651
|
Salem M, Skurnik M. Genomic Characterization of Sixteen Yersinia enterocolitica-Infecting Podoviruses of Pig Origin. Viruses 2018; 10:v10040174. [PMID: 29614052 PMCID: PMC5923468 DOI: 10.3390/v10040174] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/23/2018] [Accepted: 03/29/2018] [Indexed: 11/16/2022] Open
Abstract
Yersinia enterocolitica causes enteric infections in humans and animals. Human infections are often caused by contaminated pork meat. Y. enterocolitica colonizes pig tonsils and pigs secrete both the human pathogen and its specific bacteriophages into the stools. In this work, sixteen Y. enterocolitica—infecting lytic bacteriophages isolated from pig stools originating from several pig farms were characterized. All phages belong to the Podoviridae family and their genomes range between 38,391–40,451 bp in size. The overall genome organization of all the phages resembled that of T7-like phages, having 3–6 host RNA polymerase (RNAP)-specific promoters at the beginning of the genomes and 11–13 phage RNAP-specific promoters as well as 3–5 rho-independent terminators, scattered throughout the genomes. Using a ligation-based approach, the physical termini of the genomes containing direct terminal repeats of 190–224 bp were established. No genes associated with lysogeny nor any toxin, virulence factor or antibiotic resistance genes were present in the genomes. Even though the phages had been isolated from different pig farms the nucleotide sequences of their genomes were 90–97% identical suggesting that the phages were undergoing microevolution within and between the farms. Lipopolysaccharide was found to be the surface receptor of all but one of the phages. The phages are classified as new species within the T7virus genus of Autographivirinae subfamily.
Collapse
Affiliation(s)
- Mabruka Salem
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology, University of Helsinki, 00014 Helsinki, Finland.
- Department of Microbiology, Faculty of Medicine, University of Benghazi, Benghazi 16063, Libya.
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology, University of Helsinki, 00014 Helsinki, Finland.
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, 00029 Helsinki, Finland.
| |
Collapse
|
652
|
Woo TE, Lim R, Surette MG, Waddell B, Bowron JC, Somayaji R, Duong J, Mody CH, Rabin HR, Storey DG, Parkins MD. Epidemiology and natural history of Pseudomonas aeruginosa airway infections in non-cystic fibrosis bronchiectasis. ERJ Open Res 2018; 4:00162-2017. [PMID: 29930949 PMCID: PMC6004520 DOI: 10.1183/23120541.00162-2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/13/2018] [Indexed: 01/20/2023] Open
Abstract
The natural history and epidemiology of Pseudomonas aeruginosa infections in non-cystic fibrosis (non-CF) bronchiectasis is not well understood. As such it was our intention to determine the evolution of airway infection and the transmission potential of P. aeruginosa in patients with non-CF bronchiectasis. A longitudinal cohort study was conducted from 1986-2011 using a biobank of prospectively collected isolates from patients with non-CF bronchiectasis. Patients included were ≥18 years old and had ≥2 positive P. aeruginosa cultures over a minimum 6-month period. All isolates obtained at first and most recent clinical encounters, as well as during exacerbations, that were morphologically distinct on MacConkey agar were genotyped by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). A total of 203 isolates from 39 patients were analysed. These were compared to a large collection of globally epidemic and local CF strains, as well as non-CF isolates. We identified four patterns of infection in non-CF bronchiectasis including: 1) persistence of a single strain (n=26; 67%); 2) strain displacement (n=8; 20%); 3) temporary disruption (n=3; 8%); and 4) chaotic airway infection (n=2; 5%). Patterns of infection were not significant predictors of rates of lung function decline or progression to end-stage disease and acquisition of new strains did not associate with the occurrence of exacerbations. Rarely, non-CF bronchiectasis strains with similar pulsotypes were observed in CF and non-CF controls, but no CF epidemic strains were observed. While rare shared strains were observed in non-CF bronchiectasis, whole-genome sequencing refuted patient-patient transmission. We observed a higher incidence of strain-displacement in our patient cohort compared to those observed in CF studies, although this did not impact on outcomes.
Collapse
Affiliation(s)
- Taylor E. Woo
- Dept of Biological Sciences, University of Calgary, Calgary, Canada
- Dept of Medicine, University of Calgary, Calgary, Canada
| | - Rachel Lim
- Dept of Medicine, University of Calgary, Calgary, Canada
| | - Michael G. Surette
- Dept of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- Dept of Medicine and Dept of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Barbara Waddell
- Dept of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Joel C. Bowron
- Dept of Biological Sciences, University of Calgary, Calgary, Canada
| | - Ranjani Somayaji
- Dept of Medicine, University of Calgary, Calgary, Canada
- Dept of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Jessica Duong
- Dept of Biological Sciences, University of Calgary, Calgary, Canada
| | - Christopher H. Mody
- Dept of Medicine, University of Calgary, Calgary, Canada
- Dept of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Harvey R. Rabin
- Dept of Medicine, University of Calgary, Calgary, Canada
- Dept of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Douglas G. Storey
- Dept of Biological Sciences, University of Calgary, Calgary, Canada
- Dept of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Michael D. Parkins
- Dept of Medicine, University of Calgary, Calgary, Canada
- Dept of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
653
|
Rouleau FD, Vincent AT, Charette SJ. Genomic and phenotypic characterization of an atypical Aeromonas salmonicida strain isolated from a lumpfish and producing unusual granular structures. JOURNAL OF FISH DISEASES 2018; 41:673-681. [PMID: 29315617 DOI: 10.1111/jfd.12769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
Aeromonas salmonicida strains are roughly classified into two categories, typical and atypical strains. The latter mainly regroup isolates that present unusual phenotypes or hosts, comparatively to the typical strains that belong to the salmonicida subspecies. This study focuses on an uncharacterized atypical strain, M18076-11, isolated from lumpfish (Cyclopterus lumpus) and not part of the four recognized Aeromonas salmonicida subspecies. This isolate presents an unreported phenotype in the A. salmonicida species: the formation of large granular aggregates. Granules are formed of a heterogeneous mix of live and dead cells, with live cells composing the majority of the population. Even if no mechanism was determined to cause cellular aggregation, small globular structures at the cell surface were observed, which might affect granular formation. Pan-genome phylogenetic analysis indicated that this strain groups alongside the masoucida subspecies. However, phenotypic tests showed that these strains have diverging phenotypes, suggesting that M18076-11 might belong to a new subspecies. Also, a pAsal1-like plasmid, which was only reported in strains of the subspecies salmonicida, was discovered in M18076-11. This study sheds light on unsuspected diversity in A. salmonicida subspecies and stresses the need of thorough identification when a new strain is encountered, as unique traits might be discovered.
Collapse
Affiliation(s)
- F D Rouleau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Canada
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, chemin Sainte-Foy, Quebec, Canada
| | - A T Vincent
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Canada
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, chemin Sainte-Foy, Quebec, Canada
| | - S J Charette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Canada
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, chemin Sainte-Foy, Quebec, Canada
| |
Collapse
|
654
|
Jun JW, Park SC, Wicklund A, Skurnik M. Bacteriophages reduce Yersinia enterocolitica contamination of food and kitchenware. Int J Food Microbiol 2018; 271:33-47. [DOI: 10.1016/j.ijfoodmicro.2018.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 01/12/2023]
|
655
|
Cao ZL, Tan TT, Jiang K, Mei SQ, Hou XY, Cai J. Complete genome sequence of Bacillus thuringiensis L-7601, a wild strain with high production of melanin. J Biotechnol 2018; 275:40-43. [PMID: 29614251 DOI: 10.1016/j.jbiotec.2018.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 11/29/2022]
Abstract
Bacillus thuringiensis L-7601 (B. thuringiensis L-7601), belonging to Bacillus thuringiensis subsp. dendrolimus serotype H4a4b, is a wild-type strain which has the ability to produce melanin during the exponential phase of growth. The melanin produced is an excellent UV protective agent for the crystal insecticidal proteins. Here, we report the complete genome of B. thuringiensis L-7601 including one 5,790,408 bp chromosome and three plasmids. 6,519 CDSs and 150 RNA genes, including 106 tRNA genes, 39 rRNA genes and 5 ncRNA genes, were identified from the whole genome. In addition, our results indicated that homogentisic acid pathway is the melanogenic pathway in B. thuringiensis and accumulation of melanin is the consequence of hmgA frameshift mutant.
Collapse
Affiliation(s)
- Zhang-Lei Cao
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Tong-Tong Tan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Kun Jiang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Si-Qi Mei
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiao-Yue Hou
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, China.
| |
Collapse
|
656
|
Roschanski N, Fischer J, Falgenhauer L, Pietsch M, Guenther S, Kreienbrock L, Chakraborty T, Pfeifer Y, Guerra B, Roesler UH. Retrospective Analysis of Bacterial Cultures Sampled in German Chicken-Fattening Farms During the Years 2011-2012 Revealed Additional VIM-1 Carbapenemase-Producing Escherichia coli and a Serologically Rough Salmonella enterica Serovar Infantis. Front Microbiol 2018; 9:538. [PMID: 29636734 PMCID: PMC5880886 DOI: 10.3389/fmicb.2018.00538] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/08/2018] [Indexed: 11/30/2022] Open
Abstract
Carbapenems are last-resort antibiotics used in human medicine. The increased detection of carbapenem-resistant Enterobacteriaceae (CRE) is therefore worrying. In 2011 we reported the first livestock-associated VIM-1-producing Salmonella (S.) enterica serovar Infantis (R3) isolate from dust, sampled in a German chicken fattening farm. Due to this observation we retrospectively investigated more than 536 stored bacterial cultures, isolated from 45 chicken fattening farms during the years 2011 and 2012. After a non-selective overnight incubation, the bacteria were transferred to selective media. Escherichia (E.) coli and Salmonella growing on these media were further investigated, including antibiotic susceptibility testing, carbapenemase gene screening and whole genome sequencing (WGS). In total, four CRE were found in three out of 45 investigated farms: Besides R3, one additional Salmonella (G-336-1a) as well as two E. coli isolates (G-336-2, G-268-2). All but G-268-2 harbored the blaVIM-1 gene. Salmonella isolates R3 and G-336-1 were closely related although derived from two different farms. All three blaVIM-1-encoding isolates possessed identical plasmids and the blaVIM-1- containing transposon showed mobility at least in vitro. In isolate G-268-2, the AmpC beta-lactamase gene blaCMY-2 but no known carbapenemase gene was identified. However, a transfer of the phenotypic resistance was possible. Furthermore, G-268-2 contained the mcr-1 gene, combining phenotypical carbapenem- as well as colistin resistance in one isolate. Carbapenem-resistant Enterobacteriaceae have been found in three out of 45 investigated chicken flocks. This finding is alarming and emphasizes the importance of intervention strategies to contain the environmental spread of resistant bacteria in animals and humans.
