851
|
Olson KR. Reactive oxygen species or reactive sulfur species: why we should consider the latter. ACTA ACUST UNITED AC 2020; 223:223/4/jeb196352. [PMID: 32102833 DOI: 10.1242/jeb.196352] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The biological effects of oxidants, especially reactive oxygen species (ROS), include signaling functions (oxidative eustress), initiation of measures to reduce elevated ROS (oxidative stress), and a cascade of pathophysiological events that accompany excessive ROS (oxidative distress). Although these effects have long been studied in animal models with perturbed ROS, their actions under physiological conditions are less clear. I propose that some of the apparent uncertainty may be due to confusion of ROS with endogenously generated reactive sulfur species (RSS). ROS and RSS are chemically similar, but RSS are more reactive and versatile, and can be stored and reused. Both ROS and RSS signal via oxidation reactions with protein cysteine sulfur and they produce identical effector responses, but RSS appear to be more effective. RSS in the form of persulfidated cysteines (Cys-S-S) are produced endogenously and co-translationally introduced into proteins, and there is increasing evidence that many cellular proteins are persulfidated. A number of practical factors have contributed to confusion between ROS and RSS, and these are discussed herein. Furthermore, essentially all endogenous antioxidant enzymes appeared shortly after life began, some 3.8 billion years ago, when RSS metabolism dominated evolution. This was long before the rise in ROS, 600 million years ago, and I propose that these same enzymes, with only minor modifications, still effectively metabolize RSS in extant organisms. I am not suggesting that all ROS are RSS; however, I believe that the relative importance of ROS and RSS in biological systems needs further consideration.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine-South Bend, Raclin Carmichael Hall, 1234 Notre Dame Avenue, South Bend, IN 46617, USA
| |
Collapse
|
852
|
Li X, Hou Y, Zhao J, Li J, Wang S, Fang J. Combination of chemotherapy and oxidative stress to enhance cancer cell apoptosis. Chem Sci 2020; 11:3215-3222. [PMID: 34122827 PMCID: PMC8157308 DOI: 10.1039/c9sc05997k] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/24/2020] [Indexed: 12/27/2022] Open
Abstract
Cancer cells are vulnerable to reactive oxygen species (ROS) due to their abnormal redox environment. Accordingly, combination of chemotherapy and oxidative stress has gained increasing interest for the treatment of cancer. We report a novel seleno-prodrug of gemcitabine (Gem), Se-Gem, and evaluated its activation and biological effects in cancer cells. Se-Gem was prepared by introducing a 1,2-diselenolane (a five-membered cyclic diselenide) moiety into the parent drug Gem via a carbamate linker. Se-Gem is preferably activated by glutathione (GSH) and displays a remarkably higher potency than Gem (up to a 6-fold increase) to a panel of cancer cell lines. The activation of Se-Gem by GSH releases Gem and a seleno-intermediate nearly quantitatively. Unlike the most ignored side products in prodrug activation, the seleno-intermediate further catalyzes a conversion of GSH and oxygen to GSSG (oxidized GSH) and ROS via redox cycling reactions. Thus Se-Gem may be considered as a suicide agent to deplete GSH and works by a combination of chemotherapy and oxidative stress. This is the first case that employs a cyclic diselenide in prodrug design, and the success of Se-Gem as well as its well-defined action mechanism demonstrates that the 1,2-diselenolane moiety may serve as a general scaffold to advance constructing novel therapeutic molecules with improved potency via a combination of chemotherapy and oxidative stress.
Collapse
Affiliation(s)
- Xinming Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Yanan Hou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Jintao Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Jin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Song Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| |
Collapse
|
853
|
Potential Applications of NRF2 Modulators in Cancer Therapy. Antioxidants (Basel) 2020; 9:antiox9030193. [PMID: 32106613 PMCID: PMC7139512 DOI: 10.3390/antiox9030193] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 01/17/2023] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2)-Kelch-like ECH-associated protein 1 (KEAP1) regulatory pathway plays an essential role in protecting cells and tissues from oxidative, electrophilic, and xenobiotic stress. By controlling the transactivation of over 500 cytoprotective genes, the NRF2 transcription factor has been implicated in the physiopathology of several human diseases, including cancer. In this respect, accumulating evidence indicates that NRF2 can act as a double-edged sword, being able to mediate tumor suppressive or pro-oncogenic functions, depending on the specific biological context of its activation. Thus, a better understanding of the mechanisms that control NRF2 functions and the most appropriate context of its activation is a prerequisite for the development of effective therapeutic strategies based on NRF2 modulation. In line of principle, the controlled activation of NRF2 might reduce the risk of cancer initiation and development in normal cells by scavenging reactive-oxygen species (ROS) and by preventing genomic instability through decreased DNA damage. In contrast however, already transformed cells with constitutive or prolonged activation of NRF2 signaling might represent a major clinical hurdle and exhibit an aggressive phenotype characterized by therapy resistance and unfavorable prognosis, requiring the use of NRF2 inhibitors. In this review, we will focus on the dual roles of the NRF2-KEAP1 pathway in cancer promotion and inhibition, describing the mechanisms of its activation and potential therapeutic strategies based on the use of context-specific modulation of NRF2.
Collapse
|
854
|
Jalal N, Lee SF. The MsrAB reducing pathway of Streptococcus gordonii is needed for oxidative stress tolerance, biofilm formation, and oral colonization in mice. PLoS One 2020; 15:e0229375. [PMID: 32084213 PMCID: PMC7034828 DOI: 10.1371/journal.pone.0229375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
The ability of Streptococcus gordonii to cope with oxidative stress is important for survival and persistence in dental plaque. In this study, we used mutational, phenotypic, and biochemical approaches to characterize the role of a methionine sulfoxide reductase (MsrAB) and proteins encoded by genes in the msrAB operon and an adjacent operon in oxidative stress tolerance in S. gordonii. The results showed that MsrAB and four other proteins encoded in the operons are needed for protection from H2O2 and methionine sulfoxide. These five proteins formed a reducing pathway that was needed for oxidative stress tolerance, biofilm formation, and oral colonization in mice. In the pathway, MsrAB was the enzyme that repaired oxidatively damaged proteins, and the two thioredoxin-like lipoproteins (SdbB and Sgo_1177) and two CcdA proteins were proteins that maintained the catalytic cycle of MsrAB. Consistent with the role in oxidative stress tolerance, the production of MsrAB, SdbB, and Sgo_11777 was induced in aerobic growth and planktonic cells.
Collapse
Affiliation(s)
- Naif Jalal
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Canadian Center for Vaccinology, Dalhousie University, Nova Scotia Health Authority, Izaak Walton Killam Health Centre, Halifax, Nova Scotia, Canada
| | - Song F. Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Canadian Center for Vaccinology, Dalhousie University, Nova Scotia Health Authority, Izaak Walton Killam Health Centre, Halifax, Nova Scotia, Canada
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
855
|
Cheng P, Liu H, Li Y, Pi P, Jiang Y, Zang S, Li X, Fu A, Ren X, Xu J, Holmgren A, Lu J. Inhibition of thioredoxin reductase 1 correlates with platinum-based chemotherapeutic induced tissue injury. Biochem Pharmacol 2020; 175:113873. [PMID: 32092292 DOI: 10.1016/j.bcp.2020.113873] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/20/2020] [Indexed: 12/14/2022]
Abstract
Platinum-containing drugs (PtDs; e.g. cisplatin, carboplatin, and oxaliplatin) have been widely used as anticancer reagents against various cancers. However, treatment with these drugs results in undesirable adverse effects with unknown mechanisms. Herein, we found a strong correlation between the inhibitory effects of PtDs on cytosolic thioredoxin reductase (TXNRD1) and tissue injury. Of the PtDs tested, cisplatin was found to be the most effective inhibitory PtD against TXRND1, causing the severest kidney injury. The initial inhibition of TXNRD1 in the kidney resulted from cisplatin-induced transcriptional activation of Nrf2-regulated genes including Txnrd1. However, the antioxidant responses in the kidney did not reverse the cisplatin-induced oxidation process. Nephrotoxicity was accompanied with an increase of protein glutathionylation and a cellular thiol redox environment oxidation. These results suggest that the changes of the cellular thiol-dependent redox environment regulated by TXNRD1 is a major event in the adverse effects of cisplatin in kidney.
Collapse
Affiliation(s)
- Ping Cheng
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Huan Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yinchuan Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Peiling Pi
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yu Jiang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Shaozhen Zang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xiaorong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ailing Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoyuan Ren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Jianqiang Xu
- School of Life and Pharmaceutical Sciences & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Jun Lu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
856
|
Kruithof PD, Lunev S, Aguilar Lozano SP, de Assis Batista F, Al-Dahmani ZM, Joles JA, Dolga AM, Groves MR, van Goor H. Unraveling the role of thiosulfate sulfurtransferase in metabolic diseases. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165716. [PMID: 32061776 DOI: 10.1016/j.bbadis.2020.165716] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/10/2020] [Accepted: 01/30/2020] [Indexed: 02/08/2023]
Abstract
Thiosulfate sulfurtransferase (TST, EC 2.8.1.1), also known as Rhodanese, is a mitochondrial enzyme which catalyzes the transfer of sulfur in several molecular pathways. After its initial identification as a cyanide detoxification enzyme, it was found that its functions also include sulfur metabolism, modification of iron‑sulfur clusters and the reduction of antioxidants glutathione and thioredoxin. TST deficiency was shown to be strongly related to the pathophysiology of metabolic diseases including diabetes and obesity. This review summarizes research related to the enzymatic properties and functions of TST, to then explore the association between the effects of TST on mitochondria and development of diseases such as diabetes and obesity.
Collapse
Affiliation(s)
- Paul D Kruithof
- Univeristy of Groningen, Department of Pharmacy and Drug Design, the Netherlands
| | - Sergey Lunev
- Univeristy of Groningen, Department of Pharmacy and Drug Design, the Netherlands
| | | | | | - Zayana M Al-Dahmani
- Univeristy of Groningen, Department of Pharmacy and Drug Design, the Netherlands
| | - Jaap A Joles
- University Medical Center Utrecht, Department of Nephrology and Hypertension, the Netherlands
| | - Amalia M Dolga
- University of Groningen, Department of Pharmacy, Molecular Pharmacology, the Netherlands
| | - Matthew R Groves
- Univeristy of Groningen, Department of Pharmacy and Drug Design, the Netherlands
| | - Harry van Goor
- University Medical Center Groningen, Department of Pathology and Medical Biology the Netherlands.
| |
Collapse
|
857
|
Riaz SM, Bjune GA, Wiker HG, Sviland L, Mustafa T. Mycobacterial antigens accumulation in foamy macrophages in murine pulmonary tuberculosis lesions: Association with necrosis and making of cavities. Scand J Immunol 2020; 91:e12866. [PMID: 31960452 DOI: 10.1111/sji.12866] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/06/2019] [Accepted: 01/16/2020] [Indexed: 12/16/2022]
Abstract
Understanding mechanisms of cavitation in tuberculosis (TB) is the missing link that could advance the field towards better control of the infection. Descriptions of human TB suggest that postprimary TB begins as lipid pneumonia of foamy macrophages that undergoes caseating necrosis and fragmentation to produce cavities. This study aimed to investigate the various mycobacterial antigens accumulating in foamy macrophages and their relation to tissue destruction and necrosis. Pulmonary tissues from mice with slowly progressive TB were studied for histopathology, acid-fast bacilli (AFB) and presence of mycobacterial antigens. Digital quantification using Aperio ImageScope was done. Until week 12 postinfection, mice were healthy, and lesions were small with scarce AFB and mycobacterial antigens. Colony-forming units (CFUs) increased exponentially. At week 16-33, mice were sick, macrophages attained foamy appearance with an increase in antigens (P < .05), 1.5 log increase in CFUs and an approximately onefold increase in AFB. At week 37-41, mice started dying with a shift in morphology towards necrosis. A >20-fold increase in mycobacterial antigens was observed with only less than one log increase in CFUs and sevenfold increase in AFB. Secreted antigens were significantly (P < .05) higher compared to cell-wall antigens throughout infection. Focal areas of necrosis were associated with an approximately 40-fold increase in antigen MPT46, functionally active thioredoxin, and a significant increase in all secreted antigens. In conclusion, mycobacterial antigens accumulate in the foamy macrophages in TB lesions during slowly progressive murine pulmonary TB. Secreted antigens and MPT46 correlated with necrosis, thereby implying that they might trigger the formation of cavities.
