751
|
Abstract
Interleukin-2 (IL-2) plays an important role in adaptive immune responses. These responses differ between females and males and may be due to the sex steroid estrogen. In this investigation we show that estrogen suppresses IL-2 production from activated peripheral blood T cells and CD4+ T cell lines at the transcriptional level. Suppression of IL-2 occurred at short term, high 17-beta-estradiol concentrations as well as longer term lower 17-beta-estradiol concentrations. In CD4+ Jurkat T cells, suppression of IL-2 was associated with decreased nuclear binding of two important IL-2 promoter transcription factors: NFkappaB and AP-1. The decreased nuclear binding of NFkappaB occurred in the setting of estrogen-induced increases in IkappaBalpha protein levels, an important inhibitor of NFkappaB nuclear translocation. 17-beta-Estradiol was also shown to inhibit IL-2 receptor (IL-2R) expression in activated peripheral blood T cells. Estrogen-induced suppression of IL-2 and its receptor may have many ramifications for our understanding of immune and autoimmune sexual dichotomies, immune responses during pregnancy, and potential therapeutic intervention with hormone agonists and antagonists.
Collapse
Affiliation(s)
- R W McMurray
- Rheumatology Section, G.V. (Sonny) Montgomery VA Hospital, Jackson, MS 39216, USA.
| | | | | | | |
Collapse
|
752
|
Li M, Carpio DF, Zheng Y, Bruzzo P, Singh V, Ouaaz F, Medzhitov RM, Beg AA. An essential role of the NF-kappa B/Toll-like receptor pathway in induction of inflammatory and tissue-repair gene expression by necrotic cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:7128-35. [PMID: 11390458 DOI: 10.4049/jimmunol.166.12.7128] [Citation(s) in RCA: 339] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tissue damage induced by infection or injury can result in necrosis, a mode of cell death characterized by induction of an inflammatory response. In contrast, cells dying by apoptosis do not induce inflammation. However, the reasons for underlying differences between these two modes of cell death in inducing inflammation are not known. Here we show that necrotic cells, but not apoptotic cells, activate NF-kappaB and induce expression of genes involved in inflammatory and tissue-repair responses, including neutrophil-specific chemokine genes KC and macrophage-inflammatory protein-2, in viable fibroblasts and macrophages. Intriguingly, NF-kappaB activation by necrotic cells was dependent on Toll-like receptor 2, a signaling pathway that induces inflammation in response to microbial agents. These results have identified a novel mechanism by which cell necrosis, but not apoptosis, can induce expression of genes involved in inflammation and tissue-repair responses. Furthermore, these results also demonstrate that the NF-kappaB/Toll-like receptor 2 pathway can be activated both by exogenous microbial agents and endogenous inflammatory stimuli.
Collapse
Affiliation(s)
- M Li
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | | | | | |
Collapse
|
753
|
Jang MK, Goo YH, Sohn YC, Kim YS, Lee SK, Kang H, Cheong J, Lee JW. Ca2+/calmodulin-dependent protein kinase IV stimulates nuclear factor-kappa B transactivation via phosphorylation of the p65 subunit. J Biol Chem 2001; 276:20005-10. [PMID: 11274168 DOI: 10.1074/jbc.m010211200] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calmodulin-dependent protein kinase IV (CaMKIV) is a key mediator of Ca(2+)-induced gene expression. In this study, CaMKIV was found to directly associate with and phosphorylate the nuclear factor-kappaB (NFkappaB) component p65 both in vitro and in vivo. The phosphorylation of p65 by CaMKIV resulted in recruitment of transcription coactivator cAMP-response element-binding protein-binding protein and concomitant release of corepressor silencing mediator for retinoid and thyroid hormone receptors, as demonstrated by the glutathione S-transferase pull down and mammalian two hybrid assays. In addition, cotransfection of CaMKIV resulted in cytosolic translocation of the silencing mediator for retinoid and thyroid hormone receptors. Consistent with these results, cotransfected CaMKIV dramatically stimulated the NFkappaB transactivation in mammalian cells. From these results, NFkappaB is suggested to be a novel downstream effector molecule of CaMKIV.
