801
|
Lu Q, Zhang Z, Li H, Zhong K, Zhao Q, Wang Z, Wu Z, Yang D, Sun S, Yang N, Zheng M, Chen Q, Long C, Guo W, Yang H, Nie C, Tong A. Development of multivalent nanobodies blocking SARS-CoV-2 infection by targeting RBD of spike protein. J Nanobiotechnology 2021; 19:33. [PMID: 33514385 PMCID: PMC7844813 DOI: 10.1186/s12951-021-00768-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Background The outbreak and pandemic of coronavirus SARS-CoV-2 caused significant threaten to global public health and economic consequences. It is extremely urgent that global people must take actions to develop safe and effective preventions and therapeutics. Nanobodies, which are derived from single‑chain camelid antibodies, had shown antiviral properties in various challenge viruses. In this study, multivalent nanobodies with high affinity blocking SARS-CoV-2 spike interaction with ACE2 protein were developed. Results Totally, four specific nanobodies against spike protein and its RBD domain were screened from a naïve VHH library. Among them, Nb91-hFc and Nb3-hFc demonstrated antiviral activity by neutralizing spike pseudotyped viruses in vitro. Subsequently, multivalent nanobodies were constructed to improve the neutralizing capacity. As a result, heterodimer nanobody Nb91-Nb3-hFc exhibited the strongest RBD-binding affinity and neutralizing ability against SARS-CoV-2 pseudoviruses with an IC50 value at approximately 1.54 nM. Conclusions The present study indicated that naïve VHH library could be used as a potential resource for rapid acquisition and exploitation of antiviral nanobodies. Heterodimer nanobody Nb91-Nb3-hFc may serve as a potential therapeutic agent for the treatment of COVID-19.![]()
Collapse
Affiliation(s)
- Qizhong Lu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zongliang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hexian Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kunhong Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Zeng Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiguo Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Donghui Yang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, 712100, China
| | - Shuang Sun
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nian Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meijun Zheng
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cheng Long
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenhao Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui Yang
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunlai Nie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
802
|
Kim YI, Kim D, Yu KM, Seo HD, Lee SA, Casel MAB, Jang SG, Kim S, Jung W, Lai CJ, Choi YK, Jung JU. Development of spike receptor-binding domain nanoparticle as a vaccine candidate against SARS-CoV-2 infection in ferrets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.28.428743. [PMID: 33532767 PMCID: PMC7852231 DOI: 10.1101/2021.01.28.428743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a causative agent of COVID-19 pandemic, enters host cells via the interaction of its Receptor-Binding Domain (RBD) of Spike protein with host Angiotensin-Converting Enzyme 2 (ACE2). Therefore, RBD is a promising vaccine target to induce protective immunity against SARS-CoV-2 infection. In this study, we report the development of RBD protein-based vaccine candidate against SARS-CoV-2 using self-assembling H. pylori -bullfrog ferritin nanoparticles as an antigen delivery. RBD-ferritin protein purified from mammalian cells efficiently assembled into 24-mer nanoparticles. 16-20 months-old ferrets were vaccinated with RBD-ferritin nanoparticles (RBD-nanoparticles) by intramuscular or intranasal inoculation. All vaccinated ferrets with RBD-nanoparticles produced potent neutralizing antibodies against SARS-CoV-2. Strikingly, vaccinated ferrets demonstrated efficient protection from SARS-CoV-2 challenge, showing no fever, body weight loss and clinical symptoms. Furthermore, vaccinated ferrets showed rapid clearance of infectious viruses in nasal washes and lungs as well as viral RNA in respiratory organs. This study demonstrates the Spike RBD-nanoparticle as an effective protein vaccine candidate against SARS-CoV-2.
Collapse
Affiliation(s)
- Young-Il Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Disease Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Dokyun Kim
- Department of Cancer Biology and Global Center for Pathogens Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kwang-Min Yu
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Disease Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Hogyu David Seo
- Department of Cancer Biology and Global Center for Pathogens Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shin-Ae Lee
- Department of Cancer Biology and Global Center for Pathogens Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mark Anthony B. Casel
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Disease Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Seung-Gyu Jang
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Disease Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Stephanie Kim
- Department of Cancer Biology and Global Center for Pathogens Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - WooRam Jung
- Department of Cancer Biology and Global Center for Pathogens Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Chih-Jen Lai
- Department of Cancer Biology and Global Center for Pathogens Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Young Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Disease Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Jae U. Jung
- Department of Cancer Biology and Global Center for Pathogens Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
803
|
Vivar-Sierra A, Araiza-Macías MJ, Hernández-Contreras JP, Vergara-Castañeda A, Ramírez-Vélez G, Pinto-Almazán R, Salazar JR, Loza-Mejía MA. In Silico Study of Polyunsaturated Fatty Acids as Potential SARS-CoV-2 Spike Protein Closed Conformation Stabilizers: Epidemiological and Computational Approaches. Molecules 2021; 26:711. [PMID: 33573088 PMCID: PMC7866518 DOI: 10.3390/molecules26030711] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/14/2021] [Accepted: 01/26/2021] [Indexed: 12/24/2022] Open
Abstract
SARS-CoV-2 infects host cells by interacting its spike protein with surface angiotensin-converting enzyme 2 (ACE2) receptors, expressed in lung and other cell types. Although several risk factors could explain why some countries have lower incidence and fatality rates than others, environmental factors such as diet should be considered. It has been described that countries with high polyunsaturated fatty acid (PUFA) intake have a lower number of COVID-19 victims and a higher rate of recovery from the disease. Moreover, it was found that linoleic acid, an omega-6 PUFA, could stabilize the spike protein in a closed conformation, blocking its interaction with ACE2. These facts prompted us to perform in silico simulations to determine if other PUFA could also stabilize the closed conformation of spike protein and potentially lead to a reduction in SARS-CoV-2 infection. We found that: (a) countries whose source of omega-3 is from marine origin have lower fatality rates; and (b) like linoleic acid, omega-3 PUFA could also bind to the closed conformation of spike protein and therefore, could help reduce COVID-19 complications by reducing viral entrance to cells, in addition to their known anti-inflammatory effects.
Collapse
Affiliation(s)
- Alonso Vivar-Sierra
- Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Chemical Sciences School, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico; (A.V.-S.); (M.J.A.-M.); (J.P.H.-C.); (G.R.-V.); (J.R.S.)
| | - María José Araiza-Macías
- Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Chemical Sciences School, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico; (A.V.-S.); (M.J.A.-M.); (J.P.H.-C.); (G.R.-V.); (J.R.S.)
| | - José Patricio Hernández-Contreras
- Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Chemical Sciences School, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico; (A.V.-S.); (M.J.A.-M.); (J.P.H.-C.); (G.R.-V.); (J.R.S.)
| | - Arely Vergara-Castañeda
- Basic and Clinical Health Sciences Research Group, Chemical Sciences School, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico;
| | - Gabriela Ramírez-Vélez
- Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Chemical Sciences School, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico; (A.V.-S.); (M.J.A.-M.); (J.P.H.-C.); (G.R.-V.); (J.R.S.)
| | - Rodolfo Pinto-Almazán
- Molecular Biology in Metabolic and Neurodegenerative Diseases Laboratory, Research Unit, High Speciality Regional Hospital of Ixtapaluca (HRAEI), Carretera Federal México-Puebla Km 34.5, Ixtapaluca 56530, Mexico;
| | - Juan Rodrigo Salazar
- Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Chemical Sciences School, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico; (A.V.-S.); (M.J.A.-M.); (J.P.H.-C.); (G.R.-V.); (J.R.S.)
| | - Marco A. Loza-Mejía
- Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Chemical Sciences School, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico; (A.V.-S.); (M.J.A.-M.); (J.P.H.-C.); (G.R.-V.); (J.R.S.)
| |
Collapse
|
804
|
Nicotinic Acetylcholine Receptor Involvement in Inflammatory Bowel Disease and Interactions with Gut Microbiota. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031189. [PMID: 33572734 PMCID: PMC7908252 DOI: 10.3390/ijerph18031189] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
The gut-brain axis describes a complex interplay between the central nervous system and organs of the gastrointestinal tract. Sensory neurons of dorsal root and nodose ganglia, neurons of the autonomic nervous system, and immune cells collect and relay information about the status of the gut to the brain. A critical component in this bi-directional communication system is the vagus nerve which is essential for coordinating the immune system’s response to the activities of commensal bacteria in the gut and to pathogenic strains and their toxins. Local control of gut function is provided by networks of neurons in the enteric nervous system also called the ‘gut-brain’. One element common to all of these gut-brain systems is the expression of nicotinic acetylcholine receptors. These ligand-gated ion channels serve myriad roles in the gut-brain axis including mediating fast synaptic transmission between autonomic pre- and postganglionic neurons, modulation of neurotransmitter release from peripheral sensory and enteric neurons, and modulation of cytokine release from immune cells. Here we review the role of nicotinic receptors in the gut-brain axis with a focus on the interplay of these receptors with the gut microbiome and their involvement in dysregulation of gut function and inflammatory bowel diseases.
Collapse
|
805
|
Santopolo S, Riccio A, Santoro MG. The biogenesis of SARS-CoV-2 spike glycoprotein: multiple targets for host-directed antiviral therapy. Biochem Biophys Res Commun 2021; 538:80-87. [PMID: 33303190 PMCID: PMC7698684 DOI: 10.1016/j.bbrc.2020.10.080] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19 (coronavirus disease-19), represents a far more serious threat to public health than SARS and MERS coronaviruses, due to its ability to spread more efficiently than its predecessors. Currently, there is no worldwide-approved effective treatment for COVID-19, urging the scientific community to intense efforts to accelerate the discovery and development of prophylactic and therapeutic solutions against SARS-CoV-2 infection. In particular, effective antiviral drugs are urgently needed. With few exceptions, therapeutic approaches to combat viral infections have traditionally focused on targeting unique viral components or enzymes; however, it has now become evident that this strategy often fails due to the rapid emergence of drug-resistant viruses. Targeting host factors that are essential for the virus life cycle, but are dispensable for the host, has recently received increasing attention. The spike glycoprotein, a component of the viral envelope that decorates the virion surface as a distinctive crown ("corona") and is essential for SARS-CoV-2 entry into host cells, represents a key target for developing therapeutics capable of blocking virus invasion. This review highlights aspects of the SARS-CoV-2 spike biogenesis that may be amenable to host-directed antiviral targeting.
Collapse
Affiliation(s)
- Silvia Santopolo
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Anna Riccio
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - M Gabriella Santoro
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; Institute of Translational Pharmacology, CNR, Rome, Italy.
| |
Collapse
|
806
|
Yuan M, Liu H, Wu NC, Wilson IA. Recognition of the SARS-CoV-2 receptor binding domain by neutralizing antibodies. Biochem Biophys Res Commun 2021; 538:192-203. [PMID: 33069360 PMCID: PMC7547570 DOI: 10.1016/j.bbrc.2020.10.012] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 12/21/2022]
Abstract
Immediately from the outset of the COVID-19 pandemic, researchers from diverse biomedical and biological disciplines have united to study the novel pandemic virus, SARS-CoV-2. The antibody response to SARS-CoV-2 has been a major focus of COVID-19 research due to its clinical relevance and importance in vaccine and therapeutic development. Isolation and characterization of antibodies to SARS-CoV-2 have been accumulating at an unprecedented pace. Most of the SARS-CoV-2 neutralizing antibodies to date target the spike (S) protein receptor binding domain (RBD), which engages the host receptor ACE2 for viral entry. Here we review the binding sites and molecular features of monoclonal antibodies that target the SARS-CoV-2 RBD, including a few that also cross-neutralize SARS-CoV.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Nicholas C Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA; IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
807
|
Verkhivker GM, Di Paola L. Dynamic Network Modeling of Allosteric Interactions and Communication Pathways in the SARS-CoV-2 Spike Trimer Mutants: Differential Modulation of Conformational Landscapes and Signal Transmission via Cascades of Regulatory Switches. J Phys Chem B 2021; 125:850-873. [PMID: 33448856 PMCID: PMC7839160 DOI: 10.1021/acs.jpcb.0c10637] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/08/2021] [Indexed: 12/13/2022]
Abstract
The rapidly growing body of structural and biochemical studies of the SARS-CoV-2 spike glycoprotein has revealed a variety of distinct functional states with radically different arrangements of the receptor-binding domain, highlighting a remarkable function-driven conformational plasticity and adaptability of the spike proteins. In this study, we examined molecular mechanisms underlying conformational and dynamic changes in the SARS-CoV-2 spike mutant trimers through the lens of dynamic analysis of allosteric interaction networks and atomistic modeling of signal transmission. Using an integrated approach that combined coarse-grained molecular simulations, protein stability analysis, and perturbation-based modeling of residue interaction networks, we examined how mutations in the regulatory regions of the SARS-CoV-2 spike protein can differentially affect dynamics and allosteric signaling in distinct functional states. The results of this study revealed key functional regions and regulatory centers that govern collective dynamics, allosteric interactions, and control signal transmission in the SARS-CoV-2 spike proteins. We found that the experimentally confirmed regulatory hotspots that dictate dynamic switching between conformational states of the SARS-CoV-2 spike protein correspond to the key hinge sites and global mediating centers of the allosteric interaction networks. The results of this study provide a novel insight into allosteric regulatory mechanisms of SARS-CoV-2 spike proteins showing that mutations at the key regulatory positions can differentially modulate distribution of states and determine topography of signal communication pathways operating through state-specific cascades of control switch points. This analysis provides a plausible strategy for allosteric probing of the conformational equilibrium and therapeutic intervention by targeting specific hotspots of allosteric interactions and communications in the SARS-CoV-2 spike proteins.
