601
|
Abstract
The molecular mechanisms by which the primordia of the midface grow and fuse to form the primary palate portion of the craniofacial region are not well characterized. This is in spite of the fact that failure of growth and/or fusion of these primordia leads to the most common craniofacial birth defect in humans (i.e. clefts of the lip and/or palate). Bmp4 plays a critical role during early embryonic development and has previously been shown to play a role in epithelial-mesenchymal interactions in the craniofacial region of chicks. We analyze the expression of bmp4 in mouse as the midfacial processes undergo fusion to form the primary palate. We show that bmp4 is expressed in a very distinct manner in the three midfacial processes (lateral nasal, LNP, medial nasal, MNP, and maxillary processes, MxP) that ultimately fuse to form the midface. Prior to fusion of the midfacial processes, bmp4 is expressed in the ectoderm of the LNP, MNP, and MxP in a distinct spatial and temporal manner near and at the site of fusion of the midface. Bmp4 appears to demarcate the cells in the LNP and MNP that will eventually contact and fuse with each other. As fusion of the three prominences proceeds, some bmp4 expressing cells are trapped in the fusion line. Later, the expression of bmp4 switches to the mesenchyme of the midface underlying its initial expression in the ectoderm. The switch occurs soon after fusion of the three processes. The pattern of expression in the midfacial region implicates the important role of bmp4 in mediating the fusion process, possibly through apoptosis of cells in the putative site of fusion, during midfacial morphogenesis.
Collapse
Affiliation(s)
- Siew-Gong Gong
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, 1011 N. University Avenue, Ann Arbor, MI 48109-1078, USA.
| | | |
Collapse
|
602
|
Vieira AR, Orioli IM, Castilla EE, Cooper ME, Marazita ML, Murray JC. MSX1 and TGFB3 contribute to clefting in South America. J Dent Res 2003; 82:289-92. [PMID: 12651933 DOI: 10.1177/154405910308200409] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
MSX1 and TGFB3 have been proposed as genes in which mutations may contribute to non-syndromic forms of oral clefts; however, an interaction between these genes has not been described. The present study attempts to detect transmission distortion of MSX1 and TGFB3 in 217 South American children from their respective mothers. With transmission disequilibrium test analysis, cleft lip with/without cleft palate, cleft lip with palate plus cleft palate only, and all datasets combined showed evidence of association with MSX1 (p = 0.004, p = 0.037, and p = 0.001, respectively). With likelihood ratio test analysis, "cleft lip only" showed association with MSX1 (p = 0.04) and "cleft palate only" with TGFB3 (p = 0.02). A joint analysis of MSX1 and TGFB3 suggested that there may be an interaction between these two loci to increase cleft susceptibility. These results suggest that MSX1 and TGFB3 mutations make a contribution to clefts in South American populations.
Collapse
Affiliation(s)
- A R Vieira
- Departments of Pediatrics, 2613 JCP, University of Iowa, Iowa City, 52242-1083, USA
| | | | | | | | | | | |
Collapse
|
603
|
Jugessur A, Lie RT, Wilcox AJ, Murray JC, Taylor JA, Saugstad OD, Vindenes HA, Abyholm F. Variants of developmental genes (TGFA, TGFB3, and MSX1) and their associations with orofacial clefts: a case-parent triad analysis. Genet Epidemiol 2003; 24:230-9. [PMID: 12652527 DOI: 10.1002/gepi.10223] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We selected 262 case-parent triads from a population-based study of orofacial clefts in Norway, and examined variants of developmental genes TGFA, TGFB3, and MSX1 in the etiology of orofacial clefts. One hundred seventy-four triads of cleft lip cases (CL+/-P) and 88 triads of cleft palate only cases (CPO) were analyzed. There was little evidence for an association of any of these genes with CL+/-P. The strongest association was a 1.7-fold risk with two copies of the TGFB3-CA variant (95% CI=0.9-3.0). Among CPO cases, there was a 3-fold risk with two copies of the TGFA TaqI A2 allele, and no increase with one copy. Assuming this to be a recessive effect, we estimated a 3.2-fold risk among babies homozygous for the variant (95% CI=1.1-9.2). Furthermore, there was strong evidence of gene-gene interaction. While there was only a weak association of the MSX1-CA variant with CPO, the risk was 9.7-fold (95% CI=2.9-32) among children homozygous for both the MSX1-CA A4 allele and the TGFA A2 allele. No association of CPO with the TGFA variant was seen among the other MSX1-CA genotypes. In conclusion, no strong associations were found between CL+/-P and variants at these three genes. There was a possible recessive effect of the TGFA TaqI variant on the risk of CPO, with a 3-fold risk among children homozygous for the variant. The effect of this TGFA genotype was even stronger among children homozygous for the MSX1-CA A4 allele, raising the possibility of interaction between these two genes.
Collapse
Affiliation(s)
- Astanand Jugessur
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
604
|
Abstract
The transforming growth factor beta (TGFbeta) superfamily encompasses a number of structurally related proteins that can be divided into several subfamilies including TGFbetas, activins/inhibins and bone morphogenetic proteins (BMPs). The Smads are major intracellular mediators in transducing the signals of TGFbeta superfamily members, and are abundantly expressed in the developing epidermis and epidermal appendages. Moreover, the phenotypes of transgenic/knockout mice with altered components of the TGFbeta superfamily signaling pathway suggest that TGFbeta superfamily signaling is required for epidermal/appendage development. TGFbeta superfamily members are involved in most events during epidermal/appendage development through the TGFbeta signal transduction pathway and through cross talk with other signaling pathways. Future studies will be instrumental in defining the precise roles for TGFbeta superfamily signaling in epidermal/appendage development.
Collapse
Affiliation(s)
- Allen G Li
- Department of Dermatology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
605
|
Carinci F, Pezzetti F, Scapoli L, Martinelli M, Avantaggiato A, Carinci P, Padula E, Baciliero U, Gombos F, Laino G, Rullo R, Cenzi R, Carls F, Tognon M. Recent developments in orofacial cleft genetics. J Craniofac Surg 2003; 14:130-43. [PMID: 12621282 DOI: 10.1097/00001665-200303000-00002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nonsyndromic cleft of the lip and/or palate (CLP or orofacial cleft) derives from an embryopathy with consequent failure of the nasal process and/or palatal shelves fusion. This severe birth defect is one of the most common malformations among live births. Nonsyndromic CLP is composed of two separate entities: cleft lip and palate (CL+/-P) and cleft palate only (CPO). Both have a genetic background, and environmental factors probably disclose these malformations. In CL+/-P, several loci have been identified, and, in one case, a specific gene has also been found. In CPO, one gene has been identified, but many more are probably involved. Because of the complexity of the genetics of nonsyndromic CLP as a result of the difference between CL+/-P and CPO, heterogeneity of each group caused by the number of involved genes, type of inheritance, and interaction with environmental factors, we discuss the more sound results obtained with different approaches: epidemiological studies, animal models, human genetic studies, and in vitro studies.
Collapse
Affiliation(s)
- Francesco Carinci
- Maxillofacial Surgery, School of Medicine, Center of Molecular Genetics, CARISBO Foundation, and Institute of Histology and General Embryology, School of Medicine, University of Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
606
|
Vieira AR. Oral clefts and syndromic forms of tooth agenesis as models for genetics of isolated tooth agenesis. J Dent Res 2003; 82:162-5. [PMID: 12598542 DOI: 10.1177/154405910308200303] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Genetic defects responsible for tooth agenesis are only now beginning to be uncovered. MSX1 and PAX9 have been associated with tooth agenesis in mice and humans, but interestingly for humans, these genes are associated with specific missing teeth. Mouse models also show that specific genes contribute to the development of specific types of teeth. A precise description of the phenotype specifying which teeth are missing has become fundamental. Mendelian segregation can be identified in families with tooth agenesis, but heterogenous or multiple genes may be responsible for the development of specific types of teeth agenesis in humans. Data from animal models are still very complex, and the human embryology is still poorly understood. Oral clefts and syndromic forms of tooth agenesis may be the best models for isolated tooth agenesis. In the future, a precise description of the missing teeth in syndromes involving tooth agenesis may be useful.
