801
|
Korzus E, Nagase H, Rydell R, Travis J. The mitogen-activated protein kinase and JAK-STAT signaling pathways are required for an oncostatin M-responsive element-mediated activation of matrix metalloproteinase 1 gene expression. J Biol Chem 1997; 272:1188-96. [PMID: 8995420 DOI: 10.1074/jbc.272.2.1188] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Both astrocytes in the central nervous system and fibroblasts in somatic tissues are not only the major sources of extracellular matrix components but also of matrix metalloproteinases (MMPs), a family of enzymes directly involved in extracellular matrix breakdown. We have analyzed the regulation of the expression of MMPs and TIMPs (tissue inhibitors of metalloproteinases) in human primary astrocytes stimulated with oncostatin M (OSM) and other extracellular mediators in comparison with normal human dermal fibroblasts. It was found that OSM induced/enhanced transcription of MMP-1 (interstitial collagenase) and MMP-3 (stromelysin 1) in astrocytes, and MMP-1, MMP-9 (gelatinase B), and TIMP-1 in fibroblasts. Analysis of the signal transduction leading to activation of the MMP-1 gene revealed the presence of an OSM-responsive element (OMRE) encompassing the AP-1 binding site and the signal transducer and activator of transcription (STAT) binding element, which mediate activation by OSM. OMRE is also present in the TIMP-1 gene promoter and, although there are some differences in these two motifs, both appear to be targets for the simultaneous action of OSM-induced nuclear effectors. The induced enhancement of transcription by synergistically acting AP-1 and STAT binding elements in response to OSM is Raf-dependent. Cross-talk between the mitogen-activated protein kinase and JAK-STAT pathways is required to achieve maximal induction of the OMRE-driven transcription by OSM.
Collapse
Affiliation(s)
- E Korzus
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602, USA
| | | | | | | |
Collapse
|
802
|
Band CJ, Posner BI. Phosphatidylinositol 3'-kinase and p70s6k are required for insulin but not bisperoxovanadium 1,10-phenanthroline (bpV(phen)) inhibition of insulin-like growth factor binding protein gene expression. Evidence for MEK-independent activation of mitogen-activated protein kinase by bpV(phen). J Biol Chem 1997; 272:138-45. [PMID: 8995239 DOI: 10.1074/jbc.272.1.138] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The hormonal regulation of insulin-like growth factor binding protein (IGFBP)-1 and -4 mRNA was compared in serum-free primary rat hepatocyte cultures. The combination of dexamethasone and glucagon (Dex/Gluc) strongly increased IGFBP-1 and IGFBP-4 mRNA levels. Insulin suppressed Dex/Gluc-stimulated IGFBP-1 but not IGFBP-4 mRNA levels. In contrast, the peroxovanadium compound, bisperoxovanadium 1,10-phenanthroline (bpV(phen)), completely abrogated Dex/Gluc induction of both IGFBP mRNA species. Wortmannin and rapamycin blocked the inhibitory effect of insulin but not that of bpV(phen) on Dex/Gluc-stimulated IGFBP mRNA. Thus, although phosphatidylinositol 3'-kinase and p70s6k are necessary for insulin-mediated transcriptional inhibition of the IGFBP-1 gene, a signaling pathway, independent of phosphatidyloinositol 3'-kinase and p70s6k, is activated by bpV(phen) and mediates IGFBP-1 as well as IGFBP-4 mRNA inhibition. Mitogen-activated protein (MAP) kinase activity induced by insulin was suppressed to below basal levels in the presence of Dex/Gluc, whereas in response to bpV(phen), MAP kinase activity was high and unaffected by Dex/Gluc, consistent with a role of MAP kinases in bpV(phen)-mediated inhibition of IGFBP mRNA. The specific MAP kinase kinase (MEK) inhibitor, PD98059, inhibited insulin but not bpV(phen)-stimulated MAP kinase activity, suggesting that MAP kinases can be activated in a MEK-independent fashion. Peroxovanadium compounds are strong inhibitors of tyrosine phosphatases, which may inhibit specific tyrosine/threonine phosphatases involved in the negative regulation of MAP kinases.
Collapse
Affiliation(s)
- C J Band
- Polypeptide Hormone Laboratory and the Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
803
|
Rutherford MN, Kumar A, Haque SJ, Ghysdael J, Williams BR. Specific binding of the ETS-domain protein to the interferon-stimulated response element. J Interferon Cytokine Res 1997; 17:1-10. [PMID: 9041465 DOI: 10.1089/jir.1997.17.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Interferon (IFN) activation of genes bearing an IFN-stimulated response element (ISRE) is regulated through binding of IFN-stimulated gene factors (ISGF) to the ISRE found in many IFN-stimulated genes. Using a multimerized human 2-5A synthetase ISRE as probe, we screened lambda gt11 expression libraries for cDNA encoding ISRE-binding activity and isolated a clone for murine proto-oncogene ets-1. The Ets-1 protein binds to the 2-5A synthetase ISRE at a site that also binds ISGF3, a multicomponent factor whose ISRE binding correlates with IFN-induced activation of transcription from ISRE-containing promoters. IFN-induced ISGF3 complex formation on the ISRE can be inhibited by specific Ets-1 antibody. Coexpression of Ets-1 represses ISRE-dependent reporter activity, suggesting that one or more members of the Ets protein family may negatively regulate transcriptional activity mediated by the 2-5A synthetase ISRE.
Collapse
Affiliation(s)
- M N Rutherford
- Department of Molecular and Medical Genetics, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
804
|
Niederman R, Zhang J, Kashket S. Short-chain carboxylic-acid-stimulated, PMN-mediated gingival inflammation. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1997; 8:269-90. [PMID: 9260044 DOI: 10.1177/10454411970080030301] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This communication reviews the effects of short-chain carboxylic acids on human cells of importance to the periodontium. The central hypothesis is that these acids can alter both cell function and gene expression, and thus contribute to the initiation and prolongation of gingival inflammation. Short-chain carboxylic acids [CH3-(CH2)x-COOH, x < 3] are metabolic intermediates with a broad range of apparently paradoxical biological effects. For example, lactic acid (CH3-CHOH-COOH), a 3-carbon alpha-hydroxy-substituted acid, is widely recognized for its cariogenicity. Lactic acid, however, also occurs in tropical fruits, and is the active ingredient in a variety of anti-wrinkle creams developed by dermatologists. In marked contrast, the unsubstituted 3-carbon propionic acid (CH3-CH2-COOH) is used as a food preservative and is the active principle for one class of non-steroidal anti-inflammatory agents. Interestingly, the addition of one carbon to propionic acid dramatically changes the biological effects. The unsubstituted 4-carbon butyric acid (CH3-CH2-CH2-COOH) is used by hematologists as a de-differentiating agent for the treatment of sickle cell anemia, but by oncologists as a differentiating agent for cancer chemotherapy. Finally, acting either individually or in concert, these acids can increase vascular dilation. Clearly, these acids, while metabolically derived, have a number of very divergent activities which are cell-type-specific (Fig. 1). It may be telling that periodontal bacteria produce these acids in millimolar concentrations, and that these bacteria can be characterized by their acid production profiles. It is no less interesting that these acids occur in the gingival crevices of human subjects with severe periodontal disease at millimolar levels which are > 10-fold higher than those found in mildly diseased subjects, and are undetectable in healthy subjects. Further, when applied directly to healthy human gingiva, short-chain carboxylic acids stimulate a gingival inflammatory response and inflammatory cytokine release. At the cellular level, these acids inhibit proliferation of gingival epithelial and endothelial cells, and inhibit leukocyte apoptosis and function, but can stimulate leukocyte cytokine release. At the molecular level, these acids can stimulate neutrophil gene transcription, translation, and protein expression. Thus, the likelihood is high that these acids, in addition to their cariogenic activity, can promote and prolong gingival inflammation. Our challenge will be to identify the cell or cells of the periodontium which respond to short-chain carboxylic acids, to delineate their responses and the molecular mechanism(s) of these effects, and to categorize the aspects of the inflammatory components which damage and those which protect the host. With this information, it may be possible to begin to rationally identify and test pharmaceutical agents which diminish the harmful aspects, while enhancing the beneficial components, of the inflammatory response.
Collapse
Affiliation(s)
- R Niederman
- Department of Periodontology, Harvard School of Dental Medicine, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
805
|
Abstract
Modification of Ser and Thr residues by attachment of O-linked N-acetylglucos-amine [Ser(Thr)-O-GlcNAcylation] to eukaryotic nuclear and cytosolic proteins is as dynamic and possibly as abundant as Ser(Thr) phosphorylation. Known O-GlcNAcylated proteins include cytoskeletal proteins and their regulatory proteins; viral proteins; nuclear-pore, heat-shock, tumor-suppressor, and nuclearoncogene proteins; RNA polymerase II catalytic subunit; and a multitude of transcription factors. Although functionally diverse, all of these proteins are also phosphoproteins. Most O-GlcNAcylated proteins form highly regulated multimeric associations that are dependent upon their posttranslational modifications. Evidence is mounting that O-GlcNAcylation is an important regulatory modification that may have a reciprocal relationship with O-phosphorylation and may modulate many biological processes in eukaryotes.
