751
|
Vijaykrishna D, Smith GJD, Zhang JX, Peiris JSM, Chen H, Guan Y. Evolutionary insights into the ecology of coronaviruses. J Virol 2007; 81:4012-20. [PMID: 17267506 PMCID: PMC1866124 DOI: 10.1128/jvi.02605-06] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although many novel members of the Coronaviridae have recently been recognized in different species, the ecology of coronaviruses has not been established. Our study indicates that bats harbor a much wider diversity of coronaviruses than any other animal species. Dating of different coronavirus lineages suggests that bat coronaviruses are older than those recognized in other animals and that the human severe acute respiratory syndrome (SARS) coronavirus was directly derived from viruses from wild animals in wet markets of southern China. Furthermore, the most closely related bat and SARS coronaviruses diverged in 1986, an estimated divergence time of 17 years prior to the outbreak, suggesting that there may have been transmission via an unknown intermediate host. Analysis of lineage-specific selection pressure also indicated that only SARS coronaviruses in civets and humans were under significant positive selection, also demonstrating a recent interspecies transmission. Analysis of population dynamics revealed that coronavirus populations in bats have constant population growth, while viruses from all other hosts show epidemic-like increases in population. These results indicate that diverse coronaviruses are endemic in different bat species, with repeated introductions to other animals and occasional establishment in other species. Our findings suggest that bats are likely the natural hosts for all presently known coronavirus lineages and that all coronaviruses recognized in other species were derived from viruses residing in bats. Further surveillance of bat and other animal populations is needed to fully describe the ecology and evolution of this virus family.
Collapse
Affiliation(s)
- D Vijaykrishna
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Li Ka Shing Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
752
|
Ye Y, Hauns K, Langland JO, Jacobs BL, Hogue BG. Mouse hepatitis coronavirus A59 nucleocapsid protein is a type I interferon antagonist. J Virol 2006; 81:2554-63. [PMID: 17182678 PMCID: PMC1865977 DOI: 10.1128/jvi.01634-06] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The recent emergence of several new coronaviruses, including the etiological cause of severe acute respiratory syndrome, has significantly increased the importance of understanding virus-host cell interactions of this virus family. We used mouse hepatitis virus (MHV) A59 as a model to gain insight into how coronaviruses affect the type I alpha/beta interferon (IFN) system. We demonstrate that MHV is resistant to type I IFN. Protein kinase R (PKR) and the alpha subunit of eukaryotic translation initiation factor are not phosphorylated in infected cells. The RNase L activity associated with 2',5'-oligoadenylate synthetase is not activated or is blocked, since cellular RNA is not degraded. These results are consistent with lack of protein translation shutoff early following infection. We used a well-established recombinant vaccinia virus (VV)-based expression system that lacks the viral IFN antagonist E3L to screen viral genes for their ability to rescue the IFN sensitivity of the mutant. The nucleocapsid (N) gene rescued VVDeltaE3L from IFN sensitivity. N gene expression prevents cellular RNA degradation and partially rescues the dramatic translation shutoff characteristic of the VVDeltaE3L virus. However, it does not prevent PKR phosphorylation. The results indicate that the MHV N protein is a type I IFN antagonist that likely plays a role in circumventing the innate immune response.
Collapse
Affiliation(s)
- Ye Ye
- The Biodesign Institute, P.O. Box 875401, Arizona State University, Tempe, AZ 85287-5401, USA
| | | | | | | | | |
Collapse
|
753
|
Kuo L, Hurst KR, Masters PS. Exceptional flexibility in the sequence requirements for coronavirus small envelope protein function. J Virol 2006; 81:2249-62. [PMID: 17182690 PMCID: PMC1865940 DOI: 10.1128/jvi.01577-06] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The small envelope protein (E) plays a role of central importance in the assembly of coronaviruses. This was initially established by studies demonstrating that cellular expression of only E protein and the membrane protein (M) was necessary and sufficient for the generation and release of virus-like particles. To investigate the role of E protein in the whole virus, we previously generated E gene mutants of mouse hepatitis virus (MHV) that were defective in viral growth and produced aberrantly assembled virions. Surprisingly, however, we were also able to isolate a viable MHV mutant (DeltaE) in which the entire E gene, as well as the nonessential upstream genes 4 and 5a, were deleted. We have now constructed an E knockout mutant that confirms that the highly defective phenotype of the DeltaE mutant is due to loss of the E gene. Additionally, we have created substitution mutants in which the MHV E gene was replaced by heterologous E genes from viruses spanning all three groups of the coronavirus family. Group 2 and 3 E proteins were readily exchangeable for that of MHV. However, the E protein of a group 1 coronavirus, transmissible gastroenteritis virus, became functional in MHV only after acquisition of particular mutations. Our results show that proteins encompassing a remarkably diverse range of primary amino acid sequences can provide E protein function in MHV. These findings suggest that E protein facilitates viral assembly in a manner that does not require E protein to make sequence-specific contacts with M protein.
