651
|
Gorchs L, Kaipe H. Interactions between Cancer-Associated Fibroblasts and T Cells in the Pancreatic Tumor Microenvironment and the Role of Chemokines. Cancers (Basel) 2021; 13:2995. [PMID: 34203869 PMCID: PMC8232575 DOI: 10.3390/cancers13122995] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 01/18/2023] Open
Abstract
Less than 10% of patients diagnosed with pancreatic ductal adenocarcinoma (PDAC) survive 5 years or more, making it one of the most fatal cancers. Accumulation of T cells in pancreatic tumors is associated with better prognosis, but immunotherapies to enhance the anti-tumor activity of infiltrating T cells are failing in this devastating disease. Pancreatic tumors are characterized by a desmoplastic stroma, which mainly consists of activated cancer-associated fibroblasts (CAFs). Pancreatic CAFs have emerged as important regulators of the tumor microenvironment by contributing to immune evasion through the release of chemokines, cytokines, and growth factors, which alters T-cell migration, differentiation and cytotoxic activity. However, recent discoveries have also revealed that subsets of CAFs with diverse functions can either restrain or promote tumor progression. Here, we discuss our current knowledge about the interactions between CAFs and T cells in PDAC and summarize different therapy strategies targeting the CAF-T cell axis with focus on CAF-derived soluble immunosuppressive factors and chemokines. Identifying the functions of different CAF subsets and understanding their roles in T-cell trafficking within the tumor may be fundamental for the development of an effective combinational treatment for PDAC.
Collapse
Affiliation(s)
- Laia Gorchs
- Department of Laboratory Medicine, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Helen Kaipe
- Department of Laboratory Medicine, Karolinska Institutet, 14152 Stockholm, Sweden
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, 14152 Stockholm, Sweden
| |
Collapse
|
652
|
Camargo S, Gofrit ON, Assis A, Mitrani E. Paracrine Signaling from a Three-Dimensional Model of Bladder Carcinoma and from Normal Bladder Switch the Phenotype of Stromal Fibroblasts. Cancers (Basel) 2021; 13:2972. [PMID: 34198488 PMCID: PMC8231763 DOI: 10.3390/cancers13122972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
We present a three-dimensional model based on acellular scaffolds to recreate bladder carcinoma in vitro that closely describes the in vivo behavior of carcinoma cells. The integrity of the basement membrane and protein composition of the bladder scaffolds were examined by Laminin immunostaining and LC-MS/MS. Human primary bladder carcinoma cells were then grown on standard monolayer cultures and also seeded on the bladder scaffolds. Apparently, carcinoma cells adhered to the scaffold basement membrane and created a contiguous one-layer epithelium (engineered micro-carcinomas (EMCs)). Surprisingly, the gene expression pattern displayed by EMCs was similar to the profile expressed by the carcinoma cells cultured on plastic. However, the pattern of secreted growth factors was significantly different, as VEGF, FGF, and PIGF were secreted at higher levels by EMCs. We found that only the combination of factors secreted by EMCs, but not the carcinoma cells grown on plastic dishes, was able to induce either the pro-inflammatory phenotype or the myofibroblast phenotype depending on the concentration of the secreted factors. We found that the pro-inflammatory phenotype could be reversed. We propose a unique platform that allows one to decipher the paracrine signaling of bladder carcinoma and how this molecular signaling can switch the phenotypes of fibroblasts.
Collapse
Affiliation(s)
- Sandra Camargo
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel; (S.C.); (A.A.)
| | - Ofer N. Gofrit
- Department of Urology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| | - Assaf Assis
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel; (S.C.); (A.A.)
| | - Eduardo Mitrani
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel; (S.C.); (A.A.)
| |
Collapse
|
653
|
COL11A1 activates cancer-associated fibroblasts by modulating TGF-β3 through the NF-κB/IGFBP2 axis in ovarian cancer cells. Oncogene 2021; 40:4503-4519. [PMID: 34117361 DOI: 10.1038/s41388-021-01865-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/11/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023]
Abstract
Ovarian cancer has a unique tumor microenvironment (TME) that enables cancer-associated fibroblasts (CAFs) to interact with cellular and matrix constituents and influence tumor development and migration into the peritoneal cavity. Collagen type XI alpha 1 (COL11A1) is overexpressed in CAFs; therefore this study examines its role during CAF activation in epithelial ovarian cancer (EOC). Coculturing human ovarian fibroblasts (HOFs) with high COL11A1-expressing EOC cells or exposure to the conditioned medium of these cells prompted the expression of COL11A1 and CAF phenotypes. Conversely, coculturing HOFs with low COL11A1-expressing EOC cells or COL11A1-knockdown abrogated COL11A1 overexpression and secretion, in addition to CAF activation. Increased p-SP1 expression attributed to COL11A1-mediated extracellular signal-regulated kinase activation (ERK) induced p65 translocation into the nucleus and augmented its binding to the insulin-like growth factor binding protein 2 (IGFBP2) promoter, ultimately inducing TGF-β3 activation. The CAF-cancer cell crosstalk triggered interleukin-6 release, which in turn promoted EOC cell proliferation and invasiveness. These in vitro results were confirmed by in vivo findings in a mouse model, showing that COL11A1 overexpression in EOC cells promoted tumor formation and CAF activation, which was inhibited by TGF-β3 antibody. Human tumors with high TGF-β3 levels showed elevated expression of COL11A1 and IGFBP2, which was associated with poor survival. Our findings suggest the possibility that anti-TGF-β3 treatment strategy may be effective in targeting CAFs in COL11A1-positive ovarian tumors.
Collapse
|
654
|
Fibroblasts Influence the Efficacy, Resistance, and Future Use of Vaccines and Immunotherapy in Cancer Treatment. Vaccines (Basel) 2021; 9:vaccines9060634. [PMID: 34200702 PMCID: PMC8230410 DOI: 10.3390/vaccines9060634] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 12/18/2022] Open
Abstract
Tumors are composed of not only epithelial cells but also many other cell types that contribute to the tumor microenvironment (TME). Within this space, cancer-associated fibroblasts (CAFs) are a prominent cell type, and these cells are connected to an increase in tumor progression as well as alteration of the immune landscape present in and around the tumor. This is accomplished in part by their ability to alter the presence of both innate and adaptive immune cells as well as the release of various chemokines and cytokines, together leading to a more immunosuppressive TME. Furthermore, new research implicates CAFs as players in immunotherapy response in many different tumor types, typically by blunting their efficacy. Fibroblast activation protein (FAP) and transforming growth factor β (TGF-β), two major CAF proteins, are associated with the outcome of different immunotherapies and, additionally, have become new targets themselves for immune-based strategies directed at CAFs. This review will focus on CAFs and how they alter the immune landscape within tumors, how this affects response to current immunotherapy treatments, and how immune-based treatments are currently being harnessed to target the CAF population itself.
Collapse
|
655
|
Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q, Deng S, Zhou H. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther 2021; 6:218. [PMID: 34108441 PMCID: PMC8190181 DOI: 10.1038/s41392-021-00641-0] [Citation(s) in RCA: 363] [Impact Index Per Article: 90.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023] Open
Abstract
To flourish, cancers greatly depend on their surrounding tumor microenvironment (TME), and cancer-associated fibroblasts (CAFs) in TME are critical for cancer occurrence and progression because of their versatile roles in extracellular matrix remodeling, maintenance of stemness, blood vessel formation, modulation of tumor metabolism, immune response, and promotion of cancer cell proliferation, migration, invasion, and therapeutic resistance. CAFs are highly heterogeneous stromal cells and their crosstalk with cancer cells is mediated by a complex and intricate signaling network consisting of transforming growth factor-beta, phosphoinositide 3-kinase/AKT/mammalian target of rapamycin, mitogen-activated protein kinase, Wnt, Janus kinase/signal transducers and activators of transcription, epidermal growth factor receptor, Hippo, and nuclear factor kappa-light-chain-enhancer of activated B cells, etc., signaling pathways. These signals in CAFs exhibit their own special characteristics during the cancer progression and have the potential to be targeted for anticancer therapy. Therefore, a comprehensive understanding of these signaling cascades in interactions between cancer cells and CAFs is necessary to fully realize the pivotal roles of CAFs in cancers. Herein, in this review, we will summarize the enormous amounts of findings on the signals mediating crosstalk of CAFs with cancer cells and its related targets or trials. Further, we hypothesize three potential targeting strategies, including, namely, epithelial-mesenchymal common targets, sequential target perturbation, and crosstalk-directed signaling targets, paving the way for CAF-directed or host cell-directed antitumor therapy.
Collapse
Affiliation(s)
- Fanglong Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jin Yang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Junjiang Liu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ye Wang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jingtian Mu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qingxiang Zeng
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shuzhi Deng
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
656
|
Tahkola K, Ahtiainen M, Mecklin JP, Kellokumpu I, Laukkarinen J, Tammi M, Tammi R, Väyrynen JP, Böhm J. Stromal hyaluronan accumulation is associated with low immune response and poor prognosis in pancreatic cancer. Sci Rep 2021; 11:12216. [PMID: 34108626 PMCID: PMC8190291 DOI: 10.1038/s41598-021-91796-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
Hyaluronan (HA) accumulation has been associated with poor survival in various cancers, but the mechanisms for this phenomenon are still unclear. The aim of this study was to investigate the prognostic significance of stromal HA accumulation and its association with host immune response in pancreatic ductal adenocarcinoma (PDAC). The study material consisted of 101 radically treated patients for PDAC from a single geographical area. HA staining was evaluated using a HA-specific probe, and the patterns of CD3, CD8, CD73 and PD-L1 expression were evaluated using immunohistochemistry. HA staining intensity of tumour stromal areas was assessed digitally using QuPath. CD3- and CD8-based immune cell score (ICS) was determined. High-level stromal HA expression was significantly associated with poor disease-specific survival (p = 0.037) and overall survival (p = 0.013) In multivariate analysis, high-level stromal HA expression was an independent negative prognostic factor together with histopathological grade, TNM stage, CD73 positivity in tumour cells and low ICS. Moreover, high-level stromal HA expression was associated with low ICS (p = 0.017). In conclusion, stromal HA accumulation is associated with poor survival and low immune response in PDAC.
Collapse
Affiliation(s)
- Kyösti Tahkola
- grid.460356.20000 0004 0449 0385Department of Surgery, Central Finland Health Care District, Jyväskylä, Finland ,grid.502801.e0000 0001 2314 6254Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Maarit Ahtiainen
- grid.460356.20000 0004 0449 0385Department of Pathology, Central Finland Health Care District, Jyväskylä, Finland
| | - Jukka-Pekka Mecklin
- grid.460356.20000 0004 0449 0385Department of Education and Research, Central Finland Health Care District, Jyväskylä, Finland ,grid.9681.60000 0001 1013 7965Sport&Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Ilmo Kellokumpu
- grid.460356.20000 0004 0449 0385Department of Surgery, Central Finland Health Care District, Jyväskylä, Finland
| | - Johanna Laukkarinen
- grid.502801.e0000 0001 2314 6254Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland ,grid.412330.70000 0004 0628 2985Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
| | - Markku Tammi
- grid.9668.10000 0001 0726 2490Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Raija Tammi
- grid.9668.10000 0001 0726 2490Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Juha P. Väyrynen
- grid.460356.20000 0004 0449 0385Department of Pathology, Central Finland Health Care District, Jyväskylä, Finland ,grid.10858.340000 0001 0941 4873Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Jan Böhm
- grid.460356.20000 0004 0449 0385Department of Pathology, Central Finland Health Care District, Jyväskylä, Finland
| |
Collapse
|
657
|
Desbois M, Wang Y. Cancer-associated fibroblasts: Key players in shaping the tumor immune microenvironment. Immunol Rev 2021; 302:241-258. [PMID: 34075584 DOI: 10.1111/imr.12982] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/14/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022]
Abstract
Cancer immunotherapies have rapidly changed the therapeutic landscape for cancer. Nevertheless, most of the patients show innate or acquired resistance to these therapies. Studies conducted in recent years have highlighted an emerging role of cancer-associated fibroblasts (CAFs) in immune regulation that shapes the tumor immune microenvironment (TIME) and influences response to cancer immunotherapies. In this review, we outline recent advances in the understanding of phenotypic and functional heterogeneity of CAFs. We will focus on emerging roles of CAFs in shaping the TIME, especially under a framework of tumor immunity continuum, and discuss current and future CAF-targeting therapeutic strategies in particular in the context of optimizing the success of immunotherapies.
