, Taskinen MR, Simons K, Ripatti S. Genetic architecture of human plasma lipidome and its link to cardiovascular disease. Nat Commun 2019; 10:4329. [PMID: 31551469 PMCID: PMC6760179 DOI: 10.1038/s41467-019-11954-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/13/2019] [Indexed: 01/07/2023] Open
Abstract
Understanding genetic architecture of plasma lipidome could provide better insights into lipid metabolism and its link to cardiovascular diseases (CVDs). Here, we perform genome-wide association analyses of 141 lipid species (n = 2,181 individuals), followed by phenome-wide scans with 25 CVD related phenotypes (n = 511,700 individuals). We identify 35 lipid-species-associated loci (P <5 ×10-8), 10 of which associate with CVD risk including five new loci-COL5A1, GLTPD2, SPTLC3, MBOAT7 and GALNT16 (false discovery rate<0.05). We identify loci for lipid species that are shown to predict CVD e.g., SPTLC3 for CER(d18:1/24:1). We show that lipoprotein lipase (LPL) may more efficiently hydrolyze medium length triacylglycerides (TAGs) than others. Polyunsaturated lipids have highest heritability and genetic correlations, suggesting considerable genetic regulation at fatty acids levels. We find low genetic correlations between traditional lipids and lipid species. Our results show that lipidomic profiles capture information beyond traditional lipids and identify genetic variants modifying lipid levels and risk of CVD.
Collapse
Affiliation(s)
- Rubina Tabassum
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Joel T Rämö
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Pietari Ripatti
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jukka T Koskela
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Mitja Kurki
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics and Genetic Analysis Platform, Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Juha Karjalainen
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Priit Palta
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Shabbeer Hassan
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Javier Nunez-Fontarnau
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Tuomo T J Kiiskinen
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | - Sanni Söderlund
- Research Programs Unit, Diabetes & Obesity, University of Helsinki and Department of Internal Medicine, Helsinki University Hospital, Helsinki, Finland
| | - Niina Matikainen
- Research Programs Unit, Diabetes & Obesity, University of Helsinki and Department of Internal Medicine, Helsinki University Hospital, Helsinki, Finland
- Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | | | - Michal A Surma
- Lipotype GmbH, Dresden, Germany
- Łukasiewicz Research Network-PORT Polish Center for Technology Development, Stablowicka 147 Str., 54-066, Wroclaw, Poland
| | | | - Nathan O Stitziel
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hannele Laivuori
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital and Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aki S Havulinna
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | - Susan K Service
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Matti Pirinen
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Helsinki Institute for Information Technology HIIT and Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Matti Jauhiainen
- National Institute for Health and Welfare, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki, Finland
| | - Mark J Daly
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Nelson B Freimer
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry, Analytic and Translational Genetics Unit, Department of Medicine, and the Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Marja-Riitta Taskinen
- Research Programs Unit, Diabetes & Obesity, University of Helsinki and Department of Internal Medicine, Helsinki University Hospital, Helsinki, Finland
| | - Kai Simons
- Lipotype GmbH, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland.