Collapse
Affiliation(s)
- Lili Kuo
- David Axelrod Institute, Wadsworth Center, NY State Department of Health, New Scotland Avenue, Albany, NY 12201-2002, USA.
| | | | | |
Collapse
|
754
|
Decaro N, Desario C, Elia G, Mari V, Lucente MS, Cordioli P, Colaianni ML, Martella V, Buonavoglia C. Serological and molecular evidence that canine respiratory coronavirus is circulating in Italy. Vet Microbiol 2006; 121:225-30. [PMID: 17215093 PMCID: PMC7117267 DOI: 10.1016/j.vetmic.2006.12.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 12/01/2006] [Accepted: 12/13/2006] [Indexed: 11/25/2022]
Abstract
Canine respiratory coronavirus (CRCoV) is a group II coronavirus that was firstly identified in lung samples of dogs with canine infectious respiratory disease (CIRD) in UK in 2003. We report for the first time the identification of CRCoV in Italy, together with serological evidence that the virus has been circulating in the Italian dog population as from 2005. Serological investigations on 216 dog sera, carried out by an ELISA test using the strictly related bovine coronavirus (BCoV) as antigen, revealed an overall CRCoV seroprevalence of 32.06% in the last 2 years. RT-PCR targeting the S-gene of CRCoV was carried out on 109 lung samples collected from carcasses of dogs submitted for diagnostic investigations. Positive results were obtained from the lungs of a dog of the Apulia region that was co-infected with canine parvovirus type 2. Sequence analysis of the S-gene fragment amplified by RT-PCR (595bp) showed similarity to group II coronaviruses, with the highest nucleotide identity (98%) to the only CRCoV strain currently available in the GenBank database (strain T101). The results of the present study show that CRCoV is present also in continental Europe, although further studies are required to determine the real pathogenic potential of the virus.
Collapse
Affiliation(s)
- Nicola Decaro
- Department of Animal Health and Well-being, Faculty of Veterinary Medicine of Bari, Strada per Casamassima Km 3, 70010 Valenzano, Bari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
755
|
Tangudu C, Olivares H, Netland J, Perlman S, Gallagher T. Severe acute respiratory syndrome coronavirus protein 6 accelerates murine coronavirus infections. J Virol 2006; 81:1220-9. [PMID: 17108045 PMCID: PMC1797517 DOI: 10.1128/jvi.01515-06] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One or more of the unique 3'-proximal open reading frames (ORFs) of the severe acute respiratory syndrome (SARS) coronavirus may encode determinants of virus virulence. A prime candidate is ORF6, which encodes a 63-amino-acid membrane-associated peptide that can dramatically increase the lethality of an otherwise attenuated JHM strain of murine coronavirus (L. Pewe, H. Zhou, J. Netland, C. Tangudu, H. Olivares, L. Shi, D. Look, T. Gallagher, and S. Perlman, J. Virol. 79:11335-11342, 2005). To discern virulence mechanisms, we compared the in vitro growth properties of rJ.6, a recombinant JHM expressing the SARS peptide, with isogenic rJ.6-KO, which has an inactive ORF containing a mutated initiation codon and a termination codon at internal position 27. The rJ.6 infections proceeded rapidly, secreting progeny about 1.5 h earlier than rJ.6-KO infections did. The rJ.6 infections were also set apart by early viral protein accumulation and by robust expansion via syncytia, a characteristic feature of JHM virus dissemination. We found no evidence for protein 6 operating at the virus entry or assembly stage, as virions from either infection were indistinguishable. Rather, protein 6 appeared to operate by fostering viral RNA and protein synthesis, as RNA quantifications by reverse transcription-quantitative PCR revealed viral RNA levels in the rJ.6 cultures that were five to eight times higher than those lacking protein 6. Furthermore, protein 6 coimmunoprecipitated with viral RNAs and colocalized on cytoplasmic vesicles with replicating viral RNAs. The SARS coronavirus encodes a novel membrane protein 6 that can accelerate replication of a related mouse virus, a property that may explain its ability to increase in vivo virus virulence.