Collapse
Affiliation(s)
- Syeda Mariam Riaz
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Gunnar Aksel Bjune
- Department of Community Medicine, Institute of Health and Society, The Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Harald G Wiker
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lisbet Sviland
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Tehmina Mustafa
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
858
|
Jovanović M, Zhukovsky D, Podolski-Renić A, Žalubovskis R, Dar'in D, Sharoyko V, Tennikova T, Pešić M, Krasavin M. Further exploration of DVD-445 as a lead thioredoxin reductase (TrxR) inhibitor for cancer therapy: Optimization of potency and evaluation of anticancer potential. Eur J Med Chem 2020; 191:112119. [PMID: 32087464 DOI: 10.1016/j.ejmech.2020.112119] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
Abstract
A series of analogs of the earlier reported lead compound DVD-445 (thioredoxin reductase inhibitor with anticancer activity) has been synthesized via a modified Ugi reaction and investigated. Seven most potent compounds (with IC50 below 5.00 μM against recombinant rTrxR1 enzyme) were examined for their effect on cell growth and viability, oxidative stress induction and P-glycoprotein (P-gp) inhibition in human glioblastoma cells cell line U87 and its corresponding multidrug resistant (MDR) cell line U87-TxR. Several of these frontrunner compounds were shown to be superior over DVD-445. Besides providing promising candidates for anticancer therapy, our study further validates the small electrophilic Ugi Michael acceptor (UMA) chemotype as efficacious inhibitor of thioredoxin reductase.
Collapse
Affiliation(s)
- Mirna Jovanović
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia
| | - Daniil Zhukovsky
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Ana Podolski-Renić
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, LV-1006, Latvia; Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, LV-1048, Latvia
| | - Dmitry Dar'in
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Vladimir Sharoyko
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Tatiana Tennikova
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Milica Pešić
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia.
| | - Mikhail Krasavin
- Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation.
| |
Collapse
|
859
|
Fiorani M, Guidarelli A, Cantoni O. Mitochondrial reactive oxygen species: the effects of mitochondrial ascorbic acid vs untargeted and mitochondria-targeted antioxidants. Int J Radiat Biol 2020; 97:1055-1062. [PMID: 31976796 DOI: 10.1080/09553002.2020.1721604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022]
Abstract
PREMISE Mitochondria represent critical sites for reactive oxygen species (ROS) production, which dependent on concentration is responsible for the regulation of both physiological and pathological processes. PURPOSE Antioxidants in mitochondria regulate the redox balance, prevent mitochondrial damage and dysfunction and maintain a physiological ROS-dependent signaling. The aim of the present review is to provide critical elements for addressing this issue in the context of various pharmacological approaches using antioxidants targeted or non-targeted to mitochondria. Furthermore, this review focuses on the mitochondrial antioxidant effects of ascorbic acid (AA), providing clues on the complexities associated with the cellular uptake and subcellular distribution of the vitamin. CONCLUSIONS Antioxidants that are not specifically targeted to mitochondria fail to accumulate in significant amounts in critical sites of mitochondrial ROS production and may eventually interfere with the ensuing physiological signaling. Mitochondria-targeted antioxidants are more effective, but are expected to interfere with the mitochondrial ROS-dependent physiologic signaling. AA promotes multiple beneficial effects in mitochondria. The complex regulation of vitamin C uptake in these organelles likely contributes to its versatile antioxidant response, thereby providing a central role to the vitamin for adequate control of mitochondrial dysfunction associated with increased mitochondrial ROS production.
Collapse
Affiliation(s)
- Mara Fiorani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
860
|
Firczuk M, Bajor M, Graczyk-Jarzynka A, Fidyt K, Goral A, Zagozdzon R. Harnessing altered oxidative metabolism in cancer by augmented prooxidant therapy. Cancer Lett 2020; 471:1-11. [DOI: 10.1016/j.canlet.2019.11.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/20/2019] [Accepted: 11/30/2019] [Indexed: 12/17/2022]
|
861
|
Liu C, Han X, Yu PJ, Chen LZ, Xue W, Liu XH. Synthesis and biological evaluation of myricetin-pentadienone hybrids as potential anti-inflammatory agents in vitro and in vivo. Bioorg Chem 2020; 96:103597. [PMID: 32028063 DOI: 10.1016/j.bioorg.2020.103597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 01/01/2023]
Abstract
Some important pro-inflammatory cytokines such as interleukin-6, tumor necrosis factor-α and nitric oxide are thought to play key roles in the destruction of cartilage and bone tissue in joints affected by rheumatoid arthritis. In the present study, a series of new myricetin-pentadienone hybrids were designed and synthesized. Majority of them effectively inhibited the expressions liposaccharide-induced secretion of IL-6, TNF-α and NO in RAW264.7. The most prominent compound 5o could significantly decrease production of above inflammatory factors with IC50 values of 5.22 µM, 8.22 µM and 9.31 µM, respectively. Preliminary mechanism studies indicated that it could inhibit the expression of thioredoxin reductase, resulting in inhibiting of cell signaling pathway nuclear factor (N-κB) and mitogen-activated protein kinases. Significantly, compound 5o was found to effectively inhibit Freund's complete adjuvant induced rat adjuvant arthritis in vivo.
Collapse
Affiliation(s)
- Chao Liu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, PR China
| | - Xu Han
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Pei Jing Yu
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Liu Zeng Chen
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang 550025, PR China.
| | - Xin Hua Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
862
|
Kusakisako K, Morokuma H, Talactac MR, Hernandez EP, Yoshii K, Tanaka T. A Peroxiredoxin From the Haemaphysalis longicornis Tick Affects Langat Virus Replication in a Hamster Cell Line. Front Cell Infect Microbiol 2020; 10:7. [PMID: 32047725 PMCID: PMC6997474 DOI: 10.3389/fcimb.2020.00007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
Ticks are hematophagous arthropods, and their blood feeding on vertebrate hosts is essential for their development. The vertebrate blood contains high levels of free iron that can react with oxygen in ticks, resulting in the production of hydrogen peroxide (H2O2), one of the reactive oxygen species. Peroxiredoxins (Prxs), H2O2-scavenging enzymes, take on an important role in the ticks' oxidative stress coping mechanism. Ticks also transmit several disease-causing pathogens, including tick-borne encephalitis virus (TBEV), in animals and humans. Therefore, the control of ticks and tick-borne pathogens is a key issue that needs to be addressed. Infection with an arthropod-borne flavivirus is known to induce oxidative stress in insect cells. We hypothesize that vector-derived Prxs could have an effect on the infection and/or replication of flaviviruses in the hosts, since ticks Prxs are possibly transmitted from ticks to their hosts. In this study, we established stable strains of baby hamster kidney (BHK) cells expressing two types of H2O2-scavenging Prxs from the hard tick Haemaphysalis longicornis (BHK-HlPrx and BHK-HlPrx2 cells). Although the infection of TBEV surrogate Langat virus (LGTV) did not induce H2O2 production in normal BHK cells, the mortality rate and the virus titer of LGTV infected BHK-HlPrx cells increased. In addition, HlPrx proteins in BHK cells can facilitate LGTV replication in cells, while HlPrx2 proteins in BHK cells cannot. The results also demonstrated that this facilitation of LGTV replication by the 1-Cys Prx in the BHK cells is not by scavenging H2O2 but by an unknown mechanism. In order to understand this mechanism, more studies using tick-derived cells and ticks are necessary.
Collapse
Affiliation(s)
- Kodai Kusakisako
- Laboratory of Parasitology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Haruki Morokuma
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Melbourne Rio Talactac
- Department of Clinical and Population Health, College of Veterinary Medicine and Biomedical Sciences, Cavite State University, Indang, Philippines
| | - Emmanuel Pacia Hernandez
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Kentaro Yoshii
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
863
|
TXNIP deficiency mitigates podocyte apoptosis via restraining the activation of mTOR or p38 MAPK signaling in diabetic nephropathy. Exp Cell Res 2020; 388:111862. [PMID: 31982382 DOI: 10.1016/j.yexcr.2020.111862] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 12/22/2022]
Abstract
Thioredoxin-interacting protein (TXNIP), is identified as an inhibitor of the thiol oxidoreductase thioredoxin that acts endogenously, and is increased by high glucose (HG). In this study, we investigated the potential function of TXNIP on apoptosis of podocytes and its potential mechanism in vivo and in vitro in diabetic nephropathy (DN). TXNIP silencing attenuated HG-induced apoptosis and obliterated the activation of signaling pathways of mammalian target of rapamycin (mTOR) and p38 mitogen-activated protein kinase (MAPK) in conditionally immortalized mouse podocytes. Furthermore, the Raptor and Rictor shRNAs, mTOR specific inhibitor KU-0063794 and p38 MAPK inhibitor SB203580 were used to assess the role of mTOR or p38 MAPK pathway on podocyte apoptosis induced by HG. The Rictor and Raptor shRNAs and KU-0063794 appeared to reduce HG-induced apoptosis in podocytes. Simultaneously, SB203580 could also restrain HG-induced apoptosis in podocytes. Streptozotocin rendered equivalent diabetes in TXNIP-/- (TKO) and wild-type (WT) control mice. TXNIP deficiency mitigated renal injury in diabetic mice. Additionally, TXNIP deficiency also descended the apoptosis-related protein and Nox4 levels, the mTOR signaling activation and the p38 MAPK phosphorylation in podocytes of diabetic mice. All these data indicate that TXNIP deficiency may mitigate apoptosis of podocytes by inhibiting p38 MAPK or mTOR signaling pathway in DN, underlining TXNIP as a putative target for therapy.
Collapse
|
864
|
Chen J, Wang Y. Genetic determinants of Salmonella enterica critical for attachment and biofilm formation. Int J Food Microbiol 2020; 320:108524. [PMID: 32000116 DOI: 10.1016/j.ijfoodmicro.2020.108524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/21/2022]
Abstract
Salmonella is a bacterial pathogen frequently involved in human gastrointestinal infections including those associated with low-moisture foods such as dehydrated food powders/spices, vegetable seeds, and tree nuts. The survival/persistence of Salmonella on low moisture foods and in dry environments is enhanced by its ability in developing biofilms. This study was undertaken to identify the genetic determinants critical for Salmonella attachment and biofilm formation. E. coli SM10 lambda pir, with a kanamycin resistant marker on mini-Tn10 (mini-Tn10:lacZ:kanr), an ampicillin resistant marker on the mini-Tn10-bearing suicidal plasmid pLBT and a streptomycin sensitive marker on the SM10 chromosome, was used as a donor (ampr, kanr, streps), and three Salmonella strains (amps, kans, strepr) were used as recipients in a transposon mutagenesis study. The donor and each recipient were co-incubated overnight on tryptic soy agar at 37 °C, and mutant colonies (amps, kanr, strepr) were subsequently selected. A single-banded degenerate PCR product, amplified from each mutant genome using oligonucleotide primers derived from the end of min-Tn10 and restriction enzyme EcoR I- or Pst I-recognizing sequence, were analyzed using the Sanger sequencing technology. Acquired DNA sequences were compared to those deposited in the Genbank using BLAST search. Cells of Salmonella mutants accumulated either significantly more or less (P < 0.05) biofilms than their parent cells on polystyrene surface. Sequence analysis of degenerate PCR products revealed that the mini-Tn10 from pLBT had inserted into the cdg, trx, fadI or rxt on Salmonella chromosomes. Results of the research will likely help strategize future antimicrobial intervention for control of pathogen attachment and biofilm formation.
Collapse
Affiliation(s)
- Jinru Chen
- Department of Food Science and Technology, The University of Georgia, 1109 Experiment St., Griffin, GA 30223-1797, USA.
| | - Yin Wang
- Department of Food Science and Technology, The University of Georgia, 1109 Experiment St., Griffin, GA 30223-1797, USA
| |
Collapse
|
865
|
Dong C, Zhou J, Wang P, Li T, Zhao Y, Ren X, Lu J, Wang J, Holmgren A, Zou L. Topical Therapeutic Efficacy of Ebselen Against Multidrug-Resistant Staphylococcus aureus LT-1 Targeting Thioredoxin Reductase. Front Microbiol 2020; 10:3016. [PMID: 32010088 PMCID: PMC6974526 DOI: 10.3389/fmicb.2019.03016] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/16/2019] [Indexed: 01/08/2023] Open
Abstract
As a thiol-dependent enzyme, thioredoxin reductase (TrxR) is a promising antibacterial drug target. Ebselen, an organo-selenium with well-characterized toxicology and pharmacology, was recently reported to have potent antibacterial activity against Staphylococcus aureus. In this paper, we demonstrated that ebselen has strong bactericidal activity against multidrug-resistant (MDR) S. aureus based on taking TrxR as a major target and disruption of the redox microenvironment. Further, the topical therapeutic efficacy of ebselen for staphylococcal skin infections was assessed in a rat model. Treatment with ebselen significantly reduced the bacterial load and the expression of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1 beta (IL-1β) in S. aureus skin lesions; further, wound healing and pathological changes were obvious improved in ebselen-treated rats compare to controls. Finally, ebselen was found to sensitize S. aureus to curcumin, which may be due to their synergistic effects in inhibiting bacterial TrxR. Altogether, ebselen is an effective topical antibacterial agent in animal model of MDR S. aureus LT-1 skin infection. This may lay the foundation for further analysis and development of ebselen as an antibacterial agent for topical treatment of MDR staphylococcal infections.
