701
|
Inhibition of Interferon Regulatory Factor-1 Expression Results in Predominance of Cell Growth Stimulatory Effects of Interferon-γ Due to Phosphorylation of Stat1 and Stat3. Blood 1997. [DOI: 10.1182/blood.v90.12.4749] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
AbstractInterferon-γ (IFN-γ) is a potent inhibitor of hematopoiesis in vitro and has been implicated in the pathophysiology of human bone marrow failure syndromes. IFN-γ both inhibits cell cycling and induces expression of the Fas-receptor, resulting in subsequent apoptosis of hematopoietic progenitor cells. IFN regulatory factor-1 (IRF-1) mediates some of these suppressive effects by activation of downstream inducible genes, such as double-stranded RNA-activatable protein kinase and inducible nitric oxide synthase. However, under certain experimental conditions, IFN-γ appears to stimulate proliferation of hematopoietic cells. Based on the hypothesis that IFN-γ–receptor triggering may activate diverse signaling cascades, we designed experiments to determine which intracellular mechanisms (in addition to the IRF-1 transduction pathway) influence the biologic effects of IFN-γ. Using antisense technique, we inhibited the IRF-1–mediated pathway in KG1a cells stimulated with IFN-γ. In contrast to the suppressive effects of IFN-γ observed in control cells, untreated and IFN-γ–treated KG-1a cells that were transduced with retroviral vectors expressing IRF-1 antisense mRNA showed enhanced proliferation. The increased growth rate was associated with decreased levels of IRF-1 mRNA and protein but unchanged levels of IRF-2. We inferred that IFN-γ could also activate a stimulatory transduction pathway that, under specific conditions, may control the cellular response to this cytokine. The family of Stat proteins is involved in signal transduction of hematopoietic growth factors. We showed that, in KG-1a cells, IFN-γ also induced phosphorylation of Stat1 and Stat3, whereas p42 MAP kinase was phosphorylated regardless of the presence of IFN-γ. Using electrophoresis mobility shift assays, IFN-γ enhanced Stat1-Stat1 homodimer and Stat1-Stat3 heterodimer formation, suggesting that, in addition to inhibitory signals mediated by IRF-1, IFN-γ may activate proliferative signals by phosphorylation of Stat1 and Stat3 proteins. The observations made in experiments with KG-1a cells were confirmed in primary hematopoietic cells. After inhibition of the IRF-1 pathway by transduction of an antisense IRF-1 retrovirus into human CD34+ cells, IFN-γ produced an aberrant stimulatory effect on hematopoietic colony formation. Conversely, in control vector-transduced CD34+ cells, the typical inhibitory response to IFN-γ was seen. Our results indicate that inhibitory cytokines such as IFN-γ may exhibit diverse biologic effects depending on the intracellular balance of transcriptional regulators, in turn influenced by the activation and differentiation status of the target cells.
Collapse
|
702
|
Abstract
This review focuses on known genes whose expression may be perturbed by teratogens during early embryogenesis (preorganogenesis). Teratogens may disrupt embryogenesis by modifying positional information. Genes controlling positional information include those specifying the primary body axes: anterior-posterior, dorsal-ventral, or left-right. These genes often encode transcription factors, whose regulation or activation can stimulate aberrant tissue differentiation and morphogenesis. Alternatively, teratogens may directly affect cell differentiation, proliferation, or apoptosis. Hydrophilic signalling molecules such as growth factors and hydrophobic molecules such as retinoids regulate these processes. The signalling pathways activated often induce the coordinate regulation of tissue specific gene expression. In addition to modifying individual signalling pathways, teratogens can synergize with or antagonize the effects of other teratogens through inappropriate interactions between signal transduction pathways. Since teratogens may often directly or indirectly perturb the expression of known or as yet undescribed developmentally critical genes, this review also provides a short description of techniques to identify genes whose expression is altered by teratogens.
Collapse
Affiliation(s)
- M B Rogers
- Department of Biology, University of South Florida, Tampa 33620-5150, USA.
| | | | | |
Collapse
|
703
|
Raitano AB, Whang YE, Sawyers CL. Signal transduction by wild-type and leukemogenic Abl proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1333:F201-16. [PMID: 9426204 DOI: 10.1016/s0304-419x(97)00023-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- A B Raitano
- Hematology-Oncology, Department of Medicine, UCLA School of Medicine, Los Angeles, CA 90095-1678, USA
| | | | | |
Collapse
|
704
|
Schweppe RE, Frazer-Abel AA, Gutierrez-Hartmann A, Bradford AP. Functional components of fibroblast growth factor (FGF) signal transduction in pituitary cells. Identification of FGF response elements in the prolactin gene. J Biol Chem 1997; 272:30852-9. [PMID: 9388230 DOI: 10.1074/jbc.272.49.30852] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Fibroblast growth factors (FGFs) have been implicated in pituitary lactotroph tumorigenesis; however, little is known about the molecular mechanisms of FGF signal transduction. We used a transient transfection approach, in GH4 cells, to identify components of the FGF signaling pathway leading to activation of the rat prolactin (rPRL) promoter. Using dominant-negative constructs of p21(Ras), Raf-1 kinase, and mitogen-activated protein (MAP) kinase, we show that FGF activation of the rPRL promoter is independent of Ras and Raf-1 but requires MAP kinase. Furthermore, MAP kinase but not Raf-1 kinase catalytic activity is stimulated by FGFs. The rPRL promoter FGF response maps to two Ets binding sites, centered at -212 (FRE1) and -96 (FRE2), and co-transfection of dominant-negative Ets inhibits FGF activation. FRE1 co-localizes with a composite, Ets/GHF-1, Ras response element. However, overexpression of Ets-1 and GHF-1, which potentiate the Ras response, inhibits FGF stimulation of the rPRL promoter, implying that Ras and FGF signaling pathways target distinct factors to elicit their effects. These data suggest that Ets factors serve to sort and integrate MAP kinase-dependent growth factor signals, allowing highly specific transcriptional responses to be mediated via the interaction of distinct Ets proteins and cofactors at common response elements.
Collapse
Affiliation(s)
- R E Schweppe
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, and the Colorado Cancer Center, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
705
|
Fritz G, Kaina B. rhoB encoding a UV-inducible Ras-related small GTP-binding protein is regulated by GTPases of the Rho family and independent of JNK, ERK, and p38 MAP kinase. J Biol Chem 1997; 272:30637-44. [PMID: 9388198 DOI: 10.1074/jbc.272.49.30637] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The small GTPase RhoB is immediate-early inducible by DNA damaging treatments and thus part of the early response of eukaryotic cells to genotoxic stress. To investigate the regulation of this cellular response, we isolated the gene for rhoB from a mouse genomic library. Sequence analysis of the rhoB gene showed that its coding region does not contain introns. The promoter region of rhoB harbors regulatory elements such as TATA, CAAT, and Sp1 boxes but not consensus sequences for AP-1, Elk-1, or c-Jun/ATF-2. The rhoB promoter was activated by UV irradiation, but not by 12-O-tetradecanoylphorbol-13-acetate treatment. rhoB promoter deletion constructs revealed a fragment of 0.17 kilobases in size which was sufficient in eliciting the UV response. This minimal promoter fragment contains TATA and CAAT boxes but no other known regulatory elements. Neither MEK inhibitor PD98059 nor p38 kinase inhibitor SB203580 blocked stimulation of rhoB by UVC (UV light, 254 nm) which indicates that ERK or p38 mitogen-activated protein (MAP) kinase are not involved in the UV induction of rhoB. Also, phosphatidylinositol 3-kinase inhibitor wortmannin, which blocks UV stimulation of both JNK and p38 MAP kinase, did not inhibit rhoB activation. Furthermore, activation of JNK by interleukin-1beta did not affect rhoB expression. These data indicate that JNK is not involved in the regulation of rhoB. Overexpression of wild-type Rac as well as the Rho guanine-dissociation inhibitor caused activation of rhoB. Wild-type RhoB inhibited both basal and UV-stimulated rhoB promoter activity, indicating a negative regulatory feedback by RhoB itself. The data provide evidence both for a signal transduction pathway independent of JNK, ERK, and p38 MAP kinase to be involved in the induction of rhoB by genotoxic stress, and furthermore, indicate autoregulation of rhoB.
Collapse
Affiliation(s)
- G Fritz
- Division of Applied Toxicology, Institute of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | | |
Collapse
|
706
|
Kiani A, Viola JP, Lichtman AH, Rao A. Down-regulation of IL-4 gene transcription and control of Th2 cell differentiation by a mechanism involving NFAT1. Immunity 1997; 7:849-60. [PMID: 9430230 DOI: 10.1016/s1074-7613(00)80403-3] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transcription factors of the NFAT family play a critical role in the immune response by activating the expression of cytokines and other inducible genes in antigen-stimulated cells. Here we show that a member of this family, NFAT1, is involved in down-regulating the late phase of IL-4 gene transcription, thus inhibiting T helper 2 responses. Whereas stimulated T cells from wild-type mice show a transient increase and then a rapid decline in the steady-state levels of IL-4 mRNA in vitro, the levels of IL-4 gene transcripts in NFAT1-deficient T cells are maintained at high levels under the same conditions. Consistent with this observation, NFAT1-/- mice are more susceptible to infection with Leishmania major. This report provides evidence that NFAT proteins regulate not only the initiation but also the termination of gene transcription.
Collapse
Affiliation(s)
- A Kiani
- The Center For Blood Research and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
707
|
Gomez del Arco P, Martínez-Martínez S, Calvo V, Armesilla AL, Redondo JM. Antioxidants and AP-1 activation: a brief overview. Immunobiology 1997; 198:273-8. [PMID: 9442398 DOI: 10.1016/s0171-2985(97)80047-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Activity of the transcription factor AP-1 is controlled by different MAPK cascades that regulate the different AP-1 components at the transcriptional and posttranscriptional level. Recently, AP-1 has been shown to behave as a redox-sensitive transcription factor that can be induced under both pro-oxidative and antioxidative conditions. In this overview we summarize the signaling pathways that converge on the activation of AP-1 and the components of these pathways that have been shown to be targets of antioxidants. The activation of AP-1 by antioxidants may account for the expression of a number of genes that mediate important functions under physiological conditions.
