801
|
Choi PM, Tscharke BJ, Donner E, O'Brien JW, Grant SC, Kaserzon SL, Mackie R, O'Malley E, Crosbie ND, Thomas KV, Mueller JF. Wastewater-based epidemiology biomarkers: Past, present and future. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.06.004] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
802
|
Gào X, Brenner H, Holleczek B, Cuk K, Zhang Y, Anusruti A, Xuan Y, Xu Y, Schöttker B. Urinary 8-isoprostane levels and occurrence of lung, colorectal, prostate, breast and overall cancer: Results from a large, population-based cohort study with 14 years of follow-up. Free Radic Biol Med 2018; 123:20-26. [PMID: 29778463 DOI: 10.1016/j.freeradbiomed.2018.05.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Urinary 8-isoprostane is an established biomarker for lipid peroxidation. However, the association between its pre-diagnostic levels and cancer incidence has rarely been evaluated. METHODS 8793 older adults from the German ESTHER cohort were followed up for cancer incidence by cancer registry data. A directed acyclic graph was utilized to identify potential confounders. Multivariate Cox regression models were applied to estimate hazard ratios (HRs) and 95% confidence intervals (95% CI). RESULTS During 14-year follow-up, 1540 incident cancer cases, including 207 lung, 196 colorectal, 218 breast and 245 prostate cancer cases were detected. 8-isoprostane concentrations were positively associated with lung cancer, but not with cancer at the other sites. The HR (95% CI) for the association with lung cancer was 1.61 (1.10, 2.34) for comparison of the top with bottom tertile in total population. The association of 8-isoprostane levels with lung cancer persisted after the adjustment for smoking and other potential confounders and was multiplicative to the effect of smoking. However, 8-isoprostane levels did not improve lung cancer prediction when added to a model containing age, sex and smoking. A protective association of increasing 8-isoprostane levels was observed for prostate cancer incidence but this association was only statistically significant among current smokers. DISCUSSION Our findings suggest that lipid peroxidation is involved in the development of lung cancer. However, high oxidative stress may be a protective factor for prostate cancer, especially among current smokers.
Collapse
Affiliation(s)
- Xīn Gào
- Division of Clinical Epidemiology and Ageing Research, German Cancer Research Center, Heidelberg, Germany; Network Aging Research, Heidelberg University, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Ageing Research, German Cancer Research Center, Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Katarina Cuk
- Division of Clinical Epidemiology and Ageing Research, German Cancer Research Center, Heidelberg, Germany
| | - Yan Zhang
- Division of Clinical Epidemiology and Ageing Research, German Cancer Research Center, Heidelberg, Germany
| | - Ankita Anusruti
- Division of Clinical Epidemiology and Ageing Research, German Cancer Research Center, Heidelberg, Germany; Network Aging Research, Heidelberg University, Germany
| | - Yang Xuan
- Division of Clinical Epidemiology and Ageing Research, German Cancer Research Center, Heidelberg, Germany; Network Aging Research, Heidelberg University, Germany
| | - Yiwei Xu
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ben Schöttker
- Division of Clinical Epidemiology and Ageing Research, German Cancer Research Center, Heidelberg, Germany; Network Aging Research, Heidelberg University, Germany; Institute of Health Care and Social Sciences, FOM University, Essen, Germany.
| |
Collapse
|
803
|
Xu X, Liao W, Lin Y, Dai Y, Shi Z, Huo X. Blood concentrations of lead, cadmium, mercury and their association with biomarkers of DNA oxidative damage in preschool children living in an e-waste recycling area. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:1481-1494. [PMID: 28623427 DOI: 10.1007/s10653-017-9997-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/09/2017] [Indexed: 02/05/2023]
Abstract
Reactive oxygen species (ROS)-induced DNA damage occurs in heavy metal exposure, but the simultaneous effect on DNA repair is unknown. We investigated the influence of co-exposure of lead (Pb), cadmium (Cd), and mercury (Hg) on 8-hydroxydeoxyguanosine (8-OHdG) and human repair enzyme 8-oxoguanine DNA glycosylase (hOGG1) mRNA levels in exposed children to evaluate the imbalance of DNA damage and repair. Children within the age range of 3-6 years from a primitive electronic waste (e-waste) recycling town were chosen as participants to represent a heavy metal-exposed population. 8-OHdG in the children's urine was assessed for heavy metal-induced oxidative effects, and the hOGG1 mRNA level in their blood represented the DNA repair ability of the children. Among the children surveyed, 88.14% (104/118) had a blood Pb level >5 μg/dL, 22.03% (26/118) had a blood Cd level >1 μg/dL, and 62.11% (59/95) had a blood Hg level >10 μg/dL. Having an e-waste workshop near the house was a risk factor contributing to high blood Pb (r s = 0.273, p < 0.01), while Cd and Hg exposure could have come from other contaminant sources. Preschool children of fathers who had a college or university education had significantly lower 8-OHdG levels (median 242.76 ng/g creatinine, range 154.62-407.79 ng/g creatinine) than did children of fathers who had less education (p = 0.035). However, we did not observe a significant difference in the mRNA expression levels of hOGG1 between the different variables. Compared with children having low lead exposure (quartile 1), the children with high Pb exposure (quartiles 2, 3, and 4) had significantly higher 8-OHdG levels (β Q2 = 0.362, 95% CI 0.111-0.542; β Q3 = 0.347, 95% CI 0.103-0.531; β Q4 = 0.314, 95% CI 0.087-0.557). Associations between blood Hg levels and 8-OHdG were less apparent. Compared with low levels of blood Hg (quartile 1), elevated blood Hg levels (quartile 2) were associated with higher 8-OHdG levels (β Q2 = 0.236, 95% CI 0.039-0.406). Compared with children having low lead exposure (quartile 1), the children with high Pb exposure (quartiles 2, 3, and 4) had significantly higher 8-OHdG levels.
Collapse
Affiliation(s)
- Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Weitang Liao
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yucong Lin
- Tabor Academy, Marion, MA, USA
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Yifeng Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Zhihua Shi
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Xia Huo
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
804
|
Teles M, Reyes-López FE, Fierro-Castro C, Tort L, Soares AMVM, Oliveira M. Modulation of immune genes mRNA levels in mucosal tissues and DNA damage in red blood cells of Sparus aurata by gold nanoparticles. MARINE POLLUTION BULLETIN 2018; 133:428-435. [PMID: 30041332 DOI: 10.1016/j.marpolbul.2018.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/02/2018] [Accepted: 06/02/2018] [Indexed: 06/08/2023]
Abstract
Gold nanoparticles (AuNP) effects on Sparus aurata were evaluated on skin, gills and intestine by assessing the expression of immune genes and in peripheral blood evaluating genetic damage. Fish were exposed to 0.5 and 50 μg/L AuNP for 96 h. Results showed that exposure to 50 μg/L AuNP induced an upregulation in the expression of innate immune genes in gills (c3, lys, il1β, tnfα, il6, il10 and tgfβ) and intestine (il1β, tnfα and il6). Furthermore, mRNA levels of hsp70 and hsp90 were increased in gills after exposure to 0.5 μg/L AuNP, when compared to 50 μg/L. Present data demonstrated the sensitivity of gills and intestines to AuNP exposure supporting their use in the study of fish responses to other nanoparticles. Genotoxic potential of AuNP was demonstrated by increased DNA strand breaks in red blood cells of fish exposed to AuNP, suggesting that AuNP represent a potential hazard to fish.
Collapse
Affiliation(s)
- M Teles
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| | - F E Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - C Fierro-Castro
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - L Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - A M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M Oliveira
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
805
|
Bisht S, Chawla B, Dada R. Oxidative Stress and Polymorphism in MTHFR SNPs (677 and 1298) in Paternal Sperm DNA is Associated with an Increased Risk of Retinoblastoma in Their Children: A Case-Control Study. J Pediatr Genet 2018; 7:103-113. [PMID: 30105117 DOI: 10.1055/s-0038-1667037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/05/2018] [Indexed: 01/25/2023]
Abstract
Sperm DNA is considered as the most vulnerable to oxidative stress-induced damage that also impairs global sperm DNA methylation leading to sperm-associated pathologies. C677T and A1298C polymorphisms of the methylene tetrahydrofolate reductase (MTHFR) gene affect MTHFR enzyme activity. This study was planned as a case-control study to determine the MTHFR gene polymorphisms in the fathers of children affected with sporadic nonfamilial heritable retinoblastoma in an Indian population. MTHFR polymorphisms for single nucleotide polymorphisms 677 and 1298 were also determined in sporadic nonfamilial heritable retinoblastoma patients to estimate the risk for retinoblastoma development and to evaluate the role of MTHFR in retinoblastoma pathogenesis.
Collapse
Affiliation(s)
- Shilpa Bisht
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Bhavna Chawla
- Ocular Oncology and Pediatric Ophthalmology Service, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Rima Dada
- Laboratory for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| |
Collapse
|
806
|
Onyango AN. Cellular Stresses and Stress Responses in the Pathogenesis of Insulin Resistance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4321714. [PMID: 30116482 PMCID: PMC6079365 DOI: 10.1155/2018/4321714] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/18/2018] [Indexed: 12/14/2022]
Abstract
Insulin resistance (IR), a key component of the metabolic syndrome, precedes the development of diabetes, cardiovascular disease, and Alzheimer's disease. Its etiological pathways are not well defined, although many contributory mechanisms have been established. This article summarizes such mechanisms into the hypothesis that factors like nutrient overload, physical inactivity, hypoxia, psychological stress, and environmental pollutants induce a network of cellular stresses, stress responses, and stress response dysregulations that jointly inhibit insulin signaling in insulin target cells including endothelial cells, hepatocytes, myocytes, hypothalamic neurons, and adipocytes. The insulin resistance-inducing cellular stresses include oxidative, nitrosative, carbonyl/electrophilic, genotoxic, and endoplasmic reticulum stresses; the stress responses include the ubiquitin-proteasome pathway, the DNA damage response, the unfolded protein response, apoptosis, inflammasome activation, and pyroptosis, while the dysregulated responses include the heat shock response, autophagy, and nuclear factor erythroid-2-related factor 2 signaling. Insulin target cells also produce metabolites that exacerbate cellular stress generation both locally and systemically, partly through recruitment and activation of myeloid cells which sustain a state of chronic inflammation. Thus, insulin resistance may be prevented or attenuated by multiple approaches targeting the different cellular stresses and stress responses.
Collapse
Affiliation(s)
- Arnold N. Onyango
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, Nairobi 00200, Kenya
| |
Collapse
|
807
|
Intrinsic toxicity of stable nanosized titanium dioxide using polyacrylate in human keratinocytes. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0030-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
808
|
Thomas MC, Woodward M, Li Q, Pickering R, Tikellis C, Poulter N, Cooper ME, Marre M, Zoungas S, Chalmers J. Relationship Between Plasma 8-OH-Deoxyguanosine and Cardiovascular Disease and Survival in Type 2 Diabetes Mellitus: Results From the ADVANCE Trial. J Am Heart Assoc 2018; 7:JAHA.117.008226. [PMID: 29960985 PMCID: PMC6064915 DOI: 10.1161/jaha.117.008226] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background 8‐Oxo‐2′‐deoxyguanosine (8‐oxo‐2′‐dG) is a biomarker of oxidative DNA damage that is associated with cardiovascular disease and premature mortality in the general population. Although oxidative stress has a proven role in cardiovascular complications in diabetes mellitus, evidence for a relationship between plasma 8‐oxo‐2′‐dG and major cardiovascular outcomes in diabetes mellitus is weak. Methods and Results A case‐cohort study was performed in 3766 participants with prevalent diabetes mellitus in the ADVANCE (Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation) trial (http://ClinicalTrials.gov number NCT00145925). The hazard ratios for mortality and major acute cardiovascular events were derived using Cox regression models. During a median of 5 years of follow‐up, 695 (18.4%) participants in this enriched cohort died (including 354 deaths from cardiovascular disease). Individuals with higher levels of 8‐oxo‐2′‐dG were more likely to die. After adjusting for cardiovascular disease risk factors, the hazard ratio for a 1‐SD increase in plasma 8‐oxo‐2′‐dG was 1.10 (95% confidence interval, 1.01–1.20; P=0.03). This was driven by an independent association between plasma 8‐oxo‐2′‐dG and cardiovascular death (hazard ratio, 1.23; 95% confidence interval, 1.10–1.37 [P<0.001]). By contrast, no association was seen between 8‐oxo‐2′‐dG and noncardiovascular disease death (of which cancer was the major single cause). 8‐Oxo‐2′‐dG was also not significantly associated with either nonfatal myocardial infarction or nonfatal stroke. Conclusions In adults with type 2 diabetes mellitus, increased levels of 8‐oxo‐2′‐dG are independently associated with all‐cause mortality and cardiovascular mortality in adults with longstanding type 2 diabetes mellitus who participated in the ADVANCE trial, consistent with the role of oxidative damage in the development and progression of cardiovascular decompensation in diabetes mellitus. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT00145925.
