651
|
Nicholas TR, Strittmatter BG, Hollenhorst PC. Oncogenic ETS Factors in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:409-436. [PMID: 31900919 DOI: 10.1007/978-3-030-32656-2_18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prostate cancer is unique among carcinomas in that a fusion gene created by a chromosomal rearrangement is a common driver of the disease. The TMPRSS2/ERG rearrangement drives aberrant expression of the ETS family transcription factor ERG in 50% of prostate tumors. Similar rearrangements promote aberrant expression of the ETS family transcription factors ETV1 and ETV4 in another 10% of cases. Together, these three ETS factors are thought to promote tumorigenesis in the majority of prostate cancers. A goal of precision medicine is to be able to apply targeted therapeutics that are specific to disease subtypes. ETS gene rearrangement positive tumors represent the largest molecular subtype of prostate cancer, but to date there is no treatment specific to this marker. In this chapter we will review the latest findings regarding the molecular mechanisms of ETS factor function in the prostate. These molecular details may provide a path towards new therapeutic targets for this subtype of prostate cancer. Further, we will describe efforts to target the oncogenic functions of ETS family transcription factors directly as well as indirectly.
Collapse
Affiliation(s)
| | - Brady G Strittmatter
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA.
| |
Collapse
|
652
|
Wnt/Beta-Catenin Signaling and Prostate Cancer Therapy Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:351-378. [PMID: 31900917 DOI: 10.1007/978-3-030-32656-2_16] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metastatic or locally advanced prostate cancer (PCa) is typically treated with androgen deprivation therapy (ADT). Initially, PCa responds to the treatment and regresses. However, PCa almost always develops resistance to androgen deprivation and progresses to castrate-resistant prostate cancer (CRPCa), a currently incurable form of PCa. Wnt/β-Catenin signaling is frequently activated in late stage PCa and contributes to the development of therapy resistance. Although activating mutations in the Wnt/β-Catenin pathway are not common in primary PCa, this signaling cascade can be activated through other mechanisms in late stage PCa, including cross talk with other signaling pathways, growth factors and cytokines produced by the damaged tumor microenvironment, release of the co-activator β-Catenin from sequestration after inhibition of androgen receptor (AR) signaling, altered expression of Wnt ligands and factors that modulate the Wnt signaling, and therapy-induced cellular senescence. Research from genetically engineered mouse models indicates that activation of Wnt/β-Catenin signaling in the prostate is oncogenic, enables castrate-resistant PCa growth, induces an epithelial-to-mesenchymal transition (EMT), promotes neuroendocrine (NE) differentiation, and confers stem cell-like features to PCa cells. These important roles of Wnt/β-Catenin signaling in PCa progression underscore the need for the development of drugs targeting this pathway to treat therapy-resistant PCa.
Collapse
|
653
|
The Role of RB in Prostate Cancer Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:301-318. [PMID: 31900914 DOI: 10.1007/978-3-030-32656-2_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The RB tumor suppressor is one of the most commonly deleted/mutated genes in human cancers. In prostate cancer specifically, mutation of RB is most frequently observed in aggressive, metastatic disease. As one of the earliest tumor suppressors to be identified, the molecular functions of RB that are lost in tumor development have been studied for decades. Earlier work focused on the canonical RB pathway connecting mitogenic signaling to the cell cycle via Cyclin/CDK inactivation of RB, thereby releasing the E2F transcription factors. More in-depth analysis revealed that RB-E2F complexes regulate cellular processes beyond proliferation. Most recently, "non-canonical" roles for RB function have been expanded beyond its E2F interactions, which may play a particular role in advanced prostate cancer. For example, in mouse models of prostate cancer, loss of RB has been shown to induce lineage plasticity, which enables resistance to androgen deprivation therapy. This increased understanding of the potential downstream functions of RB in prostate cancer may lead the way to identifying therapeutic vulnerabilities in cells following RB loss.
Collapse
|
654
|
Yao Z, Du L, Xu M, Li K, Guo H, Ye G, Zhang D, Coppes RP, Zhang H. MTA3-SOX2 Module Regulates Cancer Stemness and Contributes to Clinical Outcomes of Tongue Carcinoma. Front Oncol 2019; 9:816. [PMID: 31552166 PMCID: PMC6736560 DOI: 10.3389/fonc.2019.00816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/09/2019] [Indexed: 02/05/2023] Open
Abstract
Cancer cell plasticity plays critical roles in both tumorigenesis and tumor progression. Metastasis-associated protein 3 (MTA3), a component of the nucleosome remodeling and histone deacetylase (NuRD) complex and multi-effect coregulator, can serve as a tumor suppressor in many cancer types. However, the role of MTA3 in tongue squamous cell cancer (TSCC) remains unclear although it is the most prevalent head and neck cancer and often with poor prognosis. By analyzing both published datasets and clinical specimens, we found that the level of MTA3 was lower in TSCC compared to normal tongue tissues. Data from gene set enrichment analysis (GSEA) also indicated that MTA3 was inversely correlated with cancer stemness. In addition, the levels of MTA3 in both samples from TSCC patients and TSCC cell lines were negatively correlated with SOX2, a key regulator of the plasticity of cancer stem cells (CSCs). We also found that SOX2 played an indispensable role in MTA3-mediated CSC repression. Using the mouse model mimicking human TSCC we demonstrated that the levels of MTA3 and SOX2 decreased and increased, respectively, during the process of tumorigenesis and progression. Finally, we showed that the patients in the MTA3low/SOX2high group had the worst prognosis suggesting that MTA3low/SOX2high can serve as an independent prognostic factor for TSCC patients. Altogether, our data suggest that MTA3 is capable of repressing TSCC CSC properties and tumor growth through downregulating SOX2 and MTA3low/SOX2high might be a potential prognostic factor for TSCC patients.
Collapse
Affiliation(s)
- Zhimeng Yao
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Liang Du
- Cancer Research Center, Shantou University Medical College, Shantou, China
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology and Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Min Xu
- Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Kai Li
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Haipeng Guo
- Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Guodong Ye
- Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College, Guangzhou, China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Robert P. Coppes
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology and Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hao Zhang
- Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College, Guangzhou, China
- Research Centre of Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- *Correspondence: Hao Zhang
| |
Collapse
|
655
|
Neural Transcription Factors in Disease Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:437-462. [PMID: 31900920 DOI: 10.1007/978-3-030-32656-2_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Progression to the malignant state is fundamentally dependent on transcriptional regulation in cancer cells. Optimum abundance of cell cycle proteins, angiogenesis factors, immune evasion markers, etc. is needed for proliferation, metastasis or resistance to treatment. Therefore, dysregulation of transcription factors can compromise the normal prostate transcriptional network and contribute to malignant disease progression.The androgen receptor (AR) is considered to be a key transcription factor in prostate cancer (PCa) development and progression. Consequently, androgen pathway inhibitors (APIs) are currently the mainstay in PCa treatment, especially in castration-resistant prostate cancer (CRPC). However, emerging evidence suggests that with increased administration of potent APIs, prostate cancer can progress to a highly aggressive disease that morphologically resembles small cell carcinoma, which is referred to as neuroendocrine prostate cancer (NEPC), treatment-induced or treatment-emergent small cell prostate cancer. This chapter will review how neuronal transcription factors play a part in inducing a plastic stage in prostate cancer cells that eventually progresses to a more aggressive state such as NEPC.
Collapse
|
656
|
Li Y, Zhang Q, Lovnicki J, Chen R, Fazli L, Wang Y, Gleave M, Huang J, Dong X. SRRM4 gene expression correlates with neuroendocrine prostate cancer. Prostate 2019; 79:96-104. [PMID: 30155992 DOI: 10.1002/pros.23715] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/14/2018] [Indexed: 12/29/2022]
Abstract
Neuroendocrine prostate cancer (NEPC) is an aggressive subtype of castrate-resistant prostate cancer characterized by poor patient outcome. Whole transcriptome sequencing analyses identified a NEPC-specific RNA splicing program that is predominantly controlled by the SRRM4 gene, suggesting that SRRM4 drives NEPC development. However, whether SRRM4 expression in patients may aid pathologists in diagnosing NEPC and predicting patient survival remains to be determined. In this study, we have applied RNA in situ hybridization and immunohistochemistry assays to measure the expressions of SRRM4, NEPC markers (SYP, CD56, and CHGA), and adenocarcinoma (AdPC) markers (AR, PSA) in a series of tissue microarrays constructed from castrate-resistant prostate tumors, treatment-naïve tumors collected from radical prostatectomy, and tumors treated with neoadjuvant hormonal therapy (NHT) for 0-12 months. Three pathologists also independently evaluated tumor histology and NEPC marker status. Here, we report that SRRM4 in castrate-resistant tumors is highly expressed in NEPC, strongly correlated with SYP, CD56, and CHGA expressions (Pearson correlation r = 0.883, 0.675, and 0.881; P < 0.0001) and negatively correlated with AR and PSA expressions (Pearson correlation r = -0.544 and -0.310; P < 0.05). Overall survival is 12.3 months for patients with SRRM4 positive tumors, comparing to 23 months for patients with SRRM4 negative tumors. In treatment-naïve AdPC, low SRRM4 expression is detected in ∼16% tumor cores. It correlates with SYP and CHGA expressions, but not Gleason scores. AdPC treated with >7 month NHT has significantly higher SRRM4 expression. Based on these findings, we conclude that SRRM4 expression in castrate-resistant tumors is highly correlated with NEPC and poor patient survival. It may serve as a diagnosis and prognosis biomarker of NEPC.
Collapse
Affiliation(s)
- Yinan Li
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Qingfu Zhang
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina
- China Medical University, Shenyang, China
| | - Jessica Lovnicki
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ruiqi Chen
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ladan Fazli
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Gleave
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Xuesen Dong
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
657
|
Pathological Assessment of Prostate Cancer. Urol Oncol 2019. [DOI: 10.1007/978-3-319-42603-7_71-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
658
|
Pathological Assessment of Prostate Cancer. Urol Oncol 2019. [DOI: 10.1007/978-3-319-42623-5_71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
659
|
Dicken H, Hensley PJ, Kyprianou N. Prostate tumor neuroendocrine differentiation via EMT: The road less traveled. Asian J Urol 2019; 6:82-90. [PMID: 30775251 PMCID: PMC6363600 DOI: 10.1016/j.ajur.2018.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/19/2018] [Accepted: 09/19/2018] [Indexed: 12/21/2022] Open
Abstract
The long-standing challenge in the treatment of prostate cancer is to overcome therapeutic resistance during progression to lethal disease. Aberrant transforming-growth factor-β (TGF-β) signaling accelerates prostate tumor progression in a transgenic mouse model via effects on epithelial-mesenchymal transition (EMT), and neuroendocrine differentiation driving tumor progression to castration-resistant prostate cancer (CRPC). Neuroendocrine prostate cancer (NEPC) is highly aggressive exhibiting reactivation of developmental programs associated with EMT induction and stem cell-like characteristics. The androgen receptor (AR) is a critical driver of tumor progression as well as therapeutic response in patients with metastatic CRPC. The signaling interactions between the TGF-β mechanistic network and AR axis impact the EMT phenotypic conversions, and perturbation of epithelial homeostasis via EMT renders a critical venue for epithelial derived tumors to become invasive, acquire the neuroendocrine phenotype, and rapidly metastasize. Combinations of microtubule targeting taxane chemotherapy and androgen/AR targeting therapies have survival benefits in CRPC patients, but therapeutic resistance invariability develops, leading to mortality. Compelling evidence from our group recently demonstrated that chemotherapy (cabazitaxel, second line taxane chemotherapy), or TGF-β receptor signaling targeted therapy, caused reversion of EMT to mesenchymal-epithelial transition and tumor re-differentiation, in in vitro and in vivo prostate cancer models. In this review, we discuss the functional contribution of EMT dynamic changes to the development of the neuroendocrine phenotype-the newly characterized pathological feature of prostate tumors in the context of the tumor microenvironment-navigated cell lineage changes and the role of this neuroendocrine phenotype in metastatic progression and therapeutic resistance.