Collapse
Affiliation(s)
- Nicole Roschanski
- Institute for Animal Hygiene and Environmental Health, Freie Universitaet Berlin, Berlin, Germany
| | - Jennie Fischer
- Department for Biological Safety, Federal Institute for Risk Assessment, Berlin, Germany
| | - Linda Falgenhauer
- German Center for Infection Research, Institute of Medical Microbiology, Justus Liebig University Giessen, Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Michael Pietsch
- FG13 Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institute, Wernigerode, Germany
| | - Sebastian Guenther
- Institute for Animal Hygiene and Environmental Health, Freie Universitaet Berlin, Berlin, Germany
| | - Lothar Kreienbrock
- Epidemiology and Information Processing and WHO Collaborating Center for Research and Training for Health at the Human-Animal-Environment Interface, Institute for Biometry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Trinad Chakraborty
- German Center for Infection Research, Institute of Medical Microbiology, Justus Liebig University Giessen, Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Yvonne Pfeifer
- FG13 Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institute, Wernigerode, Germany
| | - Beatriz Guerra
- Department for Biological Safety, Federal Institute for Risk Assessment, Berlin, Germany
| | - Uwe H Roesler
- Institute for Animal Hygiene and Environmental Health, Freie Universitaet Berlin, Berlin, Germany
| |
Collapse
|
657
|
Blanchard AM, Jolley KA, Maiden MCJ, Coffey TJ, Maboni G, Staley CE, Bollard NJ, Warry A, Emes RD, Davies PL, Tötemeyer S. The Applied Development of a Tiered Multilocus Sequence Typing (MLST) Scheme for Dichelobacter nodosus. Front Microbiol 2018; 9:551. [PMID: 29628922 PMCID: PMC5876313 DOI: 10.3389/fmicb.2018.00551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/12/2018] [Indexed: 11/17/2022] Open
Abstract
Dichelobacter nodosus (D. nodosus) is the causative pathogen of ovine footrot, a disease that has a significant welfare and financial impact on the global sheep industry. Previous studies into the phylogenetics of D. nodosus have focused on Australia and Scandinavia, meaning the current diversity in the United Kingdom (U.K.) population and its relationship globally, is poorly understood. Numerous epidemiological methods are available for bacterial typing; however, few account for whole genome diversity or provide the opportunity for future application of new computational techniques. Multilocus sequence typing (MLST) measures nucleotide variations within several loci with slow accumulation of variation to enable the designation of allele numbers to determine a sequence type. The usage of whole genome sequence data enables the application of MLST, but also core and whole genome MLST for higher levels of strain discrimination with a negligible increase in experimental cost. An MLST database was developed alongside a seven loci scheme using publically available whole genome data from the sequence read archive. Sequence type designation and strain discrimination was compared to previously published data to ensure reproducibility. Multiple D. nodosus isolates from U.K. farms were directly compared to populations from other countries. The U.K. isolates define new clades within the global population of D. nodosus and predominantly consist of serogroups A, B and H, however serogroups C, D, E, and I were also found. The scheme is publically available at https://pubmlst.org/dnodosus/.
Collapse
Affiliation(s)
- Adam M Blanchard
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Keith A Jolley
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | - Tracey J Coffey
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Grazieli Maboni
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Ceri E Staley
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Nicola J Bollard
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Andrew Warry
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom.,Advanced Data Analysis Centre, University of Nottingham, Nottingham, United Kingdom
| | - Richard D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom.,Advanced Data Analysis Centre, University of Nottingham, Nottingham, United Kingdom
| | - Peers L Davies
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Sabine Tötemeyer
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
658
|
Draft Genome Sequence of Bacillus velezensis Lzh-a42, a Plant Growth-Promoting Rhizobacterium Isolated from Tomato Rhizosphere. GENOME ANNOUNCEMENTS 2018; 6:6/12/e00161-18. [PMID: 29567737 PMCID: PMC5864953 DOI: 10.1128/genomea.00161-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The plant growth-promoting rhizobacterium Bacillus velezensis strain Lzh-a42, which has antimicrobial activity, was isolated from tomato rhizosphere. Here, we report its genome sequence, which includes several predicted functional genes related to secondary metabolite biosynthesis, antimicrobial activity, and biofilm synthesis.
Collapse
|
659
|
Durand G, Javerliat F, Bes M, Veyrieras JB, Guigon G, Mugnier N, Schicklin S, Kaneko G, Santiago-Allexant E, Bouchiat C, Martins-Simões P, Laurent F, Van Belkum A, Vandenesch F, Tristan A. Routine Whole-Genome Sequencing for Outbreak Investigations of Staphylococcus aureus in a National Reference Center. Front Microbiol 2018; 9:511. [PMID: 29616014 PMCID: PMC5869177 DOI: 10.3389/fmicb.2018.00511] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/06/2018] [Indexed: 11/25/2022] Open
Abstract
The French National Reference Center for Staphylococci currently uses DNA arrays and spa typing for the initial epidemiological characterization of Staphylococcus aureus strains. We here describe the use of whole-genome sequencing (WGS) to investigate retrospectively four distinct and virulent S. aureus lineages [clonal complexes (CCs): CC1, CC5, CC8, CC30] involved in hospital and community outbreaks or sporadic infections in France. We used a WGS bioinformatics pipeline based on de novo assembly (reference-free approach), single nucleotide polymorphism analysis, and on the inclusion of epidemiological markers. We examined the phylogeographic diversity of the French dominant hospital-acquired CC8-MRSA (methicillin-resistant S. aureus) Lyon clone through WGS analysis which did not demonstrate evidence of large-scale geographic clustering. We analyzed sporadic cases along with two outbreaks of a CC1-MSSA (methicillin-susceptible S. aureus) clone containing the Panton–Valentine leukocidin (PVL) and results showed that two sporadic cases were closely related. We investigated an outbreak of PVL-positive CC30-MSSA in a school environment and were able to reconstruct the transmission history between eight families. We explored different outbreaks among newborns due to the CC5-MRSA Geraldine clone and we found evidence of an unsuspected link between two otherwise distinct outbreaks. Here, WGS provides the resolving power to disprove transmission events indicated by conventional methods (same sequence type, spa type, toxin profile, and antibiotic resistance profile) and, most importantly, WGS can reveal unsuspected transmission events. Therefore, WGS allows to better describe and understand outbreaks and (inter-)national dissemination of S. aureus lineages. Our findings underscore the importance of adding WGS for (inter-)national surveillance of infections caused by virulent clones of S. aureus but also substantiate the fact that technological optimization at the bioinformatics level is still urgently needed for routine use. However, the greatest limitation of WGS analysis is the completeness and the correctness of the reference database being used and the conversion of floods of data into actionable results. The WGS bioinformatics pipeline (EpiSeqTM) we used here can easily generate a uniform database and associated metadata for epidemiological applications.
Collapse
Affiliation(s)
| | | | - Michèle Bes
- National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France
| | | | | | | | | | - Gaël Kaneko
- Data Analytics Unit, bioMérieux, Marcy-I'Étoile, France
| | | | - Coralie Bouchiat
- National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France
| | | | - Frederic Laurent
- National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France
| | | | - François Vandenesch
- National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France
| | - Anne Tristan
- National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
660
|
Shigemura H, Matsui M, Sekizuka T, Onozuka D, Noda T, Yamashita A, Kuroda M, Suzuki S, Kimura H, Fujimoto S, Oishi K, Sera N, Inoshima Y, Murakami K. Decrease in the prevalence of extended-spectrum cephalosporin-resistant Salmonella following cessation of ceftiofur use by the Japanese poultry industry. Int J Food Microbiol 2018; 274:45-51. [PMID: 29626788 DOI: 10.1016/j.ijfoodmicro.2018.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
Abstract
Extended-spectrum cephalosporin (ESC)-resistant Salmonella in chicken meat is a significant food safety concern. We previously reported that the prevalence of ESC-resistant Salmonella in chicken meat, giblets, and processed chicken (chicken meat products) increased in Japan between 2005 and 2010, with 27.9% (17/61) of Salmonella isolated from chicken meat products in 2010 showing resistance to ESC. The aims of the present study were to clarify trends in the prevalence of ESC-resistant Salmonella in chicken meat products in Japan between 2011 and 2015, and to determine the genetic profiles of bla-harboring plasmids, including replicon types, using next-generation sequencing. Our results showed that the prevalence of ESC-resistant Salmonella, mainly consisting of AmpC β-lactamase CMY-2-producing isolates, in chicken meat products had increased to 45.5% (10/22) by 2011. However, following the voluntary cessation of ceftiofur use by the Japanese poultry industry in 2012, the prevalence of ESC-resistant Salmonella steadily decreased each year, to 29.2% (7/24), 18.2% (4/22), 10.5% (2/19), and 10.5% (2/19) in 2012, 2013, 2014, and 2015, respectively. Furthermore, no AmpC β-lactamase CMY-2-producing isolates were identified in 2014 and 2015. However, the prevalence of Salmonella enterica subspecies enterica serovar Manhattan isolates harboring a blaTEM-52-carrying IncX1 plasmid remained steady even after the cessation of ceftiofur use. Therefore, continuous monitoring of ESC resistance amongst Salmonella isolates from chicken meat products is required for food safety.
Collapse
Affiliation(s)
- Hiroaki Shigemura
- Division of Pathology and Bacteriology, Department of Health Science, Fukuoka Institute of Health and Environmental Sciences, 39 Mukaizano, Dazaifu, Fukuoka 818-0135, Japan
| | - Mari Matsui
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aobachou, Higashimurayama, Tokyo 189-0002, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Daisuke Onozuka
- Department of Health Communication, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tamie Noda
- Fukuoka Kitachikugo Office for Health, Human Services and Environmental Issues, 1642-1 Aikawa-machi Kurume, Fukuoka 839-0861, Japan
| | - Akifumi Yamashita
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Satowa Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aobachou, Higashimurayama, Tokyo 189-0002, Japan
| | - Hirokazu Kimura
- School of Medical Technology, Faculty of Health Science, Gunma Paz University, 1-7-1, Tonyamachi, Takasaki-shi, Gunma 370-0006, Japan
| | - Shuji Fujimoto
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazunori Oishi
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Nobuyuki Sera
- Division of Pathology and Bacteriology, Department of Health Science, Fukuoka Institute of Health and Environmental Sciences, 39 Mukaizano, Dazaifu, Fukuoka 818-0135, Japan
| | - Yasuo Inoshima
- Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Koichi Murakami
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan.
| |
Collapse
|
661
|
Yang M, Song L, Mao J, Shi Y, Wu C, Zhang Y, Huang L, Peng W, Liu X. Complete mitochondrial genome of the soybean leaffolder, Omiodes indicata (Lepidoptera: Pyraloidea: Crambidae), and phylogenetic analysis for Pyraloidea. Int J Biol Macromol 2018. [PMID: 29540301 DOI: 10.1016/j.ijbiomac.2018.03.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Complete mitochondrial genome (mitogenome) of the Omiodes indicata was sequenced and characterized. The circular mitogenome is 15,367bp long, including 13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and an A+T-rich region. Nucleotide composition is highly biased toward A+T nucleotides (81.6%). All 13 PCGs initiate with canonical start codon (ATN), except for cox1 that initiates with CGA. All tRNAs have a typical clover-leaf structure, except for trnS1 (AGN) in which the base pairs of the dihydrouridine (DHU) arm are reduced. In O. indicata, the motifs "ATGATAA" and "ATACTAA" between atp8 and atp6, trnS2 and nad1, respectively, and the motifs "ATAG" and "ATTTA" in the A+T-rich region can be identified. Comparative phylogenetic analyses based on four datasets show that the dataset including all coding positions of 13 PCGs exhibit the highest informativeness in resolving higher phylogeny of Pyraloidea. Bayesian inference (BI) and maximum likelihood (ML) analyses yield generally well-supported phylogenetic relationships among the eleven pyraloid subfamilies involved. However, the relationships among the five subfamilies (Acentropinae, Crambinae, Glaphyriinae, Schoenobiinae and Scopariinae) in ML analysis are ambiguous, which might be resolved by ample sampling in future mitogenome-based phylogenetic studies.
Collapse
Affiliation(s)
- Mingsheng Yang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Lu Song
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Jianhang Mao
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Yuxia Shi
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Changjing Wu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Yunxia Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Li Huang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Weifeng Peng
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Xiaomeng Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China.
| |
Collapse
|
662
|
Hadjadj L, Shoja S, Diene SM, Rolain JM. Dual infections of two carbapenemase-producing Acinetobacter baumannii clinical strains isolated from the same blood culture sample of a patient in Iran. Antimicrob Resist Infect Control 2018; 7:39. [PMID: 29556378 PMCID: PMC5845214 DOI: 10.1186/s13756-018-0329-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/23/2018] [Indexed: 11/30/2022] Open
Abstract
In this study, the draft genome sequences of two different carbapenem-resistant Acinetobacter baumannii clinical strains isolated from the same blood culture sample of an Iranian patient were determined. The strain A. baumannii 554S harbouring blaoxa72 gene belonged to ST 307 whereas A. baumannii 554L carrying blaoxa23 gene belonged to ST 2. We found that this sample contains two different isolates of A. baumannii, each phenotypically and genetically different.