Collapse
Affiliation(s)
- Mélanie Desbois
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, CA, USA
| | - Yulei Wang
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, CA, USA
| |
Collapse
|
658
|
Traub B, Link KH, Kornmann M. Curing pancreatic cancer. Semin Cancer Biol 2021; 76:232-246. [PMID: 34062264 DOI: 10.1016/j.semcancer.2021.05.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022]
Abstract
The distinct biology of pancreatic cancer with aggressive and early invasive tumor cells, a tumor promoting microenvironment, late diagnosis, and high therapy resistance poses major challenges on clinicians, researchers, and patients. In current clinical practice, a curative approach for pancreatic cancer can only be offered to a minority of patients and even for those patients, the long-term outcome is grim. This bitter combination will eventually let pancreatic cancer rise to the second leading cause of cancer-related mortalities. With surgery being the only curative option, complete tumor resection still remains the center of pancreatic cancer treatment. In recent years, new developments in neoadjuvant and adjuvant treatment have emerged. Together with improved perioperative care including complication management, an increasing number of patients have become eligible for tumor resection. Basic research aims to further increase these numbers by new methods of early detection, better tumor modelling and personalized treatment options. This review aims to summarize the current knowledge on clinical and biologic features, surgical and non-surgical treatment options, and the improved collaboration of clinicians and basic researchers in pancreatic cancer that will hopefully result in more successful ways of curing pancreatic cancer.
Collapse
Affiliation(s)
- Benno Traub
- Clinic for General and Visceral Surgery, University of Ulm, Albert-Einstein Allee 23, Ulm, Germany.
| | - Karl-Heinz Link
- Clinic for General and Visceral Surgery, University of Ulm, Ulm, Germany; Surgical and Asklepios Tumor Center (ATC), Asklepios Paulinen Klinik Wiesbaden, Richard Strauss-Str. 4, Wiesbaden, Germany.
| | - Marko Kornmann
- Clinic for General and Visceral Surgery, University of Ulm, Albert-Einstein Allee 23, Ulm, Germany.
| |
Collapse
|
659
|
Cai W, Sun X, Jin F, Xiao D, Li H, Sun H, Wang Y, Lu Y, Liu J, Huang C, Wang X, Gao S, Wang H, Gao C, Zhao T, Hao J. PERK-eIF2α-ERK1/2 axis drives mesenchymal-endothelial transition of cancer-associated fibroblasts in pancreatic cancer. Cancer Lett 2021; 515:86-95. [PMID: 34052329 DOI: 10.1016/j.canlet.2021.05.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by remarkable desmoplasia, usually driven by cancer-associated fibroblasts (CAFs), influencing patient prognosis. CAFs are a group of plastic cells responsible for tumor growth and metastasis. Fibroblasts have been reported to directly contribute to angiogenesis by undergoing mesenchymal-endothelial transition (MEndoT) after ischemic injury in the heart, brain, and hindlimbs. However, whether CAFs can undergo similar transdifferentiation in the hostile tumor microenvironment and directly contribute to tumor angiogenesis remains unclear. Herein, we provide evidence that CAFs can adopt an endothelial cell-like phenotype and directly contribute to tumor angiogenesis in vitro and in vivo. Furthermore, this program is regulated by the PERK-eIF2α-ERK1/2 axis. Pharmacological inhibition of PERK with GSK2606414 limited the phenotypic transition of CAFs. In conclusion, our results suggest that CAFs contribute to tumor angiogenesis by undergoing the MEndoT, thus representing therapeutic targets for improving PDAC prognosis.
Collapse
Affiliation(s)
- Wenrun Cai
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Xugang Sun
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Fanjie Jin
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Di Xiao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Hui Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Huizhi Sun
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Yifei Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Yang Lu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Jing Liu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Chongbiao Huang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Xiuchao Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Song Gao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Hongwei Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Chuntao Gao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Tiansuo Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China.
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China.
| |
Collapse
|
660
|
Wu SZ, Swarbrick A. Single-cell advances in stromal-leukocyte interactions in cancer. Immunol Rev 2021; 302:286-298. [PMID: 34033129 DOI: 10.1111/imr.12976] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022]
Abstract
Mesenchymal stromal cells in solid tumors have emerged as important mediators of immune function and response to immunotherapies. As such, comprehensive insights into their biology may reveal new predictors of drug response and new drug targets. While our understanding of mesenchymal biology in cancer is nascent, it is rapidly evolving, driven by advances in single-cell technologies. These studies reveal distinct subclasses of cancer-associated fibroblasts (CAFs) with unique properties for immune regulation and control of leukocyte activity. While these studies have revealed several similarities across distinct types of cancer, they still face key challenges in nomenclature. Single-cell analysis of tumors has also revealed an abundance of perivascular cells with unique biology and associations with immune infiltration. They are often misclassified, likely confounding previous bulk studies, revealing a distinct lineage of cells that remain to be fully characterized. These studies have also shed light on the discrete cell types or transient cell states that shape mesenchymal heterogeneity in tumors, offering insights into new therapeutic strategies to modulate stromal cell differentiation. In this review, we will address how recent advances in single-cell technologies have shaped our understanding of stromal heterogeneity and their coordination of immune responses in cancer.
Collapse
Affiliation(s)
- Sunny Z Wu
- The Kinghorn Cancer Centre and Cancer Research Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Alexander Swarbrick
- The Kinghorn Cancer Centre and Cancer Research Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
661
|
Wang Y, Liang Y, Xu H, Zhang X, Mao T, Cui J, Yao J, Wang Y, Jiao F, Xiao X, Hu J, Xia Q, Zhang X, Wang X, Sun Y, Fu D, Shen L, Xu X, Xue J, Wang L. Single-cell analysis of pancreatic ductal adenocarcinoma identifies a novel fibroblast subtype associated with poor prognosis but better immunotherapy response. Cell Discov 2021; 7:36. [PMID: 34035226 PMCID: PMC8149399 DOI: 10.1038/s41421-021-00271-4] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
The current pathological and molecular classification of pancreatic ductal adenocarcinoma (PDAC) provides limited guidance for treatment options, especially for immunotherapy. Cancer-associated fibroblasts (CAFs) are major players of desmoplastic stroma in PDAC, modulating tumor progression and therapeutic response. Using single-cell RNA sequencing, we explored the intertumoral heterogeneity among PDAC patients with different degrees of desmoplasia. We found substantial intertumoral heterogeneity in CAFs, ductal cancer cells, and immune cells between the extremely dense and loose types of PDACs (dense-type, high desmoplasia; loose-type, low desmoplasia). Notably, no difference in CAF abundance was detected, but a novel subtype of CAFs with a highly activated metabolic state (meCAFs) was found in loose-type PDAC compared to dense-type PDAC. MeCAFs had highly active glycolysis, whereas the corresponding cancer cells used oxidative phosphorylation as a major metabolic mode rather than glycolysis. We found that the proportion and activity of immune cells were much higher in loose-type PDAC than in dense-type PDAC. Then, the clinical significance of the CAF subtypes was further validated in our PDAC cohort and a public database. PDAC patients with abundant meCAFs had a higher risk of metastasis and a poor prognosis but showed a dramatically better response to immunotherapy (64.71% objective response rate, one complete response). We characterized the intertumoral heterogeneity of cellular components, immune activity, and metabolic status between dense- and loose-type PDACs and identified meCAFs as a novel CAF subtype critical for PDAC progression and the susceptibility to immunotherapy.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai, China
| | - Yiyi Liang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai, China
| | - Haiyan Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai, China
| | - Xiao Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai, China
| | - Tiebo Mao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai, China
| | - Jiujie Cui
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai, China
| | - Jiayu Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai, China
| | - Yongchao Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai, China
| | - Feng Jiao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai, China
| | - Xiuying Xiao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai, China
| | - Jiong Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai, China
| | - Qing Xia
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai, China
| | - Xiaofei Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai, China
| | - Xujun Wang
- Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China
| | - Yongwei Sun
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Deliang Fu
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Shen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojiang Xu
- Zhanjiang Central Hospital, Guangdong Medical University, 2 Cunjin Rd, Chikan District, Zhanjiang, Guangdong Province, China.
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China.
| | - Liwei Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai, China.
| |
Collapse
|
662
|
Wood LD, Ewald AJ. Organoids in cancer research: a review for pathologist-scientists. J Pathol 2021; 254:395-404. [PMID: 33886125 DOI: 10.1002/path.5684] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022]
Abstract
The use of three-dimensional (3D) culture models for cancer research has expanded greatly in recent years, with studies in almost every tumor type addressing a wide variety of research questions. Multiple distinct 3D culture approaches are now available, each with its own advantages and disadvantages, as well as most effective applications. In this review, we focus on one of these 3D culture models, organoids, in which multicellular units are isolated from primary or metastatic tumors and cultured in extracellular matrix gels. Organoids can be studied in acute cultures for short times after isolation, or passaged and biobanked for long-term use. We define this model system and describe some key studies in which organoid culture models were used to investigate cellular strategies and molecular mechanisms driving cancer initiation and progression, highlighting research questions for which this model is particularly well suited. In addition, as interest in implementing organoid systems continues to expand, we discuss key considerations in developing a new organoid research program. Our goal is to demonstrate the power and utility of organoid models and provide guidance for investigators who are considering implementation of these models in their own research programs. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Laura D Wood
- Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew J Ewald
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.,Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
663
|
The Blockade of Tumoral IL1β-Mediated Signaling in Normal Colonic Fibroblasts Sensitizes Tumor Cells to Chemotherapy and Prevents Inflammatory CAF Activation. Int J Mol Sci 2021; 22:ijms22094960. [PMID: 34066976 PMCID: PMC8125420 DOI: 10.3390/ijms22094960] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Heterotypic interactions between newly transformed cells and normal surrounding cells define tumor’s fate in incipient carcinomas. Once homeostasis has been lost, normal resident fibroblasts become carcinoma-associated fibroblasts, conferring protumorogenic properties on these normal cells. Here we describe the IL1β-mediated interplay between cancer cells and normal colonic myofibroblasts (NCFs), which bestows differential sensitivity to cytotoxic drugs on tumor cells. We used NCFs, their conditioned media (CM), and cocultures with tumor cells to characterize the IL1β-mediated crosstalk between both cell types. We silenced IL1β in tumor cells to demonstrate that such cells do not exert an influence on NCFs inflammatory phenotype. Our results shows that IL1β is overexpressed in cocultured tumor cells. IL1β enables paracrine signaling in myofibroblasts, converting them into inflammatory-CAFs (iCAF). IL1β-stimulated-NCF-CM induces migration and differential sensitivity to oxaliplatin in colorectal tumor cells. Such chemoprotective effect has not been evidenced for TGFβ1-driven NCFs. IL1β induces the loss of a myofibroblastic phenotype in NCFs and acquisition of iCAF traits. In conclusion, IL1β-secreted by cancer cells modify surrounding normal fibroblasts to confer protumorogenic features on them, particularly tolerance to cytotoxic drugs. The use of IL1β-blocking agents might help to avoid the iCAF traits acquisition and consequently to counteract the protumorogenic actions these cells.