Collapse
Affiliation(s)
- Haley Dicken
- Department of Urology, University of Kentucky College of Medicine, Lexington, KY, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Patrick J. Hensley
- Department of Urology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Natasha Kyprianou
- Department of Urology, University of Kentucky College of Medicine, Lexington, KY, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, USA
- Department of Toxicology & Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
660
|
Beltran H, Oromendia C, Danila DC, Montgomery B, Hoimes C, Szmulewitz RZ, Vaishampayan U, Armstrong AJ, Stein M, Pinski J, Mosquera JM, Sailer V, Bareja R, Romanel A, Gumpeni N, Sboner A, Dardenne E, Puca L, Prandi D, Rubin MA, Scher HI, Rickman DS, Demichelis F, Nanus DM, Ballman KV, Tagawa ST. A Phase II Trial of the Aurora Kinase A Inhibitor Alisertib for Patients with Castration-resistant and Neuroendocrine Prostate Cancer: Efficacy and Biomarkers. Clin Cancer Res 2019; 25:43-51. [PMID: 30232224 PMCID: PMC6320304 DOI: 10.1158/1078-0432.ccr-18-1912] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/12/2018] [Accepted: 09/14/2018] [Indexed: 02/03/2023]
Abstract
PURPOSE Neuroendocrine prostate cancer (NEPC) is an aggressive variant of prostate cancer that may develop de novo or as a mechanism of treatment resistance. N-myc is capable of driving NEPC progression. Alisertib inhibits the interaction between N-myc and its stabilizing factor Aurora-A, inhibiting N-myc signaling, and suppressing tumor growth. PATIENTS AND METHODS Sixty men were treated with alisertib 50 mg twice daily for 7 days every 21 days. Eligibility included metastatic prostate cancer and at least one: small-cell neuroendocrine morphology; ≥50% neuroendocrine marker expression; new liver metastases without PSA progression; or elevated serum neuroendocrine markers. The primary endpoint was 6-month radiographic progression-free survival (rPFS). Pretreatment biopsies were evaluated by whole exome and RNA-seq and patient-derived organoids were developed. RESULTS Median PSA was 1.13 ng/mL (0.01-514.2), number of prior therapies was 3, and 68% had visceral metastases. Genomic alterations involved RB1 (55%), TP53 (46%), PTEN (29%), BRCA2 (29%), and AR (27%), and there was a range of androgen receptor signaling and NEPC marker expression. Six-month rPFS was 13.4% and median overall survival was 9.5 months (7.3-13). Exceptional responders were identified, including complete resolution of liver metastases and prolonged stable disease, with tumors suggestive of N-myc and Aurora-A overactivity. Patient organoids exhibited concordant responses to alisertib and allowed for the dynamic testing of Aurora-N-myc complex disruption. CONCLUSIONS Although the study did not meet its primary endpoint, a subset of patients with advanced prostate cancer and molecular features supporting Aurora-A and N-myc activation achieved significant clinical benefit from single-agent alisertib.
Collapse
Affiliation(s)
- Himisha Beltran
- Department of Medicine, Weill Cornell Medicine, New York, New York.
- Englander Institute for Precision Medicine, New York Presbyterian Hospital- Weill Cornell Medicine, New York, New York
| | - Clara Oromendia
- Department of Biostatistics, Weill Cornell Medicine, New York, New York
| | - Daniel C Danila
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Bruce Montgomery
- Department of Medicine, University of Washington, Seattle, Washington
| | - Christopher Hoimes
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | | | - Ulka Vaishampayan
- Department of Oncology, Wayne State University/Karmanos Cancer Institute, Detroit, Michigan
| | - Andrew J Armstrong
- Departments of Medicine, Surgery, and Pharmacology and Cancer Biology, Duke Cancer Institute, Duke University, Durham, North California
| | - Mark Stein
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Jacek Pinski
- Division of Oncology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, California
| | - Juan M Mosquera
- Englander Institute for Precision Medicine, New York Presbyterian Hospital- Weill Cornell Medicine, New York, New York
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Verena Sailer
- Englander Institute for Precision Medicine, New York Presbyterian Hospital- Weill Cornell Medicine, New York, New York
| | - Rohan Bareja
- Englander Institute for Precision Medicine, New York Presbyterian Hospital- Weill Cornell Medicine, New York, New York
| | - Alessandro Romanel
- Centre for Integrative Biology (CIBIO), University of Trento, Trento Italy
| | - Naveen Gumpeni
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Andrea Sboner
- Englander Institute for Precision Medicine, New York Presbyterian Hospital- Weill Cornell Medicine, New York, New York
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Etienne Dardenne
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Loredana Puca
- Department of Medicine, Weill Cornell Medicine, New York, New York
- Englander Institute for Precision Medicine, New York Presbyterian Hospital- Weill Cornell Medicine, New York, New York
| | - Davide Prandi
- Centre for Integrative Biology (CIBIO), University of Trento, Trento Italy
| | - Mark A Rubin
- Englander Institute for Precision Medicine, New York Presbyterian Hospital- Weill Cornell Medicine, New York, New York
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Howard I Scher
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - David S Rickman
- Englander Institute for Precision Medicine, New York Presbyterian Hospital- Weill Cornell Medicine, New York, New York
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Francesca Demichelis
- Englander Institute for Precision Medicine, New York Presbyterian Hospital- Weill Cornell Medicine, New York, New York
- Centre for Integrative Biology (CIBIO), University of Trento, Trento Italy
| | - David M Nanus
- Department of Medicine, Weill Cornell Medicine, New York, New York
- Englander Institute for Precision Medicine, New York Presbyterian Hospital- Weill Cornell Medicine, New York, New York
| | - Karla V Ballman
- Department of Biostatistics, Weill Cornell Medicine, New York, New York
| | - Scott T Tagawa
- Department of Medicine, Weill Cornell Medicine, New York, New York
- Englander Institute for Precision Medicine, New York Presbyterian Hospital- Weill Cornell Medicine, New York, New York
| |
Collapse
|
661
|
Xu L, Chen J, Liu W, Liang C, Hu H, Huang J. Targeting androgen receptor-independent pathways in therapy-resistant prostate cancer. Asian J Urol 2019; 6:91-98. [PMID: 30775252 PMCID: PMC6363598 DOI: 10.1016/j.ajur.2018.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/23/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022] Open
Abstract
Since androgen receptor (AR) signaling is critically required for the development of prostate cancer (PCa), targeting AR axis has been the standard treatment of choice for advanced and metastatic PCa. Unfortunately, although the tumor initially responds to the therapy, treatment resistance eventually develops and the disease will progress. It is therefore imperative to identify the mechanisms of therapeutic resistance and novel molecular targets that are independent of AR signaling. Recent advances in pathology, molecular biology, genetics and genomics research have revealed novel AR-independent pathways that contribute to PCa carcinogenesis and progression. They include neuroendocrine differentiation, cell metabolism, DNA damage repair pathways and immune-mediated mechanisms. The development of novel agents targeting the non-AR mechanisms holds great promise to treat PCa that does not respond to AR-targeted therapies.
Collapse
Affiliation(s)
- Lingfan Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Junyi Chen
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Weipeng Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hailiang Hu
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
662
|
Hamid AA, Gray KP, Shaw G, MacConaill LE, Evan C, Bernard B, Loda M, Corcoran NM, Van Allen EM, Choudhury AD, Sweeney CJ. Compound Genomic Alterations of TP53, PTEN, and RB1 Tumor Suppressors in Localized and Metastatic Prostate Cancer. Eur Urol 2018; 76:89-97. [PMID: 30553611 DOI: 10.1016/j.eururo.2018.11.045] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/23/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND TP53, PTEN, and RB1 tumor suppressor genes (TSGs) are recurrently altered in treatment-resistant prostate cancer. Cooperative loss of two or more TSGs may drive more aggressive disease. OBJECTIVE To determine clinical outcomes of single and compound TSG alterations across the spectrum of prostate cancer. DESIGN, SETTING, AND PARTICIPANTS Massively parallel targeted sequencing using castration-sensitive prostate cancer (CSPC; localized [L] and metastatic [M1]) and castration-resistant prostate cancer (CRPC) specimens (n=285). TSG altered (TSG-alt) was any copy number loss or deleterious mutation of one or more TSGs (TP53, PTEN, and RB1). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS For L-CSPC, event-free survival (EFS) and time to CRPC were estimated. For M1-CSPC and M1-CRPC, overall survival (OS) was estimated. Cox regression models assessed the association between cumulative TSG hits (zero hits vs one hit vs two to three hits) and outcomes with multivariable analyses adjusted for clinicopathological factors. RESULTS AND LIMITATIONS TSG variants increased with advanced disease (L-CSPC: 39%; M1-CSPC: 63%, M1-CRPC: 92%). TSG-alt L-CSPC had shorter EFS (median 2.6yr, hazard ratio [HR] 1.95, 95% confidence interval [CI] 1.22-3.13) and time to CRPC (median 9.5mo, HR 3.36, 95% CI 1.01-11.16). Cumulative gene hits led to an incremental risk of relapse (EFS: one gene, HR 1.69, 95% CI 0.99-2.87; two to three genes, HR 2.70, 95% CI 1.43-5.08; both versus zero genes, p=0.004). There was evidence of inferior OS with increasing TSG hits in the metastatic cohorts. Only four (8%) patients in the M1-CRPC cohort were TSG-neg, one of whom died after 5.2yr. Multivariable analyses adjusting for mutational and copy number burden did not demonstrate a significant independent association of increasing gene hits and poorer outcomes. CONCLUSIONS Deleterious TSG variants are associated with an increased risk of relapse (L) and death (M1) in CSPC. Poorer outcomes are seen with compound gene hits in both early and advanced disease, and this may in part reflect increasing global genomic instability. PATIENT SUMMARY Men with prostate tumors with compound tumor suppressor gene mutations have poorer outcomes. These findings help identify patients with aggressive features who may benefit from intensified treatment.
Collapse
Affiliation(s)
- Anis A Hamid
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kathryn P Gray
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Grace Shaw
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Laura E MacConaill
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Carolyn Evan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Brandon Bernard
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Massimo Loda
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boson, MA, USA
| | - Niall M Corcoran
- Department of Surgery, University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Atish D Choudhury
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | |
Collapse
|
663
|
Ren Y, Ay A, Kahveci T. Shortest path counting in probabilistic biological networks. BMC Bioinformatics 2018; 19:465. [PMID: 30514202 PMCID: PMC6278053 DOI: 10.1186/s12859-018-2480-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Biological regulatory networks, representing the interactions between genes and their products, control almost every biological activity in the cell. Shortest path search is critical to apprehend the structure of these networks, and to detect their key components. Counting the number of shortest paths between pairs of genes in biological networks is a polynomial time problem. The fact that biological interactions are uncertain events however drastically complicates the problem, as it makes the topology of a given network uncertain. RESULTS In this paper, we develop a novel method to count the number of shortest paths between two nodes in probabilistic networks. Unlike earlier approaches, which uses the shortest path counting methods that are specifically designed for deterministic networks, our method builds a new mathematical model to express and compute the number of shortest paths. We prove the correctness of this model. CONCLUSIONS We compare our novel method to three existing shortest path counting methods on synthetic and real gene regulatory networks. Our experiments demonstrate that our method is scalable, and it outperforms the existing methods in accuracy. Application of our shortest path counting method to detect communities in probabilistic networks shows that our method successfully finds communities in probabilistic networks. Moreover, our experiments on cell cycle pathway among different cancer types exhibit that our method helps in uncovering key functional characteristics of biological networks.
Collapse
Affiliation(s)
- Yuanfang Ren
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, 32611, FL, USA
| | - Ahmet Ay
- Departments of Biology and Mathematics, Colgate University, Hamilton, 13346, NY, USA
| | - Tamer Kahveci
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, 32611, FL, USA.
| |
Collapse
|
664
|
Shi Y, Yang F, Huang D, Guan X. Androgen blockade based clinical trials landscape in triple negative breast cancer. Biochim Biophys Acta Rev Cancer 2018; 1870:283-290. [DOI: 10.1016/j.bbcan.2018.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 01/12/2023]
|
665
|
Bakht MK, Derecichei I, Li Y, Ferraiuolo RM, Dunning M, Oh SW, Hussein A, Youn H, Stringer KF, Jeong CW, Cheon GJ, Kwak C, Kang KW, Lamb AD, Wang Y, Dong X, Porter LA. Neuroendocrine differentiation of prostate cancer leads to PSMA suppression. Endocr Relat Cancer 2018; 26:131-146. [PMID: 30400059 DOI: 10.1530/erc-18-0226] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/11/2018] [Indexed: 12/22/2022]
Abstract
Prostate-specific membrane antigen (PSMA) is overexpressed in most prostate adenocarcinoma (AdPC) cells and acts as a target for molecular imaging. However, some case reports indicate that PSMA-targeted imaging could be ineffectual for delineation of neuroendocrine (NE) prostate cancer (NEPC) lesions due to the suppression of the PSMA gene (FOLH1). These same reports suggest that targeting somatostatin receptor type 2 (SSTR2) could be an alternative diagnostic target for NEPC patients. This study evaluates the correlation between expression of FOLH1, NEPC marker genes and SSTR2. We evaluated the transcript abundance for FOLH1 and SSTR2 genes as well as NE markers across 909 tumors. A significant suppression of FOLH1 in NEPC patient samples and AdPC samples with high expression of NE marker genes was observed. We also investigated protein alterations of PSMA and SSTR2 in an NE-induced cell line derived by hormone depletion and lineage plasticity by loss of p53. PSMA is suppressed following NE induction and cellular plasticity in p53-deficient NEPC model. The PSMA-suppressed cells have more colony formation ability and resistance to enzalutamide treatment. Conversely, SSTR2 was only elevated following hormone depletion. In 18 NEPC patient-derived xenograft (PDX) models we find a significant suppression of FOLH1 and amplification of SSTR2 expression. Due to the observed FOLH1-supressed signature of NEPC, this study cautions on the reliability of using PMSA as a target for molecular imaging of NEPC. The observed elevation of SSTR2 in NEPC supports the possible ability of SSTR2-targeted imaging for follow-up imaging of low PSMA patients and monitoring for NEPC development.
