601
|
Stone NJ, Smith SC, Orringer CE, Rigotti NA, Navar AM, Khan SS, Jones DW, Goldberg R, Mora S, Blaha M, Pencina MJ, Grundy SM. Managing Atherosclerotic Cardiovascular Risk in Young Adults: JACC State-of-the-Art Review. J Am Coll Cardiol 2022; 79:819-836. [PMID: 35210038 DOI: 10.1016/j.jacc.2021.12.016] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
There is a need to identify high-risk features that predict early-onset atherosclerotic cardiovascular disease (ASCVD). The authors provide insights to help clinicians identify and address high-risk conditions in the 20- to 39-year age range (young adults). These include tobacco use, elevated blood pressure/hypertension, family history of premature ASCVD, primary severe hypercholesterolemia such as familial hypercholesterolemia, diabetes with diabetes-specific risk-enhancing factors, or the presence of multiple other risk-enhancing factors, including in females, a history of pre-eclampsia or menopause under age 40. The authors update current thinking on lipid risk factors such as triglycerides, non-high-density lipoprotein cholesterol, apolipoprotein B, or lipoprotein (a) that are useful in understanding an individual's long-term ASCVD risk. The authors review emerging strategies, such as coronary artery calcium and polygenic risk scores in this age group, that have potential clinical utility, but whose best use remains uncertain. Finally, the authors discuss both the obstacles and opportunities for addressing prevention in early adulthood.
Collapse
Affiliation(s)
- Neil J Stone
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| | - Sidney C Smith
- University of North Carolina, Chapel Hill, North Carolina, USA
| | - Carl E Orringer
- University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | - Ann Marie Navar
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sadiya S Khan
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniel W Jones
- University of Mississippi School of Medicine, Jackson, Mississippi, USA
| | - Ronald Goldberg
- University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Samia Mora
- Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Michael Blaha
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Scott M Grundy
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
602
|
Iannuzzo G, Buonaiuto A, Calcaterra I, Gentile M, Forte F, Tripaldella M, Di Taranto MD, Giacobbe C, Fortunato G, Rubba PO, Di Minno MND. Association between causative mutations and response to PCSK9 inhibitor therapy in subjects with familial hypercholesterolemia: A single center real-world study. Nutr Metab Cardiovasc Dis 2022; 32:684-691. [PMID: 34991937 DOI: 10.1016/j.numecd.2021.10.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/26/2021] [Accepted: 10/31/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIMS Familial hypercholesterolemia (FH) is an autosomal dominant disease that leads to cardiovascular (CV) disease. Proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9-I) demonstrated efficacy in low-density lipoprotein cholesterol (LDL-C) reduction and in prevention of CV events. The aim of our study is to evaluate the relationship between LDL receptor (LDLR) mutations and response to PCSK9-I therapy. METHODS AND RESULTS We evaluated total cholesterol (TC), LDL-C, high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG) in consecutive patients with FH before PCSK9-I treatment and after 12 (T12w) and 36 (T36w) weeks of treatment. We evaluated LDL-C target achievement according to different mutations in LDLR. Eighty FH subjects (mean age:54 ± 13.3 years), 39 heterozygous (He) with defective LDLR gene mutations, 30 He with null mutations and 11 compound-He or homozygous (Ho) were recruited. At baseline, 69 subjects were under maximal lipid lowering therapy (MLLT) and 11 subjects had statin-intolerance. From baseline to T36w we observed an overall 51% reduction in LDL-C. We found no difference in LDL-C changes between subjects with He-defective mutation and He-null mutations both at T12w (p = 1.00) and T36w (p = 0.538). At T36w, LDL-C target was achieved in 59% of He-defective mutations subjects and in 36% of He-null mutations subgroup (p = 0.069), whereas none of compound-He/Ho-FH achieved LDL-C target. CONCLUSIONS After 36 weeks there were no differences in response to PCSK9-I therapy between different groups of He-FH subjects. Response to PCSK9-I was significantly lower in carriers of compound-He/Ho mutations. Registration number for clinical trials: NCT04313270 extension.
Collapse
Affiliation(s)
- Gabriella Iannuzzo
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Alessio Buonaiuto
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Ilenia Calcaterra
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy.
| | - Marco Gentile
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Francesco Forte
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Maria Tripaldella
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Maria D Di Taranto
- Department of Molecular Medicine e Medical Biotechnologies, Federico II University, Naples, Italy
| | - Carola Giacobbe
- Department of Molecular Medicine e Medical Biotechnologies, Federico II University, Naples, Italy
| | - Giuliana Fortunato
- Department of Molecular Medicine e Medical Biotechnologies, Federico II University, Naples, Italy
| | - Paolo O Rubba
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | | |
Collapse
|
603
|
Fici F, Faikoglu G, Tarim BA, Robles NR, Tsioufis K, Grassi G, Gungor B. Pitavastatin: Coronary Atherosclerotic Plaques Changes and Cardiovascular Prevention. High Blood Press Cardiovasc Prev 2022; 29:137-144. [PMID: 35064911 DOI: 10.1007/s40292-021-00496-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022] Open
Abstract
Stains remain the first therapeutic approach in patients with dyslipidemia to control plasma lipids levels and cardiovascular risk. Multiple clinical trials have demonstrated the benefits of statins in reducing major cardiovascular adverse events in primary and secondary prevention. Moreover, in patients with coronary artery disease, statins decrease coronary atherosclerotic plaque volume and composition, inducing atheroma stabilization. Pitavastatin, is a new-generation lipophilic statin, indicated for the treatment of dyslipidemia and prevention of cardiovascular diseases. The purpose of this review, the first at our knowledge on this topic, is to summarize and examine the current knowledge about the effectiveness of pitavastatin in patients with coronary artery disease. The available data suggest that pitavastatin significantly, lowers the rate of adverse cardiovascular events, in patients at a high risk of atherosclerotic disease, with stable angina pectoris or with acute coronary syndrome. Moreover intravascular ultrasound have shown that pitavastatin induces favorable changes in plaque morphology, increasing the fibrous cap thickness, and decreasing both plaque and lipid volume indexes. Globally the efficacy of pitavastatin is greater or similar to other statins.
Collapse
Affiliation(s)
- Francesco Fici
- Department of Cardiovascular Risk, Salamanca University, Salamanca, Spain
- Milano-Bicocca, University, Milan, Italy
| | - Gokhan Faikoglu
- Department of Medical Pharmacology, University Cerrahpasa, Istanbul, Turkey
| | | | - Nicolas Roberto Robles
- Department of Cardiovascular Risk, Salamanca University, Salamanca, Spain.
- Milano-Bicocca, University, Milan, Italy.
- University Hospital of Badajoz, Badajoz, Spain.
| | - Kostas Tsioufis
- First Cardiology Clinic, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Guido Grassi
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- IRCCS Multimedica, Sesto San Giovanni, Milan, Italy
| | - Barış Gungor
- Department of Cardiology, University of Sciences and Research Hospital, Istanbul, Turkey
| |
Collapse
|
604
|
Packard CJ. Remnants, LDL, and the Quantification of Lipoprotein-Associated Risk in Atherosclerotic Cardiovascular Disease. Curr Atheroscler Rep 2022; 24:133-142. [PMID: 35175548 PMCID: PMC8983627 DOI: 10.1007/s11883-022-00994-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Implementation of intensive LDL cholesterol (LDL-C) lowering strategies and recognition of the role of triglyceride-rich lipoproteins (TRL) in atherosclerosis has prompted re-evaluation of the suitability of current lipid profile measurements for future clinical practice. RECENT FINDINGS At low concentrations of LDL-C (< 1.8 mmol/l/70 mg/dl), the Friedewald equation yields estimates with substantial negative bias. New equations provide a more accurate means of calculating LDL-C. Recent reports indicate that the increase in risk per unit increment in TRL/remnant cholesterol may be greater than that of LDL-C. Hence, specific measurement of TRL/remnant cholesterol may be of importance in determining risk. Non-HDL cholesterol and plasma apolipoprotein B have been shown in discordancy analyses to identify individuals at high risk even when LDL-C is low. There is a need to adopt updated methods for determining LDL-C and to develop better biomarkers that more accurately reflect the abundance of TRL remnant particles.
Collapse
Affiliation(s)
- Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK.
| |
Collapse
|
605
|
Webb RJ, Mazidi M, Lip GYH, Kengne AP, Banach M, Davies IG. The role of adiposity, diet and inflammation on the discordance between LDL-C and apolipoprotein B. Nutr Metab Cardiovasc Dis 2022; 32:605-615. [PMID: 35123856 DOI: 10.1016/j.numecd.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/21/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS While low-density lipoprotein cholesterol (LDL-C) is a good predictor of atherosclerotic cardiovascular disease, apolipoprotein B (ApoB) is superior when the two markers are discordant. We aimed to determine the impact of adiposity, diet and inflammation upon ApoB and LDL-C discordance. METHODS AND RESULTS Machine learning (ML) and structural equation models (SEMs) were applied to the National Health and Nutrition Examination Survey to investigate cardiometabolic and dietary factors when LDL-C and ApoB are concordant/discordant. Mendelian randomisation (MR) determined whether adiposity and inflammation exposures were causal of elevated/decreased LDL-C and/or ApoB. ML showed body mass index (BMI), dietary saturated fatty acids (SFA), dietary fibre, serum C-reactive protein (CRP) and uric acid were the most strongly associated variables (R2 = 0.70) in those with low LDL-C and high ApoB. SEMs revealed that fibre (b = -0.42, p = 0.001) and SFA (b = 0.28, p = 0.014) had a significant association with our outcome (joined effect of ApoB and LDL-C). BMI (b = 0.65, p = 0.001), fibre (b = -0.24, p = 0.014) and SFA (b = 0.26, p = 0.032) had significant associations with CRP. MR analysis showed genetically higher body fat percentage had a significant causal effect on ApoB (Inverse variance weighted (IVW) = Beta: 0.172, p = 0.0001) but not LDL-C (IVW = Beta: 0.006, p = 0.845). CONCLUSION Our data show increased discordance between ApoB and LDL-C is associated with cardiometabolic, clinical and dietary abnormalities and that body fat percentage is causal of elevated ApoB.
Collapse
Affiliation(s)
- Richard J Webb
- School of Health Sciences, Faculty of Science, Liverpool Hope University, Hope Park Campus, Taggart Avenue, Liverpool, L16 9JD, United Kingdom.
| | - Mohsen Mazidi
- Nuffield Department of Population Health, Richard Doll Building, Old Road Campus, University of Oxford, Oxford, OX3 7LF, United Kingdom; Department of Twin Research & Genetic Epidemiology, King's College London, 4th Floor, South Wing, St Thomas', London, SE1 7EH, United Kingdom.
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool L14 3PE, United Kingdom; Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, DK-9100 Aalborg, Denmark.
| | - Andre P Kengne
- Non-Communicable Diseases Research Unit, South African Medical Research Council, 7505, Cape Town, South Africa.
| | - Maciej Banach
- Cardiovascular Research Centre, University of Zielona Gora, 65-046, Zielona Gora, Poland; Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), 93-338, Lodz, Poland.
| | - Ian G Davies
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, L3 3AF, United Kingdom.
| |
Collapse
|
606
|
Abstract
Apolipoproteins are important structural components of plasma lipoproteins that influence vascular biology and atherosclerotic disease pathophysiology by regulating lipoprotein metabolism. Clinically important apolipoproteins related to lipid metabolism and atherogenesis include apolipoprotein B-100, apolipoprotein B-48, apolipoprotein A-I, apolipoprotein C-II, apolipoprotein C-III, apolipoprotein E and apolipoprotein(a). Apolipoprotein B-100 is the major structural component of VLDL, IDL, LDL and lipoprotein(a). Apolipoprotein B-48 is a truncated isoform of apolipoprotein B-100 that forms the backbone of chylomicrons. Apolipoprotein A-I provides the scaffolding for lipidation of HDL and has an important role in reverse cholesterol transport. Apolipoproteins C-II, apolipoprotein C-III and apolipoprotein E are involved in triglyceride-rich lipoprotein metabolism. Apolipoprotein(a) covalently binds to apolipoprotein B-100 to form lipoprotein(a). In this Review, we discuss the mechanisms by which these apolipoproteins regulate lipoprotein metabolism and thereby influence vascular biology and atherosclerotic disease. Advances in the understanding of apolipoprotein biology and their translation into therapeutic agents to reduce the risk of cardiovascular disease are also highlighted.