Collapse
Affiliation(s)
- Linda Hadjadj
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Saeed Shoja
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, IR Iran
| | - Seydina M. Diene
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Jean-Marc Rolain
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
663
|
Le Roes-Hill M, Durrell K, Prins A, Meyers PR. Streptosporangium minutum sp. nov., isolated from garden soil exposed to microwave radiation. J Antibiot (Tokyo) 2018. [PMID: 29515231 DOI: 10.1038/s41429-018-0036-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The actinobacterium, strain M26T, was isolated from garden soil that was pre-treated with microwave radiation. The soil sample was collected in Roodepoort, Gauteng Province, South Africa as part of an antibiotic-screening programme. The isolate produced branched vegetative mycelium with sporangiophores bearing small sporangia ranging from 3 to 6 μm in diameter. Rapid genus identification revealed that the isolate belongs to the genus Streptosporangium. To confirm this result, the strain was subjected to polyphasic taxonomic characterisation. Chemotaxonomic characteristics were as follows: meso-DAP in the peptidoglycan, the whole-cell hydrolysate yielded madurose, predominant menaquinones were MK9 (21%), MK9(H2) (40%), MK9(H4) (31%) and MK9(H6) (3%); the polar lipid profile included an aminolipid, phosphoglycolipids, phosphatidylethanolamine, and phosphatidylmonomethylethanolamine. In addition, the fatty acid profile showed the presence of C16:0 (12.8%), C17:1ω8c (14.2%), and 10-methyl-C17:0 (15.8%). Furthermore, 16S rRNA gene sequence phylogenetic analysis showed that the strain is closely related to members of the genus Streptosporangium, which supports its classification within the family Streptosporangiaceae. Strain M26T exhibited antibiosis against a range of pathogenic bacteria, including, but not limited to Acinetobacter baumannii ATCC 19606T, Enterobacter cloacae subsp. cloacae ATCC BAA-1143, Enterococcus faecalis ATCC 51299 (vancomycin resistant), Escherichia coli ATCC 25922, Listeria monocytogenes ATCC 19111, Mycobacterium tuberculosis H37RvT, Pseudomonas aeruginosa ATCC 27853, Salmonella enterica subsp. arizonae ATCC 13314T, and the methicillin-resistant Staphylococcus aureus subsp. aureus ATCC 33591 (MRSA). The name Streptosporangium minutum is proposed with the type strain M26T (=LMG 28850T =NRRL B-65295T).
Collapse
Affiliation(s)
- Marilize Le Roes-Hill
- Biocatalysis and Technical Biology Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville, 7535, South Africa.
| | - Kim Durrell
- Biocatalysis and Technical Biology Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville, 7535, South Africa.,Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Alaric Prins
- Biocatalysis and Technical Biology Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville, 7535, South Africa.,Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville, 7535, South Africa
| | - Paul R Meyers
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch, 7701, Cape Town, South Africa
| |
Collapse
|
664
|
Berendsen RL, Vismans G, Yu K, Song Y, de Jonge R, Burgman WP, Burmølle M, Herschend J, Bakker PAHM, Pieterse CMJ. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME JOURNAL 2018. [PMID: 29520025 PMCID: PMC5956071 DOI: 10.1038/s41396-018-0093-1] [Citation(s) in RCA: 481] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Disease suppressive soils typically develop after a disease outbreak due to the subsequent assembly of protective microbiota in the rhizosphere. The role of the plant immune system in the assemblage of a protective rhizosphere microbiome is largely unknown. In this study, we demonstrate that Arabidopsis thaliana specifically promotes three bacterial species in the rhizosphere upon foliar defense activation by the downy mildew pathogen Hyaloperonospora arabidopsidis. The promoted bacteria were isolated and found to interact synergistically in biofilm formation in vitro. Although separately these bacteria did not affect the plant significantly, together they induced systemic resistance against downy mildew and promoted growth of the plant. Moreover, we show that the soil-mediated legacy of a primary population of downy mildew infected plants confers enhanced protection against this pathogen in a second population of plants growing in the same soil. Together our results indicate that plants can adjust their root microbiome upon pathogen infection and specifically recruit a group of disease resistance-inducing and growth-promoting beneficial microbes, therewith potentially maximizing the chance of survival of their offspring that will grow in the same soil.
Collapse
Affiliation(s)
- Roeland L Berendsen
- Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Gilles Vismans
- Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Ke Yu
- Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Yang Song
- Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.,Jiangsu Provincial Coordinated Research Center for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 927, 9052, Ghent, Belgium
| | - Wilco P Burgman
- Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, København, Denmark
| | - Jakob Herschend
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, København, Denmark
| | - Peter A H M Bakker
- Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
665
|
Zhao Q, Wang J, Wang MQ, Cai B, Zhang HF, Wei JF. Complete Mitochondrial Genome of Dinorhynchus dybowskyi (Hemiptera: Pentatomidae: Asopinae) and Phylogenetic Analysis of Pentatomomorpha Species. JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:4970868. [PMID: 29718506 PMCID: PMC5905379 DOI: 10.1093/jisesa/iey031] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Indexed: 05/30/2023]
Abstract
Dinorhynchus dybowskyi (Hemiptera: Pentatomidae: Asopinae) is used as a biological control agent against various insect pests for its predatory. In the present study, the complete mitochondrial genome (mitogenome) of the species was sequenced using the next-generation sequencing technology. The results showed that the mitogenome is 15,952 bp long, including 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs), and a control region. Furthermore, the gene order and orientation of this mitogenome are identical to those of most heteropterans. There are 21 intergenic spacers (of length 1-28 bp) and 13 overlapping regions (of length 1-23 bp) throughout the genome. The control region is 1,291 bp long. The start codon of the PCGs is ATN, except cox1 (TTG), and stop codon is TAA, except nad1 (TAG). The 22 tRNAs exhibit a typical cloverleaf secondary structure, except trnS1, which lacks a dihydrouridine (DHU) arm and trnV, where the DHU arm forms a simple loop. The analyses based on nucleotide sequences of the 13 PCGs by Bayesian Inference and maximum likelihood methods. The results support the monophyly of five superfamilies Aradoidea, Pentatomoidea, Pyrrhocoroidea, Lygaeoidea, and Coreoidea. Within Pentatomoidea, the relationship observed is as follows: (Plataspidae + Urostylididae) + (Pentatomidae + (Acanthosomatidae + (Cydnidae + (Scutelleridae + (Dinidoridae + Tessaratomidae))))), and D. dybowskyi was placed in Pentatomidae and close to Eurydema gebleri.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Entomology, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Juan Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meng-Qing Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Cai
- Hainan Entry-Exit Inspection and Quarantine Bureau, Haikou, Hainan, China
| | - Hu-Fang Zhang
- Department of Entomology, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jiu-Feng Wei
- Department of Entomology, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
666
|
Cid FP, Maruyama F, Murase K, Graether SP, Larama G, Bravo LA, Jorquera MA. Draft genome sequences of bacteria isolated from the Deschampsia antarctica phyllosphere. Extremophiles 2018; 22:537-552. [PMID: 29492666 DOI: 10.1007/s00792-018-1015-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/18/2018] [Indexed: 11/28/2022]
Abstract
Genome analyses are being used to characterize plant growth-promoting (PGP) bacteria living in different plant compartiments. In this context, we have recently isolated bacteria from the phyllosphere of an Antarctic plant (Deschampsia antarctica) showing ice recrystallization inhibition (IRI), an activity related to the presence of antifreeze proteins (AFPs). In this study, the draft genomes of six phyllospheric bacteria showing IRI activity were sequenced and annotated according to their functional gene categories. Genome sizes ranged from 5.6 to 6.3 Mbp, and based on sequence analysis of the 16S rRNA genes, five strains were identified as Pseudomonas and one as Janthinobacterium. Interestingly, most strains showed genes associated with PGP traits, such as nutrient uptake (ammonia assimilation, nitrogen fixing, phosphatases, and organic acid production), bioactive metabolites (indole acetic acid and 1-aminocyclopropane-1-carboxylate deaminase), and antimicrobial compounds (hydrogen cyanide and pyoverdine). In relation with IRI activity, a search of putative AFPs using current bioinformatic tools was also carried out. Despite that genes associated with reported AFPs were not found in these genomes, genes connected to ice-nucleation proteins (InaA) were found in all Pseudomonas strains, but not in the Janthinobacterium strain.
Collapse
Affiliation(s)
- Fernanda P Cid
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
- Applied Microbial Ecology Laboratory, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile
| | - Fumito Maruyama
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- The Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Tokyo, Japan
| | - Kazunori Murase
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Steffen P Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Giovanni Larama
- Department of Mathematical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Leon A Bravo
- Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de la Frontera, Temuco, Chile
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Milko A Jorquera
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile.
- Applied Microbial Ecology Laboratory, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile.
| |
Collapse
|
667
|
Role of a single noncoding nucleotide in the evolution of an epidemic African clade of Salmonella. Proc Natl Acad Sci U S A 2018; 115:E2614-E2623. [PMID: 29487214 PMCID: PMC5856525 DOI: 10.1073/pnas.1714718115] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Invasive nontyphoidal Salmonella disease is a major and previously neglected tropical disease responsible for an estimated ∼390,000 deaths per year in Africa, largely caused by a variant of Salmonella Typhimurium called ST313. Despite the availability of >100,000 Salmonella genomes, it has proven challenging to associate individual SNPs with pathogenic traits of this dangerous bacterium. Here, we used a transcriptomic strategy to identify a single-nucleotide change in a promoter region responsible for crucial phenotypic differences of African S. Typhimurium. Our findings show that a noncoding nucleotide of the bacterial genome can have a profound effect upon the pathogenesis of infectious disease. Salmonella enterica serovar Typhimurium ST313 is a relatively newly emerged sequence type that is causing a devastating epidemic of bloodstream infections across sub-Saharan Africa. Analysis of hundreds of Salmonella genomes has revealed that ST313 is closely related to the ST19 group of S. Typhimurium that cause gastroenteritis across the world. The core genomes of ST313 and ST19 vary by only ∼1,000 SNPs. We hypothesized that the phenotypic differences that distinguish African Salmonella from ST19 are caused by certain SNPs that directly modulate the transcription of virulence genes. Here we identified 3,597 transcriptional start sites of the ST313 strain D23580, and searched for a gene-expression signature linked to pathogenesis of Salmonella. We identified a SNP in the promoter of the pgtE gene that caused high expression of the PgtE virulence factor in African S. Typhimurium, increased the degradation of the factor B component of human complement, contributed to serum resistance, and modulated virulence in the chicken infection model. We propose that high levels of PgtE expression by African S. Typhimurium ST313 promote bacterial survival and dissemination during human infection. Our finding of a functional role for an extragenic SNP shows that approaches used to deduce the evolution of virulence in bacterial pathogens should include a focus on noncoding regions of the genome.
Collapse
|
668
|
Li G, Qian H, Zhao G, Xu A. The complete mitochondrial genome of the silkworm, Bombyx mori strain BaiyuN. MITOCHONDRIAL DNA PART B-RESOURCES 2018; 3:280-281. [PMID: 33474142 PMCID: PMC7800153 DOI: 10.1080/23802359.2018.1443039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here, we report the complete mitochondrial genome of a Bombyx mori strain BaiyuN, which is identified to be highly resistant to Bombyx mori nucleopolyhedrovirus (BmNPV). Its complete mitochondrial genome is 15,655 bp in length (GenBank accession no. MG797555), consisting of 13 protein-coding genes, 22 tRNA genes, 2 rRNA, and 1 control region (494 bp). The complete mitogenome of the B. mori strain BaiyuN could provide a basic data for further phylogenetics and antivirus research.