Collapse
Affiliation(s)
- A R Vieira
- Department of Pediatrics ML 2182, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
607
|
|
608
|
Leezer JL, Hackmiller RC, Greene RM, Pisano MM. Expression of the retinoblastoma family of tumor suppressors during murine embryonic orofacial development. Orthod Craniofac Res 2003; 6:32-47. [PMID: 12627794 DOI: 10.1046/j.1439-0280.2003.2c035.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To elucidate the role of the retinoblastoma (Rb) family of tumor suppressors and growth regulators in transforming growth factor beta (TGFbeta)-mediated embryonic palatal growth and morphogenesis. DESIGN The spatio-temporal expression patterns of the RB1, RB2/p130, and p107 tumor suppressor genes, their gene products (pRb, p130 and p107) and phosphoforms were examined in the developing murine secondary palate utilizing reverse transcriptase polymerase chain reaction (RT-PCR) and immunoblot/immunolocalization analyses with phospho-specific antibodies. RESULTS The RB1, RB2/p130, and p107 tumor suppressor genes and their gene products (pRb, p130, and p107) were differentially expressed in embryonic palatal tissue during the critical period of secondary palate development [gestational days (GD) 12-14]. Both hyper- (115 kDa) and hypo-phosphorylated (110 kDa) forms of pRb were expressed, with a notable transient decrease in expression on GD 13. Functional (hypo-phosphorylated) forms of pRB predominated during the critical period of palatogenesis. As opposed to pRb expression, p130 expression was transiently elevated on GD 13 in the embryonic palate, and functional (hypo-phosphorylated) forms were expressed at exceedingly low levels. p107 levels gradually declined over the course of palatogenesis. This diminution in expression, however, was accompanied by a transition to more functional (hypo-phosphorylated) forms of the p107 protein. When compared with Rb expression patterns in the whole embryo/fetus, each of the three Rb proteins exhibited unique and specific temporal patterns of expression in the developing palate. RT-PCR analyses of RB1, RB2/p130, and p107 mRNA expression in embryonic palatal tissue revealed patterns of expression which paralleled steady-state protein levels of pRb, p130, and p107 in the developing tissue. Immunolocalization of the Rb proteins demonstrated ubiquitous expression of pRb, p130, and p107 in embryonic palate mesenchyme and epithelium during GD 12-14 of development with intense nuclear staining of the Rbs in palate epithelial cells on days 12 and 13 of gestation. CONCLUSION Changing patterns of pRb, p130, and p107 protein expression and phosphorylation were evident in the embryonic secondary palate during the course of palatal ontogenesis. As the function of all three Rb proteins is regulated primarily through their phosphorylation, this suggests significant variation in Rb protein functionality during the course of palate development. Additional evidence from our laboratory (manuscript in preparation) indicates that the TGFbetas, key regulators of palatal growth and morphogenesis, are able to differentially modulate phosphorylation of the Rb proteins in this developing tissue, and hence the TGFbetas may regulate the function(s) of the Rb proteins during palatal ontogenesis. Although functionality of the Rb proteins is known to be regulated primarily through post-translational modification (i.e. phopsphorylation), comparison of RB1, RB2/p130, and p107 steady-state mRNA levels with pRb, p130, and p107 steady-state protein levels in the developing palate levels suggests a significant degree of regulation at the transcriptional level. Differential patterns of Rb expression and phosphorylation in the developing palate suggest that pRb, p107, and p130 may each play unique roles in various aspects of growth, morphogenesis and cellular differentiation during palatal ontogenesis. Studies directed at elucidating the precise cellular role(s) of pRb, p107, and p130 during palate development, and at TGFbeta regulation of Rb expression/phosphorylation are ongoing in our laboratory.
Collapse
Affiliation(s)
- J L Leezer
- Department of Pediatrics, School of Medicine, University of Louisville, Louisville, KY 40292, USA
| | | | | | | |
Collapse
|
609
|
Hagiwara N, Katarova Z, Siracusa LD, Brilliant MH. Nonneuronal expression of the GABA(A) beta3 subunit gene is required for normal palate development in mice. Dev Biol 2003; 254:93-101. [PMID: 12606284 DOI: 10.1016/s0012-1606(02)00030-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cleft palate is one of the most common birth defects in humans, in which both genetic and environmental factors are involved. In mice, loss of the GABA(A) receptor beta3 subunit gene (Gabrb3) or the targeted mutagenesis of the GABA synthetic enzyme (Gad1) leads to cleft palate. These observations indicate that a GABAergic system is important in normal palate development. To determine what cell types, neuronal or nonneuronal, are critical for GABA signaling in palate development, we used the neuron-specific enolase promoter to express the beta3 subunit in Gabrb3 mutant mice. Expression of this construct was able to rescue the neurological phenotype, but not the cleft palate phenotype. Combined with the previous observation demonstrating that ubiquitous expression of the beta3 subunit rescued the cleft palate phenotype, a nonneuronal GABAergic system is implicated in palate development. Using immunohistochemistry, we detected GABA in the developing palate, initially in the nasal aspect of palatal epithelium of the vertical shelves; later in the medial edge epithelium of the horizontally oriented palatal shelves and in the epithelial seam during fusion. Based on these observations, we propose that GABA, synthesized by the palatal epithelium, acts as a signaling molecule during orientation and fusion of the palate shelves.
Collapse
Affiliation(s)
- Nobuko Hagiwara
- University of Arizona, College of Medicine, Department of Pediatrics, 1501 North Campbell Avenue, Tucson, AZ 85724, USA
| | | | | | | |
Collapse
|
610
|
Barnett JV, Desgrosellier JS. Early events in valvulogenesis: a signaling perspective. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2003; 69:58-72. [PMID: 12768658 DOI: 10.1002/bdrc.10006] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The proper formation and function of the vertebrate heart requires a multitude of specific cell and tissue interactions. These interactions drive the early specification and assembly of components of the cardiovascular system that lead to a functioning system before the attainment of the definitive cardiac and vascular structures seen in the adult. Many of these adult structures are hypothesized to require both proper molecular and physical cues to form correctly. Unlike any other organ system in the embryo, the cardiovascular system requires concurrent function and formation for the embryo to survive. An example of this complex interaction between molecular and physical cues is the formation of the valves of the heart. Both molecular cues that regulate cell transformation, migration, and extracellular matrix deposition, and physical cues emanating from the beating heart, as well as hemodynamic forces, are required for valvulogenesis. This review will focus on molecules and emerging pathways that guide early events in valvulogenesis.
Collapse
Affiliation(s)
- Joey V Barnett
- Department of Pharmacology, Vanderbilt University Medical Center, Room 476, Robinson Research Building, 2220 Pierce Avenue, Nashville, TN 37232-6600, USA.
| | | |
Collapse
|
611
|
Füchtbauer EM. Inhibition of skeletal muscle development: less differentiation gives more muscle. Results Probl Cell Differ 2003; 38:143-61. [PMID: 12132393 DOI: 10.1007/978-3-540-45686-5_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The fact that stem cells have to be protected from premature differentiation is true for many organs in the developing embryo and the adult organism. However, there are several arguments that this is particularly important for (skeletal) muscle. There are some evolutionary arguments that muscle is a "default" pathway for mesodermal cells, which has to be actively prevented in order to allow cells to differentiate into other tissues. Myogenic cells originate from very small areas of the embryo where only a minor portion of these cells is supposed to differentiate. Differentiated muscle fibres are unconditionally post-mitotic, leaving undifferentiated stem cells as the only source of regeneration. The mechanical usage of muscle and its superficial location in the vertebrate body makes regeneration a frequently used mechanism. Looking at the different inhibitory mechanisms that have been found within the past 10 or so years, it appears as if evolution has taken this issue very serious. At all possible levels we find regulatory mechanisms that help to fine tune the differentiation of myogenic cells. Secreted molecules specifying different populations of somitic cells, diffusing or membrane-bound signals among fellow myoblasts, modulating molecules within the extracellular matrix and last, but not least, a changing set of activating and repressing cofactors. We have come a long way from the simple model of MyoD just to be turned on at the right time in the right cell.
Collapse
Affiliation(s)
- Ernst-Martin Füchtbauer
- Institute of Molecular and Structural Biology, Aarhus University, C.F. Møllers Allé, Bygn. 130, Arhus C, Denmark
| |
Collapse
|
612
|
Abstract
TGFbeta is secreted as part of a latent complex that is targeted to the extracellular matrix. A variety of molecules, 'TGFbeta activators,' release TGFbeta from its latent state. The unusual temporal discontinuity of TGFbeta synthesis and action and the panoply of TGFbeta effects contribute to the interest in TGF-beta. However, the logical connections between TGFbeta synthesis, storage and action are obscure. We consider the latent TGFbeta complex as an extracellular sensor in which the TGFbeta propeptide functions as the detector, latent-TGFbeta-binding protein (LTBP) functions as the localizer, and TGF-beta functions as the effector. Such a view provides a logical continuity for various aspects of TGFbeta biology and allows us to appreciate TGFbeta biology from a new perspective.
Collapse
Affiliation(s)
- Justin P Annes
- Department of Cell Biology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| | | | | |
Collapse
|
613
|
|
614
|
Flanders KC, Burmester JK. Medical applications of transforming growth factor-beta. Clin Med Res 2003; 1:13-20. [PMID: 15931280 PMCID: PMC1069016 DOI: 10.3121/cmr.1.1.13] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2002] [Accepted: 08/26/2002] [Indexed: 01/18/2023]
Abstract
Transforming growth factor-beta (TGF-beta) proteins and their antagonists have entered clinical trials. These multi-functional regulators of cell growth and differentiation induce extracellular matrix proteins and suppress the immune system making TGF-betas useful in treatment of wounds with impaired healing, mucositis, fractures, ischemia-reperfusion injuries, and autoimmune disease. In diseases such as keloids, glomerulonephritis and pulmonary fibrosis, excessive expression of TGF-beta has been implicated as being responsible for accumulation of detrimental scar tissue. In these conditions, agents that block TGF-beta have prevented or reversed disease. Similarly, in carcinogenesis, blocking TGF-beta activity may be valuable in stimulating an immune response towards metastasis. As these blocking agents receive approval, we will likely have new therapies for previously recalcitrant diseases.