Collapse
Affiliation(s)
- Chuanjiang Dong
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Jingxuan Zhou
- The Institute of Infection and Inflammation, Medical College, China Three Gorges University, Yichang, China
| | - Peng Wang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China.,The Institute of Infection and Inflammation, Medical College, China Three Gorges University, Yichang, China
| | - Tao Li
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Ying Zhao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xiaoyuan Ren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jun Lu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Jun Wang
- The Institute of Infection and Inflammation, Medical College, China Three Gorges University, Yichang, China.,Translational Neuroscience & Neural Regeneration and Repair Institute/Institute of Cell Therapy, The People's Hospital of China Three Gorges University, Yichang, China
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lili Zou
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| |
Collapse
|
866
|
Isakova EP, Matushkina IN, Popova TN, Dergacheva DI, Gessler NN, Klein OI, Semenikhina AV, Deryabina YI, La Porta N, Saris NEL. Metabolic Remodeling during Long-Lasting Cultivation of the Endomyces magnusii Yeast on Oxidative and Fermentative Substrates. Microorganisms 2020; 8:E91. [PMID: 31936585 PMCID: PMC7022524 DOI: 10.3390/microorganisms8010091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 11/22/2022] Open
Abstract
In this study, we evaluated the metabolic profile of the aerobic microorganism of Endomyces magnusii with a complete respiration chain and well-developed mitochondria system during long-lasting cultivation. The yeast was grown in batches using glycerol and glucose as the sole carbon source for a week. The profile included the cellular biological and chemical parameters, which determined the redox status of the yeast cells. We studied the activities of the antioxidant systems (catalases and superoxide dismutases), glutathione system enzymes (glutathione peroxidase and reductase), aconitase, as well as the main enzymes maintaining NADPH levels in the cells (glucose-6-phosphate dehydrogenase and NADP+-isocitrate dehydrogenase) during aging of Endomyces magnusii on two kinds of substrates. We also investigated the dynamics of change in oxidized and reduced glutathione, conjugated dienes, and reactive oxidative species in the cells at different growth stages, including the deep stationary stages. Our results revealed a similar trend in the changes in the activity of all the enzymes tested, which increased 2-4-fold upon aging. The yeast cytosol had a very high reduced glutathione content, 22 times than that of Saccharomyces cerevisiae, and remained unchanged during growth, whereas there was a 7.5-fold increase in the reduced glutathione-to-oxidized glutathione ratio. The much higher level of reactive oxidative species was observed in the cells in the late and deep stationary phases, especially in the cells using glycerol. Cell aging of the culture grown on glycerol, which promotes active oxidative phosphorylation in the mitochondria, facilitated the functioning of powerful antioxidant systems (catalases, superoxide dismutases, and glutathione system enzymes) induced by reactive oxidative species. Moreover, it stimulated NADPH synthesis, regulating the cytosolic reduced glutathione level, which in turn determines the redox potential of the yeast cell during the early aging process.
Collapse
Affiliation(s)
- Elena P. Isakova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (D.I.D.); (N.N.G.); (O.I.K.); (Y.I.D.)
| | - Irina N. Matushkina
- Department of Medical Biochemistry and Microbiology, Biology and Soil Science Faculty, Voronezh State University, Universitetskaya pl.,1, 394000 Voronezh, Russia; (I.N.M.); (T.N.P.); (A.V.S.)
| | - Tatyana N. Popova
- Department of Medical Biochemistry and Microbiology, Biology and Soil Science Faculty, Voronezh State University, Universitetskaya pl.,1, 394000 Voronezh, Russia; (I.N.M.); (T.N.P.); (A.V.S.)
| | - Darya I. Dergacheva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (D.I.D.); (N.N.G.); (O.I.K.); (Y.I.D.)
| | - Natalya N. Gessler
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (D.I.D.); (N.N.G.); (O.I.K.); (Y.I.D.)
| | - Olga I. Klein
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (D.I.D.); (N.N.G.); (O.I.K.); (Y.I.D.)
| | - Anastasya V. Semenikhina
- Department of Medical Biochemistry and Microbiology, Biology and Soil Science Faculty, Voronezh State University, Universitetskaya pl.,1, 394000 Voronezh, Russia; (I.N.M.); (T.N.P.); (A.V.S.)
| | - Yulia I. Deryabina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (D.I.D.); (N.N.G.); (O.I.K.); (Y.I.D.)
| | - Nicola La Porta
- IASMA Research and Innovation Centre, Fondazione Edmund, Mach, Department of Sustainable Agroecosystems and Bioresources, Via Mach 1, 38010 San Michele all’Adige, Italy
| | - Nils-Eric L. Saris
- Department of Food and Environmental Sciences, University of Helsinki, Viikki Biocenter 1, POB 56, 00014 Helsinki, Finland;
| |
Collapse
|
867
|
El-Baz FK, Salama A, Salama RAA. Dunaliella salina Attenuates Diabetic Neuropathy Induced by STZ in Rats: Involvement of Thioredoxin. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1295492. [PMID: 31998774 PMCID: PMC6970482 DOI: 10.1155/2020/1295492] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/10/2019] [Indexed: 01/02/2023]
Abstract
Diabetic neuropathy (DN) is a widespread disabling disorder including peripheral nerves' damage. The aim of the current study was to estimate the potential ameliorative effect of Dunaliella salina (D. salina) on DN and the involvement of the thioredoxin. Diabetes was induced by streptozotocin (STZ; 50 mg/kg; i.p). Glimepiride (0.5 mg/kg) or D. salina powder (100 or 200 mg/kg) were given orally, after 2 days of STZ injection for 4 weeks. Glucose, total antioxidant capacity (TAC), superoxide dismutase (SOD), and catalase (CAT) serum levels as well as brain contents of thioredoxin (Trx), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) were measured with the histopathological study. STZ-induced DN resulted in a significant (P < 0.05) rise in glucose blood level and brain contents of TNF-α and IL-6 and produced a reduction in serum TAC, SOD, CAT, and brain Trx levels with irregular islets of Langerhans cells and loss of brain Purkinje cells. Treatment with glimepiride or both doses of D. salina alleviated these biochemical and histological parameters as compared to the STZ group. D. salina has a neurotherapeutic effect against DN via its inhibitory effect on inflammatory mediators and oxidative stress molecules with its upregulation of Trx activity.
Collapse
Affiliation(s)
- Farouk K. El-Baz
- Plant Biochemistry Department, National Research Centre (NRC), 33 El Bohouth St. (Former El-Tahrir St.), 12622 Dokki, Giza, Egypt
| | - Abeer Salama
- Pharmacology Department, National Research Centre (NRC), 33 El Bohouth St. (Former El-Tahrir St.), 12622 Dokki, Giza, Egypt
| | - Rania A. A. Salama
- Toxicology and Narcotics Department, National Research Centre (NRC), 33 El Bohouth St. (Former El-Tahrir St.), 12622 Dokki, Giza, Egypt
| |
Collapse
|
868
|
Alves R, Suehiro CL, Oliveira FGD, Frantz EDC, Medeiros RFD, Vieira RDP, Martins MDA, Lin CJ, Nobrega ACLD, Toledo-Arruda ACD. Aerobic exercise modulates cardiac NAD(P)H oxidase and the NRF2/KEAP1 pathway in a mouse model of chronic fructose consumption. J Appl Physiol (1985) 2020; 128:59-69. [PMID: 31647720 DOI: 10.1152/japplphysiol.00201.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The present study investigated the effects of exercise on the cardiac nuclear factor (erythroid-derived 2) factor 2 (NRF2)/Kelch-like ECH-associated protein 1 (KEAP1) pathway in an experimental model of chronic fructose consumption. Male C57BL/6 mice were assigned to Control, Fructose (20% fructose in drinking water), Exercise (treadmill exercise at moderate intensity), and Fructose + Exercise groups (n = 10). After 12 wk, the energy intake and body weight in the groups were similar. Maximum exercise testing, resting energy expenditure, resting oxygen consumption, and carbon dioxide production increased in the exercise groups (Exercise and Fructose + Exercise vs. Control and Fructose groups, P < 0.05). Chronic fructose intake induced circulating hypercholesterolemia, hypertriglyceridemia, and hyperleptinemia and increased white adipose tissue depots, with no changes in blood pressure. This metabolic environment increased circulating IL-6, IL-1β, IL-10, cardiac hypertrophy, and cardiac NF-κB-p65 and TNF-α expression, which were reduced by exercise (P < 0.05). Cardiac ANG II type 1 receptor and NAD(P)H oxidase 2 (NOX2) were increased by fructose intake and exercise decreased this response (P < 0.05). Exercise increased the cardiac expression of the NRF2-to-KEAP1 ratio and phase II antioxidants in fructose-fed mice (P < 0.05). NOX4, glutathione reductase, and catalase protein expression were similar between the groups. These findings suggest that exercise confers modulatory cardiac effects, improving antioxidant defenses through the NRF2/KEAP1 pathway and decreasing oxidative stress, representing a potential nonpharmacological approach to protect against fructose-induced cardiometabolic diseases.NEW & NOTEWORTHY This is the first study to evaluate the cardiac modulation of NAD(P)H oxidase (NOX), the NRF2/Kelch-like ECH-associated protein 1 pathway (KEAP), and the thioredoxin (TRX1) system through exercise in the presence of moderate fructose intake. We demonstrated a novel mechanism by which exercise improves cardiac antioxidant defenses in an experimental model of chronic fructose intake, which involves NRF2-to-KEAP1 ratio modulation, enhancing the local phase II antioxidants hemoxygenase-1, thioredoxin reductase (TXNRD1), and peroxiredoxin1B (PDRX1), and inhibiting cardiac NOX2 overexpression.
Collapse
Affiliation(s)
- Renata Alves
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- National Institute for Science and Technology-INCT (In)activity and Exercise, Conselho Nacional de Desenvolvimento Científico e Tecnológico-Niterói (RJ), Rio de Janeiro, Brazil
| | - Camila Liyoko Suehiro
- Department of Pathology, University of Sao Paulo, School of Medicine, Sao Paulo, Brazil
- Department of Internal Medicine, University of Sao Paulo, School of Medicine, Sao Paulo, Brazil
| | - Flavia Garcia de Oliveira
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- National Institute for Science and Technology-INCT (In)activity and Exercise, Conselho Nacional de Desenvolvimento Científico e Tecnológico-Niterói (RJ), Rio de Janeiro, Brazil
| | - Eliete Dalla Corte Frantz
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- National Institute for Science and Technology-INCT (In)activity and Exercise, Conselho Nacional de Desenvolvimento Científico e Tecnológico-Niterói (RJ), Rio de Janeiro, Brazil
| | - Renata Frauches de Medeiros
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- National Institute for Science and Technology-INCT (In)activity and Exercise, Conselho Nacional de Desenvolvimento Científico e Tecnológico-Niterói (RJ), Rio de Janeiro, Brazil
| | - Rodolfo de Paula Vieira
- Department of Internal Medicine, University of Sao Paulo, School of Medicine, Sao Paulo, Brazil
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Sao Jose dos Campos, Sao Paulo, Brazil
- Graduate Program in Sciences of Human Movement and Rehabilitation, Federal University of Sao Paulo, Santos, Sao Paulo, Brazil
- Graduate Program in Bioengineering, Universidade Brasil, Campus Itaquera, Sao Paulo, Sao Paulo, Brazil
- School of Medicine, Anhembi Morumbi University, São José dos Campos, Sao Paulo, Brazil
| | | | - Chin Jia Lin
- Department of Pathology, University of Sao Paulo, School of Medicine, Sao Paulo, Brazil
| | - Antonio Claudio Lucas da Nobrega
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- National Institute for Science and Technology-INCT (In)activity and Exercise, Conselho Nacional de Desenvolvimento Científico e Tecnológico-Niterói (RJ), Rio de Janeiro, Brazil
| | - Alessandra Choqueta de Toledo-Arruda
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- National Institute for Science and Technology-INCT (In)activity and Exercise, Conselho Nacional de Desenvolvimento Científico e Tecnológico-Niterói (RJ), Rio de Janeiro, Brazil
- Department of Pathology, University of Sao Paulo, School of Medicine, Sao Paulo, Brazil
- Department of Internal Medicine, University of Sao Paulo, School of Medicine, Sao Paulo, Brazil
| |
Collapse
|
869
|
Dóka É, Ida T, Dagnell M, Abiko Y, Luong NC, Balog N, Takata T, Espinosa B, Nishimura A, Cheng Q, Funato Y, Miki H, Fukuto JM, Prigge JR, Schmidt EE, Arnér ESJ, Kumagai Y, Akaike T, Nagy P. Control of protein function through oxidation and reduction of persulfidated states. SCIENCE ADVANCES 2020; 6:eaax8358. [PMID: 31911946 PMCID: PMC6938701 DOI: 10.1126/sciadv.aax8358] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/05/2019] [Indexed: 05/17/2023]
Abstract
Irreversible oxidation of Cys residues to sulfinic/sulfonic forms typically impairs protein function. We found that persulfidation (CysSSH) protects Cys from irreversible oxidative loss of function by the formation of CysSSO1-3H derivatives that can subsequently be reduced back to native thiols. Reductive reactivation of oxidized persulfides by the thioredoxin system was demonstrated in albumin, Prx2, and PTP1B. In cells, this mechanism protects and regulates key proteins of signaling pathways, including Prx2, PTEN, PTP1B, HSP90, and KEAP1. Using quantitative mass spectrometry, we show that (i) CysSSH and CysSSO3H species are abundant in mouse liver and enzymatically regulated by the glutathione and thioredoxin systems and (ii) deletion of the thioredoxin-related protein TRP14 in mice altered CysSSH levels on a subset of proteins, predicting a role for TRP14 in persulfide signaling. Furthermore, selenium supplementation, polysulfide treatment, or knockdown of TRP14 mediated cellular responses to EGF, suggesting a role for TrxR1/TRP14-regulated oxidative persulfidation in growth factor responsiveness.