Collapse
|
664
|
Bone marrow-derived macrophages converted into cancer-associated fibroblast-like cells promote pancreatic cancer progression. Cancer Lett 2021; 512:15-27. [PMID: 33961925 DOI: 10.1016/j.canlet.2021.04.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/07/2021] [Accepted: 04/17/2021] [Indexed: 12/25/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a desmoplastic reaction caused by cancer-associated fibroblasts (CAFs), which provokes treatment resistance. CAFs are newly proposed to be heterogeneous populations with different functions within the PDAC microenvironment. The most direct sources of CAFs are resident tissue fibroblasts and mesenchymal stem cells, however, the origins and functions of CAF subtypes remain unclear. Here, we established allogeneic bone marrow (BM) transplantation models using spontaneous PDAC mice, and then investigated what subtype cells derived from BM modulate the tumor microenvironment and affect the behavior of pancreatic cancer cells (PCCs). BM-derived multilineage hematopoietic cells were engrafted in recipient pancreas, and accumulated at the invasive front and central lesion of PDAC. We identified BM macrophages-derived CAFs in tumors. BM-derived macrophages treated with PCC-conditioned media expressed CAF markers. BM-derived macrophages led the local invasion of PCCs in vitro and enhanced the tumor invasive growth in vivo. Our data suggest that BM-derived cells are recruited to the pancreas during carcinogenesis and that the specific subpopulation of BM-derived macrophages partially converted into CAF-like cells, acted as leading cells, and facilitated pancreatic cancer progression. The control of the conversion of BM-derived macrophages into CAF-like cells may be a novel therapeutic strategy to suppress tumor growth.
Collapse
|
665
|
Zhang Y, Bian Y, Wang Y, Wang Y, Duan X, Han Y, Zhang L, Wang F, Gu Z, Qin Z. HIF-1α is necessary for activation and tumour-promotion effect of cancer-associated fibroblasts in lung cancer. J Cell Mol Med 2021; 25:5457-5469. [PMID: 33943003 PMCID: PMC8184678 DOI: 10.1111/jcmm.16556] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/22/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer‐associated fibroblasts (CAFs) activation is crucial for the establishment of a tumour promoting microenvironment, but our understanding of CAFs activation is still limited. In this study, we found that hypoxia‐inducible factor‐1α (HIF‐1α) was highly expressed in CAFs of human lung cancer tissues and mouse spontaneous lung tumour. Accordingly, enhancing the expression of HIF‐1α in fibroblasts via hypoxia induced the conversion of normal fibroblasts into CAFs. HIF‐1α‐specific inhibitor or HIF‐1α knockout (KO) significantly attenuated CAFs activation, which was manifested by the decreased expression of COL1A2 and α‐SMA. In vivo, during tumour formation, the expression of Ki‐67 and proliferating cell nuclear antigen (PCNA) in the tumour tissue with HIF‐1α KO fibroblasts was significantly lower than that of normal fibroblasts. Moreover, HIF‐1α in fibroblasts could activate the NF‐κB signalling pathway and enhance a subsequent secretion of CCL5, thus promoting the tumour growth. In conclusion, our results suggest that HIF‐1α is essential for the activation and tumour‐promotion function of CAFs in lung cancer (LC). And targeting HIF‐1α expression on CAFs may be a promising strategy for LC therapy.
Collapse
Affiliation(s)
- Yana Zhang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Tumor Immune Microenvironment, Zhengzhou, China
| | - Yangyang Bian
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Tumor Immune Microenvironment, Zhengzhou, China
| | - Yuan Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Tumor Immune Microenvironment, Zhengzhou, China
| | - Yuanyuan Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Tumor Immune Microenvironment, Zhengzhou, China
| | - Xixi Duan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Tumor Immune Microenvironment, Zhengzhou, China
| | - Yuning Han
- General Hospital of Ningxia Medical University, Ningxia, China
| | - Lijing Zhang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Tumor Immune Microenvironment, Zhengzhou, China
| | - Fei Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Tumor Immune Microenvironment, Zhengzhou, China
| | - Zhuoyu Gu
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Tumor Immune Microenvironment, Zhengzhou, China
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Tumor Immune Microenvironment, Zhengzhou, China.,Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
666
|
Liu H, Shi Y, Qian F. Opportunities and delusions regarding drug delivery targeting pancreatic cancer-associated fibroblasts. Adv Drug Deliv Rev 2021; 172:37-51. [PMID: 33705881 DOI: 10.1016/j.addr.2021.02.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
A dense desmoplastic stroma formed by abundant extracellular matrix and stromal cells, including cancer-associated fibroblasts (CAFs) and immune cells, is a feature of pancreatic ductal adenocarcinoma (PDAC), one of the most lethal cancer types. As the dominant cellular component of the PDAC stroma, CAFs orchestrate intensive and biologically diverse crosstalk with pancreatic cancer cells and immune cells and contribute to a unique PDAC tumor microenvironment promoting cancer proliferation, metastasis, and resistance against both chemo- and immunotherapies. Therefore, CAFs and CAF-related mechanisms have emerged as promising targets for PDAC therapy. However, several clinical setbacks and accumulating knowledge of the PDAC stroma have revealed the heterogeneity and multifaceted biological roles of CAFs, and concerns regarding "what to deliver" and "how to deliver" have arisen when designing CAF-targeted drug delivery systems to specifically inhibit tumor-supporting CAFs without impairing tumor-restricting CAFs. In this review, we will discuss the complexity of CAFs in the PDAC stroma as well as the potential opportunities and common misconceptions regarding drug delivery efforts targeting PDAC CAFs.
Collapse
Affiliation(s)
- Huiqin Liu
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yu Shi
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Feng Qian
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China.
| |
Collapse
|
667
|
Li S, Zhang W, Xing R, Yuan C, Xue H, Yan X. Supramolecular Nanofibrils Formed by Coassembly of Clinically Approved Drugs for Tumor Photothermal Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100595. [PMID: 33876464 DOI: 10.1002/adma.202100595] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Pancreatic cancer, one of the most lethal malignancies, compromises the performance of traditional therapeutic regimens in the clinic because of stromal resistance to systemic drug delivery and poor prognosis caused by tumor metastasis. Therefore, a biocompatible therapeutic paradigm that can effectively inhibit pancreatic tumor growth while simultaneously eliminating tumor metastasis is urgently needed. Herein, supramolecular nanofibrils are fabricated through coassembly of clinically approved immunomodulatory thymopentin and near-infrared indocyanine green for localized photothermal immunotherapy of pancreatic tumors. The resulting long-range ordered fibrous nanodrugs show improved photophysical capabilities for fluorescence imaging and photothermal conversion and significantly promote the proliferation and differentiation of antitumor immune cells. Hence, the integration of rapid photothermal therapy and moderate immunomodulation for inhibiting tumor growth and eliminating tumor metastasis is promising. The utilization of clinically approved molecules to construct nanodrugs administered via localized injection amplifies the complementary photothermal immunotherapeutic effects of the components, creating opportunities for clinical translation as a treatment for pancreatic cancer.
Collapse
Affiliation(s)
- Shukun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Wenjia Zhang
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chengqian Yuan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huadan Xue
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China
| |
Collapse
|
668
|
Bota-Rabassedas N, Banerjee P, Niu Y, Cao W, Luo J, Xi Y, Tan X, Sheng K, Ahn YH, Lee S, Parra ER, Rodriguez-Canales J, Albritton J, Weiger M, Liu X, Guo HF, Yu J, Rodriguez BL, Firestone JJA, Mino B, Creighton CJ, Solis LM, Villalobos P, Raso MG, Sazer DW, Gibbons DL, Russell WK, Longmore GD, Wistuba II, Wang J, Chapman HA, Miller JS, Zong C, Kurie JM. Contextual cues from cancer cells govern cancer-associated fibroblast heterogeneity. Cell Rep 2021; 35:109009. [PMID: 33882319 PMCID: PMC8142261 DOI: 10.1016/j.celrep.2021.109009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 01/21/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer cells function as primary architects of the tumor microenvironment. However, the molecular features of cancer cells that govern stromal cell phenotypes remain unclear. Here, we show that cancer-associated fibroblast (CAF) heterogeneity is driven by lung adenocarcinoma (LUAD) cells at either end of the epithelial-to-mesenchymal transition (EMT) spectrum. LUAD cells that have high expression of the EMT-activating transcription factor ZEB1 reprogram CAFs through a ZEB1-dependent secretory program and direct CAFs to the tips of invasive projections through a ZEB1-driven CAF repulsion process. The EMT, in turn, sensitizes LUAD cells to pro-metastatic signals from CAFs. Thus, CAFs respond to contextual cues from LUAD cells to promote metastasis.
Collapse
Affiliation(s)
- Neus Bota-Rabassedas
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priyam Banerjee
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yichi Niu
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Wenjian Cao
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jiayi Luo
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yuanxin Xi
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaochao Tan
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kuanwei Sheng
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Young-Ho Ahn
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Sieun Lee
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Edwin Roger Parra
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaime Rodriguez-Canales
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jacob Albritton
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Michael Weiger
- Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin Liu
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hou-Fu Guo
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiang Yu
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - B Leticia Rodriguez
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Barbara Mino
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chad J Creighton
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Luisa M Solis
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pamela Villalobos
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria Gabriela Raso
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel W Sazer
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Don L Gibbons
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Gregory D Longmore
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA; Department of Cell Biology & Physiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Ignacio I Wistuba
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Harold A Chapman
- Department of Medicine, University of California, San Francisco Cardiovascular Research Institute, San Francisco, CA, USA
| | - Jordan S Miller
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Chenghang Zong
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Jonathan M Kurie
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
669
|
Chen Y, Kim J, Yang S, Wang H, Wu CJ, Sugimoto H, LeBleu VS, Kalluri R. Type I collagen deletion in αSMA + myofibroblasts augments immune suppression and accelerates progression of pancreatic cancer. Cancer Cell 2021; 39:548-565.e6. [PMID: 33667385 PMCID: PMC8423173 DOI: 10.1016/j.ccell.2021.02.007] [Citation(s) in RCA: 337] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/23/2020] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
Stromal desmoplastic reaction in pancreatic ductal adenocarcinoma (PDAC) involves significant accumulation of type I collagen (Col1). However, the precise molecular and mechanistic contribution of Col1 in PDAC progression remains unknown. Activated pancreatic stellate cells/αSMA+ myofibroblasts are major contributors of Col1 in the PDAC stroma. We use a dual-recombinase genetic mouse model of spontaneous PDAC to delete Col1 specifically in myofibroblasts. This results in significant reduction of total stromal Col1 content and accelerates the emergence of PanINs and PDAC, decreasing overall survival. Col1 deletion leads to Cxcl5 upregulation in cancer cells via SOX9. Increase in Cxcl5 is associated with recruitment of myeloid-derived suppressor cells and suppression of CD8+ T cells, which can be attenuated with combined targeting of CXCR2 and CCR2 to restrain accelerated PDAC progression in the setting of stromal Col1 deletion. Our results unravel the fundamental role of myofibroblast-derived Co1l in regulating tumor immunity and restraining PDAC progression.
Collapse
Affiliation(s)
- Yang Chen
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jiha Kim
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Sujuan Yang
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Huamin Wang
- Department of Anatomical Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Chang-Jiun Wu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Hikaru Sugimoto
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Valerie S LeBleu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
670
|
Single-cell RNA-seq reveals dynamic change in tumor microenvironment during pancreatic ductal adenocarcinoma malignant progression. EBioMedicine 2021; 66:103315. [PMID: 33819739 PMCID: PMC8047497 DOI: 10.1016/j.ebiom.2021.103315] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is most aggressive among all gastrointestinal tumors. The complex intra-tumor heterogeneity and special tumor microenvironment in PDAC bring great challenges for developing effective treatment strategies. We aimed to delineate dynamic changes of tumor microenvironment components during PDAC malignant progression utilizing single-cell RNA sequencing. Methods A total of 11 samples (4 PDAC I, 4 PDAC II, 3 PDAC III) were used to construct expression matrix. After identifying distinct cell clusters, subcluster analysis for each cluster was performed. New cancer associated fibroblasts (CAFs) subset was validated by weighted gene co-expression network analysis, RNA in situ hybridization and immunofluorescence. Findings We found that ductal cells were not dominant component while tumor infiltrating immune cells and pancreatic stellate cells gradually accumulated during tumor development. We defined several new Treg and exhausted T cell signature genes, including DUSP4, FANK1 and LAIR2. The analysis of TCGA datasets showed that patients with high expression of DUSP4 had significantly worse prognosis. In addition, we identified a new CAFs subset (complement-secreting CAFs, csCAFs), which specifically expresses complement system components, and constructed csCAFs-related module by weighted gene co-expression network analysis. The csCAFs were located in the tissue stroma adjacent to malignant ductal cells only in early PDAC. Interpretation We systematically explored PDAC heterogeneity and identified csCAFs as a new CAFs subset special to PDAC, which may be valuable for understanding the crosstalk inside tumor. Funding This study was supported by The Natural Science Foundation of China (NO.81572339, 81672353, 81871954) and the Youth Clinical Research Project of Peking University First Hospital (2018CR28).