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
- Department of Public Health, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
642
|
Zhao Y, Nie S, Yi M, Wu N, Wang W, Zhang Z, Yao Y, Wang D. UPLC-QTOF/MS-based metabolomics analysis of plasma reveals an effect of Xue-Fu-Zhu-Yu capsules on blood-stasis syndrome in CHD rats. JOURNAL OF ETHNOPHARMACOLOGY 2019; 241:111908. [PMID: 31029757 DOI: 10.1016/j.jep.2019.111908] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 04/10/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Blood-stasis syndrome (BSS) is a specific ZHENG type of coronary heart disease (CHD) in traditional Chinese medicine (TCM). The Xue-Fu-Zhu-Yu (XFZY) decoction is a common herbal formula that has been used for several centuries to treat BSS, but its mechanism has not been thoroughly elucidated to date. AIM OF THE STUDY In this study, serum lipid, blood haemorheology and metabolomics analyses were performed to depict a complete profile of XFZY capsules for the treatment of CHD with BSS and to reveal the potential mechanism of the XFZY capsules. MATERIALS AND METHODS A rat model of CHD with BSS was generated by combining a high-fat diet (HFD) with a left anterior descending coronary artery (LAD) ligation. After four weeks of treatment with XFZY capsules or simvastatin pills, an echocardiography was performed for a therapeutic evaluation. Blood samples and heart tissues were then collected for further analyses. A UPLC-QTOF/MS-based metabolomics analysis of the plasma was performed, and all metabolic features were fit by PCA and OPLS-DA pattern for the biomarker screen. The identified biomarkers were later implemented into a metabolic pathway analysis. Furthermore, we used qRT-PCR and Western blot analyses to verify the treatment effects of the XFZY capsules. RESULTS A total of 49 metabolites (VIP>1.0, p < 0.05, RSD%<20%) were identified in the Model rats, and 27 metabolites (VIP>1.0, p < 0.05, RSD%<20%) were identified in the XFZY-H rats. The results of the pathway analysis indicated that the XFZY capsules treated CHD primarily by regulating cardiac energy, phospholipid, polyunsaturated fatty acid (PUFA) and amino acid metabolism. In addition, blood viscosity and serum lipid assays suggested that XFZY capsules could decrease serum triglycerides, total cholesterol, low-density lipoprotein cholesterol and whole blood viscosity at a low shear rate. CONCLUSION This study demonstrated that the XFZY capsule effectively decreases serum lipids and whole blood viscosity in CHD with BSS. The underlying metabolic mechanism mainly included improving cardiac energy supply, reducing phospholipid peroxide, maintaining the PUFA metabolic balance and regulating amino acid metabolism.
Collapse
Affiliation(s)
- Yuhang Zhao
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, Hunan, 410008, China.
| | - Shanshan Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, Hunan, 410008, China.
| | - Min Yi
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, Hunan, 410008, China.
| | - Ning Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, Hunan, 410008, China.
| | - Wenbo Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, Hunan, 410008, China.
| | - Zheyu Zhang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Ye Yao
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, Hunan, 410008, China.
| | - Dongsheng Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
643
|
Nguyen N, Dow M, Woodside B, German JB, Quehenberger O, Shih PAB. Food-Intake Normalization of Dysregulated Fatty Acids in Women with Anorexia Nervosa. Nutrients 2019; 11:E2208. [PMID: 31540208 PMCID: PMC6769727 DOI: 10.3390/nu11092208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 12/15/2022] Open
Abstract
Anorexia nervosa (AN) is a psychiatric disorder affected by psychological, environmental, and biological factors. Individuals with AN avoid high-fat, high-calorie diets and have shown abnormal metabolism of fatty acids (FAs), which are essential for brain and cognitive/neuropsychiatric health. To clarify the relationship between FAs and AN, fasting and postprandial plasma FAs in AN patients and age-matched control women were analyzed via mass-spectrometry. Clinical phenotypes were assessed using Becker Anxiety Inventory and Becker Depression Inventory. AN patients and controls exhibited different FA signatures at both fasting and postprandial timepoints. Lauric acid, eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and alpha-linoleic acid (ALA) were higher in AN than in controls (lauric acid: 15,081.6 ± 14,970.2 vs. 8257.4 ± 4740.2 pmol/mL; ALA at fasting: 2217.7 ± 1587.6 vs. 1087.9 ± 821.2 pmol/mL; ALA at postprandial: 1830.9 ± 1115.6 vs. 1159.4 ± 664.7 pmol/mL. EPA: 33,788.3 ± 17,487.5 vs. 22,860.6 ± 12,642.4 pmol/mL; DPA: 32,664.8 ± 16,215.0 vs. 20,969.0 ± 12,350.0 pmol/mL. FDR-adjusted p-values < 0.05). Food intake and AN status modified the correlations of FAs with body mass index (BMI), depression, and anxiety. Desaturases SCD-18 and D6D showed lower activities in AN compared to controls. Altered FA signature, specifically correlations between elevated n-3 FAs and worsened symptoms, illustrate metabolic underpinnings in AN. Future studies should investigate the mechanisms by which FA dysregulation, specifically elevated n-3 FAs, affects AN risk and outcome.