Collapse
Affiliation(s)
- É. Dóka
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, 1122 Budapest, Hungary
| | - T. Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, 980-8575 Sendai, Japan
| | - M. Dagnell
- Department of Medical Biochemistry and Biophysics, Division of Biochemistry, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Y. Abiko
- Environmental Biology Section, Faculty of Medicine, University of Tsukuba, 305-8575 Tsukuba, Japan
| | - N. C. Luong
- Environmental Biology Section, Faculty of Medicine, University of Tsukuba, 305-8575 Tsukuba, Japan
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen, Hue, Vietnam
| | - N. Balog
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, 1122 Budapest, Hungary
| | - T. Takata
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, 980-8575 Sendai, Japan
| | - B. Espinosa
- Department of Medical Biochemistry and Biophysics, Division of Biochemistry, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - A. Nishimura
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, 980-8575 Sendai, Japan
| | - Q. Cheng
- Department of Medical Biochemistry and Biophysics, Division of Biochemistry, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Y. Funato
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - H. Miki
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - J. M. Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, Sonoma, CA 94928, USA
| | - J. R. Prigge
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - E. E. Schmidt
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - E. S. J. Arnér
- Department of Medical Biochemistry and Biophysics, Division of Biochemistry, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Y. Kumagai
- Environmental Biology Section, Faculty of Medicine, University of Tsukuba, 305-8575 Tsukuba, Japan
| | - T. Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, 980-8575 Sendai, Japan
| | - P. Nagy
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, 1122 Budapest, Hungary
- Corresponding author.
| |
Collapse
|
870
|
Amara I, Timoumi R, Annabi E, Di Rosa G, Scuto M, Najjar MF, Calabrese V, Abid-Essefi S. Di (2-ethylhexyl) phthalate targets the thioredoxin system and the oxidative branch of the pentose phosphate pathway in liver of Balb/c mice. ENVIRONMENTAL TOXICOLOGY 2020; 35:78-86. [PMID: 31486570 DOI: 10.1002/tox.22844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/13/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is a plasticizer that gives flexibility to various polyvinyl chloride products. It is a pollutant easily released into the environment and can cause many adverse effects to living organisms including hepatotoxicity. The thioredoxin system is a determining factor in the redox balance maintaining in the liver, which is a vulnerable tissue of reactive oxygen species overproduction because of its high energy needs. In order to determine if the thioredoxin system is a target in the development of DEHP hepatotoxicity, Balb/c mice were administered with DEHP intraperitoneally daily for 30 days. Results demonstrated that after DEHP exposure, biochemical profile changes were observed. This phthalate causes oxidative damage through the induction of lipid peroxydation as well as the increase of superoxide dismutase and catalase activities. As new evidence provided in this study, we demonstrated that the DEHP affected the thioredoxin system by altering the expression and the activity of thioredoxin (Trx) and thioredoxin Reductase (TrxR1). The two enzyme activities of the oxidative phase of the pentose phosphate pathway: Glucose-6-phosphate dehydrogenase and 6-Phosphogluconate dehydrogenase were also affected by this phthalate. This leads to a decrease in the level of nicotinamide adenine dinucleotide phosphate used by the TrxR1 to maintain the regeneration of the reduced Trx. We also demonstrated that such effects can be responsible of DEHP-induced DNA damage.
Collapse
Affiliation(s)
- Ines Amara
- Faculty of Dental Medicine, Laboratory for Research on Biologically Compatible Compounds, University of Monastir, Monastir, Tunisia
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Rim Timoumi
- Faculty of Dental Medicine, Laboratory for Research on Biologically Compatible Compounds, University of Monastir, Monastir, Tunisia
| | - Emna Annabi
- Faculty of Dental Medicine, Laboratory for Research on Biologically Compatible Compounds, University of Monastir, Monastir, Tunisia
| | - Gabriele Di Rosa
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Mohamed F Najjar
- Laboratory of Biochemistry-Toxicology, Monastir University Hospital, University of Monastir, Monastir, Tunisia
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Salwa Abid-Essefi
- Faculty of Dental Medicine, Laboratory for Research on Biologically Compatible Compounds, University of Monastir, Monastir, Tunisia
| |
Collapse
|
871
|
Sousa SA, Leitão JH, Silva RA, Belo D, Santos IC, Guerreiro JF, Martins M, Fontinha D, Prudêncio M, Almeida M, Lorcy D, Marques F. On the path to gold: Monoanionic Au bisdithiolate complexes with antimicrobial and antitumor activities. J Inorg Biochem 2020; 202:110904. [DOI: 10.1016/j.jinorgbio.2019.110904] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/27/2019] [Accepted: 10/19/2019] [Indexed: 12/17/2022]
|
872
|
Sadhukhan P, Sil PC. The regulation of intracellular redox homeostasis in cancer progression and its therapy. Pathology 2020. [DOI: 10.1016/b978-0-12-815972-9.00010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
873
|
Niu F, Qian K, Qi H, Zhao Y, Jiang Y, Jia W, Sun M. CPCGI Reduces Gray and White Matter Injury by Upregulating Nrf2 Signaling and Suppressing Calpain Overactivation in a Rat Model of Controlled Cortical Impact. Neuropsychiatr Dis Treat 2020; 16:1929-1941. [PMID: 32904488 PMCID: PMC7455756 DOI: 10.2147/ndt.s266136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/28/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Compound porcine cerebroside and ganglioside injection (CPCGI), which involves injection of a neurotrophic drug, has been widely used to treat certain brain disorders in the clinic; however, the detailed mechanism is unknown. This study investigated whether CPCGI protects the brain from trauma by stimulating antioxidative nuclear factor erythroid-2-related factor 2 (Nrf2) signaling and suppressing calpain overactivation in a rat model of controlled cortical impact (CCI). MATERIALS AND METHODS The rat model of CCI was used. Neurological deficits, contusion, and white matter damage were evaluated 3 days after CCI. Calpain activation, Nrf2 signaling and oxidative stress were determined 24 h after CCI. RESULTS CPCGI dose-dependently reduced neurological deficits, attenuated axonal and myelin sheath injury, and decreased contusion volume 3 days post-CCI. Moreover, CPCGI reduced calpain activity, and enhanced the cytosolic levels of calpastatin, αII-spectrin, microtubule-associated protein 2 (MAP2), neurofilament heavy chain (NF-H) and myelin basic protein (MBP) in traumatic tissues 24 h post-CCI. Furthermore, CPCGI reduced the levels of nuclear Kelch-like ECH-associated protein 1 (Keap1) and thioredoxin interacting protein (TXNIP); increased the levels of cytosolic Nrf2 and thioredoxin 1 (Trx 1) and nuclear Nrf2; increased the cytosolic and nuclear Nrf2/Keap1 and Trx 1/TXNIP ratios; enhanced the levels of heme oxygenase 1 (HO-1), glutathione (GSH), superoxide dismutase activity, and total antioxidative capacity; and reduced the levels of malondialdehyde in TBI tissues. CONCLUSION These data confirm the neuroprotective effect of CPCGI against gray and white matter damage due to CCI and suggest that activating Nrf2 signaling and alleviating oxidative stress-mediated calpain activation could be one mechanism by which CPCGI protects against brain trauma.
Collapse
Affiliation(s)
- Fei Niu
- Department of Neurotrauma, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People's Republic of China
| | - Ke Qian
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China
| | - Hongyan Qi
- Department of Acupuncture, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang City 222000, Jiangsu Province, People's Republic of China
| | - Yumei Zhao
- Department of Neuropharmacology, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People's Republic of China
| | - Yingying Jiang
- Department of Neuropharmacology, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People's Republic of China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China
| | - Ming Sun
- Department of Neuropharmacology, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People's Republic of China
| |
Collapse
|
874
|
Zamani P, Oskuee RK, Atkin SL, Navashenaq JG, Sahebkar A. MicroRNAs as important regulators of the NLRP3 inflammasome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 150:50-61. [PMID: 31100298 DOI: 10.1016/j.pbiomolbio.2019.05.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 05/13/2019] [Indexed: 12/28/2022]
Abstract
Inflammasomes are a group of cytosolic multi-protein signaling complexes that regulate maturation of the interleukin (IL)-1 family cytokines IL-1β and IL-18 through activation of inflammatory caspase-1. The NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome is the best characterized and consists of several key components that are assembled and activated in response to different endogenous and exogenous signals. The NLRP3 inflammasome is common to a number of human inflammatory diseases and its targeting may lead to novel anti-inflammatory therapy. NLRP3 inflammasome activation is tightly regulated by different mechanisms especially post-transcriptional modulation via microRNAs (miRNA). MicroRNAs are small endogenous noncoding RNAs that are 21-23 nucleotides in length and control the expression of various genes through binding to the 3'-untranslated regions of the respective mRNA and subsequent post-transcriptional regulation. MicroRNAs have recently been recognized as crucial regulators of the NLRP3 inflammasome. In this review, we summarize the current understanding of the role of miRNAs in the regulation of NLRP3 inflammasome complexes and their impact on the pathogenesis of inflammatory disease processes.
Collapse
Affiliation(s)
- Parvin Zamani
- Nanotechnology Research Center, Student Research Committee, Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
875
|
Guerreiro JF, Gomes MAGB, Pagliari F, Jansen J, Marafioti MG, Nistico C, Hanley R, Costa RO, Ferreira SS, Mendes F, Fernandes C, Horn A, Tirinato L, Seco J. Iron and copper complexes with antioxidant activity as inhibitors of the metastatic potential of glioma cells. RSC Adv 2020; 10:12699-12710. [PMID: 35492123 PMCID: PMC9051468 DOI: 10.1039/d0ra00166j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/13/2020] [Indexed: 01/14/2023] Open
Abstract
Iron and copper complexes with antioxidant activity able to inhibit tumor metastasis by inhibiting epithelial-mesenchymal transition in glioma cells.
Collapse
|
876
|
Chen X, Chen H, Zhang H, Peng Y, Deng F, Gao J, Chai C, Tang S, Zuo X, Lu J, Du H. Characterization of synergistic antibacterial effect of silver nanoparticles and ebselen. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3338-3349. [PMID: 31387398 DOI: 10.1080/21691401.2019.1648278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The emerging and spreading of multi-drug resistant (MDR) bacteria have been becoming one of the most severe threats to human health. Enhancing oxidative stress as mimicking immune system was considered as a potential strategy to fight against infection of MDR bacteria. In this study, we investigated the antibacterial efficiency of such a strategy which combines silver nanoparticles (AgNPs) with ebselen. The results showed that AgNPs and ebselen combination had significant synergistic killing effects both on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in vitro, including model strains of China Veterinary Culture Collection and MDR clinical isolates, which is similar as the combination of silver ion and ebselen. AgNPs exhibited to be a strong inhibitor of bacterial thioredoxin reductase, same as a free silver ion. Ebselen mitigated the cytotoxicity of AgNPs to HeLa cells. However, in a bacteria-cell coexistence condition, the synergistic bactericidal effect was only observed on S. aureus (p<.05), while the temporary synergistic inhibitory effect on E. coli within 4 hours treatment (p<.01). In mice infection model, a combination of AgNPs and ebselen did not increase protection against the challenge of clinical E. coli CQ10 strain. Our data demonstrated that AgNPs and ebselen combination may be a promising strategy to fight against the increasingly MDR bacteria targeting bacterial thiol redox system.