Collapse
Affiliation(s)
- Chandra Tangudu
- Department of Microbiology and Immunology, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| | | | | | | | | |
Collapse
|
756
|
DeDiego ML, Alvarez E, Almazán F, Rejas MT, Lamirande E, Roberts A, Shieh WJ, Zaki SR, Subbarao K, Enjuanes L. A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. J Virol 2006; 81:1701-13. [PMID: 17108030 PMCID: PMC1797558 DOI: 10.1128/jvi.01467-06] [Citation(s) in RCA: 305] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A deletion mutant of severe acute respiratory syndrome coronavirus (SARS-CoV) has been engineered by deleting the structural E gene in an infectious cDNA clone that was constructed as a bacterial artificial chromosome (BAC). The recombinant virus lacking the E gene (rSARS-CoV-DeltaE) was rescued in Vero E6 cells. The recovered deletion mutant grew in Vero E6, Huh-7, and CaCo-2 cells to titers 20-, 200-, and 200-fold lower than the recombinant wild-type virus, respectively, indicating that although the E protein has an effect on growth, it is not essential for virus replication. No differences in virion stability under a wide range of pH and temperature were detected between the deletion mutant and recombinant wild-type viruses. Although both viruses showed the same morphology by electron microscopy, the process of morphogenesis seemed to be less efficient with the defective virus than with the recombinant wild-type one. The rSARS-CoV-DeltaE virus replicated to titers 100- to 1,000-fold lower than the recombinant wild-type virus in the upper and lower respiratory tract of hamsters, and the lower viral load was accompanied by less inflammation in the lungs of hamsters infected with rSARS-CoV-DeltaE virus than with the recombinant wild-type virus. Therefore, the SARS-CoV that lacks the E gene is attenuated in hamsters, might be a safer research tool, and may be a good candidate for the development of a live attenuated SARS-CoV vaccine.
Collapse
Affiliation(s)
- Marta L DeDiego
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, CSIC, Darwin 3, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
757
|
Jackwood MW. The relationship of severe acute respiratory syndrome coronavirus with avian and other coronaviruses. Avian Dis 2006; 50:315-20. [PMID: 17039827 DOI: 10.1637/7612-042006r.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In February 2003, a severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in humans in Guangdong Province, China, and caused an epidemic that had severe impact on public health, travel, and economic trade. Coronaviruses are worldwide in distribution, highly infectious, and extremely difficult to control because they have extensive genetic diversity, a short generation time, and a high mutation rate. They can cause respiratory, enteric, and in some cases hepatic and neurological diseases in a wide variety of animals and humans. An enormous, previously unrecognized reservoir of coronaviruses exists among animals. Because coronaviruses have been shown, both experimentally and in nature, to undergo genetic mutations and recombination at a rate similar to that of influenza viruses, it is not surprising that zoonosis and host switching that leads to epidemic diseases have occurred among coronaviruses. Analysis of coronavirus genomic sequence data indicates that SARS-CoV emerged from an animal reservoir. Scientists examining coronavirus isolates from a variety of animals in and around Guangdong Province reported that SARS-CoV has similarities with many different coronaviruses including avian coronaviruses and SARS-CoV-like viruses from a variety of mammals found in live-animal markets. Although a SARS-like coronavirus isolated from a bat is thought to be the progenitor of SARS-CoV, a lack of genomic sequences for the animal coronaviruses has prevented elucidation of the true origin of SARS-CoV. Sequence analysis of SARS-CoV shows that the 5' polymerase gene has a mammalian ancestry; whereas the 3' end structural genes (excluding the spike glycoprotein) have an avian origin. Spike glycoprotein, the host cell attachment viral surface protein, was shown to be a mosaic of feline coronavirus and avian coronavirus sequences resulting from a recombination event. Based on phylogenetic analysis designed to elucidate evolutionary links among viruses, SARS-CoV is believed to have branched from the modern Group 2 coronaviruses, suggesting that it evolved relatively rapidly. This is significant because SARS-CoV is likely still circulating in an animal reservoir (or reservoirs) and has the potential to quickly emerge and cause a new epidemic.