Collapse
Affiliation(s)
- Kathleen C Flanders
- Laboratory of Cell Regulation and Carcinogenesis, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
615
|
Cheng J, Grande JP. Transforming growth factor-beta signal transduction and progressive renal disease. Exp Biol Med (Maywood) 2002; 227:943-56. [PMID: 12486204 DOI: 10.1177/153537020222701102] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transforming growth factor-beta (TGF-beta) superfamily members are multifunctional growth factors that play pivotal roles in development and tissue homeostasis. Recent studies have underscored the importance of TGF-beta in regulation of cell proliferation and extracellular matrix synthesis and deposition. TGF-beta signaling is initiated by ligand binding to a membrane-associated receptor complex that has serine/threonine kinase activity. This receptor complex phosphorylates specific Smad proteins, which then transduce the ligand-activated signal to the nucleus. Smad complexes regulate target gene transcription either by directly binding DNA sequences, or by complexing with other transcription factors or co-activators. There is extensive crosstalk between the TGF-beta signaling pathway and other signaling systems, including the mitogen-activated protein kinase pathways. The importance of TGF-beta in regulation of cell growth has been emphasized by recent observations that mutations of critical elements of the TGF-beta signaling system are associated with tumor progression in patients with many different types of epithelial neoplasms. TGF-beta has emerged as a predominant mediator of extracellular matrix production and deposition in progressive renal disease and in other forms of chronic tissue injury. In this overview, recent advances in our understanding of TGF-beta signaling, cell cycle regulation by TGF-beta, and the role of TGF-beta in progressive renal injury are highlighted.
Collapse
Affiliation(s)
- Jingfei Cheng
- Renal Pathophysiology Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
616
|
Abstract
Members of the TGF-beta superfamily, which includes TGF-betas, growth differentiation factors, bone morphogenetic proteins, activins, inhibins, and glial cell line-derived neurotrophic factor, are synthesized as prepropeptide precursors and then processed and secreted as homodimers or heterodimers. Most ligands of the family signal through transmembrane serine/threonine kinase receptors and SMAD proteins to regulate cellular functions. Many studies have reported the characterization of knockout and knock-in transgenic mice as well as humans or other mammals with naturally occurring genetic mutations in superfamily members or their regulatory proteins. These investigations have revealed that TGF-beta superfamily ligands, receptors, SMADs, and upstream and downstream regulators function in diverse developmental and physiological pathways. This review attempts to collate and integrate the extensive body of in vivo mammalian studies produced over the last decade.
Collapse
Affiliation(s)
- Hua Chang
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | |
Collapse
|
617
|
Nugent P, Pisano MM, Weinrich MC, Greene RM. Increased susceptibility to retinoid-induced teratogenesis in TGF-beta2 knockout mice. Reprod Toxicol 2002; 16:741-7. [PMID: 12401501 DOI: 10.1016/s0890-6238(02)00053-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Transforming growth factor-beta (TGF-beta) and retinoic acid (RA) have been implicated in normal and abnormal embryonic development. The aim of this study was to investigate the effect of TGF-beta2 gene deletion on susceptibility to RA-induced teratogenesis in a mouse model. TGF-beta2 heterozygous or wild-type mice were mated and the dams dosed with a teratogenic dose of RA, or with control vehicle. The incidence of RA-induced cleft palate (CP) was 48% in wild-type embryos from wild-type dams, increasing to 71% in TGF-beta2 heterozygous littermates. Wild-type and TGF-beta2 heterozygous embryos from heterozygous dams exhibited a CP incidence of 74 and 77% respectively, following treatment with RA. Ninety-one percent of littermates nullizygous for TGF-beta2 were dead when examined; the remainder exhibited a CP. We conclude that the genotype of the dam and embryo with respect to TGF-beta2 affects the incidence of RA-induced teratogenesis.
Collapse
Affiliation(s)
- Paul Nugent
- Birth Defects Center, University of Louisville School of Dentistry, 501 S Preston Street, Suite 301, Louisville, KY 40292, USA
| | | | | | | |
Collapse
|
618
|
Li C, Zhu NL, Tan RC, Ballard PL, Derynck R, Minoo P. Transforming growth factor-beta inhibits pulmonary surfactant protein B gene transcription through SMAD3 interactions with NKX2.1 and HNF-3 transcription factors. J Biol Chem 2002; 277:38399-408. [PMID: 12161428 DOI: 10.1074/jbc.m203188200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) represses surfactant protein B (Sp-B) gene transcription through a mechanism that remains unknown. A homeodomain and a forkhead transcription factor, NKX2.1 and HNF-3, respectively, are known activators of Sp-B transcription. Because SMADs are the effectors of TGF-beta-induced gene activation, we examined the possibility that gene repression by TGF-beta may also occur through interactions of SMADs with NKX2.1 and HNF-3. We found that lung epithelial carcinoma H441 cells contain SMAD2/3 and -4, which localize to the nucleus in response to TGF-beta treatment. The activity of a transfected Sp-B promoter/reporter construct was reduced in a dose-dependent manner by TGF-beta. Cotransfection with a mutant, constitutively activated form of the Tgf-beta type I receptor repressed Sp-B promoter activity in the absence of TGF-beta ligand. Dominant negative mutants of Smads blocked the repressor activity of TGF-beta. SMAD3, but not SMAD2, mediated the repressor activity of TGF-beta on the Sp-B promoter. Mutations within a 70-base pair domain that includes binding sites for NKX2.1, hepatocyte nuclear factor 3 (HNF-3), or cAMP response element-binding protein (CREB) eliminated SMAD3-dependent repression of Sp-B transcription. Electrophoretic mobility shift analysis showed no evidence for direct binding of SMAD3 to the Sp-B promoter, and a DNA binding mutant of SMAD3 also repressed Sp-B, suggesting that direct DNA binding of SMAD3 may not be required. Using a mammalian two hybrid assay, we found physical and functional interactions between SMAD3 and both NKX2.1 and HNF-3. Also, a glutathione S-transferase-fused SMAD3 directly binds to in vitro synthesized NKX2.1 or HNF-3, demonstrating protein-protein interactions between SMAD3 and the two transcriptional factors. The DNA binding of NKX2.1 to Sp-B promoter was reduced in response to TGF-beta treatment, although expression of Nkx2.1 was not affected. We conclude that SMAD3 interactions with the positive regulators NKX2.1 and HNF-3 underlie the molecular basis for TGF-beta-induced repression of Sp-B gene transcription.
Collapse
Affiliation(s)
- Changgong Li
- Department of Pediatrics, Women's and Children's Hospital, University of Southern California School of Medicine, Los Angeles, California 90033, USA
| | | | | | | | | | | |
Collapse
|
619
|
Buckley S, Warburton D. Dynamics of metalloproteinase-2 and -9, TGF-beta, and uPA activities during normoxic vs. hyperoxic alveolarization. Am J Physiol Lung Cell Mol Physiol 2002; 283:L747-54. [PMID: 12225951 DOI: 10.1152/ajplung.00415.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The final stage of lung development, alveolarization, continues after birth in humans and rodents. Clinical interventions, such as oxygen therapy, in the first week of life can adversely impact alveolar formation. We compared alveolarization in the rat neonate under normal vs. hyperoxic conditions, examining gelatinase, transforming growth factor (TGF)-beta, and the protease urokinase-type plasminogen activator (uPA) activities in whole lung and cultured type II alveolar epithelial cells (AEC2). The dynamic induction of gelatinase, TGF-beta, and uPA activities seen in neonatal lungs during the first days of life was significantly impacted by hyperoxia. In whole lung, gelatinase and TGF-beta activities were increased, while uPA activity was decreased. At the level of the epithelium, AEC2 isolated from hyperoxic rat pups early in life secreted less active TGF-beta, less active gelatinases, and less active uPA than control neonatal AEC2. AEC2 from hyperoxic pups also expressed increased levels of proliferating cell nuclear antigen early in life compared with control neonatal AEC2, suggesting that oxygen-induced proliferation and/or repair were occurring. The developmental profile of neonatal lung was perturbed within a day of initiating oxygen treatment, suggesting that putative palliative treatments should be coadministered with oxygen therapy.
Collapse
Affiliation(s)
- S Buckley
- Developmental Biology Program, Childrens Hospital Los Angeles Research Institute, California 90027, USA
| | | |
Collapse
|
620
|
Shah AH, Tabayoyong WB, Kimm SY, Kim SJ, Van Parijs L, Lee C. Reconstitution of Lethally Irradiated Adult Mice with Dominant Negative TGF-β Type II Receptor-Transduced Bone Marrow Leads to Myeloid Expansion and Inflammatory Disease. THE JOURNAL OF IMMUNOLOGY 2002; 169:3485-91. [PMID: 12244137 DOI: 10.4049/jimmunol.169.7.3485] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TGF-beta regulation of immune homeostasis has been investigated in the context of cytokine knockout (TGF-beta null) mice, in which particular TGF-beta isoforms are disrupted throughout the entire organism, as well as in B and T cell-specific transgenic models, but to date the immunoregulatory effects of TGF-beta have not been addressed in the context of an in vivo mouse model in which multi-isoform TGF-beta signaling is abrogated in multiple leukocyte lineages while leaving nonhemopoietic tissue unaffected. Here we report the development of a murine model of TGF-beta insensitivity limited to the hemopoietic tissue of adult wild-type C57BL/6 mice based on retroviral-mediated gene transfer of a dominant negative TGF-beta type II receptor targeting murine bone marrow. Unlike the lymphoproliferative syndrome observed in TGF-beta1-deficient mice, the disruption of TGF-beta signaling in bone marrow-derived cells leads to dramatic expansion of myeloid cells, primarily monocytes/macrophages, and is associated with cachexia and mortality in lethally irradiated mice reconstituted with dominant negative receptor-transduced bone marrow. Surprisingly, there was a notable absence of T cell expansion in affected animals despite the observed differentiation of most cells in the T cell compartment to a memory phenotype. These results indicate not only that TGF-beta acts as a negative regulator of immune function, but that lack of functional TGF-beta signaling in the myeloid compartment of adult mice may trigger suppression of lymphocytes, which would otherwise proliferate when rendered insensitive to TGF-beta.
