851
|
Brain-derived neurotrophic factor promotes the maturation of GABAergic mechanisms in cultured hippocampal neurons. J Neurosci 2002. [PMID: 12196581 DOI: 10.1523/jneurosci.22-17-07580.2002] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has been implicated in activity-dependent plasticity of neuronal function and network arrangement. To clarify how BDNF exerts its action, we evaluated the physiological, histological, and biochemical characteristics of cultured hippocampal neurons after long-term treatment with BDNF. Here we show that BDNF facilitates high K(+)-elicited release of GABA but not of glutamate and induces an increase in immunoreactive signals of glutamic acid decarboxylase, a GABA-synthesizing enzyme. The soma size of GABAergic neurons was enlarged in BDNF-treated cultures, whereas the average soma size of all neurons was virtually unchanged. BDNF also upregulated protein levels of GABA(A) receptors but not of glutamate receptors. These data imply that BDNF selectively advances the maturation of GABAergic synapses. However, immunocytochemical analyses revealed that a significant expression of TrkB, a high-affinity receptor for BDNF, was detected in non-GABAergic as well as GABAergic neurons. BDNF also increased to total amount of synaptic vesicle-associated proteins without affecting the number of presynaptic vesicles that can be labeled with FM1-43 after K(+) depolarization. Together, our findings indicate that BDNF principally promotes GABAergic maturation but may also potentially contribute to excitatory synapse development via increasing resting synaptic vesicles.
Collapse
|
852
|
Abstract
Recent electron microscopic studies provide evidence that the adult cortex generates new synapses in response to sensory activity and that these structural changes can occur rapidly, within 24 hr of sensory stimulation. Together with progress imaging synapses in vivo, the stage appears set for advances in understanding the dynamics and mechanisms of experience-dependent synaptogenesis.
Collapse
Affiliation(s)
- Karen Zito
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, NY 11724, USA
| | | |
Collapse
|
853
|
Walcott EC, Langdon RB. Synaptically driven spikes and long-term potentiation in neocortical layer 2/3. Neuroscience 2002; 112:815-26. [PMID: 12088741 DOI: 10.1016/s0306-4522(02)00131-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recently, variation upon a well-established hippocampal model has given rise to a new paradigm in which the strength of synaptic inputs to neocortical layer 2/3 is estimated in vitro by recording synaptically driven extracellular potentials elicited there by electrical stimulation applied to underlying layer 4. The analysis of these potentials is commonly based upon an assumption that postsynaptic spiking has played no significant role in their generation. Here, we have tested this assumption by quantifying in rats (using data obtained by cell-attached recording) the rate at which unit spikes are elicited in layer 2/3 under commonly used conditions of stimulation and recording. We found that spike responses were regularly elicited at the same latencies as field potential peaks and the rising phases of intracellularly recorded synaptic currents, and the incidence of such spiking (the fractional rate of cells spiking versus cells sampled) was sufficient to give this higher-order activity a major role in determining response amplitudes. We then analyzed layer 2/3 waveform characteristics before and after inducing long-term potentiation (LTP) by theta-burst stimulation (TBS) and found that the induction of LTP succeeded only when the initial response included a strong spike component. We further observed that LTP expression was always accompanied by a pronounced enhancement of such components. Our data suggest that, unlike in hippocampal CA1, LTP elicited by TBS in this neocortical paradigm depends upon modification of synaptically driven spike activity, through either enhanced synchronization of unitary responses, the recruitment of additional responding units, or both. This potentiation of the spike response could arise (as previously proposed) through an increase in the efficacy of synapses mediating projection from layer 4 to 2/3, but other mechanisms may also contribute, such as modification of short-range recurrent connections within layer 2/3, which are likely to play an important role in defining local-network cell ensembles.