Collapse
|
708
|
Rus H, Niculescu F, Badea T, Shin ML. Terminal complement complexes induce cell cycle entry in oligodendrocytes through mitogen activated protein kinase pathway. IMMUNOPHARMACOLOGY 1997; 38:177-87. [PMID: 9476129 DOI: 10.1016/s0162-3109(97)00063-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sublytic complement attack through C5b-9 assembly induces oligodendrocytes (OLG) to express proto-oncogenes and to enter the cell cycle from resting G0/G1 phase to S phase. We have investigated whether cell cycle induction by C5b-9 is mediated by mitogen activated protein kinase (MAPK) pathway in OLG. C5b-9 but not C5b6 induced activation of both ERK1 and c-jun NH2 terminal kinases 1 (JNK1) in OLG. The increased ERK1 and JNK1 activities are transient, reaching a maximum around 20 min following exposure to C5b-9. Activation of Raf-1 and MEK1, upstream kinases of ERK1, was shown by increased Raf-1 kinase activity in anti-Raf-1 immunoprecipitates of OLG treated with C5b-9 and ERK1 activity that can be inhibited by PD098,059, a specific MEK1 inhibitor. Requirement for the ERK1 pathway in DNA synthesis was then evaluated using PD098,059. Enhanced DNA synthesis induced by serum complement was completely abolished when OLG were pretreated with PD098,059. On the other hand, c-fos mRNA expression induced by complement was inhibited only 50% by PD098,059, while the c-jun mRNA level was not affected by this MEK1 inhibitor. Interestingly, p70 S6 kinase, an important ribosomal kinase in mitogenesis, was also activated by C5b-9. These findings indicated that the MAPK pathways appears to play a major role in inducing OLG to enter the S phase of the cell cycle from the resting G1/G0 phase.
Collapse
Affiliation(s)
- H Rus
- University of Maryland, School of Medicine, Department of Pathology, Baltimore 21201, USA
| | | | | | | |
Collapse
|
709
|
Okuno H, Kanou S, Tokuyama W, Li YX, Miyashita Y. Layer-specific differential regulation of transcription factors Zif268 and Jun-D in visual cortex V1 and V2 of macaque monkeys. Neuroscience 1997; 81:653-66. [PMID: 9316018 DOI: 10.1016/s0306-4522(97)00221-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To investigate intracellular mechanisms of cortical layer-specific gene regulation, we quantitatively examined the expression of two transcription factors, Zif268 and JunD, and compared their expression levels in each layer of the primary visual cortex (VI) and visual area 2 (V2) of macaque monkeys (Macaca fuscata). The brain sections were immunohistochemically stained for determination of the percentage of Zif268- or JunD-expressing neurons in the total neuronal population. We found area- and layer-specific expression of these transcription factors; Zif268 tended to be expressed at high levels in layers on the parvocellular pathway in V1, whereas JunD did not show such an expression pattern. In V1, many Zif268-immunopositive neurons were observed in layers II/III, IVC beta and VI. The percentage of Zif268-immunopositive neurons was highest in layer IVC beta and lowest in layer IVC alpha. JunD-immunopositive neurons were fewest in layer IVC beta and most abundant in layer VI. In V2, the level of expression of Zif268 was almost the same as that of JunD in layer II/II. However, layer IV of V2 tended to contain more Zif268-immunopositive neurons than JunD-immunopositive neurons, whereas layer VI contained more JunD-immunopositive neurons than Zif268-immunopositive neurons. Although it has been reported that the same extracellular signals induce both Zif268 and JunD, the present results indicate that the expression of these transcription factors is differentially controlled in each layer of the primate visual cortical areas. Furthermore, the present results suggest that these transcription factors contribute to area- and layer-specific gene regulation by mediating transmission of extracellular signals to the nucleus via different intracellular signalling pathways.
Collapse
Affiliation(s)
- H Okuno
- Department of Physiology, University of Tokyo School of Medicine, Japan
| | | | | | | | | |
Collapse
|
710
|
Kraehenbuhl JP, Pringault E, Neutra MR. Review article: Intestinal epithelia and barrier functions. Aliment Pharmacol Ther 1997; 11 Suppl 3:3-8; discussion 8-9. [PMID: 9467973 DOI: 10.1111/j.1365-2036.1997.tb00803.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mucosal epithelia of the digestive tract acts as a selective barrier, permeable to ions, small molecules and macromolecules. These epithelial cells aid the digestion of food and absorption of nutrients. They contribute to the protection against pathogens and undergo continuous cell renewal which facilitates the elimination of damaged cells. Both innate and adaptive defence mechanisms protect the gastrointestinal-mucosal surfaces against pathogens. Interaction of microorganisms with epithelial cells triggers a host response by activating specific transcription factors which control the expression of chemokines and cytokines. This host response is characterized by the recruitment of macrophages and neutrophils at the site of infection. Disruption of epithelial signalling pathways that recruit migratory immune cells results in a chronic inflammatory response. The adaptive defence mechanism relies on the collaboration of epithelial cells (resident sampling system) with antigen-presenting and lymphoid cells (migratory sampling system); in order to obtain samples of foreign antigen, these samples must be transported across the barriers without affecting the integrity of the barrier. These sampling systems are regulated by both environmental and host factors. Fates of the antigen may differ depending on the way in which they cross the epithelial barrier, i.e. via interaction with motile dendritic cells or epithelial M cells in the follicle-associated epithelium.
Collapse
Affiliation(s)
- J P Kraehenbuhl
- Swiss Institute for Experimental Cancer Research and Institute of Biochemistry, University of Lausanne
| | | | | |
Collapse
|
711
|
Takeuchi Y, Yamada J, Yamada T, Todisco A. Functional role of extracellular signal-regulated protein kinases in gastric acid secretion. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:G1263-72. [PMID: 9435551 DOI: 10.1152/ajpgi.1997.273.6.g1263] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Epidermal growth factor (EGF) has acute inhibitory and chronic stimulatory effects on gastric acid secretion. Because a cascade of intracellular events culminating in the activation of a family of serine-threonine protein kinases called extracellular signal-regulated protein kinases (ERKs) is known to mediate the actions of EGF, we undertook studies to explore the functional role of the ERKs in gastric acid secretion. ERK2 was immunoprecipitated from cell lysates of highly purified (> 95%) gastric canine parietal cells, and its activity was quantified using in-gel kinase assays. Of the primary gastric secretagogues, carbachol was the most potent inducer of ERK2 activity. Gastrin and EGF had weaker stimulatory effects, whereas no induction was noted in response to histamine. The effect of carbachol appeared to be independent of Ca2+ signaling. PD-98059, a selective inhibitor of the upstream ERK activator mitogen-activated protein kinase/ERK kinase, dose-dependently inhibited both carbachol- and EGF-stimulated ERK2 activity, with a maximal effect observed between 50 and 100 microM. ERKs activation is required for induction of the early gene c-fos via phosphorylation of the transcription factor Elk-1 which binds to the c-fos serum response element (SRE). Carbachol stimulated a two- to threefold induction of luciferase activity in cultured parietal cells transfected with either a SRE-luciferase reporter plasmid or with a chimeric GAL4-ElkC expression vector and the 5 x GAL-luciferase reporter plasmid. To examine the significance of ERK activation in gastric acid secretion, we tested the effect of PD-98059 on carbachol-stimulated uptake of 14C-labeled aminopyrine (AP). Acute inhibition of the ERKs by PD-98059 led to a small increase in AP uptake and a complete reversal of the acute inhibitory effect of EGF on AP uptake induced by either carbachol or histamine. In contrast, exposure of the cells to PD-98059 for 16 h led to a reversal of the chronic stimulatory effect of EGF on AP uptake induced by carbachol. Our data led us to conclude that carbachol induces a cascade of events in parietal cells that results in ERK activation. Although the acute effect of the ERKs on gastric acid secretion appears to be inhibitory, the activation of transcription factors and of early gene expression could be responsible for its chronic stimulatory effects.
Collapse
Affiliation(s)
- Y Takeuchi
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor 48109, USA
| | | | | | | |
Collapse
|
712
|
Krook A, Whitehead JP, Dobson SP, Griffiths MR, Ouwens M, Baker C, Hayward AC, Sen SK, Maassen JA, Siddle K, Tavaré JM, O'Rahilly S. Two naturally occurring insulin receptor tyrosine kinase domain mutants provide evidence that phosphoinositide 3-kinase activation alone is not sufficient for the mediation of insulin's metabolic and mitogenic effects. J Biol Chem 1997; 272:30208-14. [PMID: 9374504 DOI: 10.1074/jbc.272.48.30208] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have recently reported (1) that two naturally occurring mutants of the insulin receptor tyrosine kinase domain, Arg-1174 --> Gln and Pro-1178 --> Leu (Gln-1174 and Leu1178, respectively), both found in patients with inherited severe insulin resistance, markedly impaired receptor tyrosine autophosphorylation, with both mutant receptors being unable to mediate the stimulation of glycogen synthesis or mitogenesis by insulin when expressed in Chinese hamster ovary cells. However, these mutations did not fully prevent IRS-1 phosphorylation in response to insulin in these cells, suggesting that IRS-1 alone may not be sufficient to mediate insulin's metabolic and mitogenic effects. In the present study, we have demonstrated that these mutations also impair the ability of the insulin receptor to activate the transcription factor Elk-1 and promote GLUT4 translocation to the plasma membrane. Although at low concentrations of insulin, the mutant receptors were impaired in their ability to stimulate the tyrosine phosphorylation of IRS-1, at higher insulin concentrations we confirmed that the cells expressing the mutant receptors showed significantly increased tyrosine phosphorylation of IRS-1 compared with parental nontransfected cells. In addition, at comparable insulin concentrations, the association of the p85alpha subunit of phosphoinositide 3-kinase (PI3-kinase) with IRS-1 and the enzymatic activity of IRS-1-associated PI3-kinase were significantly enhanced in cells expressing the mutant receptors. In contrast, no significant stimulation of the tyrosine phosphorylation of Shc, GTP loading of Ras, or mitogen-activated protein kinase phosphorylation was seen in cell lines expressing these mutant receptors. Thus, no activation of any measurable mitogenic or metabolic response was detectable, despite significant insulin-induced phosphorylation of IRS-1 and its association with PI3-kinase in cells stably expressing the mutant insulin receptors. These findings suggest that PI3-kinase activation alone may be insufficient to mediate a wide range of the metabolic and mitogenic effects of insulin. Additionally, the data provide support for the notion that insulin activation of Ras is more closely linked with Shc, and not IRS-1, phosphorylation.
Collapse
Affiliation(s)
- A Krook
- Department of Medicine, Cambridge University, Addenbrookes Hospital, Hills Road, CB2 2QR, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
713
|
Trosko JE, Inoue T. Oxidative stress, signal transduction, and intercellular communication in radiation carcinogenesis. Stem Cells 1997; 15 Suppl 2:59-67. [PMID: 9368287 DOI: 10.1002/stem.5530150710] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
During the evolution of multicellular organisms, survival in an aerobic environment came about by adaptive responses, both to the endogenous oxidative metabolism within the cells of the organism as well as the chemicals and low-level radiation to which they are exposed. In addition to defense mechanisms shared with single-cell organisms, multicellular organisms are equipped with gap junctions which allow electrotonic and/or metabolic synchronization of processes between coupled cells. The connexin genes, which code for the proteins comprising the gap junctions, provide homeostatic regulation of cell proliferation, differentiation, and adaptive responses of individual cells through a mechanism of "gap junctional intercellular communication." The biological consequences of the response of a multicellular organism to low-level radiation exceeding the background level of oxidative damage to a cell in a tissue could be apoptosis, cell proliferation, or cell differentiation.