Collapse
Affiliation(s)
- Merlin C Thomas
- Department of Diabetes, Monash University, Melbourne, Australia
| | - Mark Woodward
- The George Institute for Global Health University of NSW, Sydney, Australia.,The George Institute for Global Health University of Oxford, United Kingdom.,Department of Epidemiology, Johns Hopkins University, Baltimore, MD
| | - Qiang Li
- The George Institute for Global Health University of NSW, Sydney, Australia
| | | | | | - Neil Poulter
- The International Centre for Circulatory Health, National Heart and Lung Institute Imperial College, London, United Kingdom
| | - Mark E Cooper
- Department of Diabetes, Monash University, Melbourne, Australia
| | - Michel Marre
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Paris, France.,Department of Diabetology, Endocrinology and Nutrition, Assistance Publique Hôpitaux de Paris Bichat Hospital DHU FIRE, Paris, France.,UFR de Médecine, University Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Sophia Zoungas
- The George Institute for Global Health University of NSW, Sydney, Australia.,School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - John Chalmers
- The George Institute for Global Health University of NSW, Sydney, Australia
| | | |
Collapse
|
809
|
Liu X, Wu J, Shi W, Shi W, Liu H, Wu X. Lead Induces Genotoxicity via Oxidative Stress and Promoter Methylation of DNA Repair Genes in Human Lymphoblastoid TK6 Cells. Med Sci Monit 2018; 24:4295-4304. [PMID: 29933360 PMCID: PMC6045917 DOI: 10.12659/msm.908425] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Lead (Pb) is a widely used metal in modern industry and is regarded as a health hazard. Although lead-induced genotoxicity has been confirmed, the direct evidence that lead induces genotoxicity in human cells and its related mechanisms has not been fully elucidated. In this study, for the first time, we evaluated the genotoxicity induced by lead in human lymphoblastoid TK6 cells. Material/Methods The TK6 cells were incubated with various concentrations of Pb(Ac)2 for 6 h, 12 h, or 24 h. Cell viability was detected by CCK8 assay. Various biochemical markers were assessed by specific kits. Immunofluorescence assay was used to detect γ-H2AX foci formation. The promoter methylation was assessed by methylation-specific PCR. The protein levels were determined by Western blot assay. Results The results showed that after exposure to lead, cell viability was obviously decreased and γ-H2AX foci formation was significantly enhanced in TK6 cells. Moreover, the levels of 8-OHdG, ROS, MDA, and GSSG were increased, while the GSH level and SOD activity were decreased in lead-treated TK6 cells. The activation of the Nrf2-ARE signaling pathway was involved in lead-induced oxidative stress in TK6 cells. Finally, the expressions of DNA repair genes XRCC1, hOGG-1, BRCA1, and XPD were inhibited via enhancing their promoter methylation in TK6 cells after exposure to lead. Conclusions Taken together, our study provides the first published evidence that lead exposure results in DNA damage via promoting oxidative stress and the promoter methylation of DNA repair genes in human lymphoblastoid TK6 cells.
Collapse
Affiliation(s)
- Xiangquan Liu
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Jingying Wu
- Department of Preventive Medicine, Fuzhou Center for Disease Control and Prevention, Fuzhou, Fujian, China (mainland)
| | - Wenyan Shi
- Department of Clinical Nutrition, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China (mainland)
| | - Wenhua Shi
- Department of Occupational Health, Fuzhou Center for Disease Control and Prevention, Fuzhou, Fujian, China (mainland)
| | - Hekun Liu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Xiaonan Wu
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China (mainland)
| |
Collapse
|
810
|
Bhat MA, Gandhi G. Elevated oxidative DNA damage in patients with coronary artery disease and its association with oxidative stress biomarkers. Acta Cardiol 2018; 74:153-160. [PMID: 29914299 DOI: 10.1080/00015385.2018.1475093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE The objective of the present study was to evaluate oxidative DNA damage in peripheral blood leukocytes (PBLs) of patients with coronary artery disease (CAD) and to explore the relationship of oxidised purine and pyrimidine with oxidative stress. METHODS The study participants (n = 100) included 50 patients and unrelated 50 age-, sex- and population-subgroup (Jat Sikhs)-matched healthy controls. Oxidative DNA damage using the modified enzymatic comet in PBLs, and malondialdehyde (MDA) levels, total oxidant status (TOS) and total antioxidant status (TAS) in blood serum samples using spectrophotometric methods was determined. RESULTS The basal DNA damage of percent tail DNA (T-DNA%) was increased as were tail moment (TM) and olive tail moment (OTM). Oxidative DNA damage in terms of oxidised purines and oxidised pyrimidines was also significantly (p < .001) elevated in patients. Rather the advanced stages of CAD, unstable angina and acute myocardial infarction had significantly more basal and oxidative DNA damage (p < .05) compared to stable angina. MDA levels (p < .01) and TOS (p < .001) were increased significantly in patients with significant (p < .001) decrease in TAS. There was positive correlation of oxidised purines (T-DNA% r = 0.399, p = .004; TM r = 0.623, p = .001; OTM r = 0.456, p= .001) and of total oxidative damage (TM r = 0.515, p = .001; OTM r = 0.463, p = .001) with disease severity, and, with TOS (r = 0.279, p = .050) and negative with TAS (r = -0.341, p = .015). Multiple linear regression analysis revealed TOS and disease severity as independent predictors of oxidative DNA damage. CONCLUSIONS There was significant increase in oxidative DNA damage and oxidative stress in CAD patients compared to levels in healthy controls.
Collapse
Affiliation(s)
- M. A. Bhat
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
| | - G. Gandhi
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
811
|
Ryu EJ, Kim DW, Shin MJ, Jo HS, Park JH, Cho SB, Lee CH, Yeo HJ, Yeo EJ, Choi YJ, Kim DS, Cho SW, Cho YJ, Sohn EJ, Son O, Lee KW, Han KH, Park J, Eum WS, Choi SY. PEP‑1‑glutaredoxin 1 protects against hippocampal neuronal cell damage from oxidative stress via regulation of MAPK and apoptotic signaling pathways. Mol Med Rep 2018; 18:2216-2228. [PMID: 29916538 DOI: 10.3892/mmr.2018.9176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 01/11/2018] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress is known to be a primary risk factor for neuronal diseases. Glutaredoxin (GLRX)‑1, a redox‑regulator of the thioredoxin superfamily, is known to exhibit an important role in cell survival via various cellular functions. However, the precise roles of GLRX1 in brain ischemia are still not fully understood. The present study investigated whether transduced PEP‑1‑GLRX1 protein has protective effects against oxidative stress in cells and in an animal model. Transduced PEP‑1‑GLRX1 protein increased HT‑22 cell viability under oxidative stress and this fusion protein significantly reduced intracellular reactive oxygen species and levels of DNA damage. In addition, PEP‑1‑GLRX1 protein regulated RAC‑a serine/threonine‑protein kinase and mitogen‑activated protein kinase signaling, in addition to apoptotic signaling including B cell lymphoma (Bcl)‑2, Bcl‑2 associated X, apoptosis regulator, pro‑caspase‑9 and p53 expression levels. In an ischemic animal model, it was verified that PEP‑1‑GLRX1 transduced into the Cornu Ammonis 1 region of the animal brain, where it markedly protected against ischemic injury. These results indicate that PEP‑1‑GLRX1 attenuates neuronal cell death resulting from oxidative stress in vitro and in vivo. Therefore, PEP‑1‑GLRX1 may exhibit a beneficial role in the treatment of neuronal disorders, including ischemic injury.
Collapse
Affiliation(s)
- Eun Ji Ryu
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung‑Wonju National University, Gangneung, Gangwon 25457, Republic of South Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of South Korea
| | - Hyo Sang Jo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of South Korea
| | - Jung Hwan Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of South Korea
| | - Su Bin Cho
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of South Korea
| | - Chi Hern Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of South Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of South Korea
| | - Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of South Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of South Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan‑Si, South Chungcheong 31538, Republic of South Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Republic of South Korea
| | - Yong-Jun Cho
- Department of Neurosurgery, Hallym University Medical Center, Chuncheon, Gangwon 24253, Republic of South Korea
| | - Eun Jeong Sohn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of South Korea
| | - Ora Son
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of South Korea
| | - Keun Wook Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of South Korea
| | - Kyu Hyung Han
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of South Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of South Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of South Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of South Korea
| |
Collapse
|
812
|
Fukushi Y, Nakamura A, Itaki C, Tokonami S, Yamada M, Mariya Y. Mental and physical stress of the Fukushima disaster evacuees as estimated by the measurement of urinary 8-hydroxy-2'-deoxyguanosine. Exp Ther Med 2018; 16:231-235. [PMID: 29896244 PMCID: PMC5995080 DOI: 10.3892/etm.2018.6165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/20/2018] [Indexed: 11/12/2022] Open
Abstract
Following the accident at the Fukushima Daiichi Nuclear Power Plant in 2011, a number of evacuees were forced to live in temporary housing and suffered mental and physical stress. However, few reports have used objective or quantitative indicators to determine the evacuee's level of stress. The aim of the present study was to serially estimate the mental and physical stress of the evacuees from 2013 to 2015 by using the oxidative stress marker, urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG). A total of 773 evacuees from Namie town in Fukushima prefecture participated in the study. In the first year, 486 evacuees participated (age, 62.8±18.2 years; male/female, 217/269). Of these, 127 continually participated in the study for 3 years (age, 69.5±13.5 years; males/female 52/75) and 18.1% had no chronic disease after the first year. Urine samples were collected once per year. Urinary 8-OHdG was measured using immunochromatography and corrected by the concentration of urinary creatinine. For all the participants examined each year, mean values of urinary 8-OHdG significantly increased over time. For the 127 continual participants, mean values of urinary 8-OHdG were significantly higher in 2014 and 2015 than those in 2013. Age, gender and presence of chronic disease did not significantly influence the 8-OHdG values, suggesting that the stress level of the evacuees was not associated with these factors. The stress level of the individuals increased with the length of time spent living in the temporary housing. The evacuees in radiation disasters have different stressors from other natural disasters, which may accelerate mental and physical stress.