Collapse
Affiliation(s)
- Ali H Shah
- Department of Urology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
621
|
|
622
|
Kondo S, Schutte BC, Richardson RJ, Bjork BC, Knight AS, Watanabe Y, Howard E, de Lima RLLF, Daack-Hirsch S, Sander A, McDonald-McGinn DM, Zackai EH, Lammer EJ, Aylsworth AS, Ardinger HH, Lidral AC, Pober BR, Moreno L, Arcos-Burgos M, Valencia C, Houdayer C, Bahuau M, Moretti-Ferreira D, Richieri-Costa A, Dixon MJ, Murray JC. Mutations in IRF6 cause Van der Woude and popliteal pterygium syndromes. Nat Genet 2002; 32:285-9. [PMID: 12219090 PMCID: PMC3169431 DOI: 10.1038/ng985] [Citation(s) in RCA: 610] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2002] [Accepted: 08/05/2002] [Indexed: 11/09/2022]
Abstract
Interferon regulatory factor 6 (IRF6) belongs to a family of nine transcription factors that share a highly conserved helix-turn-helix DNA-binding domain and a less conserved protein-binding domain. Most IRFs regulate the expression of interferon-alpha and -beta after viral infection, but the function of IRF6 is unknown. The gene encoding IRF6 is located in the critical region for the Van der Woude syndrome (VWS; OMIM 119300) locus at chromosome 1q32-q41 (refs 2,3). The disorder is an autosomal dominant form of cleft lip and palate with lip pits, and is the most common syndromic form of cleft lip or palate. Popliteal pterygium syndrome (PPS; OMIM 119500) is a disorder with a similar orofacial phenotype that also includes skin and genital anomalies. Phenotypic overlap and linkage data suggest that these two disorders are allelic. We found a nonsense mutation in IRF6 in the affected twin of a pair of monozygotic twins who were discordant for VWS. Subsequently, we identified mutations in IRF6 in 45 additional unrelated families affected with VWS and distinct mutations in 13 families affected with PPS. Expression analyses showed high levels of Irf6 mRNA along the medial edge of the fusing palate, tooth buds, hair follicles, genitalia and skin. Our observations demonstrate that haploinsufficiency of IRF6 disrupts orofacial development and are consistent with dominant-negative mutations disturbing development of the skin and genitalia.
Collapse
Affiliation(s)
- Shinji Kondo
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
623
|
Kohama K, Nonaka K, Hosokawa R, Shum L, Ohishi M. TGF-beta-3 promotes scarless repair of cleft lip in mouse fetuses. J Dent Res 2002; 81:688-94. [PMID: 12351667 DOI: 10.1177/154405910208101007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
TGF-beta3 mediates epithelial-mesenchymal transformation during normal fusion of lip and palate, but how TGF-beta3 functions during cleft lip repair remains unexplored. We hypothesize that TGF-beta3 promotes fetal cleft lip repair and fusion by increasing the availability of mesenchymal cells. In this investigation, we demonstrated that cleft lips in mouse fetuses were repaired by fetal surgery, producing scarless fusion. At the site of the operation, we first observed an infusion of platelets expressing TGF-beta3, followed by increased expression of cyclin D1 and tenascin-C, and coupled with increased mesenchymal cell proliferation. In an ex vivo serumless culture system, cleft lip explants fused in the presence of exogenous TGF-beta3. Cultured lips also showed up-regulation in cyclin D1 and tenascin-C expression. These findings suggest that microsurgical repair of cleft lip in the fetus that produced scarless fusion is mediated by TGF-beta3 regulation of mesenchymal cell proliferation and migration at the site of repair.
Collapse
Affiliation(s)
- K Kohama
- Graduate School of Dental Science, Faculty of Dental Science, Kyushu University, Maidashi, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
624
|
Ingman WV, Robertson SA. Defining the actions of transforming growth factor beta in reproduction. Bioessays 2002; 24:904-14. [PMID: 12325123 DOI: 10.1002/bies.10155] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Members of the transforming growth factor beta (TGFbeta) family are pleiotropic cytokines with key roles in tissue morphogenesis and growth. TGFbeta1, TGFbeta2 and TGFbeta3 are abundant in mammalian reproductive tissues, where development and cyclic remodelling continue in post-natal and adult life. Potential roles for TGFbeta have been identified in gonad and secondary sex organ development, spermatogenesis and ovarian function, immunoregulation of pregnancy, embryo implantation and placental development. However, better tools must now be employed to map more precisely essential functions and the regulatory networks governing their activity. Gene ablation and transgenic models are expected to provide novel insights into distinct physiological activities for each TGFbeta isoform in normal reproductive function and reproductive pathologies. It is also necessary to consider the mechanisms controlling TGFbeta activation from latent precursor forms, and receptor and binding protein expression. Smad intracellular signalling circuitry and modulation by environmental stimuli through cross-talk with other signal transduction pathways will further constrain TGFbeta action. This review examines existing evidence for TGFbeta1, TGFbeta2 and TGFbeta3 regulation of male and female reproductive biology, and highlights prospects for future research.
Collapse
Affiliation(s)
- Wendy V Ingman
- Department of Obstetrics and Gynaecology and Reproductive Medicine Unit, University of Adelaide, Australia.
| | | |
Collapse
|
625
|
Weston WM, Freeman AB, Haberecht C, Hackmiller RC, Ma L, Nugent P, Warr E, Pisano MM, Greene RM. Phosphatase regulation of gene expression during development of the palate. Life Sci 2002; 71:1849-62. [PMID: 12175701 DOI: 10.1016/s0024-3205(02)01947-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In mammalian cells, including those of the embryonic palate, the level of phosphorylation of cellular proteins at any given time reflects the activities of protein kinases and protein phosphatases. Both protein phosphatase-1 (PP-1) and PP-2A inhibit cAMP-mediated increases in transcription by dephosphorylating CREB at ser-133. Western blot analysis indicated that protein phosphatase 1 (PP-1) was expressed constitutively in palatal tissue during its development. Expression of PP-2A was regulated developmentally with maximal expression on gestational day (gd) 14. Densitometric scanning revealed a 30% increase in expression from gd 13 to gd 14. Virtually all phosphatase activity in the tissue extracts could be inhibited by 5 microM okadaic acid, demonstrating that PP-1 and PP-2A account for all detectable ser/thr protein phosphatase activity present in the developing palate. Moreover, no significant differences in PP-1 and PP-2A activities were observed during the period of palate development. Treatment of primary cultures of murine embryonic palate mesenchymal (MEPM) cells with forskolin (20 microM) to elevate intracellular cAMP levels, resulted in a time-dependent increase in CREB ser-133 phosphorylation and a corresponding time dependent decrease in PP-1 and PP-2A levels. Moreover, treatment of MEPM cells with okadaic acid resulted in a dramatic increase in basal CREB ser-133 phosphorylation. This suggests that PP-1 activity may contribute to transcriptional regulation of CREB and that PP-1 and PP-2A are regulated differentially by cAMP. Treatment of MEPM cells with TGF beta 1 (1 ng/ml) under conditions of TGF beta-induced CREB phosphorylation resulted in no effect on the expression of either PP-1 or PP-2A proteins and no significant alterations in total basal protein phosphatase activity. These results demonstrate that transcriptional regulation of CREB in embryonic palatal issue is dependent on the coordinate activity of specific kinases and phosphatases.
Collapse
Affiliation(s)
- Wayde M Weston
- Pulmonary/Diabetes Therapeutic Unit, UP4310, SmithKline Beecham Pharmaceuticals, 1250 South Collegeville Road, PO Box 5089, Collegeville, PA 19426, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
626
|
Brandau O, Aszódi A, Hunziker EB, Neame PJ, Vestweber D, Fässler R. Chondromodulin I is dispensable during enchondral ossification and eye development. Mol Cell Biol 2002; 22:6627-35. [PMID: 12192060 PMCID: PMC135637 DOI: 10.1128/mcb.22.18.6627-6635.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chondromodulin I (chm-I), a type II transmembrane protein, is highly expressed in the avascular zones of cartilage but is downregulated in the hypertrophic region, which is invaded by blood vessels during enchondral ossification. In vitro and in vivo assays with the purified protein have shown chondrocyte-modulating and angiogenesis-inhibiting functions. To investigate chm-I function in vivo, we generated transgenic mice lacking chm-I mRNA and protein. Null mice are viable and fertile and show no morphological changes. No abnormalities in vascular invasion and cartilage development were detectable. No evidence was found for a compensating function of tendin, a recently published homologue highly expressed in tendons and also, at low levels, in cartilage. Furthermore, no differences in the expression of other angiogenic or antiangiogenic factors such as transforming growth factor beta1 (TGF-beta1), TGF-beta2, TGF-beta3, fibroblast growth factor 2, and vascular endothelial growth factor were found. The surprising lack of phenotype in the chm-I-deficient mice suggests either a different function for chm-I in vivo than has been proposed or compensatory changes in uninvestigated angiogenic or angiogenesis-inhibiting factors. Further analysis using double-knockout technology will be necessary to analyze the function of chm-I in the complex process of enchondral ossification.
