601
|
Abstract
Autophagy is a highly conserved cellular degradation process in which portions of cytosol and organelles are sequestered into a double-membrane vesicle, an autophagosome, and delivered into a degradative organelle, the vacuole/lysosome, for breakdown and eventual recycling of the resulting macromolecules. This process relieves the cell from various stress conditions. Autophagy plays a critical role during cellular development and differentiation, functions in tumor suppression, and may be linked to life span extension. Autophagy also has diverse roles in innate and adaptive immunity, such as resistance to pathogen invasion. Substantial progress has been made in the identification of many autophagy-related (ATG) genes that are essential to drive this cellular process, including both selective and nonselective types of autophagy. Identification of the ATG genes in yeast, and the finding of orthologs in other organisms, reveals the conservation of the autophagic machinery in all eukaryotes. Here, we summarize our current knowledge about the machinery and molecular mechanism of autophagy.
Collapse
Affiliation(s)
- Zhifen Yang
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | | |
Collapse
|
602
|
Cytosol as battleground: ubiquitin as a weapon for both host and pathogen. Trends Cell Biol 2010; 20:205-13. [PMID: 20129784 DOI: 10.1016/j.tcb.2010.01.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 01/04/2010] [Accepted: 01/05/2010] [Indexed: 01/24/2023]
Abstract
Ubiquitin was first described as a tag allowing cells to degrade and recycle their own proteins. Recent research has shown ubiquitin to be central for immune system recognition of invading bacteria. This review describes a set of complex host-pathogen interactions that are dependent on ubiquitination. From the host perspective, ubiquitin-dependent activation of inflammation and degradation of bacterial effectors is protective. Several pathogens become ubiquitinated in the host cell cytosol, and recent research suggests that this could trigger a form of autophagy, increasingly recognized as an important mechanism for the control of infection by a variety of human pathogens. Meanwhile, bacteria have developed mechanisms to evade or exploit the fundamental processes activated by ubiquitination, producing both ubiquitin ligases and deubiquitinases that modulate host responses.
Collapse
|
603
|
Furuta N, Fujita N, Noda T, Yoshimori T, Amano A. Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes. Mol Biol Cell 2010; 21:1001-10. [PMID: 20089838 PMCID: PMC2836953 DOI: 10.1091/mbc.e09-08-0693] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Autophagy plays a crucial role in host defense, termed antimicrobial autophagy (xenophagy), as it functions to degrade intracellular foreign microbial invaders such as group A Streptococcus (GAS). Xenophagosomes undergo a stepwise maturation process consisting of a fusion event with lysosomes, after which the cargoes are degraded. However, the molecular mechanism underlying xenophagosome/lysosome fusion remains unclear. We examined the involvement of endocytic soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) in xenophagosome/lysosome fusion. Confocal microscopic analysis showed that SNAREs, including vesicle-associated membrane protein (VAMP)7, VAMP8, and vesicle transport through interaction with t-SNAREs homologue 1B (Vti1b), colocalized with green fluorescent protein-LC3 in xenophagosomes. Knockdown of Vti1b and VAMP8 with small interfering RNAs disturbed the colocalization of LC3 with lysosomal membrane protein (LAMP)1. The invasive efficiency of GAS into cells was not altered by knockdown of VAMP8 or Vti1b, whereas cellular bactericidal efficiency was significantly diminished, indicating that antimicrobial autophagy was functionally impaired. Knockdown of Vti1b and VAMP8 also disturbed colocalization of LC3 with LAMP1 in canonical autophagy, in which LC3-II proteins were negligibly degraded. In contrast, knockdown of Syntaxin 7 and Syntaxin 8 showed little effect on the autophagic fusion event. These findings strongly suggest that the combinational SNARE proteins VAMP8 and Vti1b mediate the fusion of antimicrobial and canonical autophagosomes with lysosomes, an essential event for autophagic degradation.
Collapse
Affiliation(s)
- Nobumichi Furuta
- Department of Oral Frontier Biology, Osaka University Graduate School of Dentistry, Suita-Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
604
|
Bawolak MT, Morissette G, Marceau F. Vacuolar ATPase-mediated sequestration of local anesthetics in swollen macroautophagosomes. Can J Anaesth 2010; 57:230-9. [DOI: 10.1007/s12630-009-9220-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 11/02/2009] [Indexed: 11/30/2022] Open
|
605
|
Santos RX, Correia SC, Wang X, Perry G, Smith MA, Moreira PI, Zhu X. A synergistic dysfunction of mitochondrial fission/fusion dynamics and mitophagy in Alzheimer's disease. J Alzheimers Dis 2010; 20 Suppl 2:S401-12. [PMID: 20463393 PMCID: PMC2923835 DOI: 10.3233/jad-2010-100666] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD), the most common form of dementia in the elderly, can have a late-onset sporadic or an early-onset familial origin. In both cases, the neuropathological hallmarks are the same: senile plaques and neurofibrillary tangles. Despite AD having a proteinopathic nature, there is strong evidence for an organelle dysfunction-related neuropathology, namely dysfunctional mitochondria. In this regard, dysfunctional mitochondria and associated exacerbated generation of reactive oxygen species are among the earliest events in the progression of the disease. Since the maintenance of a healthy mitochondrial pool is essential given the central role of this organelle in several determinant cellular processes, mitochondrial dysfunction in AD would be predicted to have profound pluripotent deleterious consequences. Mechanistically, recent reports suggest that mitochondrial fission/fusion and mitophagy are altered in AD and in in vitro models of disease, and since both processes are reported to be protective, this review will discuss the role of mitochondrial fission/fusion and mitophagy in the pathogenesis of AD.
Collapse
Affiliation(s)
- Renato X. Santos
- Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, Coimbra, Portugal
- Faculty of Sciences and Technology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sónia C. Correia
- Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, Coimbra, Portugal
- Faculty of Sciences and Technology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Xinglong Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - George Perry
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- UTSA Neurosciences Institute and Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Mark A. Smith
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Paula I. Moreira
- Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Institute of Physiology, University of Coimbra, Coimbra, Portugal
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
606
|
McCray BA, Skordalakes E, Taylor JP. Disease mutations in Rab7 result in unregulated nucleotide exchange and inappropriate activation. Hum Mol Genet 2009; 19:1033-47. [PMID: 20028791 PMCID: PMC2830827 DOI: 10.1093/hmg/ddp567] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rab GTPases are molecular switches that orchestrate vesicular trafficking, maturation and fusion by cycling between an active, GTP-bound form, and an inactive, GDP-bound form. The activity cycle is coupled to GTP hydrolysis and is tightly controlled by regulatory proteins. Missense mutations of the GTPase Rab7 cause a dominantly inherited axonal degeneration known as Charcot-Marie-Tooth type 2B through an unknown mechanism. We present the 2.8 Å crystal structure of GTP-bound L129F mutant Rab7 which reveals normal conformations of the effector binding regions and catalytic site, but an alteration to the nucleotide binding pocket that is predicted to alter GTP binding. Through extensive biochemical analysis, we demonstrate that disease-associated mutations in Rab7 do not lead to an intrinsic GTPase defect, but permit unregulated nucleotide exchange leading to both excessive activation and hydrolysis-independent inactivation. Consistent with augmented activity, mutant Rab7 shows significantly enhanced interaction with a subset of effector proteins. In addition, dynamic imaging demonstrates that mutant Rab7 is abnormally retained on target membranes. However, we show that the increased activation of mutant Rab7 is counterbalanced by unregulated, GTP hydrolysis-independent membrane cycling. Notably, disease mutations are able to rescue the membrane cycling of a GTPase-deficient mutant. Thus, we demonstrate that disease mutations uncouple Rab7 from the spatial and temporal control normally imposed by regulatory proteins and cause disease not by a gain of novel toxic function, but by misregulation of native Rab7 activity.