Collapse
Affiliation(s)
- Gang Li
- Jiangsu University of Science and Technolgy, Zhenjiang, Jiangsu, China.,Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Heying Qian
- Jiangsu University of Science and Technolgy, Zhenjiang, Jiangsu, China
| | - Guodong Zhao
- Jiangsu University of Science and Technolgy, Zhenjiang, Jiangsu, China
| | - Anying Xu
- Jiangsu University of Science and Technolgy, Zhenjiang, Jiangsu, China
| |
Collapse
|
669
|
Becker L, Fuchs S, Pfeifer Y, Semmler T, Eckmanns T, Korr G, Sissolak D, Friedrichs M, Zill E, Tung ML, Dohle C, Kaase M, Gatermann S, Rüssmann H, Steglich M, Haller S, Werner G. Whole Genome Sequence Analysis of CTX-M-15 Producing Klebsiella Isolates Allowed Dissecting a Polyclonal Outbreak Scenario. Front Microbiol 2018. [PMID: 29527200 PMCID: PMC5829066 DOI: 10.3389/fmicb.2018.00322] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Extended-spectrum β-lactamase (ESBL) producing Klebsiella pneumoniae pose an important threat of infection with increased morbidity and mortality, especially for immunocompromised patients. Here, we use the rise of multidrug-resistant K. pneumoniae in a German neurorehabilitation center from April 2015 to April 2016 to dissect the benefit of whole genome sequencing (WGS) for outbreak analyses. In total, 53 isolates were obtained from 52 patients and examined using WGS. Two independent analysis strategies (reference-based and -free) revealed the same distinct clusters of two CTX-M-15 producing K. pneumoniae clones (ST15, n = 31; ST405, n = 7) and one CTX-M-15 producing Klebsiella quasipneumoniae strain (ST414, n = 8). Additionally, we determined sequence variations associated with antimicrobial resistance phenotypes in single isolates expressing carbapenem and colistin resistance, respectively. For rapid detection of the major K. pneumoniae outbreak clone (ST15), a selective triplex PCR was deduced from WGS data of the major outbreak strain and K. pneumoniae genome data deposited in central databases. Moreover, we introduce two novel open-source applications supporting reference genome selection (refRank; https://gitlab.com/s.fuchs/refRank) and alignment-based SNP-filtering (SNPfilter; https://gitlab.com/s.fuchs/snpfilter) in NGS analyses.
Collapse
Affiliation(s)
- Laura Becker
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Stephan Fuchs
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Yvonne Pfeifer
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Torsten Semmler
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Tim Eckmanns
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Gerit Korr
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany.,Postgraduate Training for Applied Epidemiology, Robert Koch Institute, Affiliated to the European Programme for Intervention Epidemiology Training, European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Dagmar Sissolak
- Department of Infection Control, Medical Disaster Control and Environmental Health Control, Department of Public Health, Berlin, Germany
| | | | - Edith Zill
- Medical Care Centre Labor 28 GmbH, Berlin, Germany
| | | | | | - Martin Kaase
- National Reference Centre for Multidrug-Resistant Gram-Negative Bacteria, Department for Medical Microbiology, Ruhr-University Bochum, Berlin, Germany
| | - Sören Gatermann
- National Reference Centre for Multidrug-Resistant Gram-Negative Bacteria, Department for Medical Microbiology, Ruhr-University Bochum, Berlin, Germany
| | - Holger Rüssmann
- Immunology and Laboratory Medicine, Institute for Microbiology, HELIOS Klinikum Emil von Behring, Berlin, Germany
| | - Matthias Steglich
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Culture, Braunschweig, Germany
| | - Sebastian Haller
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Guido Werner
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
670
|
Li C, Huang H, Yang S, He H, Fu Q, Chen S, Xiao H. Complete mitochondrial genome and phylogenetic analysis of Sinocyclocheilus oxycephalus (Cypriniformes: Cyprinidae). Mitochondrial DNA B Resour 2018; 3:243-244. [PMID: 33474131 PMCID: PMC7799992 DOI: 10.1080/23802359.2018.1438859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 10/27/2022] Open
Abstract
Sinocyclocheilus oxycephalus is a freshwater cyprinid fish of high nutritional value, endemic to Shilin County, Southwestern China. In this study, we first sequenced the complete mitochondrial genome (mitogenome) of S. oxycephalus. The whole length of mitogenome is 16,585 bp, which contains 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and a control region. The gene arrangement and structure is identical to other previously reported Sinocyclocheilus fishes. The overall base composition is 31.26% A, 16.42% G, 25.41% T and 26.90% C, with AT content of 56.67%. Phylogenetic analysis using mitogenomes of 13 cyprinid fishes showed that S. oxycephalus are closely related to S. anophthalmus, S. grahami, and S. wumengshanensis, and 11 Sinocyclocheilus species are grouped as a monophyletic clade with strong supports.
Collapse
Affiliation(s)
- Chunqing Li
- School of Life Sciences, Yunnan University, Kunming, China
- National Demonstration Center for Experimental Life Sciences Education (Yunnan University) Yunnan University, Kunming, China
| | - Haitao Huang
- School of Life Sciences, Yunnan University, Kunming, China
- National Demonstration Center for Experimental Life Sciences Education (Yunnan University) Yunnan University, Kunming, China
| | - Sifan Yang
- School of Life Sciences, Yunnan University, Kunming, China
- National Demonstration Center for Experimental Life Sciences Education (Yunnan University) Yunnan University, Kunming, China
| | - Hao He
- School of Life Sciences, Yunnan University, Kunming, China
- National Demonstration Center for Experimental Life Sciences Education (Yunnan University) Yunnan University, Kunming, China
| | - Qingyong Fu
- School of Life Sciences, Yunnan University, Kunming, China
- National Demonstration Center for Experimental Life Sciences Education (Yunnan University) Yunnan University, Kunming, China
| | - Shanyuan Chen
- School of Life Sciences, Yunnan University, Kunming, China
- National Demonstration Center for Experimental Life Sciences Education (Yunnan University) Yunnan University, Kunming, China
| | - Heng Xiao
- School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
671
|
Liu P, Guo Q, Xu J, Liao C, Dai X. Complete mitochondrial genome of a leaf beetle, Callispa bowringi (Coleoptera: Chrysomelidae). Mitochondrial DNA B Resour 2018; 3:213-214. [PMID: 33474122 PMCID: PMC7800483 DOI: 10.1080/23802359.2017.1413302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/01/2017] [Indexed: 11/09/2022] Open
Abstract
The complete circular mitochondrial genome of Callispa bowringi was 17,060 bp in length, including two ribosomal RNA genes, 22 transfer RNAs, 13 protein-coding genes (PCGs) and one 2246-bp non-coding AT-rich region. All 22 tRNA genes displayed a typical clover-leaf structure except for tRNASer (AGN). All 13 PCGs initiated with ATN codons. Only three PCGs used the incomplete stop codons "TA" or "T", while ten PCGs terminated with typical stop codons "TAA" and "TGA". Phylogenetic analysis based on 13 PCGs of Chrysomelidae mitogenomes showed that C. bowringi was closely related to Agonita chinensis and Rhadinosa nigrocyanea.
Collapse
Affiliation(s)
- Peng Liu
- Leafminer Group, School of Life and Environmental Sciences, Gannan Normal University, Ganzhou, China
| | - Qingyun Guo
- Leafminer Group, School of Life and Environmental Sciences, Gannan Normal University, Ganzhou, China
| | - Jiasheng Xu
- Leafminer Group, School of Life and Environmental Sciences, Gannan Normal University, Ganzhou, China
| | - Chengqing Liao
- Leafminer Group, School of Life and Environmental Sciences, Gannan Normal University, Ganzhou, China
| | - Xiaohua Dai
- Leafminer Group, School of Life and Environmental Sciences, Gannan Normal University, Ganzhou, China
- National Navel-Orange Engineering Research Center, Ganzhou, China
| |
Collapse
|
672
|
Bergsveinson J, Goerzen S, Redekop A, Zoerb S, Ziola B. Genetic Variability in the Hop-Tolerance horC Gene of Beer-Spoiling Lactic Acid Bacteria. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2016-3962-01] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Jordyn Bergsveinson
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Room 2841 Royal University Hospital, 103 Hospital Drive, Saskatoon, SK Canada S7N 0W8
| | - Scott Goerzen
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Room 2841 Royal University Hospital, 103 Hospital Drive, Saskatoon, SK Canada S7N 0W8
| | - Anna Redekop
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Room 2841 Royal University Hospital, 103 Hospital Drive, Saskatoon, SK Canada S7N 0W8
| | - Sheree Zoerb
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Room 2841 Royal University Hospital, 103 Hospital Drive, Saskatoon, SK Canada S7N 0W8
| | - Barry Ziola
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Room 2841 Royal University Hospital, 103 Hospital Drive, Saskatoon, SK Canada S7N 0W8
| |
Collapse
|
673
|
Zhang W, Li Y, Chen Y, Xu S, Du G, Shi H, Zhou J, Chen J. Complete genome sequence and analysis of the industrial Saccharomyces cerevisiae strain N85 used in Chinese rice wine production. DNA Res 2018; 25:4838783. [PMID: 29415277 PMCID: PMC6014378 DOI: 10.1093/dnares/dsy002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 01/10/2018] [Indexed: 12/17/2022] Open
Abstract
Chinese rice wine is a popular traditional alcoholic beverage in China, while its brewing processes have rarely been explored. We herein report the first gapless, near-finished genome sequence of the yeast strain Saccharomyces cerevisiae N85 for Chinese rice wine production. Several assembly methods were used to integrate Pacific Bioscience (PacBio) and Illumina sequencing data to achieve high-quality genome sequencing of the strain. The genome encodes more than 6,000 predicted proteins, and 238 long non-coding RNAs, which are validated by RNA-sequencing data. Moreover, our annotation predicts 171 novel genes that are not present in the reference S288c genome. We also identified 65,902 single nucleotide polymorphisms and small indels, many of which are located within genic regions. Dozens of larger copy-number variations and translocations were detected, mainly enriched in the subtelomeres, suggesting these regions may be related to genomic evolution. This study will serve as a milestone in studying of Chinese rice wine and related beverages in China and in other countries. It will help to develop more scientific and modern fermentation processes of Chinese rice wine, and explore metabolism pathways of desired and harmful components in Chinese rice wine to improve its taste and nutritional value.
Collapse
Affiliation(s)
- Weiping Zhang
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214443, China
| | - Yudong Li
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214443, China
- Department of Bioengineering, School of Food Sciences and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yiwang Chen
- Department of Bioengineering, School of Food Sciences and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Sha Xu
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214443, China
| | - Guocheng Du
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214443, China
| | - Huidong Shi
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Jingwen Zhou
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214443, China
| | - Jian Chen
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214443, China
| |
Collapse
|
674
|
Abdelbary MMH, Senn L, Moulin E, Prod'hom G, Croxatto A, Greub G, Blanc DS. Evaluating the use of whole-genome sequencing for outbreak investigations in the lack of closely related reference genome. INFECTION GENETICS AND EVOLUTION 2018; 59:1-6. [PMID: 29367013 DOI: 10.1016/j.meegid.2018.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/10/2017] [Accepted: 01/18/2018] [Indexed: 12/01/2022]
Abstract
Whole-genome sequencing (WGS) has emerged as a powerful molecular typing method for outbreak analysis enabling the rapid discrimination between outbreak and non-outbreak isolates. However, such analysis can be challenging in the absence of closely related reference genomes. In this study, we assessed the use of WGS in investigating an outbreak of a relatively understudied bacterial pathogen with no publicly available closely related reference genome. Eleven Burkholderia cepacia complex (Bcc) isolates (seven from patients and four from disposable dermal gloves packages) that were collected during an outbreak were sequenced using the Illumina MiSeq platform. Our results showed that mapping the 11 sequenced Bcc outbreak isolates against a genetically distant reference genome yield loses coverage (31.6-48.3%) and a high number of detected false single-nucleotide polymorphisms (SNPs) (1123-2139). Therefore, a reference genome consensus from an outbreak clinical isolate was generated by combining both de novo assembly and mapping approaches. Based on this approach, we were able to demonstrate that the Bcc outbreak isolates were closely related and were phylogenetically distinct from the 11 publically available Bcc genomes. In addition, the pairwise SNP distance analysis detected only 1 to 6 SNPs differences among the outbreak isolates, confirming that contaminated disposable dermal gloves were the cause of the outbreak.