Collapse
Affiliation(s)
- J E Trosko
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, USA
| | | |
Collapse
|
714
|
Sugimoto T, Stewart S, Guan KL. The calcium/calmodulin-dependent protein phosphatase calcineurin is the major Elk-1 phosphatase. J Biol Chem 1997; 272:29415-8. [PMID: 9367995 DOI: 10.1074/jbc.272.47.29415] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The transcription factor Elk-1 is a component of ternary complex factor and regulates gene expression in response to a wide variety of extracellular stimuli. Phosphorylation of the C-terminal domain of Elk-1, especially at serine 383, is important for its transactivation activity. Recently mitogen-activated protein kinases, such as extracellular signal-regulated kinase, stress-activated protein kinase, and p38 mitogen-activated protein kinase have been demonstrated to be Elk-1 kinases. However, negative regulators of Elk-1, such as protein phosphatases, still remain to be identified. Here we report that COS cell lysates were able to dephosphorylate an extracellular signal-regulated kinase-phosphorylated glutathione S-transferase-Elkc fusion protein, including serine 383. The phosphatase activity was inhibited by cyclosporin A (a calcineurin inhibitor) but not by okadaic acid (a PP1 and PP2A inhibitor). Purified calcineurin also could efficiently dephosphorylate glutathione S-transferase-Elkc in vitro. Pretreatment of COS cells with cyclosporin A significantly enhanced epidermal growth factor-induced serine 383 Elk-1 phosphorylation whereas ionomycin inhibited the Elk-1 phosphorylation. These data provide both in vitro and in vivo evidence that calcineurin is the major Elk-1 phosphatase and plays a critical role in Elk-1 regulation. The identification of calcineurin as the major Elk-1 phosphatase may provide a mechanism for Elk-1 regulation by Ca2+ signals as well as a possible biochemical basis for the neurotoxicity and nephrotoxicity of the immunosuppressant drug cyclosporin A.
Collapse
Affiliation(s)
- T Sugimoto
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
715
|
Calvo CR, Amsen D, Kruisbeek AM. Cytotoxic T lymphocyte antigen 4 (CTLA-4) interferes with extracellular signal-regulated kinase (ERK) and Jun NH2-terminal kinase (JNK) activation, but does not affect phosphorylation of T cell receptor zeta and ZAP70. J Exp Med 1997; 186:1645-53. [PMID: 9362525 PMCID: PMC2199134 DOI: 10.1084/jem.186.10.1645] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/1997] [Revised: 09/08/1997] [Indexed: 02/05/2023] Open
Abstract
Cytotoxic T lymphocyte antigen 4 (CTLA-4) is an important regulator of T cell homeostasis. Ligation of this receptor leads to prominent downregulation of T cell proliferation, mainly as a consequence of interference with IL-2 production. We here report that CTLA-4 engagement strikingly selectively shuts off activation of downstream T cell receptor (TCR)/CD28 signaling events, i.e., activation of the microtubule-associated protein kinase (MAPKs) ERK and JNK. In sharp contrast, proximal TCR signaling events such as ZAP70 and TCR-zeta chain phosphorylation are not affected by CTLA-4 engagement on activated T cells. Since activation of the ERK and JNK kinases is required for stimulation of interleukin (IL)-2 transcription, these data provide a molecular explanation for the block in IL-2 production imposed by CTLA-4.
Collapse
MESH Headings
- Abatacept
- Animals
- Antigens, CD
- Antigens, Differentiation/metabolism
- Antigens, Differentiation/physiology
- CTLA-4 Antigen
- Calcium-Calmodulin-Dependent Protein Kinases/immunology
- Calcium-Calmodulin-Dependent Protein Kinases/metabolism
- Enzyme Activation/immunology
- Immunoconjugates
- Interleukin-2/genetics
- JNK Mitogen-Activated Protein Kinases
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mitogen-Activated Protein Kinases
- Phosphorylation
- Protein-Tyrosine Kinases/immunology
- Protein-Tyrosine Kinases/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- Transcription, Genetic/immunology
- ZAP-70 Protein-Tyrosine Kinase
Collapse
Affiliation(s)
- C R Calvo
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam
| | | | | |
Collapse
|
716
|
Zhuang S, Hirai S, Mizuno K, Suzuki A, Akimoto K, Izumi Y, Yamashita A, Ohno S. Involvement of protein kinase C in the activation of extracellular signal-regulated kinase 1/2 by UVC irradiation. Biochem Biophys Res Commun 1997; 240:273-8. [PMID: 9388466 DOI: 10.1006/bbrc.1997.7474] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
UVC irradiation activates mitogen-activated protein kinases (MAPKs), including ERK, JNK, and P38. This study examined the role of protein kinase C (PKC) in the regulation of UVC-stimulated MAPKs activation. Either the depletion of PKC by prolonged treatment of cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) or the inhibition of PKC by a selective PKC inhibitor, UCN-01-ME, attenuated UVC-activation of ERK1/2, keeping the activation of JNK1/2 intact. However, K252a, a non-selective PKC inhibitor, inhibited the activation of both ERK1/2 and JNK1/2 by UVC. In three isoforms of PKC (alpha, delta, epsilon) examined, PKC epsilon shows the most evident translocation, a temporal association with cell membrane, upon the UVC irradiation of NIH 3T3 cells. These results suggest that PKC is acting in the UVC-dependent activation of ERK1/2, and PKC epsilon is one of the PKC isozymes playing such a role.
Collapse
Affiliation(s)
- S Zhuang
- Department of Molecular Biology, Yokohama City University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
717
|
Bennett AM, Tonks NK. Regulation of distinct stages of skeletal muscle differentiation by mitogen-activated protein kinases. Science 1997; 278:1288-91. [PMID: 9360925 DOI: 10.1126/science.278.5341.1288] [Citation(s) in RCA: 291] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The signal transduction pathway or pathways linking extracellular signals to myogenesis are poorly defined. Upon mitogen withdrawal from C2C12 myoblasts, the mitogen-activated protein kinase (MAPK) p42Erk2 is inactivated concomitant with up-regulation of muscle-specific genes. Overexpression of MAPK phosphatase-1 (MKP-1) inhibited p42Erk2 activity and was sufficient to relieve the inhibitory effects of mitogens on muscle-specific gene expression. Later during myogenesis, endogenous expression of MKP-1 decreased. MKP-1 overexpression during differentiation prevented myotube formation despite appropriate expression of myosin heavy chain. This indicates that muscle-specific gene expression is necessary but not sufficient to commit differentiated myocytes to myotubes and suggests a function for the MAPKs during the early and late stages of skeletal muscle differentiation.
Collapse
Affiliation(s)
- A M Bennett
- Cold Spring Harbor Laboratory, Demerec Building, 1 Bungtown Road, Post Office Box 100, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
718
|
Ji S. Isomorphism between cell and human languages: molecular biological, bioinformatic and linguistic implications. Biosystems 1997; 44:17-39. [PMID: 9350355 DOI: 10.1016/s0303-2647(97)00039-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The concept of cell language has been defined in molecular terms. The molecule-based cell language is shown to be isomorphic with the sound- and visual signal-based human language with respect to ten out of the 13 design features of human language characterized by Hockett. Biocybernetics, a general molecular theory of living systems developed over the past two and a half decades, is found to provide a physical theory underlying the phenomenon of cell language. The concept of cell language integrates bioenergetics and bioinformatics on the one hand and reductionistic and holistic experimental data on the other to account for living processes on the molecular level. The isomorphism between cell and human languages suggests that the DNA of higher eucaryotes contains two classes of genes--structural genes corresponding to the lexicon and 'spatiotemporal genes' corresponding to the grammar of cell language. The former is located in coding regions of DNA and the latter is predicted to reside primarily in noncoding regions. The grammar of cell language is identified with the mapping of the nucleotide sequences of DNA onto its 4-dimensional folding patterns that control the spatiotemporal evolution of gene expression. Such a mapping has been referred to as the second genetic code, in contrast to the first genetic code which maps nucleotide triplets onto amino acids. The cell language theory introduces into biology the linguistic principle of 'rule-governed creativity,' leading to the formulation of the concept of 'rule-governed creative molecules' or 'creations.' This concept sheds new light on molecular biology, bioinformatics, protein folding, and developmental biology. In addition, the cell language theory suggests that human language is ultimately founded on cell language.
Collapse
Affiliation(s)
- S Ji
- Department of Pharmacology and Toxicology, College of Pharmacy, Rutgers University, Piscataway, NJ 08855, USA
| |
Collapse
|
719
|
Okada S, Pessin JE. Insulin and epidermal growth factor stimulate a conformational change in Rap1 and dissociation of the CrkII-C3G complex. J Biol Chem 1997; 272:28179-82. [PMID: 9353263 DOI: 10.1074/jbc.272.45.28179] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Insulin and epidermal growth factor (EGF) stimulation of Chinese hamster ovary cells expressing the human insulin and EGF receptors resulted in a time-dependent decrease in the ability of a Rap1 antibody (amino acid epitope 121-136) to immunoprecipitate Rap1 from whole cell detergent extracts. This was due to an apparent masking of Rap1 as heat denaturation of the whole cell detergent extracts (5 min at 100 degrees C) resulted in equal immunoprecipitation of Rap1 with this epitope-specific antibody. The time-dependent change in Rap1 immunoreactivity was paralleled with an insulin-stimulated dissociation of the CrkII-C3G complex. Similarly, EGF treatment also resulted in a time-dependent dissociation of the CrkII-C3G complex that occurred concomitant with the masking of the 121-136 Rap1 epitope. Furthermore, pretreatment of the cells with the tyrosine kinase inhibitor, genistein, decreased both the basal and insulin-stimulated tyrosine phosphorylation of CrkII that directly correlated with the amount of CrkII that was immunoprecipitated with C3G. Together, these data suggest that insulin and EGF stimulation result in the dissociation of the CrkII-C3G complex, thereby inducing an apparent conformation change in Rap1.
Collapse
Affiliation(s)
- S Okada
- Department of Physiology and Biophysics, The University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
720
|
Abstract
The neurotrophins comprise a family of secreted proteins that elicit profound responses in cells of the developing and mature vertebrate nervous system including the regulation of neuronal survival and differentiation. The molecular mechanisms by which the neurotrophins exert their effects have been the subject of intense investigation. The neurotrophins elicit responses in neurons via members of the Trk family of receptors and the p75 neurotrophin receptor. Once activated, neurotrophin receptors trigger a large number of biochemical events that propagate the neurotrophin signal from the plasma membrane to the interior of the cell. An important target of the neurotrophin-induced signaling pathways is the nucleus, where neurotrophin-induced signals are coupled to alterations in gene expression. These neurotrophin-induced changes in gene expression are critical for many of the phenotypic effects of neurotrophins including the regulation of neuronal survival and differentiation.