Collapse
Affiliation(s)
- Brett A McCray
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | | | | |
Collapse
|
607
|
Endocytic Rab proteins are required for hepatitis C virus replication complex formation. Virology 2009; 398:21-37. [PMID: 20005553 DOI: 10.1016/j.virol.2009.11.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 09/09/2009] [Accepted: 11/20/2009] [Indexed: 12/11/2022]
Abstract
During infection, hepatitis C virus (HCV) NS4B protein remodels host membranes to form HCV replication complexes (RC) which appear as foci under fluorescence microscopy (FM). To understand the role of Rab proteins in forming NS4B foci, cells expressing the HCV replicon were examined biochemically and via FM. First, we show that an isolated NS4B-bound subcellular fraction is competent for HCV RNA synthesis. Further, this fraction is differentially enriched in Rab1, 2, 5, 6 and 7. However, when examined via FM, NS4B foci appear to be selectively associated with Rab5 and Rab7 proteins. Additionally, dominant negative (DN) Rab6 expression impairs Rab5 recruitment into NS4B foci. Further, silencing of Rab5 or Rab7 resulted in a significant decrease in HCV genome replication. Finally, expression of DN Rab5 or Rab7 led to a reticular NS4B subcellular distribution, suggesting that endocytic proteins Rab5 and Rab7, but not Rab11, may facilitate NS4B foci formation.
Collapse
|
608
|
Abstract
Autophagy is a process of self-degradation of cellular components in which double-membrane autophagosomes sequester organelles or portions of cytosol and fuse with lysosomes or vacuoles for breakdown by resident hydrolases. Autophagy is upregulated in response to extra- or intracellular stress and signals such as starvation, growth factor deprivation, ER stress, and pathogen infection. Defective autophagy plays a significant role in human pathologies, including cancer, neurodegeneration, and infectious diseases. We present our current knowledge on the key genes composing the autophagy machinery in eukaryotes from yeast to mammalian cells and the signaling pathways that sense the status of different types of stress and induce autophagy for cell survival and homeostasis. We also review the recent advances on the molecular mechanisms that regulate the autophagy machinery at various levels, from transcriptional activation to post-translational protein modification.
Collapse
Affiliation(s)
- Congcong He
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology, and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
609
|
Abstract
The CMT2B (Charcot-Marie-Tooth type 2B) disease is an autosomal dominant axonal neuropathy. Sensory loss, distal muscle weakness and wasting, frequent foot ulcers and amputations of the toes due to frequent infections characterize this neuropathy. Four missense mutations in the rab7 gene have been identified as causative of the disease. Rab7 is a small G-protein of the Rab family that controls vesicular transport to late endosomes and lysosomes in the endocytic pathway. The CMT2B-associated mutant Rab7 proteins show altered nucleotide dissociation rates and impaired GTPase activity. In addition, these mutant proteins are predominantly in the GTP-bound form when expressed in human cells and they are able to rescue Rab7 function in Rab7-depleted cells. Thus these mutations generate activated forms of Rab7 that are responsible for the development of the disease. In spite of these results, there are still important gaps in our understanding of the mechanism underlying CMT2B. Indeed, how these mutations in the rab7 gene affect specifically peripheral neurons leading to an axonal pathology in CMT2B is not clear, and it is a particularly puzzling and challenging issue in view of the fact that Rab7 is a ubiquitous protein. The present review discusses possible molecular mechanisms underlying CMT2B.
Collapse
|
610
|
Lupo V, Galindo MI, Martínez-Rubio D, Sevilla T, Vílchez JJ, Palau F, Espinós C. Missense mutations in the SH3TC2 protein causing Charcot-Marie-Tooth disease type 4C affect its localization in the plasma membrane and endocytic pathway. Hum Mol Genet 2009; 18:4603-14. [PMID: 19744956 DOI: 10.1093/hmg/ddp427] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in SH3TC2 (KIAA1985) cause Charcot-Marie-Tooth disease (CMT) type 4C, a demyelinating inherited neuropathy characterized by early-onset and scoliosis. Here we demonstrate that the SH3TC2 protein is present in several components of the endocytic pathway including early endosomes, late endosomes and clathrin-coated vesicles close to the trans-Golgi network and in the plasma membrane. Myristoylation of SH3TC2 in glycine 2 is necessary but not sufficient for the proper location of the protein in the cell membranes. In addition to myristoylation, correct anchoring also needs the presence of SH3 and TPR domains. Mutations that cause a stop codon and produce premature truncations that remove most of the TPR domains are expressed as the wild-type protein. In contrast, missense mutations in or around the region of the first-TPR domain are absent from early endosomes, reduced in plasma membrane and late endosomes and are variably present in clathrin-coated vesicles. Our findings suggest that the endocytic and membrane trafficking pathway is involved in the pathogenesis of CMT4C disease. We postulate that missense mutations of SH3TC2 could impair communication between the Schwann cell and the axon causing an abnormal myelin formation.
Collapse
Affiliation(s)
- Vincenzo Lupo
- Genetics and Molecular Medicine Unit, Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia 46010, Spain
| | | | | | | | | | | | | |
Collapse
|
611
|
An initial step of GAS-containing autophagosome-like vacuoles formation requires Rab7. PLoS Pathog 2009; 5:e1000670. [PMID: 19956673 PMCID: PMC2777386 DOI: 10.1371/journal.ppat.1000670] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 10/27/2009] [Indexed: 11/27/2022] Open
Abstract
Group A streptococcus (GAS; Streptococcus pyogenes) is a common pathogen that invades non-phagocytic human cells via endocytosis. Once taken up by cells, it escapes from the endocytic pathway to the cytoplasm, but here it is contained within a membrane-bound structure termed GAS-containing autophagosome-like vacuoles (GcAVs). The autophagosome marker GFP-LC3 associates with GcAVs, and other components of the autophagosomal pathway are involved in GcAV formation. However, the mechanistic relationship between GcAV and canonical autophagy is largely unknown. Here, we morphologically analyzed GcAV formation in detail. Initially, a small, GFP-LC3-positive GcAV sequesters each streptococcal chain, and these then coalesce into a single, large GcAV. Expression of a dominant-negative form of Rab7 or RNAi-mediated knockdown of Rab7 prevented the initial formation of small GcAV structures. Our results demonstrate that mechanisms of GcAV formation includes not only the common machinery of autophagy, but also Rab7 as an additional component, which is dispensable in canonical autophagosome formation. Autophagy has become one of the leading edge subjects in science. Autophagy occurs when a cell eats some of its cellular components and digests them. These cellular components may include cytosol and organelles as well as bacteria that has invaded the cell. Thus, autophagy plays an important role in killing pathogens. Here, we introduce an anti-bacterial autophagy called xenophagy. Group A Streptococcus (GAS) enters HeLa cells and escapes from the endosome into the cytoplasm for its growth. However, autophagy kicks in and traps GAS, thus preventing its survival path. Detailed morphological observation of this process reveals several specific features which were not found in canonical autophagy. These results provide key information about not only anti-bacterial autophagy, but also canonical autophagy.