Collapse
Affiliation(s)
- Xueqing Chen
- a College of Biotechnology, Southwest University , Chongqing , China
| | - Heming Chen
- a College of Biotechnology, Southwest University , Chongqing , China
| | - Hongying Zhang
- a College of Biotechnology, Southwest University , Chongqing , China
| | - Yanjuan Peng
- b Department of Production and Management, Tibet Autonomous Region Veterinary Biologics Factory , Lasa , Tibet , China
| | - Fuchang Deng
- a College of Biotechnology, Southwest University , Chongqing , China
| | - Jiye Gao
- c College of Animal Science, Southwest University , Chongqing , China
| | - Chunli Chai
- a College of Biotechnology, Southwest University , Chongqing , China
| | - Song Tang
- d Chinese Center for Disease Control and Prevention, National Institute of Environmental Health , Beijing , China
| | - Xin Zuo
- e Ministry of Education, College of Pharmaceutical Sciences, Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Southwest University , Chongqing , China
| | - Jun Lu
- e Ministry of Education, College of Pharmaceutical Sciences, Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Southwest University , Chongqing , China
| | - Huamao Du
- a College of Biotechnology, Southwest University , Chongqing , China
| |
Collapse
|
877
|
Siemienowicz KJ, Filis P, Shaw S, Douglas A, Thomas J, Mulroy S, Howie F, Fowler PA, Duncan WC, Rae MT. Fetal androgen exposure is a determinant of adult male metabolic health. Sci Rep 2019; 9:20195. [PMID: 31882954 PMCID: PMC6934666 DOI: 10.1038/s41598-019-56790-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
Androgen signalling is a critical driver of male development. Fetal steroid signalling can be dysregulated by a range of environmental insults and clinical conditions. We hypothesised that poor adult male health was partially attributable to aberrant androgen exposure during development. Testosterone was directly administered to developing male ovine fetuses to model excess prenatal androgenic overexposure associated with conditions such as polycystic ovary syndrome (PCOS). Such in utero androgen excess recreated the dyslipidaemia and hormonal profile observed in sons of PCOS patients. 1,084 of 15,134 and 408 of 2,766 quantifiable genes and proteins respectively, were altered in the liver during adolescence, attributable to fetal androgen excess. Furthermore, prenatal androgen excess predisposed to adolescent development of an intrahepatic cholestasis-like condition with attendant hypercholesterolaemia and an emergent pro-fibrotic, pro-oxidative stress gene and protein expression profile evident in both liver and circulation. We conclude that prenatal androgen excess is a previously unrecognised determinant of lifelong male metabolic health.
Collapse
Affiliation(s)
| | - Panagiotis Filis
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Sophie Shaw
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Alex Douglas
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Jennifer Thomas
- School of Applied Science, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - Sally Mulroy
- School of Applied Science, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - Forbes Howie
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - W Colin Duncan
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Mick T Rae
- School of Applied Science, Edinburgh Napier University, Edinburgh, EH11 4BN, UK.
| |
Collapse
|
878
|
Chevallier V, Andersen MR, Malphettes L. Oxidative stress-alleviating strategies to improve recombinant protein production in CHO cells. Biotechnol Bioeng 2019; 117:1172-1186. [PMID: 31814104 PMCID: PMC7078918 DOI: 10.1002/bit.27247] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 11/11/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022]
Abstract
Large scale biopharmaceutical production of biologics relies on the overexpression of foreign proteins by cells cultivated in stirred tank bioreactors. It is well recognized and documented fact that protein overexpression may impact host cell metabolism and that factors associated with large scale culture, such as the hydrodynamic forces and inhomogeneities within the bioreactors, may promote cellular stress. The metabolic adaptations required to support the high‐level expression of recombinant proteins include increased energy production and improved secretory capacity, which, in turn, can lead to a rise of reactive oxygen species (ROS) generated through the respiration metabolism and the interaction with media components. Oxidative stress is defined as the imbalance between the production of free radicals and the antioxidant response within the cells. Accumulation of intracellular ROS can interfere with the cellular activities and exert cytotoxic effects via the alternation of cellular components. In this context, strategies aiming to alleviate oxidative stress generated during the culture have been developed to improve cell growth, productivity, and reduce product microheterogeneity. In this review, we present a summary of the different approaches used to decrease the oxidative stress in Chinese hamster ovary cells and highlight media development and cell engineering as the main pathways through which ROS levels may be kept under control.
Collapse
Affiliation(s)
- Valentine Chevallier
- Upstream Process Sciences, Biotech Sciences, UCB Nordic A/S, Copenhagen, Denmark.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
879
|
Surai PF, Kochish II. Nutritional modulation of the antioxidant capacities in poultry: the case of selenium. Poult Sci 2019; 98:4231-4239. [PMID: 30371889 DOI: 10.3382/ps/pey406] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Natural antioxidants play important roles in maintaining chicken health, productive and reproductive performance of breeders, layers, rearing birds, and growing broilers. There is a wide range of antioxidant molecules in the body: vitamin E, carotenoids, selenium, ascorbic acid, coenzyme Q, carnitine, taurine, antioxidant enzymes, etc. In the body all antioxidants work together to create the antioxidant network called "antioxidant systems" with Se being the "chief-executive." Analysis of the current data on selenium roles in antioxidant defenses in poultry clearly showed its modulatory effect at the level of breeders, developing embryos, newly hatched chicks, and postnatal chickens. On the one hand, Se is involved in the expression and synthesis of 25 selenoproteins, including GSH-Px, TrxR, and SepP. On the other hand, Se affects non-enzymatic (vitamin E, CoQ, and GSH) and enzymatic (SOD) antioxidant defense mechanisms helping build strong antioxidant defenses. Se efficiency depends on the level of supplementation and form of dietary Se, organic Se sources being more effective modulators of the antioxidant systems in poultry than sodium selenite. Moreover, Se levels in eggs from some wild avian species are close to those found in chicken eggs after 0.3 ppm organic Se supplementation and a search for most effective dietary form of organic Se is a priority in poultry nutrition. Antioxidant/prooxidant (redox) balance of the gut and the role/interactions of Se and microbiota in maintaining gut health would be a priority for future poultry research.
Collapse
Affiliation(s)
- Peter F Surai
- Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora 6000, Bulgaria.,Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K.I. Skryabin, Moscow 109472, Russia.,Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, Gödöllo H-2103, Hungary
| | - Ivan I Kochish
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K.I. Skryabin, Moscow 109472, Russia
| |
Collapse
|
880
|
Plasma activity of Thioredoxin Reductase as a Novel Biomarker in Gastric Cancer. Sci Rep 2019; 9:19084. [PMID: 31836775 PMCID: PMC6910980 DOI: 10.1038/s41598-019-55641-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the leading malignancies around the world. Identification of novel and efficient biomarkers for GC diagnosis and evaluation of therapeutic efficiency could improve the therapeutic strategy in future clinical application. This study aims to evaluate the levels of plasma thioredoxin reductase (TrxR) activity in GC patients to confirm its validity and efficacy in GC diagnosis and evaluation of therapeutic efficiency. 923 cases were enrolled in the current study. In the group of GC patients before clinical intervention, plasma TrxR activity [9.09 (7.96, 10.45) U/mL] was significantly higher than in healthy controls [3.69 (2.38, 5.32) U/mL]. The threshold of TrxR activity for GC diagnosis was set at 7.34 U/mL with a sensitivity of 85.5% and a specificity of 97.9%. In GC patients after chemotherapy, plasma TrxR activity was remarkably higher in patients with progressive disease or uncontrolled condition [10.07 (8.19, 11.02) U/mL] compared with patients with complete or partial response [7.12 (6.08, 8.37) U/mL] in response to chemotherapy. TrxR activity displayed the higher efficiency to distinguish between GC patients with two distinct clinical outcomes than carcinoembryonic antigen (CEA), cancer antigen 72-4 (CA72-4) and cancer antigen 19-9 (CA19-9). Moreover, combination of TrxR, CEA, CA72-4 and CA19-9 was demonstrated to be more effective in both GC diagnosis and evaluation of therapeutic efficiency than was each biomarker individually. Together, plasma TrxR activity was identified as a novel and efficient biomarker of GC, both in diagnosis and monitoring of therapeutic efficiency in response to chemotherapy.
Collapse
|
881
|
Xia M, Chen H, Liu S. The synergy of resveratrol and alcohol against Helicobacter pylori and underlying anti-Helicobacter pylori mechanism of resveratrol. J Appl Microbiol 2019; 128:1179-1190. [PMID: 31774610 DOI: 10.1111/jam.14531] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/10/2019] [Accepted: 11/23/2019] [Indexed: 12/13/2022]
Abstract
AIMS To determine individual antibacterial and synergistic antibacterial effects of resveratrol and alcohol against Helicobacter pylori 26695 in vitro, and to elucidate the underlying mechanism of action of resveratrol against H. pylori. METHODS AND RESULTS The minimum inhibitory concentrations (MICs) and time-killing curve of resveratrol and alcohol were determined. Transcriptome analysis by RNA sequencing was used to elucidate the underlying mechanism of action of resveratrol against H. pylori. Our results showed that the MICs of resveratrol and alcohol against H. pylori 26695 are about 64 μg ml-1 and 4% (v/v) respectively. The synergy was found: resveratrol at concentration of 64 μg ml-1 in combination with alcohol at concentration of 4% (v/v) showed >10 000-fold decrease in the mount of viable bacteria compared with resveratrol and alcohol used alone. Transcriptome analysis showed 152 genes were downregulated and 111 genes were upregulated in the presence of resveratrol. Genes involved in protein translation (17·1%), outer membrane proteins (OMPs) (9·9%) and transports (11·2%) comprise 38·2% of the downregulated genes. In comparison, genes involved in redox (13·5%), pathogenesis and motility (9·9%) and iron homeostasis (4·5%) comprise 27·9% of the upregulated genes. CONCLUSIONS The synergy of resveratrol and alcohol against H. pylori was found in this study. The underlying mechanism of action of resveratrol against H. pylori may be mainly attributed to its inhibitory effect on translation, OMPs, transports, ATP synthase and possible oxidative damage. SIGNIFICANCE AND IMPACT OF THIS STUDY Our study provides a global insight into the anti-H. pylori mechanism of resveratrol. Both resveratrol and alcohol can contribute to inhibition of ribosomes, changes in OMPs and oxidative damage, which may be the explanations of synergistic effect against H. pylori elicited by resveratrol and alcohol.
Collapse
Affiliation(s)
- M Xia
- Department of Clinical Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - H Chen
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - S Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
882
|
Shu N, Hägglund P, Cai H, Hawkins CL, Davies MJ. Modification of Cys residues in human thioredoxin-1 by p-benzoquinone causes inhibition of its catalytic activity and activation of the ASK1/p38-MAPK signalling pathway. Redox Biol 2019; 29:101400. [PMID: 31926625 PMCID: PMC6926358 DOI: 10.1016/j.redox.2019.101400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 01/27/2023] Open
Abstract
Quinones can modify biological molecules through both redox-cycling reactions that yield radicals (semiquinone, superoxide and hydroxyl) and via covalent adduction to nucleophiles (e.g. thiols and amines). Kinetic data indicate that Cys residues in GSH and proteins are major targets. In the studies reported here, the interactions of a prototypic quinone compound, p-benzoquinone (BQ), with the key redox protein, thioredoxin-1 (Trx1) were examined. BQ binds covalently with isolated Trx1 forming quinoprotein adducts, resulting in a concentration-dependent loss of enzyme activity and crosslink formation. Mass spectrometry peptide mass mapping data indicate that BQ forms adducts with all of the Trx1 Cys residues. Glutathione (GSH) reacts competitively with BQ, and thereby modulates the loss of activity and crosslink formation. Exposure of macrophage-like (J774A.1) cells to BQ results in a dose-dependent loss of Trx and thioredoxin reductase (TrxR) activities, quinoprotein formation, and a decrease in GSH levels without a concomitant increase in oxidized glutathione. GSH depletion aggravates the loss of Trx and TrxR activity. These data are consistent with adduction of GSH to BQ being a primary protective pathway. Reaction of BQ with Trx in cells resulted in the activation of apoptosis signal-regulating kinase 1 (ASK1), and p38 mitogen-activated protein kinase (MAPK) leading to apoptotic cell death. These data suggest that BQ reacts covalently with Cys residues in Trx, including at the active site, leading to enzyme inactivation and protein cross-linking. Modification of the Cys residues in Trx also results in activation of the ASK1/p38-MAPK signalling pathway and promotion of apoptotic cell death. Quinone (e.g. p-benzoquinone, BQ) toxicity is linked to Michael adduction reactions. Adduction of BQ to Cys residues in proteins are rapid (≤105 M−1 s−1) and selective. BQ reaction with Cys inactivates thioredoxin (Trx) and yields quinone- and disulfide-linked dimers. GSH reacts competitively with BQ and modulates damage, without GSSG formation. BQ activates ASK1 and p38 pathways and induced apoptosis in cells via Trx damage.