Collapse
Affiliation(s)
- G W Hart
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, School of Medicine 35294-0005, USA.
| |
Collapse
|
806
|
Oluwole BO, Du W, Mills I, Sumpio BE. Gene regulation by mechanical forces. ENDOTHELIUM : JOURNAL OF ENDOTHELIAL CELL RESEARCH 1997; 5:85-93. [PMID: 9237042 DOI: 10.3109/10623329709079866] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Endothelial cells are subjected to various mechanical forces in vivo from the flow of blood across the luminal surface of the blood vessel. The purpose of this review was to examine the data available on how these mechanical forces, in particular cyclic strain, affect the expression and regulation of endothelial cell function. Studies from various investigators using models of cyclic strain in vitro have shown that various vasoactive mediators such as nitric oxide and prostacyclin are induced by the effect of mechanical deformation, and that the expression of these mediators may be regulated at the transcription level by mechanical forces. There also seems to be emerging evidence that endothelial cells may also act as mechanotransducers, whereby the transmission of external forces induces various cytoskeletal changes and second messenger cascades. Furthermore, it seems these forces may act on specific response elements of promoter genes.
Collapse
Affiliation(s)
- B O Oluwole
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
807
|
Bandyopadhyay RS, Faller DV. Regulation of c-jun gene expression in endothelial cells by the protein kinase inhibitor staurosporine. ENDOTHELIUM : JOURNAL OF ENDOTHELIAL CELL RESEARCH 1997; 5:95-105. [PMID: 9237043 DOI: 10.3109/10623329709079867] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The proto-oncogene c-jun, a member of the family of immediate-early genes, is transcriptionally induced in different cell types by a variety of stimuli, including mitogens, tumor promoters, growth factors. We show here that the protein kinase inhibitor staurosporine, which inhibits both the serine-threonine and tyrosine specific protein kinases, also causes differential regulation of the c-jun gene in endothelial cells. Increasing concentrations of staurosporine modulated the steady-state levels of c-jun mRNA in bovine aortic endothelial (BAE) cells in a multiphasic manner. The half-life of c-jun mRNA did not change significantly under these conditions, suggesting that the modulations in the mRNA levels were caused primarily by differential transcriptional activity of the gene. The expression of c-jun gene is believed to be regulated by its own product, the JUN protein, which constitutes a major component of the inducible transcription factor AP-1. In order to test whether the differential regulation of c-jun gene was caused by the differential activation (or inactivation) of the AP-1 transcription factor, the DNA-binding activity of this transcription factor in staurosporine-treated cells was measured. Gelshift analysis with a synthetic oligonucleotide probe showed modest effects of staurosporine on the DNA-binding activity of the transcription factor AP-1. The changes observed in the DNA-binding activity of AP-1 did not parallel the changes observed in the steady-state levels of c-jun mRNA. Similarly, the expression of an AP-1 dependent reporter gene construct was regulated in a fashion entirely different from the c-jun gene during the same protein kinase inhibitory conditions. These results suggest the existence of an alternative pathway that regulates the c-jun gene expression in endothelial cells independent of both the protein kinase and AP-1 transcription factor activation steps.
Collapse
Affiliation(s)
- R S Bandyopadhyay
- Cancer Research Center, Boston University School of Medicine, MA 02118, USA
| | | |
Collapse
|
808
|
Rivero-Lezcano OM, Chicharro C, Rivas L. Acidic pH stress induces protein tyrosine phosphorylation in Leishmania pifanoi. Mol Biochem Parasitol 1997; 84:123-9. [PMID: 9041527 DOI: 10.1016/s0166-6851(96)02789-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In order to determine whether in vitro Leishmania exposure to conditions comparable to those encountered inside the host cell would induce specific signals, we have studied tyrosine phosphorylation patterns in Leishmania pifanoi. Incubation of L. pifanoi at acidic pH resulted in the phosphorylation of several proteins including three of 27, 43 and 51 kDa, as well as the dephosphorylation of a 175 and a 39 kDa proteins in promastigotes recently transformed. In contrast, heat shock at 37 degrees C did not change the tyrosine phosphorylation pattern. Phosphorylation only occurs at pH 5.0 or lower and reached completion after 1 h. Changes returned to the initial conditions in 2 h after pH medium neutralization, indicating a reversible mechanism of phosphorylation.
Collapse
|
809
|
Baserga R, Resnicoff M, D'Ambrosio C, Valentinis B. The role of the IGF-I receptor in apoptosis. VITAMINS AND HORMONES 1997; 53:65-98. [PMID: 9197178 DOI: 10.1016/s0083-6729(08)60704-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- R Baserga
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
810
|
Bito H, Deisseroth K, Tsien RW. CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell 1996; 87:1203-14. [PMID: 8980227 DOI: 10.1016/s0092-8674(00)81816-4] [Citation(s) in RCA: 897] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
While changes in gene expression are critical for many brain functions, including long-term memory, little is known about the cellular processes that mediate stimulus-transcription coupling at central synapses. In studying the signaling pathways by which synaptic inputs control the phosphorylation state of cyclic AMP-responsive element binding protein (CREB) and determine expression of CRE-regulated genes, we found two important Ca2+/calmodulin (CaM)-regulated mechanisms in hippocampal neurons: a CaM kinase cascade involving nuclear CaMKIV and a calcineurin-dependent regulation of nuclear protein phosphatase 1 activity. Prolongation of the synaptic input on the time scale of minutes, in part by an activity-induced inactivation of calcineurin, greatly extends the period over which phospho-CREB levels are elevated, thus affecting induction of downstream genes.
Collapse
Affiliation(s)
- H Bito
- Department of Molecular and Cellular Physiology, Beckman Center for Molecular and Genetic Medicine, Stanford University School of Medicine, California 94305-5426, USA
| | | | | |
Collapse
|
811
|
Haldimann A, Prahalad MK, Fisher SL, Kim SK, Walsh CT, Wanner BL. Altered recognition mutants of the response regulator PhoB: a new genetic strategy for studying protein-protein interactions. Proc Natl Acad Sci U S A 1996; 93:14361-6. [PMID: 8962056 PMCID: PMC26137 DOI: 10.1073/pnas.93.25.14361] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Two-component regulatory systems require highly specific interactions between histidine kinase (transmitter) and response regulator (receiver) proteins. We have developed a novel genetic strategy that is based on tightly regulated synthesis of a given protein to identify domains and residues of an interacting protein that are critical for interactions between them. Using a reporter strain synthesizing the nonpartner kinase VanS under tight arabinose control and carrying a promoter-lacZ fusion activated by phospho-PhoB, we isolated altered recognition (AR) mutants of PhoB showing enhanced activation (phosphorylation) by VanS as arabinose-dependent Lac+ mutants. Changes in the PhoBAR mutants cluster in a "patch" near the proposed helix 4 of PhoB based on the CheY crystal structure (a homolog of the PhoB receiver domain) providing further evidence that helix 4 lies in the kinase-regulator interface. Based on the CheY structure, one mutant has an additional change in a region that may propagate a conformational change to helix 4. The overall genetic strategy described here may also be useful for studying interactions of other components of the vancomycin resistance and P1 signal transduction pathways, other two-component regulatory systems, and other interacting proteins. Conditionally replicative oriRR6K gamma attP "genome targeting" suicide plasmids carrying mutagenized phoB coding regions were integrated into the chromosome of a reporter strain to create mutant libraries; plasmids encoding mutant PhoB proteins were subsequently retrieved by P1-Int-Xis cloning. Finally, the use of similar genome targeting plasmids and P1-Int-Xis cloning should be generally useful for constructing genomic libraries from a wide array of organisms.
Collapse
Affiliation(s)
- A Haldimann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
812
|
Affiliation(s)
- S A Ness
- Northwestern University, Department of Biochemistry, Molecular Biology and Cell Biology, Evanston, IL 60208-3500, USA.
| |
Collapse
|
813
|
Bendinelli P, Piccoletti R, Maroni P, Bernelli-Zazzera A. The MAP kinase cascades are activated during post-ischemic liver reperfusion. FEBS Lett 1996; 398:193-7. [PMID: 8977105 DOI: 10.1016/s0014-5793(96)01228-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have investigated the involvement of MAP kinase cascades in the response of the liver to post-ischemic reperfusion. Both JNKs and ERKs are activated but the duration and magnitude of the increase in their activities appear to be different. JNK activation is more marked but shorter than that of ERKs. The increase observed in the phosphotyrosine content of the 52 kDa Shc protein, accompanied by an increased amount of co-immunoprecipitated Grb2, and the activation of Raf-1 kinase provide evidence of the involvement of a Ras-Raf-dependent pathway, with a time course that is similar to that of ERK activation. The treatment of rats with IL-1 receptor antagonist modified all of the described effects, suggesting that IL-1 plays a role in the response of the liver to reperfusion.
Collapse
Affiliation(s)
- P Bendinelli
- Istituto di Patologia Generale dell'Università degli Studi di Milano, Italy
| | | | | | | |
Collapse
|
814
|
Santoro MM, Collesi C, Grisendi S, Gaudino G, Comoglio PM. Constitutive activation of the RON gene promotes invasive growth but not transformation. Mol Cell Biol 1996; 16:7072-83. [PMID: 8943362 PMCID: PMC231710 DOI: 10.1128/mcb.16.12.7072] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
MET, RON, and SEA are members of a gene family encoding tyrosine kinase receptors with distinctive properties. Besides mediating growth, they control cell dissociation, motility ("scattering"), and formation of branching tubules. While there are transforming counterparts of MET and SEA, no oncogenic forms of RON have yet been identified. A chimeric Tpr-Ron, mimicking the oncogenic form of Met (Tpr-Met) was generated to investigate its transforming potential. For comparison, a chimeric Tpr-Sea was also constructed. Fusion with Tpr induced constitutive activation of the Ron and Sea kinases. While Tpr-Sea was more efficient than Tpr-Met in transformation, Tpr-Ron did not transform NIH 3T3 cells. The differences in the transforming abilities of Tpr-Met and Tpr-Ron were linked to the functional features of the respective tyrosine kinases using the approach of swapping subdomains. Kinetic analysis showed that the catalytic efficiency of Tpr-Ron is five times lower than that of Tpr-Met. Moreover, constitutive activation of Ron resulted in activation of the MAP kinase signaling cascade approximately three times lower than that attained by Tpr-Met. However, constitutive activation of Ron did induce a mitogenic-invasive response, causing cell dissociation, motility, and invasion of extracellular matrices. Tpr-Ron also induced formation of long, unbranched tubules in tridimensional collagen gels. These data show that RON has the potential to elicit a motile-invasive rather than a transformed phenotype.
