651
|
Huang CY, Tsai CW, Hsu CM, Shih LC, Chang WS, Shui HA, Bau DT. The role of XRCC6/Ku70 in nasopharyngeal carcinoma. Int J Oral Maxillofac Surg 2015; 44:1480-5. [PMID: 26149939 DOI: 10.1016/j.ijom.2015.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 12/09/2022]
Abstract
The association between XRCC6/Ku70, an upstream player in the DNA double-strand break repair system, and the risk of nasopharyngeal carcinoma (NPC) was examined. In this case-control study, 176 NPC patients and 352 cancer-free controls were genotyped, and the associations of XRCC6 promoter T-991C (rs5751129), promoter G-57C (rs2267437), promoter G-31A (rs132770), and intron 3 (rs132774) polymorphisms with NPC risk were evaluated. NPC tissue samples were also assessed for their XRCC6 mRNA and protein expression by real-time quantitative reverse transcription PCR and Western blotting, respectively. With regard to the XRCC6 promoter T-991C, the TC and CC genotypes were associated with a significantly increased risk of NPC compared with wild-type TT genotype (adjusted odds ratio 2.02 and 3.42, 95% confidence interval 1.21-3.32 and 1.28-8.94, P=0.0072 and 0.0165, respectively). The mRNA and protein expression levels for NPC tissues revealed significantly lower XRCC6 mRNA and protein expression in the NPC samples with TC/CC genotypes compared to those with the TT genotype (P=0.0210 and 0.0164, respectively). These findings suggest that XRCC6 may play an important role in the carcinogenesis of NPC and could serve as a chemotherapeutic target for personalized medicine and therapy.
Collapse
Affiliation(s)
- C-Y Huang
- Graduate Institute of Medical Sciences, National Defence Medical Centre, Taipei, Taiwan, ROC; Taichung Armed Forces General Hospital, Taichung, Taiwan, ROC
| | - C-W Tsai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, ROC; Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, ROC
| | - C-M Hsu
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, ROC
| | - L-C Shih
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, ROC
| | - W-S Chang
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, ROC; Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan, ROC
| | - H-A Shui
- Graduate Institute of Medical Sciences, National Defence Medical Centre, Taipei, Taiwan, ROC
| | - D-T Bau
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, ROC; Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, ROC; Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan, ROC.
| |
Collapse
|
652
|
Bohrer RC, Coutinho ARS, Duggavathi R, Bordignon V. The Incidence of DNA Double-Strand Breaks Is Higher in Late-Cleaving and Less Developmentally Competent Porcine Embryos. Biol Reprod 2015; 93:59. [PMID: 26134870 DOI: 10.1095/biolreprod.115.130542] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 06/30/2015] [Indexed: 12/21/2022] Open
Abstract
Studies in different species, including human, mice, bovine, and swine, demonstrated that early-cleaving embryos have higher capacity to develop to the blastocyst stage and produce better quality embryos with superior capacity to establish pregnancy than late-cleaving embryos. It has also been shown that experimentally induced DNA damage delays embryo cleavage kinetics and reduces blastocyst formation. To gain additional insights into the effects of genome damage on embryo cleavage kinetics and development, the present study compared the occurrence of DNA double-strand breaks (DSBs) with the expression profile of genes involved in DNA repair and cell cycle control between early- and late-cleaving embryos. Porcine oocytes matured in vitro were activated, and then early-cleaving (before 24 h) and late-cleaving (between 24 and 48 h) embryos were identified and cultured separately. Developing embryos, on Days 3, 5, and 7, were used to evaluate the total cell number and presence of DSBs (by counting the number of immunofluorescent foci for phosphorylated histone H2A.x [H2AX139ph] and RAD51 proteins) and to quantify transcripts of genes involved in DNA repair and cell cycle control by quantitative RT-PCR. Early-cleaving embryos had fewer DSBs, lower transcript levels for genes encoding DNA repair and cell cycle checkpoint proteins, and more cells than late-cleaving embryos. Interestingly, at the blastocyst stage, embryos that developed from early- and late-cleaving groups had similar number of DSBs as well as transcript levels of genes induced by DNA damage. This indicates that only embryos with less DNA damage and/or superior capacity for DNA repair are able to progress to the blastocyst stage. Collectively, findings in this study revealed a negative correlation between the occurrence of DSBs and embryo cleavage kinetics and embryo developmental capacity to the blastocyst stage.
Collapse
Affiliation(s)
| | - Ana Rita S Coutinho
- Department of Animal Science, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Raj Duggavathi
- Department of Animal Science, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| |
Collapse
|
653
|
Dong H, Shi Q, Song X, Fu J, Hu L, Xu D, Su C, Xia X, Song E, Song Y. Polychlorinated biphenyl quinone induces oxidative DNA damage and repair responses: The activations of NHEJ, BER and NER via ATM-p53 signaling axis. Toxicol Appl Pharmacol 2015; 286:10-6. [DOI: 10.1016/j.taap.2015.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/02/2015] [Accepted: 03/13/2015] [Indexed: 01/01/2023]
|
654
|
Dong C, Zhang F, Luo Y, Wang H, Zhao X, Guo G, Powell SN, Feng Z. p53 suppresses hyper-recombination by modulating BRCA1 function. DNA Repair (Amst) 2015; 33:60-9. [PMID: 26162908 DOI: 10.1016/j.dnarep.2015.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 05/19/2015] [Accepted: 06/11/2015] [Indexed: 11/17/2022]
Abstract
Both p53 and BRCA1 are tumor suppressors and are involved in a number of cellular processes including cell cycle arrest, apoptosis, transcriptional regulation, and DNA damage repair. Some studies have suggested that the association of BRCA1 and p53 is required for transcriptional regulation of genes involved in cell replication and DNA repair pathways. However, the relationship between the two proteins in molecular mechanisms of DNA repair is still not clear. Therefore, we sought to determine whether there is a functional link between p53 and BRCA1 in DNA repair. Firstly, using a plasmid recombination substrate, pDR-GFP, integrated into the genome of breast cancer cell line MCF7, we have demonstrated that p53 suppressed Rad51-mediated hyper-recombinational repair by two independent cell models of HPV-E6 induced p53 inactivation and p53 knockdown assay. Our study further indicated that p53 mediated homologous recombination (HR) through inhibiting BRCA1 over-function via mechanism of transcription regulation in response to DNA repair. Since it was found p53 and BRCA1 existed in a protein complex, indicating both proteins may be associated at post-transcriptional level. Moreover, defective p53-induced hyper-recombination was associated with cell radioresistance and chromosomal stability, strongly supporting the involvement of p53 in the inhibition of hyper-recombination, which led to genetic stability and cellular function in response to DNA damage. In addition, it was found that p53 loss rescued BRCA1 deficiency via recovering HR and chromosomal stability, suggesting that p53 is also involved in the HR-inhibition independently of BRCA1. Thus, our data indicated that p53 was involved in inhibiting recombination by both BRCA1-dependent and -independent mechanisms, and there is a functional link between p53-suppression and BRCA1-promotion in regulation of HR activity at transcription level and possible post-transcription level.
Collapse
Affiliation(s)
- Chao Dong
- Department of Environment and Health, School of public health, Shandong University, Jinan, Shandong Province 250012, China
| | - Fengmei Zhang
- Department of Environment and Health, School of public health, Shandong University, Jinan, Shandong Province 250012, China
| | - Yue Luo
- Department of Environment and Health, School of public health, Shandong University, Jinan, Shandong Province 250012, China
| | - Hui Wang
- Department of Environment and Health, School of public health, Shandong University, Jinan, Shandong Province 250012, China
| | - Xipeng Zhao
- Department of Environment and Health, School of public health, Shandong University, Jinan, Shandong Province 250012, China
| | - Gongshe Guo
- The Second Hospital of Shandong University, Jinan, Shandong Province 250033, China
| | - Simon N Powell
- Department of Radiation Oncology and Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Zhihui Feng
- Department of Environment and Health, School of public health, Shandong University, Jinan, Shandong Province 250012, China.
| |
Collapse
|
655
|
Chiu YC, Wu CT, Hsiao TH, Lai YP, Hsiao C, Chen Y, Chuang EY. Co-modulation analysis of gene regulation in breast cancer reveals complex interplay between ESR1 and ERBB2 genes. BMC Genomics 2015; 16 Suppl 7:S19. [PMID: 26100352 PMCID: PMC4474423 DOI: 10.1186/1471-2164-16-s7-s19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Gene regulation is dynamic across cellular conditions and disease subtypes. From the aspect of regulation under modulation, regulation strength between a pair of genes can be modulated by (dependent on) expression abundance of another gene (modulator gene). Previous studies have demonstrated the involvement of genes modulated by single modulator genes in cancers, including breast cancer. However, analysis of multi-modulator co-modulation that can further delineate the landscape of complex gene regulation is, to our knowledge, unexplored previously. In the present study we aim to explore the joint effects of multiple modulator genes in modulating global gene regulation and dissect the biological functions in breast cancer. RESULTS To carry out the analysis, we proposed the Covariability-based Multiple Regression (CoMRe) method. The method is mainly built on a multiple regression model that takes expression levels of multiple modulators as inputs and regulation strength between genes as output. Pairs of genes were divided into groups based on their co-modulation patterns. Analyzing gene expression profiles from 286 breast cancer patients, CoMRe investigated ten candidate modulator genes that interacted and jointly determined global gene regulation. Among the candidate modulators, ESR1, ERBB2, and ADAM12 were found modulating the most numbers of gene pairs. The largest group of gene pairs was composed of ones that were modulated by merely ESR1. Functional annotation revealed that the group was significantly related to tumorigenesis and estrogen signaling in breast cancer. ESR1-ERBB2 co-modulation was the largest group modulated by more than one modulators. Similarly, the group was functionally associated with hormone stimulus, suggesting that functions of the two modulators are performed, at least partially, through modulation. The findings were validated in majorities of patients (> 99%) of two independent breast cancer datasets. CONCLUSIONS We have showed CoMRe is a robust method to discover critical modulators in gene regulatory networks, and it is capable of achieving reproducible and biologically meaningful results. Our data reveal that gene regulatory networks modulated by single modulator or co-modulated by multiple modulators play important roles in breast cancer. Findings of this report illuminate complex and dynamic gene regulation under modulation and its involvement in breast cancer.
Collapse
|
656
|
Erturk E, Cecener G, Polatkan V, Gokgoz S, Egeli U, Tunca B, Tezcan G, Demirdogen E, Ak S, Tasdelen I. Evaluation of genetic variations in miRNA-binding sites of BRCA1 and BRCA2 genes as risk factors for the development of early-onset and/or familial breast cancer. Asian Pac J Cancer Prev 2015; 15:8319-24. [PMID: 25339023 DOI: 10.7314/apjcp.2014.15.19.8319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Although genetic markers identifying women at an increased risk of developing breast cancer exist, the majority of inherited risk factors remain elusive. Mutations in the BRCA1/BRCA2 gene confer a substantial increase in breast cancer risk, yet routine clinical genetic screening is limited to the coding regions and intron- exon boundaries, precluding the identification of mutations in noncoding and untranslated regions. Because 3' untranslated region (3'UTR) polymorphisms disrupting microRNA (miRNA) binding can be functional and can act as genetic markers of cancer risk, we aimed to determine genetic variation in the 3'UTR of BRCA1/BRCA2 in familial and early-onset breast cancer patients with and without mutations in the coding regions of BRCA1/ BRCA2 and to identify specific 3'UTR variants that may be risk factors for cancer development. The 3'UTRs of the BRCA1 and BRCA2 genes were screened by heteroduplex analysis and DNA sequencing in 100 patients from 46 BRCA1/2 families, 54 non-BRCA1/2 families, and 47 geographically matched controls. Two polymorphisms were identified. SNPs c.*1287C>T (rs12516) (BRCA1) and c.*105A>C (rs15869) (BRCA2) were identified in 27% and 24% of patients, respectively. These 2 variants were also identified in controls with no family history of cancer (23.4% and 23.4%, respectively). In comparison to variations in the 3'UTR region of the BRCA1/2 genes and the BRCA1/2 mutational status in patients, there was a statistically significant relationship between the BRCA1 gene polymorphism c.*1287C>T (rs12516) and BRCA1 mutations (p=0.035) by Fisher's Exact Test. SNP c.*1287C>T (rs12516) of the BRCA1 gene may have potential use as a genetic marker of an increased risk of developing breast cancer and likely represents a non-coding sequence variation in BRCA1 that impacts BRCA1 function and leads to increased early-onset and/or familial breast cancer risk in the Turkish population.