Collapse
Affiliation(s)
- Yasuyo Fukushi
- Department of Disability and Health, Division of Health Sciences, Hirosaki University Graduate School of Health Sciences, Aomori 036-8564, Japan
| | - Ayumi Nakamura
- Department of Radiological Life Sciences, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, Aomori 036-8564, Japan
| | - Chieko Itaki
- Department of Nursing Science, Hirosaki University Graduate School of Health Sciences, Aomori 036-8564, Japan
| | - Shinji Tokonami
- Institute of Radiation Emergency Medicine, Hirosaki University, Aomori 036-8564, Japan
| | - Masatoshi Yamada
- Institute of Radiation Emergency Medicine, Hirosaki University, Aomori 036-8564, Japan
| | - Yasushi Mariya
- Department of Nursing Science, Hirosaki University Graduate School of Health Sciences, Aomori 036-8564, Japan.,Institute of Radiation Emergency Medicine, Hirosaki University, Aomori 036-8564, Japan.,Department of Radiology and Radiation Oncology, Mutsu General Hospital, Aomori 035-8601, Japan
| |
Collapse
|
813
|
Reid SNS, Ryu JK, Kim Y, Jeon BH. The Effects of Fermented Laminaria japonica on Short-Term Working Memory and Physical Fitness in the Elderly. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:8109621. [PMID: 30008787 PMCID: PMC6020467 DOI: 10.1155/2018/8109621] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/20/2018] [Indexed: 11/18/2022]
Abstract
Considering the neuroprotective and antioxidant potential of fermented Laminaria japonica A. (FST), the purpose of the present study is to establish whether FST may be considered a viable, efficacious supplement that can be administered in later life to offset neurodegenerative conditions associated with aging. Forty senior subjects participated in a randomized, double-blind, and placebo-controlled study. Two groups were formed, one FST group (n = 32, 72.35 ± 5.54 yrs) and one placebo (CON) (n = 28, 74.57 ± 5.69 yrs), which received 1.5 g/day of FST for 6 weeks. Subjects were asked to abstain from any regular exercise. In order to analyze short-term memory, a variety of neuropsychological tests were implemented. Body composition, physical fitness evaluations, antioxidant function, and inflammatory markers were also included in the analyses pre- and posttest. We demonstrated that FST significantly improved neuropsychological test scores, including higher scores in the K-MMSE, numerical memory test, Raven test, and iconic memory, compared to the CON group. Shorter test trial times in the 6-meter [corrected] walk test were observed in the FST group (p<0.001 and p<0.05, trials 1 and 2, respectively). FST also significantly increased antioxidant activity of GPx, GSR, and SOD, reduced the production of TBARS, and lowered 8-oxoDG levels. The present study highlights the potential widespread application of FST in protecting against the degenerative effects of aging on short-term memory and physical function. Neuropsychological evaluation indicates that FST may provide a protective mechanism against cognitive impairment associated with dementia. Neuromuscular integrity and physical function are typically compromised in aging and dementia patients; thus, whether by stimulation of muscle-related growth factors or an increase in serum BDNF, FST supplementation may act to preserve physical function in the elderly. The bioactive constituents of FST such as GABA and fucoidan acting to provide improvements in antioxidant activity following FST supplementation may protect against progressive degeneration purportedly caused by reactive oxygen species.
Collapse
Affiliation(s)
- Storm N. S. Reid
- Department of Physical Education, School of Sports and Health, Kyungsung University, Busan 48434, Republic of Korea
| | - Je-kwang Ryu
- Institute for Cognitive Science, College of Humanities, Seoul National University, Seoul 08826, Republic of Korea
| | - Yunsook Kim
- Marine Bio-Industry Development Center, Marine Bioprocesses Co., Ltd., Busan 46048, Republic of Korea
| | - Byeong Hwan Jeon
- Department of Physical Education, School of Sports and Health, Kyungsung University, Busan 48434, Republic of Korea
| |
Collapse
|
814
|
Li J, Moe B, Liu Y, Li XF. Halobenzoquinone-Induced Alteration of Gene Expression Associated with Oxidative Stress Signaling Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6576-6584. [PMID: 29737854 DOI: 10.1021/acs.est.7b06428] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Halobenzoquinones (HBQs) are emerging disinfection byproducts (DBPs) that effectively induce reactive oxygen species and oxidative damage in vitro. However, the impacts of HBQs on oxidative-stress-related gene expression have not been investigated. In this study, we examined alterations in the expression of 44 genes related to oxidative-stress-induced signaling pathways in human uroepithelial cells (SV-HUC-1) upon exposure to six HBQs. The results show the structure-dependent effects of HBQs on the studied gene expression. After 2 h of exposure, the expression levels of 9 to 28 genes were altered, while after 8 h of exposure, the expression levels of 29 to 31 genes were altered. Four genes ( HMOX1, NQO1, PTGS2, and TXNRD1) were significantly upregulated by all six HBQs at both exposure time points. Ingenuity pathway analysis revealed that the Nrf2 pathway was significantly responsive to HBQ exposure. Other canonical pathways responsive to HBQ exposure included GSH redox reductions, superoxide radical degradation, and xenobiotic metabolism signaling. This study has demonstrated that HBQs significantly alter the gene expression of oxidative-stress-related signaling pathways and contributes to the understanding of HBQ-DBP-associated toxicity.
Collapse
Affiliation(s)
- Jinhua Li
- Department of Health Toxicology, School of Public Health , Jilin University , Changchun , Jilin , China 130021
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G3
| | - Birget Moe
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G3
- Alberta Centre for Toxicology, Department of Physiology and Pharmacology, Faculty of Medicine , University of Calgary , Calgary , Alberta , Canada T2N 4N1
| | - Yanming Liu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G3
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G3
| |
Collapse
|
815
|
McLennan D, Armstrong JD, Stewart DC, Mckelvey S, Boner W, Monaghan P, Metcalfe NB. Telomere elongation during early development is independent of environmental temperatures in Atlantic salmon. ACTA ACUST UNITED AC 2018; 221:jeb.178616. [PMID: 29636409 PMCID: PMC6031317 DOI: 10.1242/jeb.178616] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/29/2018] [Indexed: 12/31/2022]
Abstract
There is increasing evidence from endothermic vertebrates that telomeres, which cap the ends of chromosomes and play an important role in chromosome protection, decline in length during postnatal life and are a useful indicator of physiological state and expected lifespan. However, much less is currently known about telomere dynamics in ectothermic vertebrates, which are likely to differ from that of endotherms, at least in part due to the sensitivity of ectotherm physiology to environmental temperature. We report here on an experiment in which Atlantic salmon (Salmo salar) were reared through the embryonic and larval stages of development, and under differing temperatures, in order to examine the effects of environmental temperature during early life on telomere dynamics, oxidative DNA damage and cellular proliferation. Telomere length significantly increased between the embryonic and larval stages of development. Contrary to our expectations, variation in telomere length at the end of the larval stage was unrelated to either cell proliferation rate or the relative level of oxidative DNA damage, and did not vary between the temperature treatments. This study suggests that salmon are able to restore the length of their telomeres during early development, which may possibly help to buffer potentially harmful environmental effects experienced in early life. Summary: The authors show that, in salmon, telomeres significantly lengthen between the embryonic and larval stages of development, and that this is not influenced by environmental temperature.
Collapse
Affiliation(s)
- Darryl McLennan
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - John D Armstrong
- Marine Scotland-Science, Freshwater Laboratory, Faskally, Pitlochry, PH16 5LB, UK
| | - David C Stewart
- Marine Scotland-Science, Freshwater Laboratory, Faskally, Pitlochry, PH16 5LB, UK
| | - Simon Mckelvey
- Cromarty Firth Fishery Trust, CKD Galbraith, Reay House, 17 Old Edinburgh Road, Inverness, IV2 3HF
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Neil B Metcalfe
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
816
|
Carraro E, Schilirò T, Biorci F, Romanazzi V, Degan R, Buonocore D, Verri M, Dossena M, Bonetta S, Gilli G. Physical Activity, Lifestyle Factors and Oxidative Stress in Middle Age Healthy Subjects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15061152. [PMID: 29865194 PMCID: PMC6025138 DOI: 10.3390/ijerph15061152] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 12/16/2022]
Abstract
Oxidative stress (OS) has been recognized to play a primary role in many acute and chronic diseases. Environmental and lifestyle factors, such as physical activity and dietary intake are involved in the oxidative balance, but their specific influence remains unclear. In order to contribute to a greater characterization of the oxidative status in relation to exercise training and to environmental and lifestyle factors, different biomarkers—pro-oxidant capacity (d-ROMs), anti-oxidant capacity (BAP), radical scavenging activity (DPPH) and DNA damage (8-OHdGuo)—were measured in biological samples of a group of healthy middle aged subjects. The evaluation of the investigated biomarkers highlighted a significant effect of exercise training on OS, measured as d-ROMs and 8OhdGuo, in subjects playing regular physical activity. An association of the OS status measured by DPPH and 8-OhdGuo with the condition of living in urban high traffic areas was also found. Otherwise dietary habits did not reveal any significant effect on OS levels by the investigated biomarkers. As a whole the results obtained in this investigation suggested that a correct lifestyle, with regular physical activity practice, contributes to control the OS status in middle age subjects.
Collapse
Affiliation(s)
- Elisabetta Carraro
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy.
| | - Tiziana Schilirò
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy.
| | - Felicina Biorci
- Center of Sport and Preventive Medicine, University of Torino, Piazza Bernini 12, 10143 Torino, Italy.
| | - Valeria Romanazzi
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy.
| | - Raffaella Degan
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy.
| | - Daniela Buonocore
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy.
| | - Manuela Verri
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy.
| | - Maurizia Dossena
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy.
| | - Sara Bonetta
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy.
| | - Giorgio Gilli
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy.
| |
Collapse
|
817
|
Rowan-Carroll A, Beal MA, Williams A, Marchetti F, Yauk CL. Dose-response mutation and spectrum analyses reveal similar responses at two microsatellite loci in benzo(a)pyrene-exposed mouse spermatogonia. Mutagenesis 2018; 32:463-470. [PMID: 28575466 DOI: 10.1093/mutage/gex008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/23/2017] [Indexed: 11/14/2022] Open
Abstract
Identifying chemical exposures that can cause germline mutations is important as these mutations can be inherited, impacting both individual and population health. However, germline mutations are extremely rare and difficult to detect. Chemically induced germline mutations can be detected through analysis of highly unstable tandem repeat DNA. We recently developed a single-molecule PCR (SM-PCR) approach to quantify mutations at a mouse microsatellite locus (Mm2.2.1) in sperm for such purposes. In this study, we refine this approach through the combined analysis of mouse microsatellites Mm2.2.1 and Mm19.2.3. Mice were exposed to 0, 25, 50 or 100 mg/kg/day benzo(a)pyrene (BaP) by oral gavage for 28 days and sperm sampled 42 days after the end of exposure to measure effects on dividing spermatogonia. DNA was diluted to a single genome per PCR well for amplification of microsatellites in singleplex and multiplex reactions, and alleles were sized to identify mutations using capillary electrophoresis. Analysis of ~300-500 molecules per animal at both microsatellite loci, when tested individually, showed a ~2-fold increase in mutations relative to the controls at both the 50 and 100 mg/kg/day BaP doses. Multiplex SM-PCR revealed similar increases in mutation frequencies in both microsatellites. Comparison with results from a previous lacZ mutation assay conducted on the same mice revealed that although microsatellite mutations are a sensitive endpoint for detecting changes in mutation frequencies at lower doses, they appear to be saturable and thus have a reduced dynamic range. These results confirm that BaP is a male germ cell mutagen that broadly impacts tandem repeat DNA. Likewise, addition of a second hypervariable microsatellite increases the sensitivity of this assay.