Collapse
Affiliation(s)
- Nan Shu
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Per Hägglund
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Huan Cai
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
883
|
Obrador E, Liu-Smith F, Dellinger RW, Salvador R, Meyskens FL, Estrela JM. Oxidative stress and antioxidants in the pathophysiology of malignant melanoma. Biol Chem 2019; 400:589-612. [PMID: 30352021 DOI: 10.1515/hsz-2018-0327] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
Abstract
The high number of somatic mutations in the melanoma genome associated with cumulative ultra violet (UV) exposure has rendered it one of the most difficult of cancers to treat. With new treatment approaches based on targeted and immune therapies, drug resistance has appeared as a consistent problem. Redox biology, including reactive oxygen and nitrogen species (ROS and RNS), plays a central role in all aspects of melanoma pathophysiology, from initiation to progression and to metastatic cells. The involvement of melanin production and UV radiation in ROS/RNS generation has rendered the melanocytic lineage a unique system for studying redox biology. Overall, an elevated oxidative status has been associated with melanoma, thus much effort has been expended to prevent or treat melanoma using antioxidants which are expected to counteract oxidative stress. The consequence of this redox-rebalance seems to be two-fold: on the one hand, cells may behave less aggressively or even undergo apoptosis; on the other hand, cells may survive better after being disseminated into the circulating system or after drug treatment, thus resulting in metastasis promotion or further drug resistance. In this review we summarize the current understanding of redox signaling in melanoma at cellular and systemic levels and discuss the experimental and potential clinic use of antioxidants and new epigenetic redox modifiers.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Phisiology, University of Valencia, 46010 Valencia, Spain
| | - Feng Liu-Smith
- Department of Epdemiology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA.,Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA
| | | | - Rosario Salvador
- Department of Phisiology, University of Valencia, 46010 Valencia, Spain
| | - Frank L Meyskens
- Department of Epdemiology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA.,Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA
| | - José M Estrela
- Department of Phisiology, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
884
|
Zhang L, Wu K, Bo T, Zhou L, Gao L, Zhou X, Chen W. Integrated microRNA and proteome analysis reveal a regulatory module in hepatic lipid metabolism disorders in mice with subclinical hypothyroidism. Exp Ther Med 2019; 19:897-906. [PMID: 32010250 PMCID: PMC6966133 DOI: 10.3892/etm.2019.8281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Subclinical hypothyroidism (SCH) is becoming a global health problem due to its increasing prevalence and potential adverse effects, including cardiovascular diseases and nonalcoholic fatty liver disease (NAFLD). However, the association between SCH and NAFLD remains controversial. MicroRNAs (miRNAs/miRs) have been reported to be implicated in lipid metabolism disorders; however, how miRNAs regulate hepatic lipid metabolism in SCH mice remains unknown. The present study investigated miRNA alterations and proteome profiles in an SCH mouse model, which was generated by methimazole administration in mice for 16 weeks. Next, the profiles of 17 miRNAs that are critical to hepatic lipid metabolism and the proteome were investigated using reverse transcription-quantitative polymerase chain reaction and iTRAQ labeling in the liver specimens of SCH (n=9) and control (n=7) mice. Putative target prediction of miRNAs was also conducted using TargetScan and miRanda. Compared with the control mice, SCH mice had 8 miRNAs and 36 proteins with significantly different expression in the liver tissues. Furthermore, a regulatory module containing 3 miRNAs (miR-34a-5p, miR-24-3p and miR-130a-3p) and 4 proteins (thioredoxin, selenium-binding protein 2, elongation factor 1β and prosaposin) was identified. Overall, integrated analysis of miRNAs and the proteome highlighted a regulatory module between miRNAs and proteins, which, to a certain extent, may contribute to a better understanding of hepatic lipid metabolism disorders in SCH mice.
Collapse
Affiliation(s)
- Liya Zhang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, P.R. China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, P.R. China
| | - Kunpeng Wu
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, P.R. China.,Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Tao Bo
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Lingyan Zhou
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, P.R. China.,Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Ling Gao
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, P.R. China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, P.R. China.,Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xiaoming Zhou
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, P.R. China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, P.R. China
| | - Wenbin Chen
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
885
|
Rusetskaya NY, Fedotov IV, Koftina VA, Borodulin VB. Selenium Compounds in Redox Regulation of Inflammation and Apoptosis. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2019. [DOI: 10.1134/s1990750819040085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
886
|
Han CY, Rho HS, Kim A, Kim TH, Jang K, Jun DW, Kim JW, Kim B, Kim SG. FXR Inhibits Endoplasmic Reticulum Stress-Induced NLRP3 Inflammasome in Hepatocytes and Ameliorates Liver Injury. Cell Rep 2019; 24:2985-2999. [PMID: 30208322 DOI: 10.1016/j.celrep.2018.07.068] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/10/2018] [Accepted: 07/18/2018] [Indexed: 12/31/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is associated with liver injury and fibrosis, and yet the hepatic factors that regulate ER stress-mediated inflammasome activation remain unknown. Here, we report that farnesoid X receptor (FXR) activation inhibits ER stress-induced NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome in hepatocytes. In patients with hepatitis B virus (HBV)-associated hepatic failure or non-alcoholic fatty liver disease, and in mice with liver injury, FXR levels in the liver inversely correlated with the extent of NLRP3 inflammasome activation. Fxr deficiency in mice augmented the ability of ER stress to induce NLRP3 and thioredoxin-interacting protein (TXNIP), whereas FXR ligand activation prevented it, ameliorating liver injury. FXR attenuates CCAAT-enhancer-binding protein homologous protein (CHOP)-dependent NLRP3 overexpression by inhibiting ER stress-mediated protein kinase RNA-like endoplasmic reticulum kinase (PERK) activation. Our findings implicate miR-186 and its target, non-catalytic region of tyrosine kinase adaptor protein 1 (NCK1), in mediating the inhibition of ER stress by FXR. This study provides the insights on how FXR regulation of ER stress ameliorates hepatocyte death and liver injury and on the molecular basis of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Chang Yeob Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; Department of Pharmacology, School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Korea
| | - Hyun Soo Rho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Ayoung Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Tae Hyun Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Kiseok Jang
- Department of Pathology, Hanyang University School of Medicine, Seoul 04763, Korea
| | - Dae Won Jun
- Internal Medicine, Hanyang University School of Medicine, Seoul 04763, Korea
| | - Jong Won Kim
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Korea
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Korea
| | - Sang Geon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
887
|
Alghamdi M, Al Ghamdi KA, Khan RH, Uversky VN, Redwan EM. An interplay of structure and intrinsic disorder in the functionality of peptidylarginine deiminases, a family of key autoimmunity-related enzymes. Cell Mol Life Sci 2019; 76:4635-4662. [PMID: 31342121 PMCID: PMC11105357 DOI: 10.1007/s00018-019-03237-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 12/21/2022]
Abstract
Citrullination is a post-translation modification of proteins, where the proteinaceous arginine residues are converted to non-coded citrulline residues. The immune tolerance to such citrullinated protein can be lost, leading to inflammatory and autoimmune diseases. Citrullination is a chemical reaction mediated by peptidylarginine deiminase enzymes (PADs), which are a family of calcium-dependent cysteine hydrolase enzymes that includes five isotypes: PAD1, PAD2, PAD3, PAD4, and PAD6. Each PAD has specific substrates and tissue distribution, where it modifies the arginine to produce a citrullinated protein with altered structure and function. All mammalian PADs have a sequence similarity of about 70-95%, whereas in humans, they are 50-55% homologous in their structure and amino acid sequences. Being calcium-dependent hydrolases, PADs are inactive under the physiological level of calcium, but could be activated due to distortions in calcium homeostasis, or when the cellular calcium levels are increased. In this article, we analyze some of the currently available data on the structural properties of human PADs, the mechanisms of their calcium-induced activation, and show that these proteins contain functionally important regions of intrinsic disorder. Citrullination represents an important trigger of multiple physiological and pathological processes, and as a result, PADs are recognized to play a number of important roles in autoimmune diseases, cancer, and neurodegeneration. Therefore, we also review the current state of the art in the development of PAD inhibitors with good potency and selectivity.
Collapse
Affiliation(s)
- Mohammed Alghamdi
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Laboratory Department, University Medical Services Center, King Abdulaziz University, P.O. Box 80200, Jeddah, 21589, Saudi Arabia
| | - Khaled A Al Ghamdi
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Rizwan H Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP, India
| | - Vladimir N Uversky
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, 7 Institutskaya Str., 142290, Pushchino, Moscow region, Russia.
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Elrashdy M Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, 21934, Egypt.
| |
Collapse
|
888
|
Zhu X, Dordet-Frisoni E, Gillard L, Ba A, Hygonenq MC, Sagné E, Nouvel LX, Maillard R, Assié S, Guo A, Citti C, Baranowski E. Extracellular DNA: A Nutritional Trigger of Mycoplasma bovis Cytotoxicity. Front Microbiol 2019; 10:2753. [PMID: 31849895 PMCID: PMC6895004 DOI: 10.3389/fmicb.2019.02753] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/12/2019] [Indexed: 01/02/2023] Open
Abstract
Microbial access to host nutrients is a key factor of the host-pathogen interplay. With their nearly minimal genome, wall-less bacteria of the class Mollicutes have limited metabolic capacities and largely depend on host nutrients for their survival. Despite these limitations, host-restricted mycoplasmas are widely distributed in nature and many species are pathogenic for humans and animals. Yet, only partial information is available regarding the mechanisms evolved by these minimal pathogens to meet their nutrients and the contribution of these mechanisms to virulence. By using the ruminant pathogen Mycoplasma bovis as a model system, extracellular DNA (eDNA) was identified as a limiting nutrient for mycoplasma proliferation under cell culture conditions. Remarkably, the growth-promoting effect induced by supplementation with eDNA was associated with important cytotoxicity for actively dividing host cells, but not confluent monolayers. To identify biological functions mediating M. bovis cytotoxicity, we produced a library of transposon knockout mutants and identified three critical genomic regions whose disruption was associated with a non-cytopathic phenotype. The coding sequences (CDS) disrupted in these regions pointed towards pyruvate metabolism as contributing to M. bovis cytotoxicity. Hydrogen peroxide was found responsible for eDNA-mediated M. bovis cytotoxicity, and non-cytopathic mutants were unable to produce this toxic metabolic compound. In our experimental conditions, no contact between M. bovis and host cells was required for cytotoxicity. Further analyses revealed important intra-species differences in eDNA-mediated cytotoxicity and H2O2 production, with some strains displaying a cytopathic phenotype despite no H2O2 production. Interestingly, the genome of strains PG45 and HB0801 were characterized by the occurrence of insertion sequences (IS) at close proximity to several CDSs found disrupted in non-cytopathic mutants. Since PG45 and HB0801 produced no or limited amount of H2O2, IS-elements might influence H2O2 production in M. bovis. These results confirm the multifaceted role of eDNA in microbial communities and further identify this ubiquitous material as a nutritional trigger of M. bovis cytotoxicity. M. bovis may thus take advantage of the multiple sources of eDNA in vivo to modulate its interaction with host cells, a way for this minimal pathogen to overcome its limited coding capacity.