Collapse
|
612
|
Gao W, Kang JH, Liao Y, Ding WX, Gambotto AA, Watkins SC, Liu YJ, Stolz DB, Yin XM. Biochemical isolation and characterization of the tubulovesicular LC3-positive autophagosomal compartment. J Biol Chem 2009; 285:1371-83. [PMID: 19910472 DOI: 10.1074/jbc.m109.054197] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autophagosomes and their precursors are best defined by electron microscopy but may also be traced in living cells based on the distribution of specific autophagy molecules. LC3, the most commonly examined autophagy marker in mammalian cells, labels structures that are frequently manifested as dots or rings using light microscopy; however, the nature of these structures is not entirely clear. We reported here a novel approach to examine the LC3-positive compartment in cell-free lysates, which revealed that they were actually tubulovesicular structures with considerable heterogeneity. Using affinity purification, we isolated these membranes for electron microscopy, which indicated that they possessed ultrastructural features consistent with autophagosomal membranes at various maturation stages. Further biochemical and proteomics analyses demonstrated the presence of multiple autophagy-related and other functional molecules. The different distribution patterns of Atg5, Atg16, Atg9, and p62/SQSTM1 on the LC3-positive compartment provided new clues on how these molecules might be involved in the dynamics of the autophagosomal membranes. Finally, several morphologically unique groups of LC3-positive membranes were categorized. Their topological configurations suggested that double-membrane vesicles could be derived from single membrane compartments via different means, including tubule-to-vesicle conversion, whose presence was supported by live cell imaging. These findings thus provide new information on the dynamics of the autophagosomal compartment.
Collapse
Affiliation(s)
- Wentao Gao
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
613
|
Gannagé M, Schmid D, Albrecht R, Dengjel J, Torossi T, Rämer PC, Lee M, Strowig T, Arrey F, Conenello G, Pypaert M, Andersen J, García-Sastre A, Münz C. Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. Cell Host Microbe 2009; 6:367-80. [PMID: 19837376 PMCID: PMC2774833 DOI: 10.1016/j.chom.2009.09.005] [Citation(s) in RCA: 440] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 06/29/2009] [Accepted: 09/14/2009] [Indexed: 02/02/2023]
Abstract
Influenza A virus is an important human pathogen causing significant morbidity and mortality every year and threatening the human population with epidemics and pandemics. Therefore, it is important to understand the biology of this virus to develop strategies to control its pathogenicity. Here, we demonstrate that influenza A virus inhibits macroautophagy, a cellular process known to be manipulated by diverse pathogens. Influenza A virus infection causes accumulation of autophagosomes by blocking their fusion with lysosomes, and one viral protein, matrix protein 2, is necessary and sufficient for this inhibition of autophagosome degradation. Macroautophagy inhibition by matrix protein 2 compromises survival of influenza virus-infected cells but does not influence viral replication. We propose that influenza A virus, which also encodes proapoptotic proteins, is able to determine the death of its host cell by inducing apoptosis and also by blocking macroautophagy.
Collapse
Affiliation(s)
- Monique Gannagé
- Viral Immunobiology, Institute of Experimental Immunology, University Hospital of Zürich, Switzerland
- Laboratory of Viral Immunobiology, and Christopher H. Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Dorothee Schmid
- Laboratory of Viral Immunobiology, and Christopher H. Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Randy Albrecht
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Jörn Dengjel
- Center of Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Tania Torossi
- Viral Immunobiology, Institute of Experimental Immunology, University Hospital of Zürich, Switzerland
| | - Patrick C. Rämer
- Viral Immunobiology, Institute of Experimental Immunology, University Hospital of Zürich, Switzerland
| | - Monica Lee
- Laboratory of Viral Immunobiology, and Christopher H. Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Till Strowig
- Laboratory of Viral Immunobiology, and Christopher H. Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Frida Arrey
- Laboratory of Viral Immunobiology, and Christopher H. Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Gina Conenello
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA
- Center of Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Marc Pypaert
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jens Andersen
- Center of Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Adolfo García-Sastre
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA
- Department of Medicine, Division of Infectious Diseases, Mount Sinai School of Medicine, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University Hospital of Zürich, Switzerland
- Laboratory of Viral Immunobiology, and Christopher H. Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
614
|
Abstract
Autophagy is a catabolic process through which damaged or long-lived proteins, macromolecules and organelles are degraded using lysosomal degradative machinery. Since cardiac myocytes are terminally differentiated, the role of autophagy is essential to maintain the homeostasis of the myocardium. Autophagy supplies nutrients for the synthesis of essential proteins during starvation and thus helps to extend cell survival. Although autophagy is non-selective, under oxidative conditions it effectively removes oxidatively damaged mitochondria, peroxisomes and endoplasmic reticulum. Thus, autophagy can protect the cells from apoptosis and other major injuries, and it is considered to be in the cross-road between cell death and survival. However, excess autophagy can destroy essential cellular components and lead to cell death. The function of autophagy in normal and in the conditions of cardiac diseases such as heart failure, cardiomyopathy, cardiac hypertrophy, and ischemia-reperfusion injury is discussed.
Collapse
Affiliation(s)
- N Gurusamy
- School of Medicine, Cardiovascular Research Center, University of Connecticut, Farmington, CT 06030-1110, USA
| | | |
Collapse
|
615
|
Yang Z, Klionsky DJ. An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 2009. [PMID: 19802558 DOI: 10.1007/978-3-642-00302-8-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy is a highly conserved cellular degradation process in which portions of cytosol and organelles are sequestered into a double-membrane vesicle, an autophagosome, and delivered into a degradative organelle, the vacuole/lysosome, for breakdown and eventual recycling of the resulting macromolecules. This process relieves the cell from various stress conditions. Autophagy plays a critical role during cellular development and differentiation, functions in tumor suppression, and may be linked to life span extension. Autophagy also has diverse roles in innate and adaptive immunity, such as resistance to pathogen invasion. Substantial progress has been made in the identification of many autophagy-related (ATG) genes that are essential to drive this cellular process, including both selective and nonselective types of autophagy. Identification of the ATG genes in yeast, and the finding of orthologs in other organisms, reveals the conservation of the autophagic machinery in all eukaryotes. Here, we summarize our current knowledge about the machinery and molecular mechanism of autophagy.