Collapse
Affiliation(s)
- Martin K Bakht
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Iulian Derecichei
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Yinan Li
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Mark Dunning
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - So Won Oh
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Abdulkadir Hussein
- Department of Mathematics and Statistics, University of Windsor, Windsor, Ontario, Canada
| | - Hyewon Youn
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul, Korea
- Cancer Imaging Center, Seoul National University Hospital, Seoul, Korea
| | - Keith F Stringer
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
- Department of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Chang Wook Jeong
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| | - Keon Wook Kang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Alastair D Lamb
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Xuesen Dong
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lisa A Porter
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
666
|
Ramnarine VR, Alshalalfa M, Mo F, Nabavi N, Erho N, Takhar M, Shukin R, Brahmbhatt S, Gawronski A, Kobelev M, Nouri M, Lin D, Tsai H, Lotan TL, Karnes RJ, Rubin MA, Zoubeidi A, Gleave ME, Sahinalp C, Wyatt AW, Volik SV, Beltran H, Davicioni E, Wang Y, Collins CC. The long noncoding RNA landscape of neuroendocrine prostate cancer and its clinical implications. Gigascience 2018; 7:4994835. [PMID: 29757368 PMCID: PMC6007253 DOI: 10.1093/gigascience/giy050] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/01/2018] [Indexed: 01/29/2023] Open
Abstract
Background Treatment-induced neuroendocrine prostate cancer (tNEPC) is an aggressive variant of late-stage metastatic castrate-resistant prostate cancer that commonly arises through neuroendocrine transdifferentiation (NEtD). Treatment options are limited, ineffective, and, for most patients, result in death in less than a year. We previously developed a first-in-field patient-derived xenograft (PDX) model of NEtD. Longitudinal deep transcriptome profiling of this model enabled monitoring of dynamic transcriptional changes during NEtD and in the context of androgen deprivation. Long non-coding RNA (lncRNA) are implicated in cancer where they can control gene regulation. Until now, the expression of lncRNAs during NEtD and their clinical associations were unexplored. Results We implemented a next-generation sequence analysis pipeline that can detect transcripts at low expression levels and built a genome-wide catalogue (n = 37,749) of lncRNAs. We applied this pipeline to 927 clinical samples and our high-fidelity NEtD model LTL331 and identified 821 lncRNAs in NEPC. Among these are 122 lncRNAs that robustly distinguish NEPC from prostate adenocarcinoma (AD) patient tumours. The highest expressed lncRNAs within this signature are H19, LINC00617, and SSTR5-AS1. Another 742 are associated with the NEtD process and fall into four distinct patterns of expression (NEtD lncRNA Class I, II, III, and IV) in our PDX model and clinical samples. Each class has significant (z-scores >2) and unique enrichment for transcription factor binding site (TFBS) motifs in their sequences. Enriched TFBS include (1) TP53 and BRN1 in Class I, (2) ELF5, SPIC, and HOXD1 in Class II, (3) SPDEF in Class III, (4) HSF1 and FOXA1 in Class IV, and (5) TWIST1 when merging Class III with IV. Common TFBS in all NEtD lncRNA were also identified and include E2F, REST, PAX5, PAX9, and STAF. Interrogation of the top deregulated candidates (n = 100) in radical prostatectomy adenocarcinoma samples with long-term follow-up (median 18 years) revealed significant clinicopathological associations. Specifically, we identified 25 that are associated with rapid metastasis following androgen deprivation therapy (ADT). Two of these lncRNAs (SSTR5-AS1 and LINC00514) stratified patients undergoing ADT based on patient outcome. Discussion To date, a comprehensive characterization of the dynamic landscape of lncRNAs during the NEtD process has not been performed. A temporal analysis of the PDX-based NEtD model has for the first time provided this dynamic landscape. TFBS analysis identified NEPC-related TF motifs present within the NEtD lncRNA sequences, suggesting functional roles for these lncRNAs in NEPC pathogenesis. Furthermore, select NEtD lncRNAs appear to be associated with metastasis and patients receiving ADT. Treatment-related metastasis is a clinical consequence of NEPC tumours. Top candidate lncRNAs FENDRR, H19, LINC00514, LINC00617, and SSTR5-AS1 identified in this study are implicated in the development of NEPC. We present here for the first time a genome-wide catalogue of NEtD lncRNAs that characterize the transdifferentiation process and a robust NEPC lncRNA patient expression signature. To accomplish this, we carried out the largest integrative study that applied a PDX NEtD model to clinical samples. These NEtD and NEPC lncRNAs are strong candidates for clinical biomarkers and therapeutic targets and warrant further investigation.
Collapse
Affiliation(s)
- Varune Rohan Ramnarine
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | - Fan Mo
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Noushin Nabavi
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | | | - Robert Shukin
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Sonal Brahmbhatt
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Alexander Gawronski
- Department of Computer Science, Simon Fraser University, Burnaby, BC, Canada
| | - Maxim Kobelev
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Mannan Nouri
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Dong Lin
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Harrison Tsai
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - R Jefferey Karnes
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Mark A Rubin
- Department of Pathology and Laboratory Medicine, Weill Cornell Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Amina Zoubeidi
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Cenk Sahinalp
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Computer Science, Indiana University, Bloomington, IN, USA
| | - Alexander W Wyatt
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Stanislav V Volik
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Himisha Beltran
- Department of Medicine, Weill Cornell Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | | | - Yuzhuo Wang
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Colin C Collins
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
667
|
Budka JA, Ferris MW, Capone MJ, Hollenhorst PC. Common ELF1 deletion in prostate cancer bolsters oncogenic ETS function, inhibits senescence and promotes docetaxel resistance. Genes Cancer 2018; 9:198-214. [PMID: 30603056 PMCID: PMC6305106 DOI: 10.18632/genesandcancer.182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ETS family transcription factors play major roles in prostate tumorigenesis with some acting as oncogenes and others as tumor suppressors. ETS factors can compete for binding at some cis-regulatory sequences, but display specific binding at others. Therefore, changes in expression of ETS family members during tumorigenesis can have complex, multimodal effects. Here we show that ELF1 was the most commonly down-regulated ETS factor in primary prostate tumors, and expression decreased further in metastatic disease. Genome-wide mapping in cell lines indicated that ELF1 has two distinct tumor suppressive roles mediated by distinct cis-regulatory sequences. First, ELF1 inhibited cell migration and epithelial-mesenchymal transition by interfering with oncogenic ETS functions at ETS/AP-1 cis-regulatory motifs. Second, ELF1 uniquely targeted and activated genes that promote senescence. Furthermore, knockdown of ELF1 increased docetaxel resistance, indicating that the genomic deletions found in metastatic prostate tumors may promote therapeutic resistance through loss of both RB1 and ELF1.
Collapse
Affiliation(s)
- Justin A Budka
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Mary W Ferris
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Matthew J Capone
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana, USA
| |
Collapse
|
668
|
Zhang D, Zhao S, Li X, Kirk JS, Tang DG. Prostate Luminal Progenitor Cells in Development and Cancer. Trends Cancer 2018; 4:769-783. [PMID: 30352679 PMCID: PMC6212301 DOI: 10.1016/j.trecan.2018.09.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
Prostate cancer (PCa) has a predominantly luminal phenotype. Basal cells were previously identified as a cell of origin for PCa, but increasing evidence implicates luminal cells as a preferred cell of origin for PCa, as well as key drivers of tumor development and progression. Prostate luminal cells are understudied compared with basal cells. In this review, we describe the contribution of prostate luminal progenitor (LP) cells to luminal cell development and their role in prostate development, androgen-mediated regeneration of castrated prostate, and tumorigenesis. We also discuss the potential value of LP transcriptomics to identify new targets and therapies to treat aggressive PCa. Finally, we propose future research directions focusing on molecular mechanisms underlying LP cell biology and heterogeneity in normal and diseased prostate.
Collapse
Affiliation(s)
- Dingxiao Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Jason S Kirk
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
669
|
Abstract
Prostate cancer development involves corruption of the normal prostate transcriptional network, following deregulated expression or mutation of key transcription factors. Here, we provide an overview of the transcription factors that are important in normal prostate homeostasis (NKX3-1, p63, androgen receptor [AR]), primary prostate cancer (ETS family members, c-MYC), castration-resistant prostate cancer (AR, FOXA1), and AR-independent castration-resistant neuroendocrine prostate cancer (RB1, p53, N-MYC). We use functional (in vitro and in vivo) as well as clinical data to discuss evidence that unveils their roles in the initiation and progression of prostate cancer, with an emphasis on results of chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq).
Collapse
Affiliation(s)
- David P Labbé
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| |
Collapse
|
670
|
Prekovic S, van den Broeck T, Linder S, van Royen ME, Houtsmuller AB, Handle F, Joniau S, Zwart W, Claessens F. Molecular underpinnings of enzalutamide resistance. Endocr Relat Cancer 2018; 25:R545–R557. [PMID: 30306781 DOI: 10.1530/erc-17-0136] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Prostate cancer (PCa) is among the most common adult malignancies, and the second leading cause of cancer-related death in men. As PCa is hormone dependent, blockade of the androgen receptor (AR) signaling is an effective therapeutic strategy for men with advanced metastatic disease. The discovery of enzalutamide, a compound that effectively blocks the AR axis and its clinical application has led to a significant improvement in survival time. However, the effect of enzalutamide is not permanent, and resistance to treatment ultimately leads to development of lethal disease, for which there currently is no cure. This review will focus on the molecular underpinnings of enzalutamide resistance, bridging the gap between the preclinical and clinical research on novel therapeutic strategies for combating this lethal stage of prostate cancer.
Collapse
Affiliation(s)
- S Prekovic
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - T van den Broeck
- Laboratory of Molecular Endocrinology, KU Leuven, Leuven, Belgium
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - S Linder
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - M E van Royen
- Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
- Erasmus Optical Imaging Centre, Erasmus MC, Rotterdam, The Netherlands
| | - A B Houtsmuller
- Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
- Erasmus Optical Imaging Centre, Erasmus MC, Rotterdam, The Netherlands
| | - F Handle
- Laboratory of Molecular Endocrinology, KU Leuven, Leuven, Belgium
| | - S Joniau
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - W Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - F Claessens
- Laboratory of Molecular Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|
671
|
Conteduca V, Sigouros M, Sboner A, Pritchard CC, Beltran H. BRCA2-Associated Prostate Cancer in a Patient With Spinal and Bulbar Muscular Atrophy. JCO Precis Oncol 2018; 2. [DOI: 10.1200/po.18.00115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Vincenza Conteduca
- Vincenza Conteduca, Michael Sigouros, Andrea Sboner, and Himisha Beltran, Weill Cornell Medicine; Andrea Sboner and Himisha Beltran, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY; Vincenza Conteduca, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy; and Colin C. Pritchard, University of Washington, Seattle, WA
| | - Michael Sigouros
- Vincenza Conteduca, Michael Sigouros, Andrea Sboner, and Himisha Beltran, Weill Cornell Medicine; Andrea Sboner and Himisha Beltran, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY; Vincenza Conteduca, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy; and Colin C. Pritchard, University of Washington, Seattle, WA
| | - Andrea Sboner
- Vincenza Conteduca, Michael Sigouros, Andrea Sboner, and Himisha Beltran, Weill Cornell Medicine; Andrea Sboner and Himisha Beltran, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY; Vincenza Conteduca, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy; and Colin C. Pritchard, University of Washington, Seattle, WA
| | - Colin C. Pritchard
- Vincenza Conteduca, Michael Sigouros, Andrea Sboner, and Himisha Beltran, Weill Cornell Medicine; Andrea Sboner and Himisha Beltran, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY; Vincenza Conteduca, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy; and Colin C. Pritchard, University of Washington, Seattle, WA
| | - Himisha Beltran
- Vincenza Conteduca, Michael Sigouros, Andrea Sboner, and Himisha Beltran, Weill Cornell Medicine; Andrea Sboner and Himisha Beltran, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY; Vincenza Conteduca, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy; and Colin C. Pritchard, University of Washington, Seattle, WA
| |
Collapse
|
672
|
The role of GLI-SOX2 signaling axis for gemcitabine resistance in pancreatic cancer. Oncogene 2018; 38:1764-1777. [PMID: 30382189 PMCID: PMC6408295 DOI: 10.1038/s41388-018-0553-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/03/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer, mostly pancreatic ductal adenocarcinomas (PDAC), is one of the most lethal cancers, with a dismal median survival around 8 months. PDAC is notoriously resistant to chemotherapy. Thus far, numerous attempts using novel targeted therapies and immunotherapies yielded limited clinical benefits for pancreatic cancer patients. It is hoped that delineating the molecular mechanisms underlying drug resistance in pancreatic cancer may provide novel therapeutic options. Using acquired gemcitabine resistant pancreatic cell lines, we revealed an important role of the GLI-SOX2 signaling axis for regulation of gemcitabine sensitivity in vitro and in animal models. Down-regulation of GLI transcriptional factors (GLI1 or GLI2), but not SMO signaling inhibition, reduces tumor sphere formation, a characteristics of tumor initiating cell (TIC). Down-regulation of GLI transcription factors also decreased expression of TIC marker CD24. Similarly, high SOX2 expression is associated with gemcitabine resistance whereas down-regulation of SOX2 sensitizes pancreatic cancer cells to gemcitabine treatment. We further revealed that elevated SOX2 expression is associated with an increase in GLI1 or GLI2 expression. Our ChIP assay revealed that GLI proteins are associated with a putative Gli binding site within the SOX2 promoter, suggesting a more direct regulation of SOX2 by GLI transcription factors. The relevance of our findings to human disease was revealed in human cancer specimens. We found that high SOX2 protein expression is associated with frequent tumor relapse and poor survival in stage II PDAC patients (all of them underwent gemcitabine treatment), indicating that reduced SOX2 expression or down-regulation of GLI transcription factors may be effective in sensitizing pancreatic cancer cells to gemcitabine treatment.