Collapse
Affiliation(s)
- Mohamed M H Abdelbary
- Service of Hospital Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland.
| | - Laurence Senn
- Service of Hospital Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Estelle Moulin
- Service of Hospital Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Guy Prod'hom
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Antony Croxatto
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Dominique S Blanc
- Service of Hospital Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland; Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
675
|
Diniz AN, Coura FM, Rupnik M, Adams V, Stent TL, Rood JI, de Oliveira CA, Lobato FCF, Silva ROS. The incidence of Clostridioides difficile and Clostridium perfringens netF-positive strains in diarrheic dogs. Anaerobe 2018; 49:58-62. [PMID: 29274467 PMCID: PMC7111177 DOI: 10.1016/j.anaerobe.2017.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 02/06/2023]
Abstract
The aim of this study was to examine the incidence of Clostridioides (previously Clostridium) difficile and Clostridium perfringens in the feces of diarrheic and non-diarrheic dogs. Also, the presence of other common canine enteropathogens was examined. Toxigenic C. difficile and C. perfringens positive for the NetF-encoding gene (netF) were detected in 11 (11.9%) and seven (7.6%) diarrheic dogs, respectively. Three dogs were diagnosed simultaneously with toxigenic C. difficile and netF-positive C. perfringens. Among other enteropathogens, Giardia sp. was the most common agent detected in dogs positive for toxigenic C. difficile or netF-positive C. perfringens. The results suggest that C. difficile and C. perfringens occur more frequently as a primary cause of diarrhea.
Collapse
Affiliation(s)
- Amanda Nadia Diniz
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Antônio Carlos Avenue, 6627, Belo Horizonte, MG, 31.270-901, Brazil
| | - Fernanda Morcatti Coura
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Antônio Carlos Avenue, 6627, Belo Horizonte, MG, 31.270-901, Brazil
| | - Maja Rupnik
- Faculty of Medicine, University of Maribor, Slovenia; National Laboratory for Health, Environment and Food, Maribor, Slovenia
| | - Vicki Adams
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Thomas L Stent
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Julian I Rood
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Carlos Augusto de Oliveira
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Antônio Carlos Avenue, 6627, Belo Horizonte, MG, 31.270-901, Brazil
| | - Francisco Carlos Faria Lobato
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Antônio Carlos Avenue, 6627, Belo Horizonte, MG, 31.270-901, Brazil
| | - Rodrigo Otávio Silveira Silva
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Antônio Carlos Avenue, 6627, Belo Horizonte, MG, 31.270-901, Brazil.
| |
Collapse
|
676
|
Draft Genome Sequences of Four Salmonella enterica subsp. enterica Serovar Enteritidis Strains Implicated in Infections of Avian and Human Hosts. GENOME ANNOUNCEMENTS 2018; 6:6/4/e01550-17. [PMID: 29371366 PMCID: PMC5786692 DOI: 10.1128/genomea.01550-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Salmonella enterica subsp. enterica serovar Enteritidis is a wide-host-range pathogen. Occasionally, it is involved in invasive infections, leading to a high mortality rate. Here, we present the draft genome sequences of four S. Enteritidis strains obtained from human and avian hosts that had been involved in bacteremia, gastroenteritis, and primary infections.
Collapse
|
677
|
Draft Genome Sequence of a Leptospira interrogans Strain Isolated from the Urine of an Asymptomatic Dog in Thailand. GENOME ANNOUNCEMENTS 2018; 6:6/4/e01140-17. [PMID: 29371342 PMCID: PMC5786668 DOI: 10.1128/genomea.01140-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In 2014, Leptospira interrogans strain CUDO8 was isolated from the urine of an asymptomatic dog in Thailand. Here we report the draft genome sequence of this pathogenic bacterium.
Collapse
|
678
|
Draft Genome Sequence of Pantoea ananatis Strain 1.38, a Bacterium Isolated from the Rhizosphere of Oryza sativa var. Puntal That Shows Biotechnological Potential as an Inoculant. GENOME ANNOUNCEMENTS 2018; 6:6/4/e01547-17. [PMID: 29371365 PMCID: PMC5786691 DOI: 10.1128/genomea.01547-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pantoea ananatis 1.38 is a strain isolated from the rhizosphere of irrigated rice in southern Spain. Its genome was estimated at 4,869,281 bp, with 4,644 coding sequences (CDSs). The genome encompasses several CDSs related to plant growth promotion, such as that for siderophore metabolism, and virulence genes characteristic of pathogenic Pantoea spp. are absent.
Collapse
|
679
|
Katsir L, Zhepu R, Piasezky A, Jiang J, Sela N, Freilich S, Bahar O. Genome Sequence of " Candidatus Carsonella ruddii" Strain BT from the Psyllid Bactericera trigonica. GENOME ANNOUNCEMENTS 2018; 6:e01466-17. [PMID: 29371350 PMCID: PMC5786676 DOI: 10.1128/genomea.01466-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 11/22/2022]
Abstract
The genome of "Candidatus Carsonella ruddii" strain BT from Bactericera trigonica in Israel was sequenced. The full-length genome is 173,904 bp long and has a G+C content of 14.6%, with 224 predicted open reading frames (ORFs) and 30 RNAs.
Collapse
Affiliation(s)
- Leron Katsir
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Ruan Zhepu
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Alon Piasezky
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Noa Sela
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Shiri Freilich
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Ofir Bahar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
680
|
Nóbrega MS, Silva BS, Leomil L, Tschoeke DA, Campeão ME, Garcia GD, Dias GA, Vieira VV, Thompson CC, Thompson FL. Description of Alteromonas abrolhosensis sp. nov., isolated from sea water of Abrolhos Bank, Brazil. Antonie van Leeuwenhoek 2018; 111:1131-1138. [PMID: 29349565 DOI: 10.1007/s10482-018-1016-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/10/2018] [Indexed: 11/29/2022]
Abstract
Two Gram-negative, motile, aerobic bacteria isolated from waters of the Abrolhos Bank were classified through a whole genome-based taxonomy. Strains PEL67ET and PEL68C shared 99% 16S rRNA and dnaK sequence identity with Alteromonas marina SW-47T and Alteromonas macleodii ATCC 27126T. In silico DNA-DNA Hybridization, i.e. genome-to-genome distance (GGD), average amino acid identity (AAI) and average nucleotide identity (ANI) showed that PEL67ET and PEL68C had identity values between 33-36, 86-88 and 83-84%, and 85-86 and 83%, respectively, towards their close neighbors A. macleodii ATCC 27126T and A. marina SW-47T. The DNA G + C contents of PEL67ET and PEL68C were 44.5%. The phenotypic features that differentiate PEL67ET and PEL68C strains from their close neighbors were assimilation of galactose and activity of phosphatase, and lack of mannitol, maltose, acetate, xylose and glycerol assimilation and lack of lipase, α and β-glucosidase activity. The new species Alteromonas abrolhosensis is proposed. The type strain is PEL67ET (= CBAS 610T = CAIM 1925T).
Collapse
Affiliation(s)
- Maria S Nóbrega
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Bruno S Silva
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Luciana Leomil
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Diogo Antonio Tschoeke
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio De Janeiro, RJ, Brazil.,Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil.,SAGE-COPPE, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Mariana E Campeão
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Gizele D Garcia
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio De Janeiro, RJ, Brazil.,Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil
| | - Graciela A Dias
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | | | - Cristiane C Thompson
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio De Janeiro, RJ, Brazil. .,CCS/IB/BIOMAR, Lab. de Microbiologia, Cidade Universitária, Av. Carlos Chagas Filho 373. Sala 102, Bloco A, Rio de Janeiro, RJ, CEP 21941-599, Brazil.
| | - Fabiano L Thompson
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio De Janeiro, RJ, Brazil. .,SAGE-COPPE, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil. .,CCS/IB/BIOMAR, Lab. de Microbiologia, Cidade Universitária, Av. Carlos Chagas Filho 373. Sala 102, Bloco A, Rio de Janeiro, RJ, CEP 21941-599, Brazil.
| |
Collapse
|
681
|
Acuña-Amador L, Primot A, Cadieu E, Roulet A, Barloy-Hubler F. Genomic repeats, misassembly and reannotation: a case study with long-read resequencing of Porphyromonas gingivalis reference strains. BMC Genomics 2018; 19:54. [PMID: 29338683 PMCID: PMC5771137 DOI: 10.1186/s12864-017-4429-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/29/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Without knowledge of their genomic sequences, it is impossible to make functional models of the bacteria that make up human and animal microbiota. Unfortunately, the vast majority of publicly available genomes are only working drafts, an incompleteness that causes numerous problems and constitutes a major obstacle to genotypic and phenotypic interpretation. In this work, we began with an example from the class Bacteroidia in the phylum Bacteroidetes, which is preponderant among human orodigestive microbiota. We successfully identify the genetic loci responsible for assembly breaks and misassemblies and demonstrate the importance and usefulness of long-read sequencing and curated reannotation. RESULTS We showed that the fragmentation in Bacteroidia draft genomes assembled from massively parallel sequencing linearly correlates with genomic repeats of the same or greater size than the reads. We also demonstrated that some of these repeats, especially the long ones, correspond to misassembled loci in three reference Porphyromonas gingivalis genomes marked as circularized (thus complete or finished). We prove that even at modest coverage (30X), long-read resequencing together with PCR contiguity verification (rrn operons and an integrative and conjugative element or ICE) can be used to identify and correct the wrongly combined or assembled regions. Finally, although time-consuming and labor-intensive, consistent manual biocuration of three P. gingivalis strains allowed us to compare and correct the existing genomic annotations, resulting in a more accurate interpretation of the genomic differences among these strains. CONCLUSIONS In this study, we demonstrate the usefulness and importance of long-read sequencing in verifying published genomes (even when complete) and generating assemblies for new bacterial strains/species with high genomic plasticity. We also show that when combined with biological validation processes and diligent biocurated annotation, this strategy helps reduce the propagation of errors in shared databases, thus limiting false conclusions based on incomplete or misleading information.
Collapse
Affiliation(s)
- Luis Acuña-Amador
- Institut de Génétique et Développement de Rennes, CNRS, UMR6290, Université de Rennes 1, Rennes, France.,Laboratorio de Investigación en Bacteriología Anaerobia, Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Aline Primot
- Institut de Génétique et Développement de Rennes, CNRS, UMR6290, Université de Rennes 1, Rennes, France
| | - Edouard Cadieu
- Institut de Génétique et Développement de Rennes, CNRS, UMR6290, Université de Rennes 1, Rennes, France
| | - Alain Roulet
- GenoToul Genome & Transcriptome (GeT-PlaGe), INRA, US1426, Castanet-Tolosan, France
| | - Frédérique Barloy-Hubler
- Institut de Génétique et Développement de Rennes, CNRS, UMR6290, Université de Rennes 1, Rennes, France.
| |
Collapse
|
682
|
Novel endogenous simian retroviral integrations in Vero cells: implications for quality control of a human vaccine cell substrate. Sci Rep 2018; 8:644. [PMID: 29330501 PMCID: PMC5766633 DOI: 10.1038/s41598-017-18934-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/14/2017] [Indexed: 12/28/2022] Open
Abstract
African green monkey (AGM)-derived Vero cells have been utilized to produce various human vaccines. The Vero cell genome harbors a variety of simian endogenous type D retrovirus (SERV) sequences. In this study, a transcriptome analysis showed that DNA hypomethylation released the epigenetic repression of SERVs in Vero cells. Moreover, comparative genomic analysis of three Vero cell sublines and an AGM reference revealed that the genomes of the sublines have ~80 SERV integrations. Among them, ~60 integrations are present within all three cell sublines and absent from the reference sequence. At least several of these integrations consist of complete SERV proviruses. These results strongly suggest that SERVs integrated in the genome of Vero cells did not retrotranspose after the establishment of the cell lineage as far as cells were maintained under standard culture and passage conditions, providing a scientific basis for controlling the quality of pharmaceutical cell substrates and their derived biologics.