Collapse
|
671
|
Abstract
The extracellular matrix is a fundamental, core component of all tissues and organs, and is essential for the existence of multicellular organisms. From the earliest stages of organism development until death, it regulates and fine-tunes every cellular process in the body. In cancer, the extracellular matrix is altered at the biochemical, biomechanical, architectural and topographical levels, and recent years have seen an exponential increase in the study and recognition of the importance of the matrix in solid tumours. Coupled with the advancement of new technologies to study various elements of the matrix and cell-matrix interactions, we are also beginning to see the deployment of matrix-centric, stromal targeting cancer therapies. This Review touches on many of the facets of matrix biology in solid cancers, including breast, pancreatic and lung cancer, with the aim of highlighting some of the emerging interactions of the matrix and influences that the matrix has on tumour onset, progression and metastatic dissemination, before summarizing the ongoing work in the field aimed at developing therapies to co-target the matrix in cancer and cancer metastasis.
Collapse
Affiliation(s)
- Thomas R Cox
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
672
|
Rauth S, Karmakar S, Batra SK, Ponnusamy MP. Recent advances in organoid development and applications in disease modeling. Biochim Biophys Acta Rev Cancer 2021; 1875:188527. [PMID: 33640383 PMCID: PMC8068668 DOI: 10.1016/j.bbcan.2021.188527] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022]
Abstract
An improved understanding of stem cell niches, organogenesis, and disease models has paved the way for developing a three-dimensional (3D) organoid culture system. Organoid cultures can be derived from primary tissues (single cells or tissue subunits), adult stem cells (ASCs), induced pluripotent stem cells (iPSCs), or embryonic stem cells (ESCs). As a significant technological breakthrough, 3D organoid models offer a promising approach for understanding the complexities of human diseases ranging from the mechanistic investigation of disease pathogenesis to therapy. Here, we discuss the recent applications, advantages, and limitations of organoids as in vitro models for studying metabolomics, drug development, infectious diseases, and the gut microbiome. We further discuss the use of organoids in cancer modeling using high throughput sequencing approaches.
Collapse
Affiliation(s)
- Sanchita Rauth
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Saswati Karmakar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
673
|
Thyroid Cancer Stem-Like Cells: From Microenvironmental Niches to Therapeutic Strategies. J Clin Med 2021; 10:jcm10071455. [PMID: 33916320 PMCID: PMC8037626 DOI: 10.3390/jcm10071455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/08/2023] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy. Recent progress in thyroid cancer biology revealed a certain degree of intratumoral heterogeneity, highlighting the coexistence of cellular subpopulations with distinct proliferative capacities and differentiation abilities. Among those subpopulations, cancer stem-like cells (CSCs) are hypothesized to drive TC heterogeneity, contributing to its metastatic potential and therapy resistance. CSCs principally exist in tumor areas with specific microenvironmental conditions, the so-called stem cell niches. In particular, in thyroid cancer, CSCs' survival is enhanced in the hypoxic niche, the immune niche, and some areas with specific extracellular matrix composition. In this review, we summarize the current knowledge about thyroid CSCs, the tumoral niches that allow their survival, and the implications for TC therapy.
Collapse
|
674
|
Dieters-Castator D, Dantonio PM, Piaseczny M, Zhang G, Liu J, Kuljanin M, Sherman S, Jewer M, Quesnel K, Kang EY, Köbel M, Siegers GM, Leask A, Hess D, Lajoie G, Postovit LM. Embryonic protein NODAL regulates the breast tumor microenvironment by reprogramming cancer-derived secretomes. Neoplasia 2021; 23:375-390. [PMID: 33784590 PMCID: PMC8041663 DOI: 10.1016/j.neo.2021.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment (TME) is an important mediator of breast cancer progression. Cancer-associated fibroblasts constitute a major component of the TME and may originate from tissue-associated fibroblasts or infiltrating mesenchymal stromal cells (MSCs). The mechanisms by which cancer cells activate fibroblasts and recruit MSCs to the TME are largely unknown, but likely include deposition of a pro-tumorigenic secretome. The secreted embryonic protein NODAL is clinically associated with breast cancer stage and promotes tumor growth, metastasis, and vascularization. Herein, we show that NODAL expression correlates with the presence of activated fibroblasts in human triple-negative breast cancers and that it directly induces Cancer-associated fibroblasts phenotypes. We further show that NODAL reprograms cancer cell secretomes by simultaneously altering levels of chemokines (e.g., CXCL1), cytokines (e.g., IL-6) and growth factors (e.g., PDGFRA), leading to alterations in MSC chemotaxis. We therefore demonstrate a hitherto unappreciated mechanism underlying the dynamic regulation of the TME.
Collapse
Affiliation(s)
| | - Paola M Dantonio
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Matt Piaseczny
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Guihua Zhang
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Jiahui Liu
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Miljan Kuljanin
- Robarts Research Institute, London, ON, Canada; Department of Biochemistry, Western University, London, ON, Canada
| | - Stephen Sherman
- Robarts Research Institute, London, ON, Canada; Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Michael Jewer
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada; Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Katherine Quesnel
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Eun Young Kang
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Andrew Leask
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - David Hess
- Robarts Research Institute, London, ON, Canada; Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Gilles Lajoie
- Department of Biochemistry, Western University, London, ON, Canada
| | - Lynne-Marie Postovit
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada; Department of Oncology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
675
|
Steele NG, Biffi G, Kemp SB, Zhang Y, Drouillard D, Syu L, Hao Y, Oni TE, Brosnan E, Elyada E, Doshi A, Hansma C, Espinoza C, Abbas A, The S, Irizarry-Negron V, Halbrook CJ, Franks NE, Hoffman MT, Brown K, Carpenter ES, Nwosu ZC, Johnson C, Lima F, Anderson MA, Park Y, Crawford HC, Lyssiotis CA, Frankel TL, Rao A, Bednar F, Dlugosz AA, Preall JB, Tuveson DA, Allen BL, Pasca di Magliano M. Inhibition of Hedgehog Signaling Alters Fibroblast Composition in Pancreatic Cancer. Clin Cancer Res 2021; 27:2023-2037. [PMID: 33495315 PMCID: PMC8026631 DOI: 10.1158/1078-0432.ccr-20-3715] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/17/2020] [Accepted: 01/14/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease characterized by an extensive fibroinflammatory stroma, which includes abundant cancer-associated fibroblast (CAF) populations. PDAC CAFs are heterogeneous, but the nature of this heterogeneity is incompletely understood. The Hedgehog pathway functions in PDAC in a paracrine manner, with ligands secreted by cancer cells signaling to stromal cells in the microenvironment. Previous reports investigating the role of Hedgehog signaling in PDAC have been contradictory, with Hedgehog signaling alternately proposed to promote or restrict tumor growth. In light of the newly discovered CAF heterogeneity, we investigated how Hedgehog pathway inhibition reprograms the PDAC microenvironment. EXPERIMENTAL DESIGN We used a combination of pharmacologic inhibition, gain- and loss-of-function genetic experiments, cytometry by time-of-flight, and single-cell RNA sequencing to study the roles of Hedgehog signaling in PDAC. RESULTS We found that Hedgehog signaling is uniquely activated in fibroblasts and differentially elevated in myofibroblastic CAFs (myCAF) compared with inflammatory CAFs (iCAF). Sonic Hedgehog overexpression promotes tumor growth, while Hedgehog pathway inhibition with the smoothened antagonist, LDE225, impairs tumor growth. Furthermore, Hedgehog pathway inhibition reduces myCAF numbers and increases iCAF numbers, which correlates with a decrease in cytotoxic T cells and an expansion in regulatory T cells, consistent with increased immunosuppression. CONCLUSIONS Hedgehog pathway inhibition alters fibroblast composition and immune infiltration in the pancreatic cancer microenvironment.
Collapse
Affiliation(s)
- Nina G Steele
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Giulia Biffi
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, England, United Kingdom
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Samantha B Kemp
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | | | - LiJyun Syu
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| | - Yuan Hao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, New York, New York
| | - Tobiloba E Oni
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Erin Brosnan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Ela Elyada
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Abhishek Doshi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Christa Hansma
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Carlos Espinoza
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Ahmed Abbas
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Stephanie The
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | | | - Christopher J Halbrook
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Nicole E Franks
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Megan T Hoffman
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Kristee Brown
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Eileen S Carpenter
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Zeribe C Nwosu
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Craig Johnson
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Fatima Lima
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Michelle A Anderson
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Howard C Crawford
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Costas A Lyssiotis
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | | | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Michigan Institute of Data Science (MIDAS), University of Michigan, Ann Arbor, Michigan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Andrzej A Dlugosz
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | | | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Marina Pasca di Magliano
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, Michigan
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
676
|
Mezawa Y, Orimo A. Phenotypic heterogeneity, stability and plasticity in tumor-promoting carcinoma-associated fibroblasts. FEBS J 2021; 289:2429-2447. [PMID: 33786982 DOI: 10.1111/febs.15851] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/15/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022]
Abstract
Reciprocal interactions between cancer cells and stromal cells in the tumor microenvironment (TME) are essential for full-blown tumor development. Carcinoma-associated fibroblasts (CAFs) are a key component of the TME together with a wide variety of stromal cell types including vascular, inflammatory, and immune cells in the extracellular matrix. CAFs not only promote tumor growth, invasion, and metastasis, but also dampen the efficacy of various therapies including immune checkpoint inhibitors. CAFs are composed of distinct fibroblast populations presumably with diverse activated fibroblastic states and tumor-promoting phenotypes in a tumor, indicating intratumor heterogeneity in these fibroblasts. Given that CAFs have been implicated in both disease progression and therapeutic responses, elucidating the functional roles of each fibroblast population in CAFs and the molecular mechanisms mediating their phenotypic stability and plasticity in the TME would be crucial for understanding tumor biology. We herein discuss how distinct fibroblast populations comprising CAFs establish their cell identities, in terms of cells-of-origin, stimuli from the TME, and the phenotypes characteristic of activated states.
Collapse
Affiliation(s)
- Yoshihiro Mezawa
- Department of Pathology and Oncology, Juntendo University School of Medicine, Tokyo, Japan
| | - Akira Orimo
- Department of Pathology and Oncology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
677
|
Easty DJ, Farr CJ, Hennessy BT. New Roles for Vitamin D Superagonists: From COVID to Cancer. Front Endocrinol (Lausanne) 2021; 12:644298. [PMID: 33868174 PMCID: PMC8045760 DOI: 10.3389/fendo.2021.644298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Vitamin D is a potent steroid hormone that induces widespread changes in gene expression and controls key biological pathways. Here we review pathophysiology of vitamin D with particular reference to COVID-19 and pancreatic cancer. Utility as a therapeutic agent is limited by hypercalcemic effects and attempts to circumvent this problem have used vitamin D superagonists, with increased efficacy and reduced calcemic effect. A further caveat is that vitamin D mediates multiple diverse effects. Some of these (anti-fibrosis) are likely beneficial in patients with COVID-19 and pancreatic cancer, whereas others (reduced immunity), may be beneficial through attenuation of the cytokine storm in patients with advanced COVID-19, but detrimental in pancreatic cancer. Vitamin D superagonists represent an untapped resource for development of effective therapeutic agents. However, to be successful this approach will require agonists with high cell-tissue specificity.