Collapse
Affiliation(s)
- Gennady M. Verkhivker
- Keck
Center for Science and Engineering, Schmid College of Science and
Technology, Chapman University, One University Drive, Orange, California 92866, United States
- Department
of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| | - Luisa Di Paola
- Unit
of Chemical-Physics Fundamentals in Chemical Engineering, Department
of Engineering, Università Campus
Bio-Medico di Roma, via
Álvaro del Portillo 21, 00128 Rome, Italy
| |
Collapse
|
808
|
Sun C, Zhang J, Wei J, Zheng X, Zhao X, Fang Z, Xu D, Yuan H, Liu Y. Screening, simulation, and optimization design of small molecule inhibitors of the SARS-CoV-2 spike glycoprotein. PLoS One 2021; 16:e0245975. [PMID: 33493227 PMCID: PMC7833228 DOI: 10.1371/journal.pone.0245975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak is a public health emergency of international concern. The spike glycoprotein (S protein) of SARS-CoV-2 is a key target of antiviral drugs. Focusing on the existing S protein structure, molecular docking was used in this study to calculate the binding energy and interaction sites between 14 antiviral molecules with different structures and the SARS-CoV-2 S protein, and the potential drug candidates targeting the SARS-CoV-2 S protein were analyzed. Tizoxanide, dolutegravir, bictegravir, and arbidol were found to have high binding energies, and they effectively bind key sites of the S1 and S2 subunits, inhibiting the virus by causing conformational changes in S1 and S2 during the fusion of the S protein with host cells. Based on the interactions among the drug molecules, the S protein and the amino acid environment around the binding sites, rational structure-based optimization was performed using the molecular connection method and bioisosterism strategy to obtain Ti-2, BD-2, and Ar-3, which have much stronger binding ability to the S protein than the original molecules. This study provides valuable clues for identifying S protein inhibitor binding sites and the mechanism of the anti-SARS-CoV-2 effect as well as useful inspiration and help for the discovery and optimization of small molecule S protein inhibitors.
Collapse
Affiliation(s)
- Chuancai Sun
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Jian Zhang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiao Wei
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xiaoli Zheng
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xianyang Zhao
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Zengjun Fang
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dongmei Xu
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
| | - Huiqing Yuan
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- * E-mail: (YL); (HY)
| | - Yipeng Liu
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Nephrology Research Institute of Shandong Province, Jinan, China
- * E-mail: (YL); (HY)
| |
Collapse
|
809
|
Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases. CELL REPORTS MEDICINE 2021; 2:100204. [PMID: 33521695 PMCID: PMC7837622 DOI: 10.1016/j.xcrm.2021.100204] [Citation(s) in RCA: 366] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/17/2020] [Accepted: 01/20/2021] [Indexed: 12/19/2022]
Abstract
T cells are involved in control of SARS-CoV-2 infection. To establish the patterns of immunodominance of different SARS-CoV-2 antigens and precisely measure virus-specific CD4+ and CD8+ T cells, we study epitope-specific T cell responses of 99 convalescent coronavirus disease 2019 (COVID-19) cases. The SARS-CoV-2 proteome is probed using 1,925 peptides spanning the entire genome, ensuring an unbiased coverage of human leukocyte antigen (HLA) alleles for class II responses. For HLA class I, we study an additional 5,600 predicted binding epitopes for 28 prominent HLA class I alleles, accounting for wide global coverage. We identify several hundred HLA-restricted SARS-CoV-2-derived epitopes. Distinct patterns of immunodominance are observed, which differ for CD4+ T cells, CD8+ T cells, and antibodies. The class I and class II epitopes are combined into epitope megapools to facilitate identification and quantification of SARS-CoV-2-specific CD4+ and CD8+ T cells.
Collapse
|
810
|
Yang Y, Shi W, Abiona OM, Nazzari A, Olia AS, Ou L, Phung E, Stephens T, Tsybovsky Y, Verardi R, Wang S, Werner A, Yap C, Ambrozak D, Bylund T, Liu T, Nguyen R, Wang L, Zhang B, Zhou T, Chuang GY, Graham BS, Mascola JR, Corbett KS, Kwong PD. Newcastle Disease Virus-Like Particles Displaying Prefusion-Stabilized SARS-CoV-2 Spikes Elicit Potent Neutralizing Responses. Vaccines (Basel) 2021; 9:73. [PMID: 33494381 PMCID: PMC7912142 DOI: 10.3390/vaccines9020073] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/25/2022] Open
Abstract
The COVID-19 pandemic highlights an urgent need for vaccines that confer protection from SARS-CoV-2 infection. One approach to an effective COVID-19 vaccine may be through the display of SARS-CoV-2 spikes on the surface of virus-like particles, in a manner structurally mimicking spikes on a native virus. Here we report the development of Newcastle disease virus-like particles (NDVLPs) displaying the prefusion-stabilized SARS-CoV-2 spike ectodomain (S2P). Immunoassays with SARS-CoV-2-neutralizing antibodies revealed the antigenicity of S2P-NDVLP to be generally similar to that of soluble S2P, and negative-stain electron microscopy showed S2P on the NDVLP surface to be displayed with a morphology corresponding to its prefusion conformation. Mice immunized with S2P-NDVLP showed substantial neutralization titers (geometric mean ID50 = 386) two weeks after prime immunization, significantly higher than those elicited by a molar equivalent amount of soluble S2P (geometric mean ID50 = 17). Neutralizing titers at Week 5, two weeks after a boost immunization with S2P-NDVLP doses ranging from 2.0 to 250 μg, extended from 2125 to 4552, and these generally showed a higher ratio of neutralization versus ELISA than observed with soluble S2P. Overall, S2P-NDVLP appears to be a promising COVID-19 vaccine candidate capable of eliciting substantial neutralizing activity.
Collapse
Affiliation(s)
- Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (W.S.); (O.M.A.); (A.N.); (A.S.O.); (L.O.); (E.P.); (R.V.); (S.W.); (A.W.); (C.Y.); (D.A.); (T.B.); (T.L.); (R.N.); (L.W.); (B.Z.); (T.Z.); (G.-Y.C.); (B.S.G.); (J.R.M.); (K.S.C.)
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (W.S.); (O.M.A.); (A.N.); (A.S.O.); (L.O.); (E.P.); (R.V.); (S.W.); (A.W.); (C.Y.); (D.A.); (T.B.); (T.L.); (R.N.); (L.W.); (B.Z.); (T.Z.); (G.-Y.C.); (B.S.G.); (J.R.M.); (K.S.C.)
| | - Olubukola M. Abiona
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (W.S.); (O.M.A.); (A.N.); (A.S.O.); (L.O.); (E.P.); (R.V.); (S.W.); (A.W.); (C.Y.); (D.A.); (T.B.); (T.L.); (R.N.); (L.W.); (B.Z.); (T.Z.); (G.-Y.C.); (B.S.G.); (J.R.M.); (K.S.C.)
| | - Alexandra Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (W.S.); (O.M.A.); (A.N.); (A.S.O.); (L.O.); (E.P.); (R.V.); (S.W.); (A.W.); (C.Y.); (D.A.); (T.B.); (T.L.); (R.N.); (L.W.); (B.Z.); (T.Z.); (G.-Y.C.); (B.S.G.); (J.R.M.); (K.S.C.)
| | - Adam S. Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (W.S.); (O.M.A.); (A.N.); (A.S.O.); (L.O.); (E.P.); (R.V.); (S.W.); (A.W.); (C.Y.); (D.A.); (T.B.); (T.L.); (R.N.); (L.W.); (B.Z.); (T.Z.); (G.-Y.C.); (B.S.G.); (J.R.M.); (K.S.C.)
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (W.S.); (O.M.A.); (A.N.); (A.S.O.); (L.O.); (E.P.); (R.V.); (S.W.); (A.W.); (C.Y.); (D.A.); (T.B.); (T.L.); (R.N.); (L.W.); (B.Z.); (T.Z.); (G.-Y.C.); (B.S.G.); (J.R.M.); (K.S.C.)
| | - Emily Phung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (W.S.); (O.M.A.); (A.N.); (A.S.O.); (L.O.); (E.P.); (R.V.); (S.W.); (A.W.); (C.Y.); (D.A.); (T.B.); (T.L.); (R.N.); (L.W.); (B.Z.); (T.Z.); (G.-Y.C.); (B.S.G.); (J.R.M.); (K.S.C.)
| | - Tyler Stephens
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (T.S.); (Y.T.)
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (T.S.); (Y.T.)
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (W.S.); (O.M.A.); (A.N.); (A.S.O.); (L.O.); (E.P.); (R.V.); (S.W.); (A.W.); (C.Y.); (D.A.); (T.B.); (T.L.); (R.N.); (L.W.); (B.Z.); (T.Z.); (G.-Y.C.); (B.S.G.); (J.R.M.); (K.S.C.)
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (W.S.); (O.M.A.); (A.N.); (A.S.O.); (L.O.); (E.P.); (R.V.); (S.W.); (A.W.); (C.Y.); (D.A.); (T.B.); (T.L.); (R.N.); (L.W.); (B.Z.); (T.Z.); (G.-Y.C.); (B.S.G.); (J.R.M.); (K.S.C.)
| | - Anne Werner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (W.S.); (O.M.A.); (A.N.); (A.S.O.); (L.O.); (E.P.); (R.V.); (S.W.); (A.W.); (C.Y.); (D.A.); (T.B.); (T.L.); (R.N.); (L.W.); (B.Z.); (T.Z.); (G.-Y.C.); (B.S.G.); (J.R.M.); (K.S.C.)
| | - Christina Yap
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (W.S.); (O.M.A.); (A.N.); (A.S.O.); (L.O.); (E.P.); (R.V.); (S.W.); (A.W.); (C.Y.); (D.A.); (T.B.); (T.L.); (R.N.); (L.W.); (B.Z.); (T.Z.); (G.-Y.C.); (B.S.G.); (J.R.M.); (K.S.C.)
| | - David Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (W.S.); (O.M.A.); (A.N.); (A.S.O.); (L.O.); (E.P.); (R.V.); (S.W.); (A.W.); (C.Y.); (D.A.); (T.B.); (T.L.); (R.N.); (L.W.); (B.Z.); (T.Z.); (G.-Y.C.); (B.S.G.); (J.R.M.); (K.S.C.)
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (W.S.); (O.M.A.); (A.N.); (A.S.O.); (L.O.); (E.P.); (R.V.); (S.W.); (A.W.); (C.Y.); (D.A.); (T.B.); (T.L.); (R.N.); (L.W.); (B.Z.); (T.Z.); (G.-Y.C.); (B.S.G.); (J.R.M.); (K.S.C.)
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (W.S.); (O.M.A.); (A.N.); (A.S.O.); (L.O.); (E.P.); (R.V.); (S.W.); (A.W.); (C.Y.); (D.A.); (T.B.); (T.L.); (R.N.); (L.W.); (B.Z.); (T.Z.); (G.-Y.C.); (B.S.G.); (J.R.M.); (K.S.C.)
| | - Richard Nguyen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (W.S.); (O.M.A.); (A.N.); (A.S.O.); (L.O.); (E.P.); (R.V.); (S.W.); (A.W.); (C.Y.); (D.A.); (T.B.); (T.L.); (R.N.); (L.W.); (B.Z.); (T.Z.); (G.-Y.C.); (B.S.G.); (J.R.M.); (K.S.C.)
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (W.S.); (O.M.A.); (A.N.); (A.S.O.); (L.O.); (E.P.); (R.V.); (S.W.); (A.W.); (C.Y.); (D.A.); (T.B.); (T.L.); (R.N.); (L.W.); (B.Z.); (T.Z.); (G.-Y.C.); (B.S.G.); (J.R.M.); (K.S.C.)
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (W.S.); (O.M.A.); (A.N.); (A.S.O.); (L.O.); (E.P.); (R.V.); (S.W.); (A.W.); (C.Y.); (D.A.); (T.B.); (T.L.); (R.N.); (L.W.); (B.Z.); (T.Z.); (G.-Y.C.); (B.S.G.); (J.R.M.); (K.S.C.)
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (W.S.); (O.M.A.); (A.N.); (A.S.O.); (L.O.); (E.P.); (R.V.); (S.W.); (A.W.); (C.Y.); (D.A.); (T.B.); (T.L.); (R.N.); (L.W.); (B.Z.); (T.Z.); (G.-Y.C.); (B.S.G.); (J.R.M.); (K.S.C.)
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (W.S.); (O.M.A.); (A.N.); (A.S.O.); (L.O.); (E.P.); (R.V.); (S.W.); (A.W.); (C.Y.); (D.A.); (T.B.); (T.L.); (R.N.); (L.W.); (B.Z.); (T.Z.); (G.-Y.C.); (B.S.G.); (J.R.M.); (K.S.C.)
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (W.S.); (O.M.A.); (A.N.); (A.S.O.); (L.O.); (E.P.); (R.V.); (S.W.); (A.W.); (C.Y.); (D.A.); (T.B.); (T.L.); (R.N.); (L.W.); (B.Z.); (T.Z.); (G.-Y.C.); (B.S.G.); (J.R.M.); (K.S.C.)
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (W.S.); (O.M.A.); (A.N.); (A.S.O.); (L.O.); (E.P.); (R.V.); (S.W.); (A.W.); (C.Y.); (D.A.); (T.B.); (T.L.); (R.N.); (L.W.); (B.Z.); (T.Z.); (G.-Y.C.); (B.S.G.); (J.R.M.); (K.S.C.)
| | - Kizzmekia S. Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (W.S.); (O.M.A.); (A.N.); (A.S.O.); (L.O.); (E.P.); (R.V.); (S.W.); (A.W.); (C.Y.); (D.A.); (T.B.); (T.L.); (R.N.); (L.W.); (B.Z.); (T.Z.); (G.-Y.C.); (B.S.G.); (J.R.M.); (K.S.C.)