Collapse
Affiliation(s)
- Elif Erturk
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey E-mail :
| | | | | | | | | | | | | | | | | | | |
Collapse
|
657
|
Gonzalo S, Kreienkamp R. DNA repair defects and genome instability in Hutchinson-Gilford Progeria Syndrome. Curr Opin Cell Biol 2015; 34:75-83. [PMID: 26079711 DOI: 10.1016/j.ceb.2015.05.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 05/27/2015] [Accepted: 05/29/2015] [Indexed: 12/11/2022]
Abstract
The integrity of the nuclear lamina has emerged as an important factor in the maintenance of genome stability. In particular, mutations in the LMNA gene, encoding A-type lamins (lamin A/C), alter nuclear morphology and function, and cause genomic instability. LMNA gene mutations are associated with a variety of degenerative diseases and devastating premature aging syndromes such as Hutchinson-Gilford Progeria Syndrome (HGPS) and Restrictive Dermopathy (RD). HGPS is a severe laminopathy, with patients dying in their teens from myocardial infarction or stroke. HGPS patient-derived cells exhibit nuclear shape abnormalities, changes in epigenetic regulation and gene expression, telomere shortening, genome instability, and premature senescence. This review highlights recent advances in identifying molecular mechanisms that contribute to the pathophysiology of HGPS, with a special emphasis on DNA repair defects and genome instability.
Collapse
Affiliation(s)
- Susana Gonzalo
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St. Louis, MO 63104, USA.
| | - Ray Kreienkamp
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
658
|
Krasner DS, Daley JM, Sung P, Niu H. Interplay between Ku and Replication Protein A in the Restriction of Exo1-mediated DNA Break End Resection. J Biol Chem 2015; 290:18806-16. [PMID: 26067273 DOI: 10.1074/jbc.m115.660191] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Indexed: 11/06/2022] Open
Abstract
DNA double-strand breaks can be eliminated via non-homologous end joining or homologous recombination. Non-homologous end joining is initiated by the association of Ku with DNA ends. In contrast, homologous recombination entails nucleolytic resection of the 5'-strands, forming 3'-ssDNA tails that become coated with replication protein A (RPA). Ku restricts end access by the resection nuclease Exo1. It is unclear how partial resection might affect Ku engagement and Exo1 restriction. Here, we addressed these questions in a reconstituted system with yeast proteins. With blunt-ended DNA, Ku protected against Exo1 in a manner that required its DNA end-binding activity. Despite binding poorly to ssDNA, Ku could nonetheless engage a 5'-recessed DNA end with a 40-nucleotide (nt) ssDNA overhang, where it localized to the ssDNA-dsDNA junction and efficiently blocked resection by Exo1. Interestingly, RPA could exclude Ku from a partially resected structure with a 22-nt ssDNA tail and thus restored processing by Exo1. However, at a 40-nt tail, Ku remained stably associated at the ssDNA-dsDNA junction, and RPA simultaneously engaged the ssDNA region. We discuss a model in which the dynamic equilibrium between Ku and RPA binding to a partially resected DNA end influences the timing and efficiency of the resection process.
Collapse
Affiliation(s)
- Danielle S Krasner
- From the Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | - James M Daley
- From the Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | - Patrick Sung
- From the Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | - Hengyao Niu
- the Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
659
|
Zhang X, Wu H, Liu C, Tian J, Qu L. PI3K/Akt/p53 pathway inhibits reovirus infection. INFECTION GENETICS AND EVOLUTION 2015; 34:415-22. [PMID: 26066464 PMCID: PMC7106092 DOI: 10.1016/j.meegid.2015.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/04/2015] [Accepted: 06/07/2015] [Indexed: 11/29/2022]
Abstract
Sero-type 3 reovirus strain MPC/04 transiently activated the PI3K/Akt pathway. Blockage of PI3K/Akt activation increased viral RNA synthesis and yield. The downstream effectors MDM2/p53 of PI3K/Akt were activated. Disturbing MDM2 and p53 cross-talk enhanced reovirus replication. Overexpression or knockdown of p53 promoted or inhibited reovirus replication.
Viral infections activate many host signaling pathways, including the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, which has recently attracted considerable interest due to its central role in modulating virus replication. This study demonstrated that the sero-type 3 reovirus strain Masked Palm Civet/China/2004 (MPC/04) could transiently activate the PI3K/Akt pathway in A549 cells at earlier time points of infection. The blockage of PI3K/Akt activation increased viral RNA synthesis and yield. The role of the downstream effectors MDM2/p53 of PI3K/Akt in regulating reovirus replication was further analyzed. We found that during reovirus infection, the level of phosphorylated MDM2 (p-MDM2) was increased and the expression of p53 was reduced. In addition, the blockage of PI3K/Akt by Ly294002 or knockdown of Akt by siRNA reduced the level of p-MDM2 and increased the level of p53. Both indicated that the downstream effectors MDM2/p53 of PI3K/Akt were activated. Pre-treatment with Nutlin, which can destroy MDM2 and p53 cross-talk and increase the expression of p53 RNA and protein, dose-dependently enhanced reovirus replication. Additionally, the overexpression of p53 alone also supported reovirus replication, and knockdown of p53 significantly inhibited viral replication. This study demonstrates that PI3K/Akt/p53 activated by mammalian reovirus can serve as a pathway for inhibiting virus replication/infection, yet the precise mechanism of this process remains under further investigation.
Collapse
Affiliation(s)
- Xiaozhan Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Hongxia Wu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Chunguo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Jin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China.
| | - Liandong Qu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China.
| |
Collapse
|
660
|
Xu L, Tang H, El-Naggar AK, Wei P, Sturgis EM. Genetic variants in DNA double-strand break repair genes and risk of salivary gland carcinoma: a case-control study. PLoS One 2015; 10:e0128753. [PMID: 26035306 PMCID: PMC4452711 DOI: 10.1371/journal.pone.0128753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/01/2015] [Indexed: 11/19/2022] Open
Abstract
DNA double strand break (DSB) repair is the primary defense mechanism against ionizing radiation-induced DNA damage. Ionizing radiation is the only established risk factor for salivary gland carcinoma (SGC). We hypothesized that genetic variants in DSB repair genes contribute to individual variation in susceptibility to SGC. To test this hypothesis, we conducted a case-control study in which we analyzed 415 single nucleotide polymorphisms (SNPs) in 45 DSB repair genes in 352 SGC cases and 598 controls. Multivariate logistic regression analysis was performed to calculate odds ratios (ORs) and 95% confidence intervals (CIs). Rs3748522 in RAD52 and rs13180356 in XRCC4 were significantly associated with SGC after Bonferroni adjustment; ORs (95% CIs) for the variant alleles of these SNPs were 1.71 (1.40-2.09, P=1.70 × 10-7) and 0.58 (0.45-0.74, P=2.00 × 10-5) respectively. The genetic effects were modulated by histological subtype. The association of RAD52-rs3748522 with SGC was strongest for mucoepidermoid carcinoma (OR=2.21, 95% CI: 1.55-3.15, P=1.25 × 10-5, n=74), and the association of XRCC4-rs13180356 with SGC was strongest for adenoid cystic carcinoma (OR=0.60, 95% CI: 0.42-0.87, P=6.91 × 10-3, n=123). Gene-level association analysis revealed one gene, PRKDC, with a marginally significant association with SGC risk in non-Hispanic whites. To our knowledge, this study is the first to comprehensively evaluate the genetic effect of DSB repair genes on SGC risk. Our results indicate that genetic variants in the DSB repair pathways contribute to inter-individual differences in susceptibility to SGC and show that the impact of genetic variants differs by histological subtype. Independent studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Li Xu
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Hongwei Tang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Adel K. El-Naggar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Peng Wei
- Division of Biostatistics and Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Erich M. Sturgis
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
661
|
Liu NA, Sun J, Kono K, Horikoshi Y, Ikura T, Tong X, Haraguchi T, Tashiro S. Regulation of homologous recombinational repair by lamin B1 in radiation-induced DNA damage. FASEB J 2015; 29:2514-25. [PMID: 25733566 DOI: 10.1096/fj.14-265546] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/13/2015] [Indexed: 01/05/2023]
Abstract
DNA double-strand breaks (DSBs) are the major lethal lesion induced by ionizing radiation (IR). RAD51-dependent homologous recombination (HR) is one of the most important pathways in DSB repair and genome integrity maintenance. However, the mechanism of HR regulation by RAD51 remains unclear. To understand the mechanism of RAD51-dependent HR, we searched for interacting partners of RAD51 by a proteomics analysis and identified lamin B1 in human cells. Lamins are nuclear lamina proteins that play important roles in the structural organization of the nucleus and the regulation of chromosome functions. Immunoblotting analyses revealed that siRNA-mediated lamin B1 depletion repressed the DNA damage-dependent increase of RAD51 after IR. The repression was abolished by the proteasome inhibitor MG132, suggesting that lamin B1 stabilizes RAD51 by preventing proteasome-mediated degradation in cells with IR-induced DNA damage. We also showed that lamin B1 depletion repressed RAD51 focus formation and decreased the survival rates after IR. On the basis of these results, we propose that lamin B1 promotes DSB repair and cell survival by maintaining the RAD51 protein levels for HR upon DSB induction after IR.
Collapse
Affiliation(s)
- Ning-Ang Liu
- *Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, and Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, Hiroshima, Japan; Department of Mutagenesis, Laboratory of Chromatin Dynamics, Radiation Biology Center, Kyoto University, Kyoto, Japan; Laboratory Center, Medical College of Soochow University, Suzhou, China; and Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Jiying Sun
- *Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, and Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, Hiroshima, Japan; Department of Mutagenesis, Laboratory of Chromatin Dynamics, Radiation Biology Center, Kyoto University, Kyoto, Japan; Laboratory Center, Medical College of Soochow University, Suzhou, China; and Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Kazuteru Kono
- *Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, and Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, Hiroshima, Japan; Department of Mutagenesis, Laboratory of Chromatin Dynamics, Radiation Biology Center, Kyoto University, Kyoto, Japan; Laboratory Center, Medical College of Soochow University, Suzhou, China; and Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Yasunori Horikoshi
- *Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, and Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, Hiroshima, Japan; Department of Mutagenesis, Laboratory of Chromatin Dynamics, Radiation Biology Center, Kyoto University, Kyoto, Japan; Laboratory Center, Medical College of Soochow University, Suzhou, China; and Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Tsuyoshi Ikura
- *Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, and Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, Hiroshima, Japan; Department of Mutagenesis, Laboratory of Chromatin Dynamics, Radiation Biology Center, Kyoto University, Kyoto, Japan; Laboratory Center, Medical College of Soochow University, Suzhou, China; and Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Xing Tong
- *Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, and Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, Hiroshima, Japan; Department of Mutagenesis, Laboratory of Chromatin Dynamics, Radiation Biology Center, Kyoto University, Kyoto, Japan; Laboratory Center, Medical College of Soochow University, Suzhou, China; and Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Tokuko Haraguchi
- *Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, and Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, Hiroshima, Japan; Department of Mutagenesis, Laboratory of Chromatin Dynamics, Radiation Biology Center, Kyoto University, Kyoto, Japan; Laboratory Center, Medical College of Soochow University, Suzhou, China; and Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Satoshi Tashiro
- *Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, and Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, Hiroshima, Japan; Department of Mutagenesis, Laboratory of Chromatin Dynamics, Radiation Biology Center, Kyoto University, Kyoto, Japan; Laboratory Center, Medical College of Soochow University, Suzhou, China; and Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| |
Collapse
|
662
|
Li M, Yu X. The role of poly(ADP-ribosyl)ation in DNA damage response and cancer chemotherapy. Oncogene 2015; 34:3349-56. [PMID: 25220415 PMCID: PMC4362780 DOI: 10.1038/onc.2014.295] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 12/12/2022]
Abstract
DNA damage is a deleterious threat, but occurs daily in all types of cells. In response to DNA damage, poly(ADP-ribosyl)ation, a unique post-translational modification, is immediately catalyzed by poly(ADP-ribose) polymerases (PARPs) at DNA lesions, which facilitates DNA damage repair. Recent studies suggest that poly(ADP-ribosyl)ation is one of the first steps of cellular DNA damage response and governs early DNA damage response pathways. Suppression of DNA damage-induced poly(ADP-ribosyl)ation by PARP inhibitors impairs early DNA damage response events. Moreover, PARP inhibitors are emerging as anti-cancer drugs in phase III clinical trials for BRCA-deficient tumors. In this review, we discuss recent findings on poly(ADP-ribosyl)ation in DNA damage response as well as the molecular mechanism by which PARP inhibitors selectively kill tumor cells with BRCA mutations.