Collapse
Affiliation(s)
- Oliver Brandau
- Department of Experimental Pathology, Lund University, Sweden.
| | | | | | | | | | | |
Collapse
|
627
|
Zhang Z, Song Y, Zhao X, Zhang X, Fermin C, Chen Y. Rescue of cleft palate inMsx1-deficient mice by transgenicBmp4reveals a network of BMP and Shh signaling in the regulation of mammalian palatogenesis. Development 2002; 129:4135-46. [PMID: 12163415 DOI: 10.1242/dev.129.17.4135] [Citation(s) in RCA: 257] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cleft palate, the most frequent congenital craniofacial birth defects in humans, arises from genetic or environmental perturbations in the multi-step process of palate development. Mutations in the MSX1 homeobox gene are associated with non-syndromic cleft palate and tooth agenesis in humans. We have used Msx1-deficient mice as a model system that exhibits severe craniofacial abnormalities, including cleft secondary palate and lack of teeth, to study the genetic regulation of mammalian palatogenesis. We found that Msx1 expression was restricted to the anterior of the first upper molar site in the palatal mesenchyme and that Msx1 was required for the expression of Bmp4 and Bmp2 in the mesenchyme and Shh in the medial edge epithelium (MEE) in the same region of developing palate. In vivo and in vitro analyses indicated that the cleft palate seen in Msx1 mutants resulted from a defect in cell proliferation in the anterior palatal mesenchyme rather than a failure in palatal fusion. Transgenic expression of human Bmp4 driven by the mouse Msx1 promoter in the Msx1–/– palatal mesenchyme rescued the cleft palate phenotype and neonatal lethality. Associated with the rescue of the cleft palate was a restoration of Shh and Bmp2 expression, as well as a return of cell proliferation to the normal levels. Ectopic Bmp4 appears to bypass the requirement for Msx1 and functions upstream of Shh and Bmp2 to support palatal development. Further in vitro assays indicated that Shh (normally expressed in the MEE) activates Bmp2 expression in the palatal mesenchyme which in turn acts as a mitogen to stimulate cell division. Msx1 thus controls a genetic hierarchy involving BMP and Shh signals that regulates the growth of the anterior region of palate during mammalian palatogenesis. Our findings provide insights into the cellular and molecular etiology of the non-syndromic clefting associated with Msx1 mutations.
Collapse
Affiliation(s)
- Zunyi Zhang
- Department of Cell and Molecular Biology and Center for Bioenvironmental Research, Tulane University, New Orleans, LA 70118, USA
| | | | | | | | | | | |
Collapse
|
628
|
Barrow LL, Wines ME, Romitti PA, Holdener BC, Murray JC. Aryl hydrocarbon receptor nuclear translocator 2 (ARNT2): structure, gene mapping, polymorphisms, and candidate evaluation for human orofacial clefts. TERATOLOGY 2002; 66:85-90. [PMID: 12210012 DOI: 10.1002/tera.10062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Nonsyndromic orofacial clefts have an estimated incidence of 1/1000 live births. Population genetic and embryologic studies suggest that cleft palate only (CPO) may be a distinct clinical entity from cleft lip with or without cleft palate (CL/P). Both CPO and CL/P are thought to be multifactorial in etiology, with evidence indicating that genetic, environmental, and developmental determinants may all play a role. The ARNT2 gene localizes to a conserved linkage group on mouse chromosome 7 that is syntenic with human chromosome 15q23-25. This chromosomal region was previously identified as a teratogen-induced clefting susceptibility locus in a genome-wide scan of AXB and BXA recombinant inbred mice. Arnt2 is expressed in the first branchial arch in mice. The teratogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) acts through the aryl hydrocarbon receptor (Ahr) pathway to produce dose-dependent CPO and thymic wasting in mice exposed in utero. Arnt2 and Ahr proteins dimerize in vitro. TCDD exposure is also associated with orofacial clefting in children of parents involved in agricultural work. METHODS To determine whether ARNT2 influences human craniofacial development, we identified the human ARNT2 gene and conducted genomic structural analysis. Mutational screening was performed in infants with nonsyndromic CPO or CL/P who were identified by the Iowa Birth Defects Registry. RESULTS A common amino acid polymorphism was detected but, no obvious disease-causing mutations were detected by SSCP analysis. The microsatellite marker, GATA89D04 (D15S823) was identified within intron 11 of the human ARNT2 gene, and linkage disequilibrium of nonsyndromic CPO and CL/P parent-infant trios was conducted. CONCLUSIONS No association was demonstrated with CPO (n = 45) and CL/P (n = 37). Teratology 66:85-90, 2002.
Collapse
Affiliation(s)
- Lon L Barrow
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
629
|
Quan T, He T, Kang S, Voorhees JJ, Fisher GJ. Ultraviolet irradiation alters transforming growth factor beta/smad pathway in human skin in vivo. J Invest Dermatol 2002; 119:499-506. [PMID: 12190876 DOI: 10.1046/j.1523-1747.2002.01834.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Solar ultraviolet irradiation damages human skin and causes premature skin aging and skin cancer. As transforming growth factor beta plays an important role in regulating cell growth and extracellular matrix synthesis, we investigated expression of transforming growth factor beta isoforms, transforming growth factor beta receptors, and transforming growth factor beta regulated Smad transcription factors following irradiation with an ultraviolet B source and solar-simulated ultraviolet irradiation of human skin in vivo. Full-thickness, sun-protected adult human skin expressed transforming growth factor beta1, beta2, and beta3 transcripts in a ratio of 1:5:3, as determined by quantitative real-time reverse transcription polymerase chain reaction. Northern analysis demonstrated that the ultraviolet irradiation (2 minimal erythema dose) caused moderate (2-3-fold) gradual increases of transforming growth factor beta1 and beta3 mRNA expression during 3 d post exposure. In contrast, expression of transforming growth factor beta2 mRNA, the predominant form of transforming growth factor beta in human skin, decreased within 4 h after ultraviolet irradiation. In situ hybridization revealed transforming growth factor beta1, beta2, and beta3 mRNA expression in cells throughout the epidermis and the dermis in nonirradiated skin. Following ultraviolet or solar-simulated ultraviolet irradiation, transforming growth factor beta1 and beta3 mRNA were increased and transforming growth factor beta2 mRNA was reduced throughout the epidermis and dermis. No significant changes were observed in transforming growth factor beta type I receptor mRNA expression after ultraviolet irradiation. In contrast, transforming growth factor beta type II receptor mRNA expression was reduced 60% within 4 h following ultraviolet exposure in human skin in vivo. Transforming growth factor beta type II receptor mRNA levels remained reduced for 8 h and recovered by 24 h post ultraviolet. In situ hybridization revealed that ultraviolet or solar-simulated ultraviolet irradiation caused loss of transforming growth factor beta type II receptor mRNA in basal and suprabasal cells in the epidermis and dermal cells. In addition, no significant changes were observed in Smad2, Smad3, and Smad4 expression after ultraviolet irradiation. In contrast, ultraviolet and solar-simulated ultraviolet irradiation rapidly induced gene expression of Smad7, which antagonizes the actions of the transforming growth factor beta/Smad pathway. Smad7 mRNA induction occurred throughout the epidermis and dermal cells as determined by in situ hybridization. Ultraviolet irradiation also caused reduced DNA binding of Smad3/4 in human skin in vivo. Reduced Smad3/4 DNA binding was observed within 4 h following irradiation. Taken together, these results demonstrate that ultraviolet and solar-simulated ultraviolet irradiation alter the transforming growth factor beta/Smad pathway in human skin in vivo. Ultraviolet induction of Smad7 and reduction of transforming growth factor beta2 and transforming growth factor beta type II receptor should diminish transforming growth factor beta signaling, and probably contribute to the decrease of transforming growth factor beta regulated type I and type III procollagen gene expression observed in ultraviolet and solar-simulated ultraviolet irradiated human skin in vivo.
Collapse
Affiliation(s)
- TaiHao Quan
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0609, USA
| | | | | | | | | |
Collapse
|
630
|
Xu C, Lee S, Shu C, Masuda H, Zarins CK. Expression of TGF-beta1 and beta3 but not apoptosis factors relates to flow-induced aortic enlargement. BMC Cardiovasc Disord 2002; 2:11. [PMID: 12150715 PMCID: PMC119850 DOI: 10.1186/1471-2261-2-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2002] [Accepted: 07/31/2002] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cell proliferation and apoptosis are both involved in arterial wall remodeling. Increase in blood flow induces arterial enlargement. The molecular basis of flow-induced remodeling in large elastic arteries is largely unknown. METHODS An aortocaval fistula (ACF) model in rats was used to induce enlargement in the abdominal aorta. Aortic gene expression of transforming growth factors beta (TGF-beta) and apoptosis-related factors was assessed at 1 and 3 days and 1, 2, 4, and 8 weeks. Expression levels were determined using a ribonuclease protection assay and western blotting. Cell proliferation and apoptosis were analyzed using BrdU incorporation and TUNEL techniques. RESULTS Blood flow increased 5-fold immediately after ACF (P<0.05). Lumen diameter of the aorta was 30% and 75% larger at 2 and 8 weeks respectively than those of controls (P<0.05). mRNA levels of TGF-beta1 and TGF-beta3 increased after ACF, peaked at 3 days (P<0.05) and returned to normal level at 1 week and thereafter. Western blotting showed enhanced expression of TGF-beta1 at 3 days and TGF-beta3 at 1 and 3 days and 1 week (P<0.05). mRNA levels of Bcl-xS initially decreased at 1 day, 3 days and 1 week, followed a return to baseline level at 2 weeks. Cell proliferation was observed at all time points after ACF (P<0.001 vs. controls) with proliferation in endothelial cells more significant than smooth muscle cells. Apoptosis was not significant. CONCLUSIONS Gene expression of TGF-beta1 and beta3 precedes arterial enlargement. Expression of apoptosis related factors is little regulated in the early stage of the flow-induced arterial remodeling.