Collapse
Affiliation(s)
- Andrea Rowan-Carroll
- Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Marc A Beal
- Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Andrew Williams
- Biostatistics and Epidemiology Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Francesco Marchetti
- Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Carole L Yauk
- Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| |
Collapse
|
818
|
Kumagae Y, Hirahashi M, Takizawa K, Yamamoto H, Gushima M, Esaki M, Matsumoto T, Nakamura M, Kitazono T, Oda Y. Overexpression of MTH1 and OGG1 proteins in ulcerative colitis-associated carcinogenesis. Oncol Lett 2018; 16:1765-1776. [PMID: 30008864 DOI: 10.3892/ol.2018.8812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 09/05/2017] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress, demonstrated by an accumulation of 8-hydroxy-2'-deoxyguanosine (8-OHdG), results in DNA damage, which is normally repaired by base excision repair enzymes including 8-OHdG DNA glycosylase (OGG1) and human MutY homolog (MUTYH), in addition to nucleotide pool sanitizing enzymes including MutT Homolog 1 (MTH1). Abnormalities of this repair system are present in various cancer types. The present study aimed to elucidate the clinicopathological significance of altered expression levels of inducible nitric oxide synthase (iNOS), 8-OHdG, OGG1, MTH1 and MUTYH in ulcerative colitis (UC) and UC-associated neoplasms. Immunohistochemical staining for these markers and p53 in 23 cases of UC-associated neoplasm (Group A, 14 carcinomas and nine dysplasias), 16 cases of UC without neoplasm (Group B) and 17 cases of normal colon specimens (Group C) was performed. Mutation analyses was conducted for KRAS proto-oncogene, GTPase (K-ras), tumor protein P53 (TP53) and isocitrate dehydrogenase (NADP (+)) 1, cytosolic (IDH1) genes. Immunohistochemically, the iNOS, 8-OHdG, OGG1 and MTH1 expression levels were increased in Groups A and B compared with Group C. The OGG1 and MTH1 expression levels in Group A were also increased compared with Group B. Group A and Group B exhibited increased cytoplasmic expression and decreased nuclear expression of MUTYH compared with Group C. Mutations of K-ras and TP53 were detected in 2/21 (9.5%) and 10/22 (45.5%) cases of Group A, respectively. IDH1 mutation was not detected in any cases. These findings suggest that, as a response to oxidative damage, OGG1 and MTH1 may be upregulated in UC through an inflammatory condition that progresses to cancer formation. Persisting oxidative damage stress may play a role in the pathogenesis of UC-associated tumors.
Collapse
Affiliation(s)
- Yoshiteru Kumagae
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Minako Hirahashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Katsumi Takizawa
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Hidetaka Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Masaki Gushima
- Department of Medical Gastroenterology, Shimonoseki Hospital, Yamaguchi, Yamaguchi 750-8520, Japan
| | - Motohiro Esaki
- Department of Medicine and Clinical Science, Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Iwate 020-8505, Japan
| | - Masafumi Nakamura
- Department of Medicine and Clinical Science, Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| |
Collapse
|
819
|
Song C, Zhao X. Uric acid promotes oxidative stress and enhances vascular endothelial cell apoptosis in rats with middle cerebral artery occlusion. Biosci Rep 2018; 38:BSR20170939. [PMID: 29097484 PMCID: PMC6048215 DOI: 10.1042/bsr20170939] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 12/26/2022] Open
Abstract
In patients with cerebral infarction (CI), elevated serum uric acid (UA) level may exacerbate the occurrence and development of carotid atherosclerosis (AS). Our study intended to explore the underlying mechanism. We enrolled 86 patients with CI, and divided them into four groups: Non-AS, AS-mild, AS-moderate, and AS-severe groups; the levels of UA and oxidative stress-related factors in serum were detected. The middle cerebral artery occlusion (MCAO) model was used to stimulate CI in rats, and different doses of UA were administrated. The levels of oxidative stress-related factors in serum were detected. Hematoxylin & eosin (H&E) staining was used to observe the morphological alterations, and the apoptotic cell death detection kit was used to detect apoptotic cells. Increased UA concentration and enhanced oxidative stress were found in AS patients. H&E staining results showed that UA treatment exacerbated morphological damage in rats with MCAO, promoted oxidative stress, and enhanced vascular endothelial cell apoptosis in rats with MCAO.
Collapse
Affiliation(s)
- Chengfu Song
- Department of Geratology, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200093, China
| | - Xiangdong Zhao
- Department of Geratology, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200093, China
| |
Collapse
|
820
|
Kobets T, Duan JD, Brunnemann KD, Iatropoulos MJ, Etter S, Hickey C, Smith B, Williams GM. In ovo testing of flavor and fragrance materials in Turkey Egg Genotoxicity Assay (TEGA), comparison of results to in vitro and in vivo data. Food Chem Toxicol 2018; 115:228-243. [DOI: 10.1016/j.fct.2018.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
|
821
|
Pakuła M, Mikuła-Pietrasik J, Stryczyński Ł, Uruski P, Szubert S, Moszyński R, Szpurek D, Sajdak S, Tykarski A, Książek K. Mitochondria-related oxidative stress contributes to ovarian cancer-promoting activity of mesothelial cells subjected to malignant ascites. Int J Biochem Cell Biol 2018; 98:82-88. [DOI: 10.1016/j.biocel.2018.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/18/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
|
822
|
Mitochondrial NADP +-dependent isocitrate dehydrogenase deficiency increases cisplatin-induced oxidative damage in the kidney tubule cells. Cell Death Dis 2018; 9:488. [PMID: 29695796 PMCID: PMC5916920 DOI: 10.1038/s41419-018-0537-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 12/18/2022]
Abstract
Mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2) plays an important role in the formation of NADPH, which is critical for the maintenance of mitochondrial redox balance. Cis-diamminedichloroplatinum II (cisplatin), an effective anticancer drug, induces oxidative stress-related nephrotoxicity, limiting its use. Therefore, we investigated whether IDH2, which is a critical enzyme in the NADPH-associated mitochondrial antioxidant system, is involved in cisplatin nephrotoxicity. Idh2 gene-deleted (Idh2−/−) mice and wild-type (Idh2+/+) littermates were treated with cisplatin, with or without 2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl) triphenylphosphonium chloride (Mito-T), a mitochondria-specific antioxidant. Cisplatin-induced renal functional and morphological impairments were greater in Idh2−/− mice than in Idh2+/+ mice. Mito-T mitigated those impairments in both Idh2−/− and Idh2+/+ mice and this mitigation was greater in Idh2−/− than in Idh2+/+ mice. Cisplatin impaired IDH2 function in the mitochondria, decreasing mitochondrial NADPH and GSH levels and increasing H2O2 generation; protein, lipid, and DNA oxidation; mitochondrial damage; and apoptosis. These cisplatin-induced changes were much more severe in Idh2−/− mice than in Idh2+/+ mice. Mito-T treatment attenuated cisplatin-induced alterations in both Idh2−/− and Idh2+/+ mice and this mitigation was greater in Idh2−/− than in Idh2+/+ mice. Altogether, these data demonstrate that cisplatin induces the impairment of the mitochondrial IDH2-NADPH-GSH antioxidant system and IDH2 deficiency aggravates cisplatin-induced mitochondrial oxidative damage, inducing more severe nephrotoxicity. This suggests that the mitochondrial IDH2-NADPH-GSH antioxidant system is a target for the prevention of cisplatin-induced kidney cell death.
Collapse
|
823
|
Holton NW, Ebenstein Y, Gassman NR. Broad spectrum detection of DNA damage by Repair Assisted Damage Detection (RADD). DNA Repair (Amst) 2018; 66-67:42-49. [PMID: 29723708 DOI: 10.1016/j.dnarep.2018.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 02/09/2018] [Accepted: 04/25/2018] [Indexed: 11/29/2022]
Abstract
Environmental exposures, reactive by-products of cellular metabolism, and spontaneous deamination events result in a spectrum of DNA adducts that if un-repaired threaten genomic integrity by inducing mutations, increasing instability, and contributing to the initiation and progression of cancer. Assessment of DNA adducts in cells and tissues is critical for genotoxic and carcinogenic evaluation of chemical exposure and may provide insight into the etiology of cancer. Numerous methods to characterize the formation of DNA adducts and their retention for risk assessment have been developed. However, there are still significant drawbacks to the implementation and wide-spread use of these methods, because they often require a substantial amount of biological sample, highly specialized expertise and equipment, and depending on technique, may be limited to the detection and quantification of only a handful of DNA adducts at a time. There is a pressing need for high throughput, easy to implement assays that can assess a broad spectrum of DNA lesions, allowing for faster evaluation of chemical exposures and assessment of the retention of adducts in biological samples. Here, we describe a new methodology, Repair Assisted Damage Detection (RADD), which utilizes a DNA damage processing repair enzyme cocktail to detect and modify sites of DNA damage for a subsequent gap filling reaction that labels the DNA damage sites. This ability to detect and label a broad spectrum of DNA lesions within cells, offers a novel and easy to use tool for assessing levels of DNA damage in cells that have been exposed to environmental agents or have natural variations in DNA repair capacity.
Collapse
Affiliation(s)
- Nathaniel W Holton
- Department of Oncologic Sciences, University of South Alabama Mitchell Cancer Institute, Mobile, AL, 36604, USA.
| | - Yuval Ebenstein
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Natalie R Gassman
- Department of Oncologic Sciences, University of South Alabama Mitchell Cancer Institute, Mobile, AL, 36604, USA.
| |
Collapse
|
824
|
Huang X, Wang J, Chen X, Liu P, Wang S, Song F, Zhang Z, Zhu F, Huang X, Liu J, Song G, Spencer PS, Yang X. The Prenylflavonoid Xanthohumol Reduces Alzheimer-Like Changes and Modulates Multiple Pathogenic Molecular Pathways in the Neuro2a/APP swe Cell Model of AD. Front Pharmacol 2018; 9:199. [PMID: 29670521 PMCID: PMC5893754 DOI: 10.3389/fphar.2018.00199] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/22/2018] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that has proved refractory to drug treatment. Given evidence of neuroprotection in animal models of ischemic stroke, we assessed the prenylflavonoid xanthohumol from the Common Hop (Humulus lupulus L.) for therapeutic potential in murine neuroblastoma N2a cells stably expressing human Swedish mutant amyloid precursor protein (N2a/APP), a well-characterized cellular model of AD. The ELISA and Western-blot analysis revealed that xanthohumol (Xn) inhibited Aβ accumulation and APP processing, and that Xn ameliorated tau hyperphosphorylation via PP2A, GSK3β pathways in N2a/APP cells. The amelioration of tau hyperphosphorylation by Xn was also validated on HEK293/Tau cells, another cell line with tau hyperphosphorylation. Proteomic analysis (2D-DIGE-coupled MS) revealed a total of 30 differentially expressed lysate proteins in N2a/APP vs. wild-type (WT) N2a cells (N2a/WT), and a total of 21 differentially expressed proteins in lysates of N2a/APP cells in the presence or absence of Xn. Generally, these 51 differential proteins could be classified into seven main categories according to their functions, including: endoplasmic reticulum (ER) stress-associated proteins; oxidative stress-associated proteins; proteasome-associated proteins; ATPase and metabolism-associated proteins; cytoskeleton-associated proteins; molecular chaperones-associated proteins, and others. We used Western-blot analysis to validate Xn-associated changes of some key proteins in several biological/pathogenic processes. Taken together, we show that Xn reduces AD-related changes in stably transfected N2a/APP cells. The underlying mechanisms involve modulation of multiple pathogenic pathways, including those involved in ER stress, oxidative stress, proteasome molecular systems, and the neuronal cytoskeleton. These results suggest Xn may have potential for the treatment of AD and/or neuropathologically related neurodegenerative diseases.
Collapse
Affiliation(s)
- Xianfeng Huang
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Jing Wang
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Xiao Chen
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Pan Liu
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China.,Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shujin Wang
- Department of Neurology, The First Hospital of Zibo, Weifang Medical University, Zibo, China
| | - Fangchen Song
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Zaijun Zhang
- Key Laboratory of Innovative Chemical Drug Research in Cardio-Cerebrovascular Diseases, Institute of New Drug Research and Guangzhou, College of Pharmacy, Jinan University, Guangzhou, China
| | - Feiqi Zhu
- Department of Cognitive Impairment Ward of Neurology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xinfeng Huang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Guoqiang Song
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Peter S Spencer
- Department of Neurology, School of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
825
|
Zhao H, Zhang M, Liu Q, Wang X, Zhao R, Geng Y, Wong T, Li S, Wang X. A comprehensive screening shows that ergothioneine is the most abundant antioxidant in the wild macrofungus Phylloporia ribis Ryvarden. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2018; 36:98-111. [PMID: 29667505 DOI: 10.1080/10590501.2018.1450201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The polar and non-polar extracts from the authenticated wild mushroom Phylloporia ribis were separated by hydrophilic interaction liquid chromatography (HILIC) and by reverse phase (RP)-HPLC, respectively. A split valve separated the eluents into two fractions for free-radical scavenging analysis and for structural identification. Forty-six compounds showed scavenging activity of the stable-free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH). The structures of 8 antioxidants (inosine, caffeic acid, ergothioneine, p-hydroxybenzoic acid, adenosine, 3,4-dihydroxybenzaldehyde, apigenin, and naringenin) are characterized by Mass Spectrometer. Among them, ergothioneine was the most abundant (>65%) and most active antioxidant in P. ribis.
