651
|
Song C, Fang J, Li X, Liu H, Thomas Chao C. Identification and characterization of 27 conserved microRNAs in citrus. PLANTA 2009; 230:671-85. [PMID: 19585144 PMCID: PMC2729984 DOI: 10.1007/s00425-009-0971-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 06/11/2009] [Indexed: 05/20/2023]
Abstract
MicroRNAs (miRNAs) are a class of non-protein-coding small RNAs. Considering the conservation of many miRNA genes in different plant genomes, the identification of miRNAs from non-model organisms is both practicable and instrumental in addressing miRNA-guided gene regulation. Citrus is an important staple fruit tree, and publicly available expressed sequence tag (EST) database for citrus are increasing. However, until now, little has been known about miRNA in citrus. In this study, 27 known miRNAs from Arabidopsis were searched against citrus EST databases for miRNA precursors, of which 13 searched precursor sequences could form fold-back structures similar with those of Arabidopsis. The ubiquitous expression of those 13 citrus microRNAs and other 13 potential citrus miRNAs could be detected in citrus leaf, young shoot, flower, fruit and root by northern blotting, and some of them showed differential expression in different tissues. Based on the fact that miRNAs exhibit perfect or nearly perfect complementarity with their target sequences, a total of 41 potential targets were identified for 15 citrus miRNAs. The majority of the targets are transcription factors that play important roles in citrus development, including leaf, shoot, and root development. Additionally, some other target genes appear to play roles in diverse physiological processes. Four target genes have been experimentally verified by detection of the miRNA-mediated mRNA cleavage in Poncirus trifoliate. Overall, this study in the identification and characterization of miRNAs in citrus can initiate further study on citrus miRNA regulation mechanisms, and it can help us to know more about the important roles of miRNAs in citrus.
Collapse
Affiliation(s)
- Changnian Song
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Xiaoying Li
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Hong Liu
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - C. Thomas Chao
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521-0124 USA
| |
Collapse
|
652
|
Sun J, Xu Y, Ye S, Jiang H, Chen Q, Liu F, Zhou W, Chen R, Li X, Tietz O, Wu X, Cohen JD, Palme K, Li C. Arabidopsis ASA1Is Important for Jasmonate-Mediated Regulation of Auxin Biosynthesis and Transport during Lateral Root Formation. THE PLANT CELL 2009; 21:1495-511. [PMID: 19435934 PMCID: PMC2700526 DOI: 10.1105/tpc.108.064303] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
AbstractPlant roots show an impressive degree of plasticity in adapting their branching patterns to ever-changing growth conditions. An important mechanism underlying this adaptation ability is the interaction between hormonal and developmental signals. Here, we analyze the interaction of jasmonate with auxin to regulate lateral root (LR) formation through characterization of an Arabidopsis thaliana mutant, jasmonate-induced defective lateral root1 (jdl1/asa1-1). We demonstrate that, whereas exogenous jasmonate promotes LR formation in wild-type plants, it represses LR formation in jdl1/asa1-1. JDL1 encodes the auxin biosynthetic gene ANTHRANILATE SYNTHASE α1 (ASA1), which is required for jasmonate-induced auxin biosynthesis. Jasmonate elevates local auxin accumulation in the basal meristem of wild-type roots but reduces local auxin accumulation in the basal meristem of mutant roots, suggesting that, in addition to activating ASA1-dependent auxin biosynthesis, jasmonate also affects auxin transport. Indeed, jasmonate modifies the expression of auxin transport genes in an ASA1-dependent manner. We further provide evidence showing that the action mechanism of jasmonate to regulate LR formation through ASA1 differs from that of ethylene. Our results highlight the importance of ASA1 in jasmonate-induced auxin biosynthesis and reveal a role for jasmonate in the attenuation of auxin transport in the root and the fine-tuning of local auxin distribution in the root basal meristem.
Collapse
Affiliation(s)
- Jiaqiang Sun
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese-German Joint Group for Plant Hormone Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingxiu Xu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate School of Chinese Academy of Sciences, Beijing, 100039, China
| | - Songqing Ye
- Department of Horticultural Science, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Hongling Jiang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Chen
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese-German Joint Group for Plant Hormone Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate School of Chinese Academy of Sciences, Beijing, 100039, China
| | - Fang Liu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese-German Joint Group for Plant Hormone Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate School of Chinese Academy of Sciences, Beijing, 100039, China
| | - Wenkun Zhou
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate School of Chinese Academy of Sciences, Beijing, 100039, China
| | - Rong Chen
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese-German Joint Group for Plant Hormone Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate School of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xugang Li
- Chinese-German Joint Group for Plant Hormone Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Biology II/Botany and Freiburg Institute of Advanced Sciences, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Olaf Tietz
- Chinese-German Joint Group for Plant Hormone Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Biology II/Botany and Freiburg Institute of Advanced Sciences, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Xiaoyan Wu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jerry D. Cohen
- Department of Horticultural Science, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Klaus Palme
- Chinese-German Joint Group for Plant Hormone Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Biology II/Botany and Freiburg Institute of Advanced Sciences, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese-German Joint Group for Plant Hormone Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
653
|
Péret B, De Rybel B, Casimiro I, Benková E, Swarup R, Laplaze L, Beeckman T, Bennett MJ. Arabidopsis lateral root development: an emerging story. TRENDS IN PLANT SCIENCE 2009; 14:399-408. [PMID: 19559642 DOI: 10.1016/j.tplants.2009.05.002] [Citation(s) in RCA: 488] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 05/08/2009] [Accepted: 05/11/2009] [Indexed: 05/18/2023]
Abstract
Lateral root formation is a major determinant of root systems architecture. The degree of root branching impacts the efficiency of water uptake, acquisition of nutrients and anchorage by plants. Understanding the regulation of lateral root development is therefore of vital agronomic importance. The molecular and cellular basis of lateral root formation has been most extensively studied in the plant model Arabidopsis thaliana (Arabidopsis). Significant progress has recently been made in identifying many new Arabidopsis genes that regulate lateral root initiation, patterning and emergence processes. We review how these studies have revealed that the plant hormone auxin represents a common signal that integrates these distinct yet interconnected developmental processes.
Collapse
Affiliation(s)
- Benjamin Péret
- Plant Sciences Division and Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK.
| | | | | | | | | | | | | | | |
Collapse
|
654
|
Ploense SE, Wu MF, Nagpal P, Reed JW. A gain-of-function mutation in IAA18 alters Arabidopsis embryonic apical patterning. Development 2009; 136:1509-17. [PMID: 19363152 DOI: 10.1242/dev.025932] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lateral organ emergence in plant embryos and meristems depends on spatially coordinated auxin transport and auxin response. Here, we report the gain-of-function iaa18-1 mutation in Arabidopsis, which stabilizes the Aux/IAA protein IAA18 and causes aberrant cotyledon placement in embryos. IAA18 was expressed in the apical domain of globular stage embryos, and in the shoot apical meristem and adaxial domain of cotyledons of heart stage embryos. Mutant globular embryos had asymmetric PIN1:GFP expression in the apical domain, indicating that IAA18-1 disrupts auxin transport. Genetic interactions among iaa18-1, loss-of-function mutations in ARF (Auxin response factor) genes and ARF-overexpressing constructs suggest that IAA18-1 inhibits activity of MP/ARF5 and other ARF proteins in the apical domain. The iaa18-1 mutation also increased the frequency of rootless seedlings in mutant backgrounds in which auxin regulation of basal pole development was affected. These results indicate that apical patterning requires Aux/IAA protein turnover, and that apical domain auxin response also influences root formation.
Collapse
Affiliation(s)
- Sara E Ploense
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
655
|
Paponov IA, Teale W, Lang D, Paponov M, Reski R, Rensing SA, Palme K. The evolution of nuclear auxin signalling. BMC Evol Biol 2009; 9:126. [PMID: 19493348 PMCID: PMC2708152 DOI: 10.1186/1471-2148-9-126] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 06/03/2009] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The plant hormone auxin directs many aspects of plant growth and development. To understand the evolution of auxin signalling, we compared the genes encoding two families of crucial transcriptional regulators, AUXIN RESPONSE FACTOR (ARF) and AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA), among flowering plants and two non-seed plants, Physcomitrella patens and Selaginella moellendorffii. RESULTS Comparative analysis of the P. patens, S. moellendorffii and Arabidopsis thaliana genomes suggests that the well-established rapid transcriptional response to auxin of flowering plants, evolved in vascular plants after their divergence from the last common ancestor shared with mosses. An N-terminally truncated ARF transcriptional activator is encoded by the genomes of P. patens and S. moellendorffii, and suggests a supplementary mechanism of nuclear auxin signalling, absent in flowering plants. Site-specific analyses of positive Darwinian selection revealed relatively high rates of synonymous substitution in the A. thaliana ARFs of classes IIa (and their closest orthologous genes in poplar) and Ib, suggesting that neofunctionalization in important functional regions has driven the evolution of auxin signalling in flowering plants. Primary auxin responsive gene families (GH3, SAUR, LBD) show different phylogenetic profiles in P. patens, S. moellendorffii and flowering plants, highlighting genes for further study. CONCLUSION The genome of P. patens encodes all of the basic components necessary for a rapid auxin response. The spatial separation of the Q-rich activator domain and DNA-binding domain suggests an alternative mechanism of transcriptional control in P. patens distinct from the mechanism seen in flowering plants. Significantly, the genome of S. moellendorffii is predicted to encode proteins suitable for both methods of regulation.
Collapse
Affiliation(s)
- Ivan A Paponov
- Botany, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
656
|
Cole M, Chandler J, Weijers D, Jacobs B, Comelli P, Werr W. DORNRÖSCHEN is a direct target of the auxin response factor MONOPTEROS in the Arabidopsis embryo. Development 2009; 136:1643-51. [DOI: 10.1242/dev.032177] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
DORNRÖSCHEN (DRN), which encodes a member of the AP2-type transcription factor family, contributes to auxin transport and perception in the Arabidopsis embryo. Live imaging performed with transcriptional or translational GFP fusions shows DRN to be activated in the apical cell after the first zygotic division, to act cell-autonomously and to be expressed in single cells extending laterally from the apical shoot stem-cell zone at the position of incipient leaf primordia. Here, we show that the Auxin response factor (ARF) MONOPTEROS (MP) directly controls DRN transcription in the tips of the embryonic cotyledons,which depends on the presence of canonical Auxin response elements (AuxREs),potential ARF-binding sites flanking the DRN transcription unit. Chromatin immunoprecipitation experiments show that MP binds in vivo to two AuxRE-spanning fragments in the DRN promoter, and that MP is required for expression of DRN in cotyledon tips. Hence, DRNrepresents a direct target of MP and functions downstream of MP in cotyledon development.