Collapse
Affiliation(s)
- M K Jang
- Center for Ligand and Transcription, Chonnam National University, Kwangju 500-757, Seoul 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
754
|
de Veer MJ, Holko M, Frevel M, Walker E, Der S, Paranjape JM, Silverman RH, Williams BRG. Functional classification of interferon‐stimulated genes identified using microarrays. J Leukoc Biol 2001. [DOI: 10.1189/jlb.69.6.912] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
| | - Michelle Holko
- Department of Cancer Biology, Lerner Research Institute, and Ohio
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio; and
| | - Mathias Frevel
- Department of Cancer Biology, Lerner Research Institute, and Ohio
| | - Eldon Walker
- Computer Core, Cleveland Clinic Foundation, Ohio
| | - Sandy Der
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
755
|
Mohanty S, Lee S, Yadava N, Dealy MJ, Johnson RS, Firtel RA. Regulated protein degradation controls PKA function and cell-type differentiation in Dictyostelium. Genes Dev 2001; 15:1435-48. [PMID: 11390363 PMCID: PMC312710 DOI: 10.1101/gad.871101] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cullins function as scaffolds that, along with F-box/WD40-repeat-containing proteins, mediate the ubiquitination of proteins to target them for degradation by the proteasome. We have identified a cullin CulA that is required at several stages during Dictyostelium development. culA null cells are defective in inducing cell-type-specific gene expression and exhibit defects during aggregation, including reduced chemotaxis. PKA is an important regulator of Dictyostelium development. The levels of intracellular cAMP and PKA activity are controlled by the rate of synthesis of cAMP and its degradation by the cAMP-specific phosphodiesterase RegA. We show that overexpression of the PKA catalytic subunit (PKAcat) rescues many of the culA null defects and those of cells lacking FbxA/ChtA, a previously described F-box/WD40-repeat-containing protein, suggesting CulA and FbxA proteins are involved in regulating PKA function. Whereas RegA protein levels drop as the multicellular organism forms in the wild-type strain, they remain high in culA null and fbxA null cells. Although PKA can suppress the culA and fbxA null developmental phenotypes, it does not suppress the altered RegA degradation, suggesting that PKA lies downstream of RegA, CulA, and FbxA. Finally, we show that CulA, FbxA, and RegA are found in a complex in vivo, and formation of this complex is dependent on the MAP kinase ERK2, which is also required for PKA function. We propose that CulA and FbxA regulate multicellular development by targeting RegA for degradation via a pathway that requires ERK2 function, leading to an increase in cAMP and PKA activity.
Collapse
Affiliation(s)
- S Mohanty
- Section of Cell and Developmental Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
756
|
Geng JG. Directional migration of leukocytes: their pathological roles in inflammation and strategies for development of anti-inflammatory therapies. Cell Res 2001; 11:85-8. [PMID: 11453550 DOI: 10.1038/sj.cr.7290071] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Directional migration of leukocytes is indispensable to innate immunity for host defense. However, recruitment of leukocytes to a site of tissue injury also constitutes a leading cause for inflammatory responses. Mechanistically, it involves a cascade of cellular events precisely regulated by temporal and spatial presentation of a repertoire of molecules in the migrating leukocytes and their surroundings (microenvironments). Here I will summarize the emerging evidence that has shed lights on the underlying molecular mechanism for directional migration of leukocytes, which has guided the therapeutical development for innovative anti-inflammatory medicines.
Collapse
Affiliation(s)
- J G Geng
- Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai.
| |
Collapse
|
757
|
Abstract
Aberrant gene expression is a fundamental cause of many disease-associated pathophysiologies. The pharmacological modulation of transcription factor activity therefore represents an attractive therapeutic approach to such disorders. With the exception of nuclear receptors, which are the direct targets of pharmaceuticals, other known classes of transcription factors are largely regulated indirectly by drugs that impact upon those signal transduction cascades that alter transcription factor phosphorylation and dephosphorylation and/or nuclear import. However, recent advances in drug discovery technologies now enable high-throughput screens that can identify molecules that act directly at the level of transcription factor complexes.