Collapse
Affiliation(s)
- A Bonni
- Division of Neuroscience, Children's Hospital, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
721
|
Herdegen T, Blume A, Buschmann T, Georgakopoulos E, Winter C, Schmid W, Hsieh TF, Zimmermann M, Gass P. Expression of activating transcription factor-2, serum response factor and cAMP/Ca response element binding protein in the adult rat brain following generalized seizures, nerve fibre lesion and ultraviolet irradiation. Neuroscience 1997; 81:199-212. [PMID: 9300412 DOI: 10.1016/s0306-4522(97)00170-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The expression of the constitutive transcription factors activating transcription factor-2 (ATF-2), serum response factor (SRF) and cAMP/Ca response element binding factor (CREB), and the phosphorylation of SRF and CREB were studied in the untreated adult rat nervous system and following seizure activities and neurodegenerative stimuli. In the untreated rat, intense nuclear SRF immunoreactivity was present in the vast majority of neurons in the forebrain, cortex, striatum, amygdala and hippocampus, and in some scattered neurons in the medulla and spinal cord. In contrast, SRF immunoreactivity was absent in the midline areas of the forebrain, e.g., the globus pallidum and septum, and in the hypothalamus, thalamus, mesencephalon and motoneurons. Nuclear ATF-2 was expressed at high levels in apparently all neurons, but not glial cells, throughout the neuraxis except for those neuronal populations which exhibit a high basal level of c-Jun, i.e. dentate gyrus and the motoneurons of cranial and somatosensory neurons. CREB immunoreactivity was present at a rather uniform intensity in all neuronal and glial cells throughout the neuraxis. Two hours, but not 5 h or 24 h, following systemic application of kainic acid, an increase in SRF was detectable by western blot analysis in hippocampal and cortical homogenates whereas the expression of ATF-2 and CREB did not change. Phosphorylation of CREB at serine 133 and of SRF at serine 103 were studied with specific antisera. In untreated rats, intense phosphoCREB and phosphoSRF immunoreactivities labelled many glial cells and/or neurons with the highest levels in the dentate gyrus, the entorhinal cortex and the retrosplenial cortex. Following kainate-induced seizures, phosphoSRF-IR but not phosphoCREB-IR transiently increased between 0.5 h and 2 h. Following transection of peripheral or central nerve fibres such as optic nerve, medial forebrain bundle, vagal and facial nerve fibres, ATF-2 rapidly decreased in the axotomized neurons during that period when c-Jun was rapidly expressed. SRF remained unchanged and CREB disappeared in some axotomized subpopulations. Similar to axotomy, c-Jun increased and ATF-2 decreased in cultured adult dorsal root ganglion neurons following ultraviolet irradiation. The distribution of SRF and ATF-2 suggests that their putative target genes c-fos, junB, krox-24 and c-jun can be independently regulated from SRF and ATF-2. The suppression of ATF-2 and the expression of c-Jun following axotomy and ultraviolet irradiation might be part of a novel neuronal stress response in the brain that strongly resembles the stress response characterized in non-neuronal cells.
Collapse
Affiliation(s)
- T Herdegen
- Department of Pharmacology, University of Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
722
|
Chung J, Uchida E, Grammer TC, Blenis J. STAT3 serine phosphorylation by ERK-dependent and -independent pathways negatively modulates its tyrosine phosphorylation. Mol Cell Biol 1997; 17:6508-16. [PMID: 9343414 PMCID: PMC232504 DOI: 10.1128/mcb.17.11.6508] [Citation(s) in RCA: 498] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent studies have indicated that serine phosphorylation regulates the activities of STAT1 and STAT3. However, the kinase(s) responsible and the role of serine phosphorylation in STAT function remain unresolved. In the present studies, we examined the growth factor-dependent serine phosphorylation of STAT1 and STAT3. We provide in vitro and in vivo evidence that the ERK family of mitogen-activated protein (MAP) kinases, but not JNK or p38, specifically phosphorylate STAT3 at serine 727 in response to growth factors. Evidence for additional mitogen-regulated serine phosphorylation is also provided. STAT1 is a relatively poor substrate for all MAP kinases tested both in vitro and in vivo. STAT3 serine phosphorylation, not its tyrosine phosphorylation, results in retarded mobility of the STAT3 protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Importantly, serine 727 phosphorylation negatively modulates STAT3 tyrosine phosphorylation, which is required for dimer formation, nuclear translocation, and the DNA binding activity of this transcriptional regulator. Interestingly, the cytokine interleukin-6 also stimulates STAT3 serine phosphorylation, but in contrast to growth factors, this occurs by an ERK-independent process.
Collapse
Affiliation(s)
- J Chung
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
723
|
Wolfgang CD, Chen BP, Martindale JL, Holbrook NJ, Hai T. gadd153/Chop10, a potential target gene of the transcriptional repressor ATF3. Mol Cell Biol 1997; 17:6700-7. [PMID: 9343434 PMCID: PMC232524 DOI: 10.1128/mcb.17.11.6700] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recently, we demonstrated that the function of ATF3, a stress-inducible transcriptional repressor, is negatively regulated by a bZip protein, gadd153/Chop10. In this report, we present evidence that ATF3 can repress the expression of its own inhibitor, gadd153/Chop10. First, ATF3 represses a chloramphenicol acetyltransferase reporter gene driven by the gadd153/Chop10 promoter when assayed by a transfection assay in vivo and a transcription assay in vitro. Second, the gadd153/Chop10 promoter contains two functionally important binding sites for ATF3: an AP-1 site and a C/EBP-ATF composite site, a previously unidentified binding site for ATF3. The absence of either site reduces the ability of ATF3 to repress the promoter. Third, overexpression of ATF3 by transient transfection results in a reduction of the endogenous gadd153/Chop10 mRNA level. Fourth, as described previously, ATF3 is induced in the liver upon CCl4 treatment. Intriguingly, we show in this report that gadd153/Chop10 mRNA is not present in areas where ATF3 is induced. Taken together, these results strongly suggest that ATF3 represses the expression of gadd153/Chop10. The mutual negative regulation between ATF3 and gadd153/Chop10 is discussed.
Collapse
Affiliation(s)
- C D Wolfgang
- Ohio State Biochemistry Program, Ohio State University, Columbus 43210, USA
| | | | | | | | | |
Collapse
|
724
|
Higashita R, Li L, Van Putten V, Yamamura Y, Zarinetchi F, Heasley L, Nemenoff RA. Galpha16 mimics vasoconstrictor action to induce smooth muscle alpha-actin in vascular smooth muscle cells through a Jun-NH2-terminal kinase-dependent pathway. J Biol Chem 1997; 272:25845-50. [PMID: 9325315 DOI: 10.1074/jbc.272.41.25845] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Prolonged exposure of vascular smooth muscle cells (VSMC) to vasoconstrictors such as vasopressin or angiotensin II induces hypertrophy and increases expression of muscle-specific genes including smooth muscle alpha-actin (SM-alpha-actin). These vasoconstrictors signal through G-proteins, including members of the Gq family. To further investigate the role of Gq family members, VSMC were transfected with a constitutively active mutant of a Gq family member, Galpha16 (Galpha16Q212L). Stable expression of Galpha16Q212L persistently stimulated phospholipase C, resulting in increased basal levels of inositol phosphates. These cells were hypertrophied and expressed elevated levels of SM-alpha-actin compared with wild-type VSMC or cells transfected with a control plasmid (Neo). SM-alpha-actin promoter activity was markedly increased in cells stably or transiently expressing Galpha16Q212L. Basal c-Jun-NH2-terminal kinase (JNK) activity was increased 3-9-fold in cells stably expressing Galpha16Q212L, while basal activity of the p42/44 mitogen-activated protein kinases (ERKs) was unaffected. Transient expression of a kinase inactive JNK kinase partially inhibited induction of SM-alpha-actin promoter activity in response to vasoconstrictors or expression of Galpha16Q212L. These results indicate that expression of constitutively active Galpha16 in VSMC mimics the effects of vasoconstrictors on hypertrophy and muscle-specific gene expression, and activation of JNK may play a role in these responses.
Collapse
Affiliation(s)
- R Higashita
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | | | |
Collapse
|
725
|
Kretzschmar M, Doody J, Massagué J. Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1. Nature 1997; 389:618-22. [PMID: 9335504 DOI: 10.1038/39348] [Citation(s) in RCA: 685] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The growth factor TGF-beta, bone morphogenetic proteins (BMPs) and related factors regulate cell proliferation, differentiation and apoptosis, controlling the development and maintenance of most tissues. Their signals are transmitted through the phosphorylation of the tumour-suppressor SMAD proteins by receptor protein serine/threonine kinases (RS/TKs), leading to the nuclear accumulation and transcriptional activity of SMAD proteins. Here we report that Smadl, which mediates BMP signals, is also a target of mitogenic growth-factor signalling through epidermal growth factor and hepatocyte growth factor receptor protein tyrosine kinases (RTKs). Phosphorylation occurs at specific serines within the region linking the inhibitory and effector domains of Smad1, and is catalysed by the Erk family of mitogen-activated protein kinases. In contrast to the BMP-stimulated phosphorylation of Smad1, which affects carboxy-terminal serines and induces nuclear accumulation of Smad1, Erk-mediated phosphorylation specifically inhibits the nuclear accumulation of Smad1. Thus, Smadl receives opposing regulatory inputs through RTKs and RS/TKs, and it is this balance that determines the level of Smad1 activity in the nucleus, and so possibly the role of Smad1 in the control of cell fate.
Collapse
Affiliation(s)
- M Kretzschmar
- Cell Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | |
Collapse
|
726
|
Li D, Lin HH, McMahon M, Ma H, Ann DK. Oncogenic raf-1 induces the expression of non-histone chromosomal architectural protein HMGI-C via a p44/p42 mitogen-activated protein kinase-dependent pathway in salivary epithelial cells. J Biol Chem 1997; 272:25062-70. [PMID: 9312114 DOI: 10.1074/jbc.272.40.25062] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The enzyme activity of mitogen-activated protein kinase (MAP kinase) increases in response to agents acting on a variety of cell surface receptors, including receptors linked to heterotrimeric G proteins. In this report, we demonstrated that Raf-1 protein kinase activity in the mouse parotid glands was induced by chronic isoproterenol administration in whole animals. To investigate the molecular nature underlying cellular responses to Raf-1 activation, we have stably transfected rat salivary epithelial Pa-4 cells with human Raf-1-estrogen receptor fusion gene (DeltaRaf-1:ER) and used mRNA differential display in search of messages induced by DeltaRaf-1:ER activation. Through this approach, the gene encoding non-histone chromosomal protein HMGI-C was identified as one of the target genes activated by oncogenic Raf-1 kinase. Activation of Raf-1 kinase resulted in a delayed and sustained increase of HMGI-C expression in the Pa-4 cells. The induction of HMGI-C mRNA level is sensitive to both the protein synthesis inhibitor cycloheximide and transcription inhibitor actinomycin D. The role of the extracellular signal-related kinase (ERK) signaling pathway in the HMGI-C induction was highlighted by the result that the MAP kinase kinase (MEK) inhibitor, PD 98059, blocked DeltaRaf-1:ER- and 12-O-tetradecanoylphorbol-13-acetate-stimulated HMGI-C induction. Altogether, these findings support the notion that the Raf/MEK/ERK signaling module, at least in part, regulates transcriptional activation of the chromosomal architectural protein HMGI-C.