Collapse
Affiliation(s)
- Melanie Cole
- Institute of Developmental Biology, University of Cologne, Gyrhofstrasse 17,50931 Cologne, Germany
| | - John Chandler
- Institute of Developmental Biology, University of Cologne, Gyrhofstrasse 17,50931 Cologne, Germany
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Bianca Jacobs
- Institute of Developmental Biology, University of Cologne, Gyrhofstrasse 17,50931 Cologne, Germany
| | - Petra Comelli
- Institute of Developmental Biology, University of Cologne, Gyrhofstrasse 17,50931 Cologne, Germany
| | - Wolfgang Werr
- Institute of Developmental Biology, University of Cologne, Gyrhofstrasse 17,50931 Cologne, Germany
| |
Collapse
|
657
|
Matsumura Y, Iwakawa H, Machida Y, Machida C. Characterization of genes in the ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES (AS2/LOB) family in Arabidopsis thaliana, and functional and molecular comparisons between AS2 and other family members. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:525-37. [PMID: 19154202 PMCID: PMC2721968 DOI: 10.1111/j.1365-313x.2009.03797.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Revised: 12/20/2008] [Accepted: 01/06/2009] [Indexed: 05/19/2023]
Abstract
The ASYMMETRIC LEAVES2 (AS2) gene is required for the generation of the flat and symmetrical shape of the leaf lamina in Arabidopsis. AS2 encodes a plant-specific protein with an AS2/LATERAL ORGAN BOUNDARIES (AS2/LOB) domain that includes a cysteine repeat, a conserved single glycine residue and a leucine-zipper-like sequence in its amino-terminal half. The Arabidopsis genome contains 42 genes, including AS2, that encode proteins with an AS2/LOB domain in their amino-terminal halves, and these genes constitute the AS2/LOB gene family. In the present study, we cloned and characterized cDNAs that covered the putative coding regions of all members of this family, and investigated patterns of transcription systematically in Arabidopsis plants. Comparisons among amino acid sequences that had been deduced from the cloned cDNAs revealed eight groups of genes, with two or three members each, and high degrees of identity among entire amino acid sequences, suggesting that some members of the AS2/LOB family might have redundant function(s). Moreover, no member of the family exhibited significant similarity, in terms of the deduced amino acid sequence of the carboxy-terminal half, to AS2. Results of domain swapping between AS2 and other members of the family showed that the AS2/LOB domain of AS2 cannot be functionally replaced by those of other members of the family, and that only a few dissimilarities among respective amino acid residues of the AS2/LOB domain of AS2 and those of other members are important for the specific functions of AS2.
Collapse
Affiliation(s)
- Yoko Matsumura
- Plant Biology Research Center, Chubu University1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
- Division of Biological Science, Graduate School of Science, Nagoya UniversityFuro-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hidekazu Iwakawa
- Plant Biology Research Center, Chubu University1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Yasunori Machida
- Division of Biological Science, Graduate School of Science, Nagoya UniversityFuro-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Chiyoko Machida
- Plant Biology Research Center, Chubu University1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
- College of Bioscience and Biotechnology, Chubu University1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
- *For correspondence (fax +81 568 51 6276; e-mail )
| |
Collapse
|
658
|
Hamada T, Igarashi H, Taguchi R, Fujiwara M, Fukao Y, Shimmen T, Yokota E, Sonobe S. The putative RNA-processing protein, THO2, is a microtubule-associated protein in tobacco. PLANT & CELL PHYSIOLOGY 2009; 50:801-11. [PMID: 19218314 DOI: 10.1093/pcp/pcp024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
THO2 is a component of the THO-TREX (transcription and export factor) complex that participates in mRNA metabolism and export from the nucleus in yeast and animal cells. Here we report that tobacco putative THO2-related protein (NtTHO2) is a microtubule-associated protein, which directly binds to microtubules in vitro and co-localizes with cortical microtubules in vivo. We purified endogenous NtTHO2 by cycles of microtubule polymerization-depolymerization from crude extracts of tobacco BY-2 miniprotoplasts. Purified NtTHO2 sedimented with microtubules in vitro. Immunofluorescence revealed that NtTHO2 was present in both the nucleus and cytoplasm. In interphase, cytoplasmic NtTHO2 was localized along cortical microtubules. In the mitotic phase, NtTHO2 was localized to the mitotic spindle but not to either the preprophase band or the phragmoplast. In mature cells of seedling roots, and in BY-2 cells in which proliferation was stopped by removing 2,4-D, NtTHO2 staining was confined mainly to the nucleolus. These results suggest that NtTHO2 is a multifunctional protein that participates in mRNA metabolism, and also functions within the cortical microtubules and mitotic spindle.
Collapse
Affiliation(s)
- Takahiro Hamada
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
659
|
Skinner DJ, Gasser CS. Expression-based discovery of candidate ovule development regulators through transcriptional profiling of ovule mutants. BMC PLANT BIOLOGY 2009; 9:29. [PMID: 19291320 PMCID: PMC2664812 DOI: 10.1186/1471-2229-9-29] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 03/16/2009] [Indexed: 05/05/2023]
Abstract
BACKGROUND Arabidopsis ovules comprise four morphologically distinct parts: the nucellus, which contains the embryo sac, two integuments that become the seed coat, and the funiculus that anchors the ovule within the carpel. Analysis of developmental mutants has shown that ovule morphogenesis relies on tightly regulated genetic interactions that can serve as a model for developmental regulation. Redundancy, pleiotropic effects and subtle phenotypes may preclude identification of mutants affecting some processes in screens for phenotypic changes. Expression-based gene discovery can be used access such obscured genes. RESULTS Affymetrix microarrays were used for expression-based gene discovery to identify sets of genes expressed in either or both integuments. The genes were identified by comparison of pistil mRNA from wild type with mRNA from two mutants; inner no outer (ino, which lacks the outer integument), and aintegumenta (ant, which lacks both integuments). Pools of pistils representing early and late stages of ovule development were evaluated and data from the three genotypes were used to designate genes that were predominantly expressed in the integuments using pair-wise and cluster analyses. Approximately two hundred genes were found to have a high probability of preferential expression in these structures, and the predictive nature of the expression classes was confirmed with reverse transcriptase polymerase chain reaction and in situ hybridization. CONCLUSION The results showed that it was possible to use a mutant, ant, with broad effects on plant phenotype to identify genes expressed specifically in ovules, when coupled with predictions from known gene expression patterns, or in combination with a more specific mutant, ino. Robust microarray averaging (RMA) analysis of array data provided the most reliable comparisons, especially for weakly expressed genes. The studies yielded an over-abundance of transcriptional regulators in the identified genes, and these form a set of candidate genes for evaluation of roles in ovule development using reverse genetics.
Collapse
Affiliation(s)
- Debra J Skinner
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
- Department of Crop Science, University of Illinois, Urbana, IL 61801, USA
| | - Charles S Gasser
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
660
|
Takahashi H, Miyazawa Y, Fujii N. Hormonal interactions during root tropic growth: hydrotropism versus gravitropism. PLANT MOLECULAR BIOLOGY 2009; 69:489-502. [PMID: 19083152 DOI: 10.1007/s11103-008-9438-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 11/17/2008] [Indexed: 05/09/2023]
Abstract
Terrestrial plants have evolved remarkable morphological plasticity that enables them to adapt to their surroundings. One of the most important traits that plants have acquired is the ability to sense environmental cues and use them as a basis for governing their growth orientation. The directional growth of plant organs relative to the direction of environmental stimuli is a tropism. The Cholodny-Went theory proposes that auxin plays a key role in several tropisms. Recent molecular genetic studies have strongly supported this hypothesis for gravitropism. However, the molecular mechanisms of other tropisms are far less clear. Hydrotropism is the response of roots to a moisture gradient. Since its re-discovery in 1985, root hydrotropism has been shown to be common among higher plant species. Additionally, in some species, gravitropism interferes with hydrotropism, suggesting that both shared and divergent mechanisms mediating the two tropisms exist. This hypothesis has been supported by recent studies, which provide an understanding of how roots sense multiple environmental cues and exhibit different tropic responses. In this review, we focus on the overlapping and unique mechanisms of the hormonal regulation underlying gravitropism and hydrotropism in roots.
Collapse
Affiliation(s)
- Hideyuki Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| | | | | |
Collapse
|
661
|
Dubrovsky JG, Soukup A, Napsucialy-Mendivil S, Jeknic Z, Ivanchenko MG. The lateral root initiation index: an integrative measure of primordium formation. ANNALS OF BOTANY 2009; 103:807-17. [PMID: 19151042 PMCID: PMC2707874 DOI: 10.1093/aob/mcn267] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 10/20/2008] [Accepted: 11/26/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Lateral root initiation is an essential and continuous process in the formation of root systems; therefore, its quantitative analysis is indispensable. In this study a new measure of lateral root initiation is proposed and analysed, namely the lateral root initiation index (I(LRI)), which defines how many lateral roots and/or primordia are formed along a parent-root portion corresponding to 100 cortical cells in a file. METHODS For data collection, a commonly used root clearing procedure was employed, and a new simple root clearing procedure is also proposed. The I(LRI) was determined as 100dl, where d is the density of lateral root initiation events (number mm(-1)) and l is the average fully elongated cortical cell length (mm). KEY RESULTS Analyses of different Arabidopsis thaliana genotypes and of a crop plant, tomato (Solanum lycopersicum), showed that I(LRI) is a more precise parameter than others commonly used as it normalizes root growth for variations in cell length. Lateral root primordium density varied in the A. thaliana accessions Col, Ler, Ws, and C24; however, in all accessions except Ws, I(LRI) was similar under the same growth conditions. The nitrogen/carbon ratio in the growth medium did not change the lateral root primordium density but did affect I(LRI). The I(LRI) was also modified in a number of auxin-related mutants, revealing new root branching phenotypes in some of these mutants. The rate of lateral root initiation increased with Arabidopsis seedling age; however, I(LRI) was not changed in plants between 8 and 14 d post-germination. CONCLUSIONS The I(LRI) allows for a more precise comparison of lateral root initiation under different growth conditions, treatments, genotypes and plant species than other comparable methods.