Collapse
|
673
|
Wollenzien H, Voigt E, Kareta MS. Somatic Pluripotent Genes in Tissue Repair, Developmental Disease, and Cancer. SPG BIOMED 2018; 1. [PMID: 31172135 DOI: 10.32392/biomed.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Embryonic stem cells possess the ability to differentiate into all cell types of the body. This pliable developmental state is achieved by the function of a series of pluripotency factors, classically identified as OCT4, SOX2, and NANOG. These pluripotency factors are responsible for activating the larger pluripotency networks and the self-renewal programs which give ES cells their unique characteristics. However, during differentiation pluripotency networks become downregulated as cells achieve greater lineage specification and exit the cell cycle. Typically the repression of pluripotency is viewed as a positive factor to ensure the fidelity of cellular identity by restricting cellular pliancy. Consistent with this view, the expression of pluripotency factors is greatly restricted in somatic cells. However, there are examples whereby cells either maintain or reactivate pluripotency factors to preserve the increased potential for the healing of wounds or tissue homeostasis. Additionally there are many examples where these pluripotency factors become reactivated in a variety of human pathologies, particularly cancer. In this review, we will summarize the somatic repression of pluripotency factors, their role in tissue homeostasis and wound repair, and the human diseases that are associated with pluripotency factor misregulation with an emphasis on their role in the etiology of multiple cancers.
Collapse
Affiliation(s)
- Hannah Wollenzien
- Genetics and Genomics Group, Cellular Therapies and Stem Cell Biology Group, and the Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA.,Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St. Vermillion, SD 57069, USA
| | - Ellen Voigt
- Genetics and Genomics Group, Cellular Therapies and Stem Cell Biology Group, and the Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA
| | - Michael S Kareta
- Genetics and Genomics Group, Cellular Therapies and Stem Cell Biology Group, and the Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA.,Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St. Vermillion, SD 57069, USA.,Department of Pediatrics, Sanford School of Medicine, 1400 W. 22nd St., Sioux Falls, SD 57105, USA.,Department of Chemistry and Biochemistry, South Dakota State University, 1175 Medary Ave, Brookings, SD 57006, USA
| |
Collapse
|
674
|
Hüser L, Novak D, Umansky V, Altevogt P, Utikal J. Targeting SOX2 in anticancer therapy. Expert Opin Ther Targets 2018; 22:983-991. [PMID: 30366514 DOI: 10.1080/14728222.2018.1538359] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION SOX2 is a transcription factor that is important in the development and maintenance of the stem cell state. Furthermore, SOX2 is associated with cancer progression because it promotes the migration, invasion, and proliferation of cancer cells. SOX2 is also expressed in cancer stem cells and appears to be involved in the resistance toward anticancer therapies. These features render SOX2 an attractive target for cancer therapy. Areas covered: In this review, we highlight the role of SOX2 in cancer and in the resistance toward anticancer therapies. We summarize recent studies dealing with SOX2 as a direct or indirect therapeutic target in cancer. Expert opinion: SOX2 is an attractive target in cancer therapy because of its role in cancer progression and therapy resistance. SOX2 is a transcription factor, hence direct targeting is difficult. Studies aimed at a functional depletion, for example by knock-down with siRNAs, are difficult to translate into clinical settings. Alternatively, the identification of SOX2 upstream or downstream regulators that are easier to target is of paramount importance.
Collapse
Affiliation(s)
- Laura Hüser
- a Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology , University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg , Mannheim , Germany
| | - Daniel Novak
- a Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology , University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg , Mannheim , Germany
| | - Viktor Umansky
- a Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology , University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg , Mannheim , Germany
| | - Peter Altevogt
- a Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology , University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg , Mannheim , Germany
| | - Jochen Utikal
- a Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology , University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg , Mannheim , Germany
| |
Collapse
|
675
|
Cai L, Tsai YH, Wang P, Wang J, Li D, Fan H, Zhao Y, Bareja R, Lu R, Wilson EM, Sboner A, Whang YE, Zheng D, Parker JS, Earp HS, Wang GG. ZFX Mediates Non-canonical Oncogenic Functions of the Androgen Receptor Splice Variant 7 in Castrate-Resistant Prostate Cancer. Mol Cell 2018; 72:341-354.e6. [PMID: 30270106 PMCID: PMC6214474 DOI: 10.1016/j.molcel.2018.08.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/16/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022]
Abstract
Androgen receptor splice variant 7 (AR-V7) is crucial for prostate cancer progression and therapeutic resistance. We show that, independent of ligand, AR-V7 binds both androgen-responsive elements (AREs) and non-canonical sites distinct from full-length AR (AR-FL) targets. Consequently, AR-V7 not only recapitulates AR-FL's partial functions but also regulates an additional gene expression program uniquely via binding to gene promoters rather than ARE enhancers. AR-V7 binding and AR-V7-mediated activation at these unique targets do not require FOXA1 but rely on ZFX and BRD4. Knockdown of ZFX or select unique targets of AR-V7/ZFX, or BRD4 inhibition, suppresses growth of castration-resistant prostate cancer cells. We also define an AR-V7 direct target gene signature that correlates with AR-V7 expression in primary tumors, differentiates metastatic prostate cancer from normal, and predicts poor prognosis. Thus, AR-V7 has both ARE/FOXA1 canonical and ZFX-directed non-canonical regulatory functions in the evolution of anti-androgen therapeutic resistance, providing information to guide effective therapeutic strategies.
Collapse
Affiliation(s)
- Ling Cai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Ping Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jun Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Dongxu Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Huitao Fan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Yilin Zhao
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rohan Bareja
- Meyer Cancer Center and Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Rui Lu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Elizabeth M Wilson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Andrea Sboner
- Meyer Cancer Center and Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Young E Whang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - H Shelton Earp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
676
|
Conteduca V, Scarpi E, Salvi S, Casadio V, Lolli C, Gurioli G, Schepisi G, Wetterskog D, Farolfi A, Menna C, De Lisi D, Burgio SL, Beltran H, Attard G, De Giorgi U. Plasma androgen receptor and serum chromogranin A in advanced prostate cancer. Sci Rep 2018; 8:15442. [PMID: 30337589 PMCID: PMC6194135 DOI: 10.1038/s41598-018-33774-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 10/04/2018] [Indexed: 12/19/2022] Open
Abstract
Recently, mixed forms between adenocarcinoma and neuroendocrine prostate cancer (NEPC) have emerged that are characterized by persistent androgen receptor (AR)-signalling and elevated chromogranin A (CgA) levels. The main aim of this study was to analyze castration-resistant prostate cancer (CRPC) patients treated with abiraterone or enzalutamide, assessing progression-free/overall survival (PFS/OS) in association with circulating AR and CgA. AR aberrations were analyzed by droplet digital PCR in pre-treatment plasma samples collected from two biomarker protocols [197 patients from a retrospective study (REC 2192/2013) and 59 from a prospective trial (REC 6798/2015)]. We subdivided patients into three groups according to CgA by receiver-operating characteristic (ROC) curves. In the primary cohort, plasma AR gain and mutations (p.L702H/p.T878A) were detected in 78 (39.6%) and 16 (8.1%) patients, respectively. We observed a significantly worse PFS/OS in patients with higher-CgA than in patients with normal-CgA, especially those with no AR-aberrations. Multivariable analysis showed AR gain, higher-CgA and LDH levels as independent predictors of PFS [hazard ratio (HR) = 2.16, 95% confidence interval (95% CI) 1.50-3.12, p < 0.0001, HR = 1.73, 95% CI 1.06-2.84, p = 0.026, and HR = 2.13, 95% CI 1.45-3.13, p = 0.0001, respectively) and OS (HR = 1.72, 95% CI 1.15-2.57, p = 0.008, HR = 3.63, 95% CI 2.13-6.20, p < 0.0001, and HR = 2.31, 95% CI 1.54-3.48, p < 0.0001, respectively). These data were confirmed in the secondary cohort. Pre-treatment CgA detection could be useful to identify these mixed tumors and would seem to have a prognostic role, especially in AR-normal patients. This association needs further evaluation in larger prospective cohorts.
Collapse
Affiliation(s)
- Vincenza Conteduca
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli 40, 47014, Meldola, Italy.
- The Institute of Cancer Research and the Royal Marsden, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Emanuela Scarpi
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli 40, 47014, Meldola, Italy
| | - Samanta Salvi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli 40, 47014, Meldola, Italy
| | - Valentina Casadio
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli 40, 47014, Meldola, Italy
| | - Cristian Lolli
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli 40, 47014, Meldola, Italy
| | - Giorgia Gurioli
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli 40, 47014, Meldola, Italy
| | - Giuseppe Schepisi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli 40, 47014, Meldola, Italy
| | - Daniel Wetterskog
- The Institute of Cancer Research and the Royal Marsden, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Alberto Farolfi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli 40, 47014, Meldola, Italy
| | - Cecilia Menna
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli 40, 47014, Meldola, Italy
| | - Delia De Lisi
- Medical Oncology Department, Campus Bio-Medico University, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Salvatore Luca Burgio
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli 40, 47014, Meldola, Italy
| | - Himisha Beltran
- Division of Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Gerhardt Attard
- The Institute of Cancer Research and the Royal Marsden, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
- Academic Urology Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Ugo De Giorgi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli 40, 47014, Meldola, Italy
| |
Collapse
|
677
|
Terry S, Faouzi Zaarour R, Hassan Venkatesh G, Francis A, El-Sayed W, Buart S, Bravo P, Thiery J, Chouaib S. Role of Hypoxic Stress in Regulating Tumor Immunogenicity, Resistance and Plasticity. Int J Mol Sci 2018; 19:ijms19103044. [PMID: 30301213 PMCID: PMC6213127 DOI: 10.3390/ijms19103044] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/28/2018] [Accepted: 10/04/2018] [Indexed: 12/15/2022] Open
Abstract
Hypoxia, or gradients of hypoxia, occurs in most growing solid tumors and may result in pleotropic effects contributing significantly to tumor aggressiveness and therapy resistance. Indeed, the generated hypoxic stress has a strong impact on tumor cell biology. For example, it may contribute to increasing tumor heterogeneity, help cells gain new functional properties and/or select certain cell subpopulations, facilitating the emergence of therapeutic resistant cancer clones, including cancer stem cells coincident with tumor relapse and progression. It controls tumor immunogenicity, immune plasticity, and promotes the differentiation and expansion of immune-suppressive stromal cells. In this context, manipulation of the hypoxic microenvironment may be considered for preventing or reverting the malignant transformation. Here, we review the current knowledge on how hypoxic stress in tumor microenvironments impacts on tumor heterogeneity, plasticity and resistance, with a special interest in the impact on immune resistance and tumor immunogenicity.
Collapse
Affiliation(s)
- Stéphane Terry
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine-Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
| | - Rania Faouzi Zaarour
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Goutham Hassan Venkatesh
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Amirtharaj Francis
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Walid El-Sayed
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Stéphanie Buart
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine-Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
| | - Pamela Bravo
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine-Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
| | - Jérome Thiery
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine-Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
| | - Salem Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine-Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| |
Collapse
|
678
|
Abstract
Similar cancers from different source tissues share molecular mechanisms
Collapse
Affiliation(s)
- Michael S Kareta
- Genetics and Genomics Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, University of South Dakota Sanford School of Medicine , Sioux Falls, SD, USA
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, USA
| | - Julien Sage
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
679
|
Zhang Y, Zheng D, Zhou T, Song H, Hulsurkar M, Su N, Liu Y, Wang Z, Shao L, Ittmann M, Gleave M, Han H, Xu F, Liao W, Wang H, Li W. Androgen deprivation promotes neuroendocrine differentiation and angiogenesis through CREB-EZH2-TSP1 pathway in prostate cancers. Nat Commun 2018; 9:4080. [PMID: 30287808 PMCID: PMC6172226 DOI: 10.1038/s41467-018-06177-2] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 08/20/2018] [Indexed: 01/19/2023] Open
Abstract
The incidence of aggressive neuroendocrine prostate cancers (NEPC) related to androgen-deprivation therapy (ADT) is rising. NEPC is still poorly understood, such as its neuroendocrine differentiation (NED) and angiogenic phenotypes. Here we reveal that NED and angiogenesis are molecularly connected through EZH2 (enhancer of zeste homolog 2). NED and angiogenesis are both regulated by ADT-activated CREB (cAMP response element-binding protein) that in turn enhances EZH2 activity. We also uncover anti-angiogenic factor TSP1 (thrombospondin-1, THBS1) as a direct target of EZH2 epigenetic repression. TSP1 is downregulated in advanced prostate cancer patient samples and negatively correlates with NE markers and EZH2. Furthermore, castration activates the CREB/EZH2 axis, concordantly affecting TSP1, angiogenesis and NE phenotypes in tumor xenografts. Notably, repressing CREB inhibits the CREB/EZH2 axis, tumor growth, NED, and angiogenesis in vivo. Taken together, we elucidate a new critical pathway, consisting of CREB/EZH2/TSP1, underlying ADT-enhanced NED and angiogenesis during prostate cancer progression.