Collapse
Affiliation(s)
- Zhifen Yang
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | | |
Collapse
|
616
|
Abstract
Autophagy, a conserved mechanism for lysosomal degradation of cytoplasmic components, has received much attention recently owing to its importance in tissue remodelling and innate immunity, and because it has been proposed that autophagy protects against cancer and neurodegenerative diseases. Although much of the molecular machinery that mediates autophagy has been identified, there are still aspects of this pathway that remain enigmatic. One open issue is the involvement of endosomal sorting complex required for transport (ESCRT) proteins, which were originally identified for their role in sorting ubiquitylated membrane proteins into multivesicular bodies. In this Opinion article, we discuss four possible models that could explain the observation that autophagosomes accumulate in ESCRT-depleted cells. We propose that the involvement of ESCRT proteins in the fusion of autophagosomes with the endolysosomal system is the most plausible model.
Collapse
Affiliation(s)
- Tor Erik Rusten
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0310 Oslo, Norway
| | | |
Collapse
|
617
|
Yue Z, Friedman L, Komatsu M, Tanaka K. The cellular pathways of neuronal autophagy and their implication in neurodegenerative diseases. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:1496-507. [PMID: 19339210 PMCID: PMC2739256 DOI: 10.1016/j.bbamcr.2009.01.016] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 01/24/2009] [Accepted: 01/27/2009] [Indexed: 01/08/2023]
Abstract
Autophagy is a tightly regulated cell self-eating process. It has been shown to be associated with various neuropathological conditions and therefore, traditionally known as a stress-induced process. Recent studies, however, reveal that autophagy is constitutively active in healthy neurons. Neurons are highly specialized, post-mitotic cells that are typically composed of a soma (cell body), a dendritic tree, and an axon. Despite the vast growth of our current knowledge of autophagy, the detailed process in such a highly differentiated cell type remains elusive. Current evidence strongly suggests that autophagy is uniquely regulated in neurons and is also highly adapted to local physiology in the axons. In addition, the molecular mechanism for basal autophagy in neurons may be significantly divergent from "classical" induced autophagy. A considerable number of studies have increasingly shown an important role for autophagy in neurodegenerative diseases and have explored autophagy as a potential drug target. Thus, understanding the neuronal autophagy process will ultimately aid in drug target identification and rational design of drug screening to combat neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhenyu Yue
- Department of Neurology and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
618
|
Campoy E, Colombo MI. Autophagy in intracellular bacterial infection. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1465-77. [DOI: 10.1016/j.bbamcr.2009.03.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 03/06/2009] [Accepted: 03/10/2009] [Indexed: 12/24/2022]
|
619
|
Hirota Y, Tanaka Y. A small GTPase, human Rab32, is required for the formation of autophagic vacuoles under basal conditions. Cell Mol Life Sci 2009; 66:2913-32. [PMID: 19593531 PMCID: PMC11115675 DOI: 10.1007/s00018-009-0080-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 06/16/2009] [Accepted: 06/18/2009] [Indexed: 12/26/2022]
Abstract
Here we show that a small GTPase, Rab32, is a novel protein required for the formation of autophagic vacuoles. We found that the wild-type or GTP-bound form of human Rab32 expressed in HeLa and COS cells is predominantly localized to the endoplasmic reticulum (ER), and overexpression induces the formation of autophagic vacuoles containing an autophagosome marker protein LC3, the ER-resident protein calnexin and endosomal/lysosomal membrane protein LAMP-2, even under nutrient-rich conditions. The recruitment of Rab32 to the ER membrane was necessary for autophagic vacuole formation, suggesting involvement of the ER as a source of autophagosome membranes. In contrast, the expression of the inactive form of, or siRNA-specific for, Rab32 caused the formation of p62/SQSTM1 and ubiquitinated protein-accumulating aggresome-like structures and significantly prevented constitutive autophagy. We postulate that Rab32 facilitates the formation of autophagic vacuoles whose membranes are derived from the ER and regulates the clearance of aggregated proteins by autophagy.
Collapse
Affiliation(s)
- Yuko Hirota
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582 Japan
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582 Japan
| |
Collapse
|
620
|
|
621
|
Clement AB, Gamerdinger M, Tamboli IY, Lütjohann D, Walter J, Greeve I, Gimpl G, Behl C. Adaptation of neuronal cells to chronic oxidative stress is associated with altered cholesterol and sphingolipid homeostasis and lysosomal function. J Neurochem 2009; 111:669-82. [PMID: 19712059 DOI: 10.1111/j.1471-4159.2009.06360.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chronic oxidative stress has been causally linked to several neurodegenerative disorders. As sensitivity for oxidative stress greatly differs between brain regions and neuronal cell types, specific cellular mechanisms of adaptation to chronic oxidative stress should exist. Our objective was to identify molecular mechanisms of adaptation of neuronal cells after applying chronic sublethal oxidative stress. We demonstrate that cells resistant to oxidative stress exhibit altered cholesterol and sphingomyelin metabolisms. Stress-resistant cells showed reduced levels of molecules involved in cholesterol trafficking and intracellular accumulation of cholesterol, cholesterol precursors, and metabolites. Moreover, stress-resistant cells exhibited reduced SMase activity. The altered lipid metabolism was associated with enhanced autophagy. Treatment of stress-resistant cells with neutral SMase reversed the stress-resistant phenotype, whereas it could be mimicked by treatment of neuronal cells with a specific inhibitor of neutral SMase. Analysis of hippocampal and cerebellar tissue of mouse brains revealed that the obtained cell culture data reflect the in vivo situation. Stress-resistant cells in vitro showed similar features as the less vulnerable cerebellum in mice, whereas stress-sensitive cells resembled the highly sensitive hippocampal area. These findings suggest an important role of the cell type-specific lipid profile for differential vulnerabilities of different brain areas toward chronic oxidative stress.
Collapse
Affiliation(s)
- Angela B Clement
- Institute for Pathobiochemistry, University-Medical Center, Johannes Gutenberg-University Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
622
|
Saftig P, Klumperman J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 2009; 10:623-35. [PMID: 19672277 DOI: 10.1038/nrm2745] [Citation(s) in RCA: 1236] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lysosomes are the primary catabolic compartments of eukaryotic cells. They degrade extracellular material that has been internalized by endocytosis and intracellular components that have been sequestered by autophagy. In addition, specialized cells contain lysosome-related organelles that store and secrete proteins for cell-type-specific functions. The functioning of a healthy cell is dependent on the proper targeting of newly synthesized lysosomal proteins. Accumulating evidence suggests that there are multiple lysosomal delivery pathways that together allow the regulated and sequential deposition of lysosomal components. The importance of lysosomal trafficking pathways is emphasized by recent findings that reveal new roles for lysosomal membrane proteins in cellular physiology and in an increasing number of diseases that are characterized by defects in lysosome biogenesis.
Collapse
Affiliation(s)
- Paul Saftig
- Department of Biochemistry, Christian-Albrechts University, Kiel, Germany.
| | | |
Collapse
|
623
|
Abstract
Autophagy is a process of self-degradation of cellular components in which double-membrane autophagosomes sequester organelles or portions of cytosol and fuse with lysosomes or vacuoles for breakdown by resident hydrolases. Autophagy is upregulated in response to extra- or intracellular stress and signals such as starvation, growth factor deprivation, ER stress, and pathogen infection. Defective autophagy plays a significant role in human pathologies, including cancer, neurodegeneration, and infectious diseases. We present our current knowledge on the key genes composing the autophagy machinery in eukaryotes from yeast to mammalian cells and the signaling pathways that sense the status of different types of stress and induce autophagy for cell survival and homeostasis. We also review the recent advances on the molecular mechanisms that regulate the autophagy machinery at various levels, from transcriptional activation to post-translational protein modification.