Collapse
Affiliation(s)
- J G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), A. P. 510-3, 62250 Cuernavaca, Morelos, Mexico.
| | | | | | | | | |
Collapse
|
662
|
Benková E, Hejátko J. Hormone interactions at the root apical meristem. PLANT MOLECULAR BIOLOGY 2009; 69:383-96. [PMID: 18807199 DOI: 10.1007/s11103-008-9393-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 08/27/2008] [Indexed: 05/18/2023]
Abstract
Plants exhibit an amazing developmental flexibility. Plant embryogenesis results in the establishment of a simple apical-basal axis represented by apical shoot and basal root meristems. Later, during postembryonic growth, shaping of the plant body continues by the formation and activation of numerous adjacent meristems that give rise to lateral shoot branches, leaves, flowers, or lateral roots. This developmental plasticity reflects an important feature of the plant's life strategy based on the rapid reaction to different environmental stimuli, such as temperature fluctuations, availability of nutrients, light or water and response resulting in modulation of developmental programs. Plant hormones are important endogenous factors for the integration of these environmental inputs and regulation of plant development. After a period of studies focused primarily on single hormonal pathways that enabled us to understand the hormone perception and signal transduction mechanisms, it became obvious that the developmental output mediated by a single hormonal pathway is largely modified through a whole network of interactions with other hormonal pathways. In this review, we will summarize recent knowledge on hormonal networks that regulate the development and growth of root with focus on the hormonal interactions that shape the root apical meristem.
Collapse
Affiliation(s)
- Eva Benková
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Gent University, Technologiepark 927, 9052 Gent, Belgium.
| | | |
Collapse
|
663
|
Fukaki H, Tasaka M. Hormone interactions during lateral root formation. PLANT MOLECULAR BIOLOGY 2009; 69:437-49. [PMID: 18982413 DOI: 10.1007/s11103-008-9417-2] [Citation(s) in RCA: 253] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 10/13/2008] [Indexed: 05/18/2023]
Abstract
Lateral root (LR) formation, the production of new roots from parent roots, is a hormone- and environmentally-regulated developmental process in higher plants. Physiological and genetic studies using Arabidopsis thaliana and other plant species have revealed the roles of several plant hormones in LR formation, particularly the role of auxin in LR initiation and primordium development, resulting in much progress toward understanding the mechanisms of auxin-mediated LR formation. However, hormone interactions during LR formation have been relatively underexamined. Recent studies have shown that the plant hormones, cytokinin and abscisic acid negatively regulate LR formation whereas brassinosteroids positively regulate LR formation. On the other hand, ethylene has positive and negative roles during LR formation. This review summarizes recent findings on hormone-regulated LR formation in higher plants, focusing on auxin as a trigger and on the other hormones in LR formation, and discusses the possible interactions among plant hormones in this developmental process.
Collapse
Affiliation(s)
- Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, 1-1, Rokkodai, Kobe 657-8501, Japan.
| | | |
Collapse
|
664
|
Usami T, Horiguchi G, Yano S, Tsukaya H. The more and smaller cells mutants of Arabidopsis thaliana identify novel roles for SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes in the control of heteroblasty. Development 2009; 136:955-64. [PMID: 19211679 DOI: 10.1242/dev.028613] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Regulation of cell number and cell size is essential for controlling the shape and size of leaves. Here, we report a novel class of Arabidopsis thaliana mutants, more and smaller cells 1 (msc1)-msc3, which have increased cell number and decreased cell size in leaves. msc1 has a miR156-resistant mutation in the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 15 (SPL15) gene. msc2 and msc3 are new alleles of paused and squint mutants, respectively. All msc mutants showed accelerated heteroblasty, a phenomenon in which several morphological traits of leaves change along with phase change. Consistent with this finding, in the wild type, leaves at higher nodes (adult leaves) also have increased cell number and reduced cell size compared with those at lower nodes (juvenile leaves). These facts indicate that precocious acquisition of adult leaf characteristics in the msc mutants may cause alterations in the number and size of cells, and that heteroblasty plays an important role in the regulation of cell number and size. In agreement with this suggestion, such heteroblasty-associated changes in cell number and size are severely inhibited by the constitutive overexpression of miR156 and are promoted by the elevated expression of miR156-insensitive forms of SPL genes. By contrast, rdr6, sgs3, zip, arf3 and arf4 mutations, which affect progression of heteroblasty, had little or no effect on number or size of cells. These results suggest that cell number and size are mainly regulated by an SPL-dependent pathway rather than by a tasiR-ARF-dependent pathway.
Collapse
Affiliation(s)
- Takeshi Usami
- National Institute for Basic Biology, Nishigo-naka 38, Myodaiji-cho, Okazaki, Aichi, 444-8585 Japan
| | | | | | | |
Collapse
|
665
|
Guan H, Kang D, Fan M, Chen Z, Qu LJ. Overexpression of a new putative membrane protein gene AtMRB1 results in organ size enlargement in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:130-139. [PMID: 19200151 DOI: 10.1111/j.1744-7909.2008.00795.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Arabidopsis AtMRB1 is predicted to encode a novel protein of 432 amino acid residues in length, with four putative trans-membrane domains. In the present study, characterization of AtMRB1 is conducted. Green fluorescent protein (GFP) fusion protein assay showed that AtMRB1 was located in the plasma membrane. Transgenic lines overexpressing AtMRB1 driven by a CaMV 35S promoter were generated. Statistic analysis showed that, during the seedling stage, the organ sizes of the transgenic lines including hypocotyl length, root length and root weight were significantly larger than those of the wild type plants under both light and dark conditions. In the adult plant stage, the AtMRB1 overexpressor plants were found to have larger organ sizes in terms of leaf length and width, and increased number of cauline leaves and branches when bolting. Further observation indicated that the larger leaf size phenotype was due to a larger number of mesophyll cells, the size of which was not altered. Quantitative real-time polymerase chain reaction analysis showed that the transcription of ANT, ROT3 and GRF5 were upregulated in the AtMRB1-overexpressor plants. These data suggest that AtMRB1 is possibly a positive regulator of organ size development in Arabidopsis, mainly through cell number control.
Collapse
Affiliation(s)
- Hua Guan
- College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | | | | | | | | |
Collapse
|
666
|
Laskowski M, Grieneisen VA, Hofhuis H, Hove CAT, Hogeweg P, Marée AFM, Scheres B. Root system architecture from coupling cell shape to auxin transport. PLoS Biol 2009; 6:e307. [PMID: 19090618 PMCID: PMC2602721 DOI: 10.1371/journal.pbio.0060307] [Citation(s) in RCA: 297] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 10/29/2008] [Indexed: 01/11/2023] Open
Abstract
Lateral organ position along roots and shoots largely determines plant architecture, and depends on auxin distribution patterns. Determination of the underlying patterning mechanisms has hitherto been complicated because they operate during growth and division. Here, we show by experiments and computational modeling that curvature of the Arabidopsis root influences cell sizes, which, together with tissue properties that determine auxin transport, induces higher auxin levels in the pericycle cells on the outside of the curve. The abundance and position of the auxin transporters restricts this response to the zone competent for lateral root formation. The auxin import facilitator, AUX1, is up-regulated by auxin, resulting in additional local auxin import, thus creating a new auxin maximum that triggers organ formation. Longitudinal spacing of lateral roots is modulated by PIN proteins that promote auxin efflux, and pin2,3,7 triple mutants show impaired lateral inhibition. Thus, lateral root patterning combines a trigger, such as cell size difference due to bending, with a self-organizing system that mediates alterations in auxin transport.
Collapse
Affiliation(s)
- Marta Laskowski
- Department of Biology, Oberlin College, Oberlin, Ohio, United States of America
- Molecular Genetics Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Verônica A Grieneisen
- Theoretical Biology Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Hugo Hofhuis
- Molecular Genetics Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Colette A. ten Hove
- Molecular Genetics Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Paulien Hogeweg
- Theoretical Biology Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Athanasius F. M Marée
- Theoretical Biology Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
- * To whom correspondence should be addressed. E-mail: (AFMM), (BS)
| | - Ben Scheres
- Molecular Genetics Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
- * To whom correspondence should be addressed. E-mail: (AFMM), (BS)
| |
Collapse
|
667
|
de Jong M, Wolters-Arts M, Feron R, Mariani C, Vriezen WH. The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:160-70. [PMID: 18778404 DOI: 10.1111/j.1365-313x.2008.03671.x] [Citation(s) in RCA: 217] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Auxin response factors (ARFs) are encoded by a gene family of transcription factors that specifically control auxin-dependent developmental processes. A tomato ARF gene, homologous to Arabidopsis NPH4/ARF7 and therefore designated as Solanum lycopersicum ARF7 (SlARF7), was found to be expressed at a high level in unpollinated mature ovaries. More detailed analysis of tomato ovaries showed that the level of SlARF7 transcript increases during flower development, remains at a constant high level in mature flowers, and is down-regulated within 48 h after pollination. Transgenic plants with decreased SlARF7 mRNA levels formed seedless (parthenocarpic) fruits. These fruits were heart-shaped and had a rather thick pericarp due to increased cell expansion, compared with the pericarp of wild-type fruits. The expression analysis, together with the parthenocarpic fruit phenotype of the transgenic lines, suggests that, in tomato, SlARF7 acts as a negative regulator of fruit set until pollination and fertilization have taken place, and moderates the auxin response during fruit growth.
Collapse
Affiliation(s)
- Maaike de Jong
- Department of Plant Cell Biology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
668
|
Lee DJ, Park JW, Lee HW, Kim J. Genome-wide analysis of the auxin-responsive transcriptome downstream of iaa1 and its expression analysis reveal the diversity and complexity of auxin-regulated gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3935-57. [PMID: 19654206 PMCID: PMC2736900 DOI: 10.1093/jxb/erp230] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 06/08/2009] [Accepted: 06/30/2009] [Indexed: 05/19/2023]
Abstract
The AUXIN RESPONSE FACTORs (ARFs) and the Aux/IAA proteins regulate various auxin responses through auxin perception mediated by the F-box proteins TIR1/AFBs. ARFs are transcription factors that modulate expression of auxin response genes and are negatively regulated by the Aux/IAA proteins. To gain insight into the regulatory mechanisms of Aux/IAA-ARF action at the genome level, the transcriptome regulated downstream of iaa1, a stabilized IAA1 mutant protein, was identified using dexamethasone (DEX)-controlled nuclear translocation of iaa1 during the auxin response. The expression of the iaa1-regulated auxin-responsive genes selected from microarray data was analysed with RNA-gel blot analysis and it was shown that auxin-regulated expression of these genes was significantly inhibited by DEX treatment. While cycloheximide-inducible expression of a majority of these genes was also DEX-suppressible, expression of some genes could not be suppressed by treatment with DEX. Expression analysis in a variety of arf mutant backgrounds suggested that all iaa1-regulated auxin-response genes examined are controlled by ARFs to different extents and that the same ARF protein can regulate the expression of these genes in response to auxin in a positive or a negative manner. However, arf mutations did not affect auxin-mediated down-regulation, indicating that ARFs might not play a critical role in down-regulation. The decrease in auxin-responsive gene expression in arf7 arf19 mutants was more severe than that of tir1/afb quadruple mutants. These results show the diversity and complexity of mechanisms of Aux/IAA-ARF- and auxin-regulated gene expression. These data also provide the opportunity for functional analysis of genes mediating the auxin-response downstream of Aux/IAA-ARFs.