Collapse
Affiliation(s)
- Chengpei Xu
- Department of Surgery, Stanford University, Stanford, California, USA
| | - Sheila Lee
- Department of Surgery, Stanford University, Stanford, California, USA
| | - Chang Shu
- Department of Surgery, Stanford University, Stanford, California, USA
| | - Hirotake Masuda
- Second Department of Pathology, Akita University, Akita, Japan
| | | |
Collapse
|
631
|
Abstract
Turnover of the epithelial cell lineages within the gastrointestinal tract is a constant process, occurring every 2-7 days under normal homeostasis and increasing after damage. This process is regulated by multipotent stem cells, which give rise to all gastrointestinal epithelial cell lineages and can regenerate whole intestinal crypts and gastric glands. The stem cells of the gastrointestinal tract are as yet undefined, although it is generally agreed that they are located within a 'niche' in the intestinal crypts and gastric glands. Studies of allophenic tetraparental chimeric mice and targeted stem cell mutations suggest that a single stem cell undergoes asymmetrical division to produce an identical daughter cell, and thus replicate itself, and a committed progenitor cell which further differentiates into an adult epithelial cell type. The discovery of stem cell plasticity in many tissues, including the ability of transplanted bone marrow to transdifferentiate into intestinal subepithelial myofibroblasts, provides a potential use of bone marrow cells to deliver therapeutic genes to damaged tissues, for example, in treatment of mesenchymal diseases in the gastrointestinal tract, such as fibrosis and Crohn's disease. Studies are beginning to identify the molecular pathways that regulate stem cell proliferation and differentiation into adult gastrointestinal cell lineages, such as the Wnt and Notch/Delta signalling pathways, and the importance of mesenchymal-epithelial interactions in normal gastrointestinal epithelium and in development and disease.
Collapse
|
632
|
Herzig M, Christofori G. Recent advances in cancer research: mouse models of tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1602:97-113. [PMID: 12020798 DOI: 10.1016/s0304-419x(02)00039-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Over the past 20 years, cancer research has gained major insights into the complexity of tumor development, in particular into the molecular mechanisms that underlie the progressive transformation of normal cells into highly malignant derivatives. It is estimated that the transformation of a normal cell to a malignant tumor cell is dependent upon a small number of genetic alterations, estimated to be within the range of four to seven rate-limiting events. Critical events in the evolution of neoplastic disease include the loss of proliferative control, the failure to undergo programmed cell death (apoptosis), the onset of neoangiogenesis, tissue remodeling, invasion of tumor cells into surrounding tissue and, finally, metastatic dissemination of tumor cells to distant organs. In patients, the molecular analysis of these multiple steps is hampered by the unavailability of tumor biopsies from all tumor stages. In contrast, mouse models of tumorigenesis allow the reproducible isolation of all tumor stages, including normal tissue, which are then amenable to pathological, genetic and biochemical analyses and, hence, have been instrumental in investigating cancer-related genes and their role in carcinogenesis. In this review, we discuss mouse tumor models that have contributed substantially to the identification and characterization of novel tumor pathways. In particular, we focus on transgenic and knockout mouse models that closely mimic human cancer and thus can be used as model systems for cancer research.
Collapse
|
633
|
Willem M, Miosge N, Halfter W, Smyth N, Jannetti I, Burghart E, Timpl R, Mayer U. Specific ablation of the nidogen-binding site in the laminin γ1 chain interferes with kidney and lung development. Development 2002; 129:2711-22. [PMID: 12015298 DOI: 10.1242/dev.129.11.2711] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Basement membrane assembly is of crucial importance in the development and function of tissues and during embryogenesis. Nidogen 1 was thought to be central in the assembly processes, connecting the networks formed by collagen type IV and laminins, however, targeted inactivation of nidogen 1 resulted in no obvious phenotype. We have now selectively deleted the sequence coding for the 56 amino acid nidogen-binding site, γ1III4, within the Lamc1 gene by gene targeting. Here, we show that mice homozygous for the deletion die immediately after birth, showing renal agenesis and impaired lung development. These developmental defects were attributed to locally restricted ruptures in the basement membrane of the elongating Wolffian duct and of alveolar sacculi. These data demonstrate that an interaction between two basement membrane proteins is required for early kidney morphogenesis in vivo.
Collapse
Affiliation(s)
- Michael Willem
- Max-Planck-Institute for Biochemistry, Department of Protein Chemistry, 82152 Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
634
|
Goshu E, Jin H, Fasnacht R, Sepenski M, Michaud JL, Fan CM. Sim2 mutants have developmental defects not overlapping with those of Sim1 mutants. Mol Cell Biol 2002; 22:4147-57. [PMID: 12024028 PMCID: PMC133848 DOI: 10.1128/mcb.22.12.4147-4157.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mouse genome contains two Sim genes, Sim1 and Sim2. They are presumed to be important for central nervous system (CNS) development because they are homologous to the Drosophila single-minded (sim) gene, mutations in which cause a complete loss of CNS midline cells. In the mammalian CNS, Sim2 and Sim1 are coexpressed in the paraventricular nucleus (PVN). While Sim1 is essential for the development of the PVN (J. L. Michaud, T. Rosenquist, N. R. May, and C.-M. Fan, Genes Dev. 12:3264-3275, 1998), we report here that Sim2 mutant has a normal PVN. Analyses of the Sim1 and Sim2 compound mutants did not reveal obvious genetic interaction between them in PVN histogenesis. However, Sim2 mutant mice die within 3 days of birth due to lung atelectasis and breathing failure. We attribute the diminished efficacy of lung inflation to the compromised structural components surrounding the pleural cavity, which include rib protrusions, abnormal intercostal muscle attachments, diaphragm hypoplasia, and pleural mesothelium tearing. Although each of these structures is minimally affected, we propose that their combined effects lead to the mechanical failure of lung inflation and death. Sim2 mutants also develop congenital scoliosis, reflected by the unequal sizes of the left and right vertebrae and ribs. The temporal and spatial expression patterns of Sim2 in these skeletal elements suggest that Sim2 regulates their growth and/or integrity.
Collapse
Affiliation(s)
- Eleni Goshu
- Department of Embryology, Carnegie Institution of Washington, Baltimore, Maryland 21210, USA
| | | | | | | | | | | |
Collapse
|
635
|
Soma T, Tsuji Y, Hibino T. Involvement of transforming growth factor-beta2 in catagen induction during the human hair cycle. J Invest Dermatol 2002; 118:993-7. [PMID: 12060393 DOI: 10.1046/j.1523-1747.2002.01746.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The involvement of transforming growth factor-beta isoforms in the induction of the regressing phase (catagen) of human hair follicles were examined in vivo. In the growing phase (anagen), transforming growth factor-beta1 was detected at the hair cuticle and connective tissue sheath. Transforming growth factor-beta2 was restricted to the outermost cell layer of the outer root sheath. Transforming growth factor-beta3 was observed in the precortical hair matrix of anagen hair follicles. During the anagen-catagen transition phase, strong transforming growth factor-beta2 immunoreactivity appeared in the lower bulb matrix cells adjacent to the dermal papilla. In addition, transforming growth factor-beta2 and transforming growth factor-beta type II receptor were colocalized in the regressing epithelial strands, where terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling-positive apoptotic cells were also found. Transforming growth factor-beta1 and transforming growth factor-beta3 were mostly negative in the strand. Using an organ culture system, we investigated whether transforming growth factor-beta2 and its antagonists affected the transition process. Elongation of hair was significantly suppressed by transforming growth factor-beta2. Next, a neutralizing antibody and fetuin, a potent transforming growth factor-beta antagonist was tested. In the presence of the antibody as well as fetuin, hair follicles were markedly elongated in a concentration-dependent manner. These results strongly suggest that transforming growth factor-beta2 plays an essential part in the induction of the catagen phase of the human hair cycle.
Collapse
Affiliation(s)
- Tsutomu Soma
- Shiseido Life Science Research Center, Fukuura, Kanazawa-ku, Yokohama, Japan
| | | | | |
Collapse
|
636
|
Affiliation(s)
- Jean Paul Thiery
- Centre National Recherche Scientifique Unité Mixte Recherche, 144 Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France.
| |
Collapse
|
637
|
Hemmeryckx B, Reichert A, Watanabe M, Kaartinen V, de Jong R, Pattengale PK, Groffen J, Heisterkamp N. BCR/ABL P190 transgenic mice develop leukemia in the absence of Crkl. Oncogene 2002; 21:3225-31. [PMID: 12082638 DOI: 10.1038/sj.onc.1205452] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2001] [Revised: 02/14/2002] [Accepted: 02/20/2002] [Indexed: 11/08/2022]
Abstract
The Bcr/Abl fusion protein directly causes chronic myelogenous leukemia and Philadelphia-chromosome positive acute lymphoblastic leukemia. Multiple independent studies have implicated Crkl, a small adapter protein, in transduction of oncogenic signals of Bcr/Abl and Crkl tyrosine-phosphorylation is used as a diagnostic tool for Philadelphia-positive leukemia. To evaluate the contribution of Crkl to this type of leukemia, we generated mutant mice that lack Crkl expression. We found that the overall survival of P190 BCR/ABL crkl-/- mice was comparable to that of genetically matched P190 BCR/ABL crkl +/+ mice. Both genotypes developed lymphoid lineage leukemia/lymphoma. Western blot analysis of -/- and +/+ lymphomas showed that the related Crk protein was tyrosine phosphorylated and could be found complexed with Bcr-Abl P190. These data indicate that possible therapeutic approaches that target Crkl may be complicated by the presence of pathways that compensate for lack of Crkl function.