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.); (W.S.); (O.M.A.); (A.N.); (A.S.O.); (L.O.); (E.P.); (R.V.); (S.W.); (A.W.); (C.Y.); (D.A.); (T.B.); (T.L.); (R.N.); (L.W.); (B.Z.); (T.Z.); (G.-Y.C.); (B.S.G.); (J.R.M.); (K.S.C.)
| |
Collapse
|
811
|
Mori T, Jung J, Kobayashi C, Dokainish HM, Re S, Sugita Y. Elucidation of interactions regulating conformational stability and dynamics of SARS-CoV-2 S-protein. Biophys J 2021; 120:1060-1071. [PMID: 33484712 PMCID: PMC7825899 DOI: 10.1016/j.bpj.2021.01.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/31/2020] [Accepted: 01/13/2021] [Indexed: 12/23/2022] Open
Abstract
The ongoing COVID-19 pandemic caused by the new coronavirus, SARS-CoV-2, calls for urgent developments of vaccines and antiviral drugs. The spike protein of SARS-CoV-2 (S-protein), which consists of trimeric polypeptide chains with glycosylated residues on the surface, triggers the virus entry into a host cell. Extensive structural and functional studies on this protein have rapidly advanced our understanding of the S-protein structure at atomic resolutions, although most of these structural studies overlook the effect of glycans attached to the S-protein on the conformational stability and functional motions between the inactive down and active up forms. Here, we performed all-atom molecular dynamics simulations of both down and up forms of a fully glycosylated S-protein in solution as well as targeted molecular dynamics simulations between them to elucidate key interdomain interactions for stabilizing each form and inducing the large-scale conformational transitions. The residue-level interaction analysis of the simulation trajectories detects distinct amino acid residues and N-glycans as determinants on conformational stability of each form. During the conformational transitions between them, interdomain interactions mediated by glycosylated residues are switched to play key roles on the stabilization of another form. Electrostatic interactions, as well as hydrogen bonds between the three receptor binding domains, work as driving forces to initiate the conformational transitions toward the active form. This study sheds light on the mechanisms underlying conformational stability and functional motions of the S-protein, which are relevant for vaccine and antiviral drug developments.
Collapse
Affiliation(s)
- Takaharu Mori
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Jaewoon Jung
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan; Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Japan
| | - Chigusa Kobayashi
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Japan
| | - Hisham M Dokainish
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Suyong Re
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan; Center for Drug Design Research, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan; Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Japan; Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
| |
Collapse
|
812
|
Varma P, Lybrand ZR, Antopia MC, Hsieh J. Novel Targets of SARS-CoV-2 Spike Protein in Human Fetal Brain Development Suggest Early Pregnancy Vulnerability. Front Neurosci 2021; 14:614680. [PMID: 33551727 PMCID: PMC7859280 DOI: 10.3389/fnins.2020.614680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Pregnant women are at greater risk of infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), because of their altered immunity and strained cardiovascular system. Emerging studies of placenta, embryos, and cerebral organoids suggest that fetal organs including brain could also be vulnerable to coronavirus disease 2019 (COVID-19). Additionally, a case study from Paris has reported transient neurological complications in neonates born to pregnant mothers. However, it remains poorly understood whether the fetal brain expresses cellular components that interact with Spike protein (S) of coronaviruses, which facilitates fusion of virus and host cell membrane and is the primary protein in viral entry. To address this question, we analyzed the expression of known (ACE2, TMPRSS2, and FURIN) and novel (ZDHHC5, GOLGA7, and ATP1A1) S protein interactors in publicly available fetal brain bulk and single cell RNA sequencing datasets. Bulk RNA sequencing analysis across multiple regions of fetal brain spanning 8 weeks post conception (wpc)-37wpc indicates that two of the known S protein interactors are expressed at low levels with median normalized gene expression values ranging from 0.08 to 0.06 (ACE2) and 0.01-0.02 (TMPRSS2). However, the third known S protein interactor FURIN is highly expressed (11.1-44.09) in fetal brain. Interestingly, all three novel S protein interactors are abundantly expressed throughout fetal brain development with median normalized gene expression values ranging from 20.38-21.60 (ZDHHC5), 92.47-68.35 (GOLGA7), and 65.45-194.5 (ATP1A1). Moreover, the peaks of expression of novel interactors is around 12-26wpc. Using publicly available single cell RNA sequencing datasets, we further show that novel S protein interactors show higher co-expression with neurons than with neural progenitors and astrocytes. These results suggest that even though two of the known S protein interactors are present at low levels in fetal brain, novel S protein interactors are abundantly present and could play a direct or indirect role in SARS-CoV-2 fetal brain pathogenesis, especially during the 2nd and 3rd trimesters of pregnancy.
Collapse
Affiliation(s)
- Parul Varma
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
- Brain Health Consortium, University of Texas at San Antonio, San Antonio, TX, United States
| | - Zane R. Lybrand
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
- Brain Health Consortium, University of Texas at San Antonio, San Antonio, TX, United States
- Department of Biology, Texas Woman's University, Denton, TX, United States
| | - Mariah C. Antopia
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
- Brain Health Consortium, University of Texas at San Antonio, San Antonio, TX, United States
| | - Jenny Hsieh
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
- Brain Health Consortium, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
813
|
Biological and Clinical Consequences of Integrin Binding via a Rogue RGD Motif in the SARS CoV-2 Spike Protein. Viruses 2021; 13:v13020146. [PMID: 33498225 PMCID: PMC7909284 DOI: 10.3390/v13020146] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Although ACE2 (angiotensin converting enzyme 2) is considered the primary receptor for CoV-2 cell entry, recent reports suggest that alternative pathways may contribute. This paper considers the hypothesis that viral binding to cell-surface integrins may contribute to the high infectivity and widespread extra-pulmonary impacts of the SARS-CoV-2 virus. This potential is suggested on the basis of the emergence of an RGD (arginine-glycine-aspartate) sequence in the receptor-binding domain of the spike protein. RGD is a motif commonly used by viruses to bind cell-surface integrins. Numerous signaling pathways are mediated by integrins and virion binding could lead to dysregulation of these pathways, with consequent tissue damage. Integrins on the surfaces of pneumocytes, endothelial cells and platelets may be vulnerable to CoV-2 virion binding. For instance, binding of intact virions to integrins on alveolar cells could enhance viral entry. Binding of virions to integrins on endothelial cells could activate angiogenic cell signaling pathways; dysregulate integrin-mediated signaling pathways controlling developmental processes; and precipitate endothelial activation to initiate blood clotting. Such a procoagulant state, perhaps together with enhancement of platelet aggregation through virions binding to integrins on platelets, could amplify the production of microthrombi that pose the threat of pulmonary thrombosis and embolism, strokes and other thrombotic consequences. The susceptibility of different tissues to virion–integrin interactions may be modulated by a host of factors, including the conformation of relevant integrins and the impact of the tissue microenvironment on spike protein conformation. Patient-specific differences in these factors may contribute to the high variability of clinical presentation. There is danger that the emergence of receptor-binding domain mutations that increase infectivity may also enhance access of the RGD motif for integrin binding, resulting in viral strains with ACE2 independent routes of cell entry and novel integrin-mediated biological and clinical impacts. The highly infectious variant, B.1.1.7 (or VUI 202012/01), includes a receptor-binding domain amino acid replacement, N501Y, that could potentially provide the RGD motif with enhanced access to cell-surface integrins, with consequent clinical impacts.
Collapse
|
814
|
Zhang P, Mendonca L, Howe A, Gilchrist J, Sun D, Knight M, Zanetti-Domingues L, Bateman B, Krebs AS, Chen L, Radecke J, Sheng Y, Li V, Ni T, Kounatidis I, Koronfel M, Szynkiewicz M, Harkiolaki M, Martin-Fernandez M, James W. Correlative Multi-scale Cryo-imaging Unveils SARS-CoV-2 Assembly and Egress. RESEARCH SQUARE 2021. [PMID: 33501431 PMCID: PMC7836121 DOI: 10.21203/rs.3.rs-134794/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Since the outbreak of the SARS-CoV-2 pandemic, there have been intense structural studies on purified recombinant viral components and inactivated viruses. However, structural and ultrastructural evidence on how the SARS-CoV-2 infection progresses in the frozen-hydrated native cellular context is scarce, and there is a lack of comprehensive knowledge on the SARS-CoV-2 replicative cycle. To correlate the cytopathic events induced by SARS-CoV-2 with virus replication process under the frozen-hydrated condition, here we established a unique multi-modal, multi-scale cryo-correlative platform to image SARS-CoV-2 infection in Vero cells. This platform combines serial cryoFIB/SEM volume imaging and soft X-ray cryo-tomography with cell lamellae-based cryo-electron tomography (cryoET) and subtomogram averaging. The results place critical SARS-CoV-2 structural events – e.g. viral RNA transport portals on double membrane vesicles, virus assembly and budding intermediates, virus egress pathways, and native virus spike structures from intracellular assembled and extracellular released virus - in the context of whole-cell images. The latter revealed numerous heterogeneous cytoplasmic vesicles, the formation of membrane tunnels through which viruses exit, and the drastic cytoplasm invasion into the nucleus. This integrated approach allows a holistic view of SARS-CoV-2 infection, from the whole cell to individual molecules.
Collapse
|
815
|
Finkelstein MT, Mermelstein AG, Parker Miller E, Seth PC, Stancofski ESD, Fera D. Structural Analysis of Neutralizing Epitopes of the SARS-CoV-2 Spike to Guide Therapy and Vaccine Design Strategies. Viruses 2021; 13:134. [PMID: 33477902 PMCID: PMC7833398 DOI: 10.3390/v13010134] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/01/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus research has gained tremendous attention because of the COVID-19 pandemic, caused by the novel severe acute respiratory syndrome coronavirus (nCoV or SARS-CoV-2). In this review, we highlight recent studies that provide atomic-resolution structural details important for the development of monoclonal antibodies (mAbs) that can be used therapeutically and prophylactically and for vaccines against SARS-CoV-2. Structural studies with SARS-CoV-2 neutralizing mAbs have revealed a diverse set of binding modes on the spike's receptor-binding domain and N-terminal domain and highlight alternative targets on the spike. We consider this structural work together with mAb effects in vivo to suggest correlations between structure and clinical applications. We also place mAbs against severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses in the context of the SARS-CoV-2 spike to suggest features that may be desirable to design mAbs or vaccines capable of conferring broad protection.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniela Fera
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, USA; (M.T.F.); (A.G.M.); (E.P.M.); (P.C.S.); (E.-S.D.S.)
| |
Collapse
|
816
|
Li ZL, Buck M. Neuropilin-1 Assists SARS-CoV-2 Infection by Stimulating the Separation of Spike Protein Domains S1 and S2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.06.425627. [PMID: 33442700 PMCID: PMC7805474 DOI: 10.1101/2021.01.06.425627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cell surface receptor Neuropilin-1 (Nrp1) was recently identified as a host factor for SARS-CoV-2 entry. As the Spike protein of SARS-CoV-2 is cleaved into the S1 and the S2 domain by furin protease, Nrp1 binds to the newly created C-terminal RRAR amino acid sequence of the S1 domain. In this study, we model the association of a Nrp1 (a2-b1-b2) protein with the Spike protein computationally and analyze the topological constraints in the SARS-CoV-2 Spike protein for binding with Nrp1 and ACE2. Importantly, we study the exit mechanism of S2 from the S1 domain with the assistance of ACE2 as well as Nrp1 by molecular dynamics pulling simulations. In the presence of Nrp1, by binding the S1 more strongly to the host membrane, there is a high probability of S2 being pulled out, rather than S1 being stretched. Thus, Nrp1 binding could stimulate the exit of S2 from the S1 domain, which will likely increase virus infectivity as the liberated S2 domain mediates the fusion of virus and host membranes. Understanding of such a Nrp1-assisted viral infection opens the gate for the generation of protein-protein inhibitors, such as antibodies, which could attenuate the infection mechanism and protect certain cells in a future combination therapy.
Collapse
Affiliation(s)
- Zhen-Lu Li
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, U. S. A
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, U. S. A
- Department of Pharmacology, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, U. S. A
- Department of Neurosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, U. S. A
- Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, U. S. A
| |
Collapse
|
817
|
Herrera N, Morano NC, Celikgil A, Georgiev GI, Malonis RJ, Lee JH, Tong K, Vergnolle O, Massimi AB, Yen LY, Noble AJ, Kopylov M, Bonanno JB, Garrett-Thomson SC, Hayes DB, Bortz RH, Wirchnianski AS, Florez C, Laudermilch E, Haslwanter D, Fels JM, Dieterle ME, Jangra RK, Barnhill J, Mengotto A, Kimmel D, Daily JP, Pirofski LA, Chandran K, Brenowitz M, Garforth SJ, Eng ET, Lai JR, Almo SC. Characterization of the SARS-CoV-2 S Protein: Biophysical, Biochemical, Structural, and Antigenic Analysis. ACS OMEGA 2021; 6:85-102. [PMID: 33458462 PMCID: PMC7771249 DOI: 10.1021/acsomega.0c03512] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/03/2020] [Indexed: 05/22/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a global health crisis caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and there is a critical need to produce large quantities of high-quality SARS-CoV-2 Spike (S) protein for use in both clinical and basic science settings. To address this need, we have evaluated the expression and purification of two previously reported S protein constructs in Expi293F and ExpiCHO-S cells, two different cell lines selected for increased protein expression. We show that ExpiCHO-S cells produce enhanced yields of both SARS-CoV-2 S proteins. Biochemical, biophysical, and structural (cryo-EM) characterizations of the SARS-CoV-2 S proteins produced in both cell lines demonstrate that the reported purification strategy yields high-quality S protein (nonaggregated, uniform material with appropriate biochemical and biophysical properties), and analysis of 20 deposited S protein cryo-EM structures reveals conformation plasticity in the region composed of amino acids 614-642 and 828-854. Importantly, we show that multiple preparations of these two recombinant S proteins from either cell line exhibit identical behavior in two different serology assays. We also evaluate the specificity of S protein-mediated host cell binding by examining interactions with proposed binding partners in the human secretome and report no novel binding partners and notably fail to validate the Spike:CD147 interaction. In addition, the antigenicity of these proteins is demonstrated by standard ELISAs and in a flexible protein microarray format. Collectively, we establish an array of metrics for ensuring the production of high-quality S protein to support clinical, biological, biochemical, structural, and mechanistic studies to combat the global pandemic caused by SARS-CoV-2.