Collapse
Affiliation(s)
- J G Emery
- Dept of Musculoskeletal Diseases, GlaxoSmithKline Pharmaceuticals, UW2109, King of Prussia, PA 19406-0939, USA
| | | | | |
Collapse
|
758
|
Wang C, Fu M, D'Amico M, Albanese C, Zhou JN, Brownlee M, Lisanti MP, Chatterjee VK, Lazar MA, Pestell RG. Inhibition of cellular proliferation through IkappaB kinase-independent and peroxisome proliferator-activated receptor gamma-dependent repression of cyclin D1. Mol Cell Biol 2001; 21:3057-70. [PMID: 11287611 PMCID: PMC86934 DOI: 10.1128/mcb.21.9.3057-3070.2001] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2000] [Accepted: 02/13/2001] [Indexed: 02/07/2023] Open
Abstract
The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand-regulated nuclear receptor superfamily member. Liganded PPARgamma exerts diverse biological effects, promoting adipocyte differentiation, inhibiting tumor cellular proliferation, and regulating monocyte/macrophage and anti-inflammatory activities in vitro. In vivo studies with PPARgamma ligands showed enhancement of tumor growth, raising the possibility that reduced immune function and tumor surveillance may outweigh the direct inhibitory effects of PPARgamma ligands on cellular proliferation. Recent findings that PPARgamma ligands convey PPARgamma-independent activities through IkappaB kinase (IKK) raises important questions about the specific mechanisms through which PPARgamma ligands inhibit cellular proliferation. We investigated the mechanisms regulating the antiproliferative effect of PPARgamma. Herein PPARgamma, liganded by either natural (15d-PGJ(2) and PGD(2)) or synthetic ligands (BRL49653 and troglitazone), selectively inhibited expression of the cyclin D1 gene. The inhibition of S-phase entry and activity of the cyclin D1-dependent serine-threonine kinase (Cdk) by 15d-PGJ(2) was not observed in PPARgamma-deficient cells. Cyclin D1 overexpression reversed the S-phase inhibition by 15d-PGJ(2). Cyclin D1 repression was independent of IKK, as prostaglandins (PGs) which bound PPARgamma but lacked the IKK interactive cyclopentone ring carbonyl group repressed cyclin D1. Cyclin D1 repression by PPARgamma involved competition for limiting abundance of p300, directed through a c-Fos binding site of the cyclin D1 promoter. 15d-PGJ(2) enhanced recruitment of p300 to PPARgamma but reduced binding to c-Fos. The identification of distinct pathways through which eicosanoids regulate anti-inflammatory and antiproliferative effects may improve the utility of COX2 inhibitors.
Collapse
Affiliation(s)
- C Wang
- Departments of Developmental and Molecular Biology and Medicine, The Albert Einstein Cancer Center, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
759
|
Zheng Y, Ouaaz F, Bruzzo P, Singh V, Gerondakis S, Beg AA. NF-kappa B RelA (p65) is essential for TNF-alpha-induced fas expression but dispensable for both TCR-induced expression and activation-induced cell death. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4949-57. [PMID: 11290773 DOI: 10.4049/jimmunol.166.8.4949] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Fas death receptor plays a key role in the killing of target cells by NK cells and CTLs and in activation-induced cell death of mature T lymphocytes. These cytotoxic pathways are dependent on induction of Fas expression by cytokines such as TNF-alpha and IFN-gamma or by signals generated after TCR engagement. Although much of our knowledge of the Fas death pathway has been generated from murine studies, little is known about regulatory mechanisms important for murine Fas expression. To this end, we have molecularly cloned a region of the murine Fas promoter that is responsible for mediating TNF-alpha and PMA/PHA-induced expression. We demonstrate here that induction of Fas expression by both stimuli is critically dependent on two sites that associate with RelA-containing NF-kappaB complexes. To determine whether RelA and/or other NF-kappaB subunits are also important for regulating Fas expression in primary T cells, we used CD4 T cells from RelA(-/-), c-Rel(-/-), and p50(-/-) mice. Although proliferative responses were significantly impaired, expression of Fas and activation-induced cell death was unaffected in T cells obtained from these different mice. Importantly, we show that unlike fibroblasts, which consist primarily of RelA-containing NF-kappaB complexes, T cells have high levels of both RelA and c-Rel complexes, suggesting that Fas expression in T cells may be dependent on redundant functions of these NF-kappaB subunits.
Collapse
Affiliation(s)
- Y Zheng
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | |
Collapse
|
760
|
|
761
|
Mojena M, Hortelano S, Castrillo A, Diaz-Guerra MJ, Garcia-Barchino MJ, Saez GT, Bosca L. Protection by nitric oxide against liver inflammatory injury in animals carrying a nitric oxide synthase-2 transgene. FASEB J 2001; 15:583-585. [PMID: 11259374 DOI: 10.1096/fj.00-0509fje] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effect of pre-existent hepatic NO synthesis on liver injury induced by lipopolysaccharide was studied in animals carrying a nitric oxide synthase-2 (NOS-2) transgene under the control of the phosphoenolpyruvate carboxykinase (PEPCK) promoter. These animals expressed NOS-2 in liver cells under fasting conditions. Lipopolysaccharide-induced liver injury in D-galactosamine-conditioned mice, which enhanced notably the effect of the endotoxin on the liver, was impaired in animals expressing NOS-2. This protection against inflammatory liver damage was dependent on NO synthesis and was caused by an inhibition of nuclear factor kB (NF-kB) activity and an impairment of the synthesis of the proinflammatory cytokines tumor necrosis factor a and interleukin 1b. These data indicate that intrahepatic synthesis of NO protects liver by inhibiting the release of cascades of proinflammatory mediators and suggest a beneficial role for local delivery of NO in the control of liver injury.