Collapse
|
607
|
Belury MA, Ros E, Kris-Etherton PM. Weighing Evidence of the Role of Saturated and Unsaturated Fats and Human Health. Adv Nutr 2022; 13:686-688. [PMID: 37270207 PMCID: PMC8970838 DOI: 10.1093/advances/nmab160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Affiliation(s)
- Martha A Belury
- From the Carol S Kennedy Professor of Nutrition, Program of Nutrition, Department of Human Sciences, The Ohio State University, Columbus, OH, USA.
| | - Emilio Ros
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain, and CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | |
Collapse
|
608
|
Pfisterer SG, Brock I, Kanerva K, Hlushchenko I, Paavolainen L, Ripatti P, Islam MM, Kyttälä A, Di Taranto MD, Scotto di Frega A, Fortunato G, Kuusisto J, Horvath P, Ripatti S, Laakso M, Ikonen E. Multiparametric platform for profiling lipid trafficking in human leukocytes. CELL REPORTS METHODS 2022; 2:100166. [PMID: 35474963 PMCID: PMC9017167 DOI: 10.1016/j.crmeth.2022.100166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/26/2021] [Accepted: 01/18/2022] [Indexed: 11/25/2022]
Abstract
Systematic insight into cellular dysfunction can improve understanding of disease etiology, risk assessment, and patient stratification. We present a multiparametric high-content imaging platform enabling quantification of low-density lipoprotein (LDL) uptake and lipid storage in cytoplasmic droplets of primary leukocyte subpopulations. We validate this platform with samples from 65 individuals with variable blood LDL-cholesterol (LDL-c) levels, including familial hypercholesterolemia (FH) and non-FH subjects. We integrate lipid storage data into another readout parameter, lipid mobilization, measuring the efficiency with which cells deplete lipid reservoirs. Lipid mobilization correlates positively with LDL uptake and negatively with hypercholesterolemia and age, improving differentiation of individuals with normal and elevated LDL-c. Moreover, combination of cell-based readouts with a polygenic risk score for LDL-c explains hypercholesterolemia better than the genetic risk score alone. This platform provides functional insights into cellular lipid trafficking and has broad possible applications in dissecting the cellular basis of metabolic disorders.
Collapse
Affiliation(s)
- Simon G. Pfisterer
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Ivonne Brock
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Kristiina Kanerva
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Iryna Hlushchenko
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Lassi Paavolainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Pietari Ripatti
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Mohammad Majharul Islam
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Aija Kyttälä
- Finnish Institute for Health and Welfare (THL), THL Biobank, Helsinki, Finland
| | - Maria D. Di Taranto
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate scarl Naples, Napoli, Italy
| | | | - Giuliana Fortunato
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate scarl Naples, Napoli, Italy
| | - Johanna Kuusisto
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Peter Horvath
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Biological Research Center, Szeged, Hungary
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Elina Ikonen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| |
Collapse
|
609
|
Akcan B, Örem A, Altinkaynak Y, Kural B, Örem C, Sönmez M, Serafini M. Endothelial Progenitor Cell Levels and Extent of Post-prandial Lipemic Response. Front Nutr 2022; 9:822131. [PMID: 35237643 PMCID: PMC8885282 DOI: 10.3389/fnut.2022.822131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/07/2022] [Indexed: 12/31/2022] Open
Abstract
Background and ObjectiveDue to the frequency of meal ingestion, individuals spend the majority of the day, ~18 h, in a status of post-prandial (PP) stress. Remnant-like lipoprotein particles (RLPs) are predominant in PP phase playing an important role in the development of atherosclerosis. Endothelial progenitor cells (EPCs) have been suggested to play a role in vessel wall homeostasis and in reducing atherosclerosis. However, there is no information about peripheral blood EPCs number following PP stress. We investigated the association between circulating EPCs levels and extent of PP lipemia in healthy subjects following a high-fat meal.Materials and MethodsA total of 84 healthy subjects (42 men, 42 women) aged 17–55 years were included in the study. PP lipemic response of subjects was determined by Oral Fat-Loading Test (OFLT). All the subjects were classified on the basis of their plasma TG levels after PP lipemic stressors in categories 1 (low), 2 (moderate), and 3 (high). Circulating EPCs numbers were measured by the flow cytometry method.ResultsThere was a significant difference in terms of lipid parameters between men and women: high-density lipoprotein cholesterol (HDL-C) was significantly lower in men than in women (p < 0.001). Total cholesterol (TC) (p = 0.004), low-density lipoprotein cholesterol (LDL-C) (p < 0.001), triglyceride (TG) (p < 0.001), and TG-AUC (p < 0.001) were significantly higher in men than in women. There was no significant difference between the genders in terms of CD34+KDR+ and CD34+KDR+CD133+cell number and MMP-9 levels. Vascular endothelial growth factor (VEGF) levels were significantly higher in men than women (p = 0.004). TC, LDL-C, and TG were significantly higher in the 3rd category than 1st and 2nd categories (p < 0.001) in women. Age, body mass index (BMI), fat rate, TG, TC, and LDL-C were significantly higher in the 3rd category than 1st category (p < 0.001, p = 0.002, p = 0.002, p = 0.01, p = 0.007, p = 0.004; respectively), in men. Circulating numbers of EPCs in men were significantly higher in the PP hyperlipidemia group than in the low TG levels category, independently from age (p < 0.05). Circulating EPC levels showed a positive correlation with OFLT response in men (r = 0.414, p < 0.05). Also, OFLT response showed a strong positive correlation with fasting TG levels (r = 0.930, p < 0.001). EPC levels in categories of women were not different.ConclusionIncreased EPCs levels in subjects with different PP hyperlipidemia may be associated with a response to endothelial injury, related to increased atherogenic remnant particles at the PP phase.
Collapse
|
610
|
Willemsen L, Chen HJ, van Roomen CPAA, Griffith GR, Siebeler R, Neele AE, Kroon J, Hoeksema MA, de Winther MPJ. Monocyte and Macrophage Lipid Accumulation Results in Down-Regulated Type-I Interferon Responses. Front Cardiovasc Med 2022; 9:829877. [PMID: 35224060 PMCID: PMC8869252 DOI: 10.3389/fcvm.2022.829877] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/18/2022] [Indexed: 01/27/2023] Open
Abstract
Macrophages are critical components of atherosclerotic lesions and their pro- and anti-inflammatory responses influence atherogenesis. Type-I interferons (IFNs) are cytokines that play an essential role in antiviral responses and inflammatory activation and have been shown to promote atherosclerosis. Although the impact of type-I IFNs on macrophage foam cell formation is well-documented, the effect of lipid accumulation in monocytes and macrophages on type-I IFN responses remains unknown. Here we examined IFN stimulated (ISG) and non-ISG inflammatory gene expression in mouse and human macrophages that were loaded with acetylated LDL (acLDL), as a model for foam cell formation. We found that acLDL loading in mouse and human macrophages specifically suppressed expression of ISGs and IFN-β secretion, but not other pro-inflammatory genes. The down regulation of ISGs could be rescued by exogenous IFN-β supplementation. Activation of the cholesterol-sensing nuclear liver X receptor (LXR) recapitulated the cholesterol-initiated type-I IFN suppression. Additional analyses of murine in vitro and in vivo generated foam cells confirmed the suppressed IFN signaling pathways and suggest that this phenotype is mediated via down regulation of interferon regulatory factor binding at gene promoters. Finally, RNA-seq analysis of monocytes of familial hypercholesterolemia (FH) patients also showed type-I IFN suppression which was restored by lipid-lowering therapy and not present in monocytes of healthy donors. Taken together, we define type-I IFN suppression as an athero-protective characteristic of foamy macrophages. These data provide new insights into the mechanisms that control inflammatory responses in hyperlipidaemic settings and can support future therapeutic approaches focusing on reprogramming of macrophages to reduce atherosclerotic plaque progression and improve stability.
Collapse
Affiliation(s)
- Lisa Willemsen
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Hung-Jen Chen
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Cindy P. A. A. van Roomen
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Guillermo R. Griffith
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Ricky Siebeler
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Annette E. Neele
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Jeffrey Kroon
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Marten A. Hoeksema
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Menno P. J. de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands,*Correspondence: Menno P. J. de Winther
| |
Collapse
|
611
|
Lin PC, Chen CY, Wu C, Su TC. Synergistic Effects of Inflammation and Atherogenic Dyslipidemia on Subclinical Carotid Atherosclerosis Assessed by Ultrasound in Patients with Familial Hypercholesterolemia and Their Family Members. Biomedicines 2022; 10:biomedicines10020367. [PMID: 35203576 PMCID: PMC8962410 DOI: 10.3390/biomedicines10020367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/23/2022] Open
Abstract
Low-density lipoprotein cholesterol (LDL-C) and total to high-density lipoprotein cholesterol (TC/HDL-C) ratio are both common risk factors for atherosclerotic cardiovascular diseases (ASCVDs). However, whether high-sensitivity C-reactive protein (hsCRP) has synergistic or attenuated effects on atherogenic dyslipidemia remains unclear. We investigated subclinical carotid atherosclerosis in patients with familial hypercholesterolemia (FH) and their family members. A total of 100 families with 761 participants were prospectively studied. Participants were categorized into four groups according to atherogenic dyslipidemia and inflammatory biomarkers. The group with LDL-C ≥ 160 mg/dL (or TC/HDL-C ratio ≥ 5) combined with hsCRP ≥ 2 mg/L have a thicker carotid intima-media thickness (CIMT) in different common carotid artery (CCA) areas and a higher percentage of high plaque scores compared with other subgroups. Multivariate logistic regression analysis revealed a significantly higher adjusted odds ratio (aOR) for thicker CIMT of 3.56 (95% CI: 1.56–8.16) was noted in those with concurrent LDL-C ≥ 160 mg/dL and hsCRP ≥ 2 mg/L compared with the group with concurrent LDL-C < 160 mg/dL and hsCRP < 2 mg/L. Our results demonstrated that systemic inflammation, in terms of higher hsCRP levels ≥ 2 mg/L, synergistically contributed to atherogenic dyslipidemia of higher LDL-C or a higher TC/HDL-C ratio on subclinical atherosclerosis.
Collapse
Affiliation(s)
- Po-Chih Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan;
| | - Chung-Yen Chen
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan;
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100225, Taiwan
| | - Charlene Wu
- Global Health Program, College of Public Health, National Taiwan University, Taipei 10055, Taiwan;
| | - Ta-Chen Su
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan;
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan;
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100225, Taiwan
- The Experimental Forest, National Taiwan University, Nantou 557009, Taiwan
- Correspondence: ; Tel.: +886-2-2312-3456 (ext. 66719 or 67183); Fax: +886-2-2371-2361
| |
Collapse
|
612
|
Concerns Regarding NMR Lipoprotein Analyses Performed on the Nightingale Heath Platform – Focus on LDL Subclasses. J Clin Lipidol 2022; 16:250-252. [DOI: 10.1016/j.jacl.2022.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/16/2022] [Indexed: 11/23/2022]
|
613
|
Su X, Zheng D, Wang M, Zuo Y, Wen J, Zhai Q, Zhang Y, He Y. Low density lipoprotein cholesterol is associated with increased risk of cardiovascular disease in participants over 70 years old: A prospective cohort study. Nutr Metab Cardiovasc Dis 2022; 32:447-455. [PMID: 34893412 DOI: 10.1016/j.numecd.2021.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND AIMS Previous studies have indicated that the association of elevated low-density lipoprotein cholesterol (LDL-C) with cardiovascular disease (CVD) varies greatly with age, with the association being much stronger in younger than older individuals. To estimate the relationship between LDL-C and CVD risk in a contemporary population aged over 70 years in China. METHODS AND RESULTS In this analysis, participants of China Health and Retirement Longitudinal Study (CHARLS) who did not take statins and did not have heart disease and stroke in 2011 were include and were followed up to 2018. The outcome of this analysis was the occurrence of CVD. Cox regression was used to assess the effect of LDL-C on CVD. We calculated E-values to quantify the effect of unmeasured confounding. In the 9,631 participants, 15.2% (N = 1,463) were aged over 70 years. During follow-up of 7 years, 1,437 participants had a first CVD attack. The Risk of CVD increased with each 10 mg/mL elevation in LDL-C in whole participants and all age groups. We noted a U-shaped relationship between LDL-C and risk of CVD in group over 70 years old, however, we further found that in the left side of U-shape curve, LDL-C was not associated with CVD, which indicated that a lower level of LDL-C could not increase the risk of CVD. E-value analysis suggested robustness to unmeasured confounding. CONCLUSIONS In a contemporary society of China, elevated the level of LDL-C also increased the risk of CVD in participants over 70 years old. These results should strengthen guideline recommendations for the use of lipid-lowering therapies in those elderly.