Collapse
Affiliation(s)
- Yan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Anesthesiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dayong Zheng
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510513, China
| | - Ting Zhou
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Pharmacy, Fengxian Hospital, Southern Medical University, Shanghai, 201400, China
| | - Haiping Song
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Breast and Thyroid Surgery Center, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mohit Hulsurkar
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Ning Su
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Oncology, Guangzhou Chest Hospital, Guangzhou, 510095, China
| | - Ying Liu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Pathology, Xiangya Hospital and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
| | - Zheng Wang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Long Shao
- Department of Pathology and Immunology, Baylor College of Medicine, and Michael E. DeBakey VAMC, Houston, TX 77030, USA
| | - Michael Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, and Michael E. DeBakey VAMC, Houston, TX 77030, USA
| | - Martin Gleave
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Huanxing Han
- Department of Pharmacy, Changzheng Hospital, Shanghai, 200003, China
| | - Feng Xu
- Department of Pharmacy, Fengxian Hospital, Southern Medical University, Shanghai, 201400, China
| | - Wangjun Liao
- Department of Medical Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hongbo Wang
- Department of Gynaecology and Obstetrics, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenliang Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
- Division of Oncology, Department of Internal Medicine, and Memorial Herman Cancer Center, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
680
|
Chang YT, Lin TP, Tang JT, Campbell M, Luo YL, Lu SY, Yang CP, Cheng TY, Chang CH, Liu TT, Lin CH, Kung HJ, Pan CC, Chang PC. HOTAIR is a REST-regulated lncRNA that promotes neuroendocrine differentiation in castration resistant prostate cancer. Cancer Lett 2018; 433:43-52. [DOI: 10.1016/j.canlet.2018.06.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 12/23/2022]
|
681
|
|
682
|
Flores-Morales A, Bergmann TB, Lavallee C, Batth TS, Lin D, Lerdrup M, Friis S, Bartels A, Kristensen G, Krzyzanowska A, Xue H, Fazli L, Hansen KH, Røder MA, Brasso K, Moreira JM, Bjartell A, Wang Y, Olsen JV, Collins CC, Iglesias-Gato D. Proteogenomic Characterization of Patient-Derived Xenografts Highlights the Role of REST in Neuroendocrine Differentiation of Castration-Resistant Prostate Cancer. Clin Cancer Res 2018; 25:595-608. [PMID: 30274982 DOI: 10.1158/1078-0432.ccr-18-0729] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 08/04/2018] [Accepted: 09/25/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE An increasing number of castration-resistant prostate cancer (CRPC) tumors exhibit neuroendocrine (NE) features. NE prostate cancer (NEPC) has poor prognosis, and its development is poorly understood.Experimental Design: We applied mass spectrometry-based proteomics to a unique set of 17 prostate cancer patient-derived xenografts (PDX) to characterize the effects of castration in vivo, and the proteome differences between NEPC and prostate adenocarcinomas. Genome-wide profiling of REST-occupied regions in prostate cancer cells was correlated to the expression changes in vivo to investigate the role of the transcriptional repressor REST in castration-induced NEPC differentiation. RESULTS An average of 4,881 proteins were identified and quantified from each PDX. Proteins related to neurogenesis, cell-cycle regulation, and DNA repair were found upregulated and elevated in NEPC, while the reduced levels of proteins involved in mitochondrial functions suggested a prevalent glycolytic metabolism of NEPC tumors. Integration of the REST chromatin bound regions with expression changes indicated a direct role of REST in regulating neuronal gene expression in prostate cancer cells. Mechanistically, depletion of REST led to cell-cycle arrest in G1, which could be rescued by p53 knockdown. Finally, the expression of the REST-regulated gene secretagogin (SCGN) correlated with an increased risk of suffering disease relapse after radical prostatectomy. CONCLUSIONS This study presents the first deep characterization of the proteome of NEPC and suggests that concomitant inhibition of REST and the p53 pathway would promote NEPC. We also identify SCGN as a novel prognostic marker in prostate cancer.
Collapse
Affiliation(s)
- Amilcar Flores-Morales
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Danish Cancer Society, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tobias B Bergmann
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Danish Cancer Society, Copenhagen, Denmark
| | - Charlotte Lavallee
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Danish Cancer Society, Copenhagen, Denmark
| | - Tanveer S Batth
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dong Lin
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mads Lerdrup
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Stine Friis
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Danish Cancer Society, Copenhagen, Denmark
| | - Anette Bartels
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Danish Cancer Society, Copenhagen, Denmark
| | - Gitte Kristensen
- Copenhagen Prostate Cancer Center, Department of Urology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Agnieszka Krzyzanowska
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Lund, Sweden
| | - Hui Xue
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ladan Fazli
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Klaus H Hansen
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Martin A Røder
- Copenhagen Prostate Cancer Center, Department of Urology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Brasso
- Copenhagen Prostate Cancer Center, Department of Urology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - José M Moreira
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Danish Cancer Society, Copenhagen, Denmark
| | - Anders Bjartell
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Lund, Sweden
| | - Yuzhuo Wang
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Colin C Collins
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Diego Iglesias-Gato
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- The Danish Cancer Society, Copenhagen, Denmark
| |
Collapse
|
683
|
Jolly MK, Somarelli JA, Sheth M, Biddle A, Tripathi SC, Armstrong AJ, Hanash SM, Bapat SA, Rangarajan A, Levine H. Hybrid epithelial/mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas. Pharmacol Ther 2018; 194:161-184. [PMID: 30268772 DOI: 10.1016/j.pharmthera.2018.09.007] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer metastasis and therapy resistance are the major unsolved clinical challenges, and account for nearly all cancer-related deaths. Both metastasis and therapy resistance are fueled by epithelial plasticity, the reversible phenotypic transitions between epithelial and mesenchymal phenotypes, including epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). EMT and MET have been largely considered as binary processes, where cells detach from the primary tumor as individual units with many, if not all, traits of a mesenchymal cell (EMT) and then convert back to being epithelial (MET). However, recent studies have demonstrated that cells can metastasize in ways alternative to traditional EMT paradigm; for example, they can detach as clusters, and/or occupy one or more stable hybrid epithelial/mesenchymal (E/M) phenotypes that can be the end point of a transition. Such hybrid E/M cells can integrate various epithelial and mesenchymal traits and markers, facilitating collective cell migration. Furthermore, these hybrid E/M cells may possess higher tumor-initiation and metastatic potential as compared to cells on either end of the EMT spectrum. Here, we review in silico, in vitro, in vivo and clinical evidence for the existence of one or more hybrid E/M phenotype(s) in multiple carcinomas, and discuss their implications in tumor-initiation, tumor relapse, therapy resistance, and metastasis. Together, these studies drive the emerging notion that cells in a hybrid E/M phenotype may occupy 'metastatic sweet spot' in multiple subtypes of carcinomas, and pathways linked to this (these) hybrid E/M state(s) may be relevant as prognostic biomarkers as well as a promising therapeutic targets.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| | - Jason A Somarelli
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Maya Sheth
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Adrian Biddle
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, USA
| | - Andrew J Armstrong
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, USA
| | - Sharmila A Bapat
- National Center for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| |
Collapse
|
684
|
Nava Rodrigues D, Casiraghi N, Romanel A, Crespo M, Miranda S, Rescigno P, Figueiredo I, Riisnaes R, Carreira S, Sumanasuriya S, Gasperini P, Sharp A, Mateo J, Makay A, McNair C, Schiewer M, Knudsen K, Boysen G, Demichelis F, de Bono JS. RB1 Heterogeneity in Advanced Metastatic Castration-Resistant Prostate Cancer. Clin Cancer Res 2018; 25:687-697. [PMID: 30257982 DOI: 10.1158/1078-0432.ccr-18-2068] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/09/2018] [Accepted: 09/18/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Metastatic castration-resistant prostate cancer (mCRPC) is a lethal but clinically heterogeneous disease, with patients having variable benefit from endocrine and cytotoxic treatments. Intrapatient genomic heterogeneity could be a contributing factor to this clinical heterogeneity. Here, we used whole-genome sequencing (WGS) to investigate genomic heterogeneity in 21 previously treated CRPC metastases from 10 patients to investigate intrapatient molecular heterogeneity (IPMH).Experimental Design: WGS was performed on topographically separate metastases from patients with advanced metastatic prostate cancer. IPMH of the RB1 gene was identified and further evaluated by FISH and IHC assays. RESULTS WGS identified limited IPMH for putative driver events. However, heterogeneous genomic aberrations of RB1 were detected. We confirmed the presence of these RB1 somatic copy-number aberrations, initially identified by WGS, with FISH, and identified novel structural variants involving RB1 in 6 samples from 3 of these 10 patients (30%; 3/10). WGS uncovered a novel deleterious RB1 structural lesion constituted of an intragenic tandem duplication involving multiple exons and associating with protein loss. Using RB1 IHC in a large series of mCRPC biopsies, we identified heterogeneous expression in approximately 28% of mCRPCs. CONCLUSIONS mCRPCs have a high prevalence of RB1 genomic aberrations, with structural variants, including rearrangements, being common. Intrapatient genomic and expression heterogeneity favors RB1 aberrations as late, subclonal events that increase in prevalence due to treatment-selective pressures.
Collapse
Affiliation(s)
- Daniel Nava Rodrigues
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
- The Institute of Cancer Research, London, United Kingdom
| | - Nicola Casiraghi
- Centre for Integrative Biology (CIBIO), University of Trento, Laboratory of Functional and Computational Oncology, Trento, Italy
| | - Alessandro Romanel
- Centre for Integrative Biology (CIBIO), University of Trento, Laboratory of Bioinformatics and Computational Genomics, Trento, Italy
| | - Mateus Crespo
- The Institute of Cancer Research, London, United Kingdom
| | - Susana Miranda
- The Institute of Cancer Research, London, United Kingdom
| | - Pasquale Rescigno
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
- The Institute of Cancer Research, London, United Kingdom
| | | | - Ruth Riisnaes
- The Institute of Cancer Research, London, United Kingdom
| | | | - Semini Sumanasuriya
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
- The Institute of Cancer Research, London, United Kingdom
| | - Paola Gasperini
- Centre for Integrative Biology (CIBIO), University of Trento, Laboratory of Functional and Computational Oncology, Trento, Italy
| | - Adam Sharp
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
- The Institute of Cancer Research, London, United Kingdom
| | - Joaquin Mateo
- Vall Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Alan Makay
- The Institute of Cancer Research, London, United Kingdom
| | - Christopher McNair
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, New York, New York
| | - Matthew Schiewer
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, New York, New York
| | - Karen Knudsen
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, New York, New York
| | - Gunther Boysen
- The Institute of Cancer Research, London, United Kingdom
| | - Francesca Demichelis
- Centre for Integrative Biology (CIBIO), University of Trento, Laboratory of Functional and Computational Oncology, Trento, Italy.
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, New York, New York
| | - Johann S de Bono
- The Royal Marsden NHS Foundation Trust, London, United Kingdom.
- The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
685
|
Kita Y, Goto T, Akamatsu S, Yamasaki T, Inoue T, Ogawa O, Kobayashi T. Castration-Resistant Prostate Cancer Refractory to Second-Generation Androgen Receptor Axis-Targeted Agents: Opportunities and Challenges. Cancers (Basel) 2018; 10:cancers10100345. [PMID: 30248934 PMCID: PMC6210307 DOI: 10.3390/cancers10100345] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/23/2023] Open
Abstract
Second-generation androgen receptor axis-targeted (ARAT) agents, namely abiraterone and enzalutamide, enable stronger blockade of the androgen receptor (AR) axis and longer survival of men with castration-resistant prostate cancer (CRPC). However, the extent of the improved survival remains insufficient and the majority of patients eventually develop resistance to these novel agents. Some patients develop resistance against ARAT treatment through mechanisms termed “complete AR independence” or “AR indifference”, and no longer require activation of the AR axis. However, a considerable proportion of CRPC patients remain persistently dependent on AR or its downstream signaling pathways. Ligand-independent activation of the AR, an AR axis-dependent mechanism, is mediated by truncated forms of ARs that lack the ligand-binding domain (LBD), arising as products of AR splicing variants or nonsense mutations of AR. Post-translational modifications of ARs can also contribute to ligand-independent transactivation of the AR. Other mechanisms for AR axis activation are mediated by pathways that bypass the AR. Recent studies revealed that the glucocorticoid receptor can upregulate a similar transcription program to that of the AR, thus bypassing the AR. ARAT agents are essentially ineffective for CRPC driven by these AR-independent mechanisms. This review article describes recent efforts to overcome these refractory machineries for the development of next-generation AR axis blockade in CRPC.