Collapse
Affiliation(s)
- M Mojena
- Centro de Investigación Básica de España (CIBE), Merck Sharp & Dohme, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
762
|
Joyce D, Albanese C, Steer J, Fu M, Bouzahzah B, Pestell RG. NF-kappaB and cell-cycle regulation: the cyclin connection. Cytokine Growth Factor Rev 2001; 12:73-90. [PMID: 11312120 DOI: 10.1016/s1359-6101(00)00018-6] [Citation(s) in RCA: 299] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The cyclins are a family of proteins that are centrally involved in cell cycle regulation and which are structurally identified by conserved "cyclin box" regions. They are regulatory subunits of holoenzyme cyclin-dependent kinase (CDK) complexes controlling progression through cell cycle checkpoints by phosphorylating and inactivating target substrates. CDK activity is controlled by cyclin abundance and subcellular location and by the activity of two families of inhibitors, the cyclin-dependent kinase inhibitors (CKI). Many hormones and growth factors influence cell growth through signal transduction pathways that modify the activity of the cyclins. Dysregulated cyclin activity in transformed cells contributes to accelerated cell cycle progression and may arise because of dysregulated activity in pathways that control the abundance of a cyclin or because of loss-of-function mutations in inhibitory proteins.Analysis of transformed cells and cells undergoing mitogen-stimulated growth implicate proteins of the NF-kappaB family in cell cycle regulation, through actions on the CDK/CKI system. The mammalian members of this family are Rel-A (p65), NF-kappaB(1) (p50; p105), NF-kappaB(2) (p52; p100), c-Rel and Rel-B. These proteins are structurally identified by an amino-terminal region of about 300 amino acids, known as the Rel-homology domain. They exist in cytoplasmic complexes with inhibitory proteins of the IkappaB family, and translocate to the nucleus to act as transcription factors when activated. NF-kappaB pathway activation occurs during transformation induced by a number of classical oncogenes, including Bcr/Abl, Ras and Rac, and is necessary for full transforming potential. The avian viral oncogene, v-Rel is an NF-kappaB protein. The best explored link between NF-kappaB activation and cell cycle progression involves cyclin D(1), a cyclin which is expressed relatively early in the cell cycle and which is crucial to commitment to DNA synthesis. This review examines the interactions between NF-kappaB signaling and the CDK/CKI system in cell cycle progression in normal and transformed cells. The growth-promoting actions of NF-kappaB factors are accompanied, in some instances, by inhibition of cellular differentiation and by inhibition of programmed cell death, which involve related response pathways and which contribute to the overall increase in mass of undifferentiated tissue.
Collapse
Affiliation(s)
- D Joyce
- Department of Pharmacology, The University of Western Australia, Nedlands, WA 6907, Australia
| | | | | | | | | | | |
Collapse
|
763
|
Senftleben U, Li ZW, Baud V, Karin M. IKKbeta is essential for protecting T cells from TNFalpha-induced apoptosis. Immunity 2001; 14:217-30. [PMID: 11290332 DOI: 10.1016/s1074-7613(01)00104-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transcription factor NF-kappaB, whose activation depends on the IKKbeta catalytic subunit of the IkappaB kinase, was assigned with both anti- and proapoptotic functions in T lymphocytes. To critically evaluate these functions, we transferred Ikkbeta-/- or wild-type (wt) fetal liver (FL) stem cells into lethally irradiated mice. Ikkbeta-/- radiation chimeras show thymic rudiments, aberrant lymphoid organs, and absence of T cells. T lymphopoiesis is rescued when Ikkbeta-/- stem cells are cotransferred with wt bone marrow, suggesting that IKKbeta may mediate its lymphopoietic function via extrinsic factors. However, almost normal development of Ikkbeta-/- T cells is observed upon removal of type 1 TNFalpha receptor, indicating that TNFalpha signaling accounts for the absence of Ikkbeta-/- T cells. Indeed, Ikkbeta-/- radiation chimeras exibit elevated circulating TNFalpha, and Ikkbeta-/- thymocytes display increased TNFalpha sensitivity.