Collapse
Affiliation(s)
- E C Walcott
- The Neurosciences Institute, 10640 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | | |
Collapse
|
854
|
Henneberger C, Jüttner R, Rothe T, Grantyn R. Postsynaptic action of BDNF on GABAergic synaptic transmission in the superficial layers of the mouse superior colliculus. J Neurophysiol 2002; 88:595-603. [PMID: 12163512 DOI: 10.1152/jn.2002.88.2.595] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) is involved in numerous aspects of synapse development and plasticity. The present study was aimed at clarifying the significance of endogenous BDNF for the synaptically driven spontaneous network activity and GABAergic inhibition in the superficial layers of the mouse superior colliculus. In this structure neuron survival is unaffected by the absence of BDNF. Two experimental approaches were used: comparison of BDNF-deficient (-/-) and wild-type (+/+) mice and blockade of BDNF receptor signaling by the tyrosine kinase inhibitor K-252a. Patch-clamp recordings were performed on horizontal slices during postnatal days 15 and 16. The lack of BDNF in -/- mice caused a significant reduction of the spontaneous action potential frequency and an increase in the pharmacologically induced disinhibition of spike discharge. This change was accompanied by an increase in the amplitudes of GABAergic evoked, spontaneous, and miniature inhibitory postsynaptic currents (IPSCs). BDNF gene inactivation had no effect on the degree of paired-pulse facilitation or the frequency of miniature IPSCs. The increase of IPSC amplitudes by chronic BDNF deprivation was completely mimicked by acute exposure to K-252a in +/+ animals. The enhancement of GABAergic IPSCs in -/- animals was reversed by acute application of 100 ng/ml BDNF, but this rescue was completely prevented by blocking postsynaptic protein kinase C (PKC) activation with the PKC inhibitor peptide 19-31. From these results we conclude that BDNF increases spontaneous network activity by suppressing GABAergic inhibition, the site of action of BDNF is predominantly postsynaptic, BDNF-induced suppression of GABAergic synaptic transmission is caused by acute downregulation of GABA(A) receptors, and BDNF effects are mediated by its TrkB receptor and require PKC activation in the postsynaptic cell.
Collapse
Affiliation(s)
- Christian Henneberger
- Developmental Physiology, Johannes Müller Institute of Physiology, Charité, D-10117 Berlin, Germany
| | | | | | | |
Collapse
|
855
|
Abstract
Long-term depression (LTD) is widely considered a mechanism for experience-induced synaptic weakening in the brain. Recent in vivo studies on glutamic acid decarboxylase [GAD 65 (-/-)] knock-out mice indicates that GABAergic synaptic inhibition is also required for the normal weakening of deprived inputs in the visual cortex. To better understand how GABAergic inhibition might control plasticity, we assessed the status of synaptic inhibition and LTD in visual cortical slices of GAD 65 knock-out mice. We found the following: (1) the efficacy of GABAergic synapses during repetitive activation is reduced in GAD 65 (-/-) mice; (2) the induction of LTD is impaired in the visual cortex of GAD 65 (-/-) mice; and (3) chronic, but not acute, treatment with the benzodiazepine agonist diazepam restores LTD in GAD 65 (-/-) mice. These results suggest that a certain inhibitory tone is required for the induction of LTD in visual cortex. We propose that the lack of visual cortical LTD in GAD 65 (-/-) may account for the lack of experience-dependent plasticity in these mice.
Collapse
|
856
|
Mataga N, Nagai N, Hensch TK. Permissive proteolytic activity for visual cortical plasticity. Proc Natl Acad Sci U S A 2002; 99:7717-21. [PMID: 12032349 PMCID: PMC124331 DOI: 10.1073/pnas.102088899] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The serine protease, tissue-type plasminogen activator (tPA) is a key regulator of extracellular proteolytic cascades. We demonstrate a requirement for tPA signaling in the experience-dependent plasticity of mouse visual cortex during the developmental critical period. Proteolytic activity by tPA in the binocular zone was typically increased within 2 days of monocular deprivation (MD). This regulation failed to occur in glutamic acid decarboxylase (GAD) 65 knockout mice, an animal model of impaired ocular dominance plasticity because of reduced gamma-aminobutyric acid (GABA)-mediated transmission described previously. Loss of responsiveness to the deprived eye consequent to MD was conversely suppressed in mice lacking tPA despite normal levels of neuronal activity. Plasticity was restored in a gene dose-dependent manner, or by direct tPA infusion. Permissive amounts of tPA may, thus, couple functional to structural changes downstream of the excitatory-inhibitory balance that triggers visual cortical plasticity. Our results not only support a molecular cascade leading to neurite outgrowth after sensory deprivation, but also identify a valuable tool for further proteomic and genomic dissection of experience-dependent plasticity downstream of electrical activity.