Collapse
Affiliation(s)
- D Li
- Department of Molecular Pharmacology and Toxicology, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | |
Collapse
|
727
|
Vishnevetsky M, Ovadis M, Itzhaki H, Vainstein A. CHRC, encoding a chromoplast-specific carotenoid-associated protein, is an early gibberellic acid-responsive gene. J Biol Chem 1997; 272:24747-50. [PMID: 9312067 DOI: 10.1074/jbc.272.40.24747] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CHRC, a corolla-specific carotenoid-associated protein, is a major component of carotenoid-lipoprotein complexes in Cucumis sativus chromoplasts. Using an in vitro flower bud culture system that mimics in vivo flower development, CHRC mRNA levels in corollas were shown to be specifically up-regulated by gibberellic acid. The response to gibberellic acid was very rapid (within 20 min) and insensitive to protein synthesis inhibition by cycloheximide. Abscisic acid, known to antagonize gibberellin in many developmental systems, strongly down-regulated CHRC mRNA levels. The gibberellin synthesis inhibitor paclobutrazol exhibited a similar negative effect on CHRC expression. Inclusion of exogenous gibberellic acid into the in vitro bud culture system with the paclobutrazol not only prevented the CHRC mRNA down-regulation, it up-regulated transcript accumulation to the level of gibberellic acid-treated corollas. CHRC mRNA accumulation in response to gibberellic acid displayed a dose-dependent increase up to 10(-4) M gibberellic acid. The up-regulation could be detected with as little as 10(-7) M gibberellic acid. Based on these data, we suggest that CHRC is the first structural gene identified to date whose expression is regulated by gibberellic acid in a primary fashion. The critical role of the rapid response of CHRC to gibberellic acid in aiding carotenoid sequestration while preserving chromoplast structural organization is discussed.
Collapse
Affiliation(s)
- M Vishnevetsky
- Kennedy Leigh Centre for Horticultural Research and The Otto Warburg Center for Biotechnology in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
728
|
Todisco A, Takeuchi Y, Urumov A, Yamada J, Stepan VM, Yamada T. Molecular mechanisms for the growth factor action of gastrin. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:G891-8. [PMID: 9357832 DOI: 10.1152/ajpgi.1997.273.4.g891] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have previously observed that gastrin has a cholecystokinin B (CCK-B) receptor-mediated growth-promoting effect on the AR42J rat pancreatic acinar cell line and that this effect is paralleled by induction of expression of the early response gene c-fos. We undertook these experiments to elucidate the mechanism for induction of c-fos and the linkage of this action to the trophic effects of gastrin. Gastrin (0.1-10 nM) dose dependently induced luciferase activity in AR42J cells transfected with a construct consisting of a luciferase reporter gene coupled to the serum response element (SRE) of the c-fos promoter. This effect was blocked by the specific CCK-B receptor antagonist D2 but not by the specific CCK-A receptor antagonist L-364,718 or by pertussis toxin, indicating that gastrin targets the SRE via specific CCK-B receptors through a mechanism independent of Gi. Inhibition of protein kinase C (PKC) either by prolonged (24 h) exposure of the cells to the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (100 nM) or by incubation with the selective inhibitor GF-109203X (3.5 microM) resulted in an 80% reduction in luciferase activity. Similar results were observed in the presence of the specific extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitor PD-98059 (50 microM). We measured ERK2 activity in AR42J cells via in-gel kinase assays and observed that gastrin (1 pM-100 nM) induced ERK2 enzyme activity in a dose-dependent manner. Addition of GF-109203X and PD-98059, either alone or in combination, produced, respectively, partial and total inhibition of gastrin-induced ERK2 activity. Gastrin induction of ERK2 activity also resulted in a threefold increase in the transcriptional activity of Elk-1, a factor known to bind to the c-fos SRE and to be phosphorylated and activated by ERK2. PD-98059 blocked the growth-promoting effect of gastrin on the AR42J cells, demonstrating that this effect depends on activation of MEK. Our data lead us to conclude that the trophic actions of gastrin are mediated by ERK2-induced c-fos gene expression via PKC-dependent and -independent pathways.
Collapse
Affiliation(s)
- A Todisco
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor 48109, USA
| | | | | | | | | | | |
Collapse
|
729
|
Vanderkuur JA, Butch ER, Waters SB, Pessin JE, Guan KL, Carter-Su C. Signaling molecules involved in coupling growth hormone receptor to mitogen-activated protein kinase activation. Endocrinology 1997; 138:4301-7. [PMID: 9322943 DOI: 10.1210/endo.138.10.5453] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have shown previously that GH stimulates the mitogen-activated protein (MAP) kinases designated ERKs (extracellular signal-regulated kinases) 1 and 2. To examine pathways coupling GH receptor (GHR) to MAP kinase activation, we have determined the effects of GH on SHC-growth factor receptor bound 2-son of Sevenless (SHC-Grb2-SOS) association and activation of Ras, Raf, and MAP-ERK kinase (MEK). GH promoted the rapid, transient association of SHC with the Grb2-SOS complex, which correlated with the time course of Ras, Raf, and MEK activation. Despite the continuous presence of GH, these activation events were transient with Ras, Raf, and MEK returning to near basal activity by 15 or 30 min. The inactivation of Ras, Raf, and MEK directly correlated with the serine/threonine phosphorylation of SOS and dissociation of SOS from Grb2 but not Grb2 from tyrosine-phosphorylated SHC. Phosphorylation was blocked by the MEK inhibitor, PD98059. Based upon the established functions of the MAP kinase pathway, these data indicate that GH stimulation results in the assembly of a SHC-Grb2-SOS complex that serves to activate Ras and thereby engage the Raf-MEK-ERK pathway. Activation of this pathway generates a feedback kinase cascade that phosphorylates SOS resulting in the dissociation of SHC-Grb2 complexes from SOS, thereby causing a more rapid termination of the signaling pathway than would result from SHC dephosphorylation.
Collapse
Affiliation(s)
- J A Vanderkuur
- Department of Physiology, The University of Michigan Medical School, Ann Arbor 48109-0622, USA
| | | | | | | | | | | |
Collapse
|
730
|
Abstract
The knowledge accumulated about the biochemistry of the synapsis in the last decades completely changes the notion of brain processing founded exclusively over an electrical mechanism, toward that supported by a complex chemical message exchange occurring both locally, at the synaptic site, as well as at other localities, depending on the solubility of the involved chemical substances in the extracellular compartment. These biochemical transactions support a rich symbolic processing of the information both encoded by the genes and provided by actual data collected from the surrounding environment, by means of either special molecular or cellular receptor systems. In this processing, molecules play the role of symbols and chemical affinity shared by them specifies the syntax for symbol manipulation in order to process and to produce chemical messages. In this context, neurons are conceived as message-exchanging agents. Chemical strings are produced and stored at defined places, and ionic currents are used to speed up message delivery. Synaptic transactions can no longer be assumed to correspond to a simple process of propagating numbers powered by a factor measuring the presynaptic capacity to influence the postsynaptic electrical activity, but they must be modeled by more powerful formal tools supporting both numerical and symbolic calculations. It is proposed here that formal language theory is the adequate mathematical tool to handle such symbolic processing. The purpose of the present review is therefore: (a) to discuss the relevant and recent literature about trophic factors, signal transduction mechanisms, neuromodulators and neurotransmitters in order (b) to point out the common features of these correlated processes; and (c) to show how they may be organized into a formal model supported by the theory of fuzzy formal languages (d) to model the brain as a distributed intelligent problem solver.
Collapse
Affiliation(s)
- A F Rocha
- RANI-Research on Artificial and Natural Intelligence, UNICAMP Brazil, Jundiaí, Brazil.
| |
Collapse
|
731
|
Abraham ST, Benscoter HA, Schworer CM, Singer HA. A role for Ca2+/calmodulin-dependent protein kinase II in the mitogen-activated protein kinase signaling cascade of cultured rat aortic vascular smooth muscle cells. Circ Res 1997; 81:575-84. [PMID: 9314839 DOI: 10.1161/01.res.81.4.575] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Exposure of cultured rat aortic vascular smooth muscle (VSM) cells to the Ca2+ ionophore ionomycin produced an increase in extracellular signal-regulated kinase 1/2 (ERK1/2) activity that was maximal between 2 and 5 minutes but then declined to basal values within 20 minutes of stimulation. Elevation of [Ca2+]i in VSM cells leads to an even more rapid activation of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II); thus, it was postulated that the Ca(2+)-dependent component of ERK1/2 activation was mediated by CaM kinase II. Transient ERK1/2 activation by ionomycin was almost completely abolished by pretreating cells with 30 mumol/L KN-93, a CaM kinase II inhibitor. Treatment of cells with KN-93 did not antagonize the ability of ionomycin to mobilize intracellular Ca2+ but prevented CaM kinase II and ERK1/2 activation with almost identical potencies. Consistent with a role for Ca2+ and calmodulin in intracellular Ca(2+)-induced activation of ERK, cells pretreated with calmodulin inhibitors (W-7 or calmidazolium) exhibited an attenuated ERK response to ionomycin. ERK1/2 activation in response to phorbol esters and platelet-derived growth factor were not significantly affected by KN-93, whereas the response to angiotensin II and thrombin were attenuated by 60% and 40%, respectively. Transient expression of wild-type delta 2 CaM kinase II in COS-7 cells resulted in increased ERK2 activity, whereas coexpression of wild-type and a kinase-negative mutant resulted in a diminution of this response. These data suggest that regulation of cellular responses by Ca(2+)-dependent pathways in VSM cells may be mediated in part by CaM kinase II-dependent activation of ERK1/2.