Collapse
Affiliation(s)
- Mark W Jackwood
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
758
|
Tusell SM, Schittone SA, Holmes KV. Mutational analysis of aminopeptidase N, a receptor for several group 1 coronaviruses, identifies key determinants of viral host range. J Virol 2006; 81:1261-73. [PMID: 17093189 PMCID: PMC1797531 DOI: 10.1128/jvi.01510-06] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Feline coronavirus (FCoV), porcine transmissible gastroenteritis coronavirus (TGEV), canine coronavirus (CCoV), and human coronavirus HCoV-229E, which belong to the group 1 coronavirus, use aminopeptidase N (APN) of their natural host and feline APN (fAPN) as receptors. Using mouse-feline APN chimeras, we identified three small, discontinuous regions, amino acids (aa) 288 to 290, aa 732 to 746 (called R1), and aa 764 to 788 (called R2) in fAPN that determined the host ranges of these coronaviruses. Blockade of infection with anti-fAPN monoclonal antibody RG4 suggested that these three regions lie close together on the fAPN surface. Different residues in fAPN were required for infection with each coronavirus. HCoV-229E infection was blocked by an N-glycosylation sequon present between aa 288 to 290 in murine APN. TGEV required R1 of fAPN, while FCoV and CCoV required both R1 and R2 for entry. N740 and T742 in fAPN and the homologous R741 in human APN (hAPN) were key determinants of host range for FCoV, TGEV, and CCoV. Residue N740 in fAPN was essential only for CCoV receptor activity. A conservative T742V substitution or a T742R substitution in fAPN destroyed receptor activity for the pig, dog, and cat coronaviruses, while a T742S substitution retained these receptor activities. Thus, the hydroxyl on T742 is required for the coronavirus receptor activity of fAPN. In hAPN an R741T substitution caused a gain of receptor activity for TGEV but not for FCoV or CCoV. Therefore, entry and host range of these group 1 coronaviruses depend on the ability of the viral spike glycoproteins to recognize small, species-specific amino acid differences in the APN proteins of different species.
Collapse
Affiliation(s)
- Sonia M Tusell
- Molecular Biology Program, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
759
|
Chan CP, Siu KL, Chin KT, Yuen KY, Zheng B, Jin DY. Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein. J Virol 2006; 80:9279-87. [PMID: 16940539 PMCID: PMC1563899 DOI: 10.1128/jvi.00659-06] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Perturbation of the function of endoplasmic reticulum (ER) causes stress leading to the activation of cell signaling pathways known as the unfolded protein response (UPR). Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) uses ER as a site for synthesis and processing of viral proteins. In this report, we demonstrate that infection with SARS-CoV induces the UPR in cultured cells. A comparison with M, E, and NSP6 proteins indicates that SARS-CoV spike (S) protein sufficiently induces transcriptional activation of several UPR effectors, including glucose-regulated protein 78 (GRP78), GRP94, and C/EBP homologous protein. A substantial amount of S protein accumulates in the ER. The expression of S protein exerts different effects on the three major signaling pathways of the UPR. Particularly, it induces GRP78/94 through PKR-like ER kinase but has no influence on activating transcription factor 6 or X box-binding protein 1. Taken together, our findings suggest that SARS-CoV S protein specifically modulates the UPR to facilitate viral replication.