Collapse
Affiliation(s)
- Nhien Nguyen
- Department of Psychiatry, School of Medicine University of California, San Diego, La Jolla, CA 92037, USA.
| | - Michelle Dow
- Division of Medical Genetics, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Blake Woodside
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 2S8, Canada.
| | - J Bruce German
- Department of Food Science & Technology, University of California, Davis, Davis, CA 95616, USA.
| | - Oswald Quehenberger
- Department of Pharmacology, University of California, San Diego, San Diego, CA 92093, USA.
| | - Pei-An Betty Shih
- Department of Psychiatry, School of Medicine University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
644
|
Endogenous n-3 Polyunsaturated Fatty Acids Are Beneficial to Dampen CD8 + T Cell-Mediated Inflammatory Response upon the Viral Infection in Mice. Int J Mol Sci 2019; 20:ijms20184510. [PMID: 31547227 PMCID: PMC6770599 DOI: 10.3390/ijms20184510] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 11/16/2022] Open
Abstract
Omega-3 (n-3) polyunsaturated fatty acids (PUFAs) have been known to exert anti-inflammatory effects on various disease states. However, its effect on CD8+ T cell-mediated immunopathology upon viral infection has not been well elucidated yet. In this study, we investigated the possible implication of n-3 PUFAs in CD8+ T cell responses against an acute viral infection. Infection of FAT-1 transgenic mice that are capable of synthesizing n-3 PUFAs from n-6 PUFAs with lymphocytic choriomeningitis virus (LCMV) resulted in significant reduction of anti-viral CD8+ T cell responses. Interestingly, expansion of adoptively transferred wild-type (WT) LCMV-specific T cell receptor (TCR) transgenic CD8+ (P14) T cells into FAT-1 mice was significantly decreased. Also, activation of anti-viral CD4+ helper T cells was reduced in FAT-1 mice. Importantly, P14 cells carrying the fat-1 gene that were adoptively transferred into WT mice exhibited a substantially decreased ability to proliferate and produce cytokines against LCMV infection. Together, n-3 PUFAs attenuated anti-viral CD8+ T cell responses against an acute viral infection and thus could be used to alleviate immunopathology mediated by the viral infection.
Collapse
|
645
|
Liebig M, Dannenberger D, Vollmar B, Abshagen K. n-3 PUFAs reduce tumor load and improve survival in a NASH-tumor mouse model. Ther Adv Chronic Dis 2019; 10:2040622319872118. [PMID: 31523414 PMCID: PMC6728677 DOI: 10.1177/2040622319872118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022] Open
Abstract
Background With 9.1% of all cancer deaths, hepatocellular carcinoma is the second leading cause of cancer deaths worldwide. Due to the increasing prevalence of metabolic syndrome, nonalcoholic fatty liver disease (NAFLD) has evolved into a major risk factor for hepatocellular carcinoma development. Herein, we investigated whether a dietary n-3 polyunsaturated fatty acid (PUFA) supplementation improves the outcome of progressive NAFLD. Methods Feeding three high-fat diets, differing in n-3 and n-6 PUFA contents and ratios (n-3/n-6: 1:8, 1:1, 5:1), the impact of n-3 PUFAs and n-3/n-6 PUFA ratios on NAFLD-related liver fibrosis and tumorigenesis was analyzed in 12- and 20-week-old streptozotocin/high-fat diet (STZ/HFD)-treated mice. Results Feeding of n-3 PUFA-rich diets (1:1 and 5:1) resulted in increased hepatic n-3 PUFA content and n-3/n-6 PUFA ratio with decreased hepatic lipid accumulation. In 20-week-old mice, n-3 PUFA-rich diets alleviated tumor load significantly, with reduced liver/body weight index, tumor size, and tumor number. Finally, these effects were accompanied by a significant improvement of survival of these mice. Conclusions Herein, we showed that increased n-3 PUFA content and n-3/n-6 PUFA ratios lead to improved survival and attenuated tumor progression in STZ/HFD-treated mice. Thus, n-3 PUFAs could be the basis for new therapeutic options against NAFLD-related tumorigenesis.