Collapse
Affiliation(s)
- U Senftleben
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California-San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
764
|
Heissmeyer V, Krappmann D, Hatada EN, Scheidereit C. Shared pathways of IkappaB kinase-induced SCF(betaTrCP)-mediated ubiquitination and degradation for the NF-kappaB precursor p105 and IkappaBalpha. Mol Cell Biol 2001; 21:1024-35. [PMID: 11158290 PMCID: PMC99557 DOI: 10.1128/mcb.21.4.1024-1035.2001] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
p105 (NFKB1) acts in a dual way as a cytoplasmic IkappaB molecule and as the source of the NF-kappaB p50 subunit upon processing. p105 can form various heterodimers with other NF-kappaB subunits, including its own processing product, p50, and these complexes are signal responsive. Signaling through the IkappaB kinase (IKK) complex invokes p105 degradation and p50 homodimer formation, involving p105 phosphorylation at a C-terminal destruction box. We show here that IKKbeta phosphorylation of p105 is direct and does not require kinases downstream of IKK. p105 contains an IKK docking site located in a death domain, which is separate from the substrate site. The substrate residues were identified as serines 923 and 927, the latter of which was previously assumed to be a threonine. S927 is part of a conserved DSGPsi motif and is functionally most critical. The region containing both serines is homologous to the N-terminal destruction box of IkappaBalpha, -beta, and -epsilon. Upon phosphorylation by IKK, p105 attracts the SCF E3 ubiquitin ligase substrate recognition molecules betaTrCP1 and betaTrCP2, resulting in polyubiquitination and complete degradation by the proteasome. However, processing of p105 is independent of IKK signaling. In line with this and as a physiologically relevant model, lipopolysaccharide (LPS) induced degradation of endogenous p105 and p50 homodimer formation, but not processing in pre-B cells. In mutant pre-B cells lacking IKKgamma, processing was unaffected, but LPS-induced p105 degradation was abolished. Thus, a functional endogenous IKK complex is required for signal-induced p105 degradation but not for processing.
Collapse
Affiliation(s)
- V Heissmeyer
- Max-Delbrück-Center for Molecular Medicine, 13122 Berlin, Germany
| | | | | | | |
Collapse
|
765
|
Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 2001. [PMID: 11023813 DOI: 10.1042/0264-6021: 3510289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Ras/Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular-signal-regulated kinase) pathway is at the heart of signalling networks that govern proliferation, differentiation and cell survival. Although the basic regulatory steps have been elucidated, many features of this pathway are only beginning to emerge. This review focuses on the role of protein-protein interactions in the regulation of this pathway, and how they contribute to co-ordinate activation steps, subcellular redistribution, substrate phosphorylation and cross-talk with other signalling pathways.
Collapse
|
766
|
Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 2001. [PMID: 11023813 DOI: 10.1042/0264-6021] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Ras/Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular-signal-regulated kinase) pathway is at the heart of signalling networks that govern proliferation, differentiation and cell survival. Although the basic regulatory steps have been elucidated, many features of this pathway are only beginning to emerge. This review focuses on the role of protein-protein interactions in the regulation of this pathway, and how they contribute to co-ordinate activation steps, subcellular redistribution, substrate phosphorylation and cross-talk with other signalling pathways.
Collapse
|
767
|
Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 2001. [PMID: 11023813 DOI: 10.1042/0264-6021:3510289] [Citation(s) in RCA: 267] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Ras/Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular-signal-regulated kinase) pathway is at the heart of signalling networks that govern proliferation, differentiation and cell survival. Although the basic regulatory steps have been elucidated, many features of this pathway are only beginning to emerge. This review focuses on the role of protein-protein interactions in the regulation of this pathway, and how they contribute to co-ordinate activation steps, subcellular redistribution, substrate phosphorylation and cross-talk with other signalling pathways.