Collapse
Affiliation(s)
- Yuki Kita
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Takayuki Goto
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Shusuke Akamatsu
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Toshinari Yamasaki
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Takahiro Inoue
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Takashi Kobayashi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| |
Collapse
|
686
|
Yang D, Denny SK, Greenside PG, Chaikovsky AC, Brady JJ, Ouadah Y, Granja JM, Jahchan NS, Lim JS, Kwok S, Kong CS, Berghoff AS, Schmitt A, Reinhardt HC, Park KS, Preusser M, Kundaje A, Greenleaf WJ, Sage J, Winslow MM. Intertumoral Heterogeneity in SCLC Is Influenced by the Cell Type of Origin. Cancer Discov 2018; 8:1316-1331. [PMID: 30228179 DOI: 10.1158/2159-8290.cd-17-0987] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 05/14/2018] [Accepted: 08/09/2018] [Indexed: 12/15/2022]
Abstract
The extent to which early events shape tumor evolution is largely uncharacterized, even though a better understanding of these early events may help identify key vulnerabilities in advanced tumors. Here, using genetically defined mouse models of small cell lung cancer (SCLC), we uncovered distinct metastatic programs attributable to the cell type of origin. In one model, tumors gain metastatic ability through amplification of the transcription factor NFIB and a widespread increase in chromatin accessibility, whereas in the other model, tumors become metastatic in the absence of NFIB-driven chromatin alterations. Gene-expression and chromatin accessibility analyses identify distinct mechanisms as well as markers predictive of metastatic progression in both groups. Underlying the difference between the two programs was the cell type of origin of the tumors, with NFIB-independent metastases arising from mature neuroendocrine cells. Our findings underscore the importance of the identity of cell type of origin in influencing tumor evolution and metastatic mechanisms.Significance: We show that SCLC can arise from different cell types of origin, which profoundly influences the eventual genetic and epigenetic changes that enable metastatic progression. Understanding intertumoral heterogeneity in SCLC, and across cancer types, may illuminate mechanisms of tumor progression and uncover how the cell type of origin affects tumor evolution. Cancer Discov; 8(10); 1316-31. ©2018 AACR. See related commentary by Pozo et al., p. 1216 This article is highlighted in the In This Issue feature, p. 1195.
Collapse
Affiliation(s)
- Dian Yang
- Cancer Biology Program, Stanford University, Stanford, California.,Department of Genetics, Stanford University, Stanford, California.,Department of Pediatrics, Stanford University, Stanford, California
| | - Sarah K Denny
- Department of Genetics, Stanford University, Stanford, California.,Biophysics Program, Stanford University, Stanford, California
| | - Peyton G Greenside
- Program in Biomedical Informatics, Stanford University, Stanford, California
| | - Andrea C Chaikovsky
- Cancer Biology Program, Stanford University, Stanford, California.,Department of Genetics, Stanford University, Stanford, California.,Department of Pediatrics, Stanford University, Stanford, California
| | - Jennifer J Brady
- Department of Genetics, Stanford University, Stanford, California
| | - Youcef Ouadah
- Cancer Biology Program, Stanford University, Stanford, California.,Department of Biochemistry, Stanford University, Stanford, California
| | - Jeffrey M Granja
- Department of Genetics, Stanford University, Stanford, California.,Biophysics Program, Stanford University, Stanford, California
| | - Nadine S Jahchan
- Department of Genetics, Stanford University, Stanford, California.,Department of Pediatrics, Stanford University, Stanford, California
| | - Jing Shan Lim
- Cancer Biology Program, Stanford University, Stanford, California.,Department of Genetics, Stanford University, Stanford, California.,Department of Pediatrics, Stanford University, Stanford, California
| | - Shirley Kwok
- Department of Pathology, Stanford University, Stanford, California
| | - Christina S Kong
- Department of Pathology, Stanford University, Stanford, California
| | - Anna S Berghoff
- Institute of Neurology, Medical University of Vienna, Vienna, Austria.,Department of Medicine I, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center CNS Tumors Unit, Medical University of Vienna, Vienna, Austria
| | - Anna Schmitt
- Department of Internal Medicine I, University Hospital of Cologne, Cologne, Germany
| | - H Christian Reinhardt
- Department of Internal Medicine I, University Hospital of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Kwon-Sik Park
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Matthias Preusser
- Department of Medicine I, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center CNS Tumors Unit, Medical University of Vienna, Vienna, Austria
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, California.,Department of Computer Science, Stanford University, Stanford, California
| | | | - Julien Sage
- Cancer Biology Program, Stanford University, Stanford, California. .,Department of Genetics, Stanford University, Stanford, California.,Department of Pediatrics, Stanford University, Stanford, California
| | - Monte M Winslow
- Cancer Biology Program, Stanford University, Stanford, California. .,Department of Genetics, Stanford University, Stanford, California.,Department of Pathology, Stanford University, Stanford, California
| |
Collapse
|
687
|
Blee AM, He Y, Yang Y, Ye Z, Yan Y, Pan Y, Ma T, Dugdale J, Kuehn E, Kohli M, Jimenez R, Chen Y, Xu W, Wang L, Huang H. TMPRSS2-ERG Controls Luminal Epithelial Lineage and Antiandrogen Sensitivity in PTEN and TP53-Mutated Prostate Cancer. Clin Cancer Res 2018; 24:4551-4565. [PMID: 29844131 PMCID: PMC6139075 DOI: 10.1158/1078-0432.ccr-18-0653] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/04/2018] [Accepted: 05/23/2018] [Indexed: 01/10/2023]
Abstract
Purpose: Deletions or mutations in PTEN and TP53 tumor suppressor genes have been linked to lineage plasticity in therapy-resistant prostate cancer. Fusion-driven overexpression of the oncogenic transcription factor ERG is observed in approximately 50% of all prostate cancers, many of which also harbor PTEN and TP53 alterations. However, the role of ERG in lineage plasticity of PTEN/TP53-altered tumors is unclear. Understanding the collective effect of multiple mutations within one tumor is essential to combat plasticity-driven therapy resistance.Experimental Design: We generated a Pten-negative/Trp53-mutated/ERG-overexpressing mouse model of prostate cancer and integrated RNA-sequencing with ERG chromatin immunoprecipitation-sequencing (ChIP-seq) to identify pathways regulated by ERG in the context of Pten/Trp53 alteration. We investigated ERG-dependent sensitivity to the antiandrogen enzalutamide and cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor palbociclib in human prostate cancer cell lines, xenografts, and allografted mouse tumors. Trends were evaluated in TCGA, SU2C, and Beltran 2016 published patient cohorts and a human tissue microarray.Results: Transgenic ERG expression in mice blocked Pten/Trp53 alteration-induced decrease of AR expression and downstream luminal epithelial genes. ERG directly suppressed expression of cell cycle-related genes, which induced RB hypophosphorylation and repressed E2F1-mediated expression of mesenchymal lineage regulators, thereby restricting adenocarcinoma plasticity and maintaining antiandrogen sensitivity. In ERG-negative tumors, CDK4/6 inhibition delayed tumor growth.Conclusions: Our studies identify a previously undefined function of ERG to restrict lineage plasticity and maintain antiandrogen sensitivity in PTEN/TP53-altered prostate cancer. Our findings suggest ERG fusion as a biomarker to guide treatment of PTEN/TP53-altered, RB1-intact prostate cancer. Clin Cancer Res; 24(18); 4551-65. ©2018 AACR.
Collapse
Affiliation(s)
- Alexandra M Blee
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
- Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota
| | - Yundong He
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Yinhui Yang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhenqing Ye
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Yuqian Yan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Tao Ma
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Joseph Dugdale
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Emily Kuehn
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Manish Kohli
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Rafael Jimenez
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Wanhai Xu
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota.
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota.
- Department of Urology, Mayo Clinic College of Medicine, Rochester, Minnesota
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
688
|
Razavi P, Chang MT, Xu G, Bandlamudi C, Ross DS, Vasan N, Cai Y, Bielski CM, Donoghue MTA, Jonsson P, Penson A, Shen R, Pareja F, Kundra R, Middha S, Cheng ML, Zehir A, Kandoth C, Patel R, Huberman K, Smyth LM, Jhaveri K, Modi S, Traina TA, Dang C, Zhang W, Weigelt B, Li BT, Ladanyi M, Hyman DM, Schultz N, Robson ME, Hudis C, Brogi E, Viale A, Norton L, Dickler MN, Berger MF, Iacobuzio-Donahue CA, Chandarlapaty S, Scaltriti M, Reis-Filho JS, Solit DB, Taylor BS, Baselga J. The Genomic Landscape of Endocrine-Resistant Advanced Breast Cancers. Cancer Cell 2018; 34:427-438.e6. [PMID: 30205045 PMCID: PMC6327853 DOI: 10.1016/j.ccell.2018.08.008] [Citation(s) in RCA: 675] [Impact Index Per Article: 96.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 07/15/2018] [Accepted: 08/09/2018] [Indexed: 02/06/2023]
Abstract
We integrated the genomic sequencing of 1,918 breast cancers, including 1,501 hormone receptor-positive tumors, with detailed clinical information and treatment outcomes. In 692 tumors previously exposed to hormonal therapy, we identified an increased number of alterations in genes involved in the mitogen-activated protein kinase (MAPK) pathway and in the estrogen receptor transcriptional machinery. Activating ERBB2 mutations and NF1 loss-of-function mutations were more than twice as common in endocrine resistant tumors. Alterations in other MAPK pathway genes (EGFR, KRAS, among others) and estrogen receptor transcriptional regulators (MYC, CTCF, FOXA1, and TBX3) were also enriched. Altogether, these alterations were present in 22% of tumors, mutually exclusive with ESR1 mutations, and associated with a shorter duration of response to subsequent hormonal therapies.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Agents, Hormonal/pharmacology
- Antineoplastic Agents, Hormonal/therapeutic use
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms, Male/drug therapy
- Breast Neoplasms, Male/genetics
- Breast Neoplasms, Male/pathology
- Drug Resistance, Neoplasm/genetics
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Genomics
- Humans
- MAP Kinase Signaling System/genetics
- Male
- Middle Aged
- Mutation
- Neurofibromin 1/genetics
- Neurofibromin 1/metabolism
- Prospective Studies
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Young Adult
Collapse
Affiliation(s)
- Pedram Razavi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew T Chang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Guotai Xu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chaitanya Bandlamudi
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dara S Ross
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Neil Vasan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yanyan Cai
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Craig M Bielski
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mark T A Donoghue
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Philip Jonsson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alexander Penson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ronglai Shen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Fresia Pareja
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ritika Kundra
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sumit Middha
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael L Cheng
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ahmet Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cyriac Kandoth
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ruchi Patel
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kety Huberman
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lillian M Smyth
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Komal Jhaveri
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shanu Modi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tiffany A Traina
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chau Dang
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wen Zhang
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Bob T Li
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marc Ladanyi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David M Hyman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nikolaus Schultz
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mark E Robson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Clifford Hudis
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Edi Brogi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Agnes Viale
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Larry Norton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maura N Dickler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael F Berger
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christine A Iacobuzio-Donahue
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jorge S Reis-Filho
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Barry S Taylor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - José Baselga
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
689
|
Lin B, Srikanth P, Castle AC, Nigwekar S, Malhotra R, Galloway JL, Sykes DB, Rajagopal J. Modulating Cell Fate as a Therapeutic Strategy. Cell Stem Cell 2018; 23:329-341. [PMID: 29910150 PMCID: PMC6128730 DOI: 10.1016/j.stem.2018.05.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In injured tissues, regeneration is often associated with cell fate plasticity, in that cells deviate from their normal lineage paths. It is becoming increasingly clear that this plasticity often creates alternative strategies to restore damaged or lost cells. Alternatively, cell fate plasticity is also part and parcel of pathologic tissue transformations that accompany disease. In this Perspective, we summarize a few illustrative examples of physiologic and aberrant cellular plasticity. Then, we speculate on how one could enhance endogenous plasticity to promote regeneration and reverse pathologic plasticity, perhaps inspiring interest in a new class of therapies targeting cell fate modulation.