Collapse
Affiliation(s)
- Xin Su
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; School of Public Health, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Deqiang Zheng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Meiping Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Yingting Zuo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Jing Wen
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Qi Zhai
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Yibo Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Yan He
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Municipal Key Laboratory of Clinical Epidemiology, Beijing, China.
| |
Collapse
|
614
|
Özcan Abacıoğlu Ö, Yıldırım A, Koyunsever NY, Karadeniz M, Kılıç S. Relationship between atherogenic index of plasma and stent thrombosis in patients with acute coronary syndrome. Anatol J Cardiol 2022; 26:112-117. [PMID: 35190359 PMCID: PMC8878917 DOI: 10.5152/anatoljcardiol.2021.193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 10/29/2023] Open
Abstract
OBJECTIVE Stent thrombosis (ST) is an uncommon but serious complication in patients undergoing percutaneous coronary intervention (PCI). This study aimed to investigate the effect of atherogenic index of plasma (AIP) on ST. METHODS Among the 10,258 patients who underwent coronary angiography between January 2018 and December 2020, 239 patients who underwent PCI with the diagnosis of acute coronary syndrome (ACS) due to ST were included as the study group (ST group) and 459 patients who underwent percutaneous intervention for ACS and did not have any in-stent lesion as the control group (non-ST group). ST classification was done according to the Academic Research Consortium definition. RESULTS The mean age of the patients was 63.3±10.6 years (483 male, 69.2%). The groups were similar in terms of characteristic properties, comorbidities, and the drugs being used (p>0.05 for all). Drug eluting stents were used in 86.5% of the patients. In the ST group, the median time from stent implantation to thrombosis was 285 days. Mean AIP and the ratio of triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) were statistically significantly higher in the ST group than in the controls (p<0.001 and p=0.018, respectively), and a positive correlation was observed between time from stent implantation to thrombosis and AIP and TG/HDL-C (rS=0.229, p=0.010 and rS=0.222, p=0.010, respectively). Multivariate logistic regression analysis revealed that stent length, prior ST elevation myocardial infarction, TG/HDL-C, and AIP were independent predictors of ST. CONCLUSION AIP is an easy calculable biomarker, and the performance of AIP to predict ST is better than TG/HDL-C.
Collapse
Affiliation(s)
- Özge Özcan Abacıoğlu
- Department of Cardiology, Adana City Training and Research Hospital; Adana-Turkey
| | - Arafat Yıldırım
- Department of Cardiology, Adana City Training and Research Hospital; Adana-Turkey
| | | | - Mine Karadeniz
- Department of Hematology, Faculty of Medicine, Hacettepe University; Ankara-Turkey
| | - Salih Kılıç
- Department of Cardiology, Adana City Training and Research Hospital; Adana-Turkey
| |
Collapse
|
615
|
Inflammatory Cells in Atherosclerosis. Antioxidants (Basel) 2022; 11:antiox11020233. [PMID: 35204116 PMCID: PMC8868126 DOI: 10.3390/antiox11020233] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis is a chronic progressive disease that involves damage to the intima, inflammatory cell recruitment and the accumulation of lipids followed by calcification and plaque rupture. Inflammation is considered a key mediator of many events during the development and progression of the disease. Various types of inflammatory cells are reported to be involved in atherosclerosis. In the present paper, we discuss the involved inflammatory cells, their characteristic and functional significance in the development and progression of atherosclerosis. The detailed understanding of the role of all these cells in disease progression at different stages sheds more light on the subject and provides valuable insights as to where and when therapy should be targeted.
Collapse
|
616
|
Islam MM, Hlushchenko I, Pfisterer SG. Low-Density Lipoprotein Internalization, Degradation and Receptor Recycling Along Membrane Contact Sites. Front Cell Dev Biol 2022; 10:826379. [PMID: 35141225 PMCID: PMC8819725 DOI: 10.3389/fcell.2022.826379] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Low-density lipoprotein (LDL) internalization, degradation, and receptor recycling is a fundamental process underlying hypercholesterolemia, a high blood cholesterol concentration, affecting more than 40% of the western population. Membrane contact sites influence endosomal dynamics, plasma membrane lipid composition, and cellular cholesterol distribution. However, if we focus on LDL-related trafficking events we mostly discuss them in an isolated fashion, without cellular context. It is our goal to change this perspective and to highlight that all steps from LDL internalization to receptor recycling are likely associated with dynamic membrane contact sites in which endosomes engage with the endoplasmic reticulum and other organelles.
Collapse
|
617
|
Wu Y, Xin J, Loehrer EA, Jiang X, Yuan Q, Christiani DC, Shi H, Liu L, Li S, Wang M, Chu H, Du M, Zhang Z. High-density lipoprotein, low-density lipoprotein and triglyceride levels and upper gastrointestinal cancers risk: a trans-ancestry Mendelian randomization study. Eur J Clin Nutr 2022; 76:995-1002. [DOI: 10.1038/s41430-022-01078-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/18/2021] [Accepted: 01/12/2022] [Indexed: 01/02/2023]
|
618
|
Jones PR, Rajalahti T, Resaland GK, Aadland E, Steene-Johannessen J, Anderssen SA, Bathen TF, Andreassen T, Kvalheim OM, Ekelund U. Associations of lipoprotein particle profile and objectively measured physical activity and sedentary time in schoolchildren: a prospective cohort study. Int J Behav Nutr Phys Act 2022; 19:5. [PMID: 35062967 PMCID: PMC8781389 DOI: 10.1186/s12966-022-01244-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Our understanding of the mechanisms through which physical activity might benefit lipoprotein metabolism is inadequate. Here we characterise the continuous associations between physical activity of different intensities, sedentary time, and a comprehensive lipoprotein particle profile.
Methods
Our cohort included 762 fifth grade (mean [SD] age = 10.0 [0.3] y) Norwegian schoolchildren (49.6% girls) measured on two separate occasions across one school year. We used targeted proton nuclear magnetic resonance (1H NMR) spectroscopy to produce 57 lipoprotein measures from fasted blood serum samples. The children wore accelerometers for seven consecutive days to record time spent in light-, moderate-, and vigorous-intensity physical activity, and sedentary time. We used separate multivariable linear regression models to analyse associations between the device-measured activity variables—modelled both prospectively (baseline value) and as change scores (follow-up minus baseline value)—and each lipoprotein measure at follow-up.
Results
Higher baseline levels of moderate-intensity and vigorous-intensity physical activity were associated with a favourable lipoprotein particle profile at follow-up. The strongest associations were with the larger subclasses of triglyceride-rich lipoproteins. Sedentary time was associated with an unfavourable lipoprotein particle profile, the pattern of associations being the inverse of those in the moderate-intensity and vigorous-intensity physical activity analyses. The associations with light-intensity physical activity were more modest; those of the change models were weak.
Conclusion
We provide evidence of a prospective association between time spent active or sedentary and lipoprotein metabolism in schoolchildren. Change in activity levels across the school year is of limited influence in our young, healthy cohort.
Trial registration
ClinicalTrials.gov, #NCT02132494. Registered 7th April 2014
Collapse
|
619
|
Tokgözoğlu L, Libby P. The dawn of a new era of targeted lipid-lowering therapies. Eur Heart J 2022; 43:3198-3208. [PMID: 35051271 PMCID: PMC9448630 DOI: 10.1093/eurheartj/ehab841] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/26/2021] [Accepted: 11/25/2021] [Indexed: 01/22/2023] Open
Abstract
Lipid risk factors for cardiovascular disease depend in part on lifestyle, but optimum control of lipids often demands additional measures. Low-density lipoprotein (LDL) doubtless contributes causally to atherosclerosis. Recent human genetic findings have substantiated a number of novel targets for lipid-lowering therapy including apolipoprotein C-III, angiopoietin-like protein 3 and 4, apolipoprotein V, and ATP citrate lyase. These discoveries coupled with advances in biotechnology development afford new avenues for management of LDL and other aspects of lipid risk. Beyond LDL, new treatments targeting triglyceride-rich lipoproteins and lipoprotein(a) have become available and have entered clinical development. Biological and RNA-directed agents have joined traditional small-molecule approaches, which themselves have undergone considerable refinement. Innovative targeting strategies have increased efficacy of some of these novel interventions and markedly improved their tolerability. Gene-editing approaches have appeared on the horizon of lipid management. This article reviews this progress offering insight into novel biological and therapeutic discoveries, and places them into a practical patient care perspective.
Collapse
Affiliation(s)
- Lale Tokgözoğlu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Sıhhiye, Ankara 06100, Turkey
| | - Peter Libby
- Corresponding author. Tel: +1 617 525 4383, Fax: +1 617 525 4400,
| |
Collapse
|
620
|
Oliveira GMMD, Brant LCC, Polanczyk CA, Malta DC, Biolo A, Nascimento BR, Souza MDFMD, Lorenzo ARD, Fagundes AADP, Schaan BD, Castilho FMD, Cesena FHY, Soares GP, Xavier GF, Barreto JAS, Passaglia LG, Pinto MM, Machline-Carrion MJ, Bittencourt MS, Pontes OM, Villela PB, Teixeira RA, Sampaio RO, Gaziano TA, Perel P, Roth GA, Ribeiro ALP. Estatística Cardiovascular – Brasil 2021. Arq Bras Cardiol 2022; 118:115-373. [PMID: 35195219 PMCID: PMC8959063 DOI: 10.36660/abc.20211012] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023] Open
|
621
|
Choroszy M, Sobieszczańska B, Litwinowicz K, Łaczmański Ł, Chmielarz M, Walczuk U, Roleder T, Radziejewska J, Wawrzyńska M. Co-toxicity of Endotoxin and Indoxyl Sulfate, Gut-Derived Bacterial Metabolites, to Vascular Endothelial Cells in Coronary Arterial Disease Accompanied by Gut Dysbiosis. Nutrients 2022; 14:nu14030424. [PMID: 35276782 PMCID: PMC8840142 DOI: 10.3390/nu14030424] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Gut dysbiosis, alongside a high-fat diet and cigarette smoking, is considered one of the factors promoting coronary arterial disease (CAD) development. The present study aimed to research whether gut dysbiosis can increase bacterial metabolites concentration in the blood of CAD patients and what impact these metabolites can exert on endothelial cells. The gut microbiomes of 15 age-matched CAD patients and healthy controls were analyzed by 16S rRNA sequencing analysis. The in vitro impact of LPS and indoxyl sulfate at concentrations present in patients' sera on endothelial cells was investigated. 16S rRNA sequencing analysis revealed gut dysbiosis in CAD patients, further confirmed by elevated LPS and indoxyl sulfate levels in patients' sera. CAD was associated with depletion of Bacteroidetes and Alistipes. LPS and indoxyl sulfate demonstrated co-toxicity to endothelial cells inducing reactive oxygen species, E-selectin, and monocyte chemoattractant protein-1 (MCP-1) production. Moreover, both of these metabolites promoted thrombogenicity of endothelial cells confirmed by monocyte adherence. The co-toxicity of LPS and indoxyl sulfate was associated with harmful effects on endothelial cells, strongly suggesting that gut dysbiosis-associated increased intestinal permeability can initiate or promote endothelial inflammation and atherosclerosis progression.