Collapse
Affiliation(s)
- David J. Easty
- Department of Medical Oncology, Our Lady of Lourdes Hospital, Drogheda, Ireland
| | - Christine J. Farr
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Bryan T. Hennessy
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Oncology, Our Lady of Lourdes Hospital, Drogheda, Ireland
| |
Collapse
|
678
|
Persistent Inflammatory Stimulation Drives the Conversion of MSCs to Inflammatory CAFs That Promote Pro-Metastatic Characteristics in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13061472. [PMID: 33806906 PMCID: PMC8004890 DOI: 10.3390/cancers13061472] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
The pro-inflammatory cytokines tumor necrosis factor α (TNFα) and interleukin 1β (IL-1β) are expressed simultaneously and have tumor-promoting roles in breast cancer. In parallel, mesenchymal stem cells (MSCs) undergo conversion at the tumor site to cancer-associated fibroblasts (CAFs), which are generally connected to enhanced tumor progression. Here, we determined the impact of consistent inflammatory stimulation on stromal cell plasticity. MSCs that were persistently stimulated by TNFα + IL-1β (generally 14-18 days) gained a CAF-like morphology, accompanied by prominent changes in gene expression, including in stroma/fibroblast-related genes. These CAF-like cells expressed elevated levels of vimentin and fibroblast activation protein (FAP) and demonstrated significantly increased abilities to contract collagen gels. Moreover, they gained the phenotype of inflammatory CAFs, as indicated by the reduced expression of α smooth muscle actin (αSMA), increased proliferation, and elevated expression of inflammatory genes and proteins, primarily inflammatory chemokines. These inflammatory CAFs released factors that enhanced tumor cell dispersion, scattering, and migration; the inflammatory CAF-derived factors elevated cancer cell migration by stimulating the chemokine receptors CCR2, CCR5, and CXCR1/2 and Ras-activating receptors, expressed by the cancer cells. Together, these novel findings demonstrate that chronic inflammation can induce MSC-to-CAF conversion, leading to the generation of tumor-promoting inflammatory CAFs.
Collapse
|
679
|
In-Depth Characterization of Stromal Cells within the Tumor Microenvironment Yields Novel Therapeutic Targets. Cancers (Basel) 2021; 13:cancers13061466. [PMID: 33806802 PMCID: PMC8005121 DOI: 10.3390/cancers13061466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary This up-to-date and in-depth review describes fibroblast-derived cells and their role within the tumor microenvironment for tumor progression. Moreover, targets for future antitumor therapies are summarized and potential aspects for future translational research are outlined. Furthermore, this review discusses the challenges and possible obstacles related to certain treatment targets. Abstract Cells within the tumor stroma are essential for tumor progression. In particular, cancer-associated fibroblasts (CAF) and CAF precursor cells (resident fibroblasts and mesenchymal stromal cells) are responsible for the formation of the extracellular matrix in tumor tissue. Consequently, CAFs directly and indirectly mediate inflammation, metastasis, immunomodulation, angiogenesis, and the development of tumor chemoresistance, which is orchestrated by complex intercellular cytokine-mediated crosstalk. CAFs represent a strategic target in antitumor therapy but their heterogeneity hinders effective treatment regimes. In-depth understanding of CAF subpopulations and knowledge of specific functions in tumor progression will ultimately result in more specific and effective cancer treatments. This review provides a detailed description of CAFs and CAF precursor cells and summarizes possible treatment strategies as well as molecular targets of these cells in antitumor therapies.
Collapse
|
680
|
Su F, Daquinag AC, Ahn S, Saha A, Dai Y, Zhao Z, DiGiovanni J, Kolonin MG. Progression of prostate carcinoma is promoted by adipose stromal cell-secreted CXCL12 signaling in prostate epithelium. NPJ Precis Oncol 2021; 5:26. [PMID: 33753872 PMCID: PMC7985375 DOI: 10.1038/s41698-021-00160-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Aggressiveness of carcinomas is linked with tumor recruitment of adipose stromal cells (ASC), which is increased in obesity. ASC promote cancer through molecular pathways not fully understood. Here, we demonstrate that epithelial-mesenchymal transition (EMT) in prostate tumors is promoted by obesity and suppressed upon pharmacological ASC depletion in HiMyc mice, a spontaneous genetic model of prostate cancer. CXCL12 expression in tumors was associated with ASC recruitment and localized to stromal cells expressing platelet-derived growth factor receptors Pdgfra and Pdgfrb. The role of this chemokine secreted by stromal cells in cancer progression was further investigated by using tissue-specific knockout models. ASC deletion of CXCL12 gene in the Pdgfr + lineages suppressed tumor growth and EMT, indicating stroma as the key source of CXCL12. Clinical sample analysis revealed that CXCL12 expression by peritumoral adipose stroma is increased in obesity, and that the correlating increase in Pdgfr/CXCL12 expression in the tumor is linked with decreased survival of patients with prostate carcinoma. Our study establishes ASC as the source of CXCL12 driving tumor aggressiveness and outlines an approach to treatment of carcinoma progression.
Collapse
Affiliation(s)
- Fei Su
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Disease, The University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Alexes C Daquinag
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Disease, The University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Songyeon Ahn
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Achinto Saha
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Disease, The University of Texas Health Sciences Center at Houston, Houston, TX, USA.
| |
Collapse
|
681
|
Cao H, Qiang L, Chen J, Johnson KM, McNiven MA, Razidlo GL. Synergistic metalloproteinase-based remodeling of matrix by pancreatic tumor and stromal cells. PLoS One 2021; 16:e0248111. [PMID: 33740019 PMCID: PMC7978280 DOI: 10.1371/journal.pone.0248111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 02/20/2021] [Indexed: 11/22/2022] Open
Abstract
The process by which tumor cells mechanically invade through the surrounding stroma into peripheral tissues is an essential component of metastatic dissemination. Matrix metalloproteinase (MMP)-mediated extracellular matrix (ECM) degradation plays an important role in this invasive process. Defining the contribution and interaction between these MMPs during invasion remains a key interest in the development of targeted anti-metastatic therapies. In this study we have utilized multiple different stromal fibroblasts and tumor cells to define the relative contributions between cancer cells and stromal cells during MMP-dependent matrix remodeling and pancreatic (PDAC) tumor cell invasion. We find that tumor cells co-cultured with the conditioned medium from stromal fibroblasts exhibited a substantial increase in invadopodial-based matrix degradation and transwell invasion. This increase is dependent on pro-MMP2 expressed and secreted by stromal fibroblasts. Further, the pro-MMP2 from the stromal fibroblasts is activated by MT1-MMP expressed on the tumor cells. Depletion of MT1-MMP, the known activator of MMP2, in tumor cells largely blocked matrix remodeling, even in the presence of stromal cell medium. In summary, these findings implicate an important interplay between MT1-MMP from tumor cells and MMP2 from fibroblasts as a key component for ECM remodeling and invasion.
Collapse
Affiliation(s)
- Hong Cao
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Li Qiang
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jing Chen
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Katherine M. Johnson
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Mark A. McNiven
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (GLR); (MAM)
| | - Gina L. Razidlo
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (GLR); (MAM)
| |
Collapse
|
682
|
Oshimori N, Guo Y, Taniguchi S. An emerging role for cellular crosstalk in the cancer stem cell niche. J Pathol 2021; 254:384-394. [DOI: 10.1002/path.5655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/12/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Naoki Oshimori
- Department of Cell, Developmental and Cancer Biology Oregon Health & Science University Portland OR USA
- Department of Dermatology Oregon Health & Science University Portland OR USA
- Department of Otolaryngology – Head & Neck Surgery Oregon Health & Science University Portland OR USA
- Knight Cancer Institute Oregon Health & Science University Portland OR USA
| | - Yifei Guo
- Department of Cell, Developmental and Cancer Biology Oregon Health & Science University Portland OR USA
| | - Sachiko Taniguchi
- Department of Cell, Developmental and Cancer Biology Oregon Health & Science University Portland OR USA
| |
Collapse
|
683
|
J Gunderson A, Rajamanickam V, Bui C, Bernard B, Pucilowska J, Ballesteros-Merino C, Schmidt M, McCarty K, Philips M, Piening B, Dubay C, Medler T, Newell P, Hansen P, Tran E, Tang E, Bifulco C, Crittenden M, Gough M, Young KH. Germinal center reactions in tertiary lymphoid structures associate with neoantigen burden, humoral immunity and long-term survivorship in pancreatic cancer. Oncoimmunology 2021; 10:1900635. [PMID: 33796412 PMCID: PMC7993148 DOI: 10.1080/2162402x.2021.1900635] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has traditionally been thought of as an immunologically quiescent tumor type presumably because of a relatively low tumor mutational burden (TMB) and poor responses to checkpoint blockade therapy. However, many PDAC tumors exhibit T cell inflamed phenotypes. The presence of tertiary lymphoid structures (TLS) has recently been shown to be predictive of checkpoint blockade response in melanomas and sarcomas, and are prognostic for survival in PDAC. In order to more comprehensively understand tumor immunity in PDAC patients with TLS, we performed RNA-seq, single and multiplex IHC, flow cytometry and predictive genomic analysis on treatment naïve, PDAC surgical specimens. Forty-six percent of tumors contained distinct T and B cell aggregates reflective of “early-stage TLS” (ES-TLS), which correlated with longer overall and progression-free survival. These tumors had greater CD8+ T cell infiltration but were not defined by previously published TLS gene-expression signatures. ES-TLS+ tumors were enriched for IgG1 class-switched memory B cells and memory CD4+ T cells, suggesting durable immunological memory persisted in these patients. We also observed the presence of active germinal centers (mature-TLS) in 31% of tumors with lymphocyte clusters, whose patients had long-term survival (median 56 months). M-TLS-positive tumors had equivalent overall T cell infiltration to ES-TLS, but were enriched for activated CD4+ memory cells, naive B cells and NK cells. Finally, using a TCGA-PDAC dataset, ES-TLS+ tumors harbored a decreased TMB, but M-TLS with germinal centers expressed significantly more MHCI-restricted neoantigens as determined by an in silico neoantigen prediction method. Interestingly, M-TLS+ tumors also had evidence of increased rates of B cell somatic hypermutation, suggesting that germinal centers form in the presence of high-quality tumor neoantigens leading to increased humoral immunity that confers improved survival for PDAC patients. AbbreviationsTLS: tertiary lymphoid structures; GC: germinal center(s); PDAC: pancreatic ductal adenocarcinoma; RNA-seq: RNA sequencing; BCRseq: B cell receptor sequencing; HEV: high endothelial venule; PNAd: peripheral node addressin; TMB: tumor mutational burden; TCGA: the cancer genome atlas; PAAD: pancreatic adenocarcinoma; FFPE: formalin fixed paraffin embedded; TIME: tumor immune microenvironment.