Collapse
Affiliation(s)
- M M Santoro
- Institute for Cancer Research, University of Turin Medical School, Italy
| | | | | | | | | |
Collapse
|
815
|
Lukas J, Bartkova J, Bartek J. Convergence of mitogenic signalling cascades from diverse classes of receptors at the cyclin D-cyclin-dependent kinase-pRb-controlled G1 checkpoint. Mol Cell Biol 1996; 16:6917-25. [PMID: 8943347 PMCID: PMC231695 DOI: 10.1128/mcb.16.12.6917] [Citation(s) in RCA: 242] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The commitment of mammalian cells in late G1 to replicate the genome and divide in response to mitogenic growth factors operating via tyrosine kinase receptors depends on phosphorylation of the retinoblastoma protein (pRb), a process controlled by cyclin D-associated cyclin-dependent kinases (cdks) and their inhibitors. This study addressed the issue of whether also other mitogenic signalling cascades require activation of cyclin D-associated kinases or whether any mitogenic pathway can bypass the cyclin D-pRb checkpoint. We show that mitogenic signal transduction pathways from three classes of receptors, the membrane tyrosine kinase receptors activated by serum mitogens or epidermal growth factor, estrogen receptors triggered by estradiol, and the cyclic AMP-dependent signalling from G-protein-coupled thyrotropin receptors, all converge and strictly require the cyclin D-cdk activity to induce S phase in human MCF-7 cells and/or primary dog thyrocytes. Combined microinjection and biochemical approaches showed that whereas these three mitogenic cascades are sensitive to the p16 inhibitor of cdk4/6 and/or cyclin D1-neutralizing antibody and able to induce pRb kinase activity, their upstream biochemical routes are distinct as demonstrated by their differential sensitivity to lovastatin and requirements for mitogen-activated protein kinases whose sustained activation is seen only in the growth factor-dependent pathway. Taken together, these results support the candidacy of the cyclin D-cdk-pRb interplay for the convergence step of multiple signalling cascades and a mechanism contributing to the restriction point switch.
Collapse
Affiliation(s)
- J Lukas
- Division of Cancer Biology, Danish Cancer Society, Copenhagen
| | | | | |
Collapse
|
816
|
Hill CS. Signalling to the nucleus by members of the transforming growth factor-beta (TGF-beta) superfamily. Cell Signal 1996; 8:533-44. [PMID: 9115845 DOI: 10.1016/s0898-6568(96)00122-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- C S Hill
- Ludwig Institute For Cancer Research, London, UK
| |
Collapse
|
817
|
Zeldin G, Yang SQ, Yin M, Lin HZ, Rai R, Diehl AM. Alcohol and cytokine-inducible transcription factors. Alcohol Clin Exp Res 1996; 20:1639-45. [PMID: 8986216 DOI: 10.1111/j.1530-0277.1996.tb01710.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cytokines, such as TNF alpha, modulate the behavior of many cells by regulating the expression of a wide array of genes. When a cytokine binds to its receptor on the cell surface, the receptor becomes activated and activates signal transduction cascades. These cascades typically involve a series of phosphorylation reactions that lead to sequential activation of various kinases. The targets of these kinases include DNA binding proteins that regulate the transcription of target genes. The activity of DNA binding proteins, such as c-Jun and NF-kappa B, titrates the transcriptional activity of cytokine-regulated genes. Both acute and chronic alcohol consumption of ethanol increase hepatic expression of TNF alpha. After acute ethanol consumption, this is associated with increased induction of several TNF-dependent regenerative events, including the activation of c-Jun and increased binding activity of NF-kappa B. However, chronic consumption of ethanol appears to impede TNF alpha signaling in the liver because it attenuates the increases in c-JUN activity and NF-kappa B binding, which normally follow partial hepatectomy. These results suggest that one mechanism by which ethanol influences liver cell behavior is by influencing local expression of TNF alpha and changing the activity of TNF-regulated transcription factors.
Collapse
Affiliation(s)
- G Zeldin
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
818
|
Tanase S, Bawden JW. The immunohistochemical localization of stat-2, -3, -4 and -5 during early enamel and dentine formation in rat molars. Arch Oral Biol 1996; 41:1149-60. [PMID: 9134104 DOI: 10.1016/s0003-9969(96)00084-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
STATs (signal transduction and activators of transcription) are key components of the signal transduction pathways in the cytokine receptor superfamily-linked pathway. STATs are activated directly by members of the Jak (Janus kinase) family and, when activated, migrate to the nucleus to modify gene expression to produce a variety of cellular responses. Individual cytokines activate specific combinations of the Jak/STAT isoforms. A previous study localized the known Jak isoforms and STAT-1 in 5-day-old rat molars during the early stages of enamel and dentine formation. The present study was undertaken to localize immunohistochemically STAT isoforms STAT-2. -3, -4 and -5 in association with events involved in early dentine and enamel formation in 5-day-old rat molars. Each of the isoform localization patterns was different from the others. Combining the results of the previous study with the present findings, it appears that all of the known Jaks and STATs-1, -2, -3, -4 and -5 are located in the cells directly involved in early enamel or dentine formation. Using colocalization patterns of the individual Jaks and STATs, individual receptor locations may be predicted. In the proximal ends of differentiated ameloblasts, several cytokine receptors [interleukin (IL) -5, -6, -7, -9, -10, -12, growth hormone granulocyte colony-stimulating factor interferon-alpha/beta. -gamma] are predicted. In other areas of the early odontogenic cells, the proximal ends of differentiating ameloblasts are predicted to have IL-7 receptors, inner enamel epithelium IL-6 and IL-10 receptors, and stratum intermedium cells IL-6 receptors. In the early developing dentine, differentiating odontoblasts are predicted to have IL-6 and IL-10 receptors, and differentiated odontoblasts no cytokine receptors identified by known Jak/STAT combinations. Mapping of the Jak and STAT isoforms in the cells involved in early enamel and dentine formation indicates that a sizeable list of ligands and their respective cytokine receptor/pathway complexes are involved in the regulation of these processes.
Collapse
Affiliation(s)
- S Tanase
- Department of Pediatric Dentistry, University of North Carolina, Chapel Hill 27599, USA
| | | |
Collapse
|
819
|
Chu B, Soncin F, Price BD, Stevenson MA, Calderwood SK. Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J Biol Chem 1996; 271:30847-57. [PMID: 8940068 DOI: 10.1074/jbc.271.48.30847] [Citation(s) in RCA: 305] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mammalian heat shock genes are regulated at the transcriptional level by heat shock factor-1 (HSF-1), a sequence-specific transcription factor. We have examined the role of serine phosphorylation of HSF-1 in the regulation of heat shock gene transcription. Our experiments show that mitogen-activated protein kinases (MAPKs) of the ERK-1 family phosphorylate HSF-1 on serine residues and repress the transcriptional activation of the heat shock protein 70B (HSP70B) promoter by HSF-1 in vivo. These effects of MAPK are transmitted through a specific serine residue (Ser-303) located in a proline-rich sequence within the transcriptional regulatory domain of human HSF-1. However, despite the importance of Ser-303 in transmitting the signal from the MAPK cascade to HSP70 transcription, there was no evidence that Ser-303 could be phosphorylated by MAPK in vitro, although an adjacent residue (Ser-307) was avidly phosphorylated by MAPK. Further studies revealed that Ser-303 is phosphorylated by glycogen synthase kinase 3 (GSK3) through a mechanism dependent on primary phosphorylation of Ser-307 by MAPK. Secondary phosphorylation of Ser-303 by GSK3 may thus repress the activity of HSF-1, and its requirement for priming by MAPK phosphorylation of Ser-307 provides a potential link between the MAPK cascade and HSF-1. Our experiments thus indicate that MAPK is a potent inhibitor of HSF-1 function and may be involved in repressing the heat shock response during normal growth and development and deactivating the heat shock response during recovery from stress.
Collapse
Affiliation(s)
- B Chu
- Dana Farber Cancer Institute and Joint Center for Radiation Therapy, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
820
|
Kallunki T, Deng T, Hibi M, Karin M. c-Jun can recruit JNK to phosphorylate dimerization partners via specific docking interactions. Cell 1996; 87:929-39. [PMID: 8945519 DOI: 10.1016/s0092-8674(00)81999-6] [Citation(s) in RCA: 382] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Structurally related serine/threonine kinases recognize similar phosphoacceptor peptides in vitro yet in vivo, they phosphorylate distinct substrates. To understand the basis for this specificity, we studied the interaction between the Jun kinases (JNKs) and Jun proteins. JNKs phosphorylate c-Jun very efficiently, JunD less efficiently, but they do not phosphorylate JunB. Effective JNK substrates require a separate docking site and specificity-conferring residues flanking the phosphoacceptor. The docking site increases the efficiency and specificity of the phosphorylation reaction. JunB has a functional JNK docking site but lacks specificity-conferring residues. Insertion of such residues brings JunB under JNK control. JunD, by contrast, lacks a JNK docking site, but its phosphoacceptor peptide is identical to that of c-Jun. Substrates such as JunD can be phosphorylated by JNK through heterodimerization with docking competent partners. Therefore, heterodimerization can affect the recognition of transcription factors by signal-regulated protein kinases.