Collapse
Affiliation(s)
- Hengqiang Zhao
- a Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center , Qilu University Of Technology (Shandong Academy of Sciences) , Jinan , China
| | - Minmin Zhang
- a Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center , Qilu University Of Technology (Shandong Academy of Sciences) , Jinan , China
| | - Qian Liu
- a Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center , Qilu University Of Technology (Shandong Academy of Sciences) , Jinan , China
| | - Xiaoli Wang
- a Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center , Qilu University Of Technology (Shandong Academy of Sciences) , Jinan , China
| | - Ruixuan Zhao
- a Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center , Qilu University Of Technology (Shandong Academy of Sciences) , Jinan , China
| | - Yanling Geng
- a Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center , Qilu University Of Technology (Shandong Academy of Sciences) , Jinan , China
| | - Tityee Wong
- b Biological Sciences , University of Memphis , Memphis , Tennessee , USA
| | - Shengbo Li
- c Shandong Yate Eco-tech Co. LTD. , Linyi , China
| | - Xiao Wang
- a Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center , Qilu University Of Technology (Shandong Academy of Sciences) , Jinan , China
| |
Collapse
|
826
|
Tolleson WH. Mechanistic biomarkers of liver toxicity and carcinogenesis. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2018; 36:63-64. [PMID: 29667504 DOI: 10.1080/10590501.2018.1450205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- William H Tolleson
- a National Center for Toxicological Research, US Food and Drug Administration , Jefferson , AR , USA .
| |
Collapse
|
827
|
Ceylan D, Tuna G, Kirkali G, Tunca Z, Can G, Arat HE, Kant M, Dizdaroglu M, Özerdem A. Oxidatively-induced DNA damage and base excision repair in euthymic patients with bipolar disorder. DNA Repair (Amst) 2018; 65:64-72. [PMID: 29626765 DOI: 10.1016/j.dnarep.2018.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 01/08/2023]
Abstract
Oxidatively-induced DNA damage has previously been associated with bipolar disorder. More recently, impairments in DNA repair mechanisms have also been reported. We aimed to investigate oxidatively-induced DNA lesions and expression of DNA glycosylases involved in base excision repair in euthymic patients with bipolar disorder compared to healthy individuals. DNA base lesions including both base and nucleoside modifications were measured using gas chromatography-tandem mass spectrometry and liquid chromatography-tandem mass spectrometry with isotope-dilution in DNA samples isolated from leukocytes of euthymic patients with bipolar disorder (n = 32) and healthy individuals (n = 51). The expression of DNA repair enzymes OGG1 and NEIL1 were measured using quantitative real-time polymerase chain reaction. The levels of malondialdehyde were measured using high performance liquid chromatography. Seven DNA base lesions in DNA of leukocytes of patients and healthy individuals were identified and quantified. Three of them had significantly elevated levels in bipolar patients when compared to healthy individuals. No elevation of lipid peroxidation marker malondialdehyde was observed. The level of OGG1 expression was significantly reduced in bipolar patients compared to healthy individuals, whereas the two groups exhibited similar levels of NEIL1 expression. Our results suggest that oxidatively-induced DNA damage occurs and base excision repair capacity may be decreased in bipolar patients when compared to healthy individuals. Measurement of oxidatively-induced DNA base lesions and the expression of DNA repair enzymes may be of great importance for large scale basic research and clinical studies of bipolar disorder.
Collapse
Affiliation(s)
- Deniz Ceylan
- Vocational School of Health Services, Izmir University of Economics, Izmir, Turkey; Department of Neuroscience, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey.
| | - Gamze Tuna
- Department of Molecular Medicine, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Güldal Kirkali
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Bethesda, MD, 20892, USA
| | - Zeliha Tunca
- Department of Psychiatry, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Güneş Can
- Department of Psychiatry, Mardin State Hospital, Mardin, Turkey
| | - Hidayet Ece Arat
- Department of Psychology, Istanbul Gelişim University, Istanbul, Turkey, Turkey
| | - Melis Kant
- Department of Medical Biochemistry, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Miral Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
| | - Ayşegül Özerdem
- Department of Neuroscience, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
828
|
Fusch G, Mitra S, Topp H, Agarwal A, Yiu SH, Bruhs J, Rochow N, Lange A, Heckmann M, Fusch C. Source and Quality of Enteral Nutrition Influences Oxidative Stress in Preterm Infants: A Prospective Cohort Study. JPEN J Parenter Enteral Nutr 2018; 42:1288-1294. [PMID: 29603266 DOI: 10.1002/jpen.1156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/29/2018] [Indexed: 11/11/2022]
Abstract
BACKGROUND Preterm infants are at risk of oxidative stress from neonatal intensive care interventions. 8-Oxo-2'-deoxyguanosine (8-oxodG), generated by oxygen radical attack on DNA, is a potential marker of oxidative stress. The aim of the present study was to investigate the impact of quality and source of enteral nutrition (EN) on renal excretion of 8-oxodG in preterm infants. METHODS Spontaneous urine samples were collected on postnatal days 26-31 in 33 preterm infants. Infants were fed either breast milk (BM), formula (FM), or BM/FM mixtures. Daily iron (Fe) supplementation was started day 28 ± 1 postnatally. 8-oxodG was determined by highperformance liquid chromatography-electrochemical detection (HPLC-EC). RESULTS The 8-oxodG/creatinine ratio was significantly higher in infants fed FM vs FM/BM (38.7 ± 28.7 vs 16.7 ± 12.2 nmol 8-oxodG/mmol creatinine, P < 0.0001) or BM (11.6 ± 10.4 nmol 8-oxodG/mmol creatinine, P < 0.0001). There was no significant effect of Fe supplementation (P = 0.547). 8-OxodG excretion showed significant interindividual variation but was similar within pairs of twins. CONCLUSION Quality and source of EN seem to influence oxidative stress in preterm infants. The underlying pathophysiological mechanism is unclear and needs further investigation. It may be speculated that other mechanisms than Fe supplementation contribute to oxidative stress, such as cow's milk protein-mediated up-regulation of the intestinal inflammatory cascade.
Collapse
Affiliation(s)
- Gerhard Fusch
- Division of Neonatology and Pediatric Intensive Care, Department of Pediatrics, University of Greifswald, Greifswald, Germany.,Division of Neonatology, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Souvik Mitra
- Division of Neonatology, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Heinrich Topp
- Division of Neonatology and Pediatric Intensive Care, Department of Pediatrics, University of Greifswald, Greifswald, Germany
| | - Arnav Agarwal
- Division of Neonatology, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - So Hon Yiu
- Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada
| | - Josefin Bruhs
- Division of Neonatology and Pediatric Intensive Care, Department of Pediatrics, University of Greifswald, Greifswald, Germany
| | - Niels Rochow
- Division of Neonatology and Pediatric Intensive Care, Department of Pediatrics, University of Greifswald, Greifswald, Germany.,Division of Neonatology, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Anja Lange
- Division of Neonatology and Pediatric Intensive Care, Department of Pediatrics, University of Greifswald, Greifswald, Germany
| | - Matthias Heckmann
- Division of Neonatology and Pediatric Intensive Care, Department of Pediatrics, University of Greifswald, Greifswald, Germany
| | - Christoph Fusch
- Division of Neonatology and Pediatric Intensive Care, Department of Pediatrics, University of Greifswald, Greifswald, Germany.,Division of Neonatology, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada.,Department of Pediatrics, Paracelsus Medical University Nuremberg, Nuremberg General Hospital, Nuremberg, Germany
| |
Collapse
|
829
|
miR-200a Modulates the Expression of the DNA Repair Protein OGG1 Playing a Role in Aging of Primary Human Keratinocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9147326. [PMID: 29765508 PMCID: PMC5889889 DOI: 10.1155/2018/9147326] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/13/2017] [Accepted: 01/22/2018] [Indexed: 12/20/2022]
Abstract
Oxidative DNA damage accumulation may induce cellular senescence. Notably, senescent cells accumulate in aged tissues and are present at the sites of age-related pathologies. Although the signaling of DNA strand breaks has been extensively studied, the role of oxidative base lesions has not fully investigated in primary human keratinocyte aging. In this study, we show that primary human keratinocytes from elderly donors are characterized by a significant accumulation of the oxidative base lesion 8-OH-dG, impairment of oxidative DNA repair, and increase of miR-200a levels. Notably, OGG1-2a, a critical enzyme for 8-OH-dG repair, is a direct target of miR-200a and its expression levels significantly decrease in aged keratinocytes. The 8-OH-dG accumulation displays a significant linear relationship with the aging biomarker p16 expression during keratinocyte senescence. Interestingly, we found that miR-200a overexpression down-modulates its putative target Bmi-1, a well-known p16 repressor, and up-regulates p16 itself. miR-200a overexpression also up-regulates the NLRP3 inflammasome and IL-1β expression. Of note, primary keratinocytes from elderly donors are characterized by NRPL3 activation and IL-1β secretion. These findings point to miR-200a as key player in primary human keratinocyte aging since it is able to reduce oxidative DNA repair activity and may induce several senescence features through p16 and IL-1β up-regulation.
Collapse
|
830
|
Soares GR, de Moura CFG, Silva MJD, Vilegas W, Santamarina AB, Pisani LP, Estadella D, Ribeiro DA. Protective effects of purple carrot extract (Daucus carota) against rat tongue carcinogenesis induced by 4-nitroquinoline 1-oxide. Med Oncol 2018; 35:54. [DOI: 10.1007/s12032-018-1114-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/07/2018] [Indexed: 01/02/2023]
|
831
|
Verheecke M, Cortès Calabuig A, Finalet Ferreiro J, Brys V, Van Bree R, Verbist G, Everaert T, Leemans L, Gziri MM, Boere I, Halaska MJ, Vanhoudt J, Amant F, Van Calsteren K. Genetic and microscopic assessment of the human chemotherapy-exposed placenta reveals possible pathways contributive to fetal growth restriction. Placenta 2018; 64:61-70. [PMID: 29626982 DOI: 10.1016/j.placenta.2018.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Fetal growth restriction (FGR) carries an increased risk of perinatal mortality and morbidity. A major cause of FGR is placental insufficiency. After in utero chemotherapy-exposure, an increased incidence of FGR has been reported. In a prospective cohort study we aimed to explore which pathways may contribute to chemotherapy-associated FGR. METHODS Placental biopsies were collected from 25 cancer patients treated with chemotherapy during pregnancy, and from 66 control patients. Differentially expressed pathways between chemotherapy-exposed patients and controls were examined by whole transcriptome shotgun sequencing (WTSS) and Ingenuity Pathway Analysis (IPA). Immunohistochemical studies for 8-OHdG and eNOS (oxidative DNA damage), proliferation (PCNA) and apoptosis (Cleaved Caspase 3) were performed. The expression level of eNOS, PCNA and IGFBP6 was verified by real-time quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR). RESULTS Most differential expressed genes between chemotherapy-exposed patients and controls were related to growth, developmental processes, and radical scavenging networks. The duration of chemotherapy exposure had an additional impact on the expression of genes related to the superoxide radicals degeneration network. Immunohistochemical analyses showed a significantly increased expression of 8-OHdG (P = 0.003) and a decreased expression of eNOS (P=0.015) in the syncytiotrophoblast of the placenta of cancer patients. A decreased expression of PCNA was detected by immunohistochemistry as RT-qPCR (NS). CONCLUSION Chemotherapy exposure during pregnancy results in an increase of oxidative DNA damage and might impact the placental cellular growth and development, resulting in an increased incidence of FGR in this specific population. Further large prospective cohort studies and longitudinal statistical analyses are needed.