Collapse
Affiliation(s)
| | | | | | - Jungmook Kim
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
669
|
Péret B, Larrieu A, Bennett MJ. Lateral root emergence: a difficult birth. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3637-43. [PMID: 19635746 DOI: 10.1093/jxb/erp232] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Lateral root initiation takes place deep within the parental root, requiring new primordia to break through the overlying tissues before they emerge into the soil. Lateral root emergence has been well described at the cellular level but, until recently, the molecular mechanisms involved were unclear. Scientists in the 19th and 20th centuries hypothesized that the cell wall of the overlying tissues was modified by enzymes released by cells within the primordium. Recent studies in the model plant Arabidopsis thaliana revealed the existence of a complex transcellular signalling network regulated by auxin that controls cell wall remodelling in cells overlying lateral root primordia. In the first part of this review, early observations on the cell biology of lateral root formation and emergence are summarized, and in the following two sections recent observations in Arabidopsis that led to the identification of the molecular mechanism regulating lateral root emergence are described.
Collapse
Affiliation(s)
- Benjamin Péret
- Plant Sciences Division, School of Biosciences, University of Nottingham, Loughborough, UK.
| | | | | |
Collapse
|
670
|
Soyano T, Thitamadee S, Machida Y, Chua NH. ASYMMETRIC LEAVES2-LIKE19/LATERAL ORGAN BOUNDARIES DOMAIN30 and ASL20/LBD18 regulate tracheary element differentiation in Arabidopsis. THE PLANT CELL 2008; 20:3359-73. [PMID: 19088331 PMCID: PMC2630433 DOI: 10.1105/tpc.108.061796] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Revised: 11/20/2008] [Accepted: 12/02/2008] [Indexed: 05/17/2023]
Abstract
ASYMMETRIC LEAVES2 (AS2)/LATERAL ORGAN BOUNDARIES DOMAIN (LBD) family proteins are plant-specific nuclear proteins, and genes encoding several family members have been implicated in plant development. We investigated the function of two members of the Arabidopsis thaliana AS2/LBD family, AS2-LIKE19 (ASL19)/LBD30 and ASL20/LBD18, which encode homologous proteins. Both ASL19 and ASL20 were expressed in immature tracheary elements (TEs), and the expression was dependent on VASCULAR-RELATED NAC-DOMAIN PROTEIN6 (VND6) and VND7, which are transcription factors required for TE differentiation. Overexpression of ASL19 and ASL20 induced transdifferentiation of cells from nonvascular tissues into TE-like cells, similar to those induced upon VND6/7 overexpression. By contrast, aberrant TEs were formed when a cDNA encoding a fusion protein of ASL20 with an artificial repressor domain (ASL20-SRDX) was expressed from its native promoter. These results provide evidence that ASL proteins positively regulate TE differentiation. In transgenic plants overexpressing both ASL19 and ASL20, the xylem-deficient phenotype caused by the expression of dominant-negative versions of VND6/7 proteins was not rescued. However, ectopic expression of VND7 was detected in plants overexpressing ASL20. Moreover, VND genes and their downstream targets were downregulated in ASL20-SRDX plants. Therefore, ASL20 appears to be involved in a positive feedback loop for VND7 expression that regulates TE differentiation-related genes.
Collapse
Affiliation(s)
- Takashi Soyano
- Laboratory of Plant Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | | | | | | |
Collapse
|
671
|
Pérez-Torres CA, López-Bucio J, Cruz-Ramírez A, Ibarra-Laclette E, Dharmasiri S, Estelle M, Herrera-Estrella L. Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. THE PLANT CELL 2008; 20:3258-72. [PMID: 19106375 PMCID: PMC2630440 DOI: 10.1105/tpc.108.058719] [Citation(s) in RCA: 350] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 11/05/2008] [Accepted: 12/02/2008] [Indexed: 05/12/2023]
Abstract
The survival of plants, as sessile organisms, depends on a series of postembryonic developmental events that determine the final architecture of plants and allow them to contend with a continuously changing environment. Modulation of cell differentiation and organ formation by environmental signals has not been studied in detail. Here, we report that alterations in the pattern of lateral root (LR) formation and emergence in response to phosphate (Pi) availability is mediated by changes in auxin sensitivity in Arabidopsis thaliana roots. These changes alter the expression of auxin-responsive genes and stimulate pericycle cells to proliferate. Modulation of auxin sensitivity by Pi was found to depend on the auxin receptor TRANSPORT INHIBITOR RESPONSE1 (TIR1) and the transcription factor AUXIN RESPONSE FACTOR19 (ARF19). We determined that Pi deprivation increases the expression of TIR1 in Arabidopsis seedlings and causes AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) auxin response repressors to be degraded. Based on our results, we propose a model in which auxin sensitivity is enhanced in Pi-deprived plants by an increased expression of TIR1, which accelerates the degradation of AUX/IAA proteins, thereby unshackling ARF transcription factors that activate/repress genes involved in LR formation and emergence.
Collapse
Affiliation(s)
- Claudia-Anahí Pérez-Torres
- Departamento de Ingeniería Genética de Plantas, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36821 Irapuato, Guanajuato, Mexico
| | | | | | | | | | | | | |
Collapse
|
672
|
Affiliation(s)
| | - Mark Estelle
- Department of Biology, Indiana University, Bloomington, Indiana 47405; ,
| |
Collapse
|
673
|
Hirano K, Aya K, Hobo T, Sakakibara H, Kojima M, Shim RA, Hasegawa Y, Ueguchi-Tanaka M, Matsuoka M. Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in microspore/pollen and tapetum of rice. PLANT & CELL PHYSIOLOGY 2008; 49:1429-50. [PMID: 18718932 PMCID: PMC2566925 DOI: 10.1093/pcp/pcn123] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 08/18/2008] [Indexed: 05/18/2023]
Abstract
To investigate the involvement of phytohormones during rice microspore/pollen (MS/POL) development, endogenous levels of IAA, gibberellins (GAs), cytokinins (CKs) and abscisic acid (ABA) in the mature anther were analyzed. We also analyzed the global expression profiles of genes related to seven phytohormones, namely auxin, GAs, CKs, brassinosteroids, ethylene, ABA and jasmonic acids, in MS/POL and tapetum (TAP) using a 44K microarray combined with a laser microdissection technique (LM-array analysis). IAA and GA(4) accumulated in a much higher amount in the mature anther compared with the other tissues, while CKs and ABA did not. LM-array analysis revealed that sets of genes required for IAA and GA synthesis were coordinately expressed during the later stages of MS/POL development, suggesting that these genes are responsible for the massive accumulation of IAA and GA(4) in the mature anther. In contrast, genes for GA signaling were preferentially expressed during the early developmental stages of MS/POL and throughout TAP development, while their expression was down-regulated at the later stages of MS/POL development. In the case of auxin signaling genes, such mirror-imaged expression observed in GA synthesis and signaling genes was not observed. IAA receptor genes were mostly expressed during the late stages of MS/POL development, and various sets of AUX/IAA and ARF genes were expressed during the different stages of MS/POL or TAP development. Such cell type-specific expression profiles of phytohormone biosynthesis and signaling genes demonstrate the validity and importance of analyzing the expression of phytohormone-related genes in individual cell types independently of other cells/tissues.
Collapse
Affiliation(s)
- Ko Hirano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601 Japan
| | - Koichiro Aya
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601 Japan
| | - Tokunori Hobo
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601 Japan
| | | | - Mikiko Kojima
- RIKEN Plant Science Center, Tsurumi, Yokohama, 230-0045 Japan
| | | | - Yasuko Hasegawa
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601 Japan
| | | | - Makoto Matsuoka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601 Japan
| |
Collapse
|
674
|
Suzuki M, McCarty DR. Functional symmetry of the B3 network controlling seed development. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:548-53. [PMID: 18691932 DOI: 10.1016/j.pbi.2008.06.015] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 06/28/2008] [Accepted: 06/30/2008] [Indexed: 05/22/2023]
Abstract
Two subfamilies of plant-specific B3 domain transcription factors regulate the fundamental transition between seed and vegetative phases of development. The AFL B3 genes activate the embryo maturation program, while the closely related VAL B3 genes shutdown the AFL network before germination. VP8/AMP1 signaling most probably acts upstream of the AFL network. Key downstream AFL targets elaborate seed-specific abscisic acid (ABA), gibberellin (GA), and auxin signaling. ABA feeds back into network via ABI3 interaction with ABI5. GA promotes repression of the AFL network by the VAL repressors and the PICKLE (PKL) chromatin-remodeling factor before germination. Strikingly, the functional symmetry of the AFL and VAL B3 genes is mirrored in patterns of chromatin modification.
Collapse
Affiliation(s)
- Masaharu Suzuki
- PMCB Program, Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA.
| | | |
Collapse
|
675
|
Lee MH, Kim B, Song SK, Heo JO, Yu NI, Lee SA, Kim M, Kim DG, Sohn SO, Lim CE, Chang KS, Lee MM, Lim J. Large-scale analysis of the GRAS gene family in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2008; 67:659-70. [PMID: 18500650 DOI: 10.1007/s11103-008-9345-1] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 05/07/2008] [Indexed: 05/18/2023]
Abstract
GRAS proteins belong to a plant-specific transcription factor family. Currently, 33 GRAS members including a putative expressed pseudogene have been identified in the Arabidopsis genome. With a reverse genetic approach, we have constructed a "phenome-ready unimutant collection" of the GRAS genes in Arabidopsis thaliana. Of this collection, we focused on loss-of-function mutations in 23 novel GRAS members. Under standard conditions, homozygous mutants have no obvious morphological phenotypes compared with those of wild-type plants. Expression analysis of GRAS genes using quantitative real-time RT-PCR (qRT-PCR), microarray data mining, and promoter::GUS reporter fusions revealed their tissue-specific expression patterns. Our analysis of protein-protein interaction and subcellular localization of individual GRAS members indicated their roles as transcription regulators. In our yeast two-hybrid (Y2H) assay, we confirmed the protein-protein interaction between SHORT-ROOT (SHR) and SCARECROW (SCR). Furthermore, we identified a new SHR-interacting protein, SCARECROW-LIKE23 (SCL23), which is the most closely related to SCR. Our large-scale analysis provides a comprehensive evaluation on the Arabidopsis GRAS members, and also our phenome-ready unimutant collection will be a useful resource to better understand individual GRAS proteins that play diverse roles in plant growth and development.