Collapse
|
768
|
Gil J, Rullas J, García MA, Alcamí J, Esteban M. The catalytic activity of dsRNA-dependent protein kinase, PKR, is required for NF-kappaB activation. Oncogene 2001; 20:385-94. [PMID: 11313968 DOI: 10.1038/sj.onc.1204109] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2000] [Revised: 10/30/2000] [Accepted: 11/13/2000] [Indexed: 01/25/2023]
Abstract
The double stranded RNA-dependent protein kinase (PKR), in addition to its role as a translational controlling factor, is a key transcriptional regulator exerting antiviral and antitumoral activities. We have previously shown that induction of NF-kappaB by PKR is involved in apoptosis commitment and this process is mediated through activation of the IKK complex. To gain insights into the mechanism of activation of NF-kappaB by PKR, we have analysed the domains of PKR involved in IKK activation and subsequent NF-kappaB induction. In PKR(0/0) cells infected with a collection of vaccinia virus (VV) recombinants expressing different mutant forms of PKR, we found that only PKR forms conserving the catalytic activity are able to activate NF-kappaB. An inactive PKR mutant (K296R), was unable to induce NF-kappaB activation despite full expression of the protein in a wide range of concentrations, as defined by Western blot, EMSA, IKK kinase activity and NF-kappaB transactivation assays. Moreover, the mutant PKR (K296R) acts as a dominant negative of PKR-induced eIF-2alpha phosphorylation and NF-kappaB activation. However, PKR mutants unable to activate NF-kappaB still retain their ability to associate with the IKK complex, as confirmed by immunoprecipitation analysis. We conclude that the catalytic activity of PKR and not only a protein-protein interaction with the IKK complex, is needed for activation of the transcription factor NF-kappaB.
Collapse
Affiliation(s)
- J Gil
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, (CSIC), Campus Universidad Autónoma, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
769
|
Forman HJ. Another reason for taking aspirin. Am J Physiol Lung Cell Mol Physiol 2001; 280:L1-2. [PMID: 11133488 DOI: 10.1152/ajplung.2001.280.1.l1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
770
|
Camandola S, Poli G, Mattson MP. The lipid peroxidation product 4-hydroxy-2,3-nonenal inhibits constitutive and inducible activity of nuclear factor kappa B in neurons. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 85:53-60. [PMID: 11146106 DOI: 10.1016/s0169-328x(00)00234-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peroxidation of membrane lipids occurs in many different neurodegenerative conditions including stroke, and Alzheimer's and Parkinson's diseases. Recent findings suggest that lipid peroxidation can promote neuronal death by a mechanism involving production of the toxic aldehyde 4-hydroxy-2,3-nonenal (HNE), which may act by covalently modifying proteins and impairing their function. The transcription factor NF-kappa B can prevent neuronal death in experimental models of neurodegenerative disorders by inducing the expression of anti-apoptotic proteins including Bcl-2 and manganese superoxide dismutase. We now report that HNE selectively suppresses basal and inducible NF-kappa B DNA binding activity in cultured rat cortical neurons. Immunoprecipitation-immunoblot analyses using antibodies against HNE-conjugated proteins and p50 and p65 NF-kappa B subunits indicate that HNE does not directly modify NF-kappa B proteins. Moreover, HNE did not affect NF-kappa B DNA-binding activity when added directly to cytosolic extracts, suggesting that HNE inhibits an upstream component of the NF-kappa B signaling pathway. Inhibition of the survival-promoting NF-kappa B signaling pathway by HNE may contribute to neuronal death under conditions in which membrane lipid peroxidation occurs.
Collapse
Affiliation(s)
- S Camandola
- Laboratory of Neurosciences, National Institute on Aging Gerontology Research Center 4F02, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
771
|
Abstract
Cells sense and respond to extracellular factors via receptors on the cell surface that trigger intracellular signaling pathways. The signals received by the receptors on hematopoietic cells often determine if the cell proliferates, survives or undergoes apoptosis. Apoptosis can be induced by almost any cytotoxic stimuli. These stimuli may be an absence of signals arising from cellular receptors, stimulation of specific ligand receptors on the cell surface, chemotherapeutic agents, and ionizing radiation or oxygen radicals, as well as a number of other factors. Cellular kinases and phosphatases participate in signaling cascades that influence this process. We review the ability of the calmodulin-dependent-kinases, I-kappaB kinases, PI3-kinases, Jakkinases, PKC, PKA, and MAP kinase signaling pathways (Erk, Jnk, and p38), to influence the apoptotic process. In addition, we discuss the cross-talk that exists between signaling cascades that are pro-apoptotic and anti-apoptotic.