Collapse
Affiliation(s)
- Natalia
G. Herrera
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Nicholas C. Morano
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Alev Celikgil
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - George I. Georgiev
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Ryan J. Malonis
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - James H. Lee
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Karen Tong
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Olivia Vergnolle
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Aldo B. Massimi
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Laura Y. Yen
- National
Resource for Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave., New York, New York 10027, United States
| | - Alex J. Noble
- National
Resource for Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave., New York, New York 10027, United States
| | - Mykhailo Kopylov
- National
Resource for Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave., New York, New York 10027, United States
| | - Jeffrey B. Bonanno
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Sarah C. Garrett-Thomson
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - David B. Hayes
- International
Solidarity of Scientists LLC, 9 Chuck Wagon Lane, Danbury, Connecticut 06810, United States
| | - Robert H. Bortz
- Department
of Microbiology and Immunology, Albert Einstein
College of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Ariel S. Wirchnianski
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
- Department
of Microbiology and Immunology, Albert Einstein
College of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Catalina Florez
- Department
of Microbiology and Immunology, Albert Einstein
College of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
- Department
of Chemistry and Life Science, United States
Military Academy at West Point, 646 Swift Road, West Point, New York 10996, United States
| | - Ethan Laudermilch
- Department
of Microbiology and Immunology, Albert Einstein
College of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Denise Haslwanter
- Department
of Microbiology and Immunology, Albert Einstein
College of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - J. Maximilian Fels
- Department
of Microbiology and Immunology, Albert Einstein
College of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - M. Eugenia Dieterle
- Department
of Microbiology and Immunology, Albert Einstein
College of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Rohit K. Jangra
- Department
of Microbiology and Immunology, Albert Einstein
College of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Jason Barnhill
- Department
of Chemistry and Life Science, United States
Military Academy at West Point, 646 Swift Road, West Point, New York 10996, United States
| | - Amanda Mengotto
- Division
of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, New York, New York 10461, United States
| | - Duncan Kimmel
- Division
of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, New York, New York 10461, United States
| | - Johanna P. Daily
- Department
of Microbiology and Immunology, Albert Einstein
College of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
- Division
of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, New York, New York 10461, United States
| | - Liise-anne Pirofski
- Department
of Microbiology and Immunology, Albert Einstein
College of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
- Division
of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, New York, New York 10461, United States
| | - Kartik Chandran
- Department
of Microbiology and Immunology, Albert Einstein
College of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Michael Brenowitz
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Scott J. Garforth
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Edward T. Eng
- National
Resource for Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave., New York, New York 10027, United States
| | - Jonathan R. Lai
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| | - Steven C. Almo
- Department
of Biochemistry, Albert Einstein College
of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, United
States
| |
Collapse
|
818
|
Abstract
The trimeric spike (S) protein of SARS-CoV-2 is the primary focus of most vaccine design and development efforts. Due to intrinsic instability typical of class I fusion proteins, S tends to prematurely refold to the post-fusion conformation, compromising immunogenic properties and prefusion trimer yields. To support ongoing vaccine development efforts, we report the structure-based design of soluble S trimers with increased yields and stabilities, based on introduction of single point mutations and disulfide-bridges. We identify regions critical for stability: the heptad repeat region 1, the SD1 domain and position 614 in SD2. We combine a minimal selection of mostly interprotomeric mutations to create a stable S-closed variant with a 6.4-fold higher expression than the parental construct while no longer containing a heterologous trimerization domain. The cryo-EM structure reveals a correctly folded, predominantly closed pre-fusion conformation. Highly stable and well producing S protein and the increased understanding of S protein structure will support vaccine development and serological diagnostics. SARS-CoV-2 S protein prematurely refolds to the post-fusion conformation, compromising immunogenic properties and prefusion trimer yield. Here, Juraszek et al. present a stable SARS-CoV-2 S-closed protein variant with increased expression and correct folding, predominantly in closed prefusion conformation.
Collapse
|
819
|
Development and structural basis of a two-MAb cocktail for treating SARS-CoV-2 infections. Nat Commun 2021; 12:264. [PMID: 33431876 PMCID: PMC7801428 DOI: 10.1038/s41467-020-20465-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/03/2020] [Indexed: 01/10/2023] Open
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Neutralizing antibodies against SARS-CoV-2 are an option for drug development for treating COVID-19. Here, we report the identification and characterization of two groups of mouse neutralizing monoclonal antibodies (MAbs) targeting the receptor-binding domain (RBD) on the SARS-CoV-2 spike (S) protein. MAbs 2H2 and 3C1, representing the two antibody groups, respectively, bind distinct epitopes and are compatible in formulating a noncompeting antibody cocktail. A humanized version of the 2H2/3C1 cocktail is found to potently neutralize authentic SARS-CoV-2 infection in vitro with half inhibitory concentration (IC50) of 12 ng/mL and effectively treat SARS-CoV-2-infected mice even when administered at as late as 24 h post-infection. We determine an ensemble of cryo-EM structures of 2H2 or 3C1 Fab in complex with the S trimer up to 3.8 Å resolution, revealing the conformational space of the antigen–antibody complexes and MAb-triggered stepwise allosteric rearrangements of the S trimer, delineating a previously uncharacterized dynamic process of coordinated binding of neutralizing antibodies to the trimeric S protein. Our findings provide important information for the development of MAb-based drugs for preventing and treating SARS-CoV-2 infections. Here, the authors identify and characterize two mouse-derived monoclonal antibodies against SARS-CoV-2 spike protein that target different epitopes in RBD and block the interaction S/ACE2 and show that a formulated humanized version cocktail exhibits prophylaxis and therapeutic antiviral effects in an hACE2-adenovector expressed mouse model.
Collapse
|
820
|
Khelashvili G, Plante A, Doktorova M, Weinstein H. Ca 2+ -dependent mechanism of membrane insertion and destabilization by the SARS-CoV-2 fusion peptide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33299996 DOI: 10.1101/2020.12.03.410472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cell penetration after recognition of the SARS-CoV-2 virus by the ACE2 receptor, and the fusion of its viral envelope membrane with cellular membranes, are the early steps of infectivity. A region of the Spike protein (S) of the virus, identified as the "fusion peptide" (FP), is liberated at its N-terminal site by a specific cleavage occurring in concert with the interaction of the receptor binding domain of the Spike. Studies have shown that penetration is enhanced by the required binding of Ca 2+ ions to the FPs of corona viruses, but the mechanisms of membrane insertion and destabilization remain unclear. We have predicted the preferred positions of Ca 2+ binding to the SARS-CoV-2-FP, the role of Ca 2+ ions in mediating peptide-membrane interactions, the preferred mode of insertion of the Ca 2+ -bound SARS-CoV-2-FP and consequent effects on the lipid bilayer from extensive atomistic molecular dynamics (MD) simulations and trajectory analyses. In a systematic sampling of the interactions of the Ca 2+ -bound peptide models with lipid membranes SARS-CoV-2-FP penetrated the bilayer and disrupted its organization only in two modes involving different structural domains. In one, the hydrophobic residues F833/I834 from the middle region of the peptide are inserted. In the other, more prevalent mode, the penetration involves residues L822/F823 from the LLF motif which is conserved in CoV-2-like viruses, and is achieved by the binding of Ca 2+ ions to the D830/D839 and E819/D820 residue pairs. FP penetration is shown to modify the molecular organization in specific areas of the bilayer, and the extent of membrane binding of the SARS-CoV-2 FP is significantly reduced in the absence of Ca 2+ ions. These findings provide novel mechanistic insights regarding the role of Ca 2+ in mediating SARS-CoV-2 fusion and provide a detailed structural platform to aid the ongoing efforts in rational design of compounds to inhibit SARS-CoV-2 cell entry. STATEMENT OF SIGNIFICANCE SARS-CoV-2, the cause of the COVID-19 pandemic, penetrates host cell membranes and uses viral-to-cellular membrane fusion to release its genetic material for replication. Experiments had identified a region termed "fusion peptide" (FP) in the Spike proteins of coronaviruses, as the spearhead in these initial processes, and suggested that Ca 2+ is needed to support both functions. Absent structure and dynamics-based mechanistic information these FP functions could not be targeted for therapeutic interventions. We describe the development and determination of the missing information from analysis of extensive MD simulation trajectories, and propose specific Ca 2+ -dependent mechanisms of SARS-CoV-2-FP membrane insertion and destabilization. These results offer a structure-specific platform to aid the ongoing efforts to use this target for the discovery and/or of inhibitors.
Collapse
|
821
|
Song X, Shi Y, Ding W, Niu T, Sun L, Tan Y, Chen Y, Shi J, Xiong Q, Huang X, Xiao S, Zhu Y, Cheng C, Fu ZF, Liu ZJ, Peng G. Cryo-EM analysis of the HCoV-229E spike glycoprotein reveals dynamic prefusion conformational changes. Nat Commun 2021; 12:141. [PMID: 33420048 PMCID: PMC7794242 DOI: 10.1038/s41467-020-20401-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Coronaviruses spike (S) glycoproteins mediate viral entry into host cells by binding to host receptors. However, how the S1 subunit undergoes conformational changes for receptor recognition has not been elucidated in Alphacoronavirus. Here, we report the cryo-EM structures of the HCoV-229E S trimer in prefusion state with two conformations. The activated conformation may pose the potential exposure of the S1-RBDs by decreasing of the interaction area between the S1-RBDs and the surrounding S1-NTDs and S1-RBDs compared to the closed conformation. Furthermore, structural comparison of our structures with the previously reported HCoV-229E S structure showed that the S trimers trended to open the S2 subunit from the closed conformation to open conformation, which could promote the transition from pre- to postfusion. Our results provide insights into the mechanisms involved in S glycoprotein-mediated Alphacoronavirus entry and have implications for vaccine and therapeutic antibody design.
Collapse
Affiliation(s)
- Xiyong Song
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuejun Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Wei Ding
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O.Box 603, Beijing, China
| | - Tongxin Niu
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Limeng Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Yubei Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Yong Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiale Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Qiqi Xiong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Xiaojun Huang
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Yanping Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chongyun Cheng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Departments of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Zhi-Jie Liu
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China. .,iHuman Institute, ShanghaiTech University, Shanghai, China.
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
822
|
Development and Validation of a Multiplex, Bead-based Assay to Detect Antibodies Directed Against SARS-CoV-2 Proteins. Transplantation 2021; 105:79-89. [PMID: 33273320 DOI: 10.1097/tp.0000000000003524] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Transplant recipients who develop COVID-19 may be at increased risk for morbidity and mortality. Determining the status of antibodies against SARS-CoV-2 in both candidates and recipients will be important to understand the epidemiology and clinical course of COVID-19 in this population. While there are multiple tests to detect antibodies to SARS-CoV-2, their performance is variable. Tests vary according to their platforms and the antigenic targets which make interpretation of the results challenging. Furthermore, for some assays, sensitivity and specificity are less than optimal. Additionally, currently available serological tests do not exclude the possibility that positive responses are due to cross reactive antibodies to community coronaviruses rather than SARS-CoV-2. METHODS This study describes the development and validation of a high-throughput multiplex antibody detection assay. RESULTS The multiplex assay has the capacity to identify, simultaneously, patient responses to 5 SARS-CoV-2 proteins, namely, the full spike protein, 3 individual domains of the spike protein (S1, S2, and receptor binding domain), and the nucleocapsid protein. The antibody response to the above proteins are SARS-CoV-2-specific, as antibodies against 4 common coronaviruses do not cross-react. CONCLUSIONS This new assay provides a novel tool to interrogate the spectrum of immune responses to SAR-CoV-2 and is uniquely suitable for use in the transplant setting. Test configuration is essentially identical to the single antigen bead assays used in the majority of histocompatibility laboratories around the world and could easily be implemented into routine screening of transplant candidates and recipients.
Collapse
|
823
|
Cavasotto CN, Lamas MS, Maggini J. Functional and druggability analysis of the SARS-CoV-2 proteome. Eur J Pharmacol 2021; 890:173705. [PMID: 33137330 PMCID: PMC7604074 DOI: 10.1016/j.ejphar.2020.173705] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023]
Abstract
The infectious coronavirus disease (COVID-19) pandemic, caused by the coronavirus SARS-CoV-2, appeared in December 2019 in Wuhan, China, and has spread worldwide. As of today, more than 46 million people have been infected and over 1.2 million fatalities. With the purpose of contributing to the development of effective therapeutics, we performed an in silico determination of binding hot-spots and an assessment of their druggability within the complete SARS-CoV-2 proteome. All structural, non-structural, and accessory proteins have been studied, and whenever experimental structural data of SARS-CoV-2 proteins were not available, homology models were built based on solved SARS-CoV structures. Several potential allosteric or protein-protein interaction druggable sites on different viral targets were identified, knowledge that could be used to expand current drug discovery endeavors beyond the currently explored cysteine proteases and the polymerase complex. It is our hope that this study will support the efforts of the scientific community both in understanding the molecular determinants of this disease and in widening the repertoire of viral targets in the quest for repurposed or novel drugs against COVID-19.
Collapse
Affiliation(s)
- Claudio N Cavasotto
- Computational Drug Design and Biomedical Informatics Laboratory, Translational Medicine Research Institute (IIMT), CONICET-Universidad Austral, Pilar, Buenos Aires, Argentina; Facultad de Ciencias Biomédicas, Facultad de Ingeniería, Universidad Austral, Pilar, Buenos Aires, Argentina; Austral Institute for Applied Artificial Intelligence, Universidad Austral, Pilar, Buenos Aires, Argentina.
| | - Maximiliano Sánchez Lamas
- Austral Institute for Applied Artificial Intelligence, Universidad Austral, Pilar, Buenos Aires, Argentina; Meton AI, Inc., Wilmington, DE, 19801, USA
| | - Julián Maggini
- Austral Institute for Applied Artificial Intelligence, Universidad Austral, Pilar, Buenos Aires, Argentina; Technology Transfer Office, Universidad Austral, Pilar, Buenos Aires, Argentina
| |
Collapse
|
824
|
Abstract
PURPOSE OF REVIEW The spike glycoprotein plays a critical role in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection by recognizing the angiotensin converting enzyme 2 (ACE2) receptor and mediating fusion of the viral envelope with the cell membrane. It is also the major target for neutralizing antibodies and vaccines. This review summarizes recent studies on the structure and function of spike glycoprotein, which revealed the structural basis of SARS-CoV-2 infection. RECENT FINDINGS SARS-CoV-2 spike glycoprotein, similar to those of SARS-CoV and Middle East respiratory syndrome coronavirus, spontaneously samples different prefusion states with the receptor-binding domain (RBD) adopting 'up' or 'down' conformations, and the RBD 'down' to 'up' conformational change is required for ACE2 binding. Receptor binding and spike glycoprotein priming by host proteases such as furin and transmembrane protease serine 2 induce pre to postfusion conformational changes of the spike trimer that enable membrane fusion. Interactions between SARS-CoV-2 RBD and ACE2 were elucidated at atomic resolution using high-resolution crystal structures. These structures, together with adapted and remodeled SARS-CoV-2 strains, further revealed critical residues of the spike glycoprotein for SARS-CoV-2 infection and cross-species transmission. SUMMARY Recent studies on SARS-CoV-2 spike glycoprotein provide important structural knowledge for a better understanding of the molecular mechanisms of SARS-CoV-2 infection and cross-species transmission.