Collapse
Affiliation(s)
- Brian Lin
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Priya Srikanth
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Pathways Program, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alison C Castle
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Pathways Program, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sagar Nigwekar
- Pathways Program, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Rajeev Malhotra
- Pathways Program, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Cardiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jenna L Galloway
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Pathways Program, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Pediatric Pulmonary Medicine, Massachusetts General Hospital for Children, Boston, MA 02114, USA.
| |
Collapse
|
690
|
Zhang D, Tang DG. "Splice" a way towards neuroendocrine prostate cancer. EBioMedicine 2018; 35:12-13. [PMID: 30177243 PMCID: PMC6161471 DOI: 10.1016/j.ebiom.2018.08.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Dingxiao Zhang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Key Lab of Agricultural Animal Genetics and Breeding, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
691
|
Heterogeneous cancer-associated fibroblast population potentiates neuroendocrine differentiation and castrate resistance in a CD105-dependent manner. Oncogene 2018; 38:716-730. [PMID: 30177832 PMCID: PMC7182071 DOI: 10.1038/s41388-018-0461-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/27/2018] [Accepted: 07/24/2018] [Indexed: 11/20/2022]
Abstract
Heterogeneous prostatic carcinoma associated fibroblasts (CAF) contribute to tumor progression and resistance to androgen signaling deprivation therapy (ADT). CAF subjected to extended passaging, compared to low passage CAF, were found to lose tumor expansion potential and heterogeneity. Cell surface endoglin (CD105), known to be expressed on proliferative endothelia and mesenchymal stem cells, was diminished in high passage CAF. RNA-sequencing revealed SFRP1 to be distinctly expressed by tumor-inductive CAF, which was further demonstrated to occur in a CD105-dependent manner. Moreover, ADT resulted in further expansion of the CD105+ fibroblastic population and downstream SFRP1 in 3-dimensional cultures and patient derived xenograft tissues. In patients, CD105+ fibroblasts were found to circumscribe epithelia with neuroendocrine differentiation. CAF-derived SFRP1, driven by CD105 signaling, was necessary and sufficient to induce prostate cancer neuroendocrine differentiation in a paracrine manner. A partially humanized CD105 neutralizing antibody, TRC105, inhibited fibroblastic SFRP1 expression and epithelial neuroendocrine differentiation. In a novel synthetic lethality paradigm, we found that simultaneously targeting the epithelia and its microenvironment with ADT and TRC105, respectively, reduced castrate resistant tumor progression, in a model where either ADT or TRC105 alone had little effect.
Collapse
|
692
|
Belic J, Graf R, Bauernhofer T, Cherkas Y, Ulz P, Waldispuehl‐Geigl J, Perakis S, Gormley M, Patel J, Li W, Geigl JB, Smirnov D, Heitzer E, Gross M, Speicher MR. Genomic alterations in plasma DNA from patients with metastasized prostate cancer receiving abiraterone or enzalutamide. Int J Cancer 2018; 143:1236-1248. [PMID: 29574703 PMCID: PMC6099279 DOI: 10.1002/ijc.31397] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/06/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022]
Abstract
In patients with metastatic castrate-resistant prostate cancer (mCRPC), circulating tumor DNA (ctDNA) analysis offers novel opportunities for the development of non-invasive biomarkers informative of treatment response with novel agents targeting the androgen-receptor (AR) pathway, such as abiraterone or enzalutamide. However, the relationship between ctDNA abundance, detectable somatic genomic alterations and clinical progression of mCRPC remains unexplored. Our study aimed to investigate changes in plasma DNA during disease progression and their associations with clinical variables in mCRPC patients. We analyzed ctDNA in two cohorts including 94 plasma samples from 25 treatment courses (23 patients) and 334 plasma samples from 125 patients, respectively. We conducted whole-genome sequencing (plasma-Seq) for genome-wide profiling of somatic copy number alterations and targeted sequencing of 31 prostate cancer-associated genes. The combination of plasma-Seq with targeted AR analyses identified prostate cancer-related genomic alterations in 16 of 25 (64%) treatment courses in the first cohort, in which we demonstrated that AR amplification does not always correlate with poor abiraterone and enzalutamide therapy outcome. As we observed a wide variability of ctDNA levels, we evaluated ctDNA levels and their association with clinical parameters and included the second, larger cohort for these analyses. Employing altogether 428 longitudinal plasma samples from 148 patients, we identified the presence of bone metastases, increased lactate dehydrogenase and prostate-specific antigen (PSA) as having the strongest association with high ctDNA levels. In summary, ctDNA alterations are observable in the majority of patients with mCRPC and may eventually be useful to guide clinical decision-making in this setting.
Collapse
Affiliation(s)
- Jelena Belic
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstraße 6A‐8010GrazAustria
| | - Ricarda Graf
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstraße 6A‐8010GrazAustria
| | - Thomas Bauernhofer
- Division of OncologyMedical University of Graz, Auenbruggerplatz 15A‐8036GrazAustria
| | - Yauheniya Cherkas
- Pharmaceutical Companies of Johnson & JohnsonJanssen Oncology Therapeutic Area, Janssen Research and Development, LLCSpring HousePA19477USA
| | - Peter Ulz
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstraße 6A‐8010GrazAustria
| | - Julie Waldispuehl‐Geigl
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstraße 6A‐8010GrazAustria
| | - Samantha Perakis
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstraße 6A‐8010GrazAustria
| | - Michael Gormley
- Pharmaceutical Companies of Johnson & JohnsonJanssen Oncology Therapeutic Area, Janssen Research and Development, LLCSpring HousePA19477USA
| | - Jaymala Patel
- Pharmaceutical Companies of Johnson & JohnsonJanssen Oncology Therapeutic Area, Janssen Research and Development, LLCSpring HousePA19477USA
| | - Weimin Li
- Pharmaceutical Companies of Johnson & JohnsonJanssen Oncology Therapeutic Area, Janssen Research and Development, LLCSpring HousePA19477USA
| | - Jochen B. Geigl
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstraße 6A‐8010GrazAustria
| | - Denis Smirnov
- Pharmaceutical Companies of Johnson & JohnsonJanssen Oncology Therapeutic Area, Janssen Research and Development, LLCSpring HousePA19477USA
| | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstraße 6A‐8010GrazAustria
| | - Mitchell Gross
- Lawrence J. Ellison Institute for Transformative Medicine of USC, USC Westside Cancer Center, University of Southern California, 9033 Wilshire Blvd, Suite 300Beverly HillsCA90211USA
| | - Michael R. Speicher
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstraße 6A‐8010GrazAustria
| |
Collapse
|
693
|
Abstract
Despite the high long-term survival in localized prostate cancer, metastatic prostate cancer remains largely incurable even after intensive multimodal therapy. The lethality of advanced disease is driven by the lack of therapeutic regimens capable of generating durable responses in the setting of extreme tumor heterogeneity on the genetic and cell biological levels. Here, we review available prostate cancer model systems, the prostate cancer genome atlas, cellular and functional heterogeneity in the tumor microenvironment, tumor-intrinsic and tumor-extrinsic mechanisms underlying therapeutic resistance, and technological advances focused on disease detection and management. These advances, along with an improved understanding of the adaptive responses to conventional cancer therapies, anti-androgen therapy, and immunotherapy, are catalyzing development of more effective therapeutic strategies for advanced disease. In particular, knowledge of the heterotypic interactions between and coevolution of cancer and host cells in the tumor microenvironment has illuminated novel therapeutic combinations with a strong potential for more durable therapeutic responses and eventual cures for advanced disease. Improved disease management will also benefit from artificial intelligence-based expert decision support systems for proper standard of care, prognostic determinant biomarkers to minimize overtreatment of localized disease, and new standards of care accelerated by next-generation adaptive clinical trials.
Collapse
Affiliation(s)
- Guocan Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Di Zhao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Denise J Spring
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
694
|
Chedgy ECP, Vandekerkhove G, Herberts C, Annala M, Donoghue AJ, Sigouros M, Ritch E, Struss W, Konomura S, Liew J, Parimi S, Vergidis J, Hurtado-Coll A, Sboner A, Fazli L, Beltran H, Chi KN, Wyatt AW. Biallelic tumour suppressor loss and DNA repair defects in de novo
small-cell prostate carcinoma. J Pathol 2018; 246:244-253. [DOI: 10.1002/path.5137] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/18/2018] [Accepted: 07/05/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Edmund CP Chedgy
- Vancouver Prostate Centre, Department of Urologic Sciences; University of British Columbia; British Columbia Canada
| | - Gillian Vandekerkhove
- Vancouver Prostate Centre, Department of Urologic Sciences; University of British Columbia; British Columbia Canada
| | - Cameron Herberts
- Vancouver Prostate Centre, Department of Urologic Sciences; University of British Columbia; British Columbia Canada
| | - Matti Annala
- Vancouver Prostate Centre, Department of Urologic Sciences; University of British Columbia; British Columbia Canada
- Institute of Biosciences and Medical Technology; University of Tampere; Tampere Finland
| | - Adam J Donoghue
- Department of Medicine, Division of Hematology and Medical Oncology; Weill Cornell Medical College; New York NY USA
| | - Michael Sigouros
- Department of Medicine, Division of Hematology and Medical Oncology; Weill Cornell Medical College; New York NY USA
| | - Elie Ritch
- Vancouver Prostate Centre, Department of Urologic Sciences; University of British Columbia; British Columbia Canada
| | - Werner Struss
- Vancouver Prostate Centre, Department of Urologic Sciences; University of British Columbia; British Columbia Canada
| | - Saki Konomura
- Vancouver Prostate Centre, Department of Urologic Sciences; University of British Columbia; British Columbia Canada
| | - Janet Liew
- Vancouver Prostate Centre, Department of Urologic Sciences; University of British Columbia; British Columbia Canada
| | - Sunil Parimi
- Department of Medical Oncology; British Columbia Cancer Agency; British Columbia Canada
| | - Joanna Vergidis
- Department of Medical Oncology; British Columbia Cancer Agency; British Columbia Canada
| | - Antonio Hurtado-Coll
- Vancouver Prostate Centre, Department of Urologic Sciences; University of British Columbia; British Columbia Canada
| | - Andrea Sboner
- Department of Medicine, Division of Hematology and Medical Oncology; Weill Cornell Medical College; New York NY USA
| | - Ladan Fazli
- Vancouver Prostate Centre, Department of Urologic Sciences; University of British Columbia; British Columbia Canada
| | - Himisha Beltran
- Department of Medicine, Division of Hematology and Medical Oncology; Weill Cornell Medical College; New York NY USA
| | - Kim N Chi
- Department of Medical Oncology; British Columbia Cancer Agency; British Columbia Canada
| | - Alexander W Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences; University of British Columbia; British Columbia Canada
| |
Collapse
|
695
|
Lei K, Sun R, Chen LH, Diplas BH, Moure CJ, Wang W, Hansen LJ, Tao Y, Chen X, Chen CPJ, Greer PK, Zhao F, Yan H, Bigner DD, Huang J, He Y. Mutant allele quantification reveals a genetic basis for TP53 mutation-driven castration resistance in prostate cancer cells. Sci Rep 2018; 8:12507. [PMID: 30131529 PMCID: PMC6104024 DOI: 10.1038/s41598-018-30062-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 07/23/2018] [Indexed: 12/02/2022] Open
Abstract
The concept that human cancer is in essence a genetic disease driven by gene mutations has been well established, yet its utilization in functional studies of cancer genes has not been fully explored. Here, we describe a simple genetics-based approach that can quickly and sensitively reveal the effect of the alteration of a gene of interest on the fate of its host cells within a heterogeneous population, essentially monitoring the genetic selection that is associated with and powers the tumorigenesis. Using this approach, we discovered that loss-of-function of TP53 can promote the development of resistance of castration in prostate cancer cells via both transiently potentiating androgen-independent cell growth and facilitating the occurrence of genome instability. The study thus reveals a novel genetic basis underlying the development of castration resistance in prostate cancer cells and provides a facile genetic approach for studying a cancer gene of interest in versatile experimental conditions.