Collapse
Affiliation(s)
- Mi-Hyun Lee
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
676
|
Ueda A, Li P, Feng Y, Vikram M, Kim S, Kang CH, Kang JS, Bahk JD, Lee SY, Fukuhara T, Staswick PE, Pepper AE, Koiwa H. The Arabidopsis thaliana carboxyl-terminal domain phosphatase-like 2 regulates plant growth, stress and auxin responses. PLANT MOLECULAR BIOLOGY 2008; 67:683-97. [PMID: 18506580 DOI: 10.1007/s11103-008-9348-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 05/08/2008] [Indexed: 05/08/2023]
Abstract
More than 20 genes in the Arabidopsis genome encode proteins similar to phosphatases that act on the carboxyl-terminal domain (CTD) of RNA polymerase II. One of these CTD-phosphatase-like (CPL) proteins, CPL2, dephosphorylates CTD-Ser5-PO4 in an intact RNA polymerase II complex and contains a double-stranded (ds)-RNA-binding motif (DRM). Although the dsRNA-binding activity of CPL2 DRM has not been shown to date, T-DNA insertion mutants that express CPL2 variants lacking either a part of DRM (cpl2-1) or the entire DRM (cpl2-2) exhibited leaf expansion defects, early flowering, low fertility, and increased salt sensitivity. cpl2 mutant plants produced shorter hypocotyls than wild-type plants in the light, but were indistinguishable from wild type in the dark. CPL2 was expressed in shoot and root meristems and vasculatures, expanding rosette leaves, and floral organs suggesting a focal role for growth. Microarray and RT-PCR analyses revealed that basal levels of several auxin-responsive transcripts were reduced in cpl2. On the other hand, the levels of endogenous auxin and its conjugates were similar in wild type and cpl2. Overexpression of ARF5 but not all activator ARF transcription factors restored the auxin-responsive DR5-GUS reporter gene expression and the leaf expansion of cpl2 mutant plants but not early flowering phenotype. These results establish CPL2 as a multifunctional regulator that modulates plant growth, stress, and auxin responses.
Collapse
Affiliation(s)
- Akihiro Ueda
- Department of Horticultural Science and Vegetable and Fruit Improvement Center, Texas A&M University, College Station, TX 77843-2133, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
677
|
Zhang W, Luo Y, Gong X, Zeng W, Li S. Computational identification of 48 potato microRNAs and their targets. Comput Biol Chem 2008; 33:84-93. [PMID: 18723398 DOI: 10.1016/j.compbiolchem.2008.07.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 07/06/2008] [Indexed: 10/21/2022]
Abstract
MicroRNAs (miRNAs) are a new family of small RNA molecules known in animals and plants, whose conservation among species suggests that they bear conserved biological functions. So far, little is known about miRNA in Solanum tuberosum species. Using previously known miRNAs from Arabidopsis, rice and other plant species against expressed sequence tags (ESTs), genomic survey sequence (GSS) and nucleotide databases, we identified 48 potential miRNAs in S. tuberosum. These potato miRNAs may regulate 186 potential targets, which are involved in floral, leaf, root, and stem development, signal transduction, metabolism pathways, and stress responses. To validate the prediction of miRNAs in potato, we performed a RT-PCR analysis and found that potato miRNAs have diverse expression patterns during development.
Collapse
Affiliation(s)
- Wenwei Zhang
- College of Life Sciences, Nanchang University, Nanchang 330031, PR China
| | | | | | | | | |
Collapse
|
678
|
Swarup K, Benková E, Swarup R, Casimiro I, Péret B, Yang Y, Parry G, Nielsen E, De Smet I, Vanneste S, Levesque MP, Carrier D, James N, Calvo V, Ljung K, Kramer E, Roberts R, Graham N, Marillonnet S, Patel K, Jones JDG, Taylor CG, Schachtman DP, May S, Sandberg G, Benfey P, Friml J, Kerr I, Beeckman T, Laplaze L, Bennett MJ. The auxin influx carrier LAX3 promotes lateral root emergence. Nat Cell Biol 2008; 10:946-54. [PMID: 18622388 DOI: 10.1038/ncb1754] [Citation(s) in RCA: 500] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 06/23/2008] [Indexed: 12/24/2022]
Abstract
Lateral roots originate deep within the parental root from a small number of founder cells at the periphery of vascular tissues and must emerge through intervening layers of tissues. We describe how the hormone auxin, which originates from the developing lateral root, acts as a local inductive signal which re-programmes adjacent cells. Auxin induces the expression of a previously uncharacterized auxin influx carrier LAX3 in cortical and epidermal cells directly overlaying new primordia. Increased LAX3 activity reinforces the auxin-dependent induction of a selection of cell-wall-remodelling enzymes, which are likely to promote cell separation in advance of developing lateral root primordia.
Collapse
Affiliation(s)
- Kamal Swarup
- School of Biosciences & Centre for Plant Integrative Biology, University of Nottingham, LE12 5RD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
679
|
Dohmann EMN, Levesque MP, Isono E, Schmid M, Schwechheimer C. Auxin responses in mutants of the Arabidopsis CONSTITUTIVE PHOTOMORPHOGENIC9 signalosome. PLANT PHYSIOLOGY 2008; 147:1369-79. [PMID: 18467458 PMCID: PMC2442533 DOI: 10.1104/pp.108.121061] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 04/04/2008] [Indexed: 05/19/2023]
Abstract
The CONSTITUTIVE PHOTOMORPHOGENIC9 (COP9) signalosome (CSN) is an evolutionarily conserved multiprotein complex that interacts with cullin-RING type E3 ubiquitin ligases (CRLs). CSN subunit 5 (CSN5), which, when incorporated into CSN, can deconjugate the NEDD8 modification from the cullin subunit of CRLs, is essential for CSN's role in controlling CRL activity. Whether the CSN5 monomer, which is maintained in csn mutants such as csn3 or csn4, has a functional role, remains to be established. We performed a comparative gene expression-profiling experiment with Arabidopsis (Arabidopsis thaliana) csn3, csn4, and csn5 mutants, and we show here that these mutants cannot be distinguished at the transcriptional level. Furthermore, we show that csn3 csn5 mutants are morphologically indistinguishable from csn3 or csn5 mutants. Taken together, these data suggest that the CSN5 monomer does not have a function that leads to transcriptional or morphological changes in the csn mutants. We further examined auxin responses in csn mutants. Whereas CSN had previously been shown to be required for the auxin response-regulatory E3 complexes, specifically SCF(TIR1), the csn mutant phenotype suggests that CSN is not essential for auxin responses. We present physiological and genetic data that indicate that auxin responses are indeed only partially impaired in csn mutants and that this is not the result of maternally contributed CSN. Finally, we discuss these findings in the context of the current understanding of the role of neddylation and CSN-mediated deneddylation for CRL activity.
Collapse
|
680
|
Uehara T, Okushima Y, Mimura T, Tasaka M, Fukaki H. Domain II mutations in CRANE/IAA18 suppress lateral root formation and affect shoot development in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2008; 49:1025-38. [PMID: 18505759 DOI: 10.1093/pcp/pcn079] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Lateral root formation is an important developmental component of root systems in vascular plants. Several regulatory genes for lateral root formation have been identified from recent studies mainly using Arabidopsis thaliana. In this study, we isolated two dominant mutant alleles, crane-1 and crane-2, which are defective in lateral root formation in Arabidopsis. The crane mutants have dramatically reduced lateral root and auxin-induced lateral root formation, indicating that the crane mutations reduce auxin sensitivity. In addition, the crane mutants have pleiotropic phenotypes in the aerial shoots, including long hypocotyls when grown in the light, up-curled leaves and reduced fertility. The crane mutant phenotypes are caused by a gain-of-function mutation in domain II of IAA18, a member of the Aux/IAA transcriptional repressor family which is expressed in almost all organs. In roots, IAA18 promoter::GUS was expressed in the early stages of lateral root development. In the yeast two-hybrid system, IAA18 interacts with AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19, transcriptional activators that positively regulate lateral root formation. Taken together, our results indicate that CRANE/IAA18 is involved in lateral root formation in Arabidopsis, and suggest that it negatively regulates the activity of ARF7 and ARF19 for lateral root formation.
Collapse
Affiliation(s)
- Takeo Uehara
- Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
| | | | | | | | | |
Collapse
|
681
|
Lau S, Jürgens G, De Smet I. The evolving complexity of the auxin pathway. THE PLANT CELL 2008; 20:1738-46. [PMID: 18647826 PMCID: PMC2518236 DOI: 10.1105/tpc.108.060418] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Steffen Lau
- Center for Plant Molecular Biology, Developmental Genetics, Tübingen University, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
682
|
Wong CE, Bhalla PL, Ottenhof H, Singh MB. Transcriptional profiling of the pea shoot apical meristem reveals processes underlying its function and maintenance. BMC PLANT BIOLOGY 2008; 8:73. [PMID: 18590528 PMCID: PMC2478663 DOI: 10.1186/1471-2229-8-73] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 06/30/2008] [Indexed: 05/04/2023]
Abstract
BACKGROUND Despite the importance of the shoot apical meristem (SAM) in plant development and organ formation, our understanding of the molecular mechanisms controlling its function is limited. Genomic tools have the potential to unravel the molecular mysteries of the SAM, and legume systems are increasingly being used in plant-development studies owing to their unique characteristics such as nitrogen fixation, secondary metabolism, and pod development. Garden pea (Pisum sativum) is a well-established classic model species for genetics studies that has been used since the Mendel era. In addition, the availability of a plethora of developmental mutants makes pea an ideal crop legume for genomics studies. This study aims to utilise genomics tools in isolating genes that play potential roles in the regulation of SAM activity. RESULTS In order to identify genes that are differentially expressed in the SAM, we generated 2735 ESTs from three cDNA libraries derived from freshly micro-dissected SAMs from 10-day-old garden peas (Pisum sativum cv Torsdag). Custom-designed oligonucleotide arrays were used to compare the transcriptional profiles of pea SAMs and non-meristematic tissues. A total of 184 and 175 transcripts were significantly up- or down-regulated in the pea SAM, respectively. As expected, close to 61% of the transcripts down-regulated in the SAM were found in the public database, whereas sequences from the same source only comprised 12% of the genes that were expressed at higher levels in the SAM. This highlights the under-representation of transcripts from the meristematic tissues in the current public pea protein database, and demonstrates the utility of our SAM EST collection as an essential genetic resource for revealing further information on the regulation of this developmental process. In addition to unknowns, many of the up-regulated transcripts are known to encode products associated with cell division and proliferation, epigenetic regulation, auxin-mediated responses and microRNA regulation. CONCLUSION The presented data provide a picture of the transcriptional profile of the pea SAM, and reveal possible roles of differentially expressed transcripts in meristem function and maintenance.