Collapse
Affiliation(s)
- Marcin Choroszy
- Department of Microbiology, Wrocław Medical University, Chalubinskiego 4 Street, 51-657 Wroclaw, Poland; (M.C.); (M.C.); (U.W.)
| | - Beata Sobieszczańska
- Department of Microbiology, Wrocław Medical University, Chalubinskiego 4 Street, 51-657 Wroclaw, Poland; (M.C.); (M.C.); (U.W.)
- Correspondence:
| | - Kamil Litwinowicz
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubińskiego 10 Street, 50-368 Wroclaw, Poland;
| | - Łukasz Łaczmański
- Laboratory of Genomics & Bioinformatics, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12 Street, 53-114 Wroclaw, Poland;
| | - Mateusz Chmielarz
- Department of Microbiology, Wrocław Medical University, Chalubinskiego 4 Street, 51-657 Wroclaw, Poland; (M.C.); (M.C.); (U.W.)
| | - Urszula Walczuk
- Department of Microbiology, Wrocław Medical University, Chalubinskiego 4 Street, 51-657 Wroclaw, Poland; (M.C.); (M.C.); (U.W.)
| | - Tomasz Roleder
- Research and Development Centre, Regional Specialist Hospital, Kamienskiego 73a Street, 51-124 Wroclaw, Poland;
| | | | - Magdalena Wawrzyńska
- Department of Preclinical Studies, Faculty of Health Sciences, Wrocław Medical University, 50-367 Wrocław, Poland;
| |
Collapse
|
622
|
Metzner T, Leitner DR, Mellitzer K, Beck A, Sourij H, Stojakovic T, Reishofer G, März W, Landmesser U, Scharnagl H, Toplak H, Silbernagel G. Effects of Alirocumab on Triglyceride Metabolism: A Fat-Tolerance Test and Nuclear Magnetic Resonance Spectroscopy Study. Biomedicines 2022; 10:biomedicines10010193. [PMID: 35052871 PMCID: PMC8774139 DOI: 10.3390/biomedicines10010193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 01/06/2023] Open
Abstract
Background: PCSK9 antibodies strongly reduce LDL cholesterol. The effects of PCSK9 antibodies on triglyceride metabolism are less pronounced. The present study aimed to investigate in detail the effects of alirocumab on triglycerides, triglyceride-rich lipoproteins, and lipase regulators. Methods: A total of 24 patients with an indication for treatment with PCSK9 antibodies were recruited. There were two visits at the study site: the first before initiation of treatment with alirocumab and the second after 10 weeks of treatment. Fat-tolerance tests, nuclear magnetic resonance spectroscopy, and enzyme-linked immunosorbent assays were performed to analyze lipid metabolism. Results: A total of 21 participants underwent the first and second investigation. Among these, two participants only received alirocumab twice and 19 patients completed the trial per protocol. All of them had atherosclerotic vascular disease. There was no significant effect of alirocumab treatment on fasting triglycerides, post-prandial triglycerides, or lipoprotein-lipase regulating proteins. Total, large, and small LDL particle concentrations decreased, while the HDL particle concentration increased (all p < 0.001). Mean total circulating PCSK9 markedly increased in response to alirocumab treatment (p < 0.001). Whereas PCSK9 increased more than three-fold in all 19 compliant patients, it remained unchanged in those two patients with two injections only. Conclusion: Significant effects of alirocumab on triglyceride metabolism were not detectable in the ALIROCKS trial. The total circulating PCSK9 concentration might be a useful biomarker to differentiate non-adherence from non-response to PCSK9 antibodies.
Collapse
Affiliation(s)
- Thomas Metzner
- Department of Internal Medicine, Division of Angiology, Medical University of Graz, 8036 Graz, Austria
- Department of Medical Affairs, Sanofi-Aventis GmbH, 1100 Vienna, Austria
| | - Deborah R Leitner
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria
| | - Karin Mellitzer
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria
| | - Andrea Beck
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria
| | - Harald Sourij
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, University Hospital Graz, 8036 Graz, Austria
| | - Gernot Reishofer
- Department of Radiology, Clinical Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, 8036 Graz, Austria
| | - Winfried März
- Department of Internal Medicine 5 (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Mannheim Medical Faculty, University of Heidelberg, 68167 Mannheim, Germany
- Synlab Academy, Synlab Holding Germany GmbH, 86156 Augsburg, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria
| | - Ulf Landmesser
- German Center for Cardiovascular Research (DZHK)-Partner Site Berlin, Department of Cardiology, Berlin Institute of Health, Charité University Medicine Berlin, 12200 Berlin, Germany
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria
| | - Hermann Toplak
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria
| | - Günther Silbernagel
- Department of Internal Medicine, Division of Angiology, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
623
|
Močnik M, Marčun Varda N. Current Knowledge of Selected Cardiovascular Biomarkers in Pediatrics: Kidney Injury Molecule-1, Salusin-α and -β, Uromodulin, and Adropin. CHILDREN 2022; 9:children9010102. [PMID: 35053727 PMCID: PMC8774650 DOI: 10.3390/children9010102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/01/2022] [Accepted: 01/10/2022] [Indexed: 02/06/2023]
Abstract
Cardiovascular diseases are the leading cause of morbidity and mortality in the modern world. Their common denominator is atherosclerosis, a process beginning in childhood. In pediatrics, the aim of preventive measures is to recognize children and adolescents at risk for accelerated atherosclerosis and possible premature cardiovascular events in adulthood. Several diagnostic procedures and biomarkers are available for cardiovascular risk assessment in adults. However, reliable markers in pediatrics are still insufficiently studied. In this contribution, we discuss five potential biomarkers of particular interest: kidney injury molecule-1, salusin-α and -β, uromodulin, and adropin. Studies regarding the pediatric population are scarce, but they support the evidence from studies in the adult population. These markers might entail both a prognostic and a therapeutic interest.
Collapse
Affiliation(s)
- Mirjam Močnik
- Department of Paediatrics, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia;
- Correspondence:
| | - Nataša Marčun Varda
- Department of Paediatrics, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia;
- Medical Faculty, University of Maribor, Taborska 8, 2000 Maribor, Slovenia
| |
Collapse
|
624
|
Rendeiro AF, Vorkas CK, Krumsiek J, Singh HK, Kapadia SN, Cappelli LV, Cacciapuoti MT, Inghirami G, Elemento O, Salvatore M. Metabolic and Immune Markers for Precise Monitoring of COVID-19 Severity and Treatment. Front Immunol 2022; 12:809937. [PMID: 35095900 PMCID: PMC8790058 DOI: 10.3389/fimmu.2021.809937] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023] Open
Abstract
Deep understanding of the SARS-CoV-2 effects on host molecular pathways is paramount for the discovery of early biomarkers of outcome of coronavirus disease 2019 (COVID-19) and the identification of novel therapeutic targets. In that light, we generated metabolomic data from COVID-19 patient blood using high-throughput targeted nuclear magnetic resonance (NMR) spectroscopy and high-dimensional flow cytometry. We find considerable changes in serum metabolome composition of COVID-19 patients associated with disease severity, and response to tocilizumab treatment. We built a clinically annotated, biologically-interpretable space for precise time-resolved disease monitoring and characterize the temporal dynamics of metabolomic change along the clinical course of COVID-19 patients and in response to therapy. Finally, we leverage joint immuno-metabolic measurements to provide a novel approach for patient stratification and early prediction of severe disease. Our results show that high-dimensional metabolomic and joint immune-metabolic readouts provide rich information content for elucidation of the host's response to infection and empower discovery of novel metabolic-driven therapies, as well as precise and efficient clinical action.
Collapse
Affiliation(s)
- André F. Rendeiro
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | | | - Jan Krumsiek
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Harjot K. Singh
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Shashi N. Kapadia
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Luca Vincenzo Cappelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Maria Teresa Cacciapuoti
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Olivier Elemento
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Mirella Salvatore
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
625
|
Gora AH, Rehman S, Kiron V, Dias J, Fernandes JMO, Olsvik PA, Siriyappagouder P, Vatsos I, Schmid-Staiger U, Frick K, Cardoso M. Management of Hypercholesterolemia Through Dietary ß-glucans–Insights From a Zebrafish Model. Front Nutr 2022; 8:797452. [PMID: 35096942 PMCID: PMC8790573 DOI: 10.3389/fnut.2021.797452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/09/2021] [Indexed: 11/20/2022] Open
Abstract
Consumption of lipid-rich foods can increase the blood cholesterol content. β-glucans have hypocholesterolemic effect. However, subtle changes in their molecular branching can influence bioactivity. Therefore, a comparative investigation of the cholesterol-lowering potential of two β-glucans with different branching patterns and a cholesterol-lowering drug, namely simvastatin was undertaken employing the zebrafish (Danio rerio) model of diet-induced hypercholesterolemia. Fish were allocated to 5 dietary treatments; a control group, a high cholesterol group, two β-glucan groups, and a simvastatin group. We investigated plasma total cholesterol, LDL and HDL cholesterol levels, histological changes in the tissues, and explored intestinal transcriptomic changes induced by the experimental diets. Dietary cholesterol likely caused the suppression of endogenous cholesterol biosynthesis, induced dysfunction of endoplasmic reticulum and mitochondria, and altered the histomorphology of the intestine. The two β-glucans and simvastatin significantly abated the rise in plasma cholesterol levels and restored the expression of specific genes to alleviate the endoplasmic reticulum-related effects induced by the dietary cholesterol. Furthermore, the distinct patterns of transcriptomic changes in the intestine elicited by the oat and microalga β-glucans impacted processes such as fatty acid metabolism, protein catabolic processes, and nuclear division. Oat and microalgal β-glucans also altered the pattern of lipid deposition in the liver. Our study provides insights into the effectiveness of different β-glucans to alleviate dysfunctions in lipid metabolism caused by dietary cholesterol.
Collapse
Affiliation(s)
| | - Saima Rehman
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- *Correspondence: Viswanath Kiron
| | | | | | - Pål Asgeir Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Ioannis Vatsos
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Ulrike Schmid-Staiger
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Innovation Field Algae Biotechnology-Development, Stuttgart, Germany
| | - Konstantin Frick
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Stuttgart, Germany
| | | |
Collapse
|
626
|
Tršan J, Košuta D, Rajkovič U, Fras Z, Jug B, Novaković M. Vascular Function in Patients After Myocardial Infarction: The Importance of Physical Activity. Front Physiol 2022; 12:763043. [PMID: 35002758 PMCID: PMC8741173 DOI: 10.3389/fphys.2021.763043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Patients after myocardial infarction have impaired vascular function. However, effects of lifestyle, e.g., physical activity level, on endothelial function and arterial stiffness remain scarce. The aim of our study was to investigate effects of physical activity level and risk factors on endothelial function and arterial stiffness. Methods: In this cross-sectional study, we ultrasonographically assessed parameters of vascular function, namely flow mediated dilation (FMD) of the brachial artery and carotid artery stiffness in patients after myocardial infarction referred to the cardiac rehabilitation. The International Physical Activity Questionnaire (IPAQ) was obtained from all participants. Based on the IPAQ, patients were classified into three groups: vigorous, moderate, and low physical activity engagement. ANOVA was used for comparison among three groups using Bonferroni correction to determine differences between two sub-groups. Results: One hundred and eight patients after myocardial infarction (mean age 53 ± 10 years) were included. There were significant differences in terms of FMD (8.2 vs. 4.2 vs. 1.9%, p < 0.001) and pulse wave velocity (PWV), a measure of arterial stiffness (6.1 vs. 6.4 vs. 6.9 m/s, p = 0.004) among groups of vigorous, moderate, and low physical activity engagement, respectively. However, in younger patients only FMD remained associated with physical activity level, while arterial stiffness was not. Low physical activity engagement was a significant predictor of both FMD and PWV in univariate and multivariate models, adjusted for age, sex, and other risk factors. Conclusion: Low physical activity level is associated with impaired endothelial function and increased arterial stiffness in patients after myocardial infarction. Future studies are warranted to address this issue in a context of cardiac rehabilitation protocols optimization in order to improve vascular function in these patients.