Collapse
Affiliation(s)
- Marie Liebig
- Institute for Experimental Surgery, University Medicine Rostock, Germany
| | - Dirk Dannenberger
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, University Medicine Rostock, Germany
| | - Kerstin Abshagen
- Institute for Experimental Surgery, University Medicine Rostock, Germany
| |
Collapse
|
646
|
Zhou B, Lin C, Xie S, Zhou X, Zhang F, Ye X, Lin F, Hu L, Huang A. Determination of four omega-3 polyunsaturated fatty acids by UPLC-MS/MS in plasma of hyperlipidemic and normolipidemic subjects. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1126-1127:121762. [PMID: 31430685 DOI: 10.1016/j.jchromb.2019.121762] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/24/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Omega-3 polyunsaturated fatty acids (PUFAs), including alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and docosapentaenoic acid (DPA), play critical roles in numerous biochemical reactions. Our aim is to develop a rapid and sensitive method for simultaneous determination of ALA, EPA, DHA and DPA in the plasma of hyperlipidemic and normolipidemic subjects. METHODS An ultra-high-performance liquid chromatography-tandem mass spectrometric (UPLC-MS/MS) method of ALA, EPA, DHA, and DPA was developed with chlorzoxazone as the internal standard (IS). The analytes were separated on an Acquity BEH C18 column (2.1 mm × 100 mm, 1.7 μm) with gradient elution by acetonitrile and 0.1% ammonia water. ALA, EPA, DHA, DPA, and IS were determined by negative electrospray ionization (ESI-) with multiple reaction monitoring (MRM) at m/z 277.42/259.05, 301.20/257.00, 327.30/283.40, 329.24/285.32, and 168.03/132.02. A total of 80 normolipidemic subjects and 83 hyperlipidemic subjects, who underwent testing for plasma lipids, liver and kidney functions, and blood routine blood test (BRT), were enrolled. RESULTS There was good linearity for ALA within 1-10 μg/mL, and EPA, DHA and DPA were within 0.125-10 μg/mL. The relative standard deviation (RSD) of precision was below 15%. The concentrations of ALA, EPA, DHA and DPA were 3.47 ± 2.58, 0.41 ± 0.26, 2.93 ± 1.39 and 0.25 ± 0.21 μg/mL, respectively, in normolipidemic subjects, increasing to 4.14 ± 3.71, 0.57 ± 0.46, 3.43 ± 2.13, 0.27 ± 0.25 μg/mL, respectively in hyperlipidemic subjects. Among them, only the EPA concentration was significantly different between two groups. There was a high correlation between ALA, EPA, DHA and DPA. CONCLUSION We developed a rapid and sensitive method for simultaneously determination of ALA, EPA, DHA and DPA in hyperlipidemic and normolipidemic subjects. In hyperlipidemic and normolipidemic subjects, concentrations of ALA were highest, followed by DHA, EPA and DPA; there were high degrees of correlation between each value.