Collapse
Affiliation(s)
- Chui E Wong
- Plant Molecular Biology and Biotechnology laboratory, Australian Research Centre of Excellence for Integrative Legume Research, Faculty of Land and Food Resources, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Prem L Bhalla
- Plant Molecular Biology and Biotechnology laboratory, Australian Research Centre of Excellence for Integrative Legume Research, Faculty of Land and Food Resources, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Harald Ottenhof
- Plant Molecular Biology and Biotechnology laboratory, Australian Research Centre of Excellence for Integrative Legume Research, Faculty of Land and Food Resources, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mohan B Singh
- Plant Molecular Biology and Biotechnology laboratory, Australian Research Centre of Excellence for Integrative Legume Research, Faculty of Land and Food Resources, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
683
|
Salmon J, Ramos J, Callis J. Degradation of the auxin response factor ARF1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:118-28. [PMID: 18088308 DOI: 10.1111/j.1365-313x.2007.03396.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Auxin-mediated gene expression is largely controlled through a family of DNA-binding proteins known as auxin response factors (ARF). Previous studies on the role of proteolytic regulation in auxin signaling have focused on degradation of their interacting partner, the Aux/IAA proteins. Aux/IAA family members with domain II sequences are rapidly degraded, show auxin-enhanced degradation rates, and interact with the related F-box proteins TIR1 and AFB1-3, which indicates that they are ubiquitylated by a CUL1-dependent E3 ligase. To date, limited data have been generated regarding degradation of ARFs. Here, we focus on the degradation rate of one ARF family member, Arabidopsis thaliana ARF1, and find that the half-lives of N-terminally HA-tagged ARF1 and C-terminally luciferase-tagged ARF1 are both approximately 3-4 h. This half-life appears to be conferred by a component of the middle region (MR), and degradation of the luciferase fusion with the MR is more rapid when the fusion includes an additional nuclear localization signal. ARF1 degradation is proteasome-dependent and rates are not altered in a CUL1 mutant background, suggesting that this ARF is targeted for proteasomal degradation via an alternative set of machinery to that used for Aux/IAA degradation. Consistent with this, exogenous indole acetic acid does not affect the degradation of ARF1. Given increasing evidence that the relative ratio of Aux/IAAs to ARFs rather than the absolute quantity within the cell appears to be the mode through which auxin signaling is modulated, this half-life is likely to be biologically relevant.
Collapse
Affiliation(s)
- Jemma Salmon
- Section of Molecular and Cellular Biology, University of California-Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|
684
|
Delker C, Raschke A, Quint M. Auxin dynamics: the dazzling complexity of a small molecule's message. PLANTA 2008; 227:929-941. [PMID: 18299888 DOI: 10.1007/s00425-008-0710-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 01/29/2008] [Indexed: 05/26/2023]
Abstract
The phytohormone auxin is a potent regulator of plant development. Since its discovery in the beginning of the twentieth century many aspects of auxin biology have been extensively studied, ranging from biosynthesis and metabolism to the elucidation of molecular components of downstream signaling. With the identification of the F-box protein TIR1 as an auxin receptor a major breakthrough in understanding auxin signaling has been achieved and recent modeling approaches have shed light on the putative mechanisms underlying the establishment of auxin gradients and maxima essential for many auxin-regulated processes. Here, we review these and other recent advances in unraveling the entanglement of biosynthesis, polar transport and cellular signaling events that allow small auxinic molecules to facilitate their complex regulatory action.
Collapse
Affiliation(s)
- Carolin Delker
- Independent Junior Research Group, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle/Saale, Germany
| | | | | |
Collapse
|
685
|
Paponov IA, Paponov M, Teale W, Menges M, Chakrabortee S, Murray JAH, Palme K. Comprehensive transcriptome analysis of auxin responses in Arabidopsis. MOLECULAR PLANT 2008; 1:321-37. [PMID: 19825543 DOI: 10.1093/mp/ssm021] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In plants, the hormone auxin shapes gene expression to regulate growth and development. Despite the detailed characterization of auxin-inducible genes, a comprehensive overview of the temporal and spatial dynamics of auxin-regulated gene expression is lacking. Here, we analyze transcriptome data from many publicly available Arabidopsis profiling experiments and assess tissue-specific gene expression both in response to auxin concentration and exposure time and in relation to other plant growth regulators. Our analysis shows that the primary response to auxin over a wide range of auxin application conditions and in specific tissues comprises almost exclusively the up-regulation of genes and identifies the most robust auxin marker genes. Tissue-specific auxin responses correlate with differential expression of Aux/IAA genes and the subsequent regulation of context- and sequence-specific patterns of gene expression. Changes in transcript levels were consistent with a distinct sequence of conjugation, increased transport capacity and down-regulation of biosynthesis in the temperance of high cellular auxin concentrations. Our data show that auxin regulates genes associated with the biosynthesis, catabolism and signaling pathways of other phytohormones. We present a transcriptional overview of the auxin response. Specific interactions between auxin and other phytohormones are highlighted, particularly the regulation of their metabolism. Our analysis provides a roadmap for auxin-dependent processes that underpins the concept of an 'auxin code'--a tissue-specific fingerprint of gene expression that initiates specific developmental processes.
Collapse
Affiliation(s)
- Ivan A Paponov
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
686
|
Abstract
The phytohormone auxin is a key factor in plant growth and development. Forward and reverse genetic strategies have identified important molecular components in auxin perception, signaling, and transport. These advances resulted in the identification of some of the underlying regulatory mechanisms as well as the emergence of functional frameworks for auxin action. This review focuses on the feedback loops that form an integrative part of these regulatory mechanisms.
Collapse
Affiliation(s)
- René Benjamins
- Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
687
|
Falkenberg B, Witt I, Zanor MI, Steinhauser D, Mueller-Roeber B, Hesse H, Hoefgen R. Transcription factors relevant to auxin signalling coordinate broad-spectrum metabolic shifts including sulphur metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2831-46. [PMID: 18596113 PMCID: PMC2486478 DOI: 10.1093/jxb/ern144] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 04/22/2008] [Accepted: 04/28/2008] [Indexed: 05/18/2023]
Abstract
A systems approach has previously been used to follow the response behaviour of Arabidopsis thaliana plants upon sulphur limitation. A response network was reconstructed from a time series of transcript and metabolite profiles, integrating complex metabolic and transcript data in order to investigate a potential causal relationship. The resulting scale-free network allowed potential transcriptional regulators of sulphur metabolism to be identified. Here, three sulphur-starvation responsive transcription factors, IAA13, IAA28, and ARF-2 (ARF1-Binding Protein), all of which are related to auxin signalling, were selected for further investigation. IAA28 overexpressing and knock-down lines showed no major morphological changes, whereas IAA13- and ARF1-BP-overexpressing plants grew more slowly than the wild type. Steady-state metabolite levels and expression of pathway-relevant genes were monitored under normal and sulphate-depleted conditions. For all lines, changes in transcript and metabolite levels were observed, yet none of these changes could exclusively be linked to sulphur stress. Instead, up- or down-regulation of the transcription factors caused metabolic changes which in turn affected sulphur metabolism. Auxin-relevant transcription factors are thus part of a complex response pattern to nutrient starvation that serve as coordinators of the metabolic shifts driving sulphur homeostasis rather then as direct effectors of the sulphate assimilation pathway. This study provides the first evidence ever presented that correlates auxin-related transcriptional regulators with primary plant metabolism.
Collapse
Affiliation(s)
- Bettina Falkenberg
- Max-Planck-Institut fuer Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, 14424 Potsdam, Germany
| | - Isabell Witt
- Max-Planck-Institut fuer Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, 14424 Potsdam, Germany
| | - Maria Inés Zanor
- Max-Planck-Institut fuer Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, 14424 Potsdam, Germany
| | - Dirk Steinhauser
- Max-Planck-Institut fuer Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, 14424 Potsdam, Germany
| | - Bernd Mueller-Roeber
- Universität Potsdam, Institut fuer Biochemie und Biologie, Karl-Liebknecht-Str. 24–25, Haus 20, 14476 Potsdam-Golm, Germany
| | - Holger Hesse
- Max-Planck-Institut fuer Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, 14424 Potsdam, Germany
- To whom correspondence should be addressed. E-mail:
| | - Rainer Hoefgen
- Max-Planck-Institut fuer Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, 14424 Potsdam, Germany
| |
Collapse
|
688
|
Abebie B, Lers A, Philosoph-Hadas S, Goren R, Riov J, Meir S. Differential effects of NAA and 2,4-D in reducing floret abscission in cestrum (Cestrum elegans) cut flowers are associated with their differential activation of Aux/IAA homologous genes. ANNALS OF BOTANY 2008; 101:249-59. [PMID: 17591611 PMCID: PMC2711013 DOI: 10.1093/aob/mcm115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS A previous study showed that the relative effectiveness of 2,4-dichlorophenoxyacetic acid (2,4-D) compared with that of 1-naphthaleneacetic acid (NAA) in reducing floret bud abscission in cestrum (Cestrum elegans) cut flowers was due to its acropetal transport. The aim of the present study was to examine if the differential effect of these auxins on floret abscission is reflected in the expression of Aux/IAA genes in the floret abscission zone (AZ). METHODS cDNAs were isolated by PCR-based cloning from the floret AZ of auxin-treated cut flowers. The expression patterns of the cDNAs in various tissues and the effect of indole-3-acetic acid (IAA), applied with or without cycloheximide, on their expression in the floret AZ were examined by northern blot analysis. The regulation of transcript accumulation in the floret AZ in response to NAA or 2,4-D was measured by real-time PCR during auxin pulsing of cut flowers and vase life, concomitantly with floret abscission. KEY RESULTS Six isolated cDNAs were identified to represent Aux/IAA homologous genes, designated as Cestrum elegans (Ce)-IAA1 to Ce-IAA6. Four Ce-IAA genes were characterized as early auxin-responsive genes (ARGs), and two (Ce-IAA1 and Ce-IAA5) as late ARGs. Only Ce-IAA5 was AZ-specific in floret buds. A temporal regulation of Ce-IAA transcript levels in the floret AZ was found, with 2,4-D inducing higher expression levels than NAA in floret buds. These Ce-IAA expression levels were negatively correlated with floret abscission. CONCLUSIONS The differential transport characteristics of NAA and 2,4-D in cestrum cut flowers were reflected in differential activation of the Ce-IAA genes identified in the floret AZ. Therefore, Aux/IAA genes can be used as molecular markers to measure auxin activity, which reflects free auxin level in the AZ. Two of the identified genes, Ce-IAA1 and Ce-IAA5, may also have a regulatory role in abscission.