Collapse
Affiliation(s)
- S T Abraham
- Weis Center for Research, Geisinger Clinic, Danville, Pa, USA
| | | | | | | |
Collapse
|
732
|
Motevalli M, Goldschmidt-Clermont PJ, Virgil D, Kwiterovich PO. Abnormal protein tyrosine phosphorylation in fibroblasts from hyperapobetalipoproteinemia subjects. J Biol Chem 1997; 272:24703-9. [PMID: 9305942 DOI: 10.1074/jbc.272.39.24703] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The stimulatory effects of three normal human serum basic proteins (BP), BP I (Mr 14,000, pI 9.10), BP II (Mr 27, 500, pI 8.48), and BP III (Mr 55,000, pI 8.73) on cellular triglyceride and cholesterol formation require intact protein-tyrosine kinase phosphorylation (TKP). Here we examined whether there is an abnormality in TKP in cultured fibroblasts from 11 patients with hyperapobetalipoproteinemia (hyperapoB) that manifest two acylation-stimulatory defects, decreased stimulation of triglyceride synthesis by BP I but enhanced formation of cholesterol by BP II. Soluble and insoluble proteins in Triton X-100 extracts were isolated by immunoprecipitation with a monoclonal anti-phosphotyrosine antibody (MAPA) bound to agarose beads and by ultracentrifugation, respectively, from confluent fibroblasts after incubation for 24 h in supplemented serum-free and lipid-free medium (DMEM/F12). Western blots of insoluble proteins showed that group (Gp) II (Mr 36,000-55,000) and Gp III (Mr 14,000-35,000) from hyperapoB cells, grown in DMEM/F12 medium without BP, had significantly decreased reactivity to MAPA. No significant differences in reactivity to MAPA were detected between normal and hyperapoB cells for Gp I (Mr 97-120,000). BP II, but not BP I or BP III, reversed the decreased reactivity of Gp II and Gp III to MAPA in hyperapoB cells. Sodium vanadate, an inhibitor of phosphotyrosine phosphatases, did not reverse the deficiency in TKP or the 50% deficiency in the stimulation of mass triglyceride by BP I in hyperapoB cells. Tyrosine-phosphorylated Erk-2, a mitogen-activated protein kinase, identified as one of the proteins in Gp II, was significantly decreased in hyperapoB cells. These results provide further evidence for abnormal protein TKP in hyperapoB cells and suggest a possible link between atherosclerotic changes in hyperapoB patients and growth factors upstream from mitogen-activated protein kinase.
Collapse
Affiliation(s)
- M Motevalli
- Lipid Research Atherosclerosis Unit, Bernard Laboratory, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-3654, USA
| | | | | | | |
Collapse
|
733
|
Affiliation(s)
- M B Rogers
- Department of Biology, University of South Florida Tampa 33620-5150, USA
| |
Collapse
|
734
|
Racke FK, Lewandowska K, Goueli S, Goldfarb AN. Sustained activation of the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway is required for megakaryocytic differentiation of K562 cells. J Biol Chem 1997; 272:23366-70. [PMID: 9287350 DOI: 10.1074/jbc.272.37.23366] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The extracellular signal-regulated kinase (ERK), originally identified as a participant in mitogenic signaling, has recently been implicated in the signaling of cellular differentiation. To examine the role of the ERK/MAP kinase pathway in megakaryocytic differentiation of K562 cells, the effects of 12-O-tetradecanoylphorbol-13-acetate (TPA) and bryostatin on ERK activation were determined. Both TPA and bryostatin are known to activate PKC but paradoxically have opposing effects on megakaryocytic differentiation. TPA, a differentiation inducer, caused sustained activation of ERK (>24 h), whereas bryostatin, a differentiation blocker, only transiently activated ERK ( approximately 6 h) and attenuated the activation of ERK by TPA. To confirm a requirement for sustained ERK activation for megakaryocytic differentiation, PD098059, a synthetic inhibitor of the MAP kinase kinase 1 (MEK1) was employed. Introduction of PD098059 at any time during the first 18 h of TPA treatment completely abrogated megakaryocytic differentiation of K562 cells. After 24 h of TPA treatment, introduction of PD098059 failed to block differentiation. Differentiation blockade by PD098059 occurred via inhibition of MEK because transfection of a constitutively active mutant of MEK2 could override the PD098059 blockade. Experiments with conditioned media suggested that sustained activation of the ERK/MAP kinase pathway promoted the autocrine secretion of megakaryocytic lineage determination factors.
Collapse
Affiliation(s)
- F K Racke
- Institute of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4943, USA
| | | | | | | |
Collapse
|
735
|
Müller JM, Krauss B, Kaltschmidt C, Baeuerle PA, Rupec RA. Hypoxia induces c-fos transcription via a mitogen-activated protein kinase-dependent pathway. J Biol Chem 1997; 272:23435-9. [PMID: 9287359 DOI: 10.1074/jbc.272.37.23435] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is a pathophysiological condition that occurs during injury, ischemia, and stroke. It is characterized by a decrease of reactive oxygen intermediates and a change of the intracellular redox level. In tumors hypoxia is regarded as a trigger for enhanced growth and metastasis. Here we report that in HeLa cells, hypoxic conditions induce the transcriptional activation of c-fos transcription via the serum response element. Mutations in the binding site for the ternary complex factor Elk-1 and the serum response factor abolished this induction, indicating that a ternary complex at the serum response element is necessary for the induction of the c-fos gene under hypoxia. The transcription factor Elk-1 was covalently modified by phosphorylation in response to hypoxia. Furthermore this hyperphosphorylation of Elk-1, the activation of mitogen-activated protein kinase (MAPK), and the induction of c-fos transcripts were blocked by PD98059, a specific inhibitor of mitogen-activated protein kinase kinase/extracellular signal-regulated protein kinase kinase 1. An in vitro kinase assay with Elk-1 as substrate showed that MAPK is activated under hypoxia. The activation of MAPK corresponds temporally with the phosphorylation and activation of Elk-1. Thus, a decrease of the intracellular reactive oxygen intermediate level by hypoxia induces c-fos via the MAPK pathway. These results suggest that the intracellular redox levels may be directly coupled to tumor growth, invasion, and metastasis via Elk-1-dependent induction of c-Fos controlled genes.
Collapse
Affiliation(s)
- J M Müller
- Institute of Biochemistry and Molecular Biology, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
736
|
Kirkwood KL, Homick K, Dragon MB, Bradford PG. Cloning and characterization of the type I inositol 1,4,5-trisphosphate receptor gene promoter. Regulation by 17beta-estradiol in osteoblasts. J Biol Chem 1997; 272:22425-31. [PMID: 9278393 PMCID: PMC2754576 DOI: 10.1074/jbc.272.36.22425] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The inositol 1,4,5-trisphosphate (InsP3) receptor is essential for signal Ca2+ release from intracellular stores and for capacitative Ca2+ entry. We have isolated the promoter and proximal DNA segments of the human type I InsP3 receptor gene. Transcription initiation in human G-292 osteosarcoma and HL-60 promyelocytic leukemia cells was shown to occur predominantly from an adenine residue located 39 base pairs downstream of a consensus TATA box element. Upstream DNA including the TATA box promoted directional transcription of a chloramphenicol acetyltransferase reporter gene when transfected into G-292 cells. A negative regulatory element in the distal promoter and a positive element in the proximal region were identified by deletion mapping and transcription assays. The proximal region enhanced transcription in response to 12-O-tetradecanoylphorbol-13-acetate or serum, but conferred transcriptional repression in response to 1,25-dihydroxyvitamin D3 or 17beta-estradiol. The repressive effect of 17beta-estradiol was mediated by the nuclear estrogen receptor, as estrogen-dependent transcriptional repression was inhibited by the antiestrogen tamoxifen and the estrogen receptor antagonist ICI 182,780. This is the first study of the type I InsP3 receptor gene promoter, and the results suggest a mechanism by which chronic estrogen treatment of osteoblasts affects type I InsP3 receptor gene expression, signal transduction, and secretion.
Collapse
MESH Headings
- Base Sequence
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Cloning, Molecular
- Estradiol/analogs & derivatives
- Estradiol/pharmacology
- Estrogen Antagonists/pharmacology
- Fulvestrant
- Gene Expression Regulation/drug effects
- Humans
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Molecular Sequence Data
- Osteoblasts/drug effects
- Osteoblasts/metabolism
- Promoter Regions, Genetic
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Tamoxifen/pharmacology
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Keith L. Kirkwood
- Department of Oral Biology, School of Dental Medicine, State University of New York, Buffalo, New York 14214-3000
- Center for the Molecular Mechanisms of Disease and Aging, State University of New York, Buffalo, New York 14214-3000
| | - Kristen Homick
- Howard Hughes Medical Institute Undergraduate Biological Sciences Education Program, State University of New York, Buffalo, New York 14214-3000
| | - Marc B. Dragon
- Howard Hughes Medical Institute Undergraduate Biological Sciences Education Program, State University of New York, Buffalo, New York 14214-3000
| | - Peter G. Bradford
- Center for the Molecular Mechanisms of Disease and Aging, State University of New York, Buffalo, New York 14214-3000
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214-3000
- To whom correspondence should be addressed: Dept. of Pharmacology and Toxicology, State University of New York, Buffalo, NY 14214-3000. Fax: 716-829-2801; E-mail:
| |
Collapse
|
737
|
Song HY, Régnier CH, Kirschning CJ, Goeddel DV, Rothe M. Tumor necrosis factor (TNF)-mediated kinase cascades: bifurcation of nuclear factor-kappaB and c-jun N-terminal kinase (JNK/SAPK) pathways at TNF receptor-associated factor 2. Proc Natl Acad Sci U S A 1997; 94:9792-6. [PMID: 9275204 PMCID: PMC23270 DOI: 10.1073/pnas.94.18.9792] [Citation(s) in RCA: 459] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
TNF-induced activation of the transcription factor NF-kappaB and the c-jun N-terminal kinase (JNK/SAPK) requires TNF receptor-associated factor 2 (TRAF2). The NF-kappaB-inducing kinase (NIK) associates with TRAF2 and mediates TNF activation of NF-kappaB. Herein we show that NIK interacts with additional members of the TRAF family and that this interaction requires the conserved "WKI" motif within the TRAF domain. We also investigated the role of NIK in JNK activation by TNF. Whereas overexpression of NIK potently induced NF-kappaB activation, it failed to stimulate JNK activation. A kinase-inactive mutant of NIK was a dominant negative inhibitor of NF-kappaB activation but did not suppress TNF- or TRAF2-induced JNK activation. Thus, TRAF2 is the bifurcation point of two kinase cascades leading to activation of NF-kappaB and JNK, respectively.