Collapse
Affiliation(s)
- Ching-Ping Chan
- Department of Biochemistry, The University of Hong Kong, 3/F Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Hong Kong
| | | | | | | | | | | |
Collapse
|
760
|
Huang C, Ito N, Tseng CTK, Makino S. Severe acute respiratory syndrome coronavirus 7a accessory protein is a viral structural protein. J Virol 2006; 80:7287-94. [PMID: 16840309 PMCID: PMC1563709 DOI: 10.1128/jvi.00414-06] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus (SCoV) 7a protein is one of the viral accessory proteins. In expressing cells, 7a protein exhibits a variety of biological activities, including induction of apoptosis, activation of the mitogen-activated protein kinase signaling pathway, inhibition of host protein translation, and suppression of cell growth progression. Analysis of SCoV particles that were purified by either sucrose gradient equilibrium centrifugation or a virus capture assay, in which intact SCoV particles were specifically immunoprecipitated by anti-S protein monoclonal antibody, demonstrated that 7a protein was associated with purified SCoV particles. Coexpression of 7a protein with SCoV S, M, N, and E proteins resulted in production of virus-like particles (VLPs) carrying 7a protein, while 7a protein was not released from cells expressing 7a protein alone. Although interaction between 7a protein and another SCoV accessory protein, 3a, has been reported, 3a protein was dispensable for assembly of 7a protein into VLPs. S protein was not required for the 7a protein incorporation into VLPs, and yet 7a protein interacted with S protein in coexpressing cells. These data established that, in addition to 3a protein, 7a protein was a SCoV accessory protein identified as a SCoV structural protein.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1019, USA
| | | | | | | |
Collapse
|
761
|
Tang XC, Zhang JX, Zhang SY, Wang P, Fan XH, Li LF, Li G, Dong BQ, Liu W, Cheung CL, Xu KM, Song WJ, Vijaykrishna D, Poon LLM, Peiris JSM, Smith GJD, Chen H, Guan Y. Prevalence and genetic diversity of coronaviruses in bats from China. J Virol 2006; 80:7481-90. [PMID: 16840328 PMCID: PMC1563713 DOI: 10.1128/jvi.00697-06] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coronaviruses can infect a variety of animals including poultry, livestock, and humans and are currently classified into three groups. The interspecies transmissions of coronaviruses between different hosts form a complex ecosystem of which little is known. The outbreak of severe acute respiratory syndrome (SARS) and the recent identification of new coronaviruses have highlighted the necessity for further investigation of coronavirus ecology, in particular the role of bats and other wild animals. In this study, we sampled bat populations in 15 provinces of China and reveal that approximately 6.5% of the bats, from diverse species distributed throughout the region, harbor coronaviruses. Full genomes of four coronavirues from bats were sequenced and analyzed. Phylogenetic analyses of the spike, envelope, membrane, and nucleoprotein structural proteins and the two conserved replicase domains, putative RNA-dependent RNA polymerase and RNA helicase, revealed that bat coronaviruses cluster in three different groups: group 1, another group that includes all SARS and SARS-like coronaviruses (putative group 4), and an independent bat coronavirus group (putative group 5). Further genetic analyses showed that different species of bats maintain coronaviruses from different groups and that a single bat species from different geographic locations supports similar coronaviruses. Thus, the findings of this study suggest that bats may play an integral role in the ecology and evolution of coronaviruses.
Collapse
Affiliation(s)
- X C Tang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
762
|
Qiu Z, Hingley ST, Simmons G, Yu C, Das Sarma J, Bates P, Weiss SR. Endosomal proteolysis by cathepsins is necessary for murine coronavirus mouse hepatitis virus type 2 spike-mediated entry. J Virol 2006; 80:5768-76. [PMID: 16731916 PMCID: PMC1472567 DOI: 10.1128/jvi.00442-06] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Most strains of murine coronavirus mouse hepatitis virus (MHV) express a cleavable spike glycoprotein that mediates viral entry and pH-independent cell-cell fusion. The MHV type 2 (MHV-2) strain of murine coronavirus differs from other strains in that it expresses an uncleaved spike and cannot induce cell-cell fusion at neutral pH values. We show here that while infection of the prototype MHV-A59 strain is not sensitive to pretreatment with lysosomotropic agents, MHV-2 replication is significantly inhibited by these agents. By use of an A59/MHV-2 chimeric virus, the susceptibility to lysosomotropic agents is mapped to the MHV-2 spike, suggesting a requirement of acidification of endosomes for MHV-2 spike-mediated entry. However, acidification is likely not a direct trigger for MHV-2 spike-mediated membrane fusion, as low-pH treatment is unable to overcome ammonium chloride inhibition, and it also cannot induce cell-cell fusion between MHV-2-infected cells. In contrast, trypsin treatment can both overcome ammonium chloride inhibition and promote cell-cell fusion. Inhibitors of the endosomal cysteine proteases cathepsin B and cathepsin L greatly reduce MHV-2 spike-mediated entry, while they have little effect on A59 entry, suggesting that there is a proteolytic step in MHV-2 entry. Finally, a recombinant virus expressing a cleaved MHV-2 spike has the ability to induce cell-cell fusion at neutral pH values and does not require low pH and endosomal cathepsins during infection. These studies demonstrate that endosomal proteolysis by cathepsins is necessary for MHV-2 spike-mediated entry; this is similar to the entry pathway recently described for severe acute respiratory syndrome coronavirus and indicates that coronaviruses may use multiple pathways for entry.