Collapse
|
825
|
Sauer MM, Tortorici MA, Park YJ, Walls AC, Homad L, Acton O, Bowen J, Wang C, Xiong X, de van der Schueren W, Quispe J, Hoffstrom BG, Bosch BJ, McGuire AT, Veesler D. Structural basis for broad coronavirus neutralization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.12.29.424482. [PMID: 33398277 PMCID: PMC7781312 DOI: 10.1101/2020.12.29.424482] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Three highly pathogenic β-coronaviruses crossed the animal-to-human species barrier in the past two decades: SARS-CoV, MERS-CoV and SARS-CoV-2. SARS-CoV-2 has infected more than 64 million people worldwide, claimed over 1.4 million lives and is responsible for the ongoing COVID-19 pandemic. We isolated a monoclonal antibody, termed B6, cross-reacting with eight β-coronavirus spike glycoproteins, including all five human-infecting β-coronaviruses, and broadly inhibiting entry of pseudotyped viruses from two coronavirus lineages. Cryo-electron microscopy and X-ray crystallography characterization reveal that B6 binds to a conserved cryptic epitope located in the fusion machinery and indicate that antibody binding sterically interferes with spike conformational changes leading to membrane fusion. Our data provide a structural framework explaining B6 cross-reactivity with β-coronaviruses from three lineages along with proof-of-concept for antibody-mediated broad coronavirus neutralization elicited through vaccination. This study unveils an unexpected target for next-generation structure-guided design of a pan-coronavirus vaccine.
Collapse
Affiliation(s)
- Maximilian M. Sauer
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - M. Alexandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Institut Pasteur, Unité de Virologie Structurale, Paris, France; CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Leah Homad
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Oliver Acton
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - John Bowen
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Chunyan Wang
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Xiaoli Xiong
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | | - Joel Quispe
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Benjamin G. Hoffstrom
- Antibody Technology Resource, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Berend-Jan Bosch
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Andrew T. McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
826
|
Paired heavy and light chain signatures contribute to potent SARS-CoV-2 neutralization in public antibody responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33442681 DOI: 10.1101/2020.12.31.424987] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Understanding protective mechanisms of antibody recognition can inform vaccine and therapeutic strategies against SARS-CoV-2. We discovered a new antibody, 910-30, that targets the SARS-CoV-2 ACE2 receptor binding site as a member of a public antibody response encoded by IGHV3-53/IGHV3-66 genes. We performed sequence and structural analyses to explore how antibody features correlate with SARS-CoV-2 neutralization. Cryo-EM structures of 910-30 bound to the SARS-CoV-2 spike trimer revealed its binding interactions and ability to disassemble spike. Despite heavy chain sequence similarity, biophysical analyses of IGHV3-53/3-66 antibodies highlighted the importance of native heavy:light pairings for ACE2 binding competition and for SARS-CoV-2 neutralization. We defined paired heavy:light sequence signatures and determined antibody precursor prevalence to be ~1 in 44,000 human B cells, consistent with public antibody identification in several convalescent COVID-19 patients. These data reveal key structural and functional neutralization features in the IGHV3-53/3-66 public antibody class to accelerate antibody-based medical interventions against SARS-CoV-2. Highlights A molecular study of IGHV3-53/3-66 public antibody responses reveals critical heavy and light chain features for potent neutralizationCryo-EM analyses detail the structure of a novel public antibody class member, antibody 910-30, in complex with SARS-CoV-2 spike trimerCryo-EM data reveal that 910-30 can both bind assembled trimer and can disassemble the SARS-CoV-2 spikeSequence-structure-function signatures defined for IGHV3-53/3-66 class antibodies including both heavy and light chainsIGHV3-53/3-66 class precursors have a prevalence of 1:44,000 B cells in healthy human antibody repertoires.
Collapse
|
827
|
Wilson IA, Stanfield RL. 50 Years of structural immunology. J Biol Chem 2021; 296:100745. [PMID: 33957119 PMCID: PMC8163984 DOI: 10.1016/j.jbc.2021.100745] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/24/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Fifty years ago, the first landmark structures of antibodies heralded the dawn of structural immunology. Momentum then started to build toward understanding how antibodies could recognize the vast universe of potential antigens and how antibody-combining sites could be tailored to engage antigens with high specificity and affinity through recombination of germline genes (V, D, J) and somatic mutation. Equivalent groundbreaking structures in the cellular immune system appeared some 15 to 20 years later and illustrated how processed protein antigens in the form of peptides are presented by MHC molecules to T cell receptors. Structures of antigen receptors in the innate immune system then explained their inherent specificity for particular microbial antigens including lipids, carbohydrates, nucleic acids, small molecules, and specific proteins. These two sides of the immune system act immediately (innate) to particular microbial antigens or evolve (adaptive) to attain high specificity and affinity to a much wider range of antigens. We also include examples of other key receptors in the immune system (cytokine receptors) that regulate immunity and inflammation. Furthermore, these antigen receptors use a limited set of protein folds to accomplish their various immunological roles. The other main players are the antigens themselves. We focus on surface glycoproteins in enveloped viruses including SARS-CoV-2 that enable entry and egress into host cells and are targets for the antibody response. This review covers what we have learned over the past half century about the structural basis of the immune response to microbial pathogens and how that information can be utilized to design vaccines and therapeutics.
Collapse
MESH Headings
- Adaptive Immunity
- Allergy and Immunology/history
- Animals
- Antibodies, Viral/chemistry
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antibody Specificity
- Antigen Presentation
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- COVID-19/immunology
- COVID-19/virology
- Crystallography/history
- Crystallography/methods
- History, 20th Century
- History, 21st Century
- Humans
- Immunity, Innate
- Protein Folding
- Protein Interaction Domains and Motifs
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Cytokine/chemistry
- Receptors, Cytokine/genetics
- Receptors, Cytokine/immunology
- SARS-CoV-2/immunology
- SARS-CoV-2/pathogenicity
- V(D)J Recombination
Collapse
Affiliation(s)
- Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA.
| | - Robyn L Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
828
|
Xu C, Wang Y, Liu C, Zhang C, Han W, Hong X, Wang Y, Hong Q, Wang S, Zhao Q, Wang Y, Yang Y, Chen K, Zheng W, Kong L, Wang F, Zuo Q, Huang Z, Cong Y. Conformational dynamics of SARS-CoV-2 trimeric spike glycoprotein in complex with receptor ACE2 revealed by cryo-EM. SCIENCE ADVANCES 2021; 7:eabe5575. [PMID: 33277323 PMCID: PMC7775788 DOI: 10.1126/sciadv.abe5575] [Citation(s) in RCA: 293] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/04/2020] [Indexed: 05/21/2023]
Abstract
The recent outbreaks of SARS-CoV-2 pose a global health emergency. The SARS-CoV-2 trimeric spike (S) glycoprotein interacts with the human ACE2 receptor to mediate viral entry into host cells. We report the cryo-EM structures of a tightly closed SARS-CoV-2 S trimer with packed fusion peptide and an ACE2-bound S trimer at 2.7- and 3.8-Å resolution, respectively. Accompanying ACE2 binding to the up receptor-binding domain (RBD), the associated ACE2-RBD exhibits continuous swing motions. Notably, the SARS-CoV-2 S trimer appears much more sensitive to the ACE2 receptor than the SARS-CoV S trimer regarding receptor-triggered transformation from the closed prefusion state to the fusion-prone open state, potentially contributing to the superior infectivity of SARS-CoV-2. We defined the RBD T470-T478 loop and Y505 as viral determinants for specific recognition of SARS-CoV-2 RBD by ACE2. Our findings depict the mechanism of ACE2-induced S trimer conformational transitions from the ground prefusion state toward the postfusion state, facilitating development of anti-SARS-CoV-2 vaccines and therapeutics.
Collapse
Affiliation(s)
- Cong Xu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxing Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Caixuan Liu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenyu Han
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Hong
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin Hong
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shutian Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaoyu Zhao
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yalei Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong Yang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Kaijian Chen
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zheng
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangliang Kong
- The National Facility for Protein Science in Shanghai (NFPS), Shanghai 201210, China
| | - Fangfang Wang
- The National Facility for Protein Science in Shanghai (NFPS), Shanghai 201210, China
| | - Qinyu Zuo
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhong Huang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yao Cong
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
829
|
Yazhini A, Sidhanta DSP, Srinivasan N. D614G substitution at the hinge region enhances the stability of trimeric SARS-CoV-2 spike protein. Bioinformation 2021; 17:439-445. [PMID: 34092964 DOI: 10.1101/2020.11.02.364273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 05/21/2023] Open
Abstract
Mutations in the spike protein of SARS-CoV-2 are the major causes for the modulation of ongoing COVID-19 infection. Currently, the D614G substitution in the spike protein has become dominant worldwide. It is associated with higher infectivity than the ancestral (D614)variant. We demonstrate using Gaussian network model-based normal mode analysis that the D614G substitution occurs at the hinge region that facilitates domain-domain motions between receptor binding domain and S2 region of the spike protein. Computer-aided mutagenesis and inter-residue energy calculations reveal that contacts involving D614 are energetically frustrated. However, contacts involving G614 are energetically favourable, implying the substitution strengthens residue contacts that are formed within as well as between protomers. We also find that the free energy difference (ΔΔG) between two variants is -2.6 kcal/mol for closed and -2.0 kcal/mol for 1-RBD up conformation. Thus, the thermodynamic stability has increased upon D614G substitution. Whereas the reverse mutation in spike protein structures having G614 substitution has resulted in the free energy differences of 6.6 kcal/mol and 6.3 kcal/mol for closed and 1-RBD up conformations, respectively, indicating that the overall thermodynamic stability has decreased. These results suggest that the D614G substitution modulates the flexibility of spike protein and confers enhanced thermodynamic stability irrespective of conformational states. This data concurs with the known information demonstrating increased availability of the functional form of spikeprotein trimer upon D614G substitution.
Collapse
Affiliation(s)
- Arangasamy Yazhini
- Molecular Biophysics Unit; Indian Institute of Science; Bangalore, Karnataka, 560012, India
| | | | | |
Collapse
|
830
|
Kelleher AD. Acute treatment with monoclonal antibodies: their design and their use. MICROBIOLOGY AUSTRALIA 2021. [DOI: 10.1071/ma21011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Passive anti-viral immunotherapy, including monoclonal antibodies (mAb), was identified early as a promising therapeutic avenue for COVID-19 with a rapid development pathway. This has been driven by the lack of existing effective direct acting antivirals for coronaviruses, the marginal clinical impact of remdesivir and the relative lack of efficacy of antivirals against other respiratory pathogens, combined with the failure of repurposed drugs. This review explores the potential utility of mAb targeting SARS-CoV-2, to prevent or treat COVID-19 infection. The use of mAb against host factors (e.g. tocilizumab targeting IL-6 receptor and canakinumab targeting IL1-β) to mitigate the inflammatory response seen in progressive disease will not be considered. This review will primarily consider mAb that have direct neutralising activity via their targeting of the SARS-CoV-2 Spike (S) protein focussing on: the targets of mAb; how they mediate viral neutralisation; their propensity to generate escape mutants; their clinical use so far, and their likely place in the therapeutic play book.
Collapse
|
831
|
Yang H, Rao Z. Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat Rev Microbiol 2021; 19:685-700. [PMID: 34535791 PMCID: PMC8447893 DOI: 10.1038/s41579-021-00630-8] [Citation(s) in RCA: 310] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 02/04/2023]
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an unprecedented global health crisis. However, therapeutic options for treatment are still very limited. The development of drugs that target vital proteins in the viral life cycle is a feasible approach for treating COVID-19. Belonging to the subfamily Orthocoronavirinae with the largest RNA genome, SARS-CoV-2 encodes a total of 29 proteins. These non-structural, structural and accessory proteins participate in entry into host cells, genome replication and transcription, and viral assembly and release. SARS-CoV-2 proteins can individually perform essential physiological roles, be components of the viral replication machinery or interact with numerous host cellular factors. In this Review, we delineate the structural features of SARS-CoV-2 from the whole viral particle to the individual viral proteins and discuss their functions as well as their potential as targets for therapeutic interventions.
Collapse
Affiliation(s)
- Haitao Yang
- grid.440637.20000 0004 4657 8879Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zihe Rao
- grid.440637.20000 0004 4657 8879Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China ,grid.12527.330000 0001 0662 3178Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China ,grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and College of Pharmacy, Nankai University, Tianjin, China ,grid.9227.e0000000119573309National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
832
|
Thakur S, Mayank, Sarkar B, Ansari AJ, Khandelwal A, Arya A, Poduri R, Joshi G. Exploring the magic bullets to identify Achilles' heel in SARS-CoV-2: Delving deeper into the sea of possible therapeutic options in Covid-19 disease: An update. Food Chem Toxicol 2021; 147:111887. [PMID: 33253764 PMCID: PMC7694479 DOI: 10.1016/j.fct.2020.111887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
The symptoms associated with Covid-19 caused by SARS-CoV-2 in severe conditions can cause multiple organ failure and fatality via a plethora of mechanisms, and it is essential to discover the efficacious and safe drug. For this, a successful strategy is to inhibit in different stages of the SARS-CoV-2 life cycle and host cell reactions. The current review briefly put forth the summary of the SARS-CoV-2 pandemic and highlight the critical areas of understanding in genomics, proteomics, medicinal chemistry, and natural products derived drug discovery. The review further extends to briefly put forth the updates in the drug testing system, biologics, biophysics, and their advances concerning SARS-CoV-2. The salient features include information on SARS-CoV-2 morphology, genomic characterization, and pathophysiology along with important protein targets and how they influence the drug design and development against SARS-CoV-2 and a concerted and integrated approach to target these stages. The review also gives the status of drug design and discovery to identify the drugs acting on critical targets in SARS-CoV-2 and host reactions to treat Covid-19.