Collapse
Affiliation(s)
- Bekele Abebie
- The Kennedy-Leigh Centre for Horticultural Research, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Faculty of Agriculture, Rehovot 76100, Israel
- Department of Postharvest Science of Fresh Produce, The Volcani Center, Agricultural Research Organization, Bet-Dagan, 50250, Israel
| | - Amnon Lers
- Department of Postharvest Science of Fresh Produce, The Volcani Center, Agricultural Research Organization, Bet-Dagan, 50250, Israel
| | - Sonia Philosoph-Hadas
- Department of Postharvest Science of Fresh Produce, The Volcani Center, Agricultural Research Organization, Bet-Dagan, 50250, Israel
| | - Raphael Goren
- The Kennedy-Leigh Centre for Horticultural Research, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Faculty of Agriculture, Rehovot 76100, Israel
- For correspondence. E-mail
| | - Joseph Riov
- The Kennedy-Leigh Centre for Horticultural Research, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Faculty of Agriculture, Rehovot 76100, Israel
| | - Shimon Meir
- Department of Postharvest Science of Fresh Produce, The Volcani Center, Agricultural Research Organization, Bet-Dagan, 50250, Israel
| |
Collapse
|
689
|
Abstract
Here we summarize progress in identification of three classes of genes useful for control of plant architecture: those affecting hormone metabolism and signaling; transcription and other regulatory factors; and the cell cycle. We focus on strong modifiers of stature and form that may be useful for directed modification of plant architecture, rather than the detailed mechanisms of gene action. Gibberellin (GA) metabolic and response genes are particularly attractive targets for manipulation because many act in a dose-dependent manner; similar phenotypic effects can be readily achieved in heterologous species; and induced pleiotropic effects--such as on nitrogen assimilation, photosynthesis, and lateral root production--are usually positive with respect to crop performance. Genes encoding transcription factors represent strong candidates for manipulation of plant architecture. For example, AINTEGUMENTA, ARGOS (auxin-regulated gene controlling organ size), and growth-regulating factors (GRFs) are strong modifiers of leaf and/or flower size. Plants overexpressing these genes had increased organ size and did not display negative pleiotropic effects in glasshouse environments. TCP-domain genes such as CINCINNATA, and the associated regulatory miRNAs such as miRJAW, may provide useful means to modulate leaf curvature and other foliage properties. There are considerable opportunities for comparative and translational genomics in nonmodel plant systems.
Collapse
Affiliation(s)
- Victor B Busov
- Michigan Technological University, School of Forest Research and Environmental Science, 101 Noblet Hall, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Amy M Brunner
- Virginia Polytechnic Institute and State University, Department of Forestry, 304 Cheatham Hall (0324), Blacksburg, VA 24061, USA
| | - Steven H Strauss
- Oregon State University, Department of Forest Science, Corvallis, OR 97331-5752, USA
| |
Collapse
|
690
|
Nibau C, Gibbs DJ, Coates JC. Branching out in new directions: the control of root architecture by lateral root formation. THE NEW PHYTOLOGIST 2008; 179:595-614. [PMID: 18452506 DOI: 10.1111/j.1469-8137.2008.02472.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant roots are required for the acquisition of water and nutrients, for responses to abiotic and biotic signals in the soil, and to anchor the plant in the ground. Controlling plant root architecture is a fundamental part of plant development and evolution, enabling a plant to respond to changing environmental conditions and allowing plants to survive in different ecological niches. Variations in the size, shape and surface area of plant root systems are brought about largely by variations in root branching. Much is known about how root branching is controlled both by intracellular signalling pathays and by environmental signals. Here, we will review this knowledge, with particular emphasis on recent advances in the field that open new and exciting areas of research.
Collapse
Affiliation(s)
| | | | - J C Coates
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
691
|
Stone BB, Stowe-Evans EL, Harper RM, Celaya RB, Ljung K, Sandberg G, Liscum E. Disruptions in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis. MOLECULAR PLANT 2008; 1:129-44. [PMID: 20031920 DOI: 10.1093/mp/ssm013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Phototropism represents a differential growth response by which plant organs can respond adaptively to changes in the direction of incident light to optimize leaf/stem positioning for photosynthetic light capture and root growth orientation for water/nutrient acquisition. Studies over the past few years have identified a number of components in the signaling pathway(s) leading to development of phototropic curvatures in hypocotyls. These include the phototropin photoreceptors (phot1 and phot2) that perceive directional blue-light (BL) cues and then stimulate signaling, leading to relocalization of the plant hormone auxin, as well as the auxin response factor NPH4/ARF7 that responds to changes in local auxin concentrations to directly mediate expression of genes likely encoding proteins necessary for development of phototropic curvatures. While null mutations in NPH4/ARF7 condition an aphototropic response to unidirectional BL, seedlings carrying the same mutations recover BL-dependent phototropic responsiveness if co-irradiated with red light (RL) or pre-treated with either ethylene. In the present study, we identify second-site enhancer mutations in the nph4 background that abrogate these recovery responses. One of these mutations--map1 (modifier of arf7 phenotypes 1)--was found to represent a missense allele of AUX1--a gene encoding a high-affinity auxin influx carrier previously associated with a number of root responses. Pharmacological studies and analyses of additional aux1 mutants confirmed that AUX1 functions as a modulator of hypocotyl phototropism. Moreover, we have found that the strength of dependence of hypocotyl phototropism on AUX1-mediated auxin influx is directly related to the auxin responsiveness of the seedling in question.
Collapse
Affiliation(s)
- Bethany B Stone
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | |
Collapse
|
692
|
Abstract
Early embryonic development in the flowering plant Arabidopsis thaliana follows a predictable sequence of cell divisions. Anatomical hallmarks and the expression of marker genes in dynamic patterns indicate that new cell fates are established with virtually every round of mitosis. Although some of the factors regulating these early patterning events have been identified, the overall process remains relatively poorly understood. Starting at the globular stage, when the embryo has approximately 100 cells, the organization of development appears to be taken over by programs that regulate postembryonic patterning throughout the life cycle.
Collapse
Affiliation(s)
- Pablo D Jenik
- Carnegie Institution, Department of Plant Biology, Stanford University, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
693
|
Kalluri UC, DiFazio SP, Brunner AM, Tuskan GA. Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa. BMC PLANT BIOLOGY 2007; 7:59. [PMID: 17986329 PMCID: PMC2174922 DOI: 10.1186/1471-2229-7-59] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 11/06/2007] [Indexed: 05/18/2023]
Abstract
BACKGROUND Auxin/Indole-3-Acetic Acid (Aux/IAA) and Auxin Response Factor (ARF) transcription factors are key regulators of auxin responses in plants. We identified the suites of genes in the two gene families in Populus and performed comparative genomic analysis with Arabidopsis and rice. RESULTS A total of 35 Aux/IAA and 39 ARF genes were identified in the Populus genome. Comparative phylogenetic analysis revealed that several Aux/IAA and ARF subgroups have differentially expanded or contracted between the two dicotyledonous plants. Activator ARF genes were found to be two fold-overrepresented in the Populus genome. PoptrIAA and PoptrARF gene families appear to have expanded due to high segmental and low tandem duplication events. Furthermore, expression studies showed that genes in the expanded PoptrIAA3 subgroup display differential expression. CONCLUSION The present study examines the extent of conservation and divergence in the structure and evolution of Populus Aux/IAA and ARF gene families with respect to Arabidopsis and rice. The gene-family analysis reported here will be useful in conducting future functional genomics studies to understand how the molecular roles of these large gene families translate into a diversity of biologically meaningful auxin effects.
Collapse
Affiliation(s)
- Udaya C Kalluri
- Environmental Sciences Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, PO Box 6057, Morgantown, WV 26506, USA
| | - Amy M Brunner
- Department of Forestry, Virginia Polytechnic Institute and State University, 448 Latham Hall, Blacksburg, VA 24061, USA
| | - Gerald A Tuskan
- Environmental Sciences Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| |
Collapse
|
694
|
Johnson LA, Douglas CJ. Populus trichocarpa MONOPTEROS/AUXIN RESPONSE FACTOR5(ARF5) genes: comparative structure, sub-functionalization, andPopulus–ArabidopsismicrosyntenyThis article is one of a selection of papers published in the Special Issue on Poplar Research in Canada. ACTA ACUST UNITED AC 2007. [DOI: 10.1139/b07-065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The genome of Populus (poplar) has been shaped by a whole genome duplication event specific to the salicoid lineage. The MONOPTEROS (MP)/AUXIN RESPONSE FACTOR5 (ARF5) transcription factor plays a key role in auxin-mediated morphogenesis and vascular development in Arabidopsis , and may play a similar role in secondary xylem development in Populus. We used EST and genome sequence information to identify and characterize two duplicated Populus MP genes, PoptrMP1 and PoptrMP2. PoptrMP1 and PoptrMP2 DNA binding and other domains are highly conserved relative to Arabidopsis MP, while the glutamine-rich middle domains are divergent. The two PoptrMP genes are located on duplicated regions of linkage groups II and V. Comparative analysis of the surrounding genes in both the Populus and Arabidopsis genomes revealed a high degree of conservation of gene content and order extending over 11 genes in the immediate vicinity, but also specific changes to genomic regions surrounding each MP locus, providing insights into genome evolution. Expression studies showed that PoptrMP1 and PoptrMP2 have overlapping but distinct expression patterns, suggesting that subfunctionalization of the duplicated genes has occurred, with PoptrMP1 specialized for expression in developing secondary xylem. Transgenic Populus lines overexpressing PoptrMP1 exhibited a 2–4 fold increase in expression of a Populus AtHB8 homolog, a proposed MP target gene, confirming conservation of this regulatory module.