Collapse
Affiliation(s)
- Congcong He
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology, and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
624
|
Abstract
Autophagy is a process of lysosomal degradation that was originally described as a cellular response to adapt to a lack of nutrients and to enable the elimination of damaged organelles. Autophagy is increasingly recognized as a process that is also involved in innate and adaptive immune responses against pathogens. Studies on the regulation of autophagy have uncovered components of the autophagic cascade that can be manipulated pharmacologically. Approaches to modulate autophagy may result in novel strategies for the treatment and prevention of various infections.
Collapse
Affiliation(s)
- Carlos S Subauste
- Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
625
|
Gurusamy N, Das DK. Autophagy, redox signaling, and ventricular remodeling. Antioxid Redox Signal 2009; 11:1975-88. [PMID: 19327038 PMCID: PMC2848474 DOI: 10.1089/ars.2009.2524] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Revised: 02/21/2009] [Accepted: 02/25/2009] [Indexed: 12/19/2022]
Abstract
Autophagy is a catabolic process through which damaged or long-lived proteins, macromolecules, or organelles are recycled by using lysosomal degradation machinery. Although the occurrence of autophagy in several cardiac diseases including ischemic or dilated cardiomyopathy, heart failure, hypertrophy, and during ischemia/reperfusion injury have been reported, the exact role of autophagy in these diseases is not known. Emerging studies indicate that oxidative stress in cellular system could induce autophagy, and oxidatively modified macromolecules and organelles can be selectively removed by autophagy. Mild oxidative stress-induced autophagy could provide the first line of protection against major damage like apoptosis and necrosis. Cardiac-specific loss of Atg5, an autophagic gene involved in the formation of autophagosome, causes cardiac hypertrophy, left ventricular dilation, and contractile dysfunction. Recently, it was revealed that Atg4, another autophagic gene involved in the formation of autophagosomes, is controlled through redox regulation under the condition of starvation-induced autophagy. In this review, we discuss the function of autophagy in association with oxidative stress and redox signaling in the remodeling of cardiac myocardium. Further research is needed to explore the possibilities of redox regulation of other autophagic genes and the role of redox signaling-mediated autophagy in the heart.
Collapse
Affiliation(s)
- Narasimman Gurusamy
- Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, Connecticut 06030-1110, USA
| | | |
Collapse
|
626
|
Abstract
The endocytosis pathway controls multiple cellular and physiological events. The lysosome is the destination of newly synthesized lysosomal hydrolytic enzymes. Internalized molecules or particles are delivered to the lysosome for degradation through sequential transport along the endocytic pathway. The endocytic pathway is also emerging as a signalling platform, in addition to the well-known role of the plasma membrane for signalling. Rab7 is a late endosome-/lysosome-associated small GTPase, perhaps the only lysosomal Rab protein identified to date. Rab7 plays critical roles in the endocytic processes. Through interaction with its partners (including upstream regulators and downstream effectors), Rab7 participates in multiple regulation mechanisms in endosomal sorting, biogenesis of lysosome [or LRO (lysosome-related organelle)] and phagocytosis. These processes are closely related to substrates degradation, antigen presentation, cell signalling, cell survival and microbial pathogen infection. Consistently, mutations or dysfunctions of Rab7 result in traffic disorders, which cause various diseases, such as neuropathy, cancer and lipid metabolism disease. Rab7 also plays important roles in microbial pathogen infection and survival, as well as in participating in the life cycle of viruses. Here, we give a brief review on the central role of Rab7 in endosomal traffic and summarize the studies focusing on the participation of Rab7 in disease pathogenesis. The underlying mechanism governed by Rab7 and its partners will also be discussed.
Collapse
|
627
|
Association of autophagy with cholesterol-accumulated compartments in Niemann-Pick disease type C cells. J Clin Neurosci 2009; 16:954-9. [DOI: 10.1016/j.jocn.2008.09.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 09/16/2008] [Indexed: 01/08/2023]
|
628
|
Noda T, Fujita N, Yoshimori T. The late stages of autophagy: how does the end begin? Cell Death Differ 2009; 16:984-90. [DOI: 10.1038/cdd.2009.54] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
629
|
Vanlandingham PA, Ceresa BP. Rab7 regulates late endocytic trafficking downstream of multivesicular body biogenesis and cargo sequestration. J Biol Chem 2009; 284:12110-24. [PMID: 19265192 PMCID: PMC2673280 DOI: 10.1074/jbc.m809277200] [Citation(s) in RCA: 330] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 03/04/2009] [Indexed: 11/06/2022] Open
Abstract
The small molecular weight G-protein RAB7 is localized to both early and late endosomes and has been shown to be critical for trafficking through the endocytic pathway. The role of RAB7 in the endocytic pathway has been controversial, with some groups reporting that it regulates trafficking from early to late endosomes and others ascribing its role to trafficking between late endosomes and lysosomes. In this study, we use RNA interference to identify the exact step RAB7 regulates in the movement of the epidermal growth factor receptor (EGFR) from the cell surface to the lysosome. In the absence of RAB7, trafficking of the EGF.EGFR complex through the early endosome to the late endosome/multivesicular body (LE/MVB) does not change, but exiting from the LE/MVB is blocked. Ultrastructural analysis reveals that RAB7 is not required for formation of intraluminal vesicles of the LE/MVB, since RAB7-deficient cells have an increased number of enlarged LE/MVBs densely packed with intraluminal vesicles. Biochemical data indicate that the EGFR complex is sequestered in these intraluminal vesicles. Together, these data provide evidence that RAB7 is required for the transfer of cargo from the LE/MVB to the lysosome and for endocytic organelle maintenance.
Collapse
Affiliation(s)
- Phillip A Vanlandingham
- Department of Cell Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126, USA
| | | |
Collapse
|
630
|
Eisenberg-Lerner A, Kimchi A. The paradox of autophagy and its implication in cancer etiology and therapy. Apoptosis 2009; 14:376-91. [PMID: 19172397 DOI: 10.1007/s10495-008-0307-5] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autophagy is a cellular self-catabolic process in which cytoplasmic constituents are sequestered in double membrane vesicles that fuse with lysosomes where they are degraded. As this catabolic activity generates energy, autophagy is often induced under nutrient limiting conditions providing a mechanism to maintain cell viability and may be exploited by cancer cells for survival under metabolic stress. However, progressive autophagy can be cytotoxic and autophagy can under certain settings substitute for apoptosis in induction of cell death. Moreover, loss of autophagy is correlated with tumorigenesis and several inducers of autophagy are tumor-suppressor genes. Thus, the relation of autophagy to cancer development is complex and depends on the genetic composition of the cell as well as on the extra-cellular stresses a cell is exposed to. In this review we describe the intricate nature of autophagy and its regulators, particularly those that have been linked to cancer. We discuss the multifaceted relation of autophagy to tumorigenesis and highlight studies supporting a role for autophagy in both tumor-suppression and tumor-progression. Finally, various autophagy-targeting therapeutic strategies for cancer treatment are presented.