Collapse
Affiliation(s)
- Bianca Hemmeryckx
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology, Ms #54, Childrens Hospital of Los Angeles Research Institute, and the Keck School of Medicine-University of Southern California, Los Angeles, CA 90027, USA
| | | | | | | | | | | | | | | |
Collapse
|
638
|
Dünker N, Schmitt K, Schuster N, Krieglstein K. The role of transforming growth factor beta-2, beta-3 in mediating apoptosis in the murine intestinal mucosa. Gastroenterology 2002; 122:1364-75. [PMID: 11984523 DOI: 10.1053/gast.2002.32991] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Apoptosis is especially relevant in the gastrointestinal tract because the mammalian intestinal mucosa undergoes continual epithelial regeneration. Most recently, we confirmed the proapoptotic role of endogenous transforming growth factor (TGF)-beta in the developing chick retina as well as in chick ciliary, dorsal root, and spinal motor neurons. In the present study, we determined to establish the role of TGF-beta2 and TGF-beta3 in mediating apoptosis in non-neuronal tissue by analyzing the intestinal mucosa of Tgfbeta2(+/-) and Tgfbeta3(+/-) heterozygous mice. METHODS Intestinal localization of TGF-beta2 and TGF-beta3 isoforms and antiapoptotic molecules Bcl-xL and Bcl-2 was examined immunocytochemically and by Western blot analysis. Apoptosis was detected by enzyme-linked immunosorbent assay and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling, and proliferation was detected by proliferating cell nuclear antigen stains. RESULTS TGF-beta2 was detected in endocrine cells, whereas TGF-beta3 was predominantly found in goblet cells. Programmed cell death was significantly reduced in the intestinal mucosa of Tgfbeta2(+/-) and Tgfbeta3(+/-) heterozygous mice. This decrease in apoptosis was accompanied by an increase in villus length; proliferation, however, seemed to remain unchanged. The level of Bcl-xL and Bcl-2 was significantly up-regulated in Tgfbeta2(+/-) and Tgfbeta3(+/-) mice. CONCLUSIONS Our data show that TGF-beta2 and TGF-beta3 play an important role in mediating apoptosis in the intestinal mucosa and regulating apoptosis-associated proteins Bcl-xL and Bcl-2 in vivo.
Collapse
Affiliation(s)
- Nicole Dünker
- Anatomy and Cell Biology, University of Saarland, Homburg/Saar, Germany
| | | | | | | |
Collapse
|
639
|
Britto JA, Evans RD, Hayward RD, Jones BM. Toward Pathogenesis of Apert Cleft Palate: FGF, FGFR, and TGFβ Genes Are Differentially Expressed in Sequential Stages of Human Palatal Shelf Fusion. Cleft Palate Craniofac J 2002. [DOI: 10.1597/1545-1569(2002)039<0332:tpoacp>2.0.co;2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
640
|
Britto JA, Evans RD, Hayward RD, Jones BM. Toward pathogenesis of Apert cleft palate: FGF, FGFR, and TGF beta genes are differentially expressed in sequential stages of human palatal shelf fusion. Cleft Palate Craniofac J 2002; 39:332-40. [PMID: 12019011 DOI: 10.1597/1545-1569_2002_039_0332_tpoacp_2.0.co_2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Critical cellular events at the palatal medial edge epithelium (MEE) occur in unperturbed mammalian palatogenesis, the molecular control of which involves a number of growth factors including transforming growth factor beta 3 (TGF beta 3). Apert syndrome is a monogenic human disorder in which cleft palate has been significantly correlated to the fibroblast growth factor receptor (FGFR) 2-Ser252Trp mutation. We report the relative expression of these genes in human palatogenesis. METHODS The expression of the IgIIIa/b and IgIIIa/c transcript isoforms of FGFR2 and the proteins FGFR1, FGFR2, and FGFR3 was studied in situ throughout the temporospatial sequence of human palatal shelf fusion and correlated with the expression of TGF beta 3. In addition, the immunolocalization of the ligand FGFs 2, 4, and 7 was undertaken together with the intracellular transcription factor STAT1, which is activated by FGFR signaling. RESULTS FGFRs are differentially expressed in the mesenchyme and epithelia of fusing palatal shelves, in domains overlapping those of their ligands FGF4 and FGF2 but not FGF7. Coexpression is seen with TGF beta 3, which is implicated in MEE dynamics and FGF and FGFR upregulation, and STAT1, an intracellular transcription factor that mediates apoptosis. CONCLUSIONS The coregulation of molecules of the FGFR signaling pathway with TGF beta 3 throughout the stages of human palatal fusion suggests their controlling influence on apoptosis and epitheliomesenchymal transdifferentiation at the MEE. Experimental evidence links FGFR2-IgIIIa/b loss of function with palatal clefting, and these correlated data suggest a unique pathological mechanism for Apert cleft palate.
Collapse
Affiliation(s)
- Jonathan A Britto
- Craniofacial Centre, Great Ormond Street Hospital for Children, London, England, United Kingdom.
| | | | | | | |
Collapse
|
641
|
Cuervo R, Valencia C, Chandraratna RAS, Covarrubias L. Programmed cell death is required for palate shelf fusion and is regulated by retinoic acid. Dev Biol 2002; 245:145-56. [PMID: 11969262 DOI: 10.1006/dbio.2002.0620] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The actual role of programmed cell death (PCD) in embryonic processes and the extrinsic signals that define the death fate in developing cells are still poorly understood. Here, we show that during secondary palate shelf fusion in the mouse, PCD appeared in the medial edge epithelia (MEE) of the anterior region only after shelf contact. Contact was necessary for efficient cell death activation in the MEE. However, exogenous all-trans-retinoic acid (RA) increased cell death independently of contact. Competence to induce cell death by contact or by RA exposure was obtained when the MEE were close to touch. Endogenous RA is a relevant regulator of the secondary palate PCD since this was reduced by a retinol dehydrogenase inhibitor and an RAR specific antagonist. Bmp-7 expression was positively regulated by RA. However, BMP-7 was unable to activate cell death within the palate tissue and NOGGIN, a natural BMP antagonist, did not block PCD. Reduction of PCD at the MEE directly with a caspase inhibitor or by inhibiting retinol dehydrogenase resulted in unfused palate shelves, but adhesion was not affected. In contrast, exogenous RA also blocked fusion, but in this situation the increased cell death within the MEE appeared to affect adhesion, thereby causing cleft palate in vivo.
Collapse
Affiliation(s)
- Rodrigo Cuervo
- Departamento de Genética y Fisiología Molecular, Instituto de Biotecnología, Cuernavaca, Morelos 62210, México
| | | | | | | |
Collapse
|
642
|
Dünker N, Schmitt K, Krieglstein K. TGF-beta is required for programmed cell death in interdigital webs of the developing mouse limb. Mech Dev 2002; 113:111-20. [PMID: 11960699 DOI: 10.1016/s0925-4773(02)00015-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During limb formation massive cell death in the mesenchyme of the interdigital spaces accompanies the formation of free digits. Members of the transforming growth factor beta (TGF-) superfamily were discussed to play a key role in cell-cell interactions, important in the regulation of programmed cell death (PCD). TGF-beta itself is believed to be involved in epithelial-mesenchymal interactions. Here, we demonstrate that PCD is significantly reduced in interdigital spaces of the developing limbs of Tgfbeta2-/-Tgfbeta3-/- double knockouts. The regression of interdigital webs seems to be doses-dependent as interdigital mesenchyme is at least partly reduced in Tgfbeta2-/-Tgfbeta3+/- mutants, whereas interdigital zones of Tgfbeta2-/-Tgfbeta3-/- double knockouts reveal only minimal signs of regression. We conclude that TGF- is a critical extrinsic regulator of PCD.
Collapse
Affiliation(s)
- Nicole Dünker
- Department of Anatomy and Cell Biology, Building 61, University of Saarland, D-66421, Homburg/Saar, Germany.
| | | | | |
Collapse
|
643
|
Marzella PL, Gillespie LN. Role of trophic factors in the development, survival and repair of primary auditory neurons. Clin Exp Pharmacol Physiol 2002; 29:363-71. [PMID: 12010177 DOI: 10.1046/j.1440-1681.2002.03684.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Neurotrophic factors have been identified as crucial for the development of the auditory system and have also been proven to be important for continued survival and maintenance of auditory neural connections. 2. In addition, both in vitro and in vivo studies have demonstrated that these trophic molecules can prevent the secondary wave of auditory neuron degeneration normally seen following the loss of hair cells. 3. Furthermore, neurotrophic factors have been reported to enhance neuronal excitation and to improve the efficacy of synaptic transmission. 4. As such, these molecules are strong candidates to be used as therapeutic agents in conjunction with the cochlear implant, or even to repair and/or regenerate damaged or lost auditory nerve and sensory cells.