Collapse
Affiliation(s)
- Andrew J Gunderson
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Cancer Institute, Portland, Oregon, United States
| | - Venkatesh Rajamanickam
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Cancer Institute, Portland, Oregon, United States
| | - Cynthia Bui
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Cancer Institute, Portland, Oregon, United States
| | - Brady Bernard
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Cancer Institute, Portland, Oregon, United States.,Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, United States.,Gastrointestinal & Minimally Invasive Surgery, The Oregon Clinic, Portland, Oregon, United States.,Radiation Oncology, The Oregon Clinic, Portland, Oregon, United States
| | - Joanna Pucilowska
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Cancer Institute, Portland, Oregon, United States.,Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Carmen Ballesteros-Merino
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Cancer Institute, Portland, Oregon, United States
| | - Mark Schmidt
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Cancer Institute, Portland, Oregon, United States
| | - Kayla McCarty
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Cancer Institute, Portland, Oregon, United States
| | - Michaela Philips
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Cancer Institute, Portland, Oregon, United States
| | - Brian Piening
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Cancer Institute, Portland, Oregon, United States
| | - Christopher Dubay
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Cancer Institute, Portland, Oregon, United States
| | - Terry Medler
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Cancer Institute, Portland, Oregon, United States
| | - Phillipa Newell
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Cancer Institute, Portland, Oregon, United States.,Gastrointestinal & Minimally Invasive Surgery, The Oregon Clinic, Portland, Oregon, United States
| | - Paul Hansen
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Cancer Institute, Portland, Oregon, United States.,Gastrointestinal & Minimally Invasive Surgery, The Oregon Clinic, Portland, Oregon, United States
| | - Eric Tran
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Cancer Institute, Portland, Oregon, United States
| | - Ephraim Tang
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Cancer Institute, Portland, Oregon, United States.,Gastrointestinal & Minimally Invasive Surgery, The Oregon Clinic, Portland, Oregon, United States
| | - Carlo Bifulco
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Cancer Institute, Portland, Oregon, United States
| | - Marka Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Cancer Institute, Portland, Oregon, United States.,Radiation Oncology, The Oregon Clinic, Portland, Oregon, United States
| | - Michael Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Cancer Institute, Portland, Oregon, United States
| | - Kristina H Young
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Cancer Institute, Portland, Oregon, United States.,Radiation Oncology, The Oregon Clinic, Portland, Oregon, United States
| |
Collapse
|
684
|
Karimnia V, Rizvi I, Slack FJ, Celli JP. Photodestruction of Stromal Fibroblasts Enhances Tumor Response to PDT in 3D Pancreatic Cancer Coculture Models. Photochem Photobiol 2021; 97:416-426. [PMID: 33011973 PMCID: PMC7965253 DOI: 10.1111/php.13339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/21/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal of human cancers. The dismal response of PDAC to virtually all therapeutics is associated, in part, with a characteristically dense fibrotic stroma. This stroma not only acts as a barrier to drug perfusion, but also promotes tumor survival through paracrine crosstalk and biophysical interactions. Photodynamic therapy (PDT) is being explored for PDAC treatment, though the impact of tumor-promoting stromal crosstalk on PDT response in PDAC is not well-characterized. The current study assesses the effect of tumor-stroma interactions on response to PDT or chemotherapy in heterocellular 3D cocultures using PDAC cells and two different fibroblastic cell types (pancreatic stellate cells, PSCs, and a normal human fibroblast cell line, MRC5) embedded in extracellular matrix (ECM). While stromal fibroblasts promote resistance to chemotherapy as expected, PDAC 3D nodules in coculture with fibroblasts exhibit increased response to PDT relative to homotypic cultures. These results point to the potential for PDT to overcome tumor-promoting stromal interactions associated with poor therapeutic response in PDAC.
Collapse
Affiliation(s)
- Vida Karimnia
- Department of Physics, University of Massachusetts at Boston, Boston, MA, 02125, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Frank J. Slack
- Department of Pathology, BIDMC Cancer Center/Harvard Medical School; 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Jonathan P. Celli
- Department of Physics, University of Massachusetts at Boston, Boston, MA, 02125, USA
| |
Collapse
|
685
|
Cx43 phosphorylation sites regulate pancreatic cancer metastasis. Oncogene 2021; 40:1909-1920. [PMID: 33603164 PMCID: PMC8191514 DOI: 10.1038/s41388-021-01668-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/03/2021] [Accepted: 01/18/2021] [Indexed: 01/30/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is aggressive, highly metastatic and characterized by a robust desmoplasia. Connexin proteins that form gap junctions have been implicated in tumor suppression for over 30 years. Cx43, the most widely expressed connexin, regulates cell behaviors, including migration and proliferation. Thus, we hypothesized that Cx43 could regulate PDA progression. Phosphorylation of Cx43 by Casein Kinase 1 (CK1) regulates gap junction assembly. We interbred the well-established KrasLSL-G12D/+;p48Cre/+ (KC) mouse model of PDA with homozygous "knock-in" mutant Cx43 mice bearing amino acid substitution at CK1 sites (Cx43CK1A) and found profound and surprising effects on cancer progression. Crossing the Cx43CK1A mouse onto the KC background (termed KC;CxCK1A) led to significant extension of lifespan, from a median of 370 to 486 days (p = 0.03) and a decreased incidence of metastasis (p = 0.045). However, when we examined early stages of disease, we found more rapid onset of tissue remodeling in the KC;CxCK1A mouse followed by divergence to a cystic phenotype. During tumorigenesis, gap junctions are increasingly present in stromal cells of the KC mice but are absent from the KC;Cx43CK1A mice. Tail vein metastasis assays with cells derived from KC or KC;CxCK1A tumors showed that KC;CxCK1A cells could efficiently colonize the lung and downregulate Cx43 expression, arguing that inhibition of metastasis was not occurring at the distal site. Instead, stromal gap junctions, their associated signaling events or other unknown Cx43-dependent events facilitate metastatic capacity in the primary tumor.
Collapse
|
686
|
Peran I, Dakshanamurthy S, McCoy MD, Mavropoulos A, Allo B, Sebastian A, Hum NR, Sprague SC, Martin KA, Pishvaian MJ, Vietsch EE, Wellstein A, Atkins MB, Weiner LM, Quong AA, Loots GG, Yoo SS, Assefnia S, Byers SW. Cadherin 11 Promotes Immunosuppression and Extracellular Matrix Deposition to Support Growth of Pancreatic Tumors and Resistance to Gemcitabine in Mice. Gastroenterology 2021; 160:1359-1372.e13. [PMID: 33307028 PMCID: PMC7956114 DOI: 10.1053/j.gastro.2020.11.044] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 11/12/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinomas (PDACs) are characterized by fibrosis and an abundance of cancer-associated fibroblasts (CAFs). We investigated strategies to disrupt interactions among CAFs, the immune system, and cancer cells, focusing on adhesion molecule CDH11, which has been associated with other fibrotic disorders and is expressed by activated fibroblasts. METHODS We compared levels of CDH11 messenger RNA in human pancreatitis and pancreatic cancer tissues and cells with normal pancreas, and measured levels of CDH11 protein in human and mouse pancreatic lesions and normal tissues. We crossed p48-Cre;LSL-KrasG12D/+;LSL-Trp53R172H/+ (KPC) mice with CDH11-knockout mice and measured survival times of offspring. Pancreata were collected and analyzed by histology, immunohistochemistry, and (single-cell) RNA sequencing; RNA and proteins were identified by imaging mass cytometry. Some mice were given injections of PD1 antibody or gemcitabine and survival was monitored. Pancreatic cancer cells from KPC mice were subcutaneously injected into Cdh11+/+ and Cdh11-/- mice and tumor growth was monitored. Pancreatic cancer cells (mT3) from KPC mice (C57BL/6), were subcutaneously injected into Cdh11+/+ (C57BL/6J) mice and mice were given injections of antibody against CDH11, gemcitabine, or small molecule inhibitor of CDH11 (SD133) and tumor growth was monitored. RESULTS Levels of CDH11 messenger RNA and protein were significantly higher in CAFs than in pancreatic cancer epithelial cells, human or mouse pancreatic cancer cell lines, or immune cells. KPC/Cdh11+/- and KPC/Cdh11-/- mice survived significantly longer than KPC/Cdh11+/+ mice. Markers of stromal activation entirely surrounded pancreatic intraepithelial neoplasias in KPC/Cdh11+/+ mice and incompletely in KPC/Cdh11+/- and KPC/Cdh11-/- mice, whose lesions also contained fewer FOXP3+ cells in the tumor center. Compared with pancreatic tumors in KPC/Cdh11+/+ mice, tumors of KPC/Cdh11+/- mice had increased markers of antigen processing and presentation; more lymphocytes and associated cytokines; decreased extracellular matrix components; and reductions in markers and cytokines associated with immunosuppression. Administration of the PD1 antibody did not prolong survival of KPC mice with 0, 1, or 2 alleles of Cdh11. Gemcitabine extended survival of KPC/Cdh11+/- and KPC/Cdh11-/- mice only or reduced subcutaneous tumor growth in mT3 engrafted Cdh11+/+ mice when given in combination with the CDH11 antibody. A small molecule inhibitor of CDH11 reduced growth of pre-established mT3 subcutaneous tumors only if T and B cells were present in mice. CONCLUSIONS Knockout or inhibition of CDH11, which is expressed by CAFs in the pancreatic tumor stroma, reduces growth of pancreatic tumors, increases their response to gemcitabine, and significantly extends survival of mice. CDH11 promotes immunosuppression and extracellular matrix deposition, and might be developed as a therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Ivana Peran
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia.
| | - Sivanesan Dakshanamurthy
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Matthew D. McCoy
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, USA,Innovation Center for Biomedical Informatics, Georgetown University, Washington, DC, USA
| | | | | | - Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Nicholas R. Hum
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA,School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Sara C. Sprague
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Kelly A. Martin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Michael J. Pishvaian
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Eveline E. Vietsch
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Anton Wellstein
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Michael B. Atkins
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Louis M. Weiner
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | | | - Gabriela G. Loots
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA,School of Natural Sciences, University of California Merced, Merced, CA, USA,Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, USA
| | | | - Shahin Assefnia
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia.
| | - Stephen W. Byers
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
687
|
Miyazaki Y, Oda T, Inagaki Y, Kushige H, Saito Y, Mori N, Takayama Y, Kumagai Y, Mitsuyama T, Kida YS. Adipose-derived mesenchymal stem cells differentiate into heterogeneous cancer-associated fibroblasts in a stroma-rich xenograft model. Sci Rep 2021; 11:4690. [PMID: 33633222 PMCID: PMC7907195 DOI: 10.1038/s41598-021-84058-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/11/2021] [Indexed: 12/29/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the key components of the densely proliferated stroma in pancreatic ductal adenocarcinoma (PDAC) and contribute to tumor progression and drug resistance. CAFs comprise heterogeneous subpopulations playing unique and vital roles. However, the commonly used mouse models have not been able to fully reproduce the histological and functional characteristics of clinical human CAF. Here, we generated a human cell-derived stroma-rich CDX (Sr-CDX) model, to reproduce the clinical tumor microenvironment. By co-transplanting human adipose-derived mesenchymal stem cells (AD-MSCs) and a human PDAC cell line (Capan-1) into mice, the Sr-CDX model recapitulated the characteristics of clinical pancreatic cancer, such as accelerated tumor growth, abundant stromal proliferation, chemoresistance, and dense stroma formed from the heterogeneous CAFs. Global RNA sequencing, single-cell based RNA sequencing, and histological analysis of CAFs in the Sr-CDX model revealed that the CAFs of the Sr-CDX mice were derived from the transplanted AD-MSCs and composed of heterogeneous subpopulations of CAF, including known and unknown subtypes. These lines of evidences suggest that our new tumor-bearing mouse model has the potential to address an open question in CAF research, that is the mechanism of CAF differentiation.
Collapse
Affiliation(s)
- Yoshihiro Miyazaki
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuki Inagaki
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan
| | - Hiroko Kushige
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan
| | - Yutaka Saito
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Nobuhito Mori
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan
| | - Yuzo Takayama
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan
| | - Yutaro Kumagai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan
| | - Toutai Mitsuyama
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Yasuyuki S Kida
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan.
- Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan.
| |
Collapse
|
688
|
Tang T, Huang X, Zhang G, Hong Z, Bai X, Liang T. Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy. Signal Transduct Target Ther 2021; 6:72. [PMID: 33608497 PMCID: PMC7896069 DOI: 10.1038/s41392-020-00449-4] [Citation(s) in RCA: 263] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/31/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Despite great success in cancer immunotherapy, immune checkpoint-targeting drugs are not the most popular weapon in the armory of cancer therapy. Accumulating evidence suggests that the tumor immune microenvironment plays a critical role in anti-cancer immunity, which may result in immune checkpoint blockade therapy being ineffective, in addition to other novel immunotherapies in cancer patients. In the present review, we discuss the deficiencies of current cancer immunotherapies. More importantly, we highlight the critical role of tumor immune microenvironment regulators in tumor immune surveillance, immunological evasion, and the potential for their further translation into clinical practice. Based on their general targetability in clinical therapy, we believe that tumor immune microenvironment regulators are promising cancer immunotherapeutic targets. Targeting the tumor immune microenvironment, alone or in combination with immune checkpoint-targeting drugs, might benefit cancer patients in the future.
Collapse
Affiliation(s)
- Tianyu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, 310003, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, 310003, Hangzhou, Zhejiang, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China.
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, 310003, Hangzhou, Zhejiang, China.
- Zhejiang University Cancer Center, 310003, Hangzhou, Zhejiang, China.
| | - Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, 310003, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, 310003, Hangzhou, Zhejiang, China
| | - Zhengtao Hong
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, 310003, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, 310003, Hangzhou, Zhejiang, China
| | - Xueli Bai
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, 310003, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, 310003, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China.