Collapse
|
631
|
Heat shock proteins as gatekeepers of proteolytic pathways-Implications for age-related macular degeneration (AMD). Ageing Res Rev 2009; 8:128-39. [PMID: 19274853 DOI: 10.1016/j.arr.2009.01.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Age-related macular degeneration (AMD) is the major diagnosis for severe and irreversible central loss of vision in elderly people in the developed countries. The loss of vision involves primarily a progressive degeneration and cell death of postmitotic retinal pigment epithelial cells (RPE), which secondarily evokes adverse effects on photoreceptor cells. The RPE cells are exposed to chronic oxidative stress from three sources: their high levels of oxygen consumption, their exposure to the high levels of lipid peroxidation derived from the photoreceptor outer segments and their exposure to constant light stimuli. Cells increase the expression of heat shock proteins (HSPs) in order to normalize their growth conditions in response to various environmental stress factors, e.g. oxidative stress. The HSPs function as molecular chaperones by preventing the accumulation of cellular cytotoxic protein aggregates and assisting in correct folding of both nascent and misfolded proteins. Increased HSPs levels are observed in the retina of AMD patients, evidence of stressed tissue. A hallmark of RPE cell aging is lysosomal lipofuscin accumulation reflecting a weakened capacity to degrade proteins in lysosomes. The presence of lipofuscin increases the misfolding of intracellular proteins, which evokes additional stress in the RPE cells. If the capacity of HSPs to repair protein damages is overwhelmed, then the proteins are mainly cleared in proteasomes or in lysosomes. In this review, we discuss the role of heat shock proteins, proteasomes, and lysosomes and autophagic processes in RPE cell proteolysis and how these might be involved in development of AMD. In addition to classical lysosomal proteolysis, we focus on the increasing evidence that, HSPs, proteasomes and autophagy regulate protein turnover in the RPE cells and thus have important roles in AMD disease.
Collapse
|
632
|
Autophagy: A lysosomal degradation pathway with a central role in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:664-73. [DOI: 10.1016/j.bbamcr.2008.07.014] [Citation(s) in RCA: 544] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 07/09/2008] [Accepted: 07/10/2008] [Indexed: 01/09/2023]
|
633
|
Martinet W, De Meyer GRY. Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential. Circ Res 2009; 104:304-17. [PMID: 19213965 DOI: 10.1161/circresaha.108.188318] [Citation(s) in RCA: 307] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Autophagy is a reparative, life-sustaining process by which cytoplasmic components are sequestered in double-membrane vesicles and degraded on fusion with lysosomal compartments. A growing body of evidence suggests that autophagy is stimulated in advanced atherosclerotic plaques by oxidized lipids, inflammation, and metabolic stress conditions. However, despite the increasing interest in autophagy in various pathophysiological situations such as neurodegeneration, cancer, and cardiac myopathies, the process remains an underestimated and overlooked phenomenon in atherosclerosis. As a consequence, its role in plaque formation and stability is poorly understood. Most likely, autophagy safeguards plaque cells against cellular distress, in particular oxidative injury, by degrading damaged intracellular material. In this way, autophagy is antiapoptotic and contributes to cellular recovery in an adverse environment. An interesting observation is that basal autophagy can be intensified by specific drugs. Excessively stimulated autophagic activity is capable of destroying major proportions of the cytosol, leading finally to type II programmed cell death that lacks several hallmarks of apoptosis or necrosis. Because atherosclerosis is an inflammatory disorder of the arterial intima, pharmacological approaches could be developed to stabilize vulnerable, rupture-prone lesions through selective induction of macrophage autophagic death.
Collapse
Affiliation(s)
- Wim Martinet
- Division of Pharmacology, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | | |
Collapse
|
634
|
Vázquez CL, Colombo MI. Chapter 6 Assays to Assess Autophagy Induction and Fusion of Autophagic Vacuoles with a Degradative Compartment, Using Monodansylcadaverine (MDC) and DQ‐BSA. Methods Enzymol 2009; 452:85-95. [DOI: 10.1016/s0076-6879(08)03606-9] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
635
|
Abstract
Lysosomes are the final destination of the autophagic pathway. It is in the acidic milieu of the lysosomes that autophagic cargo is metabolized and recycled. One would expect that diseases with primary lysosomal defects would be among the first systems in which autophagy would be studied. In reality, this is not the case. Lysosomal storage diseases, a group of more than 60 diverse inherited disorders, have only recently become a focus of autophagic research. Studies of these clinically severe conditions promise not only to clarify pathogenic mechanisms, but also to expand our knowledge of autophagy itself. In this chapter, we will describe the lysosomal storage diseases in which autophagy has been explored, and present the approaches used to evaluate this essential cellular pathway.
Collapse
Affiliation(s)
- Nina Raben
- The Arthritis and Rheumatism Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
636
|
Abstract
Autophagy is a process of self-degradation of cellular components in which double-membrane autophagosomes sequester organelles or portions of cytosol and fuse with lysosomes or vacuoles for breakdown by resident hydrolases. Autophagy is upregulated in response to extra- or intracellular stress and signals such as starvation, growth factor deprivation, ER stress, and pathogen infection. Defective autophagy plays a significant role in human pathologies, including cancer, neurodegeneration, and infectious diseases. We present our current knowledge on the key genes composing the autophagy machinery in eukaryotes from yeast to mammalian cells and the signaling pathways that sense the status of different types of stress and induce autophagy for cell survival and homeostasis. We also review the recent advances on the molecular mechanisms that regulate the autophagy machinery at various levels, from transcriptional activation to post-translational protein modification.
Collapse
Affiliation(s)
- Congcong He
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology, and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Daniel J. Klionsky
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology, and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
637
|
|
638
|
Ylä-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL. Monitoring autophagy by electron microscopy in Mammalian cells. Methods Enzymol 2009; 452:143-64. [PMID: 19200881 DOI: 10.1016/s0076-6879(08)03610-0] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Electron microscopy remains one of the most accurate methods for the detection of autophagy and quantification of autophagic accumulation. Compared to fluorescence microscopy, the resolution of transmission electron microscopy is superior. In this chapter we describe the fine structure of early and late autophagic compartments in mammalian cells. Instructions are given for the preparation of samples for conventional electron microscopy using three different protocols suitable for cultured cells and animal tissues. We also introduce tomography as a tool to study the three-dimensional morphology of autophagic organelles and show the morphology of a phagophore as an example. Finally, we describe a protocol for the quantification of autophagic compartments by electron microscopy and point counting.