Collapse
Affiliation(s)
- T Kallunki
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla 92093-0636, USA
| | | | | | | |
Collapse
|
821
|
Abstract
The mRNA levels of LIV-1 and pS2, two estrogen-responsive genes, are increased by the agents, cholera toxin (CT) plus 3-isobutyl-l-methylxanthine (IBMX), which cause an increase in cAMP in MCF-7 human breast cancer cells. The simultaneous addition of estradiol and CT/IBMX results in a synergistic induction of the two mRNAs. The changes in mRNA reflect changes in transcription of the two genes. Interestingly, the addition of CT/IBMX to estradiol not only causes a greater increase in transcription rate but the increase is longer-lasting that seen with the hormone alone. Stimulation of mRNA levels by CT/IBMX, but not by estradiol, was prevented by cycloheximide. Stimulation by both estradiol and by CT/IBMX was prevented by the antiestrogen, ICI 164387. Transcription of LIV-1 and pS2 genes is by both estradiol and cAMP, via separate mechanisms both requiring the estrogen receptor.
Collapse
Affiliation(s)
- M K el-Tanani
- Department of Biochemistry, University of Liverpool, UK
| | | |
Collapse
|
822
|
Fabre S, Darne C, Veyssière G, Jean C. Protein kinase C pathway potentiates androgen-mediated gene expression of the mouse vas deferens specific aldose reductase-like protein (MVDP). Mol Cell Endocrinol 1996; 124:79-86. [PMID: 9027327 DOI: 10.1016/s0303-7207(96)03931-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transcription of the mouse vas deferens protein (MVDP) gene, a member of the aldo-keto reductase superfamily, is stimulated by androgens via the androgen responsive element (ARE) located in the proximal promoter (-111 to -97). We investigated interaction between androgens and the protein kinase C (PKC) signalling pathway. Transcriptional regulation was determined by analysis of chloramphenicol acetyltransferase (CAT). T47D cells were transiently transfected with 5' flanking MVDP DNA promoter sequences (-1804 to +41; -510 to +41 and -121 to +41) fused to the reporter (CAT) gene. Androgen-induced transcriptional activity can be enhanced from 6 (1.8 and 0.5 kb MVDP-CAT constructs) to 18 fold (0.16 kb MVDP-CAT construct), in a time and dose-dependent manner, by the PKC activator 12-o-tetradecanoylphorbol-13 acetate (TPA). A mutation in the proximal ARE abolished both androgen and TPA-dependent gene enhancement. TPA influenced minimally MMTV promoter in T47D cells and MVDP promoter in CV1 cells suggesting that the effects of the PKC activator are probably promoter and cell-specific. In contrast, activation of protein kinase A (PKA) via addition of dibutyryl-cAMP (db-cAMP) reduced androgen induction of the MVDP gene.
Collapse
Affiliation(s)
- S Fabre
- Laboratoire de Physiologie Comparée et Endocrinologie, CNRS URA 1940, Université Blaise Pascal-Clermont Ferrand II, Aubière, France
| | | | | | | |
Collapse
|
823
|
Argetsinger LS, Norstedt G, Billestrup N, White MF, Carter-Su C. Growth hormone, interferon-gamma, and leukemia inhibitory factor utilize insulin receptor substrate-2 in intracellular signaling. J Biol Chem 1996; 271:29415-21. [PMID: 8910607 DOI: 10.1074/jbc.271.46.29415] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In this report, we demonstrate that insulin receptor substrate-2 (IRS-2) is tyrosyl-phosphorylated following stimulation of 3T3-F442A fibroblasts with growth hormone (GH), leukemia inhibitory factor and interferon-gamma. In response to GH and leukemia inhibitory factor, IRS-2 is immediately phosphorylated, with maximal phosphorylation detected at 15 min; the signal is substantially diminished by 60 min. In response to interferon-gamma, tyrosine phosphorylation of IRS-2 was prolonged, with substantial signal still detected at 60 min. Characterization of the mechanism of signaling utilized by GH indicated that tyrosine residues in GH receptor are not necessary for tyrosyl phosphorylation of IRS-2; however, the regions of GH receptor necessary for IRS-2 tyrosyl phosphorylation are the same as those required for JAK2 association and tyrosyl phosphorylation. The role of IRS-2 as a signaling molecule for GH is further demonstrated by the finding that GH stimulates association of IRS-2 with the 85-kDa regulatory subunit of phosphatidylinositol 3'-kinase and with the protein-tyrosine phosphatase SHP2. These results are consistent with the possibility that IRS-2 is a downstream signaling partner of multiple members of the cytokine family of receptors that activate JAK kinases.
Collapse
Affiliation(s)
- L S Argetsinger
- Department of Physiology, The University of Michigan Medical School, Ann Arbor, Michigan 48109-0622, USA.
| | | | | | | | | |
Collapse
|
824
|
Li YS, Shyy JY, Li S, Lee J, Su B, Karin M, Chien S. The Ras-JNK pathway is involved in shear-induced gene expression. Mol Cell Biol 1996; 16:5947-54. [PMID: 8887624 PMCID: PMC231597 DOI: 10.1128/mcb.16.11.5947] [Citation(s) in RCA: 194] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Hemodynamic forces play a key role in inducing atherosclerosis-implicated gene expression in vascular endothelial cells. To elucidate the signal transduction pathway leading to such gene expression, we studied the effects of fluid shearing on the activities of upstream signaling molecules. Fluid shearing (shear stress, 12 dynes/cm2 [1 dyne = 10(-5)N]) induced a transient and rapid activation of p21ras and preferentially activated c-Jun NH2 terminal kinases (JNK1 and JNK2) over extracellular signal-regulated kinases (ERK-1 and ERK-2). Cotransfection of RasN17, a dominant negative mutant of Ha-Ras, attenuated the shear-activated JNK and luciferase reporters driven by 12-O-tetradecanoylphorbol-13-acetate-responsive elements. JNK(K-R) and MEKK(K-M), the respective catalytically inactive mutants of JNK1 and MEKK, also partially inhibited the shear-induced luciferase reporters. In contrast, Raf301, ERK(K71R), and ERK(K52R), the dominant negative mutants of Raf-1, ERK-1, and ERK-2, respectively, had little effect on the activities of these reporters. The activation of JNK was also correlated with increased c-Jun transcriptional activity, which was attenuated by a negative mutant of Son of sevenless. Thus, mechanical stimulation exerted by fluid shearing activates primarily the Ras-MEKK-JNK pathway in inducing endothelial gene expression.
Collapse
Affiliation(s)
- Y S Li
- Department of Bioengineering, Institute for Biomedical Engineering, University of California, San Diego, La Jolla 92093, USA
| | | | | | | | | | | | | |
Collapse
|
825
|
Garattini E, Gianni M. Leukocyte alkaline phosphatase a specific marker for the post-mitotic neutrophilic granulocyte: regulation in acute promyelocytic leukemia. Leuk Lymphoma 1996; 23:493-503. [PMID: 9031080 DOI: 10.3109/10428199609054858] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Leukocyte alkaline phosphatase (LAP) is the product of the gene coding for the liver/bone/kidney-type alkaline phosphatase. In the normal hematopoietic system, the only cell type expressing LAP in basal conditions is the post-mitotic neutrophilic granulocyte. Thus LAP represents a specific and restrictive marker for the terminal maturation of the neutrophilic granulocyte. The study of the factors and the molecular mechanisms responsible for the expression of LAP in cells undergoing granulocytic maturation may shed light on this complex biological process. Acute promyelocytic leukemia (APL) represents a unique biological model in which it is possible to investigate neutrophilic differentiation. APL blasts undergo rapid and irreversible maturation towards cells morphologically and biochemically resembling normal mature granulocytes upon in vivo and in vitro challenge with all-trans retinoic acid (ATRA). In this cellular context, we studied the endogenous factors involved in the expression of LAP. The phosphatase is not synthesized in undifferentiated APL blasts and it is expressed only upon treatment with combinations between ATRA and a second cyto-differentiating signal. The second signal may be given by G-CSF, cAMP analogs, IL-6 and to a lesser extent by IL-1 beta. The molecular mechanisms underlying the induction of LAP by combinations of ATRA and G-CSF or cAMP analogs were studied in detail and are the object of this review.
Collapse
Affiliation(s)
- E Garattini
- Molecular Biology Unit, Centro Catullo e Daniela Borgomainerio Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | | |
Collapse
|
826
|
Knauf U, Newton EM, Kyriakis J, Kingston RE. Repression of human heat shock factor 1 activity at control temperature by phosphorylation. Genes Dev 1996; 10:2782-93. [PMID: 8946918 DOI: 10.1101/gad.10.21.2782] [Citation(s) in RCA: 183] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Human heat shock transcription factor 1 (HSF1) is responsible for stress-induced transcription of heat shock protein genes. The activity of the HSF1 transcriptional activation domains is modulated by a separate regulatory domain, which confers repression at control temperature and heat inducibility. We show here that two specific proline-directed serine motifs are important for function of the regulatory domain: Mutation of these serines to alanine derepresses HSF1 activity at control temperature, and mutation to glutamic acid, mimicking a phosphorylated serine, results in normal repression at control temperature and normal heat shock inducibility. Tryptic mapping shows that these serines are the major phosphorylation sites of HSF1 at control temperature in vivo. Stimulation of the Raf/ERK pathway in vivo results in an increased level of phosphorylation of these major sites and the regulatory domain is an excellent substrate in vitro for the mitogen-activated MAPK/ERK. We conclude that phosphorylation of the regulatory domain of HSF1 decreases the activity of HSF1 at control temperature, and propose a mechanism for modification of HSF1 activity by growth control signals.