Collapse
Affiliation(s)
- Xifang Zhu
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-products, Ministry of Agriculture and Rural Affairs of China, Wuhan, China
| | | | - Lucie Gillard
- IHAP, ENVT, INRA, Université de Toulouse, Toulouse, France
| | - Abou Ba
- IHAP, ENVT, INRA, Université de Toulouse, Toulouse, France
| | | | - Eveline Sagné
- IHAP, ENVT, INRA, Université de Toulouse, Toulouse, France
| | | | | | | | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-products, Ministry of Agriculture and Rural Affairs of China, Wuhan, China
| | | | | |
Collapse
|
889
|
Holubiec MI, Galeano P, Romero JI, Hanschmann EM, Lillig CH, Capani F. Thioredoxin 1 Plays a Protective Role in Retinas Exposed to Perinatal Hypoxia-Ischemia. Neuroscience 2019; 425:235-250. [PMID: 31785355 DOI: 10.1016/j.neuroscience.2019.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/20/2022]
Abstract
Thioredoxin family proteins are key modulators of cellular redox regulation and have been linked to several physiological functions, including the cellular response to hypoxia-ischemia. During perinatal hypoxia-ischemia (PHI), the central nervous system is subjected to a fast decrease in O2 and nutrients with a subsequent reoxygenation that ultimately leads to the production of reactive species impairing physiological redox signaling. Particularly, the retina is one of the most affected tissues, due to its high oxygen consumption and exposure to light. One of the main consequences of PHI is retinopathy of prematurity, comprising changes in retinal neural and vascular development, with further compensatory mechanisms that can ultimately lead to retinal detachment and blindness. In this study, we have analyzed long-term changes that occur in the retina using two well established in vivo rat PHI models (perinatal asphyxia and carotid ligation model), as well as the ARPE-19 cell line that was exposed to hypoxia and reoxygenation. We observed significant changes in the protein levels of the cytosolic oxidoreductase thioredoxin 1 (Trx1) in both animal models and a cell model. Knock-down of Trx1 in ARPE-19 cells affected cell morphology, proliferation and the levels of specific differentiation markers. Administration of recombinant Trx1 decreased astrogliosis and improved delayed neurodevelopment in animals exposed to PHI. Taken together, our results suggest therapeutical implications for Trx1 in retinal damage induced by hypoxia-ischemia during birth.
Collapse
Affiliation(s)
- M I Holubiec
- Laboratorio de Citoarquitectura y Plasticidad Neuronal, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini" (ININCA), Facultad de Medicina (UBA-CONICET), Buenos Aires, Argentina; Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Argentina.
| | - P Galeano
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Argentina
| | - J I Romero
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Argentina
| | - E-M Hanschmann
- Department of Neurology, Heinrich-Heine University Düsseldorf, Germany; Institute for Medical Biochemistry and Molecular Biology, University of Greifswald, Germany
| | - C H Lillig
- Institute for Medical Biochemistry and Molecular Biology, University of Greifswald, Germany
| | - F Capani
- Laboratorio de Citoarquitectura y Plasticidad Neuronal, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini" (ININCA), Facultad de Medicina (UBA-CONICET), Buenos Aires, Argentina; Facultad de Medicina, Universidad Católica Argentina (UCA), Buenos Aires, Argentina; Universidad Autónoma de Chile, Santiago de Chile, Chile
| |
Collapse
|
890
|
Mourenza Á, Bravo-Santano N, Pradal I, Gil JA, Mateos LM, Letek M. Mycoredoxins Are Required for Redox Homeostasis and Intracellular Survival in the Actinobacterial Pathogen Rhodococcus equi. Antioxidants (Basel) 2019; 8:antiox8110558. [PMID: 31731720 PMCID: PMC6912445 DOI: 10.3390/antiox8110558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022] Open
Abstract
Rhodococcus equi is a facultative intracellular pathogen that can survive within macrophages of a wide variety of hosts, including immunosuppressed humans. Current antibiotherapy is often ineffective, and novel therapeutic strategies are urgently needed to tackle infections caused by this pathogen. In this study, we identified three mycoredoxin-encoding genes (mrx) in the genome of R. equi, and we investigated their role in virulence. Importantly, the intracellular survival of a triple mrx-null mutant (Δmrx1Δmrx2Δmrx3) in murine macrophages was fully impaired. However, each mycoredoxin alone could restore the intracellular proliferation rate of R. equi Δmrx1Δmrx2Δmrx3 to wild type levels, suggesting that these proteins could have overlapping functions during host cell infection. Experiments with the reduction-oxidation sensitive green fluorescent protein 2 (roGFP2) biosensor confirmed that R. equi was exposed to redox stress during phagocytosis, and mycoredoxins were involved in preserving the redox homeostasis of the pathogen. Thus, we studied the importance of each mycoredoxin for the resistance of R. equi to different oxidative stressors. Interestingly, all mrx genes did have overlapping roles in the resistance to sodium hypochlorite. In contrast, only mrx1 was essential for the survival against high concentrations of nitric oxide, while mrx3 was not required for the resistance to hydrogen peroxide. Our results suggest that all mycoredoxins have important roles in redox homeostasis, contributing to the pathogenesis of R. equi and, therefore, these proteins may be considered interesting targets for the development of new anti-infectives.
Collapse
Affiliation(s)
- Álvaro Mourenza
- Department of Molecular Biology, Area of Microbiology, University of León, 24071 León, Spain; (Á.M.); (I.P.); (J.A.G.)
| | | | - Inés Pradal
- Department of Molecular Biology, Area of Microbiology, University of León, 24071 León, Spain; (Á.M.); (I.P.); (J.A.G.)
| | - Jose A. Gil
- Department of Molecular Biology, Area of Microbiology, University of León, 24071 León, Spain; (Á.M.); (I.P.); (J.A.G.)
| | - Luis M. Mateos
- Department of Molecular Biology, Area of Microbiology, University of León, 24071 León, Spain; (Á.M.); (I.P.); (J.A.G.)
- Correspondence: (L.M.M.); (M.L.)
| | - Michal Letek
- Health Sciences Research Centre, University of Roehampton, London SW15 4JD, UK;
- Correspondence: (L.M.M.); (M.L.)
| |
Collapse
|
891
|
Is dynamic thiol/disulfide homeostasis associated with the prognosis of myelodysplastic syndrome? J Med Biochem 2019; 39:336-345. [PMID: 33269022 DOI: 10.2478/jomb-2019-0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/08/2019] [Indexed: 12/18/2022] Open
Abstract
Background This study planned to investigate the relationship of dynamic thiol/disulfide homeostasis with the prognosis of myelodysplastic syndrome (MDS). Methods 80 patients who had been diagnosed with MDS between 2012 and 2017 and who were older than 18 were included in the study together with 80 healthy control subjects. The MDS diagnosis was confirmed using bone marrow aspiration-biopsy immunostaining. Dynamic thiol/disulfide homeostasis and ischemia-modified albumin (IMA) levels were examined. Results The average IMA (0.71±0.08 vs. 0.67±0.09; p=0.002), median disulfide (18.0 vs. 11.6; p<0.001), median disulfide/native thiol (6 vs. 3; p<0.001), and median disulfide/total thiol (5.4 vs. 2.9; p<0.001) were found higher in the MDS patients compared to control group, and the median hemoglobin, median white blood cell count, median neutrophil count, median lymphocyte count, average native thiol (290.7±48.5 vs. 371.5±103.8; p<0.001), average total thiol (328.2±48.9 vs. 393±105.5; p<0.001), and average native thiol/total thiol (%) (88.3±4.3 vs. 94.2±2.1; p<0.001) were found to below. Risk factors such as collagen tissue disease (HR:9.17; p=0.005), MDS-EB-1 (HR:10.14; p=0.032), MDS-EB-2 (HR:18.2; p=0.043), and disulfide/native thiol (HR:1.17; p=0.023) were found as the independent predictors anticipating progression to acute myeloid leukemia. In the Cox regression model, risk factors such as age (HR:1.05; p=0.002), MDS-EB-1 (HR:12.58; p<0.001), MDS-EB-2 (HR:5.75; p=0.033), disulfide/native thiol (HR:1.14; p=0.040), and hemoglobin (HR:0.64; p=0.007) were found as predictors anticipating for mortality. Conclusions We can argue that dynamic thiol/disulfide homeostasis could have significant effects on both the etiopathogenesis and the survival of patients with MDS, and it could be included in new prognostic scoring systems.
Collapse
|
892
|
Chia SB, Elko EA, Aboushousha R, Manuel AM, van de Wetering C, Druso JE, van der Velden J, Seward DJ, Anathy V, Irvin CG, Lam YW, van der Vliet A, Janssen-Heininger YMW. Dysregulation of the glutaredoxin/ S-glutathionylation redox axis in lung diseases. Am J Physiol Cell Physiol 2019; 318:C304-C327. [PMID: 31693398 DOI: 10.1152/ajpcell.00410.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutathione is a major redox buffer, reaching millimolar concentrations within cells and high micromolar concentrations in airways. While glutathione has been traditionally known as an antioxidant defense mechanism that protects the lung tissue from oxidative stress, glutathione more recently has become recognized for its ability to become covalently conjugated to reactive cysteines within proteins, a modification known as S-glutathionylation (or S-glutathiolation or protein mixed disulfide). S-glutathionylation has the potential to change the structure and function of the target protein, owing to its size (the addition of three amino acids) and charge (glutamic acid). S-glutathionylation also protects proteins from irreversible oxidation, allowing them to be enzymatically regenerated. Numerous enzymes have been identified to catalyze the glutathionylation/deglutathionylation reactions, including glutathione S-transferases and glutaredoxins. Although protein S-glutathionylation has been implicated in numerous biological processes, S-glutathionylated proteomes have largely remained unknown. In this paper, we focus on the pathways that regulate GSH homeostasis, S-glutathionylated proteins, and glutaredoxins, and we review methods required toward identification of glutathionylated proteomes. Finally, we present the latest findings on the role of glutathionylation/glutaredoxins in various lung diseases: idiopathic pulmonary fibrosis, asthma, and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Shi B Chia
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Evan A Elko
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Reem Aboushousha
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Allison M Manuel
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Cheryl van de Wetering
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Joseph E Druso
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Jos van der Velden
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - David J Seward
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Charles G Irvin
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Ying-Wai Lam
- Department of Biology, University of Vermont, Burlington, Vermont
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | | |
Collapse
|
893
|
Gęgotek A, Jarocka-Karpowicz I, Skrzydlewska E. Synergistic Cytoprotective Effects of Rutin and Ascorbic Acid on the Proteomic Profile of 3D-Cultured Keratinocytes Exposed to UVA or UVB Radiation. Nutrients 2019; 11:nu11112672. [PMID: 31694226 PMCID: PMC6893536 DOI: 10.3390/nu11112672] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022] Open
Abstract
The combination of ascorbic acid and rutin, often used in oral preparations, due to antioxidant and anti-inflammatory properties, can be used to protect skin cells against the effects of UV radiation from sunlight. Therefore, the aim of this study was to investigate the synergistic effect of rutin and ascorbic acid on the proteomic profile of UVA and UVB irradiated keratinocytes cultured in a three-dimensional (3D) system. Results showed that the combination of rutin and ascorbic acid protects skin cells against UV-induced changes. In particular, alterations were observed in the expression of proteins involved in the antioxidant response, DNA repairing, inflammation, apoptosis, and protein biosynthesis. The combination of rutin and ascorbic acid also showed a stronger cytoprotective effect than when using either compound alone. Significant differences were visible between rutin and ascorbic acid single treatments in the case of protein carboxymethylation/carboxyethylation. Ascorbic acid prevented UV or rutin-induced protein modifications. Therefore, the synergistic effect of rutin and ascorbic acid creates a potentially effective protective system against skin damages caused by UVA and UVB radiation.
Collapse
|
894
|
Qiu X, Guittet O, Mingoes C, El Banna N, Huang ME, Lepoivre M, Hildebrandt N. Quantification of Cellular Deoxyribonucleoside Triphosphates by Rolling Circle Amplification and Förster Resonance Energy Transfer. Anal Chem 2019; 91:14561-14568. [PMID: 31638767 DOI: 10.1021/acs.analchem.9b03624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The quantification of cellular deoxyribonucleoside triphosphate (dNTP) levels is important for studying pathologies, genome integrity, DNA repair, and the efficacy of pharmacological drug treatments. Current standard methods, such as enzymatic assays or high-performance liquid chromatography, are complicated, costly, and labor-intensive, and alternative techniques that simplify dNTP quantification would present very useful complementary approaches. Here, we present a dNTP assay based on isothermal rolling circle amplification (RCA) and rapid time-gated Förster resonance energy transfer (TG-FRET), which used a commercial clinical plate reader system. Despite the relatively simple assay format, limits of detection down to a few picomoles of and excellent specificity for each dNTP against the other dNTPs, rNTPs, and dUTP evidenced the strong performance of the assay. Direct applicability of RCA-FRET to applied nucleic acid research was demonstrated by quantifying all dNTPs in CEM-SS leukemia cells with and without hydroxyurea or auranofin treatment. Both pharmacological agents could reduce the dNTP production in a time- and dose-dependent manner. RCA-FRET provides simple, rapid, sensitive, and specific quantification of intracellular dNTPs and has the potential to become an advanced tool for both fundamental and applied dNTP research.