Collapse
Affiliation(s)
- M Verheecke
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Obstetrics and Gynecology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | | | | | - V Brys
- Genomics Core, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - R Van Bree
- Department of Reproduction and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - G Verbist
- Genomics Core, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - T Everaert
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - L Leemans
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - M M Gziri
- Department of Obstetrics and Gynecology, Cliniques Universitaires St. Luc, Hippokrateslaan 10, 1200 Brussels, Belgium
| | - I Boere
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - M J Halaska
- Department of Obstetrics and Gynaecology, 3rd Medical Faculty, Charles University, Prague 5, Faculty Hospital Kralovske Vinohrady, Srobarova 1150/50, 100 34, Prague 10, Czech Republic
| | - J Vanhoudt
- Genomics Core, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - F Amant
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Gynaecologic Oncology, Center for Gynaecologic Oncology, Amsterdam, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - K Van Calsteren
- Department of Obstetrics and Gynecology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium; Department of Reproduction and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
832
|
Ammanath G, Yildiz UH, Palaniappan A, Liedberg B. Luminescent Device for the Detection of Oxidative Stress Biomarkers in Artificial Urine. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7730-7736. [PMID: 29430928 DOI: 10.1021/acsami.7b17252] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A luminescent paper-based device for the visual detection of oxidative stress biomarkers is reported. The device consists of a polyvinylidene fluoride membrane impregnated with poly(3-alkoxy-4-methylthiophene) (PT) for colorimetric detection. 8-hydroxy-2'-deoxyguanosine (8-OHdG), a biomarker associated with oxidative stress, is used as a model system for validating the proposed methodology. The detection strategy is based on monitoring the changes in optical properties of PT associated with its conformational changes upon interaction with an aptamer in the presence and in the absence of 8-OHdG. Fluorometric and colorimetric monitoring revealed linear responses for 8-OHdG concentrations between 50 pM and 500 nM (∼14 pg/mL to 140 ng/mL), with limits of detection of ∼300 pM and ∼350 pM, respectively for ( n = 3). Colorimetric responses in artificial urine ascertained rapid, sensitive, and selective detection of 8-OHdG at clinically relevant (pM to nM) concentration levels. Furthermore, the proposed methodology enables point-of-care diagnostics for oxidative stress without requiring sophisticated instrumentation.
Collapse
Affiliation(s)
- Gopal Ammanath
- Centre for Biomimetic Sensor Science , Nanyang Technological University , Singapore 637553
- Nanyang Institute of Technology in Health and Medicine, Interdisciplinary Graduate School , Nanyang Technological University , Singapore 637553
- School of Materials Science and Engineering , Nanyang Technological University , Singapore 639798
| | - Umit Hakan Yildiz
- Department of Chemistry , Izmir Institute of Technology , Urla, 35430 Izmir , Turkey
| | - Alagappan Palaniappan
- Centre for Biomimetic Sensor Science , Nanyang Technological University , Singapore 637553
- Nanyang Institute of Technology in Health and Medicine, Interdisciplinary Graduate School , Nanyang Technological University , Singapore 637553
| | - Bo Liedberg
- Centre for Biomimetic Sensor Science , Nanyang Technological University , Singapore 637553
- Nanyang Institute of Technology in Health and Medicine, Interdisciplinary Graduate School , Nanyang Technological University , Singapore 637553
- School of Materials Science and Engineering , Nanyang Technological University , Singapore 639798
| |
Collapse
|
833
|
Kemer Doğan ES, Kırzıoğlu FY, Doğan B, Fentoğlu Ö, Kale B. The effect of menopause on the relationship between hyperlipidemia and periodontal disease via salivary 8-hydroxy-2'-deoxyguanosine and myeloperoxidase levels. Acta Odontol Scand 2018; 76:92-97. [PMID: 28984174 DOI: 10.1080/00016357.2017.1386798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Impairment of the lipid metabolism could affect the periodontal disease; increased oxidative stress may have a role in this relationship. The aim of the present study was to evaluate the role of menopause in the relationship between hyperlipidemia and periodontal disease via oxidative stress markers in saliva. MATERIALS AND METHODS Sixty-seven women were enrolled in the study and divided into four groups as systemically healthy and premenopause (C) (n = 18), hyperlipidemia and premenopause (H) (n = 16), systemically healthy and postmenopause (M) (n = 17), and hyperlipidemia and postmenopause (MH) (n = 16). Sociodemographics, periodontal and metabolic parameters, and saliva oxidative markers (myeloperoxidase [MPO] and 8-hydroxy-2'-deoxyguanosine [8-OHdG]) were evaluated. RESULTS Menopause and/or hyperlipidemia were associated with an increase in all evaluated periodontal parameters. Saliva 8-OHdG and MPO levels were higher in menopausal groups (M and MH). Multivariate linear regression analyses revealed that hyperlipidemia was related to an increase in periodontal parameters. Salivary oxidative stress markers and periodontal parameters were also positively associated with menopause and hyperlipidemia. CONCLUSION Saliva 8-OHdG and MPO levels may indicate that the relationship between periodontal disease and hyperlipidemia is aggravated by menopause.
Collapse
Affiliation(s)
- Esra Sinem Kemer Doğan
- Department of Periodontology, Faculty of Dentistry, Mustafa Kemal University, Hatay, Turkey
| | - Fatma Yeşim Kırzıoğlu
- Department of Periodontology, Faculty of Dentistry, Süleyman Demirel University, Isparta, Turkey
| | - Burak Doğan
- Department of Periodontology, Faculty of Dentistry, Mustafa Kemal University, Hatay, Turkey
| | - Özlem Fentoğlu
- Department of Periodontology, Faculty of Dentistry, Süleyman Demirel University, Isparta, Turkey
| | - Banu Kale
- Endocrinologist, Private Practice, Isparta, Turkey
| |
Collapse
|
834
|
DNA redox modulations and global DNA methylation in bipolar disorder: Effects of sex, smoking and illness state. Psychiatry Res 2018; 261:589-596. [PMID: 29407727 DOI: 10.1016/j.psychres.2017.12.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 11/22/2017] [Accepted: 12/18/2017] [Indexed: 01/20/2023]
Abstract
DNA redox modulations and methylation have been associated with bipolar disorder (BD) pathophysiology. We aimed to investigate DNA redox modulation and global DNA methylation and demethylation levels in patients with BD during euthymia, mania or depression in comparison to non-psychiatric controls. The roles of sex and smoking as susceptibility factors for DNA redox modulations and global DNA methylation and demethylation were also explored. Levels of 5-methylcytosine (5-mC), 5-hydroxymethylcytosine (5-hmC) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were assessed in DNA samples of 75 patients with DSM-IV BD type I (37 euthymic, 18 manic, 20 depressive) in comparison to 60 non-psychiatric controls. Levels of 5-mC and 5-hmC were assessed using Dot Blot as a screening process, and verified using ELISA. Levels of 8-OHdG were assessed using ELISA. The levels of 8-OHdG significantly differed among non-psychiatric control, euthymia, mania and depression groups [F (3,110) = 2.771, p = 0.046], whereas there were no alterations in the levels of 5-hmC and 5-mC. Linear regression analyses revealed the significant effects of smoking (p = 0.031) and sex (p = 0.012) as well as state of illness on the levels of 8-OHdG (p = 0.025) in patients with BD. Our results suggest that levels of 8-OHdG may be affected by sex, illness states and smoking in BD.
Collapse
|
835
|
Melatonin: A Versatile Protector against Oxidative DNA Damage. Molecules 2018; 23:molecules23030530. [PMID: 29495460 PMCID: PMC6017920 DOI: 10.3390/molecules23030530] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/13/2018] [Accepted: 02/22/2018] [Indexed: 12/15/2022] Open
Abstract
Oxidative damage to DNA has important implications for human health and has been identified as a key factor in the onset and development of numerous diseases. Thus, it is evident that preventing DNA from oxidative damage is crucial for humans and for any living organism. Melatonin is an astonishingly versatile molecule in this context. It can offer both direct and indirect protection against a wide variety of damaging agents and through multiple pathways, which may (or may not) take place simultaneously. They include direct antioxidative protection, which is mediated by melatonin's free radical scavenging activity, and also indirect ways of action. The latter include, at least: (i) inhibition of metal-induced DNA damage; (ii) protection against non-radical triggers of oxidative DNA damage; (iii) continuous protection after being metabolized; (iv) activation of antioxidative enzymes; (v) inhibition of pro-oxidative enzymes; and (vi) boosting of the DNA repair machinery. The rather unique capability of melatonin to exhibit multiple neutralizing actions against diverse threatening factors, together with its low toxicity and its ability to cross biological barriers, are all significant to its efficiency for preventing oxidative damage to DNA.
Collapse
|
836
|
Calciano L, Portas L, Corsico AG, Olivieri M, Degan P, Ferrari M, Fois A, Pasini AMF, Pasini A, Zanolin ME, de Marco R, Accordini S. Biomarkers related to respiratory symptoms and lung function in adults with asthma. J Breath Res 2018; 12:026012. [PMID: 29167414 DOI: 10.1088/1752-7163/aa9c86] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND There is a need for easily measurable biomarkers that are able to identify different levels of asthma severity. AIM To assess the association between peripheral blood cell counts, fractional nitric oxide in exhaled air (FeNO), urinary biomarkers of oxidative stress (8-hydroxy-2'-deoxyguanosine and 8-isoprostane), and asthma severity in adult patients from the general population. METHODS In the Gene Environment Interactions in Respiratory Diseases study, 287 subjects with asthma (aged 20-64) were identified from the general population in Verona (Italy) (2008-2010). Self-reported asthma attacks, asthma-like symptoms and the use of hospital services in the past year were synthesized in a score of respiratory symptoms (SRS). The association of biomarkers with SRS and lung function measures (pre-bronchodilator FEV1% predicted and FEV1/FVC) was assessed using quasi-Poisson and Gaussian regression models, respectively. RESULTS Eosinophils (ratio of expected scores: RES[95%CI] = 1.19[1.09,1.30]), basophils (RES[95%CI] = 1.24[1.10,1.40]), lymphocytes (RES[95%CI] = 1.27[1.12,1.45]) and FeNO (RES[95%CI] = 1.18[1.02,1.37]) were positively associated with SRS. However, only eosinophils (RES[95%CI] = 1.15[1.02,1.30]) and lymphocytes (RES[95%CI] = 1.25[1.06,1.47]) showed an independent association. Furthermore, eosinophils (change in the expected outcome for 1-SD increase: CEO[95%CI] = -1.18[-2.09, -0.27]%), basophils (CEO[95%CI] = -1.24[-2.16, -0.33]%) and lymphocytes (CEO[95%CI] = -1.07[-1.99, -0.14]%) were individually, but not independently, associated with FEV1/FVC. Finally, neutrophils were negatively associated with FEV1% predicted (CEO[95%CI] = -2.22[-4.00, -0.44]%). CONCLUSIONS We identified a pattern of association between a set of biomarkers and asthma endotypes in adult patients from the general population, which could improve understanding of the heterogeneity and severity of the disease and could be useful in defining targeted therapeutic approaches.