Collapse
Affiliation(s)
- H Y Song
- Tularik, Two Corporate Drive, South San Francisco, CA 94080, USA
| | | | | | | | | |
Collapse
|
738
|
Woods D, Parry D, Cherwinski H, Bosch E, Lees E, McMahon M. Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol Cell Biol 1997; 17:5598-611. [PMID: 9271435 PMCID: PMC232408 DOI: 10.1128/mcb.17.9.5598] [Citation(s) in RCA: 526] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Raf family of protein kinases display differences in their abilities to promote the entry of quiescent NIH 3T3 cells into the S phase of the cell cycle. Although conditional activation of deltaA-Raf:ER promoted cell cycle progression, activation of deltaRaf-1:ER and deltaB-Raf:ER elicited a G1 arrest that was not overcome by exogenously added growth factors. Activation of all three deltaRaf:ER kinases led to elevated expression of cyclin D1 and cyclin E and reduced expression of p27Kip1. However, activation of deltaB-Raf:ER and deltaRaf-1:ER induced the expression of p21Cip1, whereas activation of deltaA-Raf:ER did not. A catalytically potentiated form of deltaA-Raf:ER, generated by point mutation, strongly induced p21Cip1 expression and elicited cell cycle arrest similarly to deltaB-Raf:ER and deltaRaf-1:ER. These data suggested that the strength and duration of signaling by Raf kinases might influence the biological outcome of activation of this pathway. By titration of deltaB-Raf:ER activity we demonstrated that low levels of Raf activity led to activation of cyclin D1-cdk4 and cyclin E-cdk2 complexes and to cell cycle progression whereas higher Raf activity elicited cell cycle arrest correlating with p21Cip1 induction and inhibition of cyclin-cdk activity. Using green fluorescent protein-tagged forms of deltaRaf-1:ER in primary mouse embryo fibroblasts (MEFs) we demonstrated that p21Cip1 was induced by Raf in a p53-independent manner, leading to cell cycle arrest. By contrast, activation of Raf in p21Cip1(-/-) MEFs led to a robust mitogenic response that was similar to that observed in response to platelet-derived growth factor. These data indicate that, depending on the level of kinase activity, Raf can elicit either cell cycle progression or cell cycle arrest in mouse fibroblasts. The ability of Raf to elicit cell cycle arrest is strongly associated with its ability to induce the expression of the cyclin-dependent kinase inhibitor p21Cip1 in a manner that bears analogy to alpha-factor arrest in Saccharomyces cerevisiae. These data are consistent with a role for Raf kinases in both proliferation and differentiation of mammalian cells.
Collapse
Affiliation(s)
- D Woods
- Department of Cell Signaling, DNAX Research Institute, Palo Alto, California 94304, USA
| | | | | | | | | | | |
Collapse
|
739
|
Taylor JM, Dupont-Versteegden EE, Davies JD, Hassell JA, Houlé JD, Gurley CM, Peterson CA. A role for the ETS domain transcription factor PEA3 in myogenic differentiation. Mol Cell Biol 1997; 17:5550-8. [PMID: 9271430 PMCID: PMC232403 DOI: 10.1128/mcb.17.9.5550] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Activation of adult myoblasts called satellite cells during muscle degeneration is an important aspect of muscle regeneration. Satellite cells are believed to be the only myogenic stem cells in adult skeletal muscle and the source of regenerating muscle fibers. Upon activation, satellite cells proliferate, migrate to the site of degeneration, and become competent to fuse and differentiate. We show here that the transcription factor polyomavirus enhancer activator 3 (PEA3) is expressed in adult myoblasts in vitro when they are proliferative and during the early stages of differentiation. Overexpression of PEA3 accelerates differentiation, whereas blocking of PEA3 function delays myoblast fusion. PEA3 activates gene expression following binding to the ets motif most efficiently in conjunction with the transcription factor myocyte enhancer factor 2 (MEF2). In vivo, PEA3 is expressed in satellite cells only after muscle degeneration. Taken together, these results suggest that PEA3 is an important regulator of activated satellite cell function.
Collapse
Affiliation(s)
- J M Taylor
- Department of Medicine and Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock 72205, USA
| | | | | | | | | | | | | |
Collapse
|
740
|
Luján HD, Mowatt MR, Nash TE. Mechanisms of Giardia lamblia differentiation into cysts. Microbiol Mol Biol Rev 1997; 61:294-304. [PMID: 9293183 PMCID: PMC232612 DOI: 10.1128/mmbr.61.3.294-304.1997] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Microbiologists have long been intrigued by the ability of parasitic organisms to adapt to changes in the environment. Since most parasites occupy several niches during their journey between vectors and hosts, they have developed adaptive responses which allow them to survive under adverse conditions. Therefore, the life cycles of protozoan and helminthic parasites are excellent models with which to study numerous mechanisms involved in cell differentiation, such as the regulation of gene expression, signal transduction pathways, and organelle biogenesis. Unfortunately, many of these studies are very difficult because the conditions needed to elicit developmental changes in parasites remain undetermined in most cases. Recently, several interesting findings were reported on the process of differentiation of Giardia lamblia trophozoites into cysts. G. lamblia is a flagellated protozoan that inhabits the upper small intestine of its vertebrate host and is a major cause of enteric disease worldwide. It belongs to the earliest identified lineage among eukaryotes and therefore offers a unique insight into the progression from primitive to more complex eukaryotic cells. The discovery of a specific stimulus that induces trophozoites to differentiate into cysts, the identification and characterization of encystation-specific molecules, the elucidation of novel biochemical pathways, and the development of useful reagents and techniques have made this parasite an excellent model with which to study differentiation in eukaryotic cells. In this review, we summarize the most recent fundings on several aspects of Giardia differentiation and discuss the significance of these findings within the context of current knowledge in the field.
Collapse
Affiliation(s)
- H D Luján
- Department of Biological Chemistry, School of Medicine, National University of Córdoba, Argentina
| | | | | |
Collapse
|
741
|
Carboni L, Tacconi S, Carletti R, Bettini E, Ferraguti F. Localization of the messenger RNA for the c-Jun NH2-terminal kinase kinase in the adult and developing rat brain: an in situ hybridization study. Neuroscience 1997; 80:147-60. [PMID: 9252228 DOI: 10.1016/s0306-4522(97)00005-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stress-activated protein kinase/extracellular signal-regulated protein kinase-1/c-Jun NH2-terminal kinase kinase is a dual-specificity kinase which phosphorylates and activates stress-activated protein kinase/c-Jun NH2-terminal kinase, a recently discovered mitogen-activated protein kinase that is stimulated by stressful stimuli and that regulates cellular transcriptional activity. The distribution of the messenger RNA encoding for stress-activated protein kinase/extracellular signal-regulated protein kinase-1 was evaluated in the adult and developing rat central nervous system. In situ hybridization with a 35S-labelled 45mer oligodeoxynucleotide probe was used to map the distribution of the stress-activated protein kinase/extracellular signal-regulated protein kinase-1 messenger RNA in postnatal day 1, 3, 6, 9, 12, 15, 18, 21 and adult rat brains. Specific labelling was generally associated with neuronal profiles. In the adult central nervous system, high hybridization signals were observed in the hippocampus, the granular layer of the cerebellum, the medial habenula, the anterodorsal thalamic nucleus, the red nucleus, the pontine nuclei, the facial nucleus, the motor and mesencephalic nuclei of the trigeminal nerve, the hypoglossal nucleus, the vestibular nucleus and the nucleus ambiguus. Intermediate levels were present in diencephalic and mesencephalic regions and in the neocortex, while basal ganglia displayed a low hybridization signal. In the developing brain, the heterogeneous distribution of the hybridization signal observed in the adult brain was already present, but in the hippocampus and basal ganglia the stress-activated protein kinase/extracellular signal-regulated protein kinase-1 messenger RNA levels were significantly higher at postnatal day 3 and during the second postnatal week than in the adult. The results show that stress-activated protein kinase/extracellular signal-regulated protein kinase-1 is widely expressed in the rat central nervous system and co-localizes with its substrate stress-activated protein kinase. The observed changes in stress-activated protein kinase/extracellular signal-regulated protein kinase-1 messenger RNA levels during postnatal development suggest a role for this protein in the maturation of brain circuits.
Collapse
Affiliation(s)
- L Carboni
- Department of Pharmacology, Glaxo Wellcome S.p.A., Medicines Research Centre, Verona, Italy
| | | | | | | | | |
Collapse
|
742
|
Takuwa N, Takuwa Y. Ras activity late in G1 phase required for p27kip1 downregulation, passage through the restriction point, and entry into S phase in growth factor-stimulated NIH 3T3 fibroblasts. Mol Cell Biol 1997; 17:5348-58. [PMID: 9271412 PMCID: PMC232385 DOI: 10.1128/mcb.17.9.5348] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It is well documented that Ras functions as a molecular switch for reentry into the cell cycle at the border between G0 and G1 by transducing extracellular growth stimuli into early G1 mitogenic signals. In the present study, we investigated the role of Ras during the late stage of the G1 phase by using NIH 3T3 (M17) fibroblasts in which the expression of a dominant negative Ras mutant, p21(Ha-Ras[Asn17]), is induced in response to dexamethasone treatment. We found that delaying the expression of Ras(Asn17) until late in the G1 phase by introducing dexamethasone 3 h after the addition of epidermal growth factor (EGF) abolished the downregulation of the p27kip1 cyclin-dependent kinase (CDK) inhibitor which normally occurred during this period, with resultant suppression of cyclin Ds/CDK4 and cyclin E/CDK2 and G1 arrest. The immunodepletion of p27kip1 completely eliminated the CDK inhibitor activity from EGF-stimulated, dexamethasone-treated cell lysate. The failure of p27kip1 downregulation and G1 arrest was also observed in cells in which Ras(Asn17) was induced after growth stimulation with a phorbol ester or alpha-thrombin and was mimicked by the addition late in the G1 phase of inhibitors for phosphatidylinositol-3-kinase. Ras-mediated downregulation of p27kip1 involved both the suppression of synthesis and the stimulation of the degradation of the protein. Unlike the earlier expression of Ras(Asn17) at the border between G0 and G1, its delayed expression did not compromise the EGF-stimulated transient activation of extracellular signal-regulated kinases or inhibit the stimulated expression of a principal D-type cyclin, cyclin D1, until close to the border between G1 and S. We conclude that Ras plays temporally distinct, phase-specific roles throughout the G1 phase and that Ras function late in G1 is required for p27kip1 downregulation and passage through the restriction point, a prerequisite for entry into the S phase.
Collapse
Affiliation(s)
- N Takuwa
- Department of Physiology, Faculty of Medicine, University of Tokyo, Japan
| | | |
Collapse
|
743
|
Li Y, Zhang W, Mantell LL, Kazzaz JA, Fein AM, Horowitz S. Nuclear factor-kappaB is activated by hyperoxia but does not protect from cell death. J Biol Chem 1997; 272:20646-9. [PMID: 9252381 DOI: 10.1074/jbc.272.33.20646] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Oxidative insults that are lethal to epithelial cells kill either via apoptosis or necrosis. Nuclear factor-kappaB (NF-kappaB) is a redox-sensitive transcription factor that is activated by oxidative insult, and NF-kappaB activation can protect cells from apoptosis. To test if NF-kappaB can protect from necrotic cell death caused by high levels of molecular O2 (hyperoxia), we exposed human alveolar epithelial (A549) cells to hyperoxia. NF-kappaB was shown to be activated and was translocated to the nucleus within minutes. Nuclear translocation persisted over the course of several days, and the levels of NF-kappaB protein and mRNA increased as well. In hyperoxia, NF-kappaB regulation was independent of mitogen-activated protein kinase (MAPK). In sharp contrast, there was neither nuclear translocation of NF-kappaB nor any increase in expression after exposure to H2O2 at a concentration where this oxidant induces both MAPK and widespread apoptosis. Despite the activation and increased expression of NF-kappaB in hyperoxia, this oxidant remained lethal to the cells. These observations confirm the notion that apoptosis occurs in the absence of NF-kappaB activation but indicate that protection from cell death by NF-kappaB is probably limited to apoptosis.