Collapse
Affiliation(s)
- Mo Li
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Drive, 5560 MSRBII, Ann Arbor, Michigan, 48109, USA
| | - Xiaochun Yu
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Drive, 5560 MSRBII, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
663
|
Zhao F, Wang B, Zhang X, Tian H, Wang W, Ru S. Induction of DNA base damage and strand breaks in peripheral erythrocytes and the underlying mechanism in goldfish (Carassius auratus) exposed to monocrotophos. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:613-624. [PMID: 25666866 DOI: 10.1007/s10695-015-0032-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 02/03/2015] [Indexed: 06/04/2023]
Abstract
Using goldfish (Carassius auratus) as the model animal, the present study revealed the types of the DNA damage induced by monocrotophos, a highly toxic organophosphorus pesticide, and explored the mechanism underlying the DNA-damaging effect of this pesticide. Results of the alkaline comet assay showed that global DNA damage (including single- and double-strand breaks and alkali-labile sites) in peripheral erythrocytes of goldfish, measured as olive tail moment, was significantly increased by exposure to 0.01, 0.10, and 1.00 mg/L monocrotophos for 24, 48, 96, and 168 h. In particular, alkali-labile sites rather than single- or double-strand breaks, distinguished by the alkaline, pH 12.1, and neutral comet assays, were mainly induced by monocrotophos at 48 h. Oxidative damage in DNA bases and telomeric DNA was investigated by using the alkaline comet assay combined with endonuclease III or formamidopyrimidine DNA glycosylase and with fluorescence in situ hybridization, respectively. Further, glutathione peroxidase activity significantly decreased at 24 h but increased at 96 and 168 h, and malondialdehyde concentrations significantly increased at 48 h but gradually decreased at 96 and 168 h, which indicated an over-production of reactive oxygen species (ROS) at short exposure durations, but effective scavenging at long exposure durations in the peripheral blood tissues. Accordingly, our results suggest that DNA damage induced by monocrotophos in fish blood cells is possibly due to the inhibition of ROS scavenging and resulted accumulation of ROS.
Collapse
Affiliation(s)
- Fei Zhao
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
664
|
Liao C, Xiao W, Zhu N, Liu Z, Yang J, Wang Y, Hong M. MicroR-545 enhanced radiosensitivity via suppressing Ku70 expression in Lewis lung carcinoma xenograft model. Cancer Cell Int 2015; 15:56. [PMID: 26041979 PMCID: PMC4453103 DOI: 10.1186/s12935-015-0207-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 05/15/2015] [Indexed: 01/01/2023] Open
Abstract
Objective Radiotherapy is an important therapeutic method for lung cancer. However, in clinical situations, cellular resistance to radiotherapy is a significant component of tumor treatment failure. Thus, clarification in cellular mechanism underlying radiosensitivity of cancer cell is urgently needed. In this study, we established a radiation model of Lewis lung carcinoma in C57BL/6 mice and investigated the possible signaling molecule involved in this process. Methods C57BL/6 mice were subcutaneously transplanted with Lewis lung carcinoma cells and locally irradiated followed by measurement in tumor volume. Levels of miR-545 and Ku70 mRNA expression were determined by using Quantitative Real-Time PCR. Expression of Ku70 was determined by using western blot assay. Cell viability was analyzed by MTT assay. Cell apoptosis was examined by using TUNEL assay. Results In mice bearing Lewis lung carcinoma tumor, local radiotherapy suppressed tumor growth as well as enhanced expression of miR-545 and downregulated Ku70 level. Inhibition of miR-545 expression reduced radiosensitivity of Lewis tumor. In vitro Lewis lung carcinoma cells experiment, we observed that miR-545 regulated Ku70 expression by targeting Ku70 3′UTR and this process was involved in radiotherapy. This was demonstrated by result of cell proliferation assay in which irradiation reduced apoptosis of cells was mediated by miR-545 inactivation which was reversed by Ku70 silence. Conclusion miR-545 increased radiosensitivity of Lewis lung carcinoma via inhibiting Ku70 expression.
Collapse
Affiliation(s)
- Chen Liao
- Department of Radiotherapy, Nanjing Chest Hospital Affiliated to Southeast University, Guangzhou Road, No215, P.R, Nanjing, Jiangsu 210029 China
| | - Wei Xiao
- Department of Radiotherapy, Nanjing Chest Hospital Affiliated to Southeast University, Guangzhou Road, No215, P.R, Nanjing, Jiangsu 210029 China
| | - Nuo Zhu
- Department of Radiotherapy, Nanjing Chest Hospital Affiliated to Southeast University, Guangzhou Road, No215, P.R, Nanjing, Jiangsu 210029 China
| | - Zhiyuan Liu
- Department of Radiotherapy, Nanjing Chest Hospital Affiliated to Southeast University, Guangzhou Road, No215, P.R, Nanjing, Jiangsu 210029 China
| | - Jiu Yang
- Department of Radiotherapy, Nanjing Chest Hospital Affiliated to Southeast University, Guangzhou Road, No215, P.R, Nanjing, Jiangsu 210029 China
| | - Yanhu Wang
- Department of Radiotherapy, Nanjing Chest Hospital Affiliated to Southeast University, Guangzhou Road, No215, P.R, Nanjing, Jiangsu 210029 China
| | - Mei Hong
- Department of Radiotherapy, Nanjing Chest Hospital Affiliated to Southeast University, Guangzhou Road, No215, P.R, Nanjing, Jiangsu 210029 China
| |
Collapse
|
665
|
Verde Z, Reinoso L, Chicharro LM, Resano P, Sánchez-Hernández I, Rodríguez González-Moro JM, Bandrés F, Gómez-Gallego F, Santiago C. Are SNP-Smoking Association Studies Needed in Controls? DNA Repair Gene Polymorphisms and Smoking Intensity. PLoS One 2015; 10:e0129374. [PMID: 26017978 PMCID: PMC4446361 DOI: 10.1371/journal.pone.0129374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/07/2015] [Indexed: 02/01/2023] Open
Abstract
Variations in tobacco-related cancers, incidence and prevalence reflect differences in tobacco consumption in addition to genetic factors. Besides, genes related to lung cancer risk could be related to smoking behavior. Polymorphisms altering DNA repair capacity may lead to synergistic effects with tobacco carcinogen-induced lung cancer risk. Common problems in genetic association studies, such as presence of gene-by-environment (G x E) correlation in the population, may reduce the validity of these designs. The main purpose of this study was to evaluate the independence assumption for selected SNPs and smoking behaviour in a cohort of 320 healthy Spanish smokers. We found an association between the wild type alleles of XRCC3 Thr241Met or KLC3 Lys751Gln and greater smoking intensity (OR = 12.98, 95% CI = 2.86–58.82 and OR=16.90, 95% CI=2.09-142.8; respectively). Although preliminary, the results of our study provide evidence that genetic variations in DNA-repair genes may influence both smoking habits and the development of lung cancer. Population-specific G x E studies should be carried out when genetic and environmental factors interact to cause the disease.
Collapse
Affiliation(s)
- Zoraida Verde
- Department of Morphological Sciences and Biomedicine, Universidad Europea, Madrid, Spain
- * E-mail:
| | - Luis Reinoso
- Department of Morphological Sciences and Biomedicine, Universidad Europea, Madrid, Spain
- Department of Occupational Health, Grupo Banco Popular, Madrid, Spain
| | - Luis Miguel Chicharro
- Department of Morphological Sciences and Biomedicine, Universidad Europea, Madrid, Spain
| | - Pilar Resano
- Department of Neumology, Hospital Guadalajara, Guadalajara, Spain
| | | | | | - Fernando Bandrés
- Department of Toxicology and Health Sanitary, Universidad Complutense, Madrid, Spain
| | | | - Catalina Santiago
- School of Doctoral Studies & Research, Universidad Europea, Madrid, Spain
| |
Collapse
|
666
|
Virsik‐Köpp P, Rave‐Fränk M, Hofman‐Hüther H, Schmidberger H. Role of DNA‐dependent protein kinase in the process of radiation‐induced aberration formation. Int J Radiat Biol 2015. [DOI: 10.1080/09553000310001658789a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
667
|
Verde Z, Reinoso-Barbero L, Chicharro L, Resano P, Sánchez-Hernández I, Rodríguez González-Moro JM, Bandrés F, Gómez-Gallego F, Santiago C. The Effect of Polymorphisms in DNA Repair Genes and Carcinogen Metabolizers on Leukocyte Telomere Length: A Cohort of Healthy Spanish Smokers. Nicotine Tob Res 2015; 18:447-52. [PMID: 25987675 DOI: 10.1093/ntr/ntv106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/08/2015] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Smoking implies exposure to carcinogenic agents that causes DNA damage, which could be suspected to enhance telomere attrition. To protect and deal with DNA damage, cells possess mechanisms that repair and neutralize harmful substances. Polymorphisms altering DNA repair capacity or carcinogen metabolism may lead to synergistic effects with tobacco carcinogen-induced shorter telomere length independently of cancer interaction. The aim of this study was to explore the association between leukocyte telomere length (LTL) and several genetic polymorphisms in DNA repair genes and carcinogen metabolizers in a cohort of healthy smokers. METHODS We evaluated the effect of six genetic polymorphisms in cytochrome P1A1 (Ile462Val), XRCC1 (Arg399Gln), APEX1 (Asp148Glu), XRCC3 (Thr241Met), and XPD (Asp312Asn; Lys751Gln) on LTL in a cohort of 145 healthy smokers in addition to smoking habits. RESULTS Logistic regression analysis showed an association between XRCC1 399Gln allele and shorter telomere length (OR = 5.03, 95% CI = 1.08% to 23.36%). There were not association between the rest of polymorphisms analyzed and LTL. CONCLUSIONS Continuous exposure to tobacco could overwhelm the DNA repair machinery, making the effect of the polymorphisms that reduce repair capacity more pronounced. Analyzing the function of smoking-induced DNA-repair genes and LTL is an important goal in order to identify therapeutic targets to treat smoking-induced diseases.
Collapse
Affiliation(s)
- Zoraida Verde
- Department of Biomedical Sciences, Universidad Europea, Madrid, Spain;
| | - Luis Reinoso-Barbero
- Department of Biomedical Sciences, Universidad Europea, Madrid, Spain; Department of Occupational Medicine, Grupo Banco Popular, Madrid, Spain
| | - Luis Chicharro
- Department of Biomedical Sciences, Universidad Europea, Madrid, Spain
| | - Pilar Resano
- Department of Neumology, Hospital Guadalajara, Guadalajara, Spain
| | | | | | - Fernando Bandrés
- Department of Toxicology and Health Sanitary, Universidad Complutense, Madrid, Spain
| | | | - Catalina Santiago
- School of Doctoral Studies and Research, Universidad Europea, Madrid, Spain
| |
Collapse
|
668
|
Gao H, Xue J, Zhou L, Lan J, He J, Na F, Yang L, Deng L, Lu Y. Bevacizumab radiosensitizes non-small cell lung cancer xenografts by inhibiting DNA double-strand break repair in endothelial cells. Cancer Lett 2015; 365:79-88. [PMID: 25982206 DOI: 10.1016/j.canlet.2015.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/06/2015] [Accepted: 05/10/2015] [Indexed: 02/05/2023]
Abstract
The aims of this study were to evaluate the effects of biweekly bevacizumab administration on a tumor microenvironment and to investigate the mechanisms of radiosensitization that were induced by it. Briefly, bevacizumab was administered intravenously to Balb/c nude mice bearing non-small cell lung cancer (NSCLC) H1975 xenografts; in addition, bevacizumab was added to NSCLC or endothelial cells (ECs) in vitro, followed by irradiation (IR). The anti-tumor efficacy, anti-angiogenic efficacy and repair of DNA double-strand breaks (DSBs) were evaluated. The activation of signaling pathways was determined using immunoprecipitation (IP) and WB analyses. Finally, biweekly bevacizumab administration inhibited the growth of H1975 xenografts and induced vascular normalization periodically. Bevacizumab more significantly increased cellular DSB and EC apoptosis when administered 1 h prior to 12 Gy/1f IR than when administered 5 days prior to IR, thereby inhibiting tumor angiogenesis and growth. In vitro, bevacizumab more effectively increased DSBs and apoptosis prior to IR and inhibited the clonogenic survival of ECs but not NSCLC cells. Using IP and WB analyses, we confirmed that bevacizumab can directly inhibit the phosphorylation of components of the VEGR2/PI3K/Akt/DNA-PKcs signaling pathway that are induced by IR in ECs. In conclusion, bevacizumab radiosensitizes NSCLC xenografts mainly by inhibiting DSB repair in ECs rather than by inducing vascular normalization.