Collapse
Affiliation(s)
- Jure Tršan
- Division of Internal Medicine, Department of Vascular Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Daniel Košuta
- Division of Internal Medicine, Department of Vascular Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Uroš Rajkovič
- Faculty of Organizational Sciences, University of Maribor, Kranj, Slovenia
| | - Zlatko Fras
- Division of Internal Medicine, Department of Vascular Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Borut Jug
- Division of Internal Medicine, Department of Vascular Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Novaković
- Division of Internal Medicine, Department of Vascular Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
627
|
Mauersberger C, Hinterdobler J, Schunkert H, Kessler T, Sager HB. Where the Action Is-Leukocyte Recruitment in Atherosclerosis. Front Cardiovasc Med 2022; 8:813984. [PMID: 35087886 PMCID: PMC8787128 DOI: 10.3389/fcvm.2021.813984] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is the leading cause of death worldwide and leukocyte recruitment is a key element of this phenomenon, thus allowing immune cells to enter the arterial wall. There, in concert with accumulating lipids, the invading leukocytes trigger a plethora of inflammatory responses which promote the influx of additional leukocytes and lead to the continued growth of atherosclerotic plaques. The recruitment process follows a precise scheme of tethering, rolling, firm arrest, crawling and transmigration and involves multiple cellular and subcellular players. This review aims to provide a comprehensive up-to-date insight into the process of leukocyte recruitment relevant to atherosclerosis, each from the perspective of endothelial cells, monocytes and macrophages, neutrophils, T lymphocytes and platelets. In addition, therapeutic options targeting leukocyte recruitment into atherosclerotic lesions-or potentially arising from the growing body of insights into its precise mechanisms-are highlighted.
Collapse
Affiliation(s)
- Carina Mauersberger
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Julia Hinterdobler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
628
|
Discordance between LDL-C and Apolipoprotein B Levels and Its Association with Renal Dysfunction: Insights from a Population-Based Study. J Clin Med 2022; 11:jcm11020313. [PMID: 35054008 PMCID: PMC8781725 DOI: 10.3390/jcm11020313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 02/04/2023] Open
Abstract
Low-density lipoprotein cholesterol (LDL-C) and apolipoprotein B (ApoB) are established markers of atherosclerotic cardiovascular disease (ASCVD), but when concentrations are discordant ApoB is the superior predictor. Chronic kidney disease (CKD) is associated with ASCVD, yet the independent role of atherogenic lipoproteins is contentious. Four groups were created based upon high and low levels of ApoB and LDL-C. Continuous and categorical variables were compared across groups, as were adjusted markers of CKD. Logistic regression analysis assessed association(s) with CKD based on the groups. Subjects were categorised by LDL-C and ApoB, using cut-off values of >160 mg/dL and >130 mg/dL, respectively. Those with low LDL-C and high ApoB, compared to those with high LDL-C and high ApoB, had significantly higher body mass index (30.7 vs. 30.1 kg/m2) and waist circumference (106.1 vs. 102.7 cm) and the highest fasting blood glucose (117.5 vs. 112.7 mg/dL), insulin (16.6 vs. 13.1 μU/mL) and homeostatic model assessment of insulin resistance (5.3 vs. 3.7) profiles (all p < 0.001). This group, compared to those with high LDL-C and high ApoB, also had the highest levels of urine albumin (2.3 vs. 2.2 mg/L), log albumin-creatinine ratio (2.2 vs. 2.1 mg/g) and serum uric acid (6.1 vs. 5.6 mg/dL) and the lowest estimated glomerular filtration rate (81.3 vs. 88.4 mL/min/1.73 m2) (all p < 0.001). In expanded logistic regression models, using the low LDL-C and low ApoB group as a reference, those with low LDL-C and high ApoB had the strongest association with CKD, odds ratio (95% CI) 1.12 (1.08-1.16). Discordantly high levels of ApoB are independently associated with increased likelihood of CKD. ApoB remains associated with metabolic dysfunction, regardless of LDL-C.
Collapse
|
629
|
Momtazi-Borojeni AA, Abdollahi E, Jaafari MR, Banach M, Watts GF, Sahebkar A. Negatively-charged Liposome Nanoparticles Can Prevent Dyslipidemia and Atherosclerosis Progression in the Rabbit Model. Curr Vasc Pharmacol 2022; 20:69-76. [PMID: 34414873 DOI: 10.2174/1570161119666210820115150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/13/2021] [Accepted: 06/21/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIM Negatively charged nanoliposomes have a strong attraction towards plasma lipoprotein particles and can thereby regulate lipid metabolism. Here, the impact of such nanoliposomes on dyslipidaemia and progression of atherosclerosis was investigated in a rabbit model. METHODS Two sets of negatively-charged nanoliposome formulations including [Hydrogenated Soy Phosphatidylcholine (HSPC)/1,2-distearoyl-sn-glycero-3- phosphoglycerol (DSPG)] and [1,2- Dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC)/1,2-Dimyristoyl-sn-glycero-3-phosphorylcholine (DMPG)/Cholesterol] were evaluated. Rabbits fed a high-cholesterol diet were randomly divided into 3 groups (n=5/group) intravenously administrated with HSPC/DSPG formulation (DSPG group; 100 mmol/kg), DMPC/DMPG formulation (DMPG group; 100 mmol/kg), or the normal saline (control group; 0.9% NaCl) over a 4-week period. The atherosclerotic lesions of the aortic arch wall were studied using haematoxylin and eosin staining. RESULTS Both DSPG and DMPG nanoliposome formulations showed a nano-sized range in diameter with a negatively-charged surface and a polydispersity index of <0.1. After 4 weeks administration, the nanoliposome formulations decreased triglycerides (-62±3% [DSPG group] and -58±2% [DMPG group]), total cholesterol (-58±9% [DSPG group] and -37±5% [DMPG group]), and lowdensity lipoprotein cholesterol (-64±6% [DSPG group] and -53±10% [DMPG group]) levels, and increased high-density lipoprotein cholesterol (+67±28% [DSPG group] and +35±19% [DMPG group]) levels compared with the controls. The nanoliposomes showed a significant decrease in the severity of atherosclerotic lesions: mean values of the intima to media ratio in DMPG (0.96±0.1 fold) and DSPG (0.54±0.02 fold) groups were found to be significantly lower than that in the control (1.2±0.2 fold) group (p<0.05). CONCLUSION Anionic nanoliposomes containing [HSPC/DSPG] and [DMPC/DMPG] correct dyslipidaemia and inhibit the progression of atherosclerosis.
Collapse
Affiliation(s)
| | - Elham Abdollahi
- Department of Gynecology, Woman Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud R Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran | Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland | Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Gerald F Watts
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran | Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran | School of Medicine, The University of Western Australia, Perth, Australia | School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
630
|
Siurana JM, Sabaté-Rotés A, Amigó N, Martínez-Micaelo N, Arciniegas L, Riaza L, Mogas E, Rosés-Noguer F, Ventura PS, Yeste D. Different profiles of lipoprotein particles associate various degrees of cardiac involvement in adolescents with morbid obesity. Front Pediatr 2022; 10:887771. [PMID: 36483472 PMCID: PMC9723388 DOI: 10.3389/fped.2022.887771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 11/02/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Dyslipidemia secondary to obesity is a risk factor related to cardiovascular disease events, however a pathological conventional lipid profile (CLP) is infrequently found in obese children. The objective is to evaluate the advanced lipoprotein testing (ALT) and its relationship with cardiac changes, metabolic syndrome (MS) and inflammatory markers in a population of morbidly obese adolescents with normal CLP and without type 2 diabetes mellitus, the most common scenario in obese adolescents. METHODS Prospective case-control research of 42 morbidly obese adolescents and 25 normal-weight adolescents, whose left ventricle (LV) morphology and function had been assessed. The ALT was obtained by proton nuclear magnetic resonance spectroscopy, and the results were compared according to the degree of cardiac involvement - normal heart, mild LV changes, and severe LV changes (specifically LV remodeling and systolic dysfunction) - and related to inflammation markers [highly-sensitive C-reactive protein and glycoprotein A (GlycA)] and insulin-resistance [homeostatic model assessment for insulin-resistance (HOMA-IR)]. A second analysis was performed to compare our results with the predominant ALT when only body mass index and metabolic syndrome criteria were considered. RESULTS The three cardiac involvement groups showed significant increases in HOMA-IR, inflammatory markers and ALT ratio LDL-P/HDL-P (40.0 vs. 43.9 vs. 47.1, p 0.012). When only cardiac change groups were considered, differences in small LDL-P (565.0 vs. 625.1 nmol/L, p 0.070), VLDL size and GlycA demonstrated better utility than just traditional risk factors to predict which subjects could present severe LV changes [AUC: 0.79 (95% CI: 0.54-1)]. In the second analysis, an atherosclerotic ALT was detected in morbidly obese subjects, characterized by a significant increase in large VLDL-P, small LDL-P, ratio LDL-P/HDL-P and ratio HDL-TG/HDL-C. Subjects with criteria for MS presented overall worse ALT (specially in triglyceride-enriched particles) and remnant cholesterol values. CONCLUSIONS ALT parameters and GlycA appear to be more reliable indicators of cardiac change severity than traditional CV risk factors. Particularly, the overage of LDL-P compared to HDL-P and the increase in small LDL-P with cholesterol-depleted LDL particles appear to be the key ALT's parameters involved in LV changes. Morbidly obese adolescents show an atherosclerotic ALT and those with MS present worse ALT values.
Collapse
Affiliation(s)
- José M Siurana
- Department of Pediatric Cardiology, Hospital HM Nens, HM Hospitales, Barcelona, Spain.,Autonomous University of Barcelona, Barcelona, Spain
| | - Anna Sabaté-Rotés
- Autonomous University of Barcelona, Barcelona, Spain.,Department of Pediatric Cardiology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Núria Amigó
- Biosfer Teslab, Reus, Spain.,Department of Basic Medical Sciences, Universitat Rovira I Virgili, Institut D'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Neus Martínez-Micaelo
- Biosfer Teslab, Reus, Spain.,Department of Basic Medical Sciences, Universitat Rovira I Virgili, Institut D'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Larry Arciniegas
- Department of Pediatric Endocrinology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Lucia Riaza
- Department of Pediatric Radiology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Eduard Mogas
- Department of Pediatric Endocrinology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Ferran Rosés-Noguer
- Autonomous University of Barcelona, Barcelona, Spain.,Department of Pediatric Cardiology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Paula S Ventura
- Department of Pediatric Endocrinology, Hospital HM Nens, HM Hospitales, Barcelona, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Diego Yeste
- Autonomous University of Barcelona, Barcelona, Spain.,Department of Pediatric Endocrinology, Vall d'Hebron University Hospital, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
631
|
Bae JH. Opposing View: A Blind Faith in Meta-Analyses in Academia Could Be a Threat to Public Health. J Lipid Atheroscler 2022; 11:308-313. [PMID: 36212751 PMCID: PMC9515736 DOI: 10.12997/jla.2022.11.3.308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jae Hyun Bae
- Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
632
|
Aluganti Narasimhulu C, Parthasarathy S. Preparation of LDL , Oxidation , Methods of Detection, and Applications in Atherosclerosis Research. Methods Mol Biol 2022; 2419:213-246. [PMID: 35237967 DOI: 10.1007/978-1-0716-1924-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The concept of lipid peroxidation has been known for a long time. It is now well established that LDL plays a major role in atherosclerosis. Oxidized low-density lipoprotein (Ox-LDL) has been studied for over 35 years. Numerous pro- and anti-atherogenic properties have been attributed to Ox-LDL. Component composition of Ox-LDL is complex due to the influence of various factors, including the source, method of preparation, storage and use. Hence, it is very difficult to clearly define and characterize Ox-LDL. It contains unoxidized and oxidized fatty acid derivatives both in the ester and free forms, their decomposition products, cholesterol and its oxidized products, proteins with oxidized amino acids and cross-links, polypeptides with varying extents of covalent modification with lipid oxidation products and many others. The measurement of lipid oxidation has been a great boon, not only to the understanding of the process but also in providing numerous serendipitous discoveries and methodologies. In this chapter, we outline the methodologies for the preparation and testing of various lipoproteins for oxidation studies.