Collapse
Affiliation(s)
- Shikha Thakur
- Department of Pharmaceutical Sciences and Natural Products, School of Health Science, Central University of Punjab, Bathinda 151 001, India
| | - Mayank
- Shobhaben Pratapbhai Patel - School of Pharmacy & Technology Management, SVKM's NMIMS University, Vile Parle, Mumbai 400056, India
| | - Bibekananda Sarkar
- B.S.S. College, Supaul. B.N Mandal University, Madhepura, Bihar 852131, India
| | - Arshad J Ansari
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandar Sindri, Ajmer 305817, Rajasthan, India
| | - Akanksha Khandelwal
- Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Anil Arya
- Department of Physics, Central University of Punjab, Bathinda 151 001, India.
| | - Ramarao Poduri
- Department of Pharmaceutical Sciences and Natural Products, School of Health Science, Central University of Punjab, Bathinda 151 001, India.
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences and Natural Products, School of Health Science, Central University of Punjab, Bathinda 151 001, India.
| |
Collapse
|
833
|
Barlas SB, Adalier N, Dasdag O, Dasdag S. Evaluation of SARS-CoV-2 with a biophysical perspective. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1885997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Sait Berk Barlas
- Pre-Graduate Internship Department, Medical School, Koc University, Istanbul, Turkey
| | - Nur Adalier
- Pre-Graduate Internship Department, Medical School, Koc University, Istanbul, Turkey
| | - Omer Dasdag
- Pre-Graduate Internship Department, Medical School, Biruni University, Istanbul, Turkey
| | - Suleyman Dasdag
- Biophysics Department, Medical School, Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
834
|
Abstract
In this issue of Cell Host & Microbe, Lu et al. utilize single-molecule FRET to reveal the conformation dynamics of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein, showing transitions from a closed ground state to the open receptor-accessible conformation via an on-path intermediate. These insights into spike conformations will facilitate rational immunogen design.
Collapse
Affiliation(s)
- Vitor Hugo B Serrão
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Jeffrey E Lee
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
835
|
Sicard T, Kassardjian A, Julien JP. B cell targeting by molecular adjuvants for enhanced immunogenicity. Expert Rev Vaccines 2020; 19:1023-1039. [PMID: 33252273 DOI: 10.1080/14760584.2020.1857736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Adjuvants are critical components of vaccines to improve the quality and durability of immune responses. Molecular adjuvants are a specific subclass of adjuvants where ligands of known immune-modulatory receptors are directly fused to an antigen. Co-stimulation of the B cell receptor (BCR) and immune-modulatory receptors through this strategy can augment downstream signaling to improve antibody titers and/or potency, and survival in challenge models. AREAS COVERED C3d has been the most extensively studied molecular adjuvant and shown to improve immune responses to a number of antigens. Similarly, tumor necrosis superfamily ligands, such as BAFF and APRIL, as well as CD40, CD180, and immune complex ligands can also improve humoral immunity as molecular adjuvants. EXPERT OPINION However, no single strategy has emerged that improves immune outcomes in all contexts. Thus, systematic exploration of molecular adjuvants that target B cell receptors will be required to realize their full potential as next-generation vaccine technologies.
Collapse
Affiliation(s)
- Taylor Sicard
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute , Toronto, ON, Canada.,Department of Biochemistry, University of Toronto , ON, Canada
| | - Audrey Kassardjian
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute , Toronto, ON, Canada.,Department of Immunology, University of Toronto , ON, Canada
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute , Toronto, ON, Canada.,Department of Biochemistry, University of Toronto , ON, Canada.,Department of Immunology, University of Toronto , ON, Canada
| |
Collapse
|
836
|
Garvin MR, T Prates E, Pavicic M, Jones P, Amos BK, Geiger A, Shah MB, Streich J, Felipe Machado Gazolla JG, Kainer D, Cliff A, Romero J, Keith N, Brown JB, Jacobson D. Potentially adaptive SARS-CoV-2 mutations discovered with novel spatiotemporal and explainable AI models. Genome Biol 2020; 21:304. [PMID: 33357233 PMCID: PMC7756312 DOI: 10.1186/s13059-020-02191-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND A mechanistic understanding of the spread of SARS-CoV-2 and diligent tracking of ongoing mutagenesis are of key importance to plan robust strategies for confining its transmission. Large numbers of available sequences and their dates of transmission provide an unprecedented opportunity to analyze evolutionary adaptation in novel ways. Addition of high-resolution structural information can reveal the functional basis of these processes at the molecular level. Integrated systems biology-directed analyses of these data layers afford valuable insights to build a global understanding of the COVID-19 pandemic. RESULTS Here we identify globally distributed haplotypes from 15,789 SARS-CoV-2 genomes and model their success based on their duration, dispersal, and frequency in the host population. Our models identify mutations that are likely compensatory adaptive changes that allowed for rapid expansion of the virus. Functional predictions from structural analyses indicate that, contrary to previous reports, the Asp614Gly mutation in the spike glycoprotein (S) likely reduced transmission and the subsequent Pro323Leu mutation in the RNA-dependent RNA polymerase led to the precipitous spread of the virus. Our model also suggests that two mutations in the nsp13 helicase allowed for the adaptation of the virus to the Pacific Northwest of the USA. Finally, our explainable artificial intelligence algorithm identified a mutational hotspot in the sequence of S that also displays a signature of positive selection and may have implications for tissue or cell-specific expression of the virus. CONCLUSIONS These results provide valuable insights for the development of drugs and surveillance strategies to combat the current and future pandemics.
Collapse
Affiliation(s)
- Michael R Garvin
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | - Erica T Prates
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | - Mirko Pavicic
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | - Piet Jones
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - B Kirtley Amos
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
- Department of Horticulture, N-318 Ag Sciences Center, University of Kentucky, Lexington, KY, USA
| | - Armin Geiger
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Manesh B Shah
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | - Jared Streich
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | | | - David Kainer
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | - Ashley Cliff
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Jonathon Romero
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Nathan Keith
- Lawrence Berkeley National Laboratory, Environmental Genomics & Systems Biology, Berkeley, CA, USA
| | - James B Brown
- Lawrence Berkeley National Laboratory, Environmental Genomics & Systems Biology, Berkeley, CA, USA
| | - Daniel Jacobson
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA.
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA.
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, USA.
| |
Collapse
|
837
|
Chan KK, Tan TJC, Narayanan KK, Procko E. An engineered decoy receptor for SARS-CoV-2 broadly binds protein S sequence variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.10.18.344622. [PMID: 33398275 PMCID: PMC7781310 DOI: 10.1101/2020.10.18.344622] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The spike S of SARS-CoV-2 recognizes ACE2 on the host cell membrane to initiate entry. Soluble decoy receptors, in which the ACE2 ectodomain is engineered to block S with high affinity, potently neutralize infection and, due to close similarity with the natural receptor, hold out the promise of being broadly active against virus variants without opportunity for escape. Here, we directly test this hypothesis. We find an engineered decoy receptor, sACE2 2 .v2.4, tightly binds S of SARS-associated viruses from humans and bats, despite the ACE2-binding surface being a region of high diversity. Saturation mutagenesis of the receptor-binding domain (RBD) followed by in vitro selection, with wild type ACE2 and the engineered decoy competing for binding sites, failed to find S mutants that discriminate in favor of the wild type receptor. Variant N501Y in the RBD, which has emerged in a rapidly spreading lineage (B.1.1.7) in England, enhances affinity for wild type ACE2 20-fold but remains tightly bound to engineered sACE22.v2.4. We conclude that resistance to engineered decoys will be rare and that decoys may be active against future outbreaks of SARS-associated betacoronaviruses.
Collapse
Affiliation(s)
- Kui K Chan
- Orthogonal Biologics, Champaign IL 61821
| | - Timothy J C Tan
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana IL 61801
| | - Krishna K Narayanan
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana IL 61801
| | - Erik Procko
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana IL 61801
| |
Collapse
|
838
|
Littler DR, MacLachlan BJ, Watson GM, Vivian JP, Gully BS. A pocket guide on how to structure SARS-CoV-2 drugs and therapies. Biochem Soc Trans 2020; 48:2625-2641. [PMID: 33258925 PMCID: PMC7752054 DOI: 10.1042/bst20200396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 01/18/2023]
Abstract
The race to identify a successful treatment for COVID19 will be defined by fundamental research into the replication cycle of the SARS-CoV-2 virus. This has identified five distinct stages from which numerous vaccination and clinical trials have emerged alongside an innumerable number of drug discovery studies currently in development for disease intervention. Informing every step of the viral replication cycle has been an unprecedented 'call-to-arms' by the global structural biology community. Of the 20 main SARS-CoV-2 proteins, 13 have been resolved structurally for SARS-CoV-2 with most having a related SARS-CoV and MERS-CoV structural homologue totalling some 300 structures currently available in public repositories. Herein, we review the contribution of structural studies to our understanding of the virus and their role in structure-based development of therapeutics.
Collapse
Affiliation(s)
- Dene R. Littler
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Bruce J. MacLachlan
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Gabrielle M. Watson
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Julian P. Vivian
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Benjamin S. Gully
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| |
Collapse
|
839
|
Xiang Y, Nambulli S, Xiao Z, Liu H, Sang Z, Duprex WP, Schneidman-Duhovny D, Zhang C, Shi Y. Versatile and multivalent nanobodies efficiently neutralize SARS-CoV-2. Science 2020; 370:1479-1484. [PMID: 33154108 PMCID: PMC7857400 DOI: 10.1126/science.abe4747] [Citation(s) in RCA: 281] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Cost-effective, efficacious therapeutics are urgently needed to combat the COVID-19 pandemic. In this study, we used camelid immunization and proteomics to identify a large repertoire of highly potent neutralizing nanobodies (Nbs) to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor binding domain (RBD). We discovered Nbs with picomolar to femtomolar affinities that inhibit viral infection at concentrations below the nanograms-per-milliliter level, and we determined a structure of one of the most potent Nbs in complex with the RBD. Structural proteomics and integrative modeling revealed multiple distinct and nonoverlapping epitopes and indicated an array of potential neutralization mechanisms. We bioengineered multivalent Nb constructs that achieved ultrahigh neutralization potency (half-maximal inhibitory concentration as low as 0.058 ng/ml) and may prevent mutational escape. These thermostable Nbs can be rapidly produced in bulk from microbes and resist lyophilization and aerosolization.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/chemistry
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/immunology
- Animals
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/chemistry
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antibody Affinity
- COVID-19/therapy
- Camelids, New World
- Escherichia coli
- Humans
- Neutralization Tests
- Protein Binding
- Protein Domains
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/immunology
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- SARS-CoV-2/immunology
- Single-Domain Antibodies/chemistry
- Single-Domain Antibodies/genetics
- Single-Domain Antibodies/immunology
Collapse
Affiliation(s)
- Yufei Xiang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sham Nambulli
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhengyun Xiao
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Heng Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhe Sang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh-Carnegie Mellon University Program in Computational Biology, Pittsburgh, PA, USA
| | - W Paul Duprex
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Yi Shi
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- University of Pittsburgh-Carnegie Mellon University Program in Computational Biology, Pittsburgh, PA, USA
| |
Collapse
|
840
|
Schoof M, Faust B, Saunders RA, Sangwan S, Rezelj V, Hoppe N, Boone M, Billesbølle CB, Puchades C, Azumaya CM, Kratochvil HT, Zimanyi M, Deshpande I, Liang J, Dickinson S, Nguyen HC, Chio CM, Merz GE, Thompson MC, Diwanji D, Schaefer K, Anand AA, Dobzinski N, Zha BS, Simoneau CR, Leon K, White KM, Chio US, Gupta M, Jin M, Li F, Liu Y, Zhang K, Bulkley D, Sun M, Smith AM, Rizo AN, Moss F, Brilot AF, Pourmal S, Trenker R, Pospiech T, Gupta S, Barsi-Rhyne B, Belyy V, Barile-Hill AW, Nock S, Liu Y, Krogan NJ, Ralston CY, Swaney DL, García-Sastre A, Ott M, Vignuzzi M, QCRG Structural Biology Consortium 4‡, Walter P, Manglik A. An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. Science 2020; 370:1473-1479. [PMID: 33154106 PMCID: PMC7857409 DOI: 10.1126/science.abe3255] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/30/2020] [Indexed: 01/12/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus enters host cells via an interaction between its Spike protein and the host cell receptor angiotensin-converting enzyme 2 (ACE2). By screening a yeast surface-displayed library of synthetic nanobody sequences, we developed nanobodies that disrupt the interaction between Spike and ACE2. Cryo-electron microscopy (cryo-EM) revealed that one nanobody, Nb6, binds Spike in a fully inactive conformation with its receptor binding domains locked into their inaccessible down state, incapable of binding ACE2. Affinity maturation and structure-guided design of multivalency yielded a trivalent nanobody, mNb6-tri, with femtomolar affinity for Spike and picomolar neutralization of SARS-CoV-2 infection. mNb6-tri retains function after aerosolization, lyophilization, and heat treatment, which enables aerosol-mediated delivery of this potent neutralizer directly to the airway epithelia.
Collapse
Affiliation(s)
- Michael Schoof
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA.,Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.,Corresponding author. (M.S.); (P.W.); (A.M.)
| | - Bryan Faust
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA.,Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.,Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA, USA
| | - Reuben A. Saunders
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA, USA
| | - Smriti Sangwan
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA.,Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Veronica Rezelj
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Nick Hoppe
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA, USA
| | - Morgane Boone
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA.,Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Christian B. Billesbølle
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA, USA
| | - Cristina Puchades
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA, USA
| | - Caleigh M. Azumaya
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA, USA
| | - Huong T. Kratochvil
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA, USA
| | - Marcell Zimanyi
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA.,Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Ishan Deshpande
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA, USA
| | - Jiahao Liang
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, USA
| | - Sasha Dickinson
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA, USA
| | - Henry C. Nguyen
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA, USA
| | - Cynthia M. Chio
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA, USA
| | - Gregory E. Merz
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA, USA
| | - Michael C. Thompson
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA, USA
| | - Devan Diwanji
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA, USA
| | - Kaitlin Schaefer
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA, USA
| | - Aditya A. Anand
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA.,Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Niv Dobzinski
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA.,Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Beth Shoshana Zha
- Department of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Camille R. Simoneau
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Kristoffer Leon
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Kris M. White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Un Seng Chio
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA, USA
| | - Meghna Gupta
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA, USA
| | - Mingliang Jin
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA, USA
| | - Fei Li
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA, USA
| | - Yanxin Liu
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA, USA
| | - Kaihua Zhang
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA, USA
| | - David Bulkley
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA, USA
| | - Ming Sun
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA, USA
| | - Amber M. Smith
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA, USA
| | - Alexandrea N. Rizo
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA, USA
| | - Frank Moss
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA, USA
| | - Axel F. Brilot
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA, USA
| | - Sergei Pourmal
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA, USA
| | - Raphael Trenker
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA, USA
| | - Thomas Pospiech
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA, USA
| | - Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging and the Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Benjamin Barsi-Rhyne
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, USA
| | - Vladislav Belyy
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA.,Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | | | - Silke Nock
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA.,Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Yuwei Liu
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA.,Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Nevan J. Krogan
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA
| | - Corie Y. Ralston
- Molecular Biophysics and Integrated Bioimaging and the Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Danielle L. Swaney
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Melanie Ott
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | - Peter Walter
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA.,Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.,Corresponding author. (M.S.); (P.W.); (A.M.)