Collapse
Affiliation(s)
- R A Franklin
- Department of Microbiology and Immunology and the Leo Jenkins Cancer Center, Brody School of Medicine at East Carolina, Greenville, NC 27858, USA
| | | |
Collapse
|
772
|
Delehedde M, Seve M, Sergeant N, Wartelle I, Lyon M, Rudland PS, Fernig DG. Fibroblast growth factor-2 stimulation of p42/44MAPK phosphorylation and IkappaB degradation is regulated by heparan sulfate/heparin in rat mammary fibroblasts. J Biol Chem 2000; 275:33905-10. [PMID: 10944532 DOI: 10.1074/jbc.m005949200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor-2 (FGF-2) interacts with a dual receptor system consisting of tyrosine kinase receptors and heparan sulfate proteoglycans (HSPGs). In rat mammary fibroblasts, FGF-2 stimulated DNA synthesis and induced a sustained phosphorylation of p42/44(MAPK) and of its downstream target, p90(RSK). Moreover, FGF-2 also stimulated the transient degradation of IkappaBalpha and IkappaBbeta. PD098059, a specific inhibitor of p42/44(MAPK) phosphorylation, inhibited FGF-2-stimulated DNA synthesis, phosphorylation of p42/44(MAPK) and p90(RSK), and degradation of IkappaBbeta. In contrast, in chlorate-treated and hence sulfated glycosaminoglycan-deficient cells, FGF-2 was unable to stimulate DNA synthesis. However, FGF-2 was able to trigger a transient phosphorylation of both p42/44(MAPK) and p90(RSK), which peaked at 15 min and returned to control levels at 30 min. In these sulfated glycosaminoglycan-deficient cells, no degradation of IkappaBalpha and IkappaBbeta was observed after FGF-2 addition. However, in chlorate-treated cells, the addition of heparin or purified HSPGs simultaneously with FGF-2 restored DNA synthesis, the sustained phosphorylation of p42/44(MAPK) and p90(RSK), and the degradation of IkappaBalpha and IkappaBbeta. These results suggest that the HSPG receptor for FGF-2 not only influences the outcome of FGF-2 signaling, e.g. cell proliferation, but importantly regulates the immediate-early signals generated by this growth factor.
Collapse
Affiliation(s)
- M Delehedde
- School of Biological Sciences, Life Sciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
773
|
Jacobs H. TCR-independent T cell development mediated by gain-of-oncogene function or loss-of-tumor-suppressor gene function. Semin Immunol 2000; 12:487-502. [PMID: 11085181 DOI: 10.1006/smim.2000.0262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanisms that govern differentiation of T cell precursors during intrathymic development bridge an interdisciplinary research field of immunology, oncology and developmental biology. Critical checkpoints controlling early thymic T cell development and homeostasis are set by the proper signaling function of the IL-7 receptor, c-Kit receptor, and the pre-T cell antigen receptor (pre-TCR). Given the intimate link between cell cycle control and differentiation in T cell development, proto-oncogenes and tumor suppressors participate as physiological effectors downstream of these receptors not only to influence the cell cycle but also to determine differentiation and survival. Gain- or loss-of-function mutations of these downstream effectors uncouples partially or completely T cell precursors from these checkpoints, providing a selective advantage and enabling aberrant development. These effectors can be identified by provirus tagging in normal mice and more readily by complementation tagging in mice with a predefined block in T cell differentiation.
Collapse
Affiliation(s)
- H Jacobs
- Basel Institute for Immunology, Switzerland
| |
Collapse
|
774
|
Abstract
Experiments reported in the past year have revealed considerable diversity in Toll-mediated pathways for signal transduction in development and innate immunity. Rather than function as a well conserved signaling cassette, Toll receptors and associated factors have apparently evolved as a diverse set of configurations to defend against microbial infection in species ranging from plants to humans.
Collapse
Affiliation(s)
- S A Wasserman
- Center for Molecular Genetics, Division of Biology, University of California, San Diego, 9500 Gilman Drive, MC 0634, La Jolla, California 92093-0634, USA.
| |
Collapse
|
775
|
Abstract
The survival of multicellular organisms is dependent on their ability to recognize invading microbial pathogens and to induce a variety of defense reactions. Recent evidence suggests that an evolutionarily ancient family of Toll-like receptors plays a crucial role in the detection of microbial infection and the induction of immune and inflammatory responses.