Collapse
Affiliation(s)
- U Knauf
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | | | | | | |
Collapse
|
827
|
Abstract
The steroid/thyroid hormone receptor superfamily of ligand-activated transcription factors encompasses not only the receptors for steroids, thyroid hormone, retinoids and vitamin D, but also a large number of proteins whose functions and/or ligands are unknown and which are thus termed orphan receptors. Recent studies have highlighted the importance of phosphorylation in receptor function. Although most of the phosphorylation sites are serine and threonine residues, a few of the family members are also phosphorylated on tyrosine. Those steroid receptor family members that are bound to heat-shock proteins in the absence of ligand typically are basally phosphorylated and exhibit increases in phosphorylation upon ligand binding. Most of these sites contain Ser-Pro motifs, and there is evidence that cyclin-dependent kinases and MAP kinases (mitogen-activated protein kinases) phosphorylate subsets of these sites. In contrast, phosphorylation sites identified thus far in members of the family that bind to DNA in the absence of hormone typically do not contain Ser-Pro motifs and are frequently casein kinase II or protein kinase A sites. Phosphorylation has been implicated in DNA binding, transcriptional activation and stability of the receptors. The finding that some of the steroid receptor family members can be activated in the absence of ligand by growth factors or neurotransmitters that modulate kinase and/or phosphatase pathways underscores the role of phosphorylation in receptor function. Hence this family of transcription factors integrates signals from ligands as well as from signal transduction pathways, resulting in alterations in mRNA and protein expression that are unique to the complex signals received.
Collapse
Affiliation(s)
- N L Weigel
- Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
828
|
Zakhari S. NF-kappa B, a prototypical cytokine-regulated transcription factor: implications for alcohol-mediated responses. Alcohol Clin Exp Res 1996; 20:236A-242A. [PMID: 8947272 DOI: 10.1111/j.1530-0277.1996.tb01783.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- S Zakhari
- Division of Basic Research, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| |
Collapse
|
829
|
Rivera-Pomar R, Jäckle H. From gradients to stripes in Drosophila embryogenesis: filling in the gaps. Trends Genet 1996; 12:478-83. [PMID: 8973159 DOI: 10.1016/0168-9525(96)10044-5] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pattern formation along the anterior-posterior axis of the Drosophila embryo is organized by asymmetrically distributed maternal transcription factors. They initiate a cascade of spatially restricted and interacting zygotic gene activities that provide a molecular blueprint of the larval body at blastoderm stage. The key players in the pattern forming process have been identified. Recent progress has begun to reveal the mechanisms by which coherent positional information of maternal origin becomes transferred into serially repeated zygotic gene expression domains reflecting the metameric body plan of the larva.
Collapse
Affiliation(s)
- R Rivera-Pomar
- Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany.
| | | |
Collapse
|
830
|
Curtis SW, Washburn T, Sewall C, DiAugustine R, Lindzey J, Couse JF, Korach KS. Physiological coupling of growth factor and steroid receptor signaling pathways: estrogen receptor knockout mice lack estrogen-like response to epidermal growth factor. Proc Natl Acad Sci U S A 1996; 93:12626-30. [PMID: 8901633 PMCID: PMC38043 DOI: 10.1073/pnas.93.22.12626] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Past studies have shown that epidermal growth factor (EGF) is able to mimic the uterotropic effects of estrogen in the rodent. These studies have suggested a "cross-talk" model in which EGF receptor (EGF-R) signaling results in activation of nuclear estrogen receptor (ER) and its target genes in an estrogen-independent manner. Furthermore, in vitro studies have indicated the requirement for ER in this mechanism. To verify the requirement for ER in an in vivo system, EGF effects were studied in the uteri of ER knockout (ERKO) mice, which lack functional ER. The EGF-R levels, autophosphorylation, and c-fos induction were observed at equivalent levels in both genotypes indicating that removal of ER did not disrupt the EGF responses. Induction of DNA synthesis and the progesterone receptor gene in the uterus were measured after EGF treatment of both ERKO and wild-type animals. Wild-type mice showed increases of 4.3-fold in DNA synthesis, as well as an increase in PR mRNA after EGF treatment. However, these responses were absent in ERKO mice, confirming that the estrogen-like effects of EGF in the mouse uterus do indeed require the ER. These data conclusively demonstrate the coupling of EGF and ER signaling pathways in the rodent reproductive tract.
Collapse
Affiliation(s)
- S W Curtis
- Receptor Biology Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | |
Collapse
|
831
|
Dabrowski A, VanderKuur JA, Carter-Su C, Williams JA. Cholecystokinin stimulates formation of shc-grb2 complex in rat pancreatic acinar cells through a protein kinase C-dependent mechanism. J Biol Chem 1996; 271:27125-9. [PMID: 8900204 DOI: 10.1074/jbc.271.43.27125] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cholecystokinin (CCK) has recently been shown to activate the mitogen-activated protein kinase (MAPK) cascade (Ras-Raf-MAPK kinase-MAPK) in pancreatic acini. The mechanism by which the Gq protein-coupled CCK receptor activates Ras, however, is currently unknown. Growth factor receptors are known to activate Ras by means of adaptor proteins that bind to phosphotyrosine domains. We therefore compared the effects of CCK and epidermal growth factor (EGF) on Tyr phosphorylation of the adaptor proteins Shc and its association with Grb2 and the guanine nucleotide exchange factor SOS. Three major isoforms of Shc (p46, p52, p66) were detected in isolated rat pancreatic acini with p52 Shc being the predominant form. CCK and EGF increased tyrosyl phosphorylation of Shc (251 and 337% of control, respectively). CCK-stimulated tyrosyl phosphorylation of Shc as well as Shc-Grb2 complex formation was significant at 2.5 min, maximal at 5 min, and persisted for at least 30 min. Finally, SOS was found to be associated with Grb2 as assessed by probing of anti-Grb2 immunoprecipitates with anti-SOS. Since MAPK in pancreatic acini is activated via protein kinase C (PKC), we studied the effect of phorbol esters on Shc phosphorylation and found 12-O-tetradecanoylphorbol-13-acetate to be as potent as CCK. Furthermore, GF-109203X, a PKC inhibitor, abolished the effect of 12-O-tetradecanoylphorbol-13-acetate and also the effect of CCK but not the effect of EGF on Shc tyrosyl phosphorylation. CCK-induced tyrosyl phosphorylation of Shc was found to be phosphatidylinositol 3-kinase-independent, and CCK did not cause EGF receptor activation. These results suggest that formation of an Shc-Grb2-SOS complex via a PKC-dependent mechanism may provide the link between Gq protein-coupled CCK receptor stimulation and Ras activation in these cells.
Collapse
Affiliation(s)
- A Dabrowski
- Department of Physiology, University of Michigan, Ann Arbor, Michigan 48109-0622, USA
| | | | | | | |
Collapse
|
832
|
Gómez del Arco P, Martínez-Martínez S, Calvo V, Armesilla AL, Redondo JM. JNK (c-Jun NH2-terminal kinase) is a target for antioxidants in T lymphocytes. J Biol Chem 1996; 271:26335-40. [PMID: 8824287 DOI: 10.1074/jbc.271.42.26335] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AP-1 has been shown to behave as a redox-sensitive transcription factor that can be activated by both oxidant and antioxidant stimuli. However, the mechanisms involved in the activation of AP-1 by antioxidants are largely unknown. In this study we show that the structurally unrelated antioxidant agents pyrrolidine dithiocarbamate (PDTC), butylated hydroxyanisole, and Nacetylcysteine activated JNK (c-Jun NH2-terminal kinase) in Jurkat T cells. This activation differed substantially from that mediated by phorbol 12-myristate 13-acetate (PMA) and Ca2+ ionophore or produced by costimulation with antibodies against the T cell receptor-CD3 complex and to CD28. The activation of JNK by classical T cell stimuli was transient, whereas that mediated by PDTC and butylated hydroxyanisole (but not N-acetylcysteine) was sustained. The kinetics of JNK activation correlated with the expression of c-jun which was transient after stimulation with PMA plus ionophore and prolonged in response to PDTC, which also transiently induced c-fos. In addition, JNK activation by PMA plus ionophore was sensitive to inhibitors of signaling pathways involving Ca2+, protein kinase C, and tyrosine phosphorylation, which failed to inhibit the activation mediated by PDTC. Transfection of trans-dominant negative expression vectors of ras and raf, together with AP-1-dependent reporter constructs, as well as Western blot analysis using anti-ERK (extracellular signal-regulated kinase) antibodies, indicated that the Ras/Raf/ERK pathway did not appear to mediate the effect of the antioxidant. However, the combined treatment with PDTC and PMA, two agents that synergize on AP-1 activation, resulted in the persistent phosphorylation of ERK-2. In conclusion, our results identify JNK as a target of antioxidant agents which can be regulated differentially under oxidant and antioxidant conditions.