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California, San Francisco, CA, USA.,Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,Department of Anesthesia and Perioperative Care, University of California at San Francisco, San Francisco, CA, USA.,Corresponding author. (M.S.); (P.W.); (A.M.)
| |
Collapse
|
841
|
Silva de Souza A, Rivera JD, Almeida VM, Ge P, de Souza RF, Farah CS, Ulrich H, Marana SR, Salinas RK, Guzzo CR. Molecular Dynamics Reveals Complex Compensatory Effects of Ionic Strength on the Severe Acute Respiratory Syndrome Coronavirus 2 Spike/Human Angiotensin-Converting Enzyme 2 Interaction. J Phys Chem Lett 2020; 11:10446-10453. [PMID: 33269932 PMCID: PMC7737395 DOI: 10.1021/acs.jpclett.0c02602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/30/2020] [Indexed: 05/13/2023]
Abstract
The SARS-CoV-2 pandemic has already killed more than one million people worldwide. To gain entry, the virus uses its Spike protein to bind to host hACE-2 receptors on the host cell surface and mediate fusion between viral and cell membranes. As initial steps leading to virus entry involve significant changes in protein conformation as well as in the electrostatic environment in the vicinity of the Spike/hACE-2 complex, we explored the sensitivity of the interaction to changes in ionic strength through computational simulations and surface plasmon resonance. We identified two regions in the receptor-binding domain (RBD), E1 and E2, which interact differently with hACE-2. At high salt concentration, E2-mediated interactions are weakened but are compensated by strengthening E1-mediated hydrophobic interactions. These results provide a detailed molecular understanding of Spike RBD/hACE-2 complex formation and stability under a wide range of ionic strengths.
Collapse
Affiliation(s)
- Anacleto Silva de Souza
- Department
of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 5508-900 São Paulo, Brazil
| | - Jose David Rivera
- Department
of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Vitor Medeiros Almeida
- Department
of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Pingju Ge
- Acrobiosystems
Inc., Beijing 100176, China
| | - Robson Francisco de Souza
- Department
of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 5508-900 São Paulo, Brazil
| | - Chuck Shaker Farah
- Department
of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Henning Ulrich
- Department
of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Sandro Roberto Marana
- Department
of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Roberto Kopke Salinas
- Department
of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Cristiane Rodrigues Guzzo
- Department
of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 5508-900 São Paulo, Brazil
| |
Collapse
|
842
|
Mariano G, Farthing RJ, Lale-Farjat SLM, Bergeron JRC. Structural Characterization of SARS-CoV-2: Where We Are, and Where We Need to Be. Front Mol Biosci 2020; 7:605236. [PMID: 33392262 PMCID: PMC7773825 DOI: 10.3389/fmolb.2020.605236] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/22/2020] [Indexed: 01/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread in humans in almost every country, causing the disease COVID-19. Since the start of the COVID-19 pandemic, research efforts have been strongly directed towards obtaining a full understanding of the biology of the viral infection, in order to develop a vaccine and therapeutic approaches. In particular, structural studies have allowed to comprehend the molecular basis underlying the role of many of the SARS-CoV-2 proteins, and to make rapid progress towards treatment and preventive therapeutics. Despite the great advances that have been provided by these studies, many knowledge gaps on the biology and molecular basis of SARS-CoV-2 infection still remain. Filling these gaps will be the key to tackle this pandemic, through development of effective treatments and specific vaccination strategies.
Collapse
Affiliation(s)
- Giuseppina Mariano
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rebecca J. Farthing
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | | | - Julien R. C. Bergeron
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| |
Collapse
|
843
|
Onishchenko GG, Sizikova TE, Lebedev VN, Borisevich SV. Analysis of Promising Approaches to COVID-19 Vaccine Development. ACTA ACUST UNITED AC 2020. [DOI: 10.30895/2221-996x-2020-20-4-216-227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The number of confirmed COVID-19 cases worldwide amounted to 50 million at the beginning of November 2020. This is clearly not enough for the formation of herd immunity, which will prevent repeated outbreaks of the disease. Quarantine measures can only curb the spread of the disease to some extent, therefore specific preventive measures are needed to create collective immunity to COVID-19.The underlying principle of collective immunity is indirect protection of the whole of the population by immunising a certain part of it. Vaccination is the most effective approach to prevention of epidemic outbreaks. The aim of the study was to analyse promising approaches to the development of vaccines against novel coronavirus COVID-19 infection. The paper summarises data on development studies and clinical trials of COVID-19 vaccines conducted in different countries. It analyses the pros and cons of different platforms for vaccine development (attenuated vaccines, inactivated vaccines, subunit vaccines, DNA and RNA vaccines, recombinant vector vaccines). The paper presents a potential design of novel vaccines. It was concluded that COVID-19 vaccines might be developed both for immunising high-risk groups and for mass immunisation. An optimal solution for the second task would be to develop human or monkey adenovirus vector-based vaccines whose mass production has already been unveiled.
Collapse
|
844
|
Ng KW, Faulkner N, Cornish GH, Rosa A, Harvey R, Hussain S, Ulferts R, Earl C, Wrobel AG, Benton DJ, Roustan C, Bolland W, Thompson R, Agua-Doce A, Hobson P, Heaney J, Rickman H, Paraskevopoulou S, Houlihan CF, Thomson K, Sanchez E, Shin GY, Spyer MJ, Joshi D, O'Reilly N, Walker PA, Kjaer S, Riddell A, Moore C, Jebson BR, Wilkinson M, Marshall LR, Rosser EC, Radziszewska A, Peckham H, Ciurtin C, Wedderburn LR, Beale R, Swanton C, Gandhi S, Stockinger B, McCauley J, Gamblin SJ, McCoy LE, Cherepanov P, Nastouli E, Kassiotis G. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science 2020; 370:1339-1343. [PMID: 33159009 DOI: 10.1101/2020.05.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/29/2020] [Indexed: 05/20/2023]
Abstract
Zoonotic introduction of novel coronaviruses may encounter preexisting immunity in humans. Using diverse assays for antibodies recognizing SARS-CoV-2 proteins, we detected preexisting humoral immunity. SARS-CoV-2 spike glycoprotein (S)-reactive antibodies were detectable using a flow cytometry-based method in SARS-CoV-2-uninfected individuals and were particularly prevalent in children and adolescents. They were predominantly of the immunoglobulin G (IgG) class and targeted the S2 subunit. By contrast, SARS-CoV-2 infection induced higher titers of SARS-CoV-2 S-reactive IgG antibodies targeting both the S1 and S2 subunits, and concomitant IgM and IgA antibodies, lasting throughout the observation period. SARS-CoV-2-uninfected donor sera exhibited specific neutralizing activity against SARS-CoV-2 and SARS-CoV-2 S pseudotypes. Distinguishing preexisting and de novo immunity will be critical for our understanding of susceptibility to and the natural course of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kevin W Ng
- Retroviral Immunology, The Francis Crick Institute, London NW1 1AT, UK
| | - Nikhil Faulkner
- Retroviral Immunology, The Francis Crick Institute, London NW1 1AT, UK
| | | | - Annachiara Rosa
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Ruth Harvey
- Worldwide Influenza Centre, The Francis Crick Institute, London NW1 1AT, UK
| | - Saira Hussain
- Worldwide Influenza Centre, The Francis Crick Institute, London NW1 1AT, UK
| | - Rachel Ulferts
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Christopher Earl
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Antoni G Wrobel
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Donald J Benton
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Chloe Roustan
- Structural Biology STP, The Francis Crick Institute, London NW1 1AT, UK
| | - William Bolland
- Retroviral Immunology, The Francis Crick Institute, London NW1 1AT, UK
| | - Rachael Thompson
- Retroviral Immunology, The Francis Crick Institute, London NW1 1AT, UK
| | - Ana Agua-Doce
- Flow Cytometry STP, The Francis Crick Institute, London NW1 1AT, UK
| | - Philip Hobson
- Flow Cytometry STP, The Francis Crick Institute, London NW1 1AT, UK
| | - Judith Heaney
- University College London Hospitals (UCLH) NHS Trust, London NW1 2BU, UK
| | - Hannah Rickman
- University College London Hospitals (UCLH) NHS Trust, London NW1 2BU, UK
| | | | - Catherine F Houlihan
- University College London Hospitals (UCLH) NHS Trust, London NW1 2BU, UK
- Division of Infection and Immunity, University College London (UCL), London WC1E 6BT, UK
| | - Kirsty Thomson
- University College London Hospitals (UCLH) NHS Trust, London NW1 2BU, UK
| | - Emilie Sanchez
- University College London Hospitals (UCLH) NHS Trust, London NW1 2BU, UK
| | - Gee Yen Shin
- University College London Hospitals (UCLH) NHS Trust, London NW1 2BU, UK
| | - Moira J Spyer
- University College London Hospitals (UCLH) NHS Trust, London NW1 2BU, UK
- Department of Population, Policy and Practice, Great Ormond Street Institute for Child Health (ICH), UCL, London WC1N 1EH, UK
| | - Dhira Joshi
- Peptide Chemistry, The Francis Crick Institute, London NW1 1AT, UK
| | - Nicola O'Reilly
- Peptide Chemistry, The Francis Crick Institute, London NW1 1AT, UK
| | - Philip A Walker
- Structural Biology STP, The Francis Crick Institute, London NW1 1AT, UK
| | - Svend Kjaer
- Structural Biology STP, The Francis Crick Institute, London NW1 1AT, UK
| | - Andrew Riddell
- Flow Cytometry STP, The Francis Crick Institute, London NW1 1AT, UK
| | - Catherine Moore
- Public Health Wales, University Hospital of Wales, Cardiff CF14 4XW, UK
| | - Bethany R Jebson
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, Great Ormond Street Hospital (GOSH), London WC1N 3JH, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London WC1N 1EH, UK
| | - Meredyth Wilkinson
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, Great Ormond Street Hospital (GOSH), London WC1N 3JH, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London WC1N 1EH, UK
| | - Lucy R Marshall
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, Great Ormond Street Hospital (GOSH), London WC1N 3JH, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London WC1N 1EH, UK
| | - Elizabeth C Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, Great Ormond Street Hospital (GOSH), London WC1N 3JH, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, WC1E 6BT, UK
| | - Anna Radziszewska
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, Great Ormond Street Hospital (GOSH), London WC1N 3JH, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, WC1E 6BT, UK
| | - Hannah Peckham
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, Great Ormond Street Hospital (GOSH), London WC1N 3JH, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, WC1E 6BT, UK
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, Great Ormond Street Hospital (GOSH), London WC1N 3JH, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, WC1E 6BT, UK
| | - Lucy R Wedderburn
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, Great Ormond Street Hospital (GOSH), London WC1N 3JH, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London WC1N 1EH, UK
| | - Rupert Beale
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Sonia Gandhi
- Neurodegeneration Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | | | - John McCauley
- Worldwide Influenza Centre, The Francis Crick Institute, London NW1 1AT, UK
| | - Steve J Gamblin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Laura E McCoy
- Division of Infection and Immunity, University College London (UCL), London WC1E 6BT, UK.
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| | - Eleni Nastouli
- University College London Hospitals (UCLH) NHS Trust, London NW1 2BU, UK.
- Department of Population, Policy and Practice, Great Ormond Street Institute for Child Health (ICH), UCL, London WC1N 1EH, UK
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, London NW1 1AT, UK.