Collapse
|
683
|
First Draft Genome Sequences of Two Bartonella tribocorum Strains from Laos and Cambodia. GENOME ANNOUNCEMENTS 2018; 6:6/2/e01435-17. [PMID: 29326218 PMCID: PMC5764942 DOI: 10.1128/genomea.01435-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bartonella tribocorum is a Gram-negative bacterium known to infect animals, and rodents in particular, throughout the world. In this report, we present the draft genome sequences of two strains of B. tribocorum isolated from the blood of a rodent in Laos and a shrew in Cambodia.
Collapse
|
684
|
Dixit OVA, O'Brien CL, Pavli P, Gordon DM. Within-host evolution versus immigration as a determinant of Escherichia coli diversity in the human gastrointestinal tract. Environ Microbiol 2017; 20:993-1001. [PMID: 29266651 DOI: 10.1111/1462-2920.14028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/12/2017] [Indexed: 11/28/2022]
Abstract
When a human host harbors two or more strains of Escherichia coli, the second strain is more likely to be a member of the same phylogroup rather than a different phylogroup. This outcome may be the consequence of a within host evolution event or an independent immigration/establishment event. To determine the relative importance of these two events in determining E. coli diversity in a host, a collection of multiple E. coli isolates recovered from each of 67 patients undergoing colonoscopies was used. Whole genome sequence data were available for one example of every REP-fingerprint type identified in a patient. Sequence type (ST) and single-nucleotide polymorphism (SNP) analyses revealed that 83% of strains observed in the host population were a consequence of immigration/establishment events. Restricting the analysis to hosts harboring two or more strains belonging to the same phylogroup revealed that in about half of these cases, the presence of a second strain belonging to the same phylogroup was the consequence of an independent immigration/establishment event. Thus, the results of this study show that despite hosts being exposed to a diversity of E. coli via their food, factors related to the host also determine what E. coli strains succeed in establishing.
Collapse
Affiliation(s)
- Ojas V A Dixit
- Ecology and Evolution, Research School of Biology, The Australian National University, 116 Daley Road, Acton, ACT, 2601, Australia
| | - Claire L O'Brien
- Medical School, Australian National University, Canberra, ACT, Australia.,Gastroenterology and Hepatology Unit, Canberra Hospital, Canberra, ACT, Australia
| | - Paul Pavli
- Medical School, Australian National University, Canberra, ACT, Australia.,Gastroenterology and Hepatology Unit, Canberra Hospital, Canberra, ACT, Australia
| | - David M Gordon
- Ecology and Evolution, Research School of Biology, The Australian National University, 116 Daley Road, Acton, ACT, 2601, Australia
| |
Collapse
|
685
|
Cecchini T, Yoon EJ, Charretier Y, Bardet C, Beaulieu C, Lacoux X, Docquier JD, Lemoine J, Courvalin P, Grillot-Courvalin C, Charrier JP. Deciphering Multifactorial Resistance Phenotypes in Acinetobacter baumannii by Genomics and Targeted Label-free Proteomics. Mol Cell Proteomics 2017; 17:442-456. [PMID: 29259044 DOI: 10.1074/mcp.ra117.000107] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/22/2017] [Indexed: 12/19/2022] Open
Abstract
Resistance to β-lactams in Acinetobacter baumannii involves various mechanisms. To decipher them, whole genome sequencing (WGS) and real-time quantitative polymerase chain reaction (RT-qPCR) were complemented by mass spectrometry (MS) in selected reaction monitoring mode (SRM) in 39 clinical isolates. The targeted label-free proteomic approach enabled, in one hour and using a single method, the quantitative detection of 16 proteins associated with antibiotic resistance: eight acquired β-lactamases (i.e. GES, NDM-1, OXA-23, OXA-24, OXA-58, PER, TEM-1, and VEB), two resident β-lactamases (i.e. ADC and OXA-51-like) and six components of the two major efflux systems (i.e. AdeABC and AdeIJK). Results were normalized using "bacterial quantotypic peptides," i.e. peptide markers of the bacterial quantity, to obtain precise protein quantitation (on average 8.93% coefficient of variation for three biological replicates). This allowed to correlate the levels of resistance to β-lactam with those of the production of acquired as well as resident β-lactamases or of efflux systems. SRM detected enhanced ADC or OXA-51-like production and absence or increased efflux pump production. Precise protein quantitation was particularly valuable to detect resistance mechanisms mediated by regulated genes or by overexpression of chromosomal genes. Combination of WGS and MS, two orthogonal and complementary techniques, allows thereby interpretation of the resistance phenotypes at the molecular level.
Collapse
Affiliation(s)
- Tiphaine Cecchini
- From the ‡Technology Research Department, Innovation Unit, bioMérieux SA, Marcy l'Etoile, France.,§UMR 5280, Institut des Sciences Analytiques, Université de Lyon, Lyon 1, Villeurbanne, France
| | - Eun-Jeong Yoon
- ¶Institut Pasteur, Unité des Agents Antibactériens, Paris, France
| | - Yannick Charretier
- From the ‡Technology Research Department, Innovation Unit, bioMérieux SA, Marcy l'Etoile, France.,§UMR 5280, Institut des Sciences Analytiques, Université de Lyon, Lyon 1, Villeurbanne, France
| | - Chloé Bardet
- From the ‡Technology Research Department, Innovation Unit, bioMérieux SA, Marcy l'Etoile, France.,§UMR 5280, Institut des Sciences Analytiques, Université de Lyon, Lyon 1, Villeurbanne, France
| | - Corinne Beaulieu
- From the ‡Technology Research Department, Innovation Unit, bioMérieux SA, Marcy l'Etoile, France
| | - Xavier Lacoux
- ‖R&D ImmunoAssays, bioMérieux SA, Marcy l'Etoile, France
| | | | - Jerome Lemoine
- §UMR 5280, Institut des Sciences Analytiques, Université de Lyon, Lyon 1, Villeurbanne, France
| | | | | | - Jean-Philippe Charrier
- From the ‡Technology Research Department, Innovation Unit, bioMérieux SA, Marcy l'Etoile, France;
| |
Collapse
|
686
|
Attéré SA, Vincent AT, Paccaud M, Frenette M, Charette SJ. The Role for the Small Cryptic Plasmids As Moldable Vectors for Genetic Innovation in Aeromonas salmonicida subsp. salmonicida. Front Genet 2017; 8:211. [PMID: 29326751 PMCID: PMC5736529 DOI: 10.3389/fgene.2017.00211] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/28/2017] [Indexed: 11/17/2022] Open
Abstract
In Aeromonas salmonicida subsp. salmonicida, a bacterium that causes fish disease, there are two types of small plasmids (<15 kbp): plasmids without known function, called cryptic plasmids, and plasmids that bear beneficial genes for the bacterium. Four among them are frequently detected in strains of A. salmonicida subsp. salmonicida: pAsa1, pAsa2, pAsa3, and pAsal1. The latter harbors a gene which codes for an effector of the type three secretion system, while the three others are cryptic. It is currently unclear why these cryptic plasmids are so highly conserved throughout strains of A. salmonicida subsp. salmonicida. In this study, three small plasmids, named pAsa10, pAsaXI and pAsaXII, are described. Linked to tetracycline resistance, a partial Tn1721 occupies half of pAsa10. A whole Tn1721 is also present in pAsa8, another plasmid previously described in A. salmonicida subsp. salmonicida. The backbone of pAsa10 has no relation with other plasmids described in this bacterium. However, the pAsaXI and pAsaXII plasmids are derivatives of cryptic plasmids pAsa3 and pAsa2, respectively. pAsaXI is identical to pAsa3, but bears a transposon with a gene that encodes for a putative virulence factor. pAsaXII, also found in Aeromonas bivalvium, has a 95% nucleotide identity with the backbone of pAsa2. Like pAsa7, another pAsa2-like plasmid recently described, orf2 and orf3 are missing and are replaced in pAsaXII by genes that encode a formaldehyde detoxification system. These new observations suggest that transposons and particularly Tn1721 are frequent and diversified in A. salmonicida subsp. salmonicida. Moreover, the discovery of pAsaXI and pAsaXII expands the group of small plasmids that are derived from cryptic plasmids and have a function. Although their precise roles remain to be determined, the present study shows that cryptic plasmids could serve as moldable vectors to acquire mobile elements such as transposons. Consequently, they could act as key agents of the diversification of virulence and adaptive traits of Aeromonas salmonicida subsp. salmonicida.
Collapse
Affiliation(s)
- Sabrina A Attéré
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC, Canada
| | - Antony T Vincent
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC, Canada
| | - Mégane Paccaud
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC, Canada
| | - Michel Frenette
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC, Canada.,Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, QC, Canada
| | - Steve J Charette
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC, Canada
| |
Collapse
|
687
|
Characterization of Fusobacterium varium Fv113-g1 isolated from a patient with ulcerative colitis based on complete genome sequence and transcriptome analysis. PLoS One 2017; 12:e0189319. [PMID: 29216329 PMCID: PMC5720691 DOI: 10.1371/journal.pone.0189319] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/22/2017] [Indexed: 12/13/2022] Open
Abstract
Fusobacterium spp. present in the oral and gut flora is carcinogenic and is associated with the risk of pancreatic and colorectal cancers. Fusobacterium spp. is also implicated in a broad spectrum of human pathologies, including Crohn’s disease and ulcerative colitis (UC). Here we report the complete genome sequence of Fusobacterium varium Fv113-g1 (genome size, 3.96 Mb) isolated from a patient with UC. Comparative genome analyses totally suggested that Fv113-g1 is basically assigned as F. varium, in particular, it could be reclassified as notable F. varium subsp. similar to F. ulcerans because of partial shared orthologs. Compared with the genome sequences of F. varium ATCC 27725 (genome size, 3.30 Mb) and other strains of Fusobacterium spp., Fv113-g1 possesses many accessary pan-genome sequences with noteworthy multiple virulence factors, including 44 autotransporters (type V secretion system, T5SS) and 13 Fusobacterium adhesion (FadA) paralogs involved in potential mucosal inflammation. Indeed, transcriptome analysis demonstrated that Fv113-g1-specific accessary genes, such as multiple T5SS and fadA paralogs, showed notably increased expression with D-MEM cultivation than with brain heart infusion broth. This implied that growth condition may enhance the expression of such potential virulence factors, leading to remarkable survival against other gut microorganisms and to the pathogenicity to human intestinal epithelium.
Collapse
|
688
|
Chen C, Bock CH, Wood BW. Draft genome sequence of Venturia carpophila, the causal agent of peach scab. Stand Genomic Sci 2017; 12:68. [PMID: 29213355 PMCID: PMC5712196 DOI: 10.1186/s40793-017-0280-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 11/20/2017] [Indexed: 11/10/2022] Open
Abstract
Venturia carpophila causes peach scab, a disease that renders peach (Prunus persica) fruit unmarketable. We report a high-quality draft genome sequence (36.9 Mb) of V. carpophila from an isolate collected from a peach tree in central Georgia in the United States. The genome annotation is described and a phylogenetic analysis of the pathogen is presented. The genome sequence will be a useful resource for various studies on the pathogen, including the biology and ecology, taxonomy and phylogeny, host interaction and coevolution, isolation and characterization of genes of interest, and development of molecular markers for genotyping and mapping.