Collapse
Affiliation(s)
- Xue Qiu
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay, Université Paris-Sud, CNRS, CEA , 91400 Orsay , France
| | - Olivier Guittet
- Cellular Activation and Signal Transduction, Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay, Université Paris-Sud, CNRS, CEA , 91400 Orsay , France
| | - Carlos Mingoes
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay, Université Paris-Sud, CNRS, CEA , 91400 Orsay , France
| | - Nadine El Banna
- CNRS UMR3348, Institut Curie, PSL Research University, Université Paris-Sud, Université Paris-Saclay , 91400 Orsay , France
| | - Meng-Er Huang
- CNRS UMR3348, Institut Curie, PSL Research University, Université Paris-Sud, Université Paris-Saclay , 91400 Orsay , France
| | - Michel Lepoivre
- Cellular Activation and Signal Transduction, Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay, Université Paris-Sud, CNRS, CEA , 91400 Orsay , France
| | - Niko Hildebrandt
- NanoBioPhotonics (nanofret.com), Institute for Integrative Biology of the Cell (I2BC) , Université Paris-Saclay, Université Paris-Sud, CNRS, CEA , 91400 Orsay , France.,Laboratoire Chimie Organique, Bioorganique, Réactivité et Analyse (COBRA) , Université de Rouen Normandie, CNRS, INSA , 76821 Mont-Saint-Aignan , France
| |
Collapse
|
895
|
Adhikari A, Mondal S, Darbar S, Kumar Pal S. Role of Nanomedicine in Redox Mediated Healing at Molecular Level. Biomol Concepts 2019; 10:160-174. [PMID: 31661433 DOI: 10.1515/bmc-2019-0019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/06/2019] [Indexed: 11/15/2022] Open
Abstract
Nanomedicine, the offspring born from the marriage of nanotechnology and medicine, has already brought momentous advances in the fight against a plethora of unmet diseases from cardiovascular and neurodegenerative to diabetes and cancer. Here, we review a conceptual framework that will provide a basic understanding about the molecular mechanism of action of a therapeutic nanomaterial inside biological milieu. In this review, we highlight how the catalytic nature of a transition metal oxide nanomaterial influences the cellular redox homeostasis, supports the cellular antioxidant defence system and reactivates the reactive oxygen species (ROS) mediated signalling to perform normal cell functions like cell cycle, differentiation, apoptosis, inflammation, toxicity, and protein interactions. With numerous examples, we describe the redox modulatory nature of d-block metal oxide nanomaterials and their biomimetic nanozyme activities to protect the mitochondria, the cellular redox mediator which prevents an organism from various diseases. This knowledge will be useful to design new nanomaterials capable of intracellular redox modulation, which in turn can be effective therapeutic agents for treatment of various unmet diseases that are beyond the ability of modern synthetic medicine.
Collapse
Affiliation(s)
- Aniruddha Adhikari
- Department of Chemical Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector 3, Salt Lake, Kolkata-700106, India
| | - Susmita Mondal
- Department of Chemical Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector 3, Salt Lake, Kolkata-700106, India
| | - Soumendra Darbar
- Research & Development Division, Dey's Medical Stores (Mfg.) Ltd, 62, Bondel Road, Ballygunge, Kolkata 700019, India
| | - Samir Kumar Pal
- Department of Chemical Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector 3, Salt Lake, Kolkata-700106, India
| |
Collapse
|
896
|
Benej M, Danchenko M, Oveckova I, Cervenak F, Tomaska L, Grossmannova K, Polcicova K, Golias T, Tomaskova J. Quantitative Proteomics Reveal Peroxiredoxin Perturbation Upon Persistent Lymphocytic Choriomeningitis Virus Infection in Human Cells. Front Microbiol 2019; 10:2438. [PMID: 31708904 PMCID: PMC6823195 DOI: 10.3389/fmicb.2019.02438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022] Open
Abstract
Experimental data indicate that during persistent infection, lymphocytic choriomeningitis virus (LCMV) may both directly or indirectly modulate regulatory cellular processes and alter cellular functions that are not critical for survival, but are essential for cell homeostasis. In order to shed more light on these processes, two-dimensional differential in-gel electrophoresis (2D-DIGE) and MALDI-TOF tandem mass spectrometry were used to determine the proteome response of the HeLa cell line to persistent LCMV infection. Quantitative analysis revealed 24 differentially abundant proteins. Functional analysis showed that LCMV-responsive proteins were primarily involved in metabolism, stress, and the defense response. Among identified proteins, we discovered significant changes for peroxiredoxins, a family of antioxidant enzymes. Decreased amount of these antioxidant proteins correlated with elevation of reactive oxygen species (ROS) in infected cells. Increased levels of ROS were accompanied by changes in the pattern of telomere restriction fragments (TRFs) in infected cells and mediated activation of hypoxia-inducible transcription factor-1 (HIF-1) and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways. Moreover, treatment with antioxidants resulted in reduced levels of viral nucleoprotein, indicating a connection between ROS-dependent signaling and viral replication.
Collapse
Affiliation(s)
- Martin Benej
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Maksym Danchenko
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ingrid Oveckova
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Filip Cervenak
- Faculty of Natural Sciences, Department of Genetics, Comenius University in Bratislava, Bratislava, Slovakia
| | - Lubomir Tomaska
- Faculty of Natural Sciences, Department of Genetics, Comenius University in Bratislava, Bratislava, Slovakia
| | - Katarina Grossmannova
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarina Polcicova
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tereza Golias
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Tomaskova
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
897
|
Kaplán P, Tatarková Z, Lichardusová L, Kmeťová Sivoňová M, Tomašcová A, Račay P, Lehotský J. Age-Associated Changes in Antioxidants and Redox Proteins of Rat Heart. Physiol Res 2019; 68:883-892. [PMID: 31647296 DOI: 10.33549/physiolres.934170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress and decline in cellular redox regulation have been hypothesized to play a key role in cardiovascular aging; however, data on antioxidant and redox regulating systems in the aging heart are controversial. The aim of the present study was to examine the effect of aging on critical antioxidant enzymes and two major redox-regulatory systems glutathione (GSH) and thioredoxin (Trx) system in hearts from adult (6-month-old), old (15-month-old), and senescent (26-month-old) rats. Aging was associated with a non-uniform array of changes, including decline in contents of reduced GSH and total mercaptans in the senescent heart. The activities of Mn-superoxide dismutase (SOD2), glutathione peroxidase (GPx), glutathione reductase (GR), and thioredoxin reductase (TrxR) exhibited an age-related decline, whereas catalase was unchanged and Cu,Zn-superoxide dismutase (SOD1) displayed only slight decrease in old heart and was unchanged in the senescent heart. GR, Trx, and peroxiredoxin levels were significantly reduced in old and/or senescent hearts, indicating a diminished expression of these proteins. In contrast, SOD2 level was unchanged in the old heart and was slightly elevated in the senescent heart. Decline in GPx activity was accompanied by a loss of GPx level only in old rats, the level in senescent heart was unchanged. These results indicate age-related posttranslational protein modification of SOD2 and GPx. In summary, our data suggest that changes are more pronounced in senescent than in old rat hearts and support the view that aging is associated with disturbed redox balance that could alter cellular signaling and regulation.
Collapse
Affiliation(s)
- P Kaplán
- Department of Medical Biochemistry, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovak Republic.
| | | | | | | | | | | | | |
Collapse
|
898
|
Distinct Roles of Shewanella oneidensis Thioredoxin in Regulation of Cellular Responses to Hydrogen and Organic Peroxides. Appl Environ Microbiol 2019; 85:AEM.01700-19. [PMID: 31444207 DOI: 10.1128/aem.01700-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022] Open
Abstract
The thioredoxin (Trx) and glutaredoxin (Grx) antioxidant systems are deeply involved in bacterial response to oxidative stress, but to date, we know surprisingly little about the roles of these systems in response to reactive oxygen species (ROS) other than hydrogen peroxide (H2O2). In this study, we used Shewanella oneidensis, an environmental bacterium, as a research model to investigate the roles of Trx and Grx in oxidative stress response because it has functionally intertwined ROS responsive regulators OxyR and OhrR. We found that Trx1 is the major thiol/disulfide redox system and that in its absence a Grx system becomes essential under normal conditions. Although overshadowed by Trx1 in the wild type, Trx2 can fully replace Trx1 in physiology when overproduced. Trx1 is required for OxyR to function as a repressor but, more importantly, plays a critical role in the cellular response to organic peroxide (OP) by mediating the redox status of OhrR but not OP scavenger OhrA. While none of the trx and grx genes are OxyR dependent, trxA and trxC are affected by OhrR indirectly. Additional data suggest that depletion of glutathione is likely the cue to trigger induced expression of trxA and trxC These findings underscore the particular importance of Trx in the bacterial OP stress response.IMPORTANCE The Trx and Grx systems are deeply involved in bacterial responses to H2O2-induced oxidative stress. However, little is known about their roles in response to other ROS, such as organic peroxides (OPs). In this study, we used S. oneidensis as a research model to investigate the interplay between Trx/Grx and OxyR/OhrR. We show that Trxs mediate the redox status of transcriptional OP-responding regulator OhrR. Although none of the trx or grx genes are directly controlled by OxyR or OhrR, expression of trxA and trxC is induced by tert-butyl hydroperoxide (t-BHP). We further show that the trxA and trxC genes respond to effects of glutathione (GSH) depletion rather than oxidation. These findings underscore the particular importance of Trx in the bacterial OP stress response.
Collapse
|
899
|
Zhang Q, Chen W, Lv X, Weng Q, Chen M, Cui R, Liang G, Ji J. Piperlongumine, a Novel TrxR1 Inhibitor, Induces Apoptosis in Hepatocellular Carcinoma Cells by ROS-Mediated ER Stress. Front Pharmacol 2019; 10:1180. [PMID: 31680962 PMCID: PMC6802400 DOI: 10.3389/fphar.2019.01180] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third leading cause of cancer-related deaths globally. Despite advances in diagnosis and treatment, the incidence and mortality of HCC continue to rise. Piperlongumine (PL), an alkaloid isolated from the fruit of the long pepper, is known to selectively kill tumor tissues while sparing their normal counterparts. However, the killing effects of PL on HCC and the underlying mechanism of PL are not clear. We report that PL may interact with thioredoxin reductase 1 (TrxR1), an important selenocysteine (Sec)-containing antioxidant enzyme, and induce reactive oxygen species (ROS)-mediated apoptosis in HCC cells. Our results suggest that PL induces a lethal endoplasmic reticulum (ER) stress response in HCC cells by targeting TrxR1 and increasing intracellular ROS levels. Notably, PL treatment reduces TrxR1 activity and tumor cell burden in vivo. Additionally, TrxR1 is significantly upregulated in existing HCC databases and available HCC clinical specimens. Taken together, these results suggest PL as a novel anticancer candidate for the treatment of HCC. More importantly, this study reveals that TrxR1 might be an effective target in treating HCC.
Collapse
Affiliation(s)
- Qianqian Zhang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Central Hospital, Lishui, China
| | - Weiqian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Central Hospital, Lishui, China
| | - Xiuling Lv
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Central Hospital, Lishui, China
| | - Qiaoyou Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Central Hospital, Lishui, China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Central Hospital, Lishui, China
| | - Ri Cui
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, Lishui Central Hospital, Lishui, China
| |
Collapse
|
900
|
Epstein TD, Wu B, Moulton KD, Yan M, Dube DH. Sugar-Modified Analogs of Auranofin Are Potent Inhibitors of the Gastric Pathogen Helicobacter pylori. ACS Infect Dis 2019; 5:1682-1687. [PMID: 31487153 PMCID: PMC7123778 DOI: 10.1021/acsinfecdis.9b00251] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Helicobacter pylori (H. pylori) infection poses a worldwide public health crisis, as chronic infection is rampant and can lead to gastric ulcers, gastritis, and gastric cancer. Unfortunately, frontline therapies cause harmful side effects and are often ineffective due to antibiotic resistance. The FDA-approved drug auranofin is a gold complex with a Au(I) core coordinated with triethylphosphine and peracetylated thioglucose as the ligands. Auranofin is used for the treatment of rheumatoid arthritis and also displays potent activity against H. pylori. One of auranofin's modes of action involves cell death by disrupting cellular thiol-redox balance maintained by thioredoxin reductase (TrxR), but this disruption leads to unwanted side effects due to mammalian cell toxicity. Here, we developed and tested sugar-modified analogs of auranofin as potential antibiotics against H. pylori, with the rationale that modulating the sugar moiety would bias uptake by targeting bacterial cells and mitigating mammalian cell toxicity. Sugar-modified auranofin analogs displayed micromolar minimum inhibitory concentrations against H. pylori, maintained nanomolar inhibitory activity against the target enzyme TrxR, and caused reduced toxicity to mammalian cells. Taken together, our results suggest that structurally modifying the sugar component of auranofin has the potential to yield superior antibiotics for the treatment of H. pylori infection. Broadly, glyco-tailoring is an attractive approach for repurposing approved drugs.
Collapse
Affiliation(s)
- Tessa D. Epstein
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - Bin Wu
- Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854, USA
| | - Karen D. Moulton
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854, USA
| | - Danielle H. Dube
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| |
Collapse
|