Collapse
Affiliation(s)
- Zhaozhu Qiu
- Department of Microbiology, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104-6076, USA
| | | | | | | | | | | | | |
Collapse
|
763
|
Zakhartchouk AN, Sharon C, Satkunarajah M, Auperin T, Viswanathan S, Mutwiri G, Petric M, See RH, Brunham RC, Finlay BB, Cameron C, Kelvin DJ, Cochrane A, Rini JM, Babiuk LA. Immunogenicity of a receptor-binding domain of SARS coronavirus spike protein in mice: implications for a subunit vaccine. Vaccine 2006; 25:136-43. [PMID: 16919855 PMCID: PMC7115608 DOI: 10.1016/j.vaccine.2006.06.084] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 06/05/2006] [Accepted: 06/20/2006] [Indexed: 02/07/2023]
Abstract
We studied the immunogenicity of an anti-SARS subunit vaccine comprised of the fragment of the SARS coronavirus (SARS-CoV) spike protein amino acids 318-510 (S318-510) containing the receptor-binding domain. The S protein fragment was purified from the culture supernatant of stably transformed HEK293T cells secreting a tagged version of the protein. The vaccine was given subcutaneously to 129S6/SvEv mice in saline, with alum adjuvant or with alum plus CpG oligodeoxynucleotides (ODN). Mice immunized with the adjuvanted antigen elicited strong antibody and cellular immune responses; furthermore, adding the CpG ODN to the alum resulted in increased IgG2a antibody titers and a higher number of INF-gamma-secreting murine splenocytes. Mice vaccinated with S318-510 deglycosylated by PNGase F (dgS318-510) showed a lower neutralizing antibody response but had similar numbers of INF-gamma-producing cells in the spleen. This finding suggests that carbohydrate is important for the immunogenicity of the S318-510 protein fragment and provide useful information for designing an effective and safe SARS subunit vaccine.
Collapse
Affiliation(s)
- Alexander N Zakhartchouk
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, 120 Veterinary Road, Saskatoon, Sask., Canada S7N 5E3.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
764
|
Roberts A, Wood J, Subbarao K, Ferguson M, Wood D, Cherian T. Animal models and antibody assays for evaluating candidate SARS vaccines: summary of a technical meeting 25-26 August 2005, London, UK. Vaccine 2006; 24:7056-65. [PMID: 16930781 PMCID: PMC7130694 DOI: 10.1016/j.vaccine.2006.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Accepted: 07/05/2006] [Indexed: 12/28/2022]
Abstract
Severe acute respiratory syndrome (SARS) emerged in the Guangdong province of China in late 2002 and spread to 29 countries. By the end of the outbreak in July 2003, the CDC and WHO reported 8437 cases with a 9.6% case fatality rate. The disease was caused by a previously unrecognized coronavirus, SARS-CoV. Drawing on experience with animal coronavirus vaccines, several vaccine candidates have been developed and evaluated in pre-clinical trials. Available data suggest that vaccines should be based on the the 180kDa viral spike protein, S, the only significant neutralization antigen capable of inducing protective immune responses in animals. In the absence of clinical cases of SARS, candidate vaccines should be evaluated for efficacy in animal models, and although it is uncertain whether the United States Food and Drug Administration's "animal rule" would apply to licensure of a SARS vaccine, it is important to develop standardized animal models and immunological assays in preparation for this eventuality. This report summarizes the recommendations from a WHO Technical Meeting on Animal Models and Antibody Assays for Evaluating Candidate SARS Vaccines held on 25-26 August 2005 in South Mimms, UK, provides guidance on the use of animal models, and outlines the steps to develop standard reagents and assays for immunological evaluation of candidate SARS vaccines.
Collapse
Affiliation(s)
- Anjeanette Roberts
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
765
|
Beniac DR, Andonov A, Grudeski E, Booth TF. Architecture of the SARS coronavirus prefusion spike. Nat Struct Mol Biol 2006; 13:751-2. [PMID: 16845391 PMCID: PMC7097490 DOI: 10.1038/nsmb1123] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 06/23/2006] [Indexed: 11/08/2022]
Abstract
The emergence in 2003 of a new coronavirus (CoV) responsible for the atypical pneumonia termed severe acute respiratory syndrome (SARS) was a stark reminder that hitherto unknown viruses have the potential to cross species barriers to become new human pathogens. Here we describe the SARS-CoV 'spike' structure determined by single-particle cryo-EM, along with the docked atomic structures of the receptor-binding domain and prefusion core.