Collapse
Affiliation(s)
- Lee A. Johnson
- Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | - Carl J. Douglas
- Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| |
Collapse
|
695
|
Husbands A, Bell EM, Shuai B, Smith HM, Springer PS. LATERAL ORGAN BOUNDARIES defines a new family of DNA-binding transcription factors and can interact with specific bHLH proteins. Nucleic Acids Res 2007; 35:6663-71. [PMID: 17913740 PMCID: PMC2095788 DOI: 10.1093/nar/gkm775] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Conserved in a variety of evolutionarily divergent plant species, LOB DOMAIN (LBD) genes define a large, plant-specific family of largely unknown function. LBD genes have been implicated in a variety of developmental processes in plants, although to date, relatively few members have been assigned functions. LBD proteins have previously been predicted to be transcription factors, however supporting evidence has only been circumstantial. To address the biochemical function of LBD proteins, we identified a 6-bp consensus motif recognized by a wide cross-section of LBD proteins, and showed that LATERAL ORGAN BOUNDARIES (LOB), the founding member of the family, is a transcriptional activator in yeast. Thus, the LBD genes encode a novel class of DNA-binding transcription factors. Post-translational regulation of transcription factors is often crucial for control of gene expression. In our study, we demonstrate that members of the basic helix–loop–helix (bHLH) family of transcription factors are capable of interacting with LOB. The expression patterns of bHLH048 and LOB overlap at lateral organ boundaries. Interestingly, the interaction of bHLH048 with LOB results in reduced affinity of LOB for the consensus DNA motif. Thus, our studies suggest that bHLH048 post-translationally regulates the function of LOB at lateral organ boundaries.
Collapse
|
696
|
Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC. Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:133-46. [PMID: 17672844 DOI: 10.1111/j.1365-313x.2007.03218.x] [Citation(s) in RCA: 381] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
AUXIN RESPONSE FACTORS (ARFs) are transcription factors involved in auxin signal transduction during many stages of plant growth development. ARF10, ARF16 and ARF17 are targeted by microRNA160 (miR160) in Arabidopsis thaliana. Here, we show that negative regulation of ARF10 by miR160 plays important roles in seed germination and post-germination. Transgenic plants expressing an miR160-resistant form of ARF10, which has silent mutations in the miRNA target site (termed mARF10), exhibited developmental defects such as serrated leaves, curled stems, contorted flowers and twisted siliques. These phenotypes were not observed in wild-type plants or plants transformed with the targeted ARF10 gene. During sensu stricto germination and post-germination, mARF10 mutant seeds and plants were hypersensitive to ABA in a dose-dependent manner. ABA hypersensitivity was mimicked in wild-type plants by exogenous auxin. In contrast, overexpression of MIR160 (35S:MIR160) resulted in reduced sensitivity to ABA during germination. Transcriptome analysis of germinating ARF10 and mARF10 seeds indicated that typical ABA-responsive genes expressed during seed maturation were overexpressed in germinating mARF10 seeds. These results indicate that negative regulation of ARF10 by miR160 plays a critical role in seed germination and post-embryonic developmental programs, at least in part by mechanisms involving interactions between ARF10-dependent auxin and ABA pathways.
Collapse
Affiliation(s)
- Po-Pu Liu
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | |
Collapse
|
697
|
Muto H, Watahiki MK, Yamamoto KT. What Makes each Aux/IAA Gene Unique in its Gene Family, Expression Pattern or Properties of the Gene Product? PLANT SIGNALING & BEHAVIOR 2007; 2:390-392. [PMID: 19704610 PMCID: PMC2634223 DOI: 10.4161/psb.2.5.4264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 04/12/2007] [Indexed: 05/28/2023]
Abstract
In the auxin signal transduction, two protein families, Aux/IAAs and auxin response factors, play a crucial role just downstream of auxin F-box receptors. Distinct and overlapping phenotypes of the dominant Aux/IAA mutants suggest some functional differentiation of the Aux/IAA genes in auxin signaling. Taking advantage of unique phenotypes of the msg2/iaa19 mutants, we carried out promoter-exchange experiments, where cDNA of the msg2, axr2/iaa7 or slr/iaa14 gene was driven by the MSG2 or AXR2 promoter. The cDNAs were translationally fused to the green fluorescent protein gene to measure levels of expressed protein. Results showed that many abnormal phenotypes of the dominant Aux/IAA mutants were governed by their promoter activity, but some were dependent on their gene products. The latter result highlights the possible importance of Aux/IAA protein level controled by auxin F-box receptors.
Collapse
Affiliation(s)
- Hideki Muto
- Department of Biological Sciences; Faculty of Science; Hokkaido University; Sapporo Japan
| | | | | |
Collapse
|
698
|
Song X, Ni Z, Yao Y, Xie C, Li Z, Wu H, Zhang Y, Sun Q. Wheat (Triticum aestivumL.) root proteome and differentially expressed root proteins between hybrid and parents. Proteomics 2007; 7:3538-57. [PMID: 17722204 DOI: 10.1002/pmic.200700147] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To better understand the development of wheat roots, a reference map of the major soluble proteins of wheat roots was established using a combination of 2-DE and MALDI TOF MS and MS/MS, and a total of 450 protein spots were detected with silver staining in a pH ranges of 4-7, of which 282 spots corresponding to 240 proteins were identified. These identified proteins were grouped into diverse functional categories. In comparison with a wheat leave proteome, in root, proteins involved in metabolism and transport were over-represented, whereas proteins involved in energy, disease and defense, transcription, and signal transduction were under-represented. To further get an insight into the molecular basis of wheat heterosis, differential proteome analysis between hybrid and parents were performed. A total of 45 differentially expressed protein spots were detected, and both quantitative and qualitative differences could be observed. Moreover, 25 of the 45 differentially expressed protein spots were identified, which were involved in metabolism, signal transduction, energy, cell growth and division, disease and defense, secondary metabolism. These results indicated that hybridization between two parental lines can cause expression differences between wheat hybrid and its parents not only at mRNA levels but also at protein abundances.
Collapse
Affiliation(s)
- Xiao Song
- Key Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
699
|
Scherer GFE, Zahn M, Callis J, Jones AM. A role for phospholipase A in auxin-regulated gene expression. FEBS Lett 2007; 581:4205-11. [PMID: 17692850 DOI: 10.1016/j.febslet.2007.07.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 06/08/2007] [Accepted: 07/11/2007] [Indexed: 10/23/2022]
Abstract
Auxin increases phospholipase A(2) activity within 2min (Paul, R., Holk, A. and Scherer, G.F.E. (1998) Fatty acids and lysophospholipids as potential second messengers in auxin action. Rapid activation of phospholipase A(2) activity by auxin in suspension-cultured parsley and soybean cells. Plant J. 16, 601-611) and the phospholipase A inhibitors, ETYA and HELSS, inhibit elongation growth of etiolated Arabidopsis hypoctyls (Holk, A., Rietz, S., Zahn, M., Quader, H. and Scherer, G.F.E. (2002) Molecular identification of cytosolic, patatin-related phospholipases A from Arabidopsis with potential functions in plant signal transduction. Plant Physiol. 130, 90-101). To identify the mode of action, rapid auxin-regulated gene expression was tested for sensitivity to these PLA(2) inhibitors using seedlings expressing beta-glucuronidase (GUS) under the control of the synthetic auxin-responsive promoter DR5. ETYA and HELSS inhibited the auxin-induced increases in GUS activity, the steady-state level of the corresponding GUS mRNA and the mRNAs encoded by four other auxin-induced genes, IAA1, IAA5, IAA19 and ARF19. Factors that bind to the auxin response elements of the DR5 promoter and thereby regulate gene expression are regulated by a set of proteins such as Aux/IAA1 whose abundances are, in part, under control of E3 ubiquitin ligase SCF complexes. To investigate this mechanism further, the effect of ETYA on Aux/IAA1 degradation rate was examined using seedlings expressing Aux/IAA1:luciferase fusion proteins. In the presence of cycloheximide and excluding synthesis of IAA1:luciferase, ETYA had no apparent effect on degradation rates of IAA1, either with or without exogenous auxin. Therefore, the E3 ubiquitin ligase SCF(TIR1) complex is an unlikely direct target of the PLA inhibitor. When cycloheximide was omitted, however, the inhibitors ETYA and HELSS blocked a sustained auxin-induced decrease in its steady-state level, indicating an unknown target capable to regulate Aux/IAA protein levels and, hence, transcription.
Collapse
Affiliation(s)
- Günther F E Scherer
- Universität Hannover, Institut für Zierpflanzenbau und Gehölzwissenschaften, Abteilung Molekulare Ertragsphysiologie, Herrenhäuser Strasse 2, D-30419 Hannover, Germany.
| | | | | | | |
Collapse
|
700
|
Shin R, Burch AY, Huppert KA, Tiwari SB, Murphy AS, Guilfoyle TJ, Schachtman DP. The Arabidopsis transcription factor MYB77 modulates auxin signal transduction. THE PLANT CELL 2007; 19:2440-53. [PMID: 17675404 PMCID: PMC2002618 DOI: 10.1105/tpc.107.050963] [Citation(s) in RCA: 273] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 07/05/2007] [Accepted: 07/12/2007] [Indexed: 05/16/2023]
Abstract
Auxin is a key plant hormone that regulates plant development, apical dominance, and growth-related tropisms, such as phototropism and gravitropism. In this study, we report a new Arabidopsis thaliana transcription factor, MYB77, that is involved in auxin response. In MYB77 knockout plants, we found that auxin-responsive gene expression was greatly attenuated. Lateral root density in the MYB77 knockout was lower than the wild type at low concentrations of indole-3-acetic acid (IAA) and also under low nutrient conditions. MYB77 interacts with auxin response factors (ARFs) in vitro through the C terminus (domains III and IV) of ARFs and the activation domain of MYB77. A synergistic genetic interaction was demonstrated between MYB77 and ARF7 that resulted in a strong reduction in lateral root numbers. Experiments with protoplasts confirmed that the coexpression of MYB77 and an ARF C terminus enhance reporter gene expression. R2R3 MYB transcription factors have not been previously implicated in regulating the expression of auxin-inducible genes. Also it was previously unknown that ARFs interact with proteins other than those in the Aux/IAA family via conserved domains. The interaction between MYB77 and ARFs defines a new type of combinatorial transcriptional control in plants. This newly defined transcription factor interaction is part of the plant cells' repertoire for modulating response to auxin, thereby controlling lateral root growth and development under changing environmental conditions.
Collapse
Affiliation(s)
- Ryoung Shin
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | | | | | | | | | | | | |
Collapse
|