Collapse
Affiliation(s)
- P Gómez del Arco
- Centro de Biología Molecular y Servicio de Inmunología, Hospital de la Princesa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Cantoblanco, Madrid 28006, Spain
| | | | | | | | | |
Collapse
|
833
|
Strahl T, Gille H, Shaw PE. Selective response of ternary complex factor Sap1a to different mitogen-activated protein kinase subgroups. Proc Natl Acad Sci U S A 1996; 93:11563-8. [PMID: 8876175 PMCID: PMC38097 DOI: 10.1073/pnas.93.21.11563] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mitogenic and stres signals results in the activation of extracellular signal-regulated kinases (ERKs) and stress-activated protein kinase/c-Jun N-terminal kinases (SAPK/JNKs), respectively, which are two subgroups of the mitogen-activated protein kinases. A nuclear target of mitogen-activated protein (MAP) kinases is the ternary complex factor Elk-1, which underlies its involvement in the regulation of c-fos gene expression by mitogenic and stress signals. A second ternary complex factor, Sap1a, is coexpressed with Elk-1 in several cell types and shares attributes of Elk-1, the significance of which is not clear. Here we show that Sap1a is phosphorylated efficiently by ERKs but not by SAPK/JNKs. Serum response factor-dependent ternary complex formation by Sap1a is stimulated by ERK phosphorylation but not by SAPK/JNKs. Moreover, Sap1a-mediated transcription is activated by mitogenic signals but not by cell stress. These results suggest that Sap1a and Elk-1 have distinct physiological functions.
Collapse
Affiliation(s)
- T Strahl
- Spemann Laboratories, Max-Planck-Institut für Immunbiologie, Freiburg, Germany
| | | | | |
Collapse
|
834
|
Bamberger AM, Bamberger CM, Wald M, Kratzmeier M, Schulte HM. Protein kinase C (PKC) isoenzyme expression pattern as an indicator of proliferative activity in uterine tumor cells. Mol Cell Endocrinol 1996; 123:81-8. [PMID: 8912814 DOI: 10.1016/0303-7207(96)03895-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The protein kinase C (PKC) signal transduction pathway is the prototype of a growth factor-responsive intracellular signaling system, which is activated by various cytokines, growth factors and tumor promoters, such as the phorbol ester 12-O-tetradecanoyl-phorbol acetate (TPA). To date, a large number of different PKC isoforms has been identified, the physiological relevance of which is unknown. Moreover, the expression pattern of PKC isoforms in uterine cells has not been studied as yet. To study the functional role of differential PKC isoform expression in uterine tumor progression, we have compared the proliferative response to TPA, changes in cell morphology induced by TPA, and the PKC isoform expression pattern in two uterine tumor cell lines of different origin. The moderately differentiated endometrial HEC-1-B adenocarcinoma cell line showed a marked increase in proliferative activity and a profound morphological change in response to TPA. In contrast, TPA did not induce cell proliferation and/or morphological changes in the well-differentiated SKUT-1-B mixed mesodermal cell line. Analysis of the PKC isoform expression profile by Western blot revealed that PKC alpha, betaI, delta, epsilon, and zeta were expressed at a much higher level in HEC-1-B as compared to SKUT-1-B cells. PKC beta11 was the only isoenzyme to exhibit a higher expression level in SKUT-1-B cells. This is the first study analyzing the PKC isoform expression profile in uterine tumor cells. Our data demonstrate that the proliferative response to TPA correlates with the expression levels of the majority of PKC isoforms in these cells. Overexpression of PKC isoforms indicates a higher proliferative capacity, and may, thus, represent an important step in the pathogenesis of certain uterine malignancies.
Collapse
Affiliation(s)
- A M Bamberger
- Institute for Hormone and Fertility Research, University of Hamburg, Germany
| | | | | | | | | |
Collapse
|
835
|
Cohen DM. Urea-inducible Egr-1 transcription in renal inner medullary collecting duct (mIMCD3) cells is mediated by extracellular signal-regulated kinase activation. Proc Natl Acad Sci U S A 1996; 93:11242-7. [PMID: 8855340 PMCID: PMC38314 DOI: 10.1073/pnas.93.20.11242] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Urea (200-400 milliosmolar) activates transcription, translation of, and trans-activation by the immediate-early gene transcription factor Egr-1 in a renal epithelial cell-specific fashion. The effect at the transcriptional level has been attributed to multiple serum response elements and their adjacent Ets motifs located within the Egr-1 promoter. Elk-1, a principal ternary complex factor and Ets domain-containing protein, is a substrate of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases. In the renal medullary mIMCD3 cell line, urea (200-400 milliosmolar) activated both ERK1 and ERK2 as determined by in-gel kinase assay and immune-complex kinase assay of epitope-tagged] ERK1 and ERK2. Importantly, urea did not affect abundance of either ERK. Urea-inducible Egr-1 transcription was a consequence of ERK activation because the ERK-specific inhibitor, PD98059, abrogated transcription from the murine Egr-1 promoter in a luciferase reported gene assay. In addition, activators of protein kinase A, including forskolin and 8-Br-cAMP, which are known to inhibit ERK-mediated events, also inhibited urea-inducible Egr-1 transcription. Furthermore, urea-inducible activation of the physiological ERK substrate and transcription factor, Elk-1, was demonstrated through transient cotransfection of a chimeric Elk-1/GAL4 expression plasmid and a GAL4-driven luciferase reporter plasmid. Taken together, these data indicate that, in mIMCD3 cells, urea activates ERKs and the ERK substrate, Elk-1, and that ERK inhibition abrogates urea-inducible Egr-1 transcription. These data are consistent with a model of urea-inducible renal medullary gene expression wherein sequential activation of ERKs and Elk-1 results in increased transcription of Egr-1 through serum response element/Ets motifs.
Collapse
Affiliation(s)
- D M Cohen
- Division of Nephrology, Oregon Health Sciences University, Portland, USA
| |
Collapse
|
836
|
Enslen H, Tokumitsu H, Stork PJ, Davis RJ, Soderling TR. Regulation of mitogen-activated protein kinases by a calcium/calmodulin-dependent protein kinase cascade. Proc Natl Acad Sci U S A 1996; 93:10803-8. [PMID: 8855261 PMCID: PMC38236 DOI: 10.1073/pnas.93.20.10803] [Citation(s) in RCA: 247] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Membrane depolarization of NG108 cells gives rapid (< 5 min) activation of Ca2+/calmodulin-dependent protein kinase IV (CaM-KIV), as well as activation of c-Jun N-terminal kinase (JNK). To investigate whether the Ca2+-dependent activation of mitogen-activated protein kinases (ERK, JNK, and p38) might be mediated by the CaM kinase cascade, we have transfected PC12 cells, which lack CaM-KIV, with constitutively active mutants of CaM kinase kinase and/or CaM-KIV (CaM-KKc and CaM-KIVc, respectively). In the absence of depolarization, CaM-KKc transfection had no effect on Elk-dependent transcription of a luciferase reporter gene, whereas CaM-KIVc alone or in combination with CaM-KKc gave 7- to 10-fold and 60- to 80-fold stimulations, respectively, which were blocked by mitogen-activated protein (MAP) kinase phosphatase cotransfection. When epitope-tagged constructs of MAP kinases were co-transfected with CaM-KKc plus CaM-KIVc, the immunoprecipitated MAP kinases were activated 2-fold (ERK-2) and 7- to 10-fold (JNK-1 and p38). The JNK and p38 pathways were further investigated using specific c-Jun or ATF2-dependent transcriptional assays. We found that c-Jun/ATF2-dependent transcriptions were enhanced 7- to 10-fold by CaM-KIVc and 20- to 30-fold by CaM-KKc plus CaM-KIVc. In the case of the Jun-dependent transcription, this effect was not due to direct phosphorylation of c-Jun by activated CaM-KIV, since transcription was blocked by a dominant-negative JNK and by two MAP kinase phosphatases. Mutation of the phosphorylation site (Thr196) in CaM-KIV, which mediates its activation by CaM-KIV kinase, prevented activation of Elk-1, c-Jun, and ATF2 by the CaM kinase cascade. These results establish a new Ca2+-dependent mechanism for regulating MAP kinase pathways and resultant transcription.
Collapse
Affiliation(s)
- H Enslen
- Vollum Institute, Oregon Health Sciences University, Portland 97201, USA
| | | | | | | | | |
Collapse
|
837
|
Pan BT, Shi JP, Chen HJ, Roberts C, Chen DH, Wang JW. Identification of a potential physiological substrate for oncogenic Ras-activated protein kinases in activated Xenopus egg extracts: correlation with oncogenic Ras-induced cell cycle arrest. J Cell Physiol 1996; 169:149-58. [PMID: 8841431 DOI: 10.1002/(sici)1097-4652(199610)169:1<149::aid-jcp15>3.0.co;2-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Activated Xenopus egg extracts are capable of undergoing cell-free cell cycling. Using these activated extracts, we previously showed that purified, bacterially expressed oncogenic human RasH protein arrests cell cycle progression. Because oncogenic Ras activates many serine/threonine protein kinases in Xenopus oocytes and egg extracts, it is possible that induction of cell cycle arrest involves the action of oncogenic Ras-activated kinases. Thus, the identification of the physiological substrates for oncogenic Ras-activated kinases is important for elucidating the molecular mechanism underlying oncogenic Ras-induced cell cycle arrest. We used 32P-orthophosphate as a label to identify the potential substrates. Our results demonstrated that the 32P-labeling of both a 32 and a 33 kDa protein were greatly enhanced by oncogenic Ras during the incubation of activated Xenopus egg extracts. The enhanced labeling correlated with the induced cell cycle arrest and was contributed by serine phosphorylation. Moreover, the 33 kDa protein was detected only in the presence of oncogenic Ras and was a serine-hyperphosphorylated form of the 32 kDa protein. Furthermore, new protein synthesis was not required for the enhanced labeling, consistent with the concept that the enhanced serine phosphorylation of the 32 kDa protein is by oncogenic Ras-activated protein kinases. In addition to serine phosphorylation, our results also suggested that an as yet unidentified modification of the 32 kDa protein might also be induced by oncogenic Ras. Our results suggest that the 32 kDa protein is a potential physiological substrate for oncogenic Ras-activated protein kinases.