Collapse
Affiliation(s)
- Daniel R Beniac
- Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, R3E 3R2 Manitoba Canada
| | - Anton Andonov
- Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, R3E 3R2 Manitoba Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, R3E 0W3 Manitoba Canada
| | - Elsie Grudeski
- Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, R3E 3R2 Manitoba Canada
| | - Tim F Booth
- Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, R3E 3R2 Manitoba Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, R3E 0W3 Manitoba Canada
| |
Collapse
|
766
|
Haagmans BL, Osterhaus ADME. Coronaviruses and their therapy. Antiviral Res 2006; 71:397-403. [PMID: 16837072 PMCID: PMC7114240 DOI: 10.1016/j.antiviral.2006.05.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 05/30/2006] [Accepted: 05/31/2006] [Indexed: 11/19/2022]
Abstract
Coronaviruses may cause respiratory, enteric and central nervous system diseases in many species, including humans. Until recently, the relatively low burden of disease in humans caused by few of these viruses hampered development of coronavirus specific therapeutics. However, the emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) has prompted the discovery of such drugs. Subsequent studies in animal models demonstrated the efficacy of SARS-CoV specific monoclonal antibodies, pegylated-interferon-alpha and siRNAs against SARS-CoV. Furthermore, several antivirals shown to be effective against other viruses were tested in vitro. Because of availability and shown efficacy, the use of interferons may be considered should SARS-CoV or a related coronavirus (re)-emerge. The more recent design of wide-spectrum inhibitors targeting the coronavirus main proteases may lead to the discovery of new antivirals against multiple coronavirus induced diseases.
Collapse
Affiliation(s)
- Bart L Haagmans
- Department of Virology, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | | |
Collapse
|
767
|
Tan YJ, Lim SG, Hong W. Understanding the accessory viral proteins unique to the severe acute respiratory syndrome (SARS) coronavirus. Antiviral Res 2006; 72:78-88. [PMID: 16820226 PMCID: PMC7114237 DOI: 10.1016/j.antiviral.2006.05.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 04/29/2006] [Accepted: 05/15/2006] [Indexed: 12/14/2022]
Abstract
A novel coronavirus, termed the severe acute respiratory syndrome coronavirus (SARS-CoV), infected humans in Guangdong, China, in November 2002 and the subsequent efficient human-to-human transmissions of this virus caused profound disturbances in over 30 countries worldwide in 2003. Eventually, this epidemic was controlled by isolation and there has been no human infection reported since January 2004. However, research on different aspects of the SARS-CoV is not waning, as it is not known if this virus will re-emerge, especially since its origins and potential reservoir(s) are unresolved. The SARS-CoV genome is nearly 30 kb in length and contains 14 potential open reading frames (ORFs). Some of these ORFs encode for genes that are homologous to proteins found in all known coronaviruses, namely the replicase genes (ORFs 1a and 1b) and the four structural proteins: nucleocapsid, spike, membrane and envelope, and these proteins are expected to be essential for the replication of the virus. The remaining eight ORFs encodes for accessory proteins, varying in length from 39 to 274 amino acids, which are unique to SARS-CoV. This review will summarize the expeditious research on these accessory viral proteins in three major areas: (i) the detection of antibodies against accessory proteins in the serum of infected patients, (ii) the expression, processing and cellular localization of the accessory proteins, and (iii) the effects of the accessory proteins on cellular functions. These in-depth molecular and biochemical characterizations of the SARS-CoV accessory proteins, which have no homologues in other coronaviruses, may offer clues as to why the SARS-CoV causes such a severe and rapid attack in humans, while other coronaviruses that infect humans seem to be more forgiving.
Collapse
Affiliation(s)
- Yee-Joo Tan
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
| | | | | |
Collapse
|
768
|
Law PYP, Liu YM, Geng H, Kwan KH, Waye MMY, Ho YY. Expression and functional characterization of the putative protein 8b of the severe acute respiratory syndrome-associated coronavirus. FEBS Lett 2006; 580:3643-8. [PMID: 16753150 PMCID: PMC7094570 DOI: 10.1016/j.febslet.2006.05.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2006] [Accepted: 05/19/2006] [Indexed: 12/17/2022]
Abstract
SARS 8b is one of the putative accessory proteins of the severe acute respiratory syndrome‐associated coronavirus (SARS‐CoV) with unknown functions. In this study, the cellular localization and activity of this estimated 9.6 kDa protein were examined. Confocal microscopy results indicated that SARS 8b is localized in both nucleus and cytoplasm of mammalian cells. Functional study revealed that overexpression of SARS 8b induced DNA synthesis. Coexpression of SARS 8b and SARS 6, a previously characterized SARS‐CoV accessory protein, did not elicit synergistic effects on DNA synthesis.