Collapse
Affiliation(s)
- Päivi Ylä-Anttila
- Department of Biological and Environmental Sciences, Division of Biochemistry, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
639
|
Pohl C, Jentsch S. Midbody ring disposal by autophagy is a post-abscission event of cytokinesis. Nat Cell Biol 2008; 11:65-70. [PMID: 19079246 DOI: 10.1038/ncb1813] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 10/16/2008] [Indexed: 11/09/2022]
Abstract
At the end of cytokinesis, the dividing cells are connected by an intercellular bridge, containing the midbody along with a single, densely ubiquitylated, circular structure called the midbody ring (MR). Recent studies revealed that the MR serves as a target site for membrane delivery and as a physical barrier between the prospective daughter cells. The MR materializes in telophase, localizes to the intercellular bridge during cytokinesis, and moves asymmetrically into one cell after abscission. Daughter cells rarely accumulate MRs of previous divisions, but how these large structures finally disappear remains unknown. Here, we show that MRs are discarded by autophagy, which involves their sequestration into autophagosomes and delivery to lysosomes for degradation. Notably, autophagy factors, such as the ubiquitin adaptor p62 (Refs 4, 5) and the ubiquitin-related protein Atg8 (ref. 6), associate with the MR during abscission, suggesting that autophagy is coupled to cytokinesis. Moreover, MRs accumulate in cells of patients with lysosomal storage disorders, indicating that defective MR disposal is characteristic of these diseases. Thus our findings suggest that autophagy has a broader role than previously assumed, and that cell renovation by clearing from superfluous large macromolecular assemblies, such as MRs, is an important autophagic function.
Collapse
Affiliation(s)
- Christian Pohl
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | |
Collapse
|
640
|
Nedelsky N, Todd PK, Taylor JP. Autophagy and the ubiquitin-proteasome system: collaborators in neuroprotection. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1782:691-9. [PMID: 18930136 PMCID: PMC2621359 DOI: 10.1016/j.bbadis.2008.10.002] [Citation(s) in RCA: 265] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 10/07/2008] [Accepted: 10/08/2008] [Indexed: 11/26/2022]
Abstract
Protein degradation is an essential cellular function that, when dysregulated or impaired, can lead to a wide variety of disease states. The two major intracellular protein degradation systems are the ubiquitin-proteasome system (UPS) and autophagy, a catabolic process that involves delivery of cellular components to the lysosome for degradation. While the UPS has garnered much attention as it relates to neurodegenerative disease, important links between autophagy and neurodegeneration have also become evident. Furthermore, recent studies have revealed interaction between the UPS and autophagy, suggesting a coordinated and complementary relationship between these degradation systems that becomes critical in times of cellular stress. Here we describe autophagy and review evidence implicating this system as an important player in the pathogenesis of neurodegenerative disease. We discuss the role of autophagy in neurodegeneration and review its neuroprotective functions as revealed by experimental manipulation in disease models. Finally, we explore potential parallels and connections between autophagy and the UPS, highlighting their collaborative roles in protecting against neurodegenerative disease.
Collapse
Affiliation(s)
- Natalia Nedelsky
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Peter K. Todd
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109
| | - J. Paul Taylor
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| |
Collapse
|
641
|
Abstract
In the majority of cell types, multivesicular bodies (MVBs) are a special kind of late endosomes, crucial intermediates in the internalization of nutrients, ligands and receptors through the endolysosomal system. ESCRT-0, I, II and III (endosomal sorting complex required for transport) are involved in the sorting of proteins into MVBs, generating the intraluminal vesicles. Autophagy is a lysosomal degradation pathway for cytoplasmic components such as proteins and organelles. The autophagosome, a well-characterized structure of the autophagy pathway, can fuse with endocytic structures such as MVBs to generate the amphisome. Finally, the amphisome fuses with the lysosome to degrade the material wrapped inside. Currently, clear evidence suggests that efficient autophagic degradation requires functional MVBs. This review highlights the most recent advances in our understanding of the molecular machinery that participates in MVB biogenesis and regulates the interplay between autophagy and this organelle.
Collapse
|
642
|
Tsuchihara K, Fujii S, Esumi H. Autophagy and cancer: dynamism of the metabolism of tumor cells and tissues. Cancer Lett 2008; 278:130-138. [PMID: 19004545 DOI: 10.1016/j.canlet.2008.09.040] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 09/17/2008] [Accepted: 09/30/2008] [Indexed: 01/05/2023]
Abstract
Autophagy is a dynamic process involving the bulk degradation of cytoplasmic organelles and proteins. Based on the function of "cellular recycling", autophagy plays key roles in the quality control of cellular components as well as supplying nutrients and materials for newly constructed structures in cells under metabolic stresses. The physiological relevance of autophagy in tumor formation and progression is still controversial. The cytoprotective function of autophagy in cells subjected to starvation might enhance the prolonged survival of tumor cells that are often exposed to metabolic stresses in vivo. Meanwhile, a tumor-suppressive function of autophagy has also been suggested. Autophagy-related cell death has been regarded as a primary mechanism for tumor suppression. In addition, the loss of autophagy induced genome instability and significant necrosis with inflammation in transplanted mouse tumor models, suggesting an additional function of autophagy in the suppression of tumor formation and growth. Until now, investigations supporting and proving the above possibilities have not been fully completed using clinical samples and equivalent animal models. Though monitoring and the interpretation of autophagy dynamism in tumor tissues are still technically difficult, identifying the autophagic activity in clinical samples might be necessary to clarify the pathophysiological relevance of autophagy in tumor formation and progression as well as to develop new therapeutic strategies based on the regulation of autophagy.
Collapse
Affiliation(s)
- Katsuya Tsuchihara
- Cancer Physiology Project, Research Center for Innovative oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | - Satoshi Fujii
- Pathology Division, Research Center for Innovative Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | - Hiroyasu Esumi
- Cancer Physiology Project, Research Center for Innovative oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan.
| |
Collapse
|
643
|
Weiss KH, Lozoya JC, Tuma S, Gotthardt D, Reichert J, Ehehalt R, Stremmel W, Füllekrug J. Copper-induced translocation of the Wilson disease protein ATP7B independent of Murr1/COMMD1 and Rab7. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1783-94. [PMID: 18974300 DOI: 10.2353/ajpath.2008.071134] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wilson disease is a genetic disorder of copper metabolism. Impaired biliary excretion results in a gradual accumulation of copper, which leads to severe disease. The specific gene defect lies in the Wilson disease protein, ATP7B, a copper-transporting ATPase that is highly active in hepatocytes. The two major functions of ATP7B in the liver are the copper loading of ceruloplasmin in the Golgi apparatus, and the excretion of excess copper into the bile. In response to elevated copper levels, ATP7B shows a unique intracellular trafficking pattern that is required for copper excretion from the Golgi apparatus into dispersed vesicles. We analyzed the translocation of ATP7B by both confocal microscopy and RNA interference, testing current models that suggest the involvement of Murr1/COMMD1 and Rab7 in this pathway. We found that although the ATP7B translocation is conserved among nonhepatic cell lines, there is no co-localization with Murr1/COMMD1 or the Rab marker proteins of the endolysosomal system. Consistent with this finding, the translocation of ATP7B was not impaired by the depletion of either Murr1/COMMD1 or Rab7, or by a dominant-negative Rab7 mutant. In conclusion, our data suggest that the translocation of ATP7B takes place independently of Rab7-regulated endosomal traffic events. Murr1/COMMD1 plays a role in a later step of the copper excretion pathway but is not involved in the translocation of the Wilson disease protein.