Collapse
Affiliation(s)
- Chunxian Chen
- USDA, Agricultural Research Service, Southeastern Fruit and Tree Nut Research Lab, 21 Dunbar Road, Byron, GA 31008 USA
| | - Clive H. Bock
- USDA, Agricultural Research Service, Southeastern Fruit and Tree Nut Research Lab, 21 Dunbar Road, Byron, GA 31008 USA
| | - Bruce W. Wood
- USDA, Agricultural Research Service, Southeastern Fruit and Tree Nut Research Lab, 21 Dunbar Road, Byron, GA 31008 USA
| |
Collapse
|
689
|
Aires CAM, Rybak MJ, Yim J, Pereira PS, Rocha-de-Souza CM, Albano RM, Cavalcanti VO, D'Alincourt Carvalho-Assef AP, Gomes MZR, Asensi MD. Genomic characterization of an extensively drug-resistant KPC-2-producing Klebsiella pneumoniae ST855 (CC258) only susceptible to ceftazidime-avibactam isolated in Brazil. Diagn Microbiol Infect Dis 2017; 89:324-327. [DOI: 10.1016/j.diagmicrobio.2017.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/05/2017] [Accepted: 08/21/2017] [Indexed: 02/01/2023]
|
690
|
Grönemeyer JL, Bünger W, Reinhold-Hurek B. Bradyrhizobium namibiense sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of Lablab purpureus, hyacinth bean, in Namibia. Int J Syst Evol Microbiol 2017; 67:4884-4891. [DOI: 10.1099/ijsem.0.002039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jann Lasse Grönemeyer
- Department of Microbe-Plant Interactions, Center of Molecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, Postfach 33 04 40, D-28334 Bremen, Germany
| | - Wiebke Bünger
- Department of Microbe-Plant Interactions, Center of Molecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, Postfach 33 04 40, D-28334 Bremen, Germany
| | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, Center of Molecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, Postfach 33 04 40, D-28334 Bremen, Germany
| |
Collapse
|
691
|
Two Draft Genome Sequences of Sphingobacterium sp. Strains Isolated from Honey. GENOME ANNOUNCEMENTS 2017; 5:5/48/e01364-17. [PMID: 29192084 PMCID: PMC5722070 DOI: 10.1128/genomea.01364-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we report two annotated draft genome sequences of Sphingobacterium sp. strains isolated from honey. The genomes of strains 1.A.4 and 1.A.5 show a limited similarity to each other and to genomes of other Sphingobacterium species, indicating that these isolates may represent new species.
Collapse
|
692
|
Draft Genome Sequences of Aggregatibacter actinomycetemcomitans Strains 310a and 310b. GENOME ANNOUNCEMENTS 2017; 5:5/47/e01282-17. [PMID: 29167243 PMCID: PMC5701468 DOI: 10.1128/genomea.01282-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We report the draft genome sequences of Aggregatibacter actinomycetemcomitans strains 310a (310-TR) and 310b (310-OS). Strain 310a is a clinical isolate with a rough phenotype. Strain 310b is a laboratory-adapted isolate derived from the passage of 310a and displays a smooth phenotype.
Collapse
|
693
|
Draft Genome Sequence of Entomopathogenic Brevibacillus laterosporus Strain Lak 1210, an Alkaliphilic Chitin Degrader. GENOME ANNOUNCEMENTS 2017; 5:5/46/e01251-17. [PMID: 29146855 PMCID: PMC5690332 DOI: 10.1128/genomea.01251-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We announce here the draft genome sequence of Brevibacillus laterosporus strain Lak 1210, isolated from mangrove soil. This alkaliphilic strain is an efficient chitin degrader and has the ability to control insects and inhibit phytopathogenic fungi. The assembly consists of 5,082,926 bp, with 4,321 protein-coding sequences and a GC content of 41.15%.
Collapse
|
694
|
Draft Genome Sequences of Eight Streptogramin-Resistant Enterococcus Species Isolated from Animal and Environmental Sources in the United States. GENOME ANNOUNCEMENTS 2017; 5:5/46/e01287-17. [PMID: 29146833 PMCID: PMC5690340 DOI: 10.1128/genomea.01287-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, we present the draft genome sequences of eight streptogramin-resistant Enterococcus species isolated from animals and an environmental source in the United States from 2001 to 2004. Antimicrobial resistance genes were identified conferring resistance to the macrolide-lincosamide-streptogramins, aminoglycosides, tetracyclines, beta-lactams, and glycopeptides.
Collapse
|
695
|
Martinez-Urtaza J, van Aerle R, Abanto M, Haendiges J, Myers RA, Trinanes J, Baker-Austin C, Gonzalez-Escalona N. Genomic Variation and Evolution of Vibrio parahaemolyticus ST36 over the Course of a Transcontinental Epidemic Expansion. mBio 2017; 8:e01425-17. [PMID: 29138301 PMCID: PMC5686534 DOI: 10.1128/mbio.01425-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/13/2017] [Indexed: 12/14/2022] Open
Abstract
Vibrio parahaemolyticus is the leading cause of seafood-related infections with illnesses undergoing a geographic expansion. In this process of expansion, the most fundamental change has been the transition from infections caused by local strains to the surge of pandemic clonal types. Pandemic clone sequence type 3 (ST3) was the only example of transcontinental spreading until 2012, when ST36 was detected outside the region where it is endemic in the U.S. Pacific Northwest causing infections along the U.S. northeast coast and Spain. Here, we used genome-wide analyses to reconstruct the evolutionary history of the V. parahaemolyticus ST36 clone over the course of its geographic expansion during the previous 25 years. The origin of this lineage was estimated to be in ~1985. By 1995, a new variant emerged in the region and quickly replaced the old clone, which has not been detected since 2000. The new Pacific Northwest (PNW) lineage was responsible for the first cases associated with this clone outside the Pacific Northwest region. After several introductions into the northeast coast, the new PNW clone differentiated into a highly dynamic group that continues to cause illness on the northeast coast of the United States. Surprisingly, the strains detected in Europe in 2012 diverged from this ancestral group around 2000 and have conserved genetic features present only in the old PNW lineage. Recombination was identified as the major driver of diversification, with some preliminary observations suggesting a trend toward a more specialized lifestyle, which may represent a critical element in the expansion of epidemics under scenarios of coastal warming.IMPORTANCEVibrio parahaemolyticus and Vibrio cholerae represent the only two instances of pandemic expansions of human pathogens originating in the marine environment. However, while the current pandemic of V. cholerae emerged more than 50 years ago, the global expansion of V. parahaemolyticus is a recent phenomenon. These modern expansions provide an exceptional opportunity to study the evolutionary process of these pathogens at first hand and gain an understanding of the mechanisms shaping the epidemic dynamics of these diseases, in particular, the emergence, dispersal, and successful introduction in new regions facilitating global spreading of infections. In this study, we used genomic analysis to examine the evolutionary divergence that has occurred over the course of the most recent transcontinental expansion of a pathogenic Vibrio, the spreading of the V. parahaemolyticus sequence type 36 clone from the region where it is endemic on the Pacific coast of North America to the east coast of the United States and finally to the west coast of Europe.
Collapse
Affiliation(s)
- Jaime Martinez-Urtaza
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, Somerset, United Kingdom
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, Dorset, United Kingdom
| | - Ronny van Aerle
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, Dorset, United Kingdom
| | - Michel Abanto
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, Somerset, United Kingdom
| | - Julie Haendiges
- Department of Health and Mental Hygiene, Baltimore, Maryland, USA
| | - Robert A Myers
- Department of Health and Mental Hygiene, Baltimore, Maryland, USA
| | - Joaquin Trinanes
- Laboratory of Systems, Technological Research Institute, Universidad de Santiago de Compostela, Campus Universitario Sur, Santiago de Compostela, Spain
- National Oceanic & Atmospheric Administration, Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida, USA
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Cooperative Institute for Marine and Atmospheric Studies, Miami, Florida, USA
| | - Craig Baker-Austin
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, Dorset, United Kingdom
| | - Narjol Gonzalez-Escalona
- Molecular Methods and Subtyping Branch, Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, FDA, College Park, Maryland, USA
| |
Collapse
|
696
|
Peter S, Oberhettinger P, Schuele L, Dinkelacker A, Vogel W, Dörfel D, Bezdan D, Ossowski S, Marschal M, Liese J, Willmann M. Genomic characterisation of clinical and environmental Pseudomonas putida group strains and determination of their role in the transfer of antimicrobial resistance genes to Pseudomonas aeruginosa. BMC Genomics 2017; 18:859. [PMID: 29126393 PMCID: PMC5681832 DOI: 10.1186/s12864-017-4216-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/16/2017] [Indexed: 02/01/2023] Open
Abstract
Background Pseudomonas putida is a Gram-negative, non-fermenting bacterium frequently encountered in various environmental niches. P. putida rarely causes disease in humans, though serious infections and outbreaks have been reported from time to time. Some have suggested that P. putida functions as an exchange platform for antibiotic resistance genes (ARG), and thus represents a serious concern in the spread of ARGs to more pathogenic organisms within a hospital. Though poorly understood, the frequency of ARG exchange between P. putida and the more virulent Pseudomonas aeruginosa and its clinical relevance are particularly important for designing efficient infection control strategies, such as deciding whether high-risk patients colonized with a multidrug resistant but typically low pathogenic P. putida strain should be contact isolated or not. Results In this study, 21,373 screening samples (stool, rectal and throat swab) were examined to determine the presence of P. putida in a high-risk group of haemato-oncology patients during a 28-month period. A total of 89 P. putida group strains were isolated from 85 patients, with 41 of 89 (46.1%) strains harbouring the metallo-beta-lactamase gene blaVIM. These 41 clinical isolates, plus 18 blaVIM positive environmental P. putida isolates, and 17 blaVIM positive P. aeruginosa isolates, were characterized by whole genome sequencing (WGS). We constructed a maximum-likelihood tree to separate the 59 blaVIM positive P. putida group strains into eight distinct phylogenetic clusters. BlaVIM-1 was present in 6 clusters while blaVIM-2 was detected in 4 clusters. Five P. putida group strains contained both, blaVIM-1 and blaVIM-2 genes. In contrast, all P. aeruginosa strains belonged to a single genetic cluster and contained the same ARGs. Apart from blaVIM-2 and sul genes, no other ARGs were shared between P. aeruginosa and P. putida. Furthermore, the blaVIM-2 gene in P. aeruginosa was predicted to be only chromosomally located. Conclusion These data provide evidence that no exchange of comprehensive ARG harbouring mobile genetic elements had occurred between P. aeruginosa and P. putida group strains during the study period, thus eliminating the need to implement enhanced infection control measures for high-risk patients colonized with a blaVIM positiv P. putida group strains in our clinical setting. Electronic supplementary material The online version of this article (10.1186/s12864-017-4216-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Silke Peter
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany. .,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany.
| | - Philipp Oberhettinger
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Leonard Schuele
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany.,Department of Medical Microbiology, Universitair Medisch Centrum Groningen, Groningen, Netherlands
| | - Ariane Dinkelacker
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Wichard Vogel
- Medical Center, Department of Hematology, Oncology, Immunology, Rheumatology & Pulmonology, University of Tübingen, Tübingen, Germany
| | - Daniela Dörfel
- Medical Center, Department of Hematology, Oncology, Immunology, Rheumatology & Pulmonology, University of Tübingen, Tübingen, Germany.,Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tübingen, Tübingen, Germany
| | - Daniela Bezdan
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA.,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
| | - Stephan Ossowski
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, Germany
| | - Matthias Marschal
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Jan Liese
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Matthias Willmann
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| |
Collapse
|
697
|
Streptomyces swartbergensis sp. nov., a novel tyrosinase and antibiotic producing actinobacterium. Antonie van Leeuwenhoek 2017; 111:589-600. [PMID: 29110155 DOI: 10.1007/s10482-017-0979-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 11/01/2017] [Indexed: 10/18/2022]
Abstract
As part of an antibiotic screening program, an actinobacterium, strain HMC13T, was isolated from soil collected from the banks of the Gamka River, Western Cape Province, South Africa. The isolate was found to produce branched mycelia that differentiated into spiral spore chains with spiny spores. 16S rRNA gene sequence analysis showed the strain to be closely related to Streptomyces caelestis NRRL 2418T (99.72%) and Streptomyces azureus NBRC 12744T (99.51%). Chemotaxonomic analyses confirmed the classification of the strain as a member of the genus Streptomyces: LL-DAP in the peptidoglycan, no diagnostic sugars in the whole cell sugar pattern, dominant menaquinones including MK9(H8), MK9(H6), and the polar lipids detected included phosphatidylethanolamine. The fatty acid profile revealed the presence of mostly branched, saturated fatty acids: iso-C15:0 (14.4%), anteiso-C15:0 (21.1%), iso-C16:0 (16.8%), C16:1ω7c/2-OH iso-C15:0 (5.8%), C16:0 (6.2%), iso-C17:1ω9c (5.8%), iso-C17:0 (5.9%), and anteiso-C17:0 (9.6%). Strain HMC13T is a tyrosinase producer and exhibits very strong antibiosis against Mycobacterium aurum A+ and Staphylococcus aureus subsp. aureus ATCC 33591 (methicillin resistant), while only weak activity was observed against Bacillus cereus ATCC 10876, Enterococcus faecium VanA (vancomycin resistant), Enterococcus faecalis ATCC 51299 (vancomycin resistant) and Candida tropicalis ATCC 750T. Strain HMC13T (= LMG 28849T = NRRL B-65294T) is proposed as the type strain of a new species, to be named Streptomyces swartbergensis sp. nov.