Collapse
MESH Headings
- Angiogenesis Inhibitors/administration & dosage
- Angiogenesis Inhibitors/pharmacology
- Animals
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/pharmacology
- Apoptosis/drug effects
- Apoptosis/radiation effects
- Bevacizumab
- Carcinoma, Non-Small-Cell Lung/blood supply
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/therapy
- Cell Line, Tumor
- Chemoradiotherapy/methods
- DNA Breaks, Double-Stranded
- DNA Repair/drug effects
- Drug Administration Schedule
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelial Cells/radiation effects
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/metabolism
- Human Umbilical Vein Endothelial Cells/pathology
- Human Umbilical Vein Endothelial Cells/radiation effects
- Humans
- Lung Neoplasms/blood supply
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/therapy
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Neovascularization, Pathologic
- Radiation Dosage
- Radiation-Sensitizing Agents/administration & dosage
- Radiation-Sensitizing Agents/pharmacology
- Signal Transduction/drug effects
- Signal Transduction/radiation effects
- Time Factors
- Tumor Burden/drug effects
- Tumor Burden/radiation effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Hui Gao
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China; Department of Oncology, Chengdu Military General Hospital, China
| | - Jianxin Xue
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Lin Zhou
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Jie Lan
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Jiazhuo He
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Feifei Na
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Lifei Yang
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Lei Deng
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - You Lu
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China.
| |
Collapse
|
669
|
Du Z, Zhang W, Zhou Y, Yu D, Chen X, Chang J, Qiao Y, Zhang M, Huang Y, Wu C, Xiao Z, Tan W, Lin D. Associations of ATM Polymorphisms With Survival in Advanced Esophageal Squamous Cell Carcinoma Patients Receiving Radiation Therapy. Int J Radiat Oncol Biol Phys 2015; 93:181-9. [PMID: 26094126 DOI: 10.1016/j.ijrobp.2015.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/02/2015] [Accepted: 05/01/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE To investigate whether single nucleotide polymorphisms (SNPs) in the ataxia telangiectasia mutated (ATM) gene are associated with survival in patients with esophageal squamous cell carcinoma (ESCC) receiving radiation therapy or chemoradiation therapy or surgery only. METHODS AND MATERIALS Four tagSNPs of ATM were genotyped in 412 individuals with clinical stage III or IV ESCC receiving radiation therapy or chemoradiation therapy, and in 388 individuals with stage I, II, or III ESCC treated with surgery only. Overall survival time of ESCC among different genotypes was estimated by Kaplan-Meier plot, and the significance was examined by log-rank test. The hazard ratios (HRs) and 95% confidence intervals (CIs) for death from ESCC among different genotypes were computed by a Cox proportional regression model. RESULTS We found 2 SNPs, rs664143 and rs664677, associated with survival time of ESCC patients receiving radiation therapy. Individuals with the rs664143A allele had poorer median survival time compared with the rs664143G allele (14.0 vs 20.0 months), with the HR for death being 1.45 (95% CI 1.12-1.89). Individuals with the rs664677C allele also had worse median survival time than those with the rs664677T allele (14.0 vs 23.5 months), with the HR of 1.57 (95% CI 1.18-2.08). Stratified analysis showed that these associations were present in both stage III and IV cancer and different radiation therapy techniques. Significant associations were also found between the SNPs and locosregional progression or progression-free survival. No association between these SNPs and survival time was detected in ESCC patients treated with surgery only. CONCLUSION These results suggest that the ATM polymorphisms might serve as independent biomarkers for predicting prognosis in ESCC patients receiving radiation therapy.
Collapse
Affiliation(s)
- Zhongli Du
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wencheng Zhang
- Department of Radiation Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuling Zhou
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dianke Yu
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiabin Chen
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiang Chang
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Qiao
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Zhang
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Huang
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Wu
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zefen Xiao
- Department of Radiation Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Wen Tan
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Dongxin Lin
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
670
|
Koike M, Yutoku Y, Koike A. Dynamic changes in subcellular localization of cattle XLF during cell cycle, and focus formation of cattle XLF at DNA damage sites immediately after irradiation. J Vet Med Sci 2015; 77:1109-14. [PMID: 25947322 PMCID: PMC4591152 DOI: 10.1292/jvms.14-0516] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Clinically, many chemotherapeutics and ionizing radiation (IR) have been applied for the treatment of various types of human and animal malignancies. These treatments kill tumor cells by causing DNA double-strand breaks (DSBs). Core factors of classical nonhomologous DNA-end joining (C-NHEJ) play a vital role in DSB repair. Thus, it is indispensable to clarify the mechanisms of C-NHEJ in order to develop next-generation chemotherapeutics for cancer. The XRCC4-like factor (XLF; also called Cernunnos or NHEJ1) is the lastly identified core NHEJ factor. The localization of core NHEJ factors might play a critical role in regulating NHEJ activity. The localization and function of XLF have not been elucidated in animal species other than mice and humans. Domestic cattle (Bos taurus) are the most common and vital domestic animals in many countries. Here, we show that the localization of cattle XLF changes dynamically during the cell cycle. Furthermore, EYFP-cattle XLF accumulates quickly at microirradiated sites and colocalizes with the DSB marker γH2AX. Moreover, nuclear localization and accumulation of cattle XLF at DSB sites are dependent on 12 amino acids (288-299) of the C-terminal region of XLF (XLF CTR). Furthermore, basic amino acids on the XLF CTR are highly conserved among domestic animals including cattle, goat and horses, suggesting that the CTR is essential for the function of XLF in domestic animals. These findings might be useful to develop the molecular-targeting therapeutic drug taking XLF as a target molecule for human and domestic animals.
Collapse
Affiliation(s)
- Manabu Koike
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | | | | |
Collapse
|
671
|
Ren P, Zhang Y, Huang Y, Yang Y, Jiang M. Functions of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in Gynecologic Disorders. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2015; 9:43-9. [PMID: 25987855 PMCID: PMC4412418 DOI: 10.4137/cmo.s23527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 12/24/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a member of a class of nuclear hormone receptors intimately involved in the regulation of expression of myriad genes that regulate energy metabolism, cell differentiation, apoptosis, and inflammation. Although originally discovered as a pivotal regulator of adipocyte differentiation, the roles that PPARγ plays in gynecological disorders are still unknown. There are a number of studies on the functions of PPARγ and its agonists in gynecological disorders. In this mini-review, we provide a brief summary of the advances in recent years.
Collapse
Affiliation(s)
- Ping Ren
- Laboratory of Nuclear Receptors and Cancer Research, Basic Medical Research Center, Nantong University School of Medicine, Nantong, Jiangsu, China ; Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yuquan Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yan Huang
- Laboratory of Nuclear Receptors and Cancer Research, Basic Medical Research Center, Nantong University School of Medicine, Nantong, Jiangsu, China ; Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yingli Yang
- Laboratory of Nuclear Receptors and Cancer Research, Basic Medical Research Center, Nantong University School of Medicine, Nantong, Jiangsu, China ; Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ming Jiang
- Laboratory of Nuclear Receptors and Cancer Research, Basic Medical Research Center, Nantong University School of Medicine, Nantong, Jiangsu, China
| |
Collapse
|
672
|
Qi D, Hu Y, Li J, Peng T, Su J, He Y, Ji W. Hyperthermia Induces Apoptosis of 786-O Cells through Suppressing Ku80 Expression. PLoS One 2015; 10:e0122977. [PMID: 25902193 PMCID: PMC4406445 DOI: 10.1371/journal.pone.0122977] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/26/2015] [Indexed: 11/24/2022] Open
Abstract
Hyperthermia as an anticancer method has been paid increasing attention in recent years. Several studies have shown that hyperthermia can kill tumor cells by inducing apoptosis. However, the underlying molecular mechanisms of hyperthermia-induced apoptosis are largely unknown. To investigate the effects and molecular mechanism of hyperthermia on the apoptosis in renal carcinoma 786-O cells, we firstly examined apoptosis and Ku expression in 786-O cell line treated with heat exposure (42°C for 0-4 h). The results showed that hyperthermia induced apoptosis of 786-O cells, and suppressed significantly Ku80 expression, but not Ku70 expression. Next, we knock-down Ku80 in 786-O cells, generating stable cell line 786-O-shKu80, and detected apoptosis, cell survival and cell cycle distribution. Our data showed higher apoptotic rate and lower surviving fraction in the stable cell line 786-O-shKu80 compared with those in control cells, exposed to the same heat stress (42°C for 0-4 h). Moreover, the results also showed suppression of Ku80 led to G2/M phase arrest in the stable cell line 786-O-shKu80 following heat treatment. Together, these findings indicate that Ku80 may play an important role in hyperthermia-induced apoptosis and heat-sensitivity of renal carcinoma cells through influencing the cell cycle distribution.
Collapse
Affiliation(s)
- Defeng Qi
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Urology, Guangzhou, China
- * E-mail: (DQ); (YH); (WJ)
| | - Yuan Hu
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Urology, Guangzhou, China
| | - Jinhui Li
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Urology, Guangzhou, China
| | - Tao Peng
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Urology, Guangzhou, China
| | - Jialin Su
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Urology, Guangzhou, China
| | - Yun He
- School of public health, Sun Yat-sen University, Guangzhou, China
- * E-mail: (DQ); (YH); (WJ)
| | - Weidong Ji
- The center for translational medicine, The first affiliated hospital, Sun Yat-Sen University, Guangzhou, China
- * E-mail: (DQ); (YH); (WJ)
| |
Collapse
|
673
|
Wu Z, Wang C, Bai M, Li X, Mei Q, Li X, Wang Y, Fu X, Luo G, Han W. An LRP16-containing preassembly complex contributes to NF-κB activation induced by DNA double-strand breaks. Nucleic Acids Res 2015; 43:3167-79. [PMID: 25735744 PMCID: PMC4381070 DOI: 10.1093/nar/gkv161] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 12/31/2022] Open
Abstract
The activation of NF-κB has emerged as an important mechanism for the modulation of the response to DNA double-strand breaks (DSBs). The concomitant SUMOylation and phosphorylation of IKKγ by PIASy and ATM, respectively, is a key event in this mechanism. However, the mechanism through which mammalian cells are able to accomplish these IKKγ modifications in a timely and lesion-specific manner remains unclear. In this study, we demonstrate that LRP16 constitutively interacts with PARP1 and IKKγ. This interaction is essential for efficient interactions among PARP1, IKKγ, and PIASy, the modifications of IKKγ, and the activation of NF-κB following DSB induction. The regulation of LRP16 in NF-κB activation is dependent on the DSB-specific sensors Ku70/Ku80. These data strongly suggest that LRP16, through its constitutive interactions with PARP1 and IKKγ, functions to facilitate the lesion-specific recruitment of PARP1 and IKKγ and, ultimately, the concomitant recruitment of PIASy to IKKγ in response to DSB damage. Therefore, the study has provided important new mechanistic insights concerning DSB-induced NF-κB activation.