- Department of Medicine, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| |
Collapse
|
845
|
Ng KW, Faulkner N, Cornish GH, Rosa A, Harvey R, Hussain S, Ulferts R, Earl C, Wrobel AG, Benton DJ, Roustan C, Bolland W, Thompson R, Agua-Doce A, Hobson P, Heaney J, Rickman H, Paraskevopoulou S, Houlihan CF, Thomson K, Sanchez E, Shin GY, Spyer MJ, Joshi D, O'Reilly N, Walker PA, Kjaer S, Riddell A, Moore C, Jebson BR, Wilkinson M, Marshall LR, Rosser EC, Radziszewska A, Peckham H, Ciurtin C, Wedderburn LR, Beale R, Swanton C, Gandhi S, Stockinger B, McCauley J, Gamblin SJ, McCoy LE, Cherepanov P, Nastouli E, Kassiotis G. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science 2020; 370:1339-1343. [PMID: 33159009 PMCID: PMC7857411 DOI: 10.1126/science.abe1107] [Citation(s) in RCA: 625] [Impact Index Per Article: 125.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
Zoonotic introduction of novel coronaviruses may encounter preexisting immunity in humans. Using diverse assays for antibodies recognizing SARS-CoV-2 proteins, we detected preexisting humoral immunity. SARS-CoV-2 spike glycoprotein (S)-reactive antibodies were detectable using a flow cytometry-based method in SARS-CoV-2-uninfected individuals and were particularly prevalent in children and adolescents. They were predominantly of the immunoglobulin G (IgG) class and targeted the S2 subunit. By contrast, SARS-CoV-2 infection induced higher titers of SARS-CoV-2 S-reactive IgG antibodies targeting both the S1 and S2 subunits, and concomitant IgM and IgA antibodies, lasting throughout the observation period. SARS-CoV-2-uninfected donor sera exhibited specific neutralizing activity against SARS-CoV-2 and SARS-CoV-2 S pseudotypes. Distinguishing preexisting and de novo immunity will be critical for our understanding of susceptibility to and the natural course of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kevin W Ng
- Retroviral Immunology, The Francis Crick Institute, London NW1 1AT, UK
| | - Nikhil Faulkner
- Retroviral Immunology, The Francis Crick Institute, London NW1 1AT, UK
| | | | - Annachiara Rosa
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Ruth Harvey
- Worldwide Influenza Centre, The Francis Crick Institute, London NW1 1AT, UK
| | - Saira Hussain
- Worldwide Influenza Centre, The Francis Crick Institute, London NW1 1AT, UK
| | - Rachel Ulferts
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Christopher Earl
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Antoni G Wrobel
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Donald J Benton
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Chloe Roustan
- Structural Biology STP, The Francis Crick Institute, London NW1 1AT, UK
| | - William Bolland
- Retroviral Immunology, The Francis Crick Institute, London NW1 1AT, UK
| | - Rachael Thompson
- Retroviral Immunology, The Francis Crick Institute, London NW1 1AT, UK
| | - Ana Agua-Doce
- Flow Cytometry STP, The Francis Crick Institute, London NW1 1AT, UK
| | - Philip Hobson
- Flow Cytometry STP, The Francis Crick Institute, London NW1 1AT, UK
| | - Judith Heaney
- University College London Hospitals (UCLH) NHS Trust, London NW1 2BU, UK
| | - Hannah Rickman
- University College London Hospitals (UCLH) NHS Trust, London NW1 2BU, UK
| | | | - Catherine F Houlihan
- University College London Hospitals (UCLH) NHS Trust, London NW1 2BU, UK
- Division of Infection and Immunity, University College London (UCL), London WC1E 6BT, UK
| | - Kirsty Thomson
- University College London Hospitals (UCLH) NHS Trust, London NW1 2BU, UK
| | - Emilie Sanchez
- University College London Hospitals (UCLH) NHS Trust, London NW1 2BU, UK
| | - Gee Yen Shin
- University College London Hospitals (UCLH) NHS Trust, London NW1 2BU, UK
| | - Moira J Spyer
- University College London Hospitals (UCLH) NHS Trust, London NW1 2BU, UK
- Department of Population, Policy and Practice, Great Ormond Street Institute for Child Health (ICH), UCL, London WC1N 1EH, UK
| | - Dhira Joshi
- Peptide Chemistry, The Francis Crick Institute, London NW1 1AT, UK
| | - Nicola O'Reilly
- Peptide Chemistry, The Francis Crick Institute, London NW1 1AT, UK
| | - Philip A Walker
- Structural Biology STP, The Francis Crick Institute, London NW1 1AT, UK
| | - Svend Kjaer
- Structural Biology STP, The Francis Crick Institute, London NW1 1AT, UK
| | - Andrew Riddell
- Flow Cytometry STP, The Francis Crick Institute, London NW1 1AT, UK
| | - Catherine Moore
- Public Health Wales, University Hospital of Wales, Cardiff CF14 4XW, UK
| | - Bethany R Jebson
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, Great Ormond Street Hospital (GOSH), London WC1N 3JH, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London WC1N 1EH, UK
| | - Meredyth Wilkinson
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, Great Ormond Street Hospital (GOSH), London WC1N 3JH, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London WC1N 1EH, UK
| | - Lucy R Marshall
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, Great Ormond Street Hospital (GOSH), London WC1N 3JH, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London WC1N 1EH, UK
| | - Elizabeth C Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, Great Ormond Street Hospital (GOSH), London WC1N 3JH, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, WC1E 6BT, UK
| | - Anna Radziszewska
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, Great Ormond Street Hospital (GOSH), London WC1N 3JH, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, WC1E 6BT, UK
| | - Hannah Peckham
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, Great Ormond Street Hospital (GOSH), London WC1N 3JH, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, WC1E 6BT, UK
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, Great Ormond Street Hospital (GOSH), London WC1N 3JH, UK
- Centre for Rheumatology Research, Division of Medicine, UCL, London, WC1E 6BT, UK
| | - Lucy R Wedderburn
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCLH, Great Ormond Street Hospital (GOSH), London WC1N 3JH, UK
- UCL Great Ormond Street Institute for Child Health (ICH), UCL, London WC1N 1EH, UK
| | - Rupert Beale
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Sonia Gandhi
- Neurodegeneration Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | | | - John McCauley
- Worldwide Influenza Centre, The Francis Crick Institute, London NW1 1AT, UK
| | - Steve J Gamblin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Laura E McCoy
- Division of Infection and Immunity, University College London (UCL), London WC1E 6BT, UK.
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| | - Eleni Nastouli
- University College London Hospitals (UCLH) NHS Trust, London NW1 2BU, UK.
- Department of Population, Policy and Practice, Great Ormond Street Institute for Child Health (ICH), UCL, London WC1N 1EH, UK
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, London NW1 1AT, UK.
- Department of Medicine, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| |
Collapse
|
846
|
Zhou T, Tsybovsky Y, Gorman J, Rapp M, Cerutti G, Chuang GY, Katsamba PS, Sampson JM, Schön A, Bimela J, Boyington JC, Nazzari A, Olia AS, Shi W, Sastry M, Stephens T, Stuckey J, Teng IT, Wang P, Wang S, Zhang B, Friesner RA, Ho DD, Mascola JR, Shapiro L, Kwong PD. Cryo-EM Structures of SARS-CoV-2 Spike without and with ACE2 Reveal a pH-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains. Cell Host Microbe 2020; 28:867-879.e5. [PMID: 33271067 PMCID: PMC7670890 DOI: 10.1016/j.chom.2020.11.004] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/20/2020] [Accepted: 11/09/2020] [Indexed: 01/21/2023]
Abstract
The SARS-CoV-2 spike employs mobile receptor-binding domains (RBDs) to engage the human ACE2 receptor and to facilitate virus entry, which can occur through low-pH-endosomal pathways. To understand how ACE2 binding and low pH affect spike conformation, we determined cryo-electron microscopy structures-at serological and endosomal pH-delineating spike recognition of up to three ACE2 molecules. RBDs freely adopted "up" conformations required for ACE2 interaction, primarily through RBD movement combined with smaller alterations in neighboring domains. In the absence of ACE2, single-RBD-up conformations dominated at pH 5.5, resolving into a solitary all-down conformation at lower pH. Notably, a pH-dependent refolding region (residues 824-858) at the spike-interdomain interface displayed dramatic structural rearrangements and mediated RBD positioning through coordinated movements of the entire trimer apex. These structures provide a foundation for understanding prefusion-spike mechanics governing endosomal entry; we suggest that the low pH all-down conformation potentially facilitates immune evasion from RBD-up binding antibody.
Collapse
Affiliation(s)
- Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Micah Rapp
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Gabriele Cerutti
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Phinikoula S Katsamba
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Jared M Sampson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jude Bimela
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Jeffrey C Boyington
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyler Stephens
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jonathan Stuckey
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pengfei Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
847
|
Tarke A, Sidney J, Kidd CK, Dan JM, Ramirez SI, Yu ED, Mateus J, da Silva Antunes R, Moore E, Rubiro P, Methot N, Phillips E, Mallal S, Frazier A, Rawlings SA, Greenbaum JA, Peters B, Smith DM, Crotty S, Weiskopf D, Grifoni A, Sette A. Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33330869 DOI: 10.1101/2020.12.08.416750] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
T cells are involved in control of SARS-CoV-2 infection. To establish the patterns of immunodominance of different SARS-CoV-2 antigens, and precisely measure virus-specific CD4 + and CD8 + T cells, we studied epitope-specific T cell responses of approximately 100 convalescent COVID-19 cases. The SARS-CoV-2 proteome was probed using 1,925 peptides spanning the entire genome, ensuring an unbiased coverage of HLA alleles for class II responses. For HLA class I, we studied an additional 5,600 predicted binding epitopes for 28 prominent HLA class I alleles, accounting for wide global coverage. We identified several hundred HLA-restricted SARS-CoV-2-derived epitopes. Distinct patterns of immunodominance were observed, which differed for CD4 + T cells, CD8 + T cells, and antibodies. The class I and class II epitopes were combined into new epitope megapools to facilitate identification and quantification of SARS-CoV-2-specific CD4 + and CD8 + T cells.
Collapse
|
848
|
Lu M, Uchil PD, Li W, Zheng D, Terry DS, Gorman J, Shi W, Zhang B, Zhou T, Ding S, Gasser R, Prévost J, Beaudoin-Bussières G, Anand SP, Laumaea A, Grover JR, Liu L, Ho DD, Mascola JR, Finzi A, Kwong PD, Blanchard SC, Mothes W. Real-Time Conformational Dynamics of SARS-CoV-2 Spikes on Virus Particles. Cell Host Microbe 2020; 28:880-891.e8. [PMID: 33242391 PMCID: PMC7664471 DOI: 10.1016/j.chom.2020.11.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/01/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) mediates viral entry into cells and is critical for vaccine development against coronavirus disease 2019 (COVID-19). Structural studies have revealed distinct conformations of S, but real-time information that connects these structures is lacking. Here we apply single-molecule fluorescence (Förster) resonance energy transfer (smFRET) imaging to observe conformational dynamics of S on virus particles. Virus-associated S dynamically samples at least four distinct conformational states. In response to human receptor angiotensin-converting enzyme 2 (hACE2), S opens sequentially into the hACE2-bound S conformation through at least one on-path intermediate. Conformational preferences observed upon exposure to convalescent plasma or antibodies suggest mechanisms of neutralization involving either competition with hACE2 for binding to the receptor-binding domain (RBD) or allosteric interference with conformational changes required for entry. Our findings inform on mechanisms of S recognition and conformations for immunogen design.
Collapse
Affiliation(s)
- Maolin Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| | - Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Wenwei Li
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Desheng Zheng
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Daniel S Terry
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shilei Ding
- Centre de Recherche du CHUM (CRCHUM), Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM (CRCHUM), Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM (CRCHUM), Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM (CRCHUM), Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Sai Priya Anand
- Centre de Recherche du CHUM (CRCHUM), Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Annemarie Laumaea
- Centre de Recherche du CHUM (CRCHUM), Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Jonathan R Grover
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Lihong Liu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM (CRCHUM), Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
849
|
Di Natale C, La Manna S, De Benedictis I, Brandi P, Marasco D. Perspectives in Peptide-Based Vaccination Strategies for Syndrome Coronavirus 2 Pandemic. Front Pharmacol 2020; 11:578382. [PMID: 33343349 PMCID: PMC7744882 DOI: 10.3389/fphar.2020.578382] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/09/2020] [Indexed: 01/08/2023] Open
Abstract
At the end of December 2019, an epidemic form of respiratory tract infection now named COVID-19 emerged in Wuhan, China. It is caused by a newly identified viral pathogen, the severe acute respiratory syndrome coronavirus (SARS-CoV-2), which can cause severe pneumonia and acute respiratory distress syndrome. On January 30, 2020, due to the rapid spread of infection, COVID-19 was declared as a global health emergency by the World Health Organization. Coronaviruses are enveloped RNA viruses belonging to the family of Coronaviridae, which are able to infect birds, humans and other mammals. The majority of human coronavirus infections are mild although already in 2003 and in 2012, the epidemics of SARS-CoV and Middle East Respiratory Syndrome coronavirus (MERS-CoV), respectively, were characterized by a high mortality rate. In this regard, many efforts have been made to develop therapeutic strategies against human CoV infections but, unfortunately, drug candidates have shown efficacy only into in vitro studies, limiting their use against COVID-19 infection. Actually, no treatment has been approved in humans against SARS-CoV-2, and therefore there is an urgent need of a suitable vaccine to tackle this health issue. However, the puzzled scenario of biological features of the virus and its interaction with human immune response, represent a challenge for vaccine development. As expected, in hundreds of research laboratories there is a running out of breath to explore different strategies to obtain a safe and quickly spreadable vaccine; and among others, the peptide-based approach represents a turning point as peptides have demonstrated unique features of selectivity and specificity toward specific targets. Peptide-based vaccines imply the identification of different epitopes both on human cells and virus capsid and the design of peptide/peptidomimetics able to counteract the primary host-pathogen interaction, in order to induce a specific host immune response. SARS-CoV-2 immunogenic regions are mainly distributed, as well as for other coronaviruses, across structural areas such as spike, envelope, membrane or nucleocapsid proteins. Herein, we aim to highlight the molecular basis of the infection and recent peptide-based vaccines strategies to fight the COVID-19 pandemic including their delivery systems.
Collapse
Affiliation(s)
- Concetta Di Natale
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano Di Tecnologia, Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, Dei Materiali e Della Produzione Industriale, University of Naples Federico II, Naples, Italy
| | - Sara La Manna
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Paola Brandi
- Centro Nacional De Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Daniela Marasco
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
850
|
Abstract
Many research teams all over the world focus their research on the SARS-CoV-2, the new coronavirus that causes the so-called COVID-19 disease. Most of the studies identify the main protease or 3C-like protease (Mpro/3CLpro) as a valid target for large-spectrum inhibitors. Also, the interaction of the human receptor angiotensin-converting enzyme 2 (ACE2) with the viral surface glycoprotein (S) is studied in depth. Structural studies tried to identify the residues responsible for enhancement/weaken virus-ACE2 interactions or the cross-reactivity of the neutralizing antibodies. Although the understanding of the immune system and the hyper-inflammatory process in COVID-19 are crucial for managing the immediate and the long-term consequences of the disease, not many X-ray/NMR/cryo-EM crystals are available. In addition to 3CLpro, the crystal structures of other nonstructural proteins offer valuable information for elucidating some aspects of the SARS-CoV-2 infection. Thus, the structural analysis of the SARS-CoV-2 is currently mainly focused on three directions-finding Mpro/3CLpro inhibitors, the virus-host cell invasion, and the virus-neutralizing antibody interaction.
Collapse
Affiliation(s)
- Mihaela Ileana Ionescu
- Department of Microbiology, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Louis Pasteur, 400349, Cluj-Napoca, Romania.
- Department of Microbiology, County Emergency Clinical Hospital, 400006, Cluj-Napoca, Romania.
| |
Collapse
|