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, 310003, Hangzhou, Zhejiang, China.
- Zhejiang University Cancer Center, 310003, Hangzhou, Zhejiang, China.
| |
Collapse
|
689
|
Mannarapu M, Dariya B, Bandapalli OR. Application of single-cell sequencing technologies in pancreatic cancer. Mol Cell Biochem 2021; 476:2429-2437. [PMID: 33599893 PMCID: PMC8119256 DOI: 10.1007/s11010-021-04095-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/29/2021] [Indexed: 12/19/2022]
Abstract
Pancreatic cancer (PC) is the third lethal disease for cancer-related mortalities globally. This is mainly because of the aggressive nature and heterogeneity of the disease that is diagnosed only in their advanced stages. Thus, it is challenging for researchers and clinicians to study the molecular mechanism involved in the development of this aggressive disease. The single-cell sequencing technology enables researchers to study each and every individual cell in a single tumor. It can be used to detect genome, transcriptome, and multi-omics of single cells. The current single-cell sequencing technology is now becoming an important tool for the biological analysis of cells, to find evolutionary relationship between multiple cells and unmask the heterogeneity present in the tumor cells. Moreover, its sensitivity nature is found progressive enabling to detect rare cancer cells, circulating tumor cells, metastatic cells, and analyze the intratumor heterogeneity. Furthermore, these single-cell sequencing technologies also promoted personalized treatment strategies and next-generation sequencing to predict the disease. In this review, we have focused on the applications of single-cell sequencing technology in identifying cancer-associated cells like cancer-associated fibroblast via detecting circulating tumor cells. We also included advanced technologies involved in single-cell sequencing and their advantages. The future research indeed brings the single-cell sequencing into the clinical arena and thus could be beneficial for diagnosis and therapy of PC patients.
Collapse
Affiliation(s)
- Mastan Mannarapu
- Department of Biotechnology, Dravidian University, Kuppam, Chittoor, Andra Pradesh, 517 426, India.
| | - Begum Dariya
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan, 304022, India
| | - Obul Reddy Bandapalli
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany. .,Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany. .,Division of Pediatric Neurooncology, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
690
|
PLAU directs conversion of fibroblasts to inflammatory cancer-associated fibroblasts, promoting esophageal squamous cell carcinoma progression via uPAR/Akt/NF-κB/IL8 pathway. Cell Death Discov 2021; 7:32. [PMID: 33574243 PMCID: PMC7878926 DOI: 10.1038/s41420-021-00410-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/18/2020] [Accepted: 01/17/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) plays an important role in the tumor microenvironment. The heterogeneity of CAFs affects the effect of CAFs on promoting or inhibiting tumors, which can be regulated by other cells in the tumor microenvironment through paracrine methods. The urokinase-type plasminogen activator (PLAU) system mediates cell proliferation, migration, adhesion, and other functions through the proteolytic system, intracellular signal transduction, and chemokine activation. PLAU promotes tumor progression in many tumors. We explored the function of PLAU in ESCC and the influence of PLAU secreted by tumor cells on the heterogeneity of CAFs. We found that PLAU is highly expressed in ESCC, which is related to poor prognosis and can be used as a prognostic marker for ESCC. Through loss-of function and gain-of function experiments, we found that PLAU promoted ESCC proliferation and clone formation via MAPK pathway, and promotes migration by upregulating Slug and MMP9, which can be reversed by the MEK 1/2 inhibitor U0126. At the same time, through sequencing, cytokine detection, and RT-qPCR verification, we found that tumor cells secreted PLAU promoted the conversion of fibroblasts to inflammatory CAFs, which upregulated expression and secretion of IL8 via the uPAR/Akt/NF-κB pathway. The IL8 secreted by CAFs in turn promotes the high expression of PLAU in tumor cells and further promoted the progression of ESCC. In summary, PLAU was not only a prognostic marker of ESCC, which promoted tumor cell proliferation and migration, but also promoted the formation of inflammatory CAFs by the PLAU secreted by tumor cells.
Collapse
|
691
|
Sunami Y, Böker V, Kleeff J. Targeting and Reprograming Cancer-Associated Fibroblasts and the Tumor Microenvironment in Pancreatic Cancer. Cancers (Basel) 2021; 13:697. [PMID: 33572223 PMCID: PMC7915918 DOI: 10.3390/cancers13040697] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is the fourth leading cause of cancer deaths in the United States both in female and male, and is projected to become the second deadliest cancer by 2030. The overall five-year survival rate remains at around 10%. Pancreatic cancer exhibits a remarkable resistance to established therapeutic options such as chemotherapy and radiotherapy, due to dense stromal tumor microenvironment. Cancer-associated fibroblasts are the major stromal cell type and source of extracellular matrix proteins shaping a physical and metabolic barrier thereby reducing therapeutic efficacy. Targeting cancer-associated fibroblasts has been considered a promising therapeutic strategy. However, depleting cancer-associated fibroblasts may also have tumor-promoting effects due to their functional heterogeneity. Several subtypes of cancer-associated fibroblasts have been suggested to exhibit tumor-restraining function. This review article summarizes recent preclinical and clinical investigations addressing pancreatic cancer therapy through targeting specific subtypes of cancer-associated fibroblasts, deprogramming activated fibroblasts, administration of mesenchymal stem cells, as well as reprogramming tumor-promoting cancer-associated fibroblasts to tumor-restraining cancer-associated fibroblasts. Further, inter-cellular mediators between cancer-associated fibroblasts and the surrounding tissue microenvironment are discussed. It is important to increase our understanding of cancer-associated fibroblast heterogeneity and the tumor microenvironment for more specific and personalized therapies for pancreatic cancer patients in the future.
Collapse
Affiliation(s)
- Yoshiaki Sunami
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle, Germany; (V.B.); (J.K.)
| | | | | |
Collapse
|
692
|
Jiang H, Torphy RJ, Steiger K, Hongo H, Ritchie AJ, Kriegsmann M, Horst D, Umetsu SE, Joseph NM, McGregor K, Pishvaian MJ, Blais EM, Lu B, Li M, Hollingsworth M, Stashko C, Volmar K, Yeh JJ, Weaver VM, Wang ZJ, Tempero MA, Weichert W, Collisson EA. Pancreatic ductal adenocarcinoma progression is restrained by stromal matrix. J Clin Invest 2021; 130:4704-4709. [PMID: 32749238 DOI: 10.1172/jci136760] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Desmoplasia describes the deposition of extensive extracellular matrix and defines primary pancreatic ductal adenocarcinoma (PDA). The acellular component of this stroma has been implicated in PDA pathogenesis and is being targeted therapeutically in clinical trials. By analyzing the stromal content of PDA samples from numerous annotated PDA data sets and correlating stromal content with both anatomic site and clinical outcome, we found PDA metastases in the liver, the primary cause of mortality to have less stroma, have higher tumor cellularity than primary tumors. Experimentally manipulating stromal matrix with an anti-lysyl oxidase like-2 (anti-LOXL2) antibody in syngeneic orthotopic PDA mouse models significantly decreased matrix content, led to lower tissue stiffness, lower contrast retention on computed tomography, and accelerated tumor growth, resulting in diminished overall survival. These studies suggest an important protective role of stroma in PDA and urge caution in clinically deploying stromal depletion strategies.
Collapse
Affiliation(s)
- Honglin Jiang
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Robert J Torphy
- Department of Surgery, University of Colorado, Aurora, Colorado, USA
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University Munich and German Cancer Consortium (DKTK; partner site Munich), Munich, Germany
| | - Henry Hongo
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Alexa J Ritchie
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Mark Kriegsmann
- Department of Pathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - David Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sarah E Umetsu
- Department of Pathology, UCSF, San Francisco, California, USA
| | - Nancy M Joseph
- Department of Pathology, UCSF, San Francisco, California, USA
| | | | - Michael J Pishvaian
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Washington, DC, USA.,Perthera, Inc, McLean, Virginia, USA
| | | | - Brian Lu
- Bristol-Myers Squibb, Summit, New Jersey, USA
| | - Mingyu Li
- Bristol-Myers Squibb, Summit, New Jersey, USA
| | - Michael Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Connor Stashko
- Center for Bioengineering and Tissue Regeneration, UCSF, San Francisco, California, USA
| | | | - Jen Jen Yeh
- Lineberger Comprehensive Cancer Center.,Department of Surgery, and.,Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA. University of North Carolina, Chapel Hill, North Carolina, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, UCSF, San Francisco, California, USA
| | - Zhen J Wang
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Margaret A Tempero
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Wilko Weichert
- Institute of Pathology, School of Medicine, Technical University Munich and German Cancer Consortium (DKTK; partner site Munich), Munich, Germany
| | - Eric A Collisson
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| |
Collapse
|
693
|
Karta J, Bossicard Y, Kotzamanis K, Dolznig H, Letellier E. Mapping the Metabolic Networks of Tumor Cells and Cancer-Associated Fibroblasts. Cells 2021; 10:304. [PMID: 33540679 PMCID: PMC7912987 DOI: 10.3390/cells10020304] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolism is considered to be the core of all cellular activity. Thus, extensive studies of metabolic processes are ongoing in various fields of biology, including cancer research. Cancer cells are known to adapt their metabolism to sustain high proliferation rates and survive in unfavorable environments with low oxygen and nutrient concentrations. Hence, targeting cancer cell metabolism is a promising therapeutic strategy in cancer research. However, cancers consist not only of genetically altered tumor cells but are interwoven with endothelial cells, immune cells and fibroblasts, which together with the extracellular matrix (ECM) constitute the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs), which are linked to poor prognosis in different cancer types, are one important component of the TME. CAFs play a significant role in reprogramming the metabolic landscape of tumor cells, but how, and in what manner, this interaction takes place remains rather unclear. This review aims to highlight the metabolic landscape of tumor cells and CAFs, including their recently identified subtypes, in different tumor types. In addition, we discuss various in vitro and in vivo metabolic techniques as well as different in silico computational tools that can be used to identify and characterize CAF-tumor cell interactions. Finally, we provide our view on how mapping the complex metabolic networks of stromal-tumor metabolism will help in finding novel metabolic targets for cancer treatment.
Collapse
Affiliation(s)
- Jessica Karta
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, 6 avenue du Swing, L-4367 Belval, Luxembourg; (J.K.); (Y.B.); (K.K.)
| | - Ysaline Bossicard
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, 6 avenue du Swing, L-4367 Belval, Luxembourg; (J.K.); (Y.B.); (K.K.)
| | - Konstantinos Kotzamanis
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, 6 avenue du Swing, L-4367 Belval, Luxembourg; (J.K.); (Y.B.); (K.K.)
| | - Helmut Dolznig
- Tumor Stroma Interaction Group, Institute of Medical Genetics, Medical University of Vienna, Währinger Strasse 10, 1090 Vienna, Austria;
| | - Elisabeth Letellier
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, 6 avenue du Swing, L-4367 Belval, Luxembourg; (J.K.); (Y.B.); (K.K.)
| |
Collapse
|
694
|
Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat Med 2021; 27:212-224. [PMID: 33574607 DOI: 10.1038/s41591-021-01233-9] [Citation(s) in RCA: 436] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/07/2021] [Indexed: 01/30/2023]
Abstract
Most (if not all) tumors emerge and progress under a strong evolutionary pressure imposed by trophic, metabolic, immunological, and therapeutic factors. The relative impact of these factors on tumor evolution changes over space and time, ultimately favoring the establishment of a neoplastic microenvironment that exhibits considerable genetic, phenotypic, and behavioral heterogeneity in all its components. Here, we discuss the main sources of intratumoral heterogeneity and its impact on the natural history of the disease, including sensitivity to treatment, as we delineate potential strategies to target such a detrimental feature of aggressive malignancies.