Collapse
Affiliation(s)
- Zhiqiang Wu
- Department of Molecular Biology, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, 100853, China
| | - Chunmeng Wang
- Department of Molecular Biology, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, 100853, China
| | - Miaomiao Bai
- Department of Molecular Biology, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaolei Li
- Department of Molecular Biology, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qian Mei
- Department of Molecular Biology, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiang Li
- Department of Molecular Biology, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yao Wang
- Department of Molecular Biology, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaobing Fu
- Department of Molecular Biology, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, 100853, China
| | - Guangbin Luo
- Department of Genetics & Genome Sciences, Case Comprehensive Cancer Center, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106, USA
| | - Weidong Han
- Department of Molecular Biology, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
674
|
Muvarak N, Kelley S, Robert C, Baer MR, Perrotti D, Gambacorti-Passerini C, Civin C, Scheibner K, Rassool FV. c-MYC Generates Repair Errors via Increased Transcription of Alternative-NHEJ Factors, LIG3 and PARP1, in Tyrosine Kinase-Activated Leukemias. Mol Cancer Res 2015; 13:699-712. [PMID: 25828893 DOI: 10.1158/1541-7786.mcr-14-0422] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 12/07/2014] [Indexed: 12/22/2022]
Abstract
UNLABELLED Leukemias expressing the constitutively activated tyrosine kinases (TK) BCR-ABL1 and FLT3/ITD activate signaling pathways that increase genomic instability through generation of reactive oxygen species (ROS), DNA double-strand breaks (DSB), and error-prone repair. The nonhomologous end-joining (NHEJ) pathway is a major pathway for DSB repair and is highly aberrant in TK-activated leukemias; an alternative form of NHEJ (ALT-NHEJ) predominates, evidenced by increased expression of DNA ligase IIIα (LIG3) and PARP1, increased frequency of large genomic deletions, and repair using DNA sequence microhomologies. This study, for the first time, demonstrates that the TK target c-MYC plays a role in transcriptional activation and subsequent expression of LIG3 and PARP1 and contributes to the increased error-prone repair observed in TK-activated leukemias. c-MYC negatively regulates microRNAs miR-150 and miR-22, which demonstrate an inverse correlation with LIG3 and PARP1 expression in primary and cultured leukemia cells and chronic myelogenous leukemia human patient samples. Notably, inhibition of c-MYC and overexpression of miR-150 and -22 decreases ALT-NHEJ activity. Thus, BCR-ABL1 or FLT3/ITD induces c-MYC expression, leading to genomic instability via augmented expression of ALT-NHEJ repair factors that generate repair errors. IMPLICATIONS In the context of TK-activated leukemias, c-MYC contributes to aberrant DNA repair through downstream targets LIG3 and PARP1, which represent viable and attractive therapeutic targets.
Collapse
Affiliation(s)
- Nidal Muvarak
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland. Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Shannon Kelley
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland. The Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Carine Robert
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland. Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Maria R Baer
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland. Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Danilo Perrotti
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland. Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland. Department of Haematology, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | | | - Curt Civin
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland. The Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kara Scheibner
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland. The Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Feyruz V Rassool
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland. Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
675
|
Barichievy S, Naidoo J, Mhlanga MM. Non-coding RNAs and HIV: viral manipulation of host dark matter to shape the cellular environment. Front Genet 2015; 6:108. [PMID: 25859257 PMCID: PMC4374539 DOI: 10.3389/fgene.2015.00108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/02/2015] [Indexed: 11/13/2022] Open
Abstract
On October 28th 1943 Winston Churchill said “we shape our buildings, and afterward our buildings shape us” (Humes, 1994). Churchill was pondering how and when to rebuild the British House of Commons, which had been destroyed by enemy bombs on May 10th 1941. The old House had been small and insufficient to hold all its members, but was restored to its original form in 1950 in order to recapture the “convenience and dignity” that the building had shaped into its parliamentary members. The circular loop whereby buildings or dwellings are shaped and go on to shape those that reside in them is also true of pathogens and their hosts. As obligate parasites, pathogens need to alter their cellular host environments to ensure survival. Typically pathogens modify cellular transcription profiles and in doing so, the pathogen in turn is affected, thereby closing the loop. As key orchestrators of gene expression, non-coding RNAs provide a vast and extremely precise set of tools for pathogens to target in order to shape the cellular environment. This review will focus on host non-coding RNAs that are manipulated by the infamous intracellular pathogen, the human immunodeficiency virus (HIV). We will briefly describe both short and long host non-coding RNAs and discuss how HIV gains control of these factors to ensure widespread dissemination throughout the host as well as the establishment of lifelong, chronic infection.
Collapse
Affiliation(s)
- Samantha Barichievy
- Gene Expression and Biophysics Group, Synthetic Biology Emerging Research Area, Council for Scientific and Industrial Research, Pretoria South Africa ; Discovery Sciences, Research & Development, AstraZeneca, Mölndal Sweden
| | - Jerolen Naidoo
- Gene Expression and Biophysics Group, Synthetic Biology Emerging Research Area, Council for Scientific and Industrial Research, Pretoria South Africa
| | - Musa M Mhlanga
- Gene Expression and Biophysics Group, Synthetic Biology Emerging Research Area, Council for Scientific and Industrial Research, Pretoria South Africa ; Gene Expression and Biophysics Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon Portugal
| |
Collapse
|
676
|
Pouget JP, Lozza C, Deshayes E, Boudousq V, Navarro-Teulon I. Introduction to radiobiology of targeted radionuclide therapy. Front Med (Lausanne) 2015; 2:12. [PMID: 25853132 PMCID: PMC4362338 DOI: 10.3389/fmed.2015.00012] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 02/25/2015] [Indexed: 12/21/2022] Open
Abstract
During the last decades, new radionuclide-based targeted therapies have emerged as efficient tools for cancer treatment. Targeted radionuclide therapies (TRTs) are based on a multidisciplinary approach that involves the cooperation of specialists in several research fields. Among them, radiobiologists investigate the biological effects of ionizing radiation, specifically the molecular and cellular mechanisms involved in the radiation response. Most of the knowledge about radiation effects concerns external beam radiation therapy (EBRT) and radiobiology has then strongly contributed to the development of this therapeutic approach. Similarly, radiobiology and dosimetry are also assumed to be ways for improving TRT, in particular in the therapy of solid tumors, which are radioresistant. However, extrapolation of EBRT radiobiology to TRT is not straightforward. Indeed, the specific physical characteristics of TRT (heterogeneous and mixed irradiation, protracted exposure, and low absorbed dose rate) differ from those of conventional EBRT (homogeneous irradiation, short exposure, and high absorbed dose rate), and consequently the response of irradiated tissues might be different. Therefore, specific TRT radiobiology needs to be explored. Determining dose-effect correlation is also a prerequisite for rigorous preclinical radiobiology studies because dosimetry provides the necessary referential to all TRT situations. It is required too for developing patient-tailored TRT in the clinic in order to estimate the best dose for tumor control, while protecting the healthy tissues, thereby improving therapeutic efficacy. Finally, it will allow to determine the relative contribution of targeted effects (assumed to be dose-related) and non-targeted effects (assumed to be non-dose-related) of ionizing radiation. However, conversely to EBRT where it is routinely used, dosimetry is still challenging in TRT. Therefore, it constitutes with radiobiology, one of the main challenges of TRT in the future.
Collapse
Affiliation(s)
- Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut régional du Cancer de Montpellier, Montpellier, France
| | - Catherine Lozza
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut régional du Cancer de Montpellier, Montpellier, France
| | - Emmanuel Deshayes
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut régional du Cancer de Montpellier, Montpellier, France
| | - Vincent Boudousq
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut régional du Cancer de Montpellier, Montpellier, France
| | - Isabelle Navarro-Teulon
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut régional du Cancer de Montpellier, Montpellier, France
| |
Collapse
|
677
|
Morales ME, White TB, Streva VA, DeFreece CB, Hedges DJ, Deininger PL. The contribution of alu elements to mutagenic DNA double-strand break repair. PLoS Genet 2015; 11:e1005016. [PMID: 25761216 PMCID: PMC4356517 DOI: 10.1371/journal.pgen.1005016] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/22/2015] [Indexed: 11/18/2022] Open
Abstract
Alu elements make up the largest family of human mobile elements, numbering 1.1 million copies and comprising 11% of the human genome. As a consequence of evolution and genetic drift, Alu elements of various sequence divergence exist throughout the human genome. Alu/Alu recombination has been shown to cause approximately 0.5% of new human genetic diseases and contribute to extensive genomic structural variation. To begin understanding the molecular mechanisms leading to these rearrangements in mammalian cells, we constructed Alu/Alu recombination reporter cell lines containing Alu elements ranging in sequence divergence from 0%-30% that allow detection of both Alu/Alu recombination and large non-homologous end joining (NHEJ) deletions that range from 1.0 to 1.9 kb in size. Introduction of as little as 0.7% sequence divergence between Alu elements resulted in a significant reduction in recombination, which indicates even small degrees of sequence divergence reduce the efficiency of homology-directed DNA double-strand break (DSB) repair. Further reduction in recombination was observed in a sequence divergence-dependent manner for diverged Alu/Alu recombination constructs with up to 10% sequence divergence. With greater levels of sequence divergence (15%-30%), we observed a significant increase in DSB repair due to a shift from Alu/Alu recombination to variable-length NHEJ which removes sequence between the two Alu elements. This increase in NHEJ deletions depends on the presence of Alu sequence homeology (similar but not identical sequences). Analysis of recombination products revealed that Alu/Alu recombination junctions occur more frequently in the first 100 bp of the Alu element within our reporter assay, just as they do in genomic Alu/Alu recombination events. This is the first extensive study characterizing the influence of Alu element sequence divergence on DNA repair, which will inform predictions regarding the effect of Alu element sequence divergence on both the rate and nature of DNA repair events. DNA double-strand breaks (DSBs) are a highly mutagenic form of DNA damage that can be repaired through one of several pathways with varied degrees of sequence preservation. Faithful repair of DSBs often occurs through gene conversion in which a sister chromatid is used as a repair template. Unfaithful repair of DSBs can occur through non-allelic homologous or homeologous recombination, which leads to chromosomal abnormalities such as deletions, duplications, and translocations and has been shown to cause several human genetic diseases. Substrates for these homologous and homeologous events include Alu elements, which are approximately 300 bp elements that comprise ~11% of the human genome. We use a new reporter assay to show that repair of DSBs results in Alu-mediated deletions that resolve through several distinct repair pathways. Either single-strand annealing (SSA) repair or microhomology-mediated end joining occurs ‘in register’ between two Alu elements when Alu sequence divergence is low. However, with more diverged Alu elements, like those typically found in the human genome, repair of DSBs appears to use the Alu/Alu homeology to direct non-homologous end joining in the general vicinity of the Alu elements. Mutagenic NHEJ repair involving divergent Alu elements may represent a common repair event in primate genomes.
Collapse
Affiliation(s)
- Maria E. Morales
- Tulane Cancer Center and Department of Epidemiology, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Travis B. White
- Tulane Cancer Center and Department of Epidemiology, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Vincent A. Streva
- Tulane Cancer Center and Department of Epidemiology, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Cecily B. DeFreece
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
| | - Dale J. Hedges
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Prescott L. Deininger
- Tulane Cancer Center and Department of Epidemiology, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
678
|
Labi V, Erlacher M. How cell death shapes cancer. Cell Death Dis 2015; 6:e1675. [PMID: 25741600 PMCID: PMC4385913 DOI: 10.1038/cddis.2015.20] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 12/28/2014] [Accepted: 01/02/2015] [Indexed: 12/20/2022]
Abstract
Apoptosis has been established as a mechanism of anti-cancer defense. Members of the BCL-2 family are critical mediators of apoptotic cell death in health and disease, often found to be deregulated in cancer and believed to lead to the survival of malignant clones. However, over the years, a number of studies pointed out that a model in which cell death resistance unambiguously acts as a barrier against malignant disease might be too simple. This is based on paradoxical observations made in tumor patients as well as mouse models indicating that apoptosis can indeed drive tumor formation, at least under certain circumstances. One possible explanation for this phenomenon is that apoptosis can promote proliferation critically needed to compensate for cell loss, for example, upon therapy, and to restore tissue homeostasis. However, this, at the same time, can promote tumor development by allowing expansion of selected clones. Usually, tissue resident stem/progenitor cells are a major source for repopulation, some of them potentially carrying (age-, injury- or therapy-induced) genetic aberrations deleterious for the host. Thereby, apoptosis might drive genomic instability by facilitating the emergence of pathologic clones during phases of proliferation and subsequent replication stress-associated DNA damage. Tumorigenesis initiated by repeated cell attrition and repopulation, as confirmed in different genetic models, has parallels in human cancers, exemplified in therapy-induced secondary malignancies and myelodysplastic syndromes in patients with congenital bone marrow failure syndromes. Here, we aim to review evidence in support of the oncogenic role of stress-induced apoptosis.