Collapse
Affiliation(s)
- Pui Ying Peggy Law
- The Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Yuet-Man Liu
- The Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Hua Geng
- The Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Ka Ho Kwan
- The Molecular Biotechnology Program, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Mary Miu-Yee Waye
- The Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yuan-Yuan Ho
- The Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| |
Collapse
|
769
|
Reed ML, Dove BK, Jackson RM, Collins R, Brooks G, Hiscox JA. Delineation and modelling of a nucleolar retention signal in the coronavirus nucleocapsid protein. Traffic 2006; 7:833-48. [PMID: 16734668 PMCID: PMC7488588 DOI: 10.1111/j.1600-0854.2006.00424.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Unlike nuclear localization signals, there is no obvious consensus sequence for the targeting of proteins to the nucleolus. The nucleolus is a dynamic subnuclear structure which is crucial to the normal operation of the eukaryotic cell. Studying nucleolar trafficking signals is problematic as many nucleolar retention signals (NoRSs) are part of classical nuclear localization signals (NLSs). In addition, there is no known consensus signal with which to inform a study. The avian infectious bronchitis virus (IBV), coronavirus nucleocapsid (N) protein, localizes to the cytoplasm and the nucleolus. Mutagenesis was used to delineate a novel eight amino acid motif that was necessary and sufficient for nucleolar retention of N protein and colocalize with nucleolin and fibrillarin. Additionally, a classical nuclear export signal (NES) functioned to direct N protein to the cytoplasm. Comparison of the coronavirus NoRSs with known cellular and other viral NoRSs revealed that these motifs have conserved arginine residues. Molecular modelling, using the solution structure of severe acute respiratory (SARS) coronavirus N‐protein, revealed that this motif is available for interaction with cellular factors which may mediate nucleolar localization. We hypothesise that the N‐protein uses these signals to traffic to and from the nucleolus and the cytoplasm.
Collapse
Affiliation(s)
- Mark L. Reed
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Brian K. Dove
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Richard M. Jackson
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Rebecca Collins
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Gavin Brooks
- School of Pharmacy, University of Reading, Reading, UK
| | - Julian A. Hiscox
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
770
|
Chu VC, McElroy LJ, Chu V, Bauman BE, Whittaker GR. The avian coronavirus infectious bronchitis virus undergoes direct low-pH-dependent fusion activation during entry into host cells. J Virol 2006; 80:3180-8. [PMID: 16537586 PMCID: PMC1440383 DOI: 10.1128/jvi.80.7.3180-3188.2006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Coronaviruses are the causative agents of respiratory disease in humans and animals, including severe acute respiratory syndrome. Fusion of coronaviruses is generally thought to occur at neutral pH, although there is also evidence for a role of acidic endosomes during entry of a variety of coronaviruses. Therefore, the molecular basis of coronavirus fusion during entry into host cells remains incompletely defined. Here, we examined coronavirus-cell fusion and entry employing the avian coronavirus infectious bronchitis virus (IBV). Virus entry into cells was inhibited by acidotropic bases and by other inhibitors of pH-dependent endocytosis. We carried out fluorescence-dequenching fusion assays of R18-labeled virions and show that for IBV, coronavirus-cell fusion occurs in a low-pH-dependent manner, with a half-maximal rate of fusion occurring at pH 5.5. Fusion was reduced, but still occurred, at lower temperatures (20 degrees C). We observed no effect of inhibitors of endosomal proteases on the fusion event. These data are the first direct measure of virus-cell fusion for any coronavirus and demonstrate that the coronavirus IBV employs a direct, low-pH-dependent virus-cell fusion activation reaction. We further show that IBV was not inactivated, and fusion was unaffected, by prior exposure to pH 5.0 buffer. Virions also showed evidence of reversible conformational changes in their surface proteins, indicating that aspects of the fusion reaction may be reversible in nature.
Collapse
Affiliation(s)
- Victor C Chu
- Dept. of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|