Collapse
Affiliation(s)
| | - Sampath Parthasarathy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
633
|
|
634
|
Garbuzenko DV. Pathophysiological mechanisms of cardiovascular disorders in non-alcoholic fatty liver disease. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2022; 15:194-203. [PMID: 36311966 PMCID: PMC9589137 DOI: 10.22037/ghfbb.v15i3.2549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022]
Abstract
Non-alcoholic fatty liver disease is one of the main liver diseases worldwide. The most common cause of death in patients with non-alcoholic fatty liver disease is cardiovascular disease. The relationship between these two conditions has been well established. Indeed, identical reasons may contribute to the development of cardiovascular disease and non-alcoholic fatty liver disease with lifestyle factors such as smoking, sedentariness, poor nutritional habits, and physical inactivity being major aspects. This review focuses on potential pathophysiological mechanisms of cardiovascular disorders in non-alcoholic fatty liver. PubMed, EMBASE, Orphanet, MIDLINE, Google Scholar, and Cochrane Library were searched for articles published between 2006 and 2022. Relevant articles were selected using the following terms: "Non-alcoholic fatty liver disease," "Сardiovascular diseases," "Pathophysiological mechanisms." The reference lists of all identified articles were searched for other relevant publications as well. The pathophysiological mechanisms of cardiovascular disorders in non-alcoholic fatty liver remain largely speculative and may include systemic low-grade inflammation, atherogenic dyslipidemia, abnormal glucose metabolism and hepatic insulin resistance, endothelial dysfunction, gut dysbiosis, as well as the associated cardiac remodeling, which are influenced by interindividual genetic and epigenetic variations. It is clear that the identification of pathophysiological mechanisms underlying cardiovascular disorders in non-alcoholic fatty liver disease will make the selection of therapeutic measures more optimal and effective.
Collapse
|
635
|
Perfil lipoproteico determinado por resonancia magnética. El momento de su utilización clínica ha llegado. Rev Esp Cardiol 2022. [DOI: 10.1016/j.recesp.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
636
|
Masana L, Ibarretxe D. Magnetic resonance-assessed lipoprotein profile. The time has come for its clinical use. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2022; 75:5-8. [PMID: 34607775 DOI: 10.1016/j.rec.2021.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Lluís Masana
- Unitat de Medicina Vascular i Metabolisme, Hospital Universitari Sant Joan, Reus, Tarragona, Spain; Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili (IISPV-CERCA), Reus, Tarragona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain.
| | - Daiana Ibarretxe
- Unitat de Medicina Vascular i Metabolisme, Hospital Universitari Sant Joan, Reus, Tarragona, Spain; Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili (IISPV-CERCA), Reus, Tarragona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| |
Collapse
|
637
|
Association between Non-HDL-C/HDL-C Ratio and Carotid Intima–Media Thickness in Post-Menopausal Women. J Clin Med 2021; 11:jcm11010078. [PMID: 35011818 PMCID: PMC8745439 DOI: 10.3390/jcm11010078] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 02/01/2023] Open
Abstract
Atherogenic lipoproteins (particularly, very low-density lipoproteins, VLDL) are associated with subclinical atherosclerosis. The present study aims at evaluating whether routinely analysed lipid parameters are associated with carotid intima–media thickness, a proxy for subclinical atherosclerosis. Lipid parameters from 220 post-menopausal women undergoing ultrasound investigation of the carotid arteries were analysed. Forty-five percent of women showed subclinical atherosclerosis on carotid ultrasound. The mean carotid intima–media thickness was 1.26 ± 0.38 mm. The mean value of the non-HDL-C/HDL-C ratio was 3.1 ± 1.2. Univariate analysis showed a significant association between non-HDL-C/HDL-C ratio and intima–media thickness (r = 0.21, p = 0.001). After adjusting for cardiovascular risk factors (age, systolic blood pressure, smoking, body mass index Homeostasis model assessment: insulin resistance and high-sensitivity C-Reactive-Protein), multivariate analysis showed a significant association between non-HDL-C/HDL-C ratio and intima–media thickness (β = 0.039, p = 0.04). Logistic regression analysis showed that the highest tertile of the non-HDL-C/HDL-C ratio was associated with the presence of carotid plaques (OR = 3.47, p = 0.003). Finally, a strong correlation between non-HDL-C/HDL-C ratio and cholesterol bound to VLDL (r = 0.77, p < 0.001) has been found. Non-HDL-C/HDL-C ratio is associated with the presence of carotid atherosclerosis in post-menopausal women and is strongly correlated to VLDL-C levels.
Collapse
|
638
|
Schmelter F, Föh B, Mallagaray A, Rahmöller J, Ehlers M, Lehrian S, von Kopylow V, Künsting I, Lixenfeld AS, Martin E, Ragab M, Meyer-Saraei R, Kreutzmann F, Eitel I, Taube S, Käding N, Jantzen E, Graf T, Sina C, Günther UL. Metabolic and Lipidomic Markers Differentiate COVID-19 From Non-Hospitalized and Other Intensive Care Patients. Front Mol Biosci 2021; 8:737039. [PMID: 34938772 PMCID: PMC8686182 DOI: 10.3389/fmolb.2021.737039] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a viral infection affecting multiple organ systems of great significance for metabolic processes. Thus, there is increasing interest in metabolic and lipoprotein signatures of the disease, and early analyses have demonstrated a metabolic pattern typical for atherosclerotic and hepatic damage in COVID-19 patients. However, it remains unclear whether this is specific for COVID-19 and whether the observed signature is caused by the disease or rather represents an underlying risk factor. To answer this question, we have analyzed 482 serum samples using nuclear magnetic resonance metabolomics, including longitudinally collected samples from 12 COVID-19 and 20 cardiogenic shock intensive care patients, samples from 18 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody-positive individuals, and single time point samples from 58 healthy controls. COVID-19 patients showed a distinct metabolic serum profile, including changes typical for severe dyslipidemia and a deeply altered metabolic status compared with healthy controls. Specifically, very-low-density lipoprotein and intermediate-density lipoprotein particles and associated apolipoprotein B and intermediate-density lipoprotein cholesterol were significantly increased, whereas cholesterol and apolipoprotein A2 were decreased. Moreover, a similarly perturbed profile was apparent when compared with other patients with cardiogenic shock who are in the intensive care unit when looking at a 1-week time course, highlighting close links between COVID-19 and lipid metabolism. The metabolic profile of COVID-19 patients distinguishes those from healthy controls and also from patients with cardiogenic shock. In contrast, anti-SARS-CoV-2 antibody-positive individuals without acute COVID-19 did not show a significantly perturbed metabolic profile compared with age- and sex-matched healthy controls, but SARS-CoV-2 antibody-titers correlated significantly with metabolic parameters, including levels of glycine, ApoA2, and small-sized low- and high-density lipoprotein subfractions. Our data suggest that COVID-19 is associated with dyslipidemia, which is not observed in anti-SARS-CoV-2 antibody-positive individuals who have not developed severe courses of the disease. This suggests that lipoprotein profiles may represent a confounding risk factor for COVID-19 with potential for patient stratification.
Collapse
Affiliation(s)
- Franziska Schmelter
- Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany.,Research and Development Department, GALAB Laboratories GmbH, Hamburg, Germany
| | - Bandik Föh
- Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany.,Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Alvaro Mallagaray
- Institute of Chemistry and Metabolomics, University of Lübeck, Lübeck, Germany
| | - Johann Rahmöller
- Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany.,Department of Anesthesiology and Intensive Care, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Marc Ehlers
- Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany
| | - Selina Lehrian
- Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany
| | - Vera von Kopylow
- Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany
| | - Inga Künsting
- Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany
| | | | - Emily Martin
- Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany
| | - Mohab Ragab
- Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany
| | - Roza Meyer-Saraei
- Department of Cardiology, Angiology and Intensive Care Medicine, University Heart Center Lübeck, Lübeck, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Fabian Kreutzmann
- Department of Cardiology, Angiology and Intensive Care Medicine, University Heart Center Lübeck, Lübeck, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Ingo Eitel
- Department of Cardiology, Angiology and Intensive Care Medicine, University Heart Center Lübeck, Lübeck, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Stefan Taube
- Institute of Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | - Nadja Käding
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Eckard Jantzen
- Research and Development Department, GALAB Laboratories GmbH, Hamburg, Germany
| | - Tobias Graf
- Department of Cardiology, Angiology and Intensive Care Medicine, University Heart Center Lübeck, Lübeck, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Christian Sina
- Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany.,Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Ulrich L Günther
- Institute of Chemistry and Metabolomics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
639
|
Averyanova IV. Age-related blood biochemical changes (lipid metabolism) in healthy young and mature men living under the North conditions. Klin Lab Diagn 2021; 66:728-732. [PMID: 35020285 DOI: 10.51620/0869-2084-2021-66-12-728-732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Metabolic disorders (dyslipidemias) are currently crucial since they develop cardiovascular diseases. The work was aimed at studying age dynamics and its correlation with severity of dyslipidemia in basic lipid metabolism variables (in different age groups). MATERIALS AND METHODS Examinees were Caucasians born and permanently residing in Magadan region: 55 mature men and 147 young men (mean ages were 36.8±0.8 and 18.7±0.8 yr, respectively). Blood serum lipid metabolism was examined by colorimetric and photometric method using AU 680 (Beckman Coulter, USA). RESULTS The data of obtained lipidogram showed dependence of rise in all indicators on subjective older age with higher percentage of dyslipidemia and increase in calculated indices reflecting degree of the lipid profile atherogenicity. CONCLUSION Overall, the North study revealed a safer lipid profile in group of younger men, while biochemical picture of older residents demonstrated increased values. Lipid atherogenicity is a very alarming factor in developing cardiovascular diseases, and a predictor of risks for metabolic syndrome.
Collapse
|
640
|
Mc Auley MT. Modeling cholesterol metabolism and atherosclerosis. WIREs Mech Dis 2021; 14:e1546. [PMID: 34931487 DOI: 10.1002/wsbm.1546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/19/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of morbidity and mortality among Western populations. Many risk factors have been identified for ASCVD; however, elevated low-density lipoprotein cholesterol (LDL-C) remains the gold standard. Cholesterol metabolism at the cellular and whole-body level is maintained by an array of interacting components. These regulatory mechanisms have complex behavior. Likewise, the mechanisms which underpin atherogenesis are nontrivial and multifaceted. To help overcome the challenge of investigating these processes mathematical modeling, which is a core constituent of the systems biology paradigm has played a pivotal role in deciphering their dynamics. In so doing models have revealed new insights about the key drivers of ASCVD. The aim of this review is fourfold; to provide an overview of cholesterol metabolism and atherosclerosis, to briefly introduce mathematical approaches used in this field, to critically discuss models of cholesterol metabolism and atherosclerosis, and to highlight areas where mathematical modeling could help to investigate in the future. This article is categorized under: Cardiovascular Diseases > Computational Models.
Collapse
|
641
|
Sivakumar B, Kurian GA. Mitochondria and traffic-related air pollution linked coronary artery calcification: exploring the missing link. REVIEWS ON ENVIRONMENTAL HEALTH 2021; 36:545-563. [PMID: 34821115 DOI: 10.1515/reveh-2020-0127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/04/2021] [Indexed: 06/13/2023]
Abstract
The continuing increase in the exposure to Traffic-related air pollution (TRAP) in the general population is predicted to result in a higher incidence of non-communicable diseases like cardiovascular disease. The chronic exposure of air particulate matter from TRAP upon the vascular system leads to the enhancement of deposition of calcium in the vasculature leading to coronary artery calcification (CAC), triggered by inflammatory reactions and endothelial dysfunction. This calcification forms within the intimal and medial layers of vasculature and the underlying mechanism that connects the trigger from TRAP is not well explored. Several local and systemic factors participate in this active process including inflammatory response, hyperlipidemia, presence of self-programmed death bodies and high calcium-phosphate concentrations. These factors along with the loss of molecules that inhibit calcification and circulating nucleation complexes influence the development of calcification in the vasculature. The loss of defense to prevent osteogenic transition linked to micro organelle dysfunction that includes deteriorated mitochondria, elevated mitochondrial oxidative stress, and defective mitophagy. In this review, we examine the contributory role of mitochondria involved in the mechanism of TRAP linked CAC development. Further we examine whether TRAP is an inducer or trigger for the enhanced progression of CAC.