Collapse
Affiliation(s)
- V Labi
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin 13125, Germany
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine, Robert Rössle-Strasse 10, 13125 Berlin, Germany. Tel: +49 30 9406 3462; Fax: +49 30 9406 2390; E-mail:
| | - M Erlacher
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center of Freiburg, Freiburg 79106, Germany
- Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg 79104, Germany
| |
Collapse
|
679
|
Huang JL, Lin CS, Chang CC, Lu YN, Hsu YL, Wong TY, Wang YF. Human JC virus small tumour antigen inhibits nucleotide excision repair and sensitises cells to DNA-damaging agents. Mutagenesis 2015; 30:475-85. [PMID: 25744060 DOI: 10.1093/mutage/gev004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The human JC virus (JCV) is potentially carcinogenic to humans as a Group 2B carcinogen, and it is ubiquitous in human populations. To investigate whether the small tumour (ST) antigen of the JCV contributes to genomic instability, we established cell lines stably expressing the JCV ST and examined its role in DNA repair. Results from host cell reactivation (HCR) assay revealed that the established cell lines exhibited lower nucleotide excision repair (NER) activity than the vector control cells did. The presence of γ-H2AX, a marker of DNA damage, indicated that the established cell line contained more DNA damage foci compared with vector control cells. Furthermore, the results of clonogenic analyses indicated that the JCV ST-expressing cells were more sensitive than the vector control cells to ultraviolet (UV) irradiation and cisplatin treatment. Micronuclei formation assay revealed that the JCV ST-positive cells presented more chromosomal breakages than did the JCV ST-negative cells, particularly after exposure to DNA-damaging agents. The xeroderma pigmentosum Group D protein, a DNA helicase involved in NER, was downregulated in the JCV ST-positive cells in response to UV irradiation. The effect of the protein phosphatase 2A (PP2A) inhibitor okadaic acid on NER was similar to that of the ST, which is a PP2A-binding protein. Therefore, the deactivation of the PP2A might underlie ST-mediated NER inhibition. The results of this study indicate that exposing JCV ST-positive cells to DNA-damaging agents causes genomic instability, which contributes to carcinogenesis. Our data provide further evidence on the association between the JCV ST and human cancer.
Collapse
Affiliation(s)
- Jau-Ling Huang
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan, Taiwan, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan, Division of Nephrology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chang-Shen Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chia-Chu Chang
- Division of Nephrology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ning Lu
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan, Taiwan, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan, Division of Nephrology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ling Hsu
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan, Taiwan, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan, Division of Nephrology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tzyy-Yue Wong
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan, Taiwan, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan, Division of Nephrology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Fei Wang
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan, Taiwan, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan, Division of Nephrology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
680
|
Lu Y, Gao J, Lu Y. Down-expression pattern of Ku70 and p53 coexisted in colorectal cancer. Med Oncol 2015; 32:98. [PMID: 25731619 DOI: 10.1007/s12032-015-0519-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 02/13/2015] [Indexed: 11/24/2022]
Abstract
To address the relationship of altered expression of double-strand break repair proteins Ku70 and p53 in clinical colorectal cancer (CRC), we examined the expression pattern of Ku70 and p53 by using fluorescent immunohistochemistry and real-time PCR assays in CRC and pericancerous samples from 152 Chinese patients. The results showed that down-expression pattern of both Ku70 and p53 coexisted in the CRC samples with significant correlating rate (R (2) = 0.9103; P < 0.001), and the down-expression of Ku70 and p53 was significantly associated with the advanced tumor node metastasis stage (Ku70: HR 3.453 in recurrence and 4.182 in survival, P < 0.001; P53: HR 3.114 in recurrence and 4.113 in survival, P < 0.001). The down-regulated Ku70 and p53 were associated with poor disease-free survival. Loss of Ku70 and p53 expression might serve as a biomarker of poor prognosis in CRC patients.
Collapse
Affiliation(s)
- Yuanfang Lu
- Department of Toxicology, School of Public Health, Guilin Medical University, North Huancheng 2nd Road, Guilin, 541004, Guangxi, China
| | | | | |
Collapse
|
681
|
Rocha LC, Bustamante FDO, Silveira RAD, Torres GA, Mittelmann A, Techio VH. Functional repetitive sequences and fragile sites in chromosomes of Lolium perenne L. PROTOPLASMA 2015; 252:451-60. [PMID: 25141824 DOI: 10.1007/s00709-014-0690-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/13/2014] [Indexed: 05/26/2023]
Abstract
Lolium perenne is considered a high-quality forage widely used in temperate regions to meet the shortage of forage during the winter. In this species, some peculiarities related to cytogenetic aspects have already been described, as the variability in number and position of 45S ribosomal DNA (rDNA) sites and the expression of fragile sites, which require further studies to support the understanding of their causes and consequences. In this way, this study aimed to evaluate the relationship between the expression of fragile sites and functional repetitive sequences (rDNA and telomeric) in chromosomes of diploid and polyploid cultivars of L. perenne. The techniques of FISH, Ag-NOR and fluorescence banding were used to assess the distribution of sites of 45S rDNA, 5S, telomeric sequences, and the transcriptional activity of the 45S ribosomal genes and the distribution of AT- and/or GC-rich sequences in L. perenne, respectively. There was variability in the number and location of 45S rDNA sites, which was not observed for 5S rDNA sites. One of the genotypes showed two 45S rDNA sites on the same chromosome, located in different chromosome arms. Breaks and gaps were found in 45S rDNA sites in most metaphases evaluated for both cultivars. Telomeric sequences were not detected at the end of the chromosomal fragments corresponding to the location of breaks at 45S sites. Apparently, the transcriptional activity was modified in fragile sites. Variation in the number and size of nucleoli, nucleolar fusions and dissociations were observed. All CMA(+) bands were colocalized with the 45S sites.
Collapse
Affiliation(s)
- Laiane Corsini Rocha
- Department of Biology, Federal University of Lavras, P.O. Box 3037, 37200-000, Lavras, Minas Gerais State, Brazil
| | | | | | | | | | | |
Collapse
|
682
|
DNA damage response – A double-edged sword in cancer prevention and cancer therapy. Cancer Lett 2015; 358:8-16. [DOI: 10.1016/j.canlet.2014.12.038] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/15/2014] [Accepted: 12/15/2014] [Indexed: 12/27/2022]
|
683
|
Chen YH, Wei MF, Wang CW, Lee HW, Pan SL, Gao M, Kuo SH, Cheng AL, Teng CM. Dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor is an effective radiosensitizer for colorectal cancer. Cancer Lett 2015; 357:582-590. [PMID: 25497009 DOI: 10.1016/j.canlet.2014.12.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 01/03/2023]
Abstract
The present study was aimed to investigate whether combination of molecular targeting therapy, a dual PI3K/mTOR inhibitor (BEZ235), with radiation can enhance the radiosensitivity of colorectal cancer cells (CRC). K-RAS mutant CRC cells (HCT 116 and SW 620) and wild type CRC cells (HT 29) were irradiated with different dose of radiation (0-6 Gy). The synergistic effects of combining radiation with different concentration of BEZ235 (0-10 nM) pretreatment were demonstrated by cell survival assay. When comparing with radiation alone and BEZ235 alone, the combination of BEZ235 pretreatment and radiation resulted in an increased percentage of sub-G1 phase cells, and an increased number of γ-H2AX/cell (DNA double strand breaks). Radiation up-regulated AKT/mTOR signaling pathway, including the activation of phospho (p)-AKT, p-mTOR, p-eIF4E, and p-rpS6; and this activated AKT/mTOR signaling pathway was attenuated by BEZ235 pretreatment. In addition, BEZ235 blocked double strand break repair induced by radiation through attenuating the activation of ATM and DNA-PKcs and sensitized CRC cells to radiation. In vivo model, the tumor size and the expression pattern of p-mTOR, p-eIF4E, and p-rpS6 were significantly decreased in combined group than radiation alone or BEZ235 alone. Our findings indicate that the administration of BEZ235 before radiation enhances the radiotherapeutic effect of CRC cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Yu-Hsuan Chen
- Department of Oncology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan; Cancer Research Center, National Taiwan University, Taipei, Taiwan; Pharmacological Institute, National Taiwan University, Taipei, Taiwan
| | - Ming-Feng Wei
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chun-Wei Wang
- Department of Oncology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan; Cancer Research Center, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Wei Lee
- Department of Oncology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan; Cancer Research Center, National Taiwan University, Taipei, Taiwan
| | - Shiow-Lin Pan
- Pharmacological Institute, National Taiwan University, Taipei, Taiwan
| | - Ming Gao
- Department of Oncology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan; Cancer Research Center, National Taiwan University, Taipei, Taiwan
| | - Sung-Hsin Kuo
- Department of Oncology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan; Cancer Research Center, National Taiwan University, Taipei, Taiwan; Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Ann-Lii Cheng
- Department of Oncology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan; Cancer Research Center, National Taiwan University, Taipei, Taiwan; Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Che-Ming Teng
- Pharmacological Institute, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
684
|
Lin R, Xiao D, Guo Y, Tian D, Yun H, Chen D, Su M. Chronic inflammation-related DNA damage response: a driving force of gastric cardia carcinogenesis. Oncotarget 2015; 6:2856-64. [PMID: 25650663 PMCID: PMC4413622 DOI: 10.18632/oncotarget.3091] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/25/2014] [Indexed: 02/05/2023] Open
Abstract
Gastric cardia cancer (GCC) is a highly aggressive disease associated with chronic inflammation. To investigate the relationship between DNA damage response (DDR) and chronic inflammation, we collected 100 non-tumor gastric cardia specimens of Chaoshan littoral, a high-risk region for esophageal and gastric cardia cancer. A significantly higher proportion of severe chronic inflammation was found in dysplastic epithelia (80.9%) in comparison with that in non-dysplastic tissues (40.7%) (P<0.001). Immunohistochemical analysis demonstrated that DNA damage response was parallel with the chronic inflammation degrees from normal to severe inflammation (P<0.05). We found that DNA damage response was progressively increased with the progression of precancerous lesions (P<0.05). These findings provide pathological evidence that persistent chronic inflammation-related DNA damage response may be a driving force of gastric cardia carcinogenesis. Based on these findings, DNA damage response in non-malignant tissues may become a promising biomedical marker for predicting malignant transformation in the gastric cardia.
Collapse
Affiliation(s)
- Runhua Lin
- Institute of Clinical Pathology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, PR China
- The Judicial Critical Center, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Dejun Xiao
- Institute of Clinical Pathology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, PR China
- Clinical Laboratory of Ganzhou People's Hospital, Ganzhou, Jiangxi, PR China
| | - Yi Guo
- Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, PR China
| | - Dongping Tian
- Institute of Clinical Pathology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, PR China
- The Judicial Critical Center, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Hailong Yun
- Institute of Clinical Pathology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, PR China
- The Judicial Critical Center, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Donglin Chen
- Institute of Clinical Pathology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, PR China
- The Judicial Critical Center, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Min Su
- Institute of Clinical Pathology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, PR China
- The Judicial Critical Center, Shantou University Medical College, Shantou, Guangdong, PR China
| |
Collapse
|
685
|
Camacho CV, Todorova PK, Gillam MC, Tomimatsu N, del Alcazar CRG, Ilcheva M, Mukherjee B, McEllin B, Vemireddy V, Hatanpaa K, Story MD, Habib AA, Murty VV, Bachoo R, Burma S. DNA double-strand breaks cooperate with loss of Ink4 and Arf tumor suppressors to generate glioblastomas with frequent Met amplification. Oncogene 2015; 34:1064-72. [PMID: 24632607 PMCID: PMC4167163 DOI: 10.1038/onc.2014.29] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/31/2013] [Accepted: 01/01/2014] [Indexed: 12/15/2022]
Abstract
Glioblastomas (GBM) are highly radioresistant and lethal brain tumors. Ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) are a risk factor for the development of GBM. In this study, we systematically examined the contribution of IR-induced DSBs to GBM development using transgenic mouse models harboring brain-targeted deletions of key tumor suppressors frequently lost in GBM, namely Ink4a, Ink4b, Arf and/or PTEN. Using low linear energy transfer (LET) X-rays to generate simple breaks or high LET HZE particles (Fe ions) to generate complex breaks, we found that DSBs induce high-grade gliomas in these mice which, otherwise, do not develop gliomas spontaneously. Loss of Ink4a and Arf was sufficient to trigger IR-induced glioma development but additional loss of Ink4b significantly increased tumor incidence. We analyzed IR-induced tumors for copy number alterations to identify oncogenic changes that were generated and selected for as a consequence of stochastic DSB events. We found Met amplification to be the most significant oncogenic event in these radiation-induced gliomas. Importantly, Met activation resulted in the expression of Sox2, a GBM cancer stem cell marker, and was obligatory for tumor formation. In sum, these results indicate that radiation-induced DSBs cooperate with loss of Ink4 and Arf tumor suppressors to generate high-grade gliomas that are commonly driven by Met amplification and activation.