Collapse
Affiliation(s)
- B T Pan
- Department of Surgery, University of Kentucky Chandler Medical Center, Lexington 40536, USA
| | | | | | | | | | | |
Collapse
|
838
|
Reiland J, Ott VL, Lebakken CS, Yeaman C, McCarthy J, Rapraeger AC. Pervanadate activation of intracellular kinases leads to tyrosine phosphorylation and shedding of syndecan-1. Biochem J 1996; 319 ( Pt 1):39-47. [PMID: 8870647 PMCID: PMC1217733 DOI: 10.1042/bj3190039] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Syndecan-1 is a transmembrane haparan sulphate proteoglycan that binds extracellular matrices and growth factors, making it a candidate to act between these regulatory molecules and intracellular signalling pathways. It has a highly conserved transmembrane/cytoplasmic domain that contains four conserved tyrosines. One of these is in a consensus sequence for tyrosine kinase phosphorylation. As an initial step to investigating whether or not phosphorylation of these tyrosines is part of a signal-transduction pathway, we have monitored the tyrosine phosphorylation of syndecan-1 by cytoplasmic tyrosine kinases in intact cells. Tyrosine phosphorylation of syndecan-1 is observed when NMuMG cells are treated with sodium orthovanadate or pervanadate, which have been shown to activate intracellular tyrosine kinases. Initial studies with sodium orthovanadate demonstrate a slow accumulation of phosphotyrosine on syndecan-1 over the course of several hours. Pervanadate, a more effective inhibitor of phosphatases, allows detection of phosphotyrosine on syndecan-1 within 5 min, with peak phosphorylation seen by 15 min. Concurrently, in a second process activated by pervanadate, syndecan-1 ectodomain is cleaved and released into the culture medium. Two phosphorylated fragments of syndecan-1 of apparent sizes 6 and 8 kDa remain with the cell after shedding of the ectodomain. The 8 kDa size class appears to be a highly phosphorylated form of the 6 kDa product, as it disappears if samples are dephosphorylated. These fragments contain the C-terminus of syndecan-1 and also retain at least a portion of the transmembrane domain, suggesting that they are produced by a cell surface cleavage event. Thus pervanadate treatment of cells results in two effects of syndecan-1: (i) phosphorylation of one or more of its tyrosines via the action of a cytoplasmic kinase(s) and (ii) cleavage and release of the ectodomain into the medium, producing a C-terminal fragment containing the transmembrane/cytoplasmic domain.
Collapse
Affiliation(s)
- J Reiland
- Department of Pathology, University of Wisconsin, Madison 53706, USA
| | | | | | | | | | | |
Collapse
|
839
|
Abstract
Within multicellular organisms, cells are continually signalling to each other to keep in tune with their environment. The ultimate targets for the majority of these signal pathways are upstream transcription factors, whose activity is thereby modulated, resulting in a new pattern of gene expression suitably coupled to the needs of the cell. It has been estimated that up to 10% of human genes may encode transcription factors, thus emphasising how fundamental the control of gene expression is to the processes of cellular division and differentiation during normal development. As a corollary of this, transcriptional regulation can also profoundly affect the course of growth-related diseases such as cancer. Of course it has been realised for some time that the normal counterparts of many oncogenes are transcription factors whose proper role is in the control of normal cell growth. More recent work has begun to identify several other transcription factors which may play a role in cancer, and strategies are now being developed which are designed to use our growing knowledge of transcriptional control mechanisms in the development of novel cancer therapies.
Collapse
Affiliation(s)
- H C Hurst
- ICRF Oncology Unit, Hammersmith Hospital, Royal Postgraduate Medical School, London, UK
| |
Collapse
|
840
|
Musti AM, Treier M, Peverali FA, Bohmann D. Differential regulation of c-Jun and JunD by ubiquitin-dependent protein degradation. Biol Chem 1996; 377:619-24. [PMID: 8922589 DOI: 10.1515/bchm3.1996.377.10.619] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
c-Jun and JunD are two closely related members of the Jun family of transcription factors which markedly differ in their biological functions. Whereas c-Jun behaves as a positive regulator of cell growth and may cause cell transformation when overexpressed, JunD antagonizes both of these effects. To better understand how the activities of c-Jun and JunD are controlled, we investigated how their stabilities within the cell are determined. We show that, in contrast to c-Jun which is degraded following multi ubiquitination, JunD is not efficiently ubiquitinated and exhibits a correspondingly longer half-life. Mutational analysis reveals that the determinant for the difference in ubiquitination resides in the NH2-terminal regions of the proteins which in c-Jun contains the delta-domain.
Collapse
|
841
|
Tanase S, Bawden JW. The immunohistochemical localization of signal-transduction pathway components Jak1, Jak2, Jak3, Tyk2 and STAT-1 during early enamel and dentine formation in rat molars. Arch Oral Biol 1996; 41:925-40. [PMID: 9031700 DOI: 10.1016/s0003-9969(96)00048-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study sought to localize immunohistochemically Janus kinase (Jak) and Tyk isoforms and STAT-1 in association with events involved in early dentine and enamel formation in the rat molar. The Jaks and STATs (signal transducers and activators of transcription) are key signal-transduction pathway components in the cytokine receptor-linked pathway. The histological sections were not demineralized or fixed, providing optimum conditions for immunohistochemical localization. It appears that all of the Jak isoforms and STAT-1 are involved in enamel formation. Jak2 and STAT-1 colocalized in the proximal ends of presecretory and secretory-stage ameloblasts, supporting work by others that growth hormone receptor is located at that site. The colocalization of Jak1, Jak2 and STAT-1 along the proximal ends of presecretory and secretory ameloblasts suggests that the interferon receptor is up-regulated in these cells as well. Also, colocalization of Jak3 and STAT-1 in the proximal ends of the ameloblasts and the cells of the stratum intermedium predicts the location of the interleukin-7 receptor in those locations. Jak1, Tyk2 and STAT-1, but not Jak2 or Jak3, stain was seen in the odontoblasts.
Collapse
Affiliation(s)
- S Tanase
- Department of Pediatric Dentistry, University of North Carolina, Chapel Hill 27599, USA
| | | |
Collapse
|
842
|
Imbert V, Rupec RA, Livolsi A, Pahl HL, Traenckner EB, Mueller-Dieckmann C, Farahifar D, Rossi B, Auberger P, Baeuerle PA, Peyron JF. Tyrosine phosphorylation of I kappa B-alpha activates NF-kappa B without proteolytic degradation of I kappa B-alpha. Cell 1996; 86:787-98. [PMID: 8797825 DOI: 10.1016/s0092-8674(00)80153-1] [Citation(s) in RCA: 580] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The transcription factor NF-kappa B regulates genes participating in immune and inflammatory responses. In T lymphocytes, NF-kappa B is sequestered in the cytosol by the inhibitor I kappa B-alpha and released after serine phosphorylation of I kappa B-alpha that regulates its ubiquitin-dependent degradation. We report an alternative mechanism of NF-kappa B activation. Stimulation of Jurkat T cells with the protein tyrosine phosphatase inhibitor and T cell activator pervanadate led to NF-kappa B activation through tyrosine phosphorylation but not degradation of I kappa B-alpha. Pervanadate-induced I kappa B-alpha phosphorylation and NF-kappa B activation required expression of the T cell tyrosine kinase p56ick. Reoxygenation of hypoxic cells appeared as a physiological effector of I kappa B-alpha tyrosine phosphorylation. Tyrosine phosphorylation of I kappa B-alpha represents a proteolysis-independent mechanism of NF-kappa B activation that directly couples NF-kappa B to cellular tyrosine kinase.
Collapse
Affiliation(s)
- V Imbert
- Inserm Unité 364 Faculté de Médecine Pasteur, Nice, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
843
|
Chakravarti D, LaMorte VJ, Nelson MC, Nakajima T, Schulman IG, Juguilon H, Montminy M, Evans RM. Role of CBP/P300 in nuclear receptor signalling. Nature 1996; 383:99-103. [PMID: 8779723 DOI: 10.1038/383099a0] [Citation(s) in RCA: 771] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The nuclear receptor superfamily includes receptors for steroids, retinoids, thyroid hormone and vitamin D, as well as many related proteins. An important feature of the action of the lipophilic hormones and vitamins is that the maintenance of homeostatic function requires both intrinsic positive and negative regulation. Here we provide in vitro and in vivo evidence that identifies the CREB-binding protein (CBP) and its homologue P300 (refs 6,7) as cofactors mediating nuclear-receptor-activated gene transcription. The role of CBP/P300 in the transcriptional response to cyclic AMP, phorbol esters, serum, the lipophilic hormones and as the target of the E1A oncoprotein suggests they may serve as integrators of extracellular and intracellular signalling pathways.