Collapse
Affiliation(s)
- Bhavana Sivakumar
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Gino A Kurian
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
642
|
Mao L, Mostafa R, Ibili E, Fert-Bober J. Role of protein deimination in cardiovascular diseases: potential new avenues for diagnostic and prognostic biomarkers. Expert Rev Proteomics 2021; 18:1059-1071. [PMID: 34929115 DOI: 10.1080/14789450.2021.2018303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Arginine deimination (citrullination) is a post-translational modification catalyzed by a family of peptidyl arginine deiminase (PAD) enzymes. Cell-based functional studies and animal models have manifested the key role of PADs in various cardiovascular diseases (CVDs). AREA COVERED This review summarizes the latest developments in the role of PADs in CVD pathogenesis. It focuses on the PAD functions and diverse citrullinated proteins in cardiovascular conditions like deep vein thrombosis, ischemia/reperfusion, and atherosclerosis. Identification of PAD isoforms and citrullinated targets are essential for directing diagnosis and clinical intervention. Finally, anti-citrullinated protein antibodies (ACPAs) are addressed as an independent risk factor for cardiovascular events. A search of PubMed biomedical literature from the past ten years was performed with a combination of the following keywords: PAD/PADI, deimination/citrullination, autoimmune, fibrosis, NET, neutrophil, macrophage, inflammation, inflammasome, cardiovascular, heart disease, myocardial infarction, ischemia, atherosclerosis, thrombosis, and aging. Additional papers from retrieved articles were also considered. EXPERT OPINION PADs are unique family of enzymes that converts peptidyl-arginine to -citrulline in protein permanently. Overexpression or increased activity of PAD has been observed in various CVDs with acute and chronic inflammation as the background. Importantly, far beyond being simply involved in forming neutrophil extracellular traps (NETs), accumulating evidence indicated PAD activation as a trigger for numerous processes, such as transcriptional regulation, endothelial dysfunction, and thrombus formation. In summary, the findings so far have testified the important role of deimination in cardiovascular biology, while more basic and translational studies are essential to further exploration.
Collapse
Affiliation(s)
- Liqun Mao
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Advanced Clinical Biosystems Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Rowann Mostafa
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Advanced Clinical Biosystems Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Esra Ibili
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Advanced Clinical Biosystems Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Justyna Fert-Bober
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Advanced Clinical Biosystems Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
643
|
Ferrières J, Roubille F, Farnier M, Jourdain P, Angoulvant D, Boccara F, Danchin N. Control of Low-Density Lipoprotein Cholesterol in Secondary Prevention of Coronary Artery Disease in Real-Life Practice: The DAUSSET Study in French Cardiologists. J Clin Med 2021; 10:jcm10245938. [PMID: 34945235 PMCID: PMC8707804 DOI: 10.3390/jcm10245938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022] Open
Abstract
Introduction: Patients with established coronary artery disease (CAD) are at very high risk for cardiovascular events. Methods: The DAUSSET study is a national, multicenter, non-interventional study that included very high-risk CAD patients followed by French cardiologists. It aimed to describe real-life clinical practices for low-density lipoprotein (LDL) cholesterol control in the secondary prevention of CAD. Results: A total of 912 patients (mean age, 65.4 years; men, 76.1%; myocardial infarction, 69.4%; first episode, 80.1%) were analyzed. The LDL cholesterol goal was 70 mg/dL in most cases (84.9%). The LDL cholesterol goal <70 mg/dL was achieved in 41.7% of patients. Of the 894 (98.0%) patients who received lipid-lowering therapy, 81.2% had been treated more intensively after the cardiac event, 27.0% had been treated less intensively and 13.1% had been maintained. Participating cardiologists were very satisfied or satisfied with treatment response in 72.6% of patients. Moderate satisfaction or dissatisfaction with lipid-lowering therapy was related to not achieving objectives (100%), treatment inefficacy (53.7%), treatment intolerance (23.4%) and poor adherence (12.3%). Conclusion: These real-world results show that lipid control in very high-risk patients remains insufficient. More than half of the patients did not achieve the LDL cholesterol goal. Prevention of cardiovascular events in these very high-risk patients could be further improved by better education and more intensive lipid-lowering therapy.
Collapse
Affiliation(s)
- Jean Ferrières
- Department of Cardiology, Toulouse Rangueil University Hospital, INSERM UMR 1295, Toulouse University School of Medicine, 31059 Toulouse, France
- Correspondence:
| | - François Roubille
- PhyMedExp, INSERM, CNRS, Cardiology Department, INI-CRT, CHU de Montpellier, Université de Montpellier, 34090 Montpellier, France;
| | - Michel Farnier
- Equipe PEC2, EA 7460, Service de Cardiologie, CHU Dijon Bourgogne, Université de Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Patrick Jourdain
- CHU Bicêtre AP-HP, Inserm U999, Université Paris-Saclay, 91190 Gif-sur-Yvette, France;
| | - Denis Angoulvant
- Service de Cardiologie, Hôpital Trousseau, CHRU de Tours, EA4245 T2i Faculté de médecine et Université de Tours, 37000 Tours, France;
| | - Franck Boccara
- GRC n°22, CMV-Complications Cardiovasculaires et Métaboliques chez les Patients Vivant avec le Virus de L’immunodéficience Humaine, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN), Hôpital Saint-Antoine Service de Cardiologie, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, 75012 Paris, France;
| | - Nicolas Danchin
- Département de Cardiologie, Hôpital Européen Georges Pompidou et Université de Paris, 75015 Paris, France;
| |
Collapse
|
644
|
Ahn JH, Ahn Y, Jeong MH, Kim JH, Hong YJ, Sim DS, Kim MC, Cho KH, Hyun DY, Lee SH, Kim HS, Gwon HC, Seong IW, Hur SH, Oh SK. Optimal low-density lipoprotein cholesterol target level in Korean acute myocardial infarction patients (<70 mg/dL vs. <55 mg/dL): Based on Korea acute myocardial infarction registry-National Institute of Health. Int J Cardiol 2021; 351:15-22. [PMID: 34921900 DOI: 10.1016/j.ijcard.2021.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/06/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Current treatment guidelines for acute myocardial infarction (AMI) recommend lowering low density lipoprotein cholesterol (LDL-C). However, previous clinical studies among East Asian AMI patients failed to prove its clinical efficacy of lipid lowering therapy based on Western target LDL-C level. Thus, the purpose of this study is directly to compare the clinical outcomes of target LDL-C < 70 mg/dL and < 55 mg/dL and identify optimal target LDL-C level and in Korean AMI patients. METHODS AND RESULTS A total of 2198 AMI patients in Korea AMI Registry - National Institute of Health were enrolled. Patients were initially divided into LDL-C non-target group (n = 1115) and target group (n = 1083). Successful achievement of follow up target LDL-C was defined as <70 mg/dL and ≥ 50% reduction from baseline. Target group patients were additionally divided to <70 mg/dL group (n = 698) and <55 mg/dL group (n = 385). Propensity score matching analysis was done in non-target vs. target group and <70 mg/dL vs. <55 mg/dL group. In the matched population, the risk of 3 years major adverse cardiac event (MACE) (13.0% vs 9.8%, HR: 0.73; 95% CI: 0.56-0.96; p = 0.025) was higher in non-target group patients. However, the risk of MACE was similar in <70 mg/dL and < 55 mg/dL group patients (10.0% vs 8.1%, HR: 0.75, 95% CI: 0.46-1.22; p = 0.247). CONCLUSION In the present study, target LDL-C level of <70 mg/dL and ≥ 50% reduction from baseline level was associated with better clinical outcomes in Korean AMI patients. However, further lowering target LDL-C level of <55 mg/dL showed no additional benefits.
Collapse
Affiliation(s)
- Joon Ho Ahn
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Youngkeun Ahn
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Republic of Korea.
| | - Myung Ho Jeong
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Ju Han Kim
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Young Joon Hong
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Doo Sun Sim
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Min Chul Kim
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Kyung Hoon Cho
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Dae Yong Hyun
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Seung Hun Lee
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hyo-Soo Kim
- Department of Cardiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyeon Cheol Gwon
- Department of Cardiology, Sungkyunkwan University Samsung Medical Center, Seoul, Republic of Korea
| | - In Whan Seong
- Department of Cardiology, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Seung-Ho Hur
- Department of Cardiology, Keimyung University Dongsan Medical Center, Daegu, Republic of Korea
| | - Seok Kyu Oh
- Department of Cardiology, Wonkwang University Hospital, Iksan, Republic of Korea
| |
Collapse
|
645
|
Friebel J, Moritz E, Witkowski M, Jakobs K, Strässler E, Dörner A, Steffens D, Puccini M, Lammel S, Glauben R, Nowak F, Kränkel N, Haghikia A, Moos V, Schutheiss HP, Felix SB, Landmesser U, Rauch BH, Rauch U. Pleiotropic Effects of the Protease-Activated Receptor 1 (PAR1) Inhibitor, Vorapaxar, on Atherosclerosis and Vascular Inflammation. Cells 2021; 10:cells10123517. [PMID: 34944024 PMCID: PMC8700178 DOI: 10.3390/cells10123517] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Protease-activated receptor 1 (PAR1) and toll-like receptors (TLRs) are inflammatory mediators contributing to atherogenesis and atherothrombosis. Vorapaxar, which selectively antagonizes PAR1-signaling, is an approved, add-on antiplatelet therapy for secondary prevention. The non-hemostatic, platelet-independent, pleiotropic effects of vorapaxar have not yet been studied. METHODS AND RESULTS Cellular targets of PAR1 signaling in the vasculature were identified in three patient cohorts with atherosclerotic disease. Evaluation of plasma biomarkers (n = 190) and gene expression in endomyocardial biopsies (EMBs) (n = 12) revealed that PAR1 expression correlated with endothelial activation and vascular inflammation. PAR1 colocalized with TLR2/4 in human carotid plaques and was associated with TLR2/4 gene transcription in EMBs. In addition, vorapaxar reduced atherosclerotic lesion size in apolipoprotein E-knock out (ApoEko) mice. This reduction was associated with reduced expression of vascular adhesion molecules and TLR2/4 presence, both in isolated murine endothelial cells and the aorta. Thrombin-induced uptake of oxLDL was augmented by additional TLR2/4 stimulation and abrogated by vorapaxar. Plaque-infiltrating pro-inflammatory cells were reduced in vorapaxar-treated ApoEko mice. A shift toward M2 macrophages paralleled a decreased transcription of pro-inflammatory cytokines and chemokines. CONCLUSIONS PAR1 inhibition with vorapaxar may be effective in reducing residual thrombo-inflammatory event risk in patients with atherosclerosis independent of its effect on platelets.