Collapse
|
695
|
Wu S, Liu D, Li W, Song B, Chen C, Chen D, Hu H. Enhancing TNBC Chemo-immunotherapy via combination reprogramming tumor immune microenvironment with Immunogenic Cell Death. Int J Pharm 2021; 598:120333. [PMID: 33540008 DOI: 10.1016/j.ijpharm.2021.120333] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/18/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
Tumor-associated fibroblasts (TAFs) play an important role in tumor progression and therapeutic response, especially in the immunosuppressive tumor microenvironment (TME). To remodel immunosuppressive TME of 4T1 tumor, we developed a nano liposome to deliver silybin (SLN, an anti-liver fibrosis Chinese Traditional Medicine). Liposomal silybin (SLN/LIP) possessed a spherical shape with particle sizes of 75.2 nm, high stability, and good accumulation in the tumor site. After treated with SLN/LIP, α-SMA positive TAFs and the deposition of stroma were decreased significantly. SLN/LIP also changed the tumor immune microenvironment through the increase of IFN-γ and IL-12, as well as reduced of TGF-β, SDF-1, IL6 and TNF-α. Importantly, SLN/LIP enhanced the infiltration of cytotoxic T cells (CTLs) and transformed a "cold" tumor into a "hot" tumor. To achieve the higher antitumor efficacy, an immunogenic cell death (ICD) inducer, liposomal doxorubicin (DOX/LIP) was combined with SLN/LIP. The combination treatment led to trigger immunogenic tumor apoptosis, and enhance antitumor immunity, therefore, improved anti-tumor efficiency, and further prolonged survival duration. The combination of liposomal silybin and liposomal doxorubicin might be a new chemo-immunotherapy approach for triple negative breast cancer (TNBC) tumor treatment.
Collapse
Affiliation(s)
- Shiyang Wu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, PR China
| | - Dan Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, PR China
| | - Wenpan Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, PR China
| | - Baohui Song
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, PR China
| | - Chunlin Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, PR China
| | - Dawei Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, PR China
| | - Haiyang Hu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, PR China.
| |
Collapse
|
696
|
Takahashi R, Macchini M, Sunagawa M, Jiang Z, Tanaka T, Valenti G, Renz BW, White RA, Hayakawa Y, Westphalen CB, Tailor Y, Iuga AC, Gonda TA, Genkinger J, Olive KP, Wang TC. Interleukin-1β-induced pancreatitis promotes pancreatic ductal adenocarcinoma via B lymphocyte-mediated immune suppression. Gut 2021; 70:330-341. [PMID: 32393543 DOI: 10.1136/gutjnl-2019-319912] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 03/25/2020] [Accepted: 04/18/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Long-standing chronic pancreatitis is an established risk factor for pancreatic ductal adenocarcinoma (PDAC). Interleukin-1β (IL-1β) has been associated in PDAC with shorter survival. We employed murine models to investigate the mechanisms by which IL-1β and chronic pancreatitis might contribute to PDAC progression. DESIGN We crossed LSL-Kras+/G12D;Pdx1-Cre (KC) mice with transgenic mice overexpressing IL-1β to generate KC-IL1β mice, and followed them longitudinally. We used pancreatic 3D in vitro culture to assess acinar-to-ductal metaplasia formation. Immune cells were analysed by flow cytometry and immunohistochemical staining. B lymphocytes were adoptively transferred or depleted in Kras-mutant mice. B-cell infiltration was analysed in human PDAC samples. RESULTS KC-IL1β mice developed PDAC with liver metastases. IL-1β treatment increased Kras+/G12D pancreatic spheroid formation. CXCL13 expression and B lymphocyte infiltration were increased in KC-IL1β pancreata. Adoptive transfer of B lymphocytes from KC-IL1β mice promoted tumour formation, while depletion of B cells prevented tumour progression in KC-IL1β mice. B cells isolated from KC-IL1β mice had much higher expression of PD-L1, more regulatory B cells, impaired CD8+ T cell activity and promoted tumorigenesis. IL-35 was increased in the KC-IL1β pancreata, and depletion of IL-35 decreased the number of PD-L1+ B cells. Finally, in human PDAC samples, patients with PDAC with higher B-cell infiltration within tumours showed significantly shorter survival. CONCLUSION We show here that IL-1β promotes tumorigenesis in part by inducing an expansion of immune-suppressive B cells. These findings point to the growing significance of B suppressor cells in pancreatic tumorigenesis.
Collapse
Affiliation(s)
- Ryota Takahashi
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Marina Macchini
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
- Department of Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Masaki Sunagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Zhengyu Jiang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Takayuki Tanaka
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Giovanni Valenti
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Bernhard W Renz
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ruth A White
- Division of Hematology and Oncology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Yoku Hayakawa
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - C Benedikt Westphalen
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
- Department of Internal Medicine III, Hospital of the University of Munich, Munich, Germany
- Comprehensive Cancer Center Munich and German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Yagnesh Tailor
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Alina C Iuga
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Tamas A Gonda
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Jeanine Genkinger
- Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Kenneth P Olive
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
697
|
Schmiechen ZC, Stromnes IM. Mechanisms Governing Immunotherapy Resistance in Pancreatic Ductal Adenocarcinoma. Front Immunol 2021; 11:613815. [PMID: 33584701 PMCID: PMC7876239 DOI: 10.3389/fimmu.2020.613815] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/10/2020] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy with an overall 5-year survival rate of 10%. Disease lethality is due to late diagnosis, early metastasis and resistance to therapy, including immunotherapy. PDA creates a robust fibroinflammatory tumor microenvironment that contributes to immunotherapy resistance. While previously considered an immune privileged site, evidence demonstrates that in some cases tumor antigen-specific T cells infiltrate and preferentially accumulate in PDA and are central to tumor cell clearance and long-term remission. Nonetheless, PDA can rapidly evade an adaptive immune response using a myriad of mechanisms. Mounting evidence indicates PDA interferes with T cell differentiation into potent cytolytic effector T cells via deficiencies in naive T cell priming, inducing T cell suppression or promoting T cell exhaustion. Mechanistic research indicates that immunotherapy combinations that change the suppressive tumor microenvironment while engaging antigen-specific T cells is required for treatment of advanced disease. This review focuses on recent advances in understanding mechanisms limiting T cell function and current strategies to overcome immunotherapy resistance in PDA.
Collapse
Affiliation(s)
- Zoe C. Schmiechen
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Ingunn M. Stromnes
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, United States
- Center for Genome Engineering, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
698
|
Pham TND, Shields MA, Spaulding C, Principe DR, Li B, Underwood PW, Trevino JG, Bentrem DJ, Munshi HG. Preclinical Models of Pancreatic Ductal Adenocarcinoma and Their Utility in Immunotherapy Studies. Cancers (Basel) 2021; 13:cancers13030440. [PMID: 33503832 PMCID: PMC7865443 DOI: 10.3390/cancers13030440] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Immune checkpoint blockade has provided durable clinical responses in a number of human malignancies, but not in patients with pancreatic cancer. Efforts to understand mechanisms of resistance and increase efficacy of immune checkpoint blockade in pancreatic cancer require the use of appropriate preclinical models in the laboratory. Here, we discuss the benefits, caveats, and potentials for improvement of the most commonly used models, including murine-based and patient-derived models. Abstract The advent of immunotherapy has transformed the treatment landscape for several human malignancies. Antibodies against immune checkpoints, such as anti-PD-1/PD-L1 and anti-CTLA-4, demonstrate durable clinical benefits in several cancer types. However, checkpoint blockade has failed to elicit effective anti-tumor responses in pancreatic ductal adenocarcinoma (PDAC), which remains one of the most lethal malignancies with a dismal prognosis. As a result, there are significant efforts to identify novel immune-based combination regimens for PDAC, which are typically first tested in preclinical models. Here, we discuss the utility and limitations of syngeneic and genetically-engineered mouse models that are currently available for testing immunotherapy regimens. We also discuss patient-derived xenograft mouse models, human PDAC organoids, and ex vivo slice cultures of human PDAC tumors that can complement murine models for a more comprehensive approach to predict response and resistance to immunotherapy regimens.
Collapse
Affiliation(s)
- Thao N. D. Pham
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.A.S.); (C.S.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA;
- Correspondence: (T.N.D.P.); (H.G.M.); Tel.: +1-312-503-0312 (T.N.D.P.); +1-312-503-2301 (H.G.M.)
| | - Mario A. Shields
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.A.S.); (C.S.)
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA
| | - Christina Spaulding
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.A.S.); (C.S.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA;
| | - Daniel R. Principe
- Medical Scientist Training Program, University of Illinois, Chicago, IL 60612, USA;
| | - Bo Li
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Patrick W. Underwood
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA; (P.W.U.); (J.G.T.)
| | - Jose G. Trevino
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA; (P.W.U.); (J.G.T.)
| | - David J. Bentrem
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA;
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Hidayatullah G. Munshi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.A.S.); (C.S.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA;
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA
- Correspondence: (T.N.D.P.); (H.G.M.); Tel.: +1-312-503-0312 (T.N.D.P.); +1-312-503-2301 (H.G.M.)
| |
Collapse
|
699
|
Linares J, Marín-Jiménez JA, Badia-Ramentol J, Calon A. Determinants and Functions of CAFs Secretome During Cancer Progression and Therapy. Front Cell Dev Biol 2021; 8:621070. [PMID: 33553157 PMCID: PMC7862334 DOI: 10.3389/fcell.2020.621070] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple lines of evidence are indicating that cancer development and malignant progression are not exclusively epithelial cancer cell-autonomous processes but may also depend on crosstalk with the surrounding tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are abundantly represented in the TME and are continuously interacting with cancer cells. CAFs are regulating key mechanisms during progression to metastasis and response to treatment by enhancing cancer cells survival and aggressiveness. The latest advances in CAFs biology are pointing to CAFs-secreted factors as druggable targets and companion tools for cancer diagnosis and prognosis. Especially, extensive research conducted in the recent years has underscored the potential of several cytokines as actionable biomarkers that are currently evaluated in the clinical setting. In this review, we explore the current understanding of CAFs secretome determinants and functions to discuss their clinical implication in oncology.
Collapse
Affiliation(s)
- Jenniffer Linares
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Juan A. Marín-Jiménez
- Department of Medical Oncology, Catalan Institute of Oncology (ICO) - L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Badia-Ramentol
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Alexandre Calon
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| |
Collapse
|
700
|
Naruse M, Ochiai M, Sekine S, Taniguchi H, Yoshida T, Ichikawa H, Sakamoto H, Kubo T, Matsumoto K, Ochiai A, Imai T. Re-expression of REG family and DUOXs genes in CRC organoids by co-culturing with CAFs. Sci Rep 2021; 11:2077. [PMID: 33483567 PMCID: PMC7822883 DOI: 10.1038/s41598-021-81475-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
Organoids derived from epithelial tumors have recently been utilized as a preclinical model in basic and translational studies. This model is considered to represent the original tumor in terms of 3D structure, genetic and cellular heterogeneity, but not tumor microenvironment. In this study, we established organoids and paired cancer-associated fibroblasts (CAFs) from surgical specimens of colorectal carcinomas (CRCs), and evaluated gene expression profiles in organoids with and without co-culture with CAFs to assess interactions between tumor cells and CAFs in tumor tissues. We found that the expression levels of several genes, which are highly expressed in original CRC tissues, were downregulated in organoids but re-expressed in organoids by co-culturing with CAFs. They comprised immune response- and external stimulus-related genes, e.g., REG family and dual oxidases (DUOXs), which are known to have malignant functions, leading tumor cells to proliferative and/or anti-apoptotic states and drug resistant phenotypes. In addition, the degree of differential induction of REG1 and DUOX2 in the co-culture system varied depending on CAFs from each CRC case. In conclusion, the co-culture system of CRC organoids with paired CAFs was able to partially reproduce the tumor microenvironment.
Collapse
Affiliation(s)
- Mie Naruse
- Central Animal Division, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Masako Ochiai
- Central Animal Division, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shigeki Sekine
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hirokazu Taniguchi
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Teruhiko Yoshida
- Department of Clinical Genomics, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hitoshi Ichikawa
- Department of Clinical Genomics, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hiromi Sakamoto
- Department of Clinical Genomics, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takashi Kubo
- Department of Clinical Genomics, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Atsushi Ochiai
- Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Toshio Imai
- Central Animal Division, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|