Collapse
Affiliation(s)
- Kefeng Lei
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA.,The Preston Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, 27710, USA.,General Surgery, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang, 310014, China
| | - Ran Sun
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA.,The Preston Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, 27710, USA.,Scientific Research Center, China-Japan Union Hospital, Jilin University, Jilin, 130033, China
| | - Lee H Chen
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA.,The Preston Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, 27710, USA
| | - Bill H Diplas
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA.,The Preston Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, 27710, USA
| | - Casey J Moure
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA.,The Preston Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, 27710, USA
| | - Wenzhe Wang
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA.,The Preston Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, 27710, USA.,Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, 310012, China
| | - Landon J Hansen
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA.,The Preston Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yulei Tao
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Xufeng Chen
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Chin-Pu Jason Chen
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA.,The Preston Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, 27710, USA
| | - Paula K Greer
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA.,The Preston Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, 27710, USA
| | | | - Hai Yan
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA.,The Preston Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, 27710, USA
| | - Darell D Bigner
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA.,The Preston Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, 27710, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yiping He
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA. .,The Preston Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
696
|
Sowalsky AG, Ye H, Bhasin M, Van Allen EM, Loda M, Lis RT, Montaser-Kouhsari L, Calagua C, Ma F, Russo JW, Schaefer RJ, Voznesensky OS, Zhang Z, Bubley GJ, Montgomery B, Mostaghel EA, Nelson PS, Taplin ME, Balk SP. Neoadjuvant-Intensive Androgen Deprivation Therapy Selects for Prostate Tumor Foci with Diverse Subclonal Oncogenic Alterations. Cancer Res 2018; 78:4716-4730. [PMID: 29921690 PMCID: PMC6095796 DOI: 10.1158/0008-5472.can-18-0610] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/02/2018] [Accepted: 06/05/2018] [Indexed: 01/06/2023]
Abstract
Primary prostate cancer can have extensive microheterogeneity, but its contribution to the later emergence of metastatic castration-resistant prostate cancer (mCRPC) remains unclear. In this study, we microdissected residual prostate cancer foci in radical prostatectomies from 18 men treated with neoadjuvant-intensive androgen deprivation therapy (leuprolide, abiraterone acetate, and prednisone) and analyzed them for resistance mechanisms. Transcriptome profiling showed reduced but persistent androgen receptor (AR) activity in residual tumors, with no increase in neuroendocrine differentiation. Proliferation correlated negatively with AR activity but positively with decreased RB1 expression, and whole-exome sequencing (WES) further showed enrichment for RB1 genomic loss. In 15 cases where 2 or 3 tumor foci were microdissected, WES confirmed a common clonal origin but identified multiple oncogenic alterations unique to each focus. These findings show that subclones with oncogenic alterations found in mCRPC are present in primary prostate cancer and are selected for by neoadjuvant-intense androgen deprivation therapy. In particular, this study indicates that subclonal RB1 loss may be more common than previously appreciated in intermediate- to high-risk primary prostate cancer and may be an early event, independent of neuroendocrine differentiation, in the development of mCRPC. Comprehensive molecular analyses of primary prostate cancer may detect aggressive subclones and possibly inform adjuvant strategies to prevent recurrence.Significance: Neoadjuvant androgen deprivation therapy for prostate cancer selects for tumor foci with subclonal genomic alterations, which may comprise the origin of metastatic castration-resistant prostate cancer. Cancer Res; 78(16); 4716-30. ©2018 AACR.
Collapse
Affiliation(s)
- Adam G Sowalsky
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, Maryland
| | - Huihui Ye
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Manoj Bhasin
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Eliezer M Van Allen
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Massimo Loda
- Department of Molecular Oncologic Pathology, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Oncologic Pathology, Dana Farber Cancer Institute, Boston, Masschusetts
| | - Rosina T Lis
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Carla Calagua
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Fen Ma
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Joshua W Russo
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Rachel J Schaefer
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Olga S Voznesensky
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Zhenwei Zhang
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Glenn J Bubley
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Bruce Montgomery
- Medical Oncology Division, University of Washington, Seattle, Washington
| | - Elahe A Mostaghel
- Medical Oncology Division, University of Washington, Seattle, Washington
| | - Peter S Nelson
- Medical Oncology Division, University of Washington, Seattle, Washington
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Mary-Ellen Taplin
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Steven P Balk
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts.
| |
Collapse
|
697
|
Karnes RJ, Sharma V, Choeurng V, Ashab HAD, Erho N, Alshalalfa M, Trock B, Ross A, Yousefi K, Tsai H, Zhao SG, Tosoian JJ, Haddad Z, Takhar M, Chang SL, Spratt DE, Abdollah F, Jenkins RB, Klein EA, Nguyen PL, Dicker AP, Den RB, Davicioni E, Feng FY, Lotan TL, Schaeffer EM. Development and Validation of a Prostate Cancer Genomic Signature that Predicts Early ADT Treatment Response Following Radical Prostatectomy. Clin Cancer Res 2018; 24:3908-3916. [PMID: 29760221 PMCID: PMC6512950 DOI: 10.1158/1078-0432.ccr-17-2745] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/29/2018] [Accepted: 05/08/2018] [Indexed: 12/19/2022]
Abstract
Purpose: Currently, no genomic signature exists to distinguish men most likely to progress on adjuvant androgen deprivation therapy (ADT) after radical prostatectomy for high-risk prostate cancer. Here we develop and validate a gene expression signature to predict response to postoperative ADT.Experimental Design: A training set consisting of 284 radical prostatectomy patients was established after 1:1 propensity score matching metastasis between adjuvant-ADT (a-ADT)-treated and no ADT-treated groups. An ADT Response Signature (ADT-RS) was identified from neuroendocrine and AR signaling-related genes. Two independent cohorts were used to form three separate data sets for validation (set I, n = 232; set II, n = 435; set III, n = 612). The primary endpoint of the analysis was postoperative metastasis.Results: Increases in ADT-RS score were associated with a reduction in risk of metastasis only in a-ADT patients. On multivariable analysis, ADT-RS by ADT treatment interaction term remained associated with metastasis in both validation sets (set I: HR = 0.18, Pinteraction = 0.009; set II: HR = 0.25, Pinteraction = 0.019). In a matched validation set III, patients with Low ADT-RS scores had similar 10-year metastasis rates in the a-ADT and no-ADT groups (30.1% vs. 31.0%, P = 0.989). Among High ADT-RS patients, 10-year metastasis rates were significantly lower for a-ADT versus no-ADT patients (9.4% vs. 29.2%, P = 0.021). The marginal ADT-RS by ADT interaction remained significant in the matched dataset (Pinteraction = 0.035).Conclusions: Patients with High ADT-RS benefited from a-ADT. In combination with prognostic risk factors, use of ADT-RS may thus allow for identification of ADT-responsive tumors that may benefit most from early androgen blockade after radical prostatectomy. We discovered a gene signature that when present in primary prostate tumors may be useful to predict patients who may respond to early ADT after surgery. Clin Cancer Res; 24(16); 3908-16. ©2018 AACR.
Collapse
Affiliation(s)
| | - Vidit Sharma
- Department of Urology, Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | - Bruce Trock
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ashley Ross
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Harrison Tsai
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Shuang G Zhao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Jeffrey J Tosoian
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zaid Haddad
- GenomeDx Biosciences Inc., Vancouver, Canada
| | | | - S Laura Chang
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
| | - Daniel E Spratt
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Firas Abdollah
- Vattikuti Urology Institute, Henry Ford Hospital, Detroit, Michigan
| | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Paul L Nguyen
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Adam P Dicker
- Department of Radiation Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Robert B Den
- Department of Radiation Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Felix Y Feng
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
| | - Tamara L Lotan
- Department of Pathology, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Edward M Schaeffer
- Department of Urology, Feinberg School of Medicine, Northwestern University, Evanston, Illinois
| |
Collapse
|
698
|
Lee AR, Gan Y, Tang Y, Dong X. A novel mechanism of SRRM4 in promoting neuroendocrine prostate cancer development via a pluripotency gene network. EBioMedicine 2018; 35:167-177. [PMID: 30100395 PMCID: PMC6154886 DOI: 10.1016/j.ebiom.2018.08.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 12/26/2022] Open
Abstract
Background Prostate adenocarcinoma (AdPC) cells can undergo lineage switching to neuroendocrine cells and develop into therapy-resistant neuroendocrine prostate cancer (NEPC). While genomic/epigenetic alterations are shown to induce neuroendocrine differentiation via an intermediate stem-like state, RNA splicing factor SRRM4 can transform AdPC cells into NEPC xenografts through a direct neuroendocrine transdifferentiation mechanism. Whether SRRM4 can also regulate a stem-cell gene network for NEPC development remains unclear. Methods Multiple AdPC cell models were transduced by lentiviral vectors encoding SRRM4. SRRM4-mediated RNA splicing and neuroendocrine differentiation of cells and xenografts were determined by qPCR, immunoblotting, and immunohistochemistry. Cell morphology, proliferation, and colony formation rates were also studied. SRRM4 transcriptome in the DU145 cell model was profiled by AmpliSeq and analyzed by gene enrichment studies. Findings SRRM4 induces an overall NEPC-specific RNA splicing program in multiple cell models but creates heterogeneous transcriptomes. SRRM4-transduced DU145 cells present the most dramatic neuronal morphological changes, accelerated cell proliferation, and enhanced resistance to apoptosis. The derived xenografts show classic phenotypes similar to clinical NEPC. Whole transcriptome analyses further reveal that SRRM4 induces a pluripotency gene network consisting of the stem-cell differentiation gene, SOX2. While SRRM4 overexpression enhances SOX2 expression in both time- and dose-dependent manners in DU145 cells, RNA depletion of SOX2 compromises SRRM4-mediated stimulation of pluripotency genes. More importantly, this SRRM4-SOX2 axis is present in a subset of NEPC patient cohorts, patient-derived xenografts, and clinically relevant transgenic mouse models. Interpretation We report a novel mechanism by which SRRM4 drives NEPC progression via a pluripotency gene network. Fund Canadian Institutes of Health Research, National Nature Science Foundation of China, and China Scholar Council.
Collapse
Affiliation(s)
- Ahn R Lee
- Vancouver Prostate Centre, Department of Urologic Sciences, The University of British Columbia, 2660 Oak Street, Vancouver, BC, Canada.
| | - Yu Gan
- Vancouver Prostate Centre, Department of Urologic Sciences, The University of British Columbia, 2660 Oak Street, Vancouver, BC, Canada; Xiangya Hospital, Department of Urology, Central South University, Changsha, Hunan, China; Third Xiangya Hospital, Department of Urology, Central South University, Changsha, Hunan, China.
| | - Yuxin Tang
- Third Xiangya Hospital, Department of Urology, Central South University, Changsha, Hunan, China.
| | - Xuesen Dong
- Vancouver Prostate Centre, Department of Urologic Sciences, The University of British Columbia, 2660 Oak Street, Vancouver, BC, Canada.
| |
Collapse
|
699
|
Frank S, Nelson P, Vasioukhin V. Recent advances in prostate cancer research: large-scale genomic analyses reveal novel driver mutations and DNA repair defects. F1000Res 2018; 7. [PMID: 30135717 PMCID: PMC6073096 DOI: 10.12688/f1000research.14499.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is a disease of mutated and misregulated genes. However, primary prostate tumors have relatively few mutations, and only three genes (
ERG,
PTEN, and
SPOP) are recurrently mutated in more than 10% of primary tumors. On the other hand, metastatic castration-resistant tumors have more mutations, but, with the exception of the androgen receptor gene (
AR), no single gene is altered in more than half of tumors. Structural genomic rearrangements are common, including
ERG fusions, copy gains involving the
MYC locus, and copy losses containing
PTEN. Overall, instead of being associated with a single dominant driver event, prostate tumors display various combinations of modifications in oncogenes and tumor suppressors. This review takes a broad look at the recent advances in PCa research, including understanding the genetic alterations that drive the disease and how specific mutations can sensitize tumors to potential therapies. We begin with an overview of the genomic landscape of primary and metastatic PCa, enabled by recent large-scale sequencing efforts. Advances in three-dimensional cell culture techniques and mouse models for PCa are also discussed, and particular emphasis is placed on the benefits of patient-derived xenograft models. We also review research into understanding how ETS fusions (in particular,
TMPRSS2-ERG) and
SPOP mutations contribute to tumor initiation. Next, we examine the recent findings on the prevalence of germline DNA repair mutations in about 12% of patients with metastatic disease and their potential benefit from the use of poly(ADP-ribose) polymerase (PARP) inhibitors and immune modulation. Lastly, we discuss the recent increased prevalence of AR-negative tumors (neuroendocrine and double-negative) and the current state of immunotherapy in PCa. AR remains the primary clinical target for PCa therapies; however, it does not act alone, and better understanding of supporting mutations may help guide the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sander Frank
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Peter Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Departments of Medicine and Urology, University of Washington, Seattle, WA 98195, USA.,Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Valeri Vasioukhin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
700
|
Zhang Y, Weinberg RA. Epithelial-to-mesenchymal transition in cancer: complexity and opportunities. Front Med 2018; 12:361-373. [PMID: 30043221 PMCID: PMC6186394 DOI: 10.1007/s11684-018-0656-6] [Citation(s) in RCA: 470] [Impact Index Per Article: 67.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023]
Abstract
The cell-biological program termed the epithelial-to-mesenchymal transition (EMT) plays an important role in both development and cancer progression. Depending on the contextual signals and intracellular gene circuits of a particular cell, this program can drive fully epithelial cells to enter into a series of phenotypic states arrayed along the epithelial-mesenchymal phenotypic axis. These cell states display distinctive cellular characteristics, including stemness, invasiveness, drug-resistance and the ability to form metastases at distant organs, and thereby contribute to cancer metastasis and relapse. Currently we still lack a coherent overview of the molecular and biochemical mechanisms inducing cells to enter various states along the epithelial-mesenchymal phenotypic spectrum. An improved understanding of the dynamic and plastic nature of the EMT program has the potential to yield novel therapies targeting this cellular program that may aid in the management of high-grade malignancies.
Collapse
Affiliation(s)
- Yun Zhang
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA. .,MIT Department of Biology, Cambridge, MA, 02142, USA. .,Ludwig/MIT Center for Molecular Oncology, Cambridge, MA, 02142, USA.
| |
Collapse
|