Collapse
Affiliation(s)
- Julian Friebel
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
- Berlin Institute of Health, 10178 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Eileen Moritz
- Center of Drug Absorption and Transport, Institute of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (E.M.); (B.H.R.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, 17475 Greifswald, Germany;
| | - Marco Witkowski
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kai Jakobs
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
| | - Elisabeth Strässler
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Andrea Dörner
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
- Berlin Institute of Health, 10178 Berlin, Germany
| | - Daniel Steffens
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
| | - Marianna Puccini
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
| | - Stella Lammel
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
| | - Rainer Glauben
- Medical Department I, Gastroenterology, Infectious Diseases and Rheumatology, Charité—University Medicine, 12203 Berlin, Germany; (R.G.); (F.N.); (V.M.)
| | - Franziska Nowak
- Medical Department I, Gastroenterology, Infectious Diseases and Rheumatology, Charité—University Medicine, 12203 Berlin, Germany; (R.G.); (F.N.); (V.M.)
| | - Nicolle Kränkel
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Arash Haghikia
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
- Berlin Institute of Health, 10178 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Verena Moos
- Medical Department I, Gastroenterology, Infectious Diseases and Rheumatology, Charité—University Medicine, 12203 Berlin, Germany; (R.G.); (F.N.); (V.M.)
| | | | - Stephan B. Felix
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, 17475 Greifswald, Germany;
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Ulf Landmesser
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
- Berlin Institute of Health, 10178 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Bernhard H. Rauch
- Center of Drug Absorption and Transport, Institute of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (E.M.); (B.H.R.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, 17475 Greifswald, Germany;
- Department of Human Medicine, Section of Pharmacology and Toxicology, Carl von Ossietzky Universität, 26129 Oldenburg, Germany
| | - Ursula Rauch
- Charité Center 11—Department of Cardiology, Charité—University Medicine, 12203 Berlin, Germany; (J.F.); (M.W.); (K.J.); (E.S.); (A.D.); (D.S.); (M.P.); (S.L.); (N.K.); (A.H.); (U.L.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-513794
| |
Collapse
|
646
|
Canclini L, Malvandi AM, Uboldi P, Jabnati N, Grigore L, Zambon A, Baragetti A, Catapano AL. The Association of Proprotein Convertase Subtilisin/Kexin Type 9 to Plasma Low-Density Lipoproteins: An Evaluation of Different Methods. Metabolites 2021; 11:metabo11120861. [PMID: 34940619 PMCID: PMC8706035 DOI: 10.3390/metabo11120861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 11/18/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type-9 (PCSK9) is key regulator of low-density lipoprotein (LDL) metabolism. A significant proportion of PCSK9 is believed to be associated with LDL in plasma as it circulates, although this finding is still a matter of debate. The purpose of this study was to establish an experimental method to investigate the presence of such an interaction in the bloodstream. We compared a number of well-established methods for lipoprotein (LP) isolation to clarify whether PCSK9 associates differently to circulating lipoproteins, such as KBr gradient ultracentrifugation, physical precipitation of ApoB-LPs, fast protein liquid chromatography (FPLC) and iodixanol gradient ultracentrifugation. Our data show heterogeneity in PCSK9 association to lipoproteins according to the method used. Two methods, iodixanol ultracentrifugation and column chromatography, which did not involve precipitation or high salt concentration, consistently showed an interaction of PCSK9 with a subfraction of LDL that appeared to be more buoyant and have a lower size than average LDL. The percent of PCSK9 association ranged from 2 to 30% and did not appear to correlate to plasma or LDL cholesterol levels. The association of PCSK9 to LDL appeared to be sensitive to high salt concentrations. FPLC and iodixanol gradient ultracentrifugation appeared to be the most suitable methods for the study of this association.
Collapse
Affiliation(s)
- Laura Canclini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (L.C.); (P.U.); (N.J.); (A.B.)
- IRCCS Multimedica, 20138 Milan, Italy;
| | | | - Patrizia Uboldi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (L.C.); (P.U.); (N.J.); (A.B.)
| | - Najoua Jabnati
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (L.C.); (P.U.); (N.J.); (A.B.)
| | - Liliana Grigore
- IRCCS Multimedica, 20099 Sesto San Giovanni, Italy; (L.G.); (A.Z.)
- Center for the Study of Atherosclerosis, Bassini Hospital, 20092 Cinisello Balsamo, Italy
| | - Alberto Zambon
- IRCCS Multimedica, 20099 Sesto San Giovanni, Italy; (L.G.); (A.Z.)
| | - Andrea Baragetti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (L.C.); (P.U.); (N.J.); (A.B.)
- IRCCS Multimedica, 20138 Milan, Italy;
| | - Alberico Luigi Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (L.C.); (P.U.); (N.J.); (A.B.)
- IRCCS Multimedica, 20138 Milan, Italy;
- Correspondence: ; Tel.:+39-02-50318302-401; Fax: +39-02-50318386
| |
Collapse
|
647
|
Walker HE, Rizzo M, Fras Z, Jug B, Banach M, Penson PE. CRISPR Gene Editing in Lipid Disorders and Atherosclerosis: Mechanisms and Opportunities. Metabolites 2021; 11:857. [PMID: 34940615 PMCID: PMC8707018 DOI: 10.3390/metabo11120857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Accepted: 12/04/2021] [Indexed: 12/24/2022] Open
Abstract
Elevated circulating concentrations of low-density lipoprotein cholesterol (LDL-C) have been conclusively demonstrated in epidemiological and intervention studies to be causally associated with the development of atherosclerotic cardiovascular disease. Enormous advances in LDL-C reduction have been achieved through the use of statins, and in recent years, through drugs targeting proprotein convertase subtilisin/kexin type 9 (PCSK9), a key regulator of the hepatic LDL-receptor. Existing approaches to PCSK9 targeting have used monoclonal antibodies or RNA interference. Although these approaches do not require daily dosing, as statins do, repeated subcutaneous injections are nevertheless necessary to maintain effectiveness over time. Recent experimental studies suggest that clustered regularly interspaced short palindromic repeats (CRISPR) gene-editing targeted at PCSK9 may represent a promising tool to achieve the elusive goal of a 'fire and forget' lifelong approach to LDL-C reduction. This paper will provide an overview of CRISPR technology, with a particular focus on recent studies with relevance to its potential use in atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Harry E. Walker
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton SO17 1BJ, UK;
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, 90133 Palermo, Italy;
| | - Zlatko Fras
- Centre for Preventive Cardiology, Division of Medicine, University Medical Centre Ljubljana, SI-1525 Ljubljana, Slovenia;
- Medical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Borut Jug
- Department of Vascular Diseases, University Medical Centre Ljubljana, SI-1525 Ljubljana, Slovenia;
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, 93338 Lodz, Poland;
- Cardiovascular Research Centre, University of Zielona Gora, 65046 Zielona Gora, Poland
| | - Peter E. Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
- Liverpool Centre for Cardiovascular Science, Liverpool L7 8TX, UK
| |
Collapse
|
648
|
Luo Y, Guo Y, Wang H, Yu M, Hong K, Li D, Li R, Wen B, Hu D, Chang L, Zhang J, Yang B, Sun D, Schwendeman AS, Eugene Chen Y. Phospholipid nanoparticles: Therapeutic potentials against atherosclerosis via reducing cholesterol crystals and inhibiting inflammation. EBioMedicine 2021; 74:103725. [PMID: 34879325 PMCID: PMC8654800 DOI: 10.1016/j.ebiom.2021.103725] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 01/11/2023] Open
Abstract
Background Atherosclerosis-related cardiovascular diseases (CVDs) are the leading cause of mortality worldwide. Cholesterol crystals (CCs) induce inflammation in atherosclerosis and are associated with unstable plaques and poor prognosis, but no drug can remove CCs in the clinic currently. Methods We generated a phospholipid-based and high-density lipoprotein (HDL)-like nanoparticle, miNano, and determined CC-dissolving capacity, cholesterol efflux property, and anti-inflammation effects of miNano in vitro. Both normal C57BL/6J and Apoe-deficient mice were used to explore the accumulation of miNano in atherosclerotic plaques. The efficacy and safety of miNano administration to treat atherosclerosis were evaluated in the Ldlr-deficient atherosclerosis model. The CC-dissolving capacity of miNano was also detected using human atherosclerotic plaques ex vivo. Findings We found that miNano bound to and dissolved CCs efficiently in vitro, and miNano accumulated in atherosclerotic plaques, co-localized with CCs and macrophages in vivo. Administration of miNano inhibited atherosclerosis and improved plaque stability by reducing CCs and macrophages in Ldlr-deficient mice with favorable safety profiles. In macrophages, miNano prevented foam cell formation by enhancing cholesterol efflux and suppressed inflammatory responses via inhibiting TLR4-NF-κB pathway. Finally, in an ex vivo experiment, miNano effectively dissolved CCs in human aortic atherosclerotic plaques. Interpretation Together, our work finds that phospholipid-based and HDL-like nanoparticle, miNano, has the potential to treat atherosclerosis by targeting CCs and stabilizing plaques. Funding This work was supported by the National Institutes of Health HL134569, HL109916, HL136231, and HL137214 to Y.E.C, HL138139 to J.Z., R21NS111191 to A.S., by the American Heart Association 15SDG24470155, Grant Awards (U068144 from Bio-interfaces and G024404 from M-BRISC) at the University of Michigan to Y.G., by the American Heart Association 19PRE34400017 and Rackham Helen Wu award to M.Y., NIH T32 GM07767 to K. H., Barbour Fellowship to D.L.
Collapse
Affiliation(s)
- Yonghong Luo
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Second Xiangya Hospital, Central South University, Hunan Province, China
| | - Yanhong Guo
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Huilun Wang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Minzhi Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kristen Hong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dan Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ruiting Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Die Hu
- Second Xiangya Hospital, Central South University, Hunan Province, China
| | - Lin Chang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Bo Yang
- Department of Cardiac Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anna S Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Y Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cardiac Surgery, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
649
|
Shi M, Leng X, Li Y, Chen Z, Cao Y, Chung T, Ip BY, Ip VH, Soo YO, Fan FS, Ma SH, Ma K, Chan AYY, Au LW, Leung H, Lau AY, Mok VC, Choy KW, Dong Z, Leung TW. Genome sequencing reveals the role of rare genomic variants in Chinese patients with symptomatic intracranial atherosclerotic disease. Stroke Vasc Neurol 2021; 7:182-189. [PMID: 34880113 PMCID: PMC9240611 DOI: 10.1136/svn-2021-001157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Objectives The predisposition of intracranial atherosclerotic disease (ICAD) to East Asians over Caucasians infers a genetic basis which, however, remains largely unknown. Higher prevalence of vascular risk factors (VRFs) in Chinese over Caucasian patients who had a stroke, and shared risk factors of ICAD with other stroke subtypes indicate genes related to VRFs and/or other stroke subtypes may also contribute to ICAD. Methods Unrelated symptomatic patients with ICAD were recruited for genome sequencing (GS, 60-fold). Rare and potentially deleterious single-nucleotide variants (SNVs) and small insertions/deletions (InDels) were detected in genome-wide and correlated to genes related to VRFs and/or other stroke subtypes. Rare aneuploidies, copy number variants (CNVs) and chromosomal structural rearrangements were also investigated. Lastly, candidate genes were used for pathway and gene ontology enrichment analysis. Results Among 92 patients (mean age at stroke onset 61.0±9.3 years), GS identified likely ICAD-associated rare genomic variants in 54.3% (50/92) of patients. Forty-eight patients (52.2%, 48/92) had 59 rare SNVs/InDels reported or predicted to be deleterious in genes related to VRFs and/or other stroke subtypes. None of the 59 rare variants were identified in local subjects without ICAD (n=126). 31 SNVs/InDels were related to conventional VRFs, and 28 were discovered in genes related to other stroke subtypes. Our study also showed that rare CNVs (n=7) and structural rearrangement (a balanced translocation) were potentially related to ICAD in 8.7% (8/92) of patients. Lastly, candidate genes were significantly enriched in pathways related to lipoprotein metabolism and cellular lipid catabolic process. Conclusions Our GS study suggests a role of rare genomic variants with various variant types contributing to the development of ICAD in Chinese patients.
Collapse
Affiliation(s)
- Mengmeng Shi
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,Key Laboratory for Regenerative Medicine, Ministry of Education (Shenzhen Base), Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Xinyi Leng
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Ying Li
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,Key Laboratory for Regenerative Medicine, Ministry of Education (Shenzhen Base), Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Zihan Chen
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,Key Laboratory for Regenerative Medicine, Ministry of Education (Shenzhen Base), Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Cao
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Tiffany Chung
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Bonaventure Ym Ip
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Vincent Hl Ip
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Yannie Oy Soo
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Florence Sy Fan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Sze Ho Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Karen Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Anne Y Y Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Lisa Wc Au
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Howan Leung
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Alexander Y Lau
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Vincent Ct Mok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Kwong Wai Choy
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,Key Laboratory for Regenerative Medicine, Ministry of Education (Shenzhen Base), Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China.,The Chinese University of Hong Kong-Baylor College of Medicine Joint Center For Medical Genetics, The Chinese University of Hong Kong, Hong Kong, China
| | - Zirui Dong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China .,Key Laboratory for Regenerative Medicine, Ministry of Education (Shenzhen Base), Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Thomas W Leung
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| |
Collapse
|
650
|
Stock JK. Joint statement from the European Atherosclerosis Society and European Society of Vascular Medicine focuses on patients with peripheral arterial disease. Atherosclerosis 2021; 340:48-50. [PMID: 34863531 DOI: 10.1016/j.atherosclerosis.2021.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Jane K Stock
- European Atherosclerosis Society, World Trade Center Göteborg, Mässans Gata 10, SE, 412 51, Göteborg, Sweden.
| |
Collapse
|