Collapse
|
698
|
Draft Genome Sequence of Staphylococcus aureus 4185, a Strain That Produces Aureocyclicin 4185. GENOME ANNOUNCEMENTS 2017; 5:5/44/e01249-17. [PMID: 29097478 PMCID: PMC5668554 DOI: 10.1128/genomea.01249-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The draft genome sequence of the aureocyclicin 4185-producing strain Staphylococcus aureus 4185 is presented. The assembly contains 2,789,721 bp and a G+C content of 32.8%. Genome analysis allowed us to determine the complete sequence of the bacteriocinogenic plasmid pRJ101 and to find another bacteriocin gene cluster encoded on the bacterial chromosome.
Collapse
|
699
|
Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Dröge J, Gregor I, Majda S, Fiedler J, Dahms E, Bremges A, Fritz A, Garrido-Oter R, Jørgensen TS, Shapiro N, Blood PD, Gurevich A, Bai Y, Turaev D, DeMaere MZ, Chikhi R, Nagarajan N, Quince C, Meyer F, Balvočiūtė M, Hansen LH, Sørensen SJ, Chia BKH, Denis B, Froula JL, Wang Z, Egan R, Don Kang D, Cook JJ, Deltel C, Beckstette M, Lemaitre C, Peterlongo P, Rizk G, Lavenier D, Wu YW, Singer SW, Jain C, Strous M, Klingenberg H, Meinicke P, Barton MD, Lingner T, Lin HH, Liao YC, Silva GGZ, Cuevas DA, Edwards RA, Saha S, Piro VC, Renard BY, Pop M, Klenk HP, Göker M, Kyrpides NC, Woyke T, Vorholt JA, Schulze-Lefert P, Rubin EM, Darling AE, Rattei T, McHardy AC. Critical Assessment of Metagenome Interpretation-a benchmark of metagenomics software. Nat Methods 2017; 14:1063-1071. [PMID: 28967888 DOI: 10.1101/099127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 08/25/2017] [Indexed: 05/25/2023]
Abstract
Methods for assembly, taxonomic profiling and binning are key to interpreting metagenome data, but a lack of consensus about benchmarking complicates performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on highly complex and realistic data sets, generated from ∼700 newly sequenced microorganisms and ∼600 novel viruses and plasmids and representing common experimental setups. Assembly and genome binning programs performed well for species represented by individual genomes but were substantially affected by the presence of related strains. Taxonomic profiling and binning programs were proficient at high taxonomic ranks, with a notable performance decrease below family level. Parameter settings markedly affected performance, underscoring their importance for program reproducibility. The CAMI results highlight current challenges but also provide a roadmap for software selection to answer specific research questions.
Collapse
Affiliation(s)
- Alexander Sczyrba
- Faculty of Technology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Peter Hofmann
- Formerly Department of Algorithmic Bioinformatics, Heinrich Heine University (HHU), Duesseldorf, Germany
- Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Peter Belmann
- Faculty of Technology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
- Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - David Koslicki
- Mathematics Department, Oregon State University, Corvallis, Oregon, USA
| | - Stefan Janssen
- Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- Department of Pediatrics, University of California, San Diego, California, USA
- Department of Computer Science and Engineering, University of California, San Diego, California, USA
| | - Johannes Dröge
- Formerly Department of Algorithmic Bioinformatics, Heinrich Heine University (HHU), Duesseldorf, Germany
- Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Ivan Gregor
- Formerly Department of Algorithmic Bioinformatics, Heinrich Heine University (HHU), Duesseldorf, Germany
- Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Stephan Majda
- Formerly Department of Algorithmic Bioinformatics, Heinrich Heine University (HHU), Duesseldorf, Germany
| | - Jessika Fiedler
- Formerly Department of Algorithmic Bioinformatics, Heinrich Heine University (HHU), Duesseldorf, Germany
- Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Eik Dahms
- Formerly Department of Algorithmic Bioinformatics, Heinrich Heine University (HHU), Duesseldorf, Germany
- Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Andreas Bremges
- Faculty of Technology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
- Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Adrian Fritz
- Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Ruben Garrido-Oter
- Formerly Department of Algorithmic Bioinformatics, Heinrich Heine University (HHU), Duesseldorf, Germany
- Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS)
| | - Tue Sparholt Jørgensen
- Department of Environmental Science, Section of Environmental microbiology and Biotechnology, Aarhus University, Roskilde, Denmark
- Department of Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Nicole Shapiro
- Department of Energy, Joint Genome Institute, Walnut Creek, California, USA
| | - Philip D Blood
- Pittsburgh Supercomputing Center, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Alexey Gurevich
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Yang Bai
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Dmitrij Turaev
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Matthew Z DeMaere
- The ithree institute, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Rayan Chikhi
- Department of Computer Science, Research Center in Computer Science (CRIStAL), Signal and Automatic Control of Lille, Lille, France
- National Centre of the Scientific Research (CNRS), Rennes, France
| | - Niranjan Nagarajan
- Department of Computational and Systems Biology, Genome Institute of Singapore, Singapore
| | - Christopher Quince
- Department of Microbiology and Infection, Warwick Medical School, University of Warwick, Coventry, UK
| | - Fernando Meyer
- Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Monika Balvočiūtė
- Department of Computer Science, University of Tuebingen, Tuebingen, Germany
| | - Lars Hestbjerg Hansen
- Department of Environmental Science, Section of Environmental microbiology and Biotechnology, Aarhus University, Roskilde, Denmark
| | - Søren J Sørensen
- Department of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Burton K H Chia
- Department of Computational and Systems Biology, Genome Institute of Singapore, Singapore
| | - Bertrand Denis
- Department of Computational and Systems Biology, Genome Institute of Singapore, Singapore
| | - Jeff L Froula
- Department of Energy, Joint Genome Institute, Walnut Creek, California, USA
| | - Zhong Wang
- Department of Energy, Joint Genome Institute, Walnut Creek, California, USA
| | - Robert Egan
- Department of Energy, Joint Genome Institute, Walnut Creek, California, USA
| | - Dongwan Don Kang
- Department of Energy, Joint Genome Institute, Walnut Creek, California, USA
| | | | - Charles Deltel
- GenScale-Bioinformatics Research Team, Inria Rennes-Bretagne Atlantique Research Centre, Rennes, France
- Institute of Research in Informatics and Random Systems (IRISA), Rennes, France
| | - Michael Beckstette
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Claire Lemaitre
- GenScale-Bioinformatics Research Team, Inria Rennes-Bretagne Atlantique Research Centre, Rennes, France
- Institute of Research in Informatics and Random Systems (IRISA), Rennes, France
| | - Pierre Peterlongo
- GenScale-Bioinformatics Research Team, Inria Rennes-Bretagne Atlantique Research Centre, Rennes, France
- Institute of Research in Informatics and Random Systems (IRISA), Rennes, France
| | - Guillaume Rizk
- Institute of Research in Informatics and Random Systems (IRISA), Rennes, France
- Algorizk-IT consulting and software systems, Paris, France
| | - Dominique Lavenier
- National Centre of the Scientific Research (CNRS), Rennes, France
- Institute of Research in Informatics and Random Systems (IRISA), Rennes, France
| | - Yu-Wei Wu
- Joint BioEnergy Institute, Emeryville, California, USA
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Steven W Singer
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Chirag Jain
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Marc Strous
- Energy Engineering and Geomicrobiology, University of Calgary, Calgary, Alberta, Canada
| | - Heiner Klingenberg
- Department of Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Peter Meinicke
- Department of Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Michael D Barton
- Department of Energy, Joint Genome Institute, Walnut Creek, California, USA
| | | | - Hsin-Hung Lin
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan Town, Taiwan
| | - Yu-Chieh Liao
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan Town, Taiwan
| | | | - Daniel A Cuevas
- Computational Science Research Center, San Diego State University, San Diego, California, USA
| | - Robert A Edwards
- Computational Science Research Center, San Diego State University, San Diego, California, USA
| | - Surya Saha
- Boyce Thompson Institute for Plant Research, New York, New York, USA
| | - Vitor C Piro
- Research Group Bioinformatics (NG4), Robert Koch Institute, Berlin, Germany
- Coordination for the Improvement of Higher Education Personnel (CAPES) Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Bernhard Y Renard
- Research Group Bioinformatics (NG4), Robert Koch Institute, Berlin, Germany
| | - Mihai Pop
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
- Department of Computer Science, University of Maryland, College Park, Maryland, USA
| | - Hans-Peter Klenk
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| | - Markus Göker
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Nikos C Kyrpides
- Department of Energy, Joint Genome Institute, Walnut Creek, California, USA
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Walnut Creek, California, USA
| | | | - Paul Schulze-Lefert
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS)
| | - Edward M Rubin
- Department of Energy, Joint Genome Institute, Walnut Creek, California, USA
| | - Aaron E Darling
- The ithree institute, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Thomas Rattei
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Alice C McHardy
- Formerly Department of Algorithmic Bioinformatics, Heinrich Heine University (HHU), Duesseldorf, Germany
- Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS)
| |
Collapse
|
700
|
Zhang F, Hong B, Chen ZJ, Wang YZ, Li YM, Zhang SL. The complete mitochondrial genome of Scythropus yasumatsui (Coleoptera: Curculionidae). MITOCHONDRIAL DNA PART B-RESOURCES 2017; 2:718-719. [PMID: 33473958 PMCID: PMC7799709 DOI: 10.1080/23802359.2017.1390413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The complete mitochondrial genome sequence of Scythropus yasumatsui (Coleoptera: Curculionidae) was determined by using an Illumina platform. The circular genome was 16,472 bp in length and contained 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), 13 protein-coding genes (PCGs), and one control region. The nucleotide composition was significantly biased (A, G, C, and T was 39.74%, 10.11%, 15.41%, and 34.74%, respectively) with A + T contents of 74.49%. All PCGs were initiated with standard ATN (ATG/ATT) codons. While 10 PCGs were terminated with TAA, two PCGs were terminated with TAG (cytb and nad1), and nad5 was terminated with an incomplete stop codon TA. All tRNAs were predicted to contain typical cloverleaf secondary structures except trnS1. The phylogenetic analysis of the concatenated nucleotide sequences of 13 PCGs from 12 Curculionidae species was performed by using MrBayes 3.1.2. The results indicated that S. yasumatsui was more closely related to Naupactus xanthographus than to other species.
Collapse
Affiliation(s)
- Feng Zhang
- Bio-Agriculture Institute of Shaanxi, Xi'an, China
| | - Bo Hong
- Bio-Agriculture Institute of Shaanxi, Xi'an, China
| | - Zhi-Jie Chen
- Bio-Agriculture Institute of Shaanxi, Xi'an, China
| | | | - Ying-Mei Li
- Bio-Agriculture Institute of Shaanxi, Xi'an, China
| | | |
Collapse
|