Collapse
Affiliation(s)
- R Medzhitov
- Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | |
Collapse
|
776
|
Morelli AE, Larregina AT, Ganster RW, Zahorchak AF, Plowey JM, Takayama T, Logar AJ, Robbins PD, Falo LD, Thomson AW. Recombinant adenovirus induces maturation of dendritic cells via an NF-kappaB-dependent pathway. J Virol 2000; 74:9617-28. [PMID: 11000234 PMCID: PMC112394 DOI: 10.1128/jvi.74.20.9617-9628.2000] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Recombinant adenovirus (rAd) infection is one of the most effective and frequently employed methods to transduce dendritic cells (DC). Contradictory results have been reported recently concerning the influence of rAd on the differentiation and activation of DC. In this report, we show that, as a result of rAd infection, mouse bone marrow-derived immature DC upregulate expression of major histocompatibility complex class I and II antigens, costimulatory molecules (CD40, CD80, and CD86), and the adhesion molecule CD54 (ICAM-1). rAd-transduced DC exhibited increased allostimulatory capacity and levels of interleukin-6 (IL-6), IL-12p40, IL-15, gamma interferon, and tumor necrosis factor alpha mRNAs, without effects on other immunoregulatory cytokine transcripts such as IL-10 or IL-12p35. These effects were not related to specific transgenic sequences or to rAd genome transcription. The rAd effect correlated with a rapid increase (1 h) in the NF-kappaB-DNA binding activity detected by electrophoretic mobility shift assays. rAd-induced DC maturation was blocked by the proteasome inhibitor Nalpha-p-tosyl-L-lysine chloromethyl ketone (TLCK) or by infection with rAd-IkappaB, an rAd-encoding the dominant-negative form of IkappaB. In vivo studies showed that after intravenous administration, rAds were rapidly entrapped in the spleen by marginal zone DC that mobilized to T-cell areas, a phenomenon suggesting that rAd also induced DC differentiation in vivo. These findings may explain the immunogenicity of rAd and the difficulties in inducing long-term antigen-specific T-cell hyporesponsiveness with rAd-transduced DC.
Collapse
Affiliation(s)
- A E Morelli
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213-2582, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
777
|
Ling L, Goeddel DV. T6BP, a TRAF6-interacting protein involved in IL-1 signaling. Proc Natl Acad Sci U S A 2000; 97:9567-72. [PMID: 10920205 PMCID: PMC16905 DOI: 10.1073/pnas.170279097] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2000] [Indexed: 11/18/2022] Open
Abstract
We report the identification of a TRAF-interacting protein, T6BP, that specifically associates with TRAF6. This interaction occurs between the coiled-coil region of T6BP and the N-terminal ring finger and zinc finger domains of TRAF6. IL-1, but not tumor necrosis factor, induces TRAF6-T6BP complex formation in a ligand-dependent manner. Formation of the TRAF6-T6BP complex depends on the presence of the IL-1 receptor-associated kinase (IRAK). After IL-1 stimulation, TRAF6 can exist in two separate complexes, TRAF6-IRAK or TRAF6-T6BP, but IRAK is not present in TRAF6-T6BP complexes. T6BP does not seem to play a direct role in activation of IkappaB kinases or Jun N-terminal kinase.
Collapse
Affiliation(s)
- L Ling
- Tularik Inc., South San Francisco, CA 94080, USA
| | | |
Collapse
|
778
|
Dienz O, Hehner SP, Droge W, Schmitz ML. Synergistic activation of NF-kappa B by functional cooperation between vav and PKCtheta in T lymphocytes. J Biol Chem 2000; 275:24547-51. [PMID: 10862755 DOI: 10.1074/jbc.c000177200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we identified PKCtheta as an activator of transcription factor NF-kappaB in T cells. PKCtheta-induced NF-kappaB activation was synergistically augmented by Vav. Several experimental approaches revealed that PKCtheta is located downstream from Vav in the control of the pathway leading to synergistic NF-kappaB activation. In addition to the synergistic activation cascade, Vav also triggered NF-kappaB activity on a separate route. CD3/CD28-induced activation of NF-kappaB was inhibited by dominant negative forms of Vav or PKCtheta, revealing their essential role in this activation pathway. The Vav/PKCtheta-mediated signals preferentially activated IkappaB kinase beta. Vav and PKCtheta were found to be constitutively associated in unstimulated T cells. Only the ligation of the costimulatory CD28 receptor, but not of the T cell receptor, resulted in the transient dissociation of the Vav-PKCtheta complex. In contrast, T cell receptor/CD28 costimulation resulted in faster dissociation and slower reassociation kinetics.
Collapse
Affiliation(s)
- O Dienz
- German Cancer Research Center, Department of Immunochemistry (G0200), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|