Collapse
Affiliation(s)
- Beibei Zhou
- Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chao Lin
- Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Saili Xie
- Department of Image, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xingxing Zhou
- Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fan Zhang
- Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuemei Ye
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feiyan Lin
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lufeng Hu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Aifang Huang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
647
|
Ramos-Escudero F, Muñoz AM, Ramos Escudero M, Viñas-Ospino A, Morales MT, Asuero AG. Characterization of commercial Sacha inchi oil according to its composition: tocopherols, fatty acids, sterols, triterpene and aliphatic alcohols. Journal of Food Science and Technology 2019; 56:4503-4515. [PMID: 31686682 DOI: 10.1007/s13197-019-03938-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/31/2019] [Accepted: 07/09/2019] [Indexed: 01/23/2023]
Abstract
Sacha inchi oil (SIO) is one of the largest vegetable oil exports in Peru, used for consumption, in the food industry, cosmetics, and pharmaceuticals; it represents a significant economic income for producers. This study addresses the characterization and quantification of fatty acids, tocopherols, sterols, and alcohols of commercial Sacha inchi oils from Peru. Some of the SIO samples received had a high substance consistency, while others differed in the compounds studied. The results showed that some of the commercialized oils present high levels of γ-tocopherol and δ-tocopherol, while other samples had variable fatty acid compositions; especially in α-linolenic, linoleic, oleic and palmitic acids. Fourteen sterols and eleven alcohols were identified (β-sitosterol, stigmasterol, campesterol, Δ5-avenasterol, triterpene alcohol, lanosterol isomer 1 and cycloartenol) being the major components. Some SIO samples presented the following ratios: The δ-tocopherol/γ-tocopherol ratio was 0.33-0.81, ω-6/ω-3 ratio was 0.77 and a stigmasterol/campesterol ratio of 3.13. The presence of brassicasterol in some commercial oils indicates the addition of rapeseed or canola oil. Tocopherols, fatty acids, sterols and alcohol data provided a classification of SIO samples, by an efficient k-means clustering algorithm analysis. The ANOVA found significant differences between clusters for palmitic acid, oleic acid, γ-tocopherol, δ-tocopherol, campesterol and stigmasterol; these compounds could be used as markers of authenticity in commercial Sacha inchi oils.
Collapse
Affiliation(s)
- Fernando Ramos-Escudero
- 1Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Calle Toulon, 310, 15024 Lima, Peru
- 2Department of Analytical Chemistry, University of Seville, c/Prof. García González 2, 41012 Seville, Spain
| | - Ana María Muñoz
- 1Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Calle Toulon, 310, 15024 Lima, Peru
| | - Mónica Ramos Escudero
- 3Laboratorio de Química Industrial, Facultad de Ingeniería y Arquitectura, Universidad de San Martín de Porres, Av. La Fontana 1250, 15024 Lima, Peru
| | - Adriana Viñas-Ospino
- 4Facultad de Ciencias de la Salud, Universidad Tecnológica del Perú, Av. Arequipa 265, 15046 Lima, Peru
| | - María Teresa Morales
- 2Department of Analytical Chemistry, University of Seville, c/Prof. García González 2, 41012 Seville, Spain
| | - Agustín G Asuero
- 2Department of Analytical Chemistry, University of Seville, c/Prof. García González 2, 41012 Seville, Spain
| |
Collapse
|
648
|
Salvador AM, García-Maldonado E, Gallego-Narbón A, Zapatera B, Vaquero MP. Fatty Acid Profile and Cardiometabolic Markers in Relation with Diet Type and Omega-3 Supplementation in Spanish Vegetarians. Nutrients 2019; 11:nu11071659. [PMID: 31330792 PMCID: PMC6683283 DOI: 10.3390/nu11071659] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 01/25/2023] Open
Abstract
Plant-based diets are becoming increasingly popular, and scientific information concerning the nutritional status in this population is needed. This study determined the fatty acid profile of Spanish lacto-ovo vegetarians (LO-vegetarians) and vegans. Participants were 104 healthy adults, LO-vegetarians (n = 49) and vegans (n = 55). Lifestyle habits and consumption of food and omega-3 supplements were estimated by questionnaires. BMI, blood pressure, and abdominal and body fat were determined. Serum was collected to analyze fatty acids, glucose, lipids, homocysteine, insulin, and leptin. Volunteers were classified according to serum omega-6 to omega-3 (n-6/n-3) ratio into three groups: n-6/n-3 < 10, n-6/n-3 ≥ 10 to 20, and n-6/n-3 > 20. Results showed low cardiovascular risk and high insulin sensitivity with negligible differences between diet types. Linoleic acid (C18:2n-6) was the major serum fatty acid, followed by oleic (C18:1n-9) and palmitic (C16:0) acids. In contrast, serum eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3) were (median, interquartile range) 0.27, 0.18% and 1.59, and 0.93%, respectively. Users of n-3 supplements (<10% of total vegetarians) had significantly higher EPA than non-users, while frequent consumption of flax-seeds was associated with increased α-linolenic acid (C18:3n-3). However, neither n-3 supplementation nor food consumption affected DHA levels in this vegetarian population.