Collapse
Affiliation(s)
- Cristel V. Camacho
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Pavlina K. Todorova
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Molly C. Gillam
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Nozomi Tomimatsu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Mariya Ilcheva
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Bipasha Mukherjee
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Brian McEllin
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Vamsidhara Vemireddy
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Kimmo Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Michael D. Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Amyn A. Habib
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX
- VA North Texas Health Care System, Dallas, TX
| | - Vundavalli V. Murty
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY
| | - Robert Bachoo
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Sandeep Burma
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
686
|
Akt-mediated phosphorylation of XLF impairs non-homologous end-joining DNA repair. Mol Cell 2015; 57:648-661. [PMID: 25661488 DOI: 10.1016/j.molcel.2015.01.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/14/2014] [Accepted: 12/29/2014] [Indexed: 01/01/2023]
Abstract
Deficiency in repair of damaged DNA leads to genomic instability and is closely associated with tumorigenesis. Most DNA double-strand-breaks (DSBs) are repaired by two major mechanisms, homologous-recombination (HR) and non-homologous-end-joining (NHEJ). Although Akt has been reported to suppress HR, its role in NHEJ remains elusive. Here, we report that Akt phosphorylates XLF at Thr181 to trigger its dissociation from the DNA ligase IV/XRCC4 complex, and promotes its interaction with 14-3-3β leading to XLF cytoplasmic retention, where cytosolic XLF is subsequently degraded by SCF(β-TRCP) in a CKI-dependent manner. Physiologically, upon DNA damage, XLF-T181E expressing cells display impaired NHEJ and elevated cell death. Whereas a cancer-patient-derived XLF-R178Q mutant, deficient in XLF-T181 phosphorylation, exhibits an elevated tolerance of DNA damage. Together, our results reveal a pivotal role for Akt in suppressing NHEJ and highlight the tight connection between aberrant Akt hyper-activation and deficiency in timely DSB repair, leading to genomic instability and tumorigenesis.
Collapse
|
687
|
Lin LL, Hsia CR, Hsu CL, Huang HC, Juan HF. Integrating transcriptomics and proteomics to show that tanshinone IIA suppresses cell growth by blocking glucose metabolism in gastric cancer cells. BMC Genomics 2015; 16:41. [PMID: 25652794 PMCID: PMC4328042 DOI: 10.1186/s12864-015-1230-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 01/09/2015] [Indexed: 12/17/2022] Open
Abstract
Background Tanshinone IIA (TIIA) is a diterpene quinone extracted from the plant Danshen (Salvia miltiorrhiza) used in traditional Chinese herbal medicine. It has been reported to have anti-tumor potential against several kinds of cancer, including gastric cancer. In most solid tumors, a metabolic switch to glucose is a hallmark of cancer cells, which do this to provide nutrients for cell proliferation. However, the mechanism associated with glucose metabolism by which TIIA acts on gastric cancer cells remains to be elucidated. Results We found that TIIA treatment is able to significantly inhibit cell growth and the proliferation of gastric cancer in a dose-dependent manner. Using next-generation sequencing-based RNA-seq transcriptomics and quantitative proteomics-isobaric tags for relative and absolute quantification (iTRAQ), we characterized the mechanism of TIIA regulation in gastric cancer cell line AGS. In total, 16,603 unique transcripts and 102 proteins were identified. After enrichment analysis, we found that TIIA regulated genes are involved in carbohydrate metabolism, the cell cycle, apoptosis, DNA damage and cytoskeleton reorganization. Our proteomics data revealed the downregulation of intracellular ATP levels, glucose-6-phosphate isomerase and L-lactate dehydrogenase B chains by TIIA, which might work with disorders of glucose metabolism and extracellular lactate levels to suppress cell proliferation. The up-regulation of p53 and down-regulation of AKT was shown in TIIA- treated cells, which indicates the transformation of oncogenes. Severe DNA damage, cell cycle arrest at the G2/M transition and apoptosis with cytoskeleton reorganization were detected in TIIA-treated gastric cancer cells. Conclusions Combining transcriptomics and proteomics results, we propose that TIIA treatment could lead cell stresses, including nutrient deficiency and DNA damage, by inhibiting the glucose metabolism of cancer cells. This study provides an insight into how the TIIA regulatory metabolism in gastric cancer cells suppresses cell growth, and may help improve the development of cancer therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1230-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li-Ling Lin
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan.
| | - Chieh-Ren Hsia
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan.
| | - Chia-Lang Hsu
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan.
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics and Center for Systems and Synthetic Biology, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan.
| | - Hsueh-Fen Juan
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan. .,Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan. .,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan.
| |
Collapse
|
688
|
Dicks N, Gutierrez K, Michalak M, Bordignon V, Agellon LB. Endoplasmic reticulum stress, genome damage, and cancer. Front Oncol 2015; 5:11. [PMID: 25692096 PMCID: PMC4315039 DOI: 10.3389/fonc.2015.00011] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 01/12/2015] [Indexed: 01/30/2023] Open
Abstract
Endoplasmic reticulum (ER) stress has been linked to many diseases, including cancer. A large body of work has focused on the activation of the ER stress response in cancer cells to facilitate their survival and tumor growth; however, there are some studies suggesting that the ER stress response can also mitigate cancer progression. Despite these contradictions, it is clear that the ER stress response is closely associated with cancer biology. The ER stress response classically encompasses activation of three separate pathways, which are collectively categorized the unfolded protein response (UPR). The UPR has been extensively studied in various cancers and appears to confer a selective advantage to tumor cells to facilitate their enhanced growth and resistance to anti-cancer agents. It has also been shown that ER stress induces chromatin changes, which can also facilitate cell survival. Chromatin remodeling has been linked with many cancers through repression of tumor suppressor and apoptosis genes. Interplay between the classic UPR and genome damage repair mechanisms may have important implications in the transformation process of normal cells into cancer cells.
Collapse
Affiliation(s)
- Naomi Dicks
- Department of Animal Science, McGill University , Montréal, QC , Canada
| | - Karina Gutierrez
- Department of Animal Science, McGill University , Montréal, QC , Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta , Edmonton, AB , Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University , Montréal, QC , Canada
| | - Luis B Agellon
- School of Dietetics and Human Nutrition, McGill University , Montréal, QC , Canada
| |
Collapse
|
689
|
Liu JC, Shen WC, Shih TC, Tsai CW, Chang WS, Cho DY, Tsai CH, Bau DT. The current progress and future prospects of personalized radiogenomic cancer study. Biomedicine (Taipei) 2015; 5:2. [PMID: 25705582 PMCID: PMC4328115 DOI: 10.7603/s40681-015-0002-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/05/2015] [Indexed: 12/14/2022] Open
Abstract
During the last twenty years, mounting studies have supported the hypothesis that there is a genetic component that plays an important role in clinically observed variability in individual tissue/organ toxicity after radiotherapy. We propose the term “Personalized Radiogenomics” for the translational study of individual genetic variations that may associate with or contribute to the responses of tissues to radiation therapy used in the treatment of all types of cancer. The missions of personalized radiogenomic research are 1) to reveal the related genes, proteins, and biological pathways responsible for non-tumor or tumor tissue toxicity resulting from radiotherapy that could be targeted with radio-sensitizing and/or radio-protective agents, and 2) to identify specific genetic markers that can be used in risk prediction and evaluation models before and after clinical cancer surgery. For the members of the Terry Fox Cancer Research Lab in China Medical University and Hospital, the long-term goal is to develop SNP-based risk models that can be used to stratify patients to more precisely tailored radiotherapy protocols. Worldwide, the field has evolved over the last two decades in parallel with rapid advances in genetic and genomic technology, moving step by step from narrowly focused candidate gene studies to large-scale, collaborative genome-wide association studies. This article will summarize the candidate gene association studies published so far from the Terry Fox Cancer Research Lab as well as worldwide on the risk of radiation-related cancers and highlight some wholegenome association studies showing feasibility in fulfilling the dream of personalized radiogenomic cancer therapy.
Collapse
Affiliation(s)
- Juhn-Cherng Liu
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan ; Graduate Institute of Clinical Medical Science, China Medical University, 404 Taichung, Taiwan
| | - Wu-Chung Shen
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan ; Department of Biomedical Imaging and Radiological Science, China Medical University, 404 Taichung, Taiwan
| | - Tzu-Ching Shih
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan ; Department of Biomedical Imaging and Radiological Science, China Medical University, 404 Taichung, Taiwan
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan
| | - Wen-Shin Chang
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan
| | - Der-Yang Cho
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan
| | - Chang-Hai Tsai
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan
| | - Da-Tian Bau
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, No. 2, Yuh-Der Road, 404 Taichung, Taiwan ; Graduate Institute of Clinical Medical Science, China Medical University, 404 Taichung, Taiwan
| |
Collapse
|
690
|
Kuroda K, Hibi D, Ishii Y, Yokoo Y, Takasu S, Kijima A, Matsushita K, Masumura KI, Kodama Y, Yanai T, Sakai H, Nohmi T, Ogawa K, Umemura T. Role of p53 in the progression from ochratoxin A-induced DNA damage to gene mutations in the kidneys of mice. Toxicol Sci 2015; 144:65-76. [PMID: 25636497 DOI: 10.1093/toxsci/kfu267] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Carcinogenic doses of ochratoxin A (OTA) cause increases of mutant frequencies (MFs) of the red/gam gene (Spi(-)) in the kidneys of p53-deficient gpt delta mice, but not in p53-proficient mice. Here, we investigated the role of p53 in the progression from OTA-induced DNA damage to gene mutations. To this end, p53-proficient and -deficient mice were administered 5 mg/kg OTA for 3 days or 4 weeks by gavage. After 3 days of administration, comet assays were performed and there were no differences in the degrees of OTA-induced DNA damage between p53-proficient and -deficient mice. However, the frequencies of γ-H2AX-positive tubular epithelial cells in p53-deficient mice were significantly higher than those in p53-proficient mice, implying that p53 inhibited the progression from DNA damage to DNA double-strand breaks (DSBs). Evaluation of global gene expression and relevant mRNA/protein expression levels demonstrated that OTA increased the expression of Cdkn1a, which encodes the p21 protein, in p53-proficient mice, but not in p53-deficient mice. Moreover, in p53-deficient mice, mRNA levels of cell cycle progression and DSB repair (homologous recombination repair [HR])-related genes were significantly increased. Thus, G1/S arrest due to activation of the p53/p21 pathway may contribute to the prevention of DSBs in p53-proficient mice. In addition, single base deletions/insertions/substitutions were predominant, possibly due to HR. Overall, these results suggested that OTA induced DSBs at the carcinogenic target site in mice and that p53/p21-mediated cell cycle control prevented an increase in the formation of DSBs, leading to gene mutations.