Collapse
Affiliation(s)
- Phillip L Marzella
- Department of Otolaryngology, The University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia.
| | | |
Collapse
|
644
|
Guo M, Mathieu PA, Linebaugh B, Sloane BF, Reiners JJ. Phorbol ester activation of a proteolytic cascade capable of activating latent transforming growth factor-betaL a process initiated by the exocytosis of cathepsin B. J Biol Chem 2002; 277:14829-37. [PMID: 11815600 DOI: 10.1074/jbc.m108180200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
12-O-Tetradecanoylphorbol-13-acetate (TPA) suppresses the proliferation of the human breast epithelial cell line MCF10A-Neo by initiating proteolytic processes that activate latent transforming growth factor (TGF)-beta in the serum used to supplement culture medium. Within 1 h of treatment, cultures accumulated an extracellular activity capable of cleaving a substrate for urokinase-type plasminogen activator (uPA) and tissue plasminogen activator (tPA). This activity was inhibited by plasminogen activator inhibitor-1 or antibodies to uPA but not tPA. Pro-uPA activation was preceded by dramatic changes in lysosome trafficking and the extracellular appearance of cathepsin B and beta-hexosaminidase but not cathepsins D or L. Co-treatment of cultures with the cathepsin B inhibitors CA-074 or Z-FA-FMK suppressed the cytostatic effects of TPA and activation of pro-uPA. In the absence of TPA, exogenously added cathepsin B activated pro-uPA and suppressed MCF10A-Neo proliferation. The cytostatic effects of both TPA and cathepsin B were suppressed in cells cultured in medium depleted of plasminogen/plasmin or supplemented with neutralizing TGF-beta antibody. Pretreatment with cycloheximide did not suppress the exocytosis of cathepsin B or the activation of pro-uPA. Hence, TPA activates signaling processes that trigger the exocytosis of a subpopulation of lysosomes/endosomes containing cathepsin B. Subsequently, extracellular cathepsin B initiates a proteolytic cascade involving uPA, plasminogen, and plasmin that activates serum-derived latent TGF-beta.
Collapse
Affiliation(s)
- Meng Guo
- Institute of Environmental Health Sciences, Wayne State University and the Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
645
|
Sabbà C, Cirulli A, Rizzi R, Pasculli G, Gallitelli M, Specchia G, Liso V. Angiogenesis and hereditary hemorrhagic telangiectasia. Rendu-Osler-Weber disease. Acta Haematol 2002; 106:214-9. [PMID: 11815719 DOI: 10.1159/000046618] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
To date much of the recent work on pathological angiogenesis has focused on inflammatory diseases, diabetes and cancer in particular. Hereditary hemorrhagic telangiectasia or Rendu-Osler-Weber disease provides an example of the genetic disorder of angiogenesis in which a multisystemic angiodysplasia is responsible for severe hemorrhage. The disease pathogenesis is partially explained by a defect in the TGF-beta signaling system, although in more recent works a possible role of other vascular growth factors has been proposed. This paper provides a model of an aberrant angiogenesis in which multiple vascular growth factors could be involved in a diffuse angiodysplasia.
Collapse
Affiliation(s)
- C Sabbà
- Cattedra di Medicina d'Urgenza e Pronto Soccorso, Università degli Studi, Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
646
|
Alvarez J, Sohn P, Zeng X, Doetschman T, Robbins DJ, Serra R. TGFβ2 mediates the effects of Hedgehog on hypertrophic differentiation and PTHrP expression. Development 2002; 129:1913-24. [PMID: 11934857 DOI: 10.1242/dev.129.8.1913] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The development of endochondral bones requires the coordination of signals from several cell types within the cartilage rudiment. A signaling cascade involving Indian hedgehog (Ihh) and parathyroid hormone related peptide (PTHrP) has been described in which hypertrophic differentiation is limited by a signal secreted from chondrocytes as they become committed to hypertrophy. In this negative-feedback loop, Ihh inhibits hypertrophic differentiation by regulating the expression of Pthrp, which in turn acts directly on chondrocytes in the growth plate that express the PTH/PTHrP receptor. Previously, we have shown that PTHrP also acts downstream of transforming growth factor β (TGFβ) in a common signaling cascade to regulate hypertrophic differentiation in embryonic mouse metatarsal organ cultures. As members of the TGFβ superfamily have been shown to mediate the effects of Hedgehog in several developmental systems, we proposed a model where TGFβ acts downstream of Ihh and upstream of PTHrP in a cascade of signals that regulate hypertrophic differentiation in the growth plate. This report tests the hypothesis that TGFβ signaling is required for the effects of Hedgehog on hypertrophic differentiation and expression of Pthrp. We show that Sonic hedgehog (Shh), a functional substitute for Ihh, stimulates expression of Tgfb2 and Tgfb3 mRNA in the perichondrium of embryonic mouse metatarsal bones grown in organ cultures and that TGFβ signaling in the perichondrium is required for inhibition of differentiation and regulation of Pthrp expression by Shh. The effects of Shh are specifically dependent on TGFβ2, as cultures from Tgfb3-null embryos respond to Shh but cultures from Tgfb2-null embryos do not. Taken together, these data suggest that TGFβ2 acts as a signal relay between Ihh and PTHrP in the regulation of cartilage hypertrophic differentiation.
Collapse
Affiliation(s)
- Jesus Alvarez
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0576, USA
| | | | | | | | | | | |
Collapse
|
647
|
Copland IB, Adamson SL, Post M, Lye SJ, Caniggia I. TGF-beta 3 expression during umbilical cord development and its alteration in pre-eclampsia. Placenta 2002; 23:311-21. [PMID: 11969342 DOI: 10.1053/plac.2001.0778] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Members of the TGF-beta family have been shown to play an important role in numerous tissues during development. In the present study we have investigated the spatial and temporal expression of TGF-beta 3, in human umbilical cord development. Total TGF-beta 3 protein content, assessed by immunoblotting, increased with advancing gestation as did immunostaining and mRNA in Wharton's jelly fibroblasts. Immunohistochemical analysis revealed that TGF-beta 3 was present in all cell types. Temporal changes in TGF-beta 3 expression were observed in the vascular smooth muscle cells, such that with advancing gestation TGF-beta 3 protein expression and became mostly restricted to the extracellular compartment of the vascular media. This was associated with a decrease in TGF-beta 3 mRNA expression in umbilical vascular smooth muscle cells. Of clinical significance, umbilical cords from pregnancies complicated by pre-eclampsia, showed a significant reduction in total TGF-beta 3 protein expression when compared to those of age-matched patients. Both TGF-beta 3 mRNA and protein expression were downregulated in the endothelium and smooth muscle layers of the umbilical arteries, as well as in the Wharton jelly fibroblasts. Our data demonstrate that during umbilical cord development TGF-beta 3 expression is spatially and temporally regulated and that TGF-beta 3 expression is altered in umbilical cords of pregnancies complicated by pre-eclampsia. We speculate that the downregulation of TGF-beta 3 expression found in pre-eclamptic umbilical cord may contribute to the abnormal structure and mechanical properties seen in these pathological umbilical cords.
Collapse
Affiliation(s)
- I B Copland
- Programme in Development and Fetal Health, Samuel Lunenfeld Research Institute, Mt Sinai Hospital, The Hospital for Sick Children Research Institute and Department of Obstetrics and Gynaecology, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
648
|
Abstract
Craniofacial anomalies, and in particular cleft lip and palate, are major human birth defects with a worldwide frequency of 1 in 700 and substantial clinical impact. A wide range of studies in developmental biology has contributed to a better knowledge of how both genes and environmental exposures impact head organogenesis. Specific causes have now been identified for some forms of cleft lip and palate, and we are at the beginning of a time in which the common nonsyndromic forms may also have specific etiologies identified. Mouse models have an especially important role in disclosing cleft etiologies and providing models for environmental cotriggers or interventions. An overview of the gene-environment contributions to nonsyndromic forms of clefting and their implications for developmental biology and clinical counseling is presented.
Collapse
Affiliation(s)
- J C Murray
- Department of Pediatrics, University of Iowa, Iowa City 52242, USA
| |
Collapse
|
649
|
Gründer A, Ebel TT, Mallo M, Schwarzkopf G, Shimizu T, Sippel AE, Schrewe H. Nuclear factor I-B (Nfib) deficient mice have severe lung hypoplasia. Mech Dev 2002; 112:69-77. [PMID: 11850179 DOI: 10.1016/s0925-4773(01)00640-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Binding sites for transcription factor nuclear factor one (NFI) proteins, encoded by four genes in the mouse, have been characterized from many tissue-specific genes. NFI genes are expressed in unique but overlapping patterns in embryonic and in adult tissues. Nfib is highly expressed in the embryonic lung. Here we show that Nfib null mutants die early postnatally and display severe lung hypoplasia. Heterozygotes do survive, but exhibit delayed pulmonary differentiation. Expression of transforming growth factor beta 1 (TGF-beta1) and sonic hedgehog (Shh) is not down-regulated in mutant lung epithelium at late stages of morphogenesis, which may result in incomplete lung maturation. Our study demonstrates that Nfib is essential for normal lung development, and suggests that it could be involved in the pathogenesis of respiratory distress syndromes in humans.
Collapse
Affiliation(s)
- Albert Gründer
- Institut fur Biologie III, Albert-Ludwigs-Universitat, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
650
|
Abstract
Strict control of T-cell homeostasis is required to permit normal immune responses and prevent undesirable self-targeted responses. Transforming growth factor-beta (TGF-beta) has been shown to have an essential role in that regulation. Owing to its broad expression, and inhibitory effects on multiple cell types of the immune system, TGF-beta regulation is complex. Through advances in cell-specific targeting of TGF-beta signalling in vivo, the role of TGF-beta in T-cell regulation has become clearer. Recent in vitro studies provide a better understanding of how TGF-beta regulates T-cell homeostasis, through multiple mechanisms involving numerous cell types.
Collapse
|