Collapse
Affiliation(s)
- Y Li
- The CardioPulmonary Research Institute, Winthrop-University Hospital, State University of New York at Stony Brook School of Medicine, Mineola, New York 11501, USA
| | | | | | | | | | | |
Collapse
|
744
|
Bornfeldt KE, Campbell JS, Koyama H, Argast GM, Leslie CC, Raines EW, Krebs EG, Ross R. The mitogen-activated protein kinase pathway can mediate growth inhibition and proliferation in smooth muscle cells. Dependence on the availability of downstream targets. J Clin Invest 1997; 100:875-85. [PMID: 9259587 PMCID: PMC508260 DOI: 10.1172/jci119603] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Activation of the classical mitogen-activated protein kinase (MAPK) pathway leads to proliferation of many cell types. Accordingly, an inhibitor of MAPK kinase, PD 098059, inhibits PDGF-induced proliferation of human arterial smooth muscle cells (SMCs) that do not secrete growth-inhibitory PGs such as PGE2. In striking contrast, in SMCs that express the inducible form of cyclooxygenase (COX-2), activation of MAPK serves as a negative regulator of proliferation. In these cells, PDGF-induced MAPK activation leads to cytosolic phospholipase A2 activation, PGE2 release, and subsequent activation of the cAMP-dependent protein kinase (PKA), which acts as a strong inhibitor of SMC proliferation. Inhibition of either MAPK kinase signaling or of COX-2 in these cells releases them from the influence of the growth-inhibitory PGs and results in the subsequent cell cycle traverse and proliferation. Thus, the MAPK pathway mediates either proliferation or growth inhibition in human arterial SMCs depending on the availability of specific downstream enzyme targets.
Collapse
Affiliation(s)
- K E Bornfeldt
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | | | | | |
Collapse
|
745
|
Szüts D, Freeman M, Bienz M. Antagonism between EGFR and Wingless signalling in the larval cuticle of Drosophila. Development 1997; 124:3209-19. [PMID: 9272961 DOI: 10.1242/dev.124.16.3209] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Signalling by the epidermal growth factor receptor (EGFR) plays a critical role in the segmental patterning of the ventral larval cuticle in Drosophila: by expressing a dominant-negative EGFR molecule or Spitz, an activating ligand of EGFR, we show that EGFR signalling specifies the anterior denticles in each segment of the larval abdomen. We provide evidence that these denticles derive from a segmental zone of embryonic cells in which EGFR signalling activity is maximal. Within each segment, there is a competition between the denticle fate specified by EGFR signalling and the naked cuticle fate specified by Wingless signalling. The final pattern of the denticle belts is the product of this antagonism between the two signalling pathways. Finally, we show that the segmental zones of high EGFR signalling activity depend on bithorax gene function and that they account for the main difference in shape between abdominal and thoracic denticle belts.
Collapse
Affiliation(s)
- D Szüts
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | |
Collapse
|
746
|
Downregulation of the Proinflammatory Cytokine Response to Endotoxin by Pretreatment With the Nontoxic Lipid A Analog SDZ MRL 953 in Cancer Patients. Blood 1997. [DOI: 10.1182/blood.v90.4.1673] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractInterfering with the endotoxin-mediated cytokine cascade is thought to be a promising approach to prevent septic complications in gram-negative infections. The synthetic lipid A analog SDZ MRL 953 has been shown to be protective against endotoxic shock and bacterial infection in preclinical in vivo models. As part of a trial of unspecific immunostimulation in cancer patients, we conducted a double-blind, randomized, vehicle-controlled phase I trial of SDZ MRL 953 to investigate, first, its biologic effects and safety of administration in humans and, second, its influence on reactions to a subsequent challenge of endotoxin (Salmonella abortus equi). Twenty patients were treated intravenously with escalating doses of SDZ MRL 953 or vehicle control, followed by an intravenous application of endotoxin (2 ng/kg of body weight [BW]). Administration of SDZ MRL 953 was safe and well-tolerated. SDZ MRL 953 itself increased granulocyte counts and serum levels of granulocyte colony-stimulating factor (G-CSF ) and interleukin-6 (IL-6), but not of the proinflammatory cytokines tumor necrosis factor-α (TNF-α), IL-1β, and IL-8. Compared with vehicle control, pretreatment with SDZ MRL 953 markedly reduced the release of TNF-α, IL-1β, IL-8, IL-6, and G-CSF, but augmented the increase in granulocyte counts to endotoxin. Induction of tolerance to the endotoxin-mediated cascade of proinflammatory cytokines by pretreatment with SDZ MRL 953 in patients at risk may help to prevent complications of gram-negative sepsis.
Collapse
|
747
|
Guo FH, Uetani K, Haque SJ, Williams BR, Dweik RA, Thunnissen FB, Calhoun W, Erzurum SC. Interferon gamma and interleukin 4 stimulate prolonged expression of inducible nitric oxide synthase in human airway epithelium through synthesis of soluble mediators. J Clin Invest 1997; 100:829-38. [PMID: 9259582 PMCID: PMC508255 DOI: 10.1172/jci119598] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human respiratory epithelium expresses inducible nitric oxide synthase (iNOS) continuously in vivo, however mechanisms responsible for maintenance of expression are not known. We show that IFNgamma is sufficient for induction of iNOS in primary human airway epithelial cells (HAEC) in vitro, and IL-4 potentiates IFNgamma-induced iNOS expression in HAEC through stabilization of iNOS mRNA. IFNgamma/IL-4- induced iNOS expression in HAEC was delayed in onset and prolonged with expression up to 1 wk. Removal of overlying culture media resulted in loss of expression, while transfer of conditioned media induced iNOS mRNA in other HAEC. IFNgamma and IL-4 stimulation activated STAT1 and STAT6 in HAEC, but conditioned media transfer to HAEC produced even higher levels of STAT1 activation than achieved by direct addition of cytokines. Although cytokine induction of iNOS was dependent on new protein synthesis, conditioned media induction of iNOS in HAEC was not. Further, removal of overlying culture media from cells at different times after cytokine stimulation demonstrated that mediator synthesis and/or secretion important for induction and maintenance of iNOS occurs early after cytokine stimulation. In conclusion, a combination of IFNgamma/ IL-4, which occurs naturally in the lung epithelial lining fluid, leads to maintenance of iNOS expression in human airway epithelium through production of soluble mediators and stabilization of mRNA.
Collapse
Affiliation(s)
- F H Guo
- Department of Pulmonary and Critical Care Medicine, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
748
|
Downregulation of the Proinflammatory Cytokine Response to Endotoxin by Pretreatment With the Nontoxic Lipid A Analog SDZ MRL 953 in Cancer Patients. Blood 1997. [DOI: 10.1182/blood.v90.4.1673.1673_1673_1683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interfering with the endotoxin-mediated cytokine cascade is thought to be a promising approach to prevent septic complications in gram-negative infections. The synthetic lipid A analog SDZ MRL 953 has been shown to be protective against endotoxic shock and bacterial infection in preclinical in vivo models. As part of a trial of unspecific immunostimulation in cancer patients, we conducted a double-blind, randomized, vehicle-controlled phase I trial of SDZ MRL 953 to investigate, first, its biologic effects and safety of administration in humans and, second, its influence on reactions to a subsequent challenge of endotoxin (Salmonella abortus equi). Twenty patients were treated intravenously with escalating doses of SDZ MRL 953 or vehicle control, followed by an intravenous application of endotoxin (2 ng/kg of body weight [BW]). Administration of SDZ MRL 953 was safe and well-tolerated. SDZ MRL 953 itself increased granulocyte counts and serum levels of granulocyte colony-stimulating factor (G-CSF ) and interleukin-6 (IL-6), but not of the proinflammatory cytokines tumor necrosis factor-α (TNF-α), IL-1β, and IL-8. Compared with vehicle control, pretreatment with SDZ MRL 953 markedly reduced the release of TNF-α, IL-1β, IL-8, IL-6, and G-CSF, but augmented the increase in granulocyte counts to endotoxin. Induction of tolerance to the endotoxin-mediated cascade of proinflammatory cytokines by pretreatment with SDZ MRL 953 in patients at risk may help to prevent complications of gram-negative sepsis.
Collapse
|
749
|
Abstract
Lipopolysaccharide is a component of the gram-negative bacterial cell wall that is responsible for 25,000-50,000 deaths in the United States each year. The sequelae of gram-negative infection and septicemia leading to death include fever, hypotension with inadequate tissue perfusion, and disseminated intravascular coagulation. It is clear that different cell types respond differently to lipopolysaccharide. Furthermore, various autacoids and cytokines are released that can affect cellular function even in cell types that do not recognize lipopolysaccharide. Despite advances made in the etiology of septic shock and organ failure, therapy is still for the most part supportive and largely ineffective. The aim of this review is to summarize the current understanding of the role of lipopolysaccharide in the development of septicemia by examining signal transduction and therapeutic approaches.
Collapse
Affiliation(s)
- P R Mayeux
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock 72205, USA.
| |
Collapse
|
750
|
Souttou B, Ahmad S, Riegel AT, Wellstein A. Signal transduction pathways involved in the mitogenic activity of pleiotrophin. Implication of mitogen-activated protein kinase and phosphoinositide 3-kinase pathways. J Biol Chem 1997; 272:19588-93. [PMID: 9235965 DOI: 10.1074/jbc.272.31.19588] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Pleiotrophin (PTN) is a developmentally regulated protein which exhibits neurite-outgrowth, mitogenic, and angiogenic properties. It has also been shown to be involved in tumor growth and metastasis. Here we used primary BEL (bovine epithelial lens) cells to investigate the signal transduction pathways involved in the mitogenic activity of recombinant PTN. PTN was purified from conditioned media of SW-13 cells transfected with the human PTN cDNA. We show that inhibitors of tyrosine kinase, mitogen-activated protein kinase, or phosphoinositide (PI) 3-kinase inhibit DNA synthesis stimulated by PTN. Analysis of tyrosine-phosphorylated proteins following PTN stimulation showed phosphorylation of two novel 190- and 215-kDa proteins in addition to SHC, ERK1, and ERK2. A mobility shift of phosphorylated ERK1 and ERK2 was detected with a panERK antibody confirming the phosphorylation of the two ERKs. Furthermore, in vitro immunocomplex kinase assay with Akt1, a natural substrate of PI 3-kinase, showed an activation of the kinase following PTN stimulation and a reversal by the PI 3-kinase inhibitor wortmannin. We conclude that the mitogenic activity of PTN is dependent on tyrosine kinase activation and utilizes the mitogen-activated protein kinase and the PI 3-kinase pathways to transduce a mitogenic signal.
Collapse
Affiliation(s)
- B Souttou
- Lombardi Cancer Center and Department of Pharmacology, Georgetown University, Washington, DC 20007, USA
| | | | | | | |
Collapse
|