Collapse
Affiliation(s)
- Nobuko Mataga
- Laboratory for Neuronal Circuit Development, Institute of Physical and Chemical Research (RIKEN), Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | | | | |
Collapse
|
857
|
Gärtner A, Staiger V. Neurotrophin secretion from hippocampal neurons evoked by long-term-potentiation-inducing electrical stimulation patterns. Proc Natl Acad Sci U S A 2002; 99:6386-91. [PMID: 11983920 PMCID: PMC122958 DOI: 10.1073/pnas.092129699] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2001] [Accepted: 03/06/2002] [Indexed: 01/19/2023] Open
Abstract
The neurotrophin (NT) brain-derived neurotrophic factor (BDNF) plays an essential role in the formation of long-term potentiation (LTP). Here, we address whether this modulation by BDNF requires its continuous presence, or whether a local increase in BDNF is necessary during a specific time period of LTP initiation. Using electrical field stimulation of primary cultures of hippocampal neurons, we demonstrate that short high-frequency bursts of stimuli that induce LTP evoke also an instantaneous secretion of BDNF. In contrast, stimuli at low frequencies, inducing long-term depression, do not enhance BDNF secretion, suggesting that BDNF is specifically present, and thus required, at the time of LTP induction. The field-stimulation-mediated BDNF secretion depends on the formation of action potentials and is induced by IP(3)-mediated Ca(2+) release from intracellular stores. Experiments, aimed at determining the sites of NT secretion that use NT6, showed similar patterns of surface labeling by field stimulation to those shown previously by high potassium.
Collapse
Affiliation(s)
- Annette Gärtner
- Max Planck Institute of Neurobiology, Am Klopferspitz 18A, 82152 Martinsried, Germany.
| | | |
Collapse
|
858
|
Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J Neurosci 2002. [PMID: 11923433 DOI: 10.1523/jneurosci.22-07-02679.2002] [Citation(s) in RCA: 402] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the mammalian forebrain, most neurons originate from proliferating cells in the ventricular zone lining the lateral ventricles, including a discrete area of the subventricular zone (SVZ). In this region, neurogenesis continues into adulthood. Most of the cells generated in the SVZ are neuronal precursors with progeny that migrate rostrally along a pathway known as the rostral migratory stream before they reach the main olfactory bulb (MOB) where they differentiate into local interneurons. The olfactory system thus provides an attractive model to investigate neuronal production and survival, processes involving interplay between genetic and epigenetic influences. The present study was conducted to investigate whether exposure to an odor-enriched environment affects neurogenesis and learning in adult mice. Animals housed in either a standard or an odor-enriched environment for 40 d were injected intraperitoneally with bromodeoxyuridine (BrdU) to detect proliferation among progenitor cells and to follow their survival in the MOB. The number of BrdU-labeled neurons was not altered 4 hr after a single BrdU injection. In contrast, the number of surviving progenitors 3 weeks after BrdU injection was markedly increased in animals housed in an enriched environment. This effect was specific because enriched odor exposure did not influence hippocampal neurogenesis. Finally, we showed that adult mice housed in odor-enriched cages display improved olfactory memory without a change in spatial learning performance. By maintaining a constitutive turnover of granule cells subjected to modulation by environmental cues, ongoing bulbar neurogenesis could be associated with improved olfactory memory.
Collapse
|
859
|
Wang CY, Yang F, He XP, Je HS, Zhou JZ, Eckermann K, Kawamura D, Feng L, Shen L, Lu B. Regulation of neuromuscular synapse development by glial cell line-derived neurotrophic factor and neurturin. J Biol Chem 2002; 277:10614-25. [PMID: 11790765 DOI: 10.1074/jbc.m106116200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is known for its potent effect on neuronal survival, but its role in the development and function of synapses is not well studied. Using Xenopus nerve-muscle co-cultures, we show that GDNF and its family member neurturin (NRTN) facilitate the development of the neuromuscular junction (NMJ). Long-term application of GDNF significantly increased the total length of neurites in the motoneurons. GDNF also caused an increase in the number and the size of synaptic vesicle clustering, as demonstrated by synaptobrevin-GFP fluorescent imaging, and FM dye staining. Electrophysiological experiments revealed two effects of GDNF on synaptic transmission at NMJ. First, GDNF markedly increased the frequency of spontaneous transmission and decreased the variability of evoked transmission, suggesting an enhancement of transmitter secretion. Second, GDNF elicited a small increase in the quantal size, without affecting the average rise and decay times of synaptic currents. Imaging analysis showed that the size of acetylcholine receptor clusters at synapses increased in muscle cells overexpressing GDNF. Neurturin had very similar effects as GDNF. These results suggest that GDNF and NRTN are new neuromodulators that regulate the development of the neuromuscular synapse through both pre- and postsynaptic mechanisms.
Collapse
Affiliation(s)
- Chang-Yu Wang
- Unit on Synapse Development and Plasticity, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
860
|
Rico B, Xu