Collapse
Affiliation(s)
- Karl Heinz Weiss
- Department of Gastroenterology, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
644
|
Fujii S, Mitsunaga S, Yamazaki M, Hasebe T, Ishii G, Kojima M, Kinoshita T, Ueno T, Esumi H, Ochiai A. Autophagy is activated in pancreatic cancer cells and correlates with poor patient outcome. Cancer Sci 2008; 99:1813-9. [PMID: 18616529 PMCID: PMC11159933 DOI: 10.1111/j.1349-7006.2008.00893.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Because autonomous proliferating cancer cells are often exposed to hypoxic conditions, there must be an alternative metabolic pathway, such as autophagy, that allows them to obtain energy when both oxygen and glucose are depleted. We previously reported finding that autophagy actually contributes to cancer cell survival in colorectal cancers both in vitro and in vivo. Pancreatic cancer remains a devastating and poorly understood malignancy, and hypoxia in pancreatic cancers is known to increase their malignant potential. In the present study archival pancreatic cancer tissue was retrieved from 71 cases treated by curative pancreaticoduodenectomy. Autophagy was evaluated by immunohistochemical staining with anti-LC3 antibody, as LC3 is a key component of autophagy and has been used as a marker of autophagy. The results showed that strong LC3 expression in the peripheral area of pancreatic cancer tissue was correlated with a poor outcome (P = 0.0170) and short disease-free period (P = 0.0118). Two of the most significant correlations among the clinicopathological factors tested were found between the peripheral intensity level of LC3 expression and tumor size (P = 0.0098) or tumor necrosis (P = 0.0127). Activated autophagy is associated with pancreatic cancer cells, and autophagy is thought to be a response to factors in the cancer microenvironment, such as hypoxia and poor nutrient supply. This is the first study to report the clinicopathological significance of autophagy in pancreatic cancer.
Collapse
Affiliation(s)
- Satoshi Fujii
- Pathology Division, Research Center for Innovative Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
645
|
|
646
|
Petiot A, Strappazzon F, Chatellard-Causse C, Blot B, Torch S, Verna JM, Sadoul R. Alix differs from ESCRT proteins in the control of autophagy. Biochem Biophys Res Commun 2008; 375:63-8. [PMID: 18684393 DOI: 10.1016/j.bbrc.2008.07.136] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 07/22/2008] [Indexed: 11/25/2022]
Abstract
Alix/AIP1 is a cytosolic protein that regulates cell death through mechanisms that remain unclear. Alix binds to two protein members of the so-called Endosomal Sorting Complex Required for Transport (ESCRT), which facilitates membrane fission events during multivesicular endosome formation, enveloped virus budding and cytokinesis. Alix itself has been suggested to participate in these cellular events and is thus often considered to function in the ESCRT pathway. ESCRT proteins were recently implicated in autophagy, a process involved in bulk degradation of cytoplasmic constituents in lysosomes, which can also participate in cell death. In this study, we shown that, unlike ESCRT proteins, Alix is not involved in autophagy. These results strongly suggest that the capacity of several mutants of Alix to block both caspase-dependent and independent cell death does not relate to their capacity to modulate autophagy. Furthermore, they reinforce the conclusion of other studies demonstrating that the role of Alix is different from that of classical ESCRT proteins.
Collapse
Affiliation(s)
- Anne Petiot
- INSERM U836, Grenoble Institute of Neuroscience, F-38042 Grenoble, France.
| | | | | | | | | | | | | |
Collapse
|
647
|
Abstract
Autophagy is a lysosome-directed membrane trafficking event for the degradation of cytoplasmic components, including organelles. The past few years have seen a great advance in our understanding of the cellular machinery of autophagosome biogenesis, the hallmark of autophagy. However, our global understanding of autophagosome maturity remains relatively poor and fragmented. The topological similarity of autophagosome and endosome delivery to lysosomes suggests that autophagic and endosomal maturation may have evolved to share associated machinery to promote the lysosomal delivery of their cargoes. We have recently discovered that UVRAG, originally identified as a Beclin 1-binding autophagy protein, appears to be an important factor in autophagic and endosomal trafficking through its interaction with the class C Vps tethering complex. Given the ability of UVRAG to bind Beclin 1 and the class C Vps complex in a genetically and functionally separable manner, it may serve as an important regulator for the spatial and/or temporal control of diverse cellular trafficking events. As more non-autophagic functions of UVRAG are unveiled, our understanding of seemingly different cellular processes may move a step further.
Collapse
Affiliation(s)
- Chengyu Liang
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California 90033, USA.
| | | | | | | | | |
Collapse
|
648
|
De Luca A, Progida C, Spinosa MR, Alifano P, Bucci C. Characterization of the Rab7K157N mutant protein associated with Charcot-Marie-Tooth type 2B. Biochem Biophys Res Commun 2008; 372:283-7. [PMID: 18501189 DOI: 10.1016/j.bbrc.2008.05.060] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 05/14/2008] [Indexed: 10/22/2022]
Abstract
Four missense mutations, that target highly conserved amino acid residues in the small GTPase Rab7, have been associated with the Charcot-Marie-Tooth (CMT) type 2B phenotype. CMT2B peripheral axonal neuropathies are characterized by severe sensory loss, often complicated by infections, arthropathy, and amputations. Here, we have investigated the biochemical and functional properties of the Rab7 K157N mutated protein. Interestingly, Rab7 K157N showed altered nucleotide exchange rate and GTP hydrolysis compared to the wild type protein. Consistently, the majority of the expressed protein in HeLa cells was bound to GTP. In addition, Rab7 K157N was able to restore EGF degradation, previously inhibited by Rab7 silencing. Altogether these data indicate that Rab7 K157N, similarly to the other three mutated proteins causative of CMT2B, is predominantly in the GTP-bound form and behaves as an active mutant. Therefore, activated forms of Rab7 protein cause the CMT2B disease.
Collapse
Affiliation(s)
- Azzurra De Luca
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Via Provinciale Monteroni, 73100 Lecce, Italy
| | | | | | | | | |
Collapse
|
649
|
Abstract
Microtubule-associated protein 1A/1B-light chain 3 (LC3) is a soluble protein with a molecular mass of approximately 17 kDa that is distributed ubiquitously in mammalian tissues and cultured cells. During autophagy, autophagosomes engulf cytoplasmic components, including cytosolic proteins and organelles. Concomitantly, a cytosolic form of LC3 (LC3-I) is conjugated to phosphatidylethanolamine to form LC3-phosphatidylethanolamine conjugate (LC3-II), which is recruited to autophagosomal membranes. Autophagosomes fuse with lysosomes to form autolysosomes, and intra-autophagosomal components are degraded by lysosomal hydrolases. At the same time, LC3-II in autolysosomal lumen is degraded. Thus, lysosomal turnover of the autophagosomal marker LC3-II reflects starvation-induced autophagic activity, and detecting LC3 by immunoblotting or immunofluorescence has become a reliable method for monitoring autophagy and autophagy-related processes, including autophagic cell death. Here we describe basic protocols to assay for endogenous LC3-II by immunoblotting, immunoprecipitation, and immunofluorescence.
Collapse
Affiliation(s)
- Isei Tanida
- Department of Biochemistry, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | | | | |
Collapse
|
650
|
|