Collapse
Affiliation(s)
- D Chakravarti
- The Gene Expression Laboratory, the Howard Hughes Medical Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
844
|
Trotta R, Kanakaraj P, Perussia B. Fc gamma R-dependent mitogen-activated protein kinase activation in leukocytes: a common signal transduction event necessary for expression of TNF-alpha and early activation genes. J Exp Med 1996; 184:1027-35. [PMID: 9064320 PMCID: PMC2192797 DOI: 10.1084/jem.184.3.1027] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cross-linking the receptors for the Fc domain of IgG (Fc gamma R) on leukocytes induces activation of protein tyrosine kinases. The intermediary molecules that transduce to the nucleus the signals leading to induction of the diverse biological responses mediated by these receptors are not clearly identified. We have investigated whether mitogen-activated protein kinases (MAPK) are involved in transmembrane signaling via the three Fc gamma R present on monocytic, polymorphonuclear, and natural killer (NK) cells. Our results indicate that occupancy of Fc gamma RI and Fc gamma RII on the monocytic cell line THP-I and on polymorphonuclear leukocytes (PMN) induces, transiently and with fast kinetics, MAPK phosphorylation, as indicated by decreased electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and increased amounts of the proteins in antiphosphotyrosine antibody immunoprecipitates. This, associated with increased enzymatic activity, also occurs upon stimulation of the transmembrane isoform of CD16 (Fc gamma RIIIA) in NK cells and in a T cell line expressing transfected Fc gamma RIIIA alpha ligand-binding chain in association with zeta, but not upon stimulation of the glycosil-phosphatidylinositol-anchored Fc gamma RIIIB on PMN. Using the specific MAP kinase kinase inhibitor-PD 098059, we show that activation of MAPK is necessary for the Fc gamma R-dependent induction of c-fos and tumor necrosis factor alpha mRNA expression in monocytes and NK cells. These results underscore the role of MAPK as signal-transducing molecules controlling the expression of different genes relevant to leukocyte biology upon Fc gamma R stimulation.
Collapse
Affiliation(s)
- R Trotta
- Kimmel Cancer Center, Department of Microbiology and Immunology, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
845
|
Affiliation(s)
- Y Dudai
- Department of Neurobiology, Weizmann Institute of Science, Rehovot Israel
| |
Collapse
|
846
|
Si J, Luo Z, Mei L. Induction of acetylcholine receptor gene expression by ARIA requires activation of mitogen-activated protein kinase. J Biol Chem 1996; 271:19752-9. [PMID: 8702681 DOI: 10.1074/jbc.271.33.19752] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transcription of genes encoding nicotinic acetylcholine receptor (AChR) subunits (alpha, beta, gamma or epsilon, and delta) is highest in nuclei localized to the synaptic region of the muscle, which contributes to maintain a high density of AChRs at the postjunctional membrane. ARIA (AChR inducing activity) is believed to be the trophic factor utilized by motor neurons to stimulate AChR synthesis in the subsynaptic area. To elucidate the signaling mechanism initiated by ARIA, we established stable C2C12 cell lines carrying the nuclear lacZ gene under the control of the mouse epsilon subunit promoter or chicken alpha subunit promoter. ARIA stimulated tyrosine phosphorylation of erbB proteins in these C2C12 cells within 15 s with a peak at 5 min. Immediately following tyrosine phosphorylation of erbB proteins, mitogen-activated protein (MAP) kinase was activated which occurred within 30 s and peaked at 8 min after ARIA stimulation. Concomitantly, expression of AChR genes was induced by ARIA. ARIA-induced AChR subunit transgene expression was observed only in differentiated myotubes and not in myoblasts, suggesting that downstream signaling component(s) are regulated in a manner dependent on the myogenic program. Inhibition of the MAP kinase activity by using a specific MAP kinase kinase inhibitor or by overexpressing dominant negative mutants of Raf or MAP kinase kinase attenuated or abolished the ARIA-induced activation of AChR alpha and epsilon subunit gene expression. These results indicate that regulation of AChR gene expression by ARIA in C2C12 cells requires activation of the MAP kinase signaling pathway.
Collapse
Affiliation(s)
- J Si
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
847
|
Sellers WR, Kaelin WG. RB [corrected] as a modulator of transcription. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1288:M1-5. [PMID: 8764839 DOI: 10.1016/0304-419x(96)00014-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
pRB interacts with a number of transcription factors and can both directly and indirectly modulate transcriptional activity. Growth suppression by pRB is tightly linked to its ability to form complexes with E2F which are capable of repressing transcription of certain genes required for S phase. The ability of pRB to enhance the activity of several non-E2F transcription factors might suggest a mechanism by which pRB could coordinately regulate sets of genes at or near the restriction point. Specifically, complexes consisting of underphosphorylated pRB and E2F, by virtue of transcriptional repression of promoters containing E2F sites, would act to block entry into S phase. At the same time, distinct complexes of underphosphorylated pRB and transcription factors such as the glucocorticoid receptor, ATF-2, or MyoD, might lead to an increase in the transcription of genes required for differentiation or for additional growth inhibitory functions (e.g. TGF-beta 1). Changes in the activities of various cyclin-dependent kinase complexes would lead to phosphorylation of pRB and thus coordinate a release of S phase genes from repression with a loss of activation of differentiation genes. While this model is speculative, the role of pRB as a transcriptional modulator, as well as its interactions with cell-cycle regulatory kinases, places it in a position to integrate extracellular and intracellular growth signals and to transduce those signals into changes in gene transcription which ultimately influence cell growth and differentiation.
Collapse
Affiliation(s)
- W R Sellers
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
848
|
Yoza BK, Hu JY, McCall CE. Protein-tyrosine kinase activation is required for lipopolysaccharide induction of interleukin 1beta and NFkappaB activation, but not NFkappaB nuclear translocation. J Biol Chem 1996; 271:18306-9. [PMID: 8702466 DOI: 10.1074/jbc.271.31.18306] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In human monocytes, interleukin 1beta protein production and steady state mRNA levels are increased in response to lipopolysaccharide, predominantly as a result of increased transcription of the interleukin 1beta gene. Expression of interleukin 1beta and other cytokines, such as interleukin 6 and tumor necrosis factor alpha, has been shown to be dependent on the activation of the transcription factor, NFkappaB. Since recent studies have shown that lipopolysaccharide-induced tyrosine kinase activation is not required for NFkappaB nuclear translocation, we sought to determine whether NFkappaB translocated in the absence of tyrosine kinase activity was active in stimulating transcription. We have found that, in the human pro-monocytic cell line, THP-1, the lipopolysaccharide-induced expression of interleukin 1beta is dependent on tyrosine kinase activation. Tyrosine kinases are not required for lipopolysaccharide-mediated nuclear translocation of NFkappaB. However, in the absence of tyrosine kinase activity, the ability of NFkappaB to stimulate transcription is impaired. This inhibition of transcription is specific for NFkappaB; in the absence of tyrosine kinase activity, AP-1-dependent transcription is enhanced. These results suggest that, while lipopolysaccharide-induced expression of inflammatory mediators requires tyrosine kinase activity, tyrosine kinase activity is not obligatory for lipopolysaccharide signal transduction.
Collapse
Affiliation(s)
- B K Yoza
- Wake Forest University Medical Center, Bowman Gray School of Medicine, Department of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | |
Collapse
|
849
|
Gebelein B, Mesa K, Urrutia R. A novel profile of expressed sequence tags for zinc finger encoding genes from the poorly differentiated exocrine pancreatic cell line AR4IP. Cancer Lett 1996; 105:225-31. [PMID: 8697448 DOI: 10.1016/0304-3835(96)04286-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Genes encoding for C2H2 zinc finger proteins are known to regulate normal cell proliferation and differentiation and have often been found to be mutated in different forms of cancer. We are interested in understanding the role of these genes as regulators of cell proliferation and differentiation in the exocrine pancreas. Therefore, we have generated expressed sequence tags (ESTs) encoding pancreas-enriched zinc finger peptides using the polymerase chain reaction and hybridization techniques [Adams, M.D. et al. (1991) Science, 252, 1651-1656]. Here we report the primary structure and expression pattern of 18 different zinc finger-encoding cDNAs (DZF-1-18) from the azaserine-derived tumoral cell line AR4IP which displays a poorly differentiated phenotype. Sequence analysis shows that all of these clones encode peptides which share the consensus DNA-binding motif with the Drosophila zinc finger transcription factor krüppel. High stringency Northern blot analysis shows that eight different zinc finger transcripts are expressed at high levels in normal adult rat pancreas and therefore constitute good candidates to play a role as transcription factors in exocrine pancreatic cells.
Collapse
Affiliation(s)
- B Gebelein
- Department of Molecular Neuroscience, Mayo Clinic, Rochester, MN 55905, USA
| | | | | |
Collapse
|
850
|
Abstract
Genes induced by the plant hormone auxin are probably involved in the execution of vital cellular functions and developmental processes. Experimental approaches designed to elucidate the molecular mechanisms of auxin action have focused on auxin perception, genetic dissection of the signaling apparatus and specific gene activation. Auxin-responsive promoter elements of early genes provide molecular tools for probing auxin signaling in reverse. Functional analysis of several auxin-specific promoters of unrelated early genes suggests combinatorial utilization of both conserved and variable elements. These elements are arranged into autonomous domains and the combination of such modules generates uniquely composed promoters. Modular promoters allow for auxin-mediated transcriptional responses to be revealed in a tissue- and development-specific manner.
Collapse
Affiliation(s)
- S Abel
- Plant Gene Expression Center, Albany, CA 94710, USA
| | | | | | | |
Collapse
|