Collapse
Affiliation(s)
- Ken Kuroda
- *Division of Pathology, Division of Genetics and Mutagenesis, Division of Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193 and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Daisuke Hibi
- *Division of Pathology, Division of Genetics and Mutagenesis, Division of Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193 and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Yuji Ishii
- *Division of Pathology, Division of Genetics and Mutagenesis, Division of Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193 and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Yuh Yokoo
- *Division of Pathology, Division of Genetics and Mutagenesis, Division of Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193 and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Shinji Takasu
- *Division of Pathology, Division of Genetics and Mutagenesis, Division of Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193 and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Aki Kijima
- *Division of Pathology, Division of Genetics and Mutagenesis, Division of Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193 and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Kohei Matsushita
- *Division of Pathology, Division of Genetics and Mutagenesis, Division of Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193 and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Ken-ichi Masumura
- *Division of Pathology, Division of Genetics and Mutagenesis, Division of Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193 and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Yukio Kodama
- *Division of Pathology, Division of Genetics and Mutagenesis, Division of Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193 and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Tokuma Yanai
- *Division of Pathology, Division of Genetics and Mutagenesis, Division of Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193 and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Hiroki Sakai
- *Division of Pathology, Division of Genetics and Mutagenesis, Division of Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193 and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Takehiko Nohmi
- *Division of Pathology, Division of Genetics and Mutagenesis, Division of Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193 and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Kumiko Ogawa
- *Division of Pathology, Division of Genetics and Mutagenesis, Division of Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193 and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Takashi Umemura
- *Division of Pathology, Division of Genetics and Mutagenesis, Division of Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193 and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan *Division of Pathology, Division of Genetics and Mutagenesis, Division of Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193 and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| |
Collapse
|
691
|
Xiong X, Du Z, Wang Y, Feng Z, Fan P, Yan C, Willers H, Zhang J. 53BP1 promotes microhomology-mediated end-joining in G1-phase cells. Nucleic Acids Res 2015; 43:1659-70. [PMID: 25586219 PMCID: PMC4330367 DOI: 10.1093/nar/gku1406] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alternative non-homologous end joining (alt-NHEJ) was originally identified as a backup repair mechanism in the absence of classical NHEJ (c-NHEJ) factors but recent studies have demonstrated that alt-NHEJ is active even when c-NHEJ as well as homologous recombination is available. The functions of 53BP1 in NHEJ processes are not well understood. Here, we report that 53BP1 promotes DNA double-strand break (DSB) repair and genomic stability not only in c-NHEJ-proficient but also -deficient human G1-phase cells. Using an array of repair substrates we show that these effects of 53BP1 are correlated with a promotion of microhomology-mediated end-joining (MMEJ), a subtype of alt-NHEJ, in G1-phase. Consistent with a specific role in MMEJ we confirm that 53BP1 status does not affect c-NHEJ. 53BP1 supports sequence deletion during MMEJ consistent with a putative role in facilitating end-resection. Interestingly, promotion of MMEJ by 53BP1 in G1-phase cells is only observed in the presence of functional BRCA1. Depletion of both 53BP1 and BRCA1 increases repair needing microhomology usage and augments loss of DNA sequence, suggesting that MMEJ is a highly regulated DSB repair process. Together, these findings significantly expand our understanding of the cell-cycle-dependent roles of 53BP1 in DSB repair.
Collapse
Affiliation(s)
- Xiahui Xiong
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 323, Cleveland, OH 44106, USA
| | - Zhanwen Du
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 323, Cleveland, OH 44106, USA
| | - Ying Wang
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 323, Cleveland, OH 44106, USA
| | - Zhihui Feng
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 323, Cleveland, OH 44106, USA
| | - Pan Fan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine,1650 Orleans Street, Baltimore, MD 21231, USA
| | - Chunhong Yan
- Department of Biochemistry and Molecular Biology, Georgia Regents University, 1410 Laney Walker Blvd., CN-2134, Augusta, GA 30912, USA
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Junran Zhang
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 323, Cleveland, OH 44106, USA
| |
Collapse
|
692
|
Fayaz S, Karimmirza M, Tanhaei S, Fathi M, Torbati PM, Fard-Esfahani P. Increased risk of differentiated thyroid carcinoma with combined effects of homologous recombination repair gene polymorphisms in an Iranian population. Asian Pac J Cancer Prev 2015; 14:6727-31. [PMID: 24377596 DOI: 10.7314/apjcp.2013.14.11.6727] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Homologous recombination (HR) repair has a crucial role to play in the prevention of chromosomal instability, and it is clear that defects in some HR repair genes are associated with many cancers. To evaluate the potential effect of some HR repair gene polymorphisms with differentiated thyroid carcinoma (DTC), we assessed Rad51 (135G>C), Rad52 (2259C>T), XRCC2 (R188H) and XRCC3 (T241M) polymorphisms in Iranian DTC patients and cancer-free controls. In addition, haplotype analysis and gene combination assessment were carried out. Genotyping of Rad51 (135G>C), Rad52 (2259C>T) and XRCC3 (T241M) polymorphisms was determined by PCR-RFLP and PCR-HRM analysis was carried out to evaluate XRCC2 (R188H) . Separately, Rad51, Rad52 and XRCC2 polymorphisms were not shown to be more significant in patients when compared to controls in crude, sex-adjusted and age-adjusted form. However, results indicated a significant difference in XRCC3 genotypes for patients when compared to controls (p value: 0.035). The GCTG haplotype demonstrated a significant difference (p value: 0.047). When compared to the wild type, the combined variant form of Rad52/XRCC2/XRCC3 revealed an elevated risk of DTC (p value: 0.007). It is recommended that Rad52 2259C>T, XRCC2 R188H and XRCC3 T241M polymorphisms should be simultaneously considered as contributing to a polygenic risk of differentiated thyroid carcinoma.
Collapse
Affiliation(s)
- Shima Fayaz
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran E-mail :
| | | | | | | | | | | |
Collapse
|
693
|
Zhou T, Chen P, Gu J, Bishop AJR, Scott LM, Hasty P, Rebel VI. Potential relationship between inadequate response to DNA damage and development of myelodysplastic syndrome. Int J Mol Sci 2015; 16:966-89. [PMID: 25569081 PMCID: PMC4307285 DOI: 10.3390/ijms16010966] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/22/2014] [Indexed: 12/29/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are responsible for the continuous regeneration of all types of blood cells, including themselves. To ensure the functional and genomic integrity of blood tissue, a network of regulatory pathways tightly controls the proliferative status of HSCs. Nevertheless, normal HSC aging is associated with a noticeable decline in regenerative potential and possible changes in other functions. Myelodysplastic syndrome (MDS) is an age-associated hematopoietic malignancy, characterized by abnormal blood cell maturation and a high propensity for leukemic transformation. It is furthermore thought to originate in a HSC and to be associated with the accrual of multiple genetic and epigenetic aberrations. This raises the question whether MDS is, in part, related to an inability to adequately cope with DNA damage. Here we discuss the various components of the cellular response to DNA damage. For each component, we evaluate related studies that may shed light on a potential relationship between MDS development and aberrant DNA damage response/repair.
Collapse
Affiliation(s)
- Ting Zhou
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Peishuai Chen
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Jian Gu
- Department of Hematology, Northern Jiangsu People's Hospital, Yangzhou 225001, China.
| | - Alexander J R Bishop
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Linda M Scott
- The University of Queensland Diamantina Institute, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia.
| | - Paul Hasty
- The Cancer Therapy Research Center, UTHSCSA, 7979 Wurzbach Road, San Antonio, TX 78229, USA.
| | - Vivienne I Rebel
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
694
|
An Association between Single Nucleotide Polymorphisms of Lys751Gln ERCC2 Gene and Ovarian Cancer in Polish Women. Adv Med 2015; 2015:109593. [PMID: 26526682 PMCID: PMC4615857 DOI: 10.1155/2015/109593] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/18/2015] [Accepted: 07/29/2015] [Indexed: 02/06/2023] Open
Abstract
Aim. The aim of this study was to evaluate the role of the Lys751Gln (rs13181) ERCC2 gene polymorphism in clinical parameters and the risk for development of ovarian cancer. Material and Methods. The study consisted of 430 patients with ovarian cancer (mean age: 53.2 ± 10.11) and 430 healthy subjects (mean age: 50.31 ± 18.21). Analysis of the gene polymorphisms was performed using the PCR-based restriction fragment length polymorphism (PCR-RFLP). The odds ratios (ORs) and 95% confidence intervals (CIs) for each genotype and allele were calculated. Results. The results obtained indicate that the genotype Gln/Gln is associated with an increased risk of ovarian cancer (OR 5.01; 95% CI 3.37-7.43; p < 0.0001). Association of Lys751Gln polymorphism with histological grading showed increased ERCC2 Gln/Gln (OR = 6.96; 95% CI 3.41-14.21; p < 0.0001) genotype in grading 1 as well as Gln allele overrepresentation (OR = 4.98; 95% CI 3.37-7.40; p < 0.0001) in G1 ovarian patients. Finally, with clinical FIGO staging under evaluation, an increase in ERCC2 Gln/Gln homozygote frequencies in staging I and Gln allele frequencies in SI were observed. Conclusion. On the basis of these results, we conclude that ERCC2 gene polymorphism Lys751Gln may be associated with an increased risk of ovarian carcinoma.
Collapse
|
695
|
Epithelial Ovarian Cancer, Low Malignant Potential, and Sex Cord Stromal Tumors of the Ovary. Gynecol Oncol 2015. [DOI: 10.1007/978-1-4939-1976-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
696
|
Plewa MJ, Wagner ED. Charting a New Path To Resolve the Adverse Health Effects of DBPs. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1190.ch001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michael J. Plewa
- Department of Crop Sciences and the Center of Advanced Materials for the Purification of Water with Systems, Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Elizabeth D. Wagner
- Department of Crop Sciences and the Center of Advanced Materials for the Purification of Water with Systems, Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
697
|
Genotoxic testing of titanium dioxide anatase nanoparticles using the wing-spot test and the comet assay in Drosophila. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 778:12-21. [DOI: 10.1016/j.mrgentox.2014.12.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 12/23/2022]
|
698
|
Wang L, Guo Q, Fisher LA, Liu D, Peng A. Regulation of polo-like kinase 1 by DNA damage and PP2A/B55α. Cell Cycle 2015; 14:157-66. [PMID: 25483054 PMCID: PMC4615057 DOI: 10.4161/15384101.2014.986392] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/03/2014] [Accepted: 11/06/2014] [Indexed: 12/24/2022] Open
Abstract
In addition to governing mitotic progression, Plk1 also suppresses the activation of the G2 DNA damage checkpoint and promotes checkpoint recovery. Previous studies have shown that checkpoint activation after DNA damage requires inhibition of Plk1, but the underlying mechanism of Plk1 regulation was unknown. In this study we show that the specific phosphatase activity toward Plk1 Thr-210 in interphase Xenopus egg extracts is predominantly PP2A-dependent, and this phosphatase activity is upregulated by DNA damage. Consistently, PP2A associates with Plk1 and the association increases after DNA damage. We further revealed that B55α, a targeting subunit of PP2A and putative tumor suppressor, mediates PP2A/Plk1 association and Plk1 dephosphorylation. B55α and PP2A association is greatly strengthened after DNA damage in an ATM/ATR and checkpoint kinase-dependent manner. Collectively, we report a phosphatase-dependent mechanism that responds to DNA damage and regulates Plk1 and checkpoint recovery.
Collapse
Affiliation(s)
- Ling Wang
- Department of Oral Biology; College of Dentistry; University of Nebraska Medical Center; Lincoln, NE USA
| | - Qingyuan Guo
- Department of Oral Biology; College of Dentistry; University of Nebraska Medical Center; Lincoln, NE USA
- Department of Orthodontics; Shandong Provincial Key Laboratory of Oral Biomedicine; Shandong University; Jinan, China
| | - Laura A Fisher
- Department of Oral Biology; College of Dentistry; University of Nebraska Medical Center; Lincoln, NE USA
| | - Dongxu Liu
- Department of Orthodontics; Shandong Provincial Key Laboratory of Oral Biomedicine; Shandong University; Jinan, China
| | - Aimin Peng
- Department of Oral Biology; College of Dentistry; University of Nebraska Medical Center; Lincoln, NE USA
| |
Collapse
|
699
|
Kwon J, Sutherland K, Hashimoto T, Date H. Dose Distribution of Electrons from Gold Nanoparticles by Proton Beam Irradiation. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ijmpcero.2015.41007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
700
|
Association between XRCC3 Thr241Met polymorphism and laryngeal cancer susceptibility in Turkish population. Eur Arch Otorhinolaryngol 2014; 272:3779-84. [DOI: 10.1007/s00405-014-3435-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/05/2014] [Indexed: 12/16/2022]
|