Collapse
Affiliation(s)
- Lucia Calciano
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
837
|
Chi L, Gao B, Tu P, Liu CW, Xue J, Lai Y, Ru H, Lu K. Individual susceptibility to arsenic-induced diseases: the role of host genetics, nutritional status, and the gut microbiome. Mamm Genome 2018; 29:63-79. [PMID: 29429126 DOI: 10.1007/s00335-018-9736-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/17/2018] [Indexed: 01/16/2023]
Abstract
Arsenic (As) contamination in water or food is a global issue affecting hundreds of millions of people. Although As is classified as a group 1 carcinogen and is associated with multiple diseases, the individual susceptibility to As-related diseases is highly variable, such that a proportion of people exposed to As have higher risks of developing related disorders. Many factors have been found to be associated with As susceptibility. One of the main sources of the variability found in As susceptibility is the variation in the host genome, namely, polymorphisms of many genes involved in As transportation, biotransformation, oxidative stress response, and DNA repair affect the susceptibility of an individual to As toxicity and then influence the disease outcomes. In addition, lifestyles and many nutritional factors, such as folate, vitamin C, and fruit, have been found to be associated with individual susceptibility to As-related diseases. Recently, the interactions between As exposure and the gut microbiome have been of particular concern. As exposure has been shown to perturb gut microbiome composition, and the gut microbiota has been shown to also influence As metabolism, which raises the question of whether the highly diverse gut microbiota contributes to As susceptibility. Here, we review the literature and summarize the factors, such as host genetics and nutritional status, that influence As susceptibility, and we also present potential mechanisms of how the gut microbiome may influence As metabolism and its toxic effects on the host to induce variations in As susceptibility. Challenges and future directions are also discussed to emphasize the importance of characterizing the specific role of these factors in interindividual susceptibility to As-related diseases.
Collapse
Affiliation(s)
- Liang Chi
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Bei Gao
- NIH West Coast Metabolomics Center, University of California, Davis, CA, 95616, USA
| | - Pengcheng Tu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jingchuan Xue
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yunjia Lai
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hongyu Ru
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, 27607, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
838
|
Wang H, Yang X, Liu A, Wang G, Bosland MC, Yang CS. δ-Tocopherol inhibits the development of prostate adenocarcinoma in prostate specific Pten-/- mice. Carcinogenesis 2018; 39:158-169. [PMID: 29121168 PMCID: PMC5862254 DOI: 10.1093/carcin/bgx128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The PTEN/PI3K/AKT axis plays a critical role in regulating cell growth, differentiation and survival. Activation of this signaling pathway is frequently found in human cancers. Our previous studies demonstrated that δ-tocopherol (δ-T) attenuates the activation of AKT by growth factor in prostate cancer cell lines, leading to inhibition of proliferation and induction of apoptosis. Herein, we investigated whether δ-T inhibits the development of prostate adenocarcinoma in prostate-specific Pten-/- (Ptenp-/-) mice in which the activation of AKT is the major driving force for tumorigenesis. By feeding Ptenp-/- mice with AIN93M or 0.2% δ-T supplemented diet starting at the age of 6 or 12 weeks, we found that δ-T treatment reduced prostate adenocarcinoma multiplicity at the age of 40 weeks by 53.3 and 42.7%, respectively. Immunohistochemical (IHC) analysis demonstrated that the phosphorylation of AKT (T308) was reduced in the prostate of the mice administered the δ-T diet. Consistently, proliferation was reduced and apoptosis was increased in prostate lesions of mice on the δ-T diet. Oxidative stress, as determined by IHC staining of 8-OH-dG, was not altered during prostate tumorigenesis, nor was it affected by administration of δ-T. In contrast, α-tocopherol (α-T) at 0.2% in the diet did not affect prostate adenocarcinoma multiplicity in the Ptenp-/- mice. This finding is consistent with data from our previous study that δ-T, but not α-T, inhibits the activation of AKT and the growth of prostate cancer cells. Together, these results demonstrate that δ-T inhibits the development of prostate adenocarcinoma in Ptenp-/- mice, mainly through inhibition of AKT activation.
Collapse
Affiliation(s)
- Hong Wang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, USA
| | - Xu Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, USA
| | - Anna Liu
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, USA
| | - Guocan Wang
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, USA
| | - Maarten C Bosland
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, USA
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, USA
| |
Collapse
|
839
|
Said N. Roles of SPARC in urothelial carcinogenesis, progression and metastasis. Oncotarget 2018; 7:67574-67585. [PMID: 27564266 PMCID: PMC5341897 DOI: 10.18632/oncotarget.11590] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/27/2016] [Indexed: 12/12/2022] Open
Abstract
Secreted Protein Acidic and Rich in Cysteine (SPARC) is a matricellular glycoprotein that is implicated in myriad physiological and pathological conditions characterized by extensive remodeling and plasticity. The functions and disease association of SPARC in cancer is being increasingly appreciated as it plays multi-faceted contextual roles depending on the cancer type, cell of origin and the unique cancer milieu at both primary and metastatic sites. Herein we will review our current knowledge of the role of SPARC in the multistep cascades of urinary bladder carcinogenesis, progression and metastasis from preclinical models and clinical data and shine the light on its prognostic and therapeutic potentials.
Collapse
Affiliation(s)
- Neveen Said
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston Salem, NC, USA
| |
Collapse
|
840
|
Sulaiman GM, Jabir MS, Hameed AH. Nanoscale modification of chrysin for improved of therapeutic efficiency and cytotoxicity. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:708-720. [PMID: 29383946 DOI: 10.1080/21691401.2018.1434661] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chrysin, as a flavone, is a promising drug candidate because of its multifaceted properties, such as anti-inflammatory, antioxidant and anticancer. However, its poor bioavailability is a bottleneck for pharmaceutical applications. To enhance the bioactive effects, chrysin-loaded poly (D,L-lactic-co-glycolic acid) and polyvinyl alcohol were successfully prepared to overcome problems associated with chrysin. The properties of modified nanochrysin were analysed by in vitro dissolution study, XRD, FTIR and SEM. Free radical scavenging potentials of the modified nanochrysin against DPPH were confirmed based on its stable antioxidant effects. A DNA instability enhancement was observed after H2O2 exposure, whereas chrysin decreased the H2O2 activity, and modified nanochrysin was more potent in this regard. Blood compatibility on red blood cells was confirmed by haemolytic and in vitro cytotoxicity assays. The in vitro anticancer activity of the modified nanochrysin towards MCF-7 and SKOV-3 cell lines using various parameters was investigated. The nanochrysin was found to exert cell growth arrest against both cancer cells in a dose-dependent manner. IC50 value was significantly decreased in nanochrysin in comparison with pure chrysin and induced apoptotic cell death pathway. The results of this study suggest that the nanochrysin might be used for medical applications and offer a beneficial formulation for chemotherapy.
Collapse
Affiliation(s)
- Ghassan M Sulaiman
- a Applied Science Department, Biotechnology Division , University of Technology , Baghdad , Iraq
| | - Majid S Jabir
- a Applied Science Department, Biotechnology Division , University of Technology , Baghdad , Iraq
| | - Anaheed H Hameed
- a Applied Science Department, Biotechnology Division , University of Technology , Baghdad , Iraq
| |
Collapse
|
841
|
Kudryavtseva AV, Krasnov GS, Dmitriev AA, Alekseev BY, Kardymon OL, Sadritdinova AF, Fedorova MS, Pokrovsky AV, Melnikova NV, Kaprin AD, Moskalev AA, Snezhkina AV. Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget 2018; 7:44879-44905. [PMID: 27270647 PMCID: PMC5216692 DOI: 10.18632/oncotarget.9821] [Citation(s) in RCA: 368] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/28/2016] [Indexed: 12/16/2022] Open
Abstract
Aging and cancer are the most important issues to research. The population in the world is growing older, and the incidence of cancer increases with age. There is no doubt about the linkage between aging and cancer. However, the molecular mechanisms underlying this association are still unknown. Several lines of evidence suggest that the oxidative stress as a cause and/or consequence of the mitochondrial dysfunction is one of the main drivers of these processes. Increasing ROS levels and products of the oxidative stress, which occur in aging and age-related disorders, were also found in cancer. This review focuses on the similarities between ageing-associated and cancer-associated oxidative stress and mitochondrial dysfunction as their common phenotype.
Collapse
Affiliation(s)
- Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Boris Y Alekseev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga L Kardymon
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Asiya F Sadritdinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Maria S Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Nataliya V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey D Kaprin
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexey A Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | |
Collapse
|
842
|
Maksoud NA, Aal KA, Ghandour N, El-Baz M, Shaltout E. Assessment of Hematotoxicity and Genotoxicity among paint Workers in Assiut Governorate: a case control study. EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2018. [DOI: 10.1186/s41935-017-0029-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
843
|
Noonan SA, Morrissey ME, Martin P, Biniecka M, Ó'Meachair S, Maguire A, Tosetto M, Nolan B, Hyland J, Sheahan K, O'Donoghue D, Mulcahy H, Fennelly D, O'Sullivan J. Tumour vasculature immaturity, oxidative damage and systemic inflammation stratify survival of colorectal cancer patients on bevacizumab treatment. Oncotarget 2018. [PMID: 29535825 PMCID: PMC5828217 DOI: 10.18632/oncotarget.24276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite treatment of patients with metastatic colorectal cancer (mCRC) with bevacizumab plus chemotherapy, response rates are modest and there are no biomarkers available that will predict response. The aim of this study was to assess if markers associated with three interconnected cancer-associated biological processes, specifically angiogenesis, inflammation and oxidative damage, could stratify the survival outcome of this cohort. Levels of angiogenesis, inflammation and oxidative damage markers were assessed in pre-bevacizumab resected tumour and serum samples of mCRC patients by dual immunofluorescence, immunohistochemistry and ELISA. This study identified that specific markers of angiogenesis, inflammation and oxidative damage stratify survival of patients on this anti-angiogenic treatment. Biomarkers of immature tumour vasculature (% IMM, p=0.026, n=80), high levels of oxidative damage in the tumour epithelium (intensity of 8-oxo-dG in nuclear and cytoplasmic compartments, p=0.042 and 0.038 respectively, n=75) and lower systemic pro-inflammatory cytokines (IL6 and IL8, p=0.053 and 0.049 respectively, n=61) significantly stratify with median overall survival (OS). In summary, screening for a panel of biomarkers for high levels of immature tumour vasculature, high levels of oxidative DNA damage and low levels of systemic pro-inflammatory cytokines may be beneficial in predicting enhanced survival outcome following bevacizumab treatment for mCRC.