Collapse
Affiliation(s)
- Ana M Salvador
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais, 10, 28040 Madrid, Spain
| | - Elena García-Maldonado
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais, 10, 28040 Madrid, Spain
| | - Angélica Gallego-Narbón
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais, 10, 28040 Madrid, Spain
| | - Belén Zapatera
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais, 10, 28040 Madrid, Spain
| | - M Pilar Vaquero
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais, 10, 28040 Madrid, Spain.
| |
Collapse
|
649
|
Crespo-Piazuelo D, Criado-Mesas L, Revilla M, Castelló A, Fernández AI, Folch JM, Ballester M. Indel detection from Whole Genome Sequencing data and association with lipid metabolism in pigs. PLoS One 2019; 14:e0218862. [PMID: 31246983 PMCID: PMC6597088 DOI: 10.1371/journal.pone.0218862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/11/2019] [Indexed: 12/15/2022] Open
Abstract
The selection in commercial swine breeds for meat-production efficiency has been increasing among the past decades, reducing the intramuscular fat content, which has changed the sensorial and technological properties of pork. Through processes of natural adaptation and selective breeding, the accumulation of mutations has driven the genetic divergence between pig breeds. The most common and well-studied mutations are single-nucleotide polymorphisms (SNPs). However, insertions and deletions (indels) usually represents a fifth part of the detected mutations and should also be considered for animal breeding. In the present study, three different programs (Dindel, SAMtools mpileup, and GATK) were used to detect indels from Whole Genome Sequencing data of Iberian boars and Landrace sows. A total of 1,928,746 indels were found in common with the three programs. The VEP tool predicted that 1,289 indels may have a high impact on protein sequence and function. Ten indels inside genes related with lipid metabolism were genotyped in pigs from three different backcrosses with Iberian origin, obtaining different allelic frequencies on each backcross. Genome-Wide Association Studies performed in the Longissimus dorsi muscle found an association between an indel located in the C1q and TNF related 12 (C1QTNF12) gene and the amount of eicosadienoic acid (C20:2(n-6)).
Collapse
Affiliation(s)
- Daniel Crespo-Piazuelo
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- * E-mail:
| | - Lourdes Criado-Mesas
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
| | - Manuel Revilla
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Anna Castelló
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Ana I. Fernández
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Josep M. Folch
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Maria Ballester
- Departament de Genètica i Millora Animal, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, Spain
| |
Collapse
|
650
|
In vitrolipolysis and lymphatic absorption ofn-3 long-chain PUFA in the rat: influence of the molecular lipid species as carrier. Br J Nutr 2019; 122:639-647. [DOI: 10.1017/s0007114519001491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe aim of this work was to study the bioavailability of fatty acids (FA), focusing onn-3 long-chain (LC) PUFA, carried by different molecular lipid species, that is, phospholipids (PL) or TAG, with three formulations based on fish oils or marine PL, providing a similarn-3 LC PUFA amount. The digestive lipolysis was first assessed using anin vitroenzymatic model. Then, intestinal absorption and enterocyte metabolism were investigatedin vivo, on male Wistar rats through lymph lipid analysis. Thein vitroresults showed that the release ofn-3 LC PUFA from lipolysis was increased by 48 % when FA were provided as PL rather than TAG. Thein vivoresults demonstrated that EPA and DHA from both TAG and PL were similarly absorbed and incorporated into lymph lipids. However, DHA was mainly distributed at thesn-1/3 positions of lymph TAG when provided as marine PL, whereas it was equally distributed at the three positions with marine TAG. On the whole, even if the molecular lipid species ofn-3 LC PUFA did not greatly modify thein vivodigestion and absorption steps, it modulated the rearrangement of DHA on the glyceride positions of the lymph TAG, which may further impact the DHA metabolic fate and tissue accretion. Consequently, the present study has provided data which may be used to formulate lipid diets rich in DHA in the context of an insufficient consumption ofn-3 PUFA in Western countries.
Collapse
|