Collapse
Affiliation(s)
- Sinead A Noonan
- Centre for Colorectal Disease, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Maria E Morrissey
- Trinity Translational Medicine Institute (TTMI), Department of Surgery, Trinity College Dublin, St James's Hospital, Dublin, Ireland
| | - Petra Martin
- Centre for Colorectal Disease, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Monika Biniecka
- Education and Research Centre, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Shane Ó'Meachair
- Centre for Health Decision Science (CHeDS), School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland
| | - Aoife Maguire
- Department of Histopathology, St. James's Hospital, Dublin, Ireland
| | - Miriam Tosetto
- Centre for Colorectal Disease, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Blathnaid Nolan
- Centre for Colorectal Disease, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - John Hyland
- Centre for Colorectal Disease, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Kieran Sheahan
- Centre for Colorectal Disease, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Diarmuid O'Donoghue
- Centre for Colorectal Disease, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Hugh Mulcahy
- Centre for Colorectal Disease, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - David Fennelly
- Centre for Colorectal Disease, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Jacintha O'Sullivan
- Trinity Translational Medicine Institute (TTMI), Department of Surgery, Trinity College Dublin, St James's Hospital, Dublin, Ireland
| |
Collapse
|
844
|
Zhang J, Lei W, Chen X, Wang S, Qian W. Oxidative stress response induced by chemotherapy in leukemia treatment. Mol Clin Oncol 2018; 8:391-399. [PMID: 29599981 PMCID: PMC5867396 DOI: 10.3892/mco.2018.1549] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress (OS) has been linked to the etiology and development of leukemia as reactive oxygen species (ROS) and free radicals have been implicated in leukemogenesis. OS has beneficial and deleterious effects in the pathogenesis and progression of leukemia. High-dose chemotherapy, which is frequently used in leukemia treatment, is often accompanied by ROS-induced cytotoxicity. Thus, the utilization of chemotherapy in combination with antioxidants may attenuate leukemia progression, particularly for cases of refractory or relapsed neoplasms. The present review focuses on exploring the roles of OS in leukemogenesis and characterizing the associations between ROS and chemotherapy. Certain examples of treatment regimens wherein antioxidants are combined with chemotherapy are presented, in order to highlight the importance of antioxidant application in leukemia treatment, as well as the conflicting opinions regarding this method of therapy. Understanding the underlying mechanisms of OS generation will facilitate the elucidation of novel approaches to leukemia treatment.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Hematology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Wen Lei
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaohui Chen
- Department of Hematology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Shibing Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Wenbin Qian
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
845
|
Afifi MA, Jiman-Fatani AA, Al-Rabia MW, Al-Hussainy NH, El Saadany S, Mayah W. More Than an Association: Latent Toxoplasmosis Might Provoke a Local Oxidative Stress That Triggers the Development of Bipolar Disorder. J Microsc Ultrastruct 2018; 6:139-144. [PMID: 30221140 PMCID: PMC6130242 DOI: 10.4103/jmau.jmau_22_18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Introduction: Toxoplasma gondii, a common parasitic infection, has a special affinity to the brain. It has a lifelong existence without an apparent clinical disease. While the etiology of bipolar disorder (BD) remains unclear, epidemiological studies suggest a role for infections. Central nervous system is particularly susceptible to oxidative stress (OS) because of its high metabolic rate and its low levels of antioxidant defenses. OS is a contributor to the initiation and progression of many neurological illnesses. OS injury is a constantly and compelling finding associated with BD and toxoplasmosis. Aim: This cross-sectional study has investigated a possible role of toxoplasma-induced OS in the development of BD. Methods: Healthy controls and BD patients were examined for anti-Toxoplasma immunoglobulin-G (IgG) and two protein (3-nitrotyrosine) and DNA (8-hydroxy-2’ deoxyguanosine [8-OHdG]) OS markers. Results: Toxoplasma positivity was higher (40%) among BD patients compared to controls (12%). Significantly higher levels of anti-Toxoplasma IgG were detected in BD patients compared to controls. Nitrotyrosine (796.7 ± 106.28) and especially 8-OHdG (20.31 ± 8.38) were significantly higher among toxo-positive BD compared to toxo-negative BD (675.97 ± 144.19 and 7.44 ± 2.86) and healthy controls (464.02 ± 134.6 and 4.17 ± 1.43). Conclusion: These findings might indicate a role for Toxoplasma infection in the development of BD, possibly through creating a highly oxidative brain environment.
Collapse
Affiliation(s)
- Mohammed A Afifi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Parasitology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Asif A Jiman-Fatani
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed W Al-Rabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabeel H Al-Hussainy
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherif El Saadany
- Department of Tropical Medicine and Infectious Diseases, Faculty of Medicine, Tanta University, Tanta, Egypt.,Fakeeh College for Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wael Mayah
- Department of Tropical Medicine and Infectious Diseases, Faculty of Medicine, Tanta University, Tanta, Egypt.,Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
846
|
Mansour MM, El-Hussiny MAB, Ghareeb NAEG, Marzouk HFA, Lumon NI. Serum 8-hydroxydeoxyguanosine and aldose reductase C-106T polymorphism in type 2 diabetes mellitus and its relation to complications in Egyptian patients. COMPARATIVE CLINICAL PATHOLOGY 2018; 27:99-105. [DOI: 10.1007/s00580-017-2558-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
847
|
Evaluation of the wound healing potential of Aloe vera-based extract of Nerium oleander. North Clin Istanb 2017; 4:205-212. [PMID: 29270567 PMCID: PMC5724913 DOI: 10.14744/nci.2017.94914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/24/2017] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE Nerium oleander (Apocynaceae) and Aloe vera (Liliaceae) are among the widely used herbal remedies for treating skin diseases and possess numerous activities such as antibacterial, antiviral, antifungal, and antioxidant. The aim of this study was to investigate the possible wound healing effect of Aloev era-based extract of the N. oleander leaf (NAE-8®) based on its antioxidant, anti-inflammatory, and DNA repair capacity along with histological changes and to compare them with the traditional silver sulfadiazine treatment (SSD). METHODS Twenty-four Wistar albino rats were randomly grouped as follows: i) control, ii) burn alone (burn), iii) burn with topical NAE-8® (burn+NAE-8®) treatment, and iv) burn with topical 1% silver sulfadiazine (burn+SSD) treatment. All groups received their related topical application twice a day for 14 consecutive days. Upon completion of the experimental protocol, trunk blood and skin tissues were collected for measuring malondialdehyde (MDA), glutathione (GSH), myeloperoxidase (MPO), tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), %DNA in the tail (%DNAT) levels along with histological examinations. RESULTS Thermal injury-induced alterations in MDA, GSH, MPO, TNF-α, IL-1β, and %DNAT levels were significantly reversed by NAE-8® treatment. These ameliorative effects were also supported by histological findings. CONCLUSION Findings of the present study suggest that NAE-8® is a promising remedy for treating skin burn injury.
Collapse
|
848
|
Mortiboys H, Macdonald R, Payne T, Sassani M, Jenkins T, Bandmann O. Translational approaches to restoring mitochondrial function in Parkinson's disease. FEBS Lett 2017; 592:776-792. [PMID: 29178330 DOI: 10.1002/1873-3468.12920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/04/2017] [Accepted: 11/14/2017] [Indexed: 12/22/2022]
Abstract
There is strong evidence of a key role for mitochondrial dysfunction in both sporadic and all forms of familial Parkinson's disease (PD). However, none of the clinical trials carried out with putative mitochondrial rescue agents have been successful. Firm establishment of a wet biomarker or a reliable readout from imaging studies detecting mitochondrial dysfunction and reflecting disease progression is also awaited. We will provide an overview of our current knowledge about mitochondrial dysfunction in PD and related drug screens. We will also summarise previously undertaken mitochondrial wet biomarker studies and relevant imaging studies with particular focus on 31P-MRI spectroscopy. We will conclude with an overview of clinical trials which tested putative mitochondrial rescue agents in PD patients.
Collapse
Affiliation(s)
- Heather Mortiboys
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| | - Ruby Macdonald
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| | - Thomas Payne
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| | - Matilde Sassani
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| | - Thomas Jenkins
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| | - Oliver Bandmann
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| |
Collapse
|
849
|
Sinha BK, van 't Erve TJ, Kumar A, Bortner CD, Motten AG, Mason RP. Synergistic enhancement of topotecan-induced cell death by ascorbic acid in human breast MCF-7 tumor cells. Free Radic Biol Med 2017; 113:406-412. [PMID: 29079526 PMCID: PMC5699936 DOI: 10.1016/j.freeradbiomed.2017.10.377] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 11/18/2022]
Abstract
Topotecan, a derivative of camptothecin, is an important anticancer drug for the treatment of various human cancers in the clinic. While the principal mechanism of tumor cell killing by topotecan is due to its interactions with topoisomerase I, other mechanisms, e.g., oxidative stress induced by reactive free radicals, have also been proposed. However, very little is known about how topotecan induces free radical-dependent oxidative stress in tumor cells. In this report we describe the formation of a topotecan radical, catalyzed by a peroxidase-hydrogen peroxide system. While this topotecan radical did not undergo oxidation-reduction with molecular O2, it rapidly reacted with reduced glutathione and cysteine, regenerating topotecan and forming the corresponding glutathiyl and cysteinyl radicals. Ascorbic acid, which produces hydrogen peroxide in tumor cells, significantly increased topotecan cytotoxicity in MCF-7 tumor cells. The presence of ascorbic acid also increased both topoisomerase I-dependent topotecan-induced DNA cleavage complex formation and topotecan-induced DNA double-strand breaks, suggesting that ascorbic acid participated in enhancing DNA damage induced by topotecan and that the enhanced DNA damage is responsible for the synergistic interactions of topotecan and ascorbic acid. Cell death by topotecan and the combination of topotecan and ascorbic acid was predominantly due to necrosis of MCF-7 breast tumor cells.
Collapse
Affiliation(s)
- Birandra K Sinha
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA.
| | - Thomas J van 't Erve
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Ashutosh Kumar
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Carl D Bortner
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Ann G Motten
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Ronald P Mason
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| |
Collapse
|
850
|
Chiu HF, Fu HY, Lu YY, Han YC, Shen YC, Venkatakrishnan K, Golovinskaia O, Wang CK. Triterpenoids and polysaccharide peptides-enriched Ganoderma lucidum: a randomized, double-blind placebo-controlled crossover study of its antioxidation and hepatoprotective efficacy in healthy volunteers. PHARMACEUTICAL BIOLOGY 2017; 55:1041-1046. [PMID: 28183232 PMCID: PMC6130508 DOI: 10.1080/13880209.2017.1288750] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/26/2016] [Accepted: 01/25/2017] [Indexed: 05/08/2023]
Abstract
CONTEXT Ganoderma lucidum (Leyss: Fr) Karst. (Polyporaceae) is an oriental medicinal fungus, commonly used in traditional Chinese medicine (TCM) for treating various condition or diseases such as hypertension, hyperglycaemia, hepatitis and cancer. OBJECTIVE The current study examines whether triterpenoids and polysaccharide-enriched G. lucidum (GL) influence antioxidation and hepatoprotective efficacy by suppressing oxidative stress. MATERIALS AND METHODS Forty-two healthy subjects (22 male and 20 female) were recruited and segregated into two groups as experimental or placebo and requested to intake GL (n = 21) or placebo (n = 21) capsule (225 mg; after lunch or dinner) for six consecutive months and vice versa with one month washout period in between. The anthropometric analysis and biochemical assays, as well as abdominal ultrasonic examination were performed. RESULTS Consumption of GL substantially improved (p < 0.05) the total antioxidant capacity (TEAC; 79.33-84.04), total thiols and glutathione content (6-8.05) in plasma as well as significant (p < 0.05) enhanced the activities of antioxidant enzymes. Whereas, the levels of thiobarbituric acid reactive substances (TBARS; 3.37-2.47), 8-hydroxy-deoxy-guanosine (8-OH-dG; 15.99-11.98) and hepatic marker enzymes (glutamic-oxaloacetic transaminase; GOT and glutamic-pyruvic transaminase; GPT) were concomitantly reduced (42 and 27%) on treatment with GL. Furthermore, the abdominal ultrasonic examination in GL subjects displayed a notable alteration on hepatic condition by reversing from mild fatty liver condition (initial) to normal condition. DISCUSSION AND CONCLUSION The outcome of the present intervention demonstrated the antioxidation, anti-aging and hepatoprotective nature of GL by effectively curbing oxidative stress.
Collapse
Affiliation(s)
- Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital, Ministry of Health and Well-being, Taichung, Taiwan, Republic of China
| | - Hui-Yu Fu
- School of Nutrition, Chung Shan Medical University, Taichung City, Taiwan, Republic of China
| | - Yan-Ying Lu
- Department of Neurology, Chung Shan Medical University, Taichung City, Taiwan, Republic of China
| | - Yi-Chun Han
- School of Nutrition, Chung Shan Medical University, Taichung City, Taiwan, Republic of China
| | - You-Cheng Shen
- School of Health Diet and Industry Management, Chung Shan Medical University, Taichung City, Taiwan, Republic of China
| | - Kamesh Venkatakrishnan
- School of Nutrition, Chung Shan Medical University, Taichung City, Taiwan, Republic of China
| | | | - Chin-Kun Wang
- School of Nutrition, Chung Shan Medical University, Taichung City, Taiwan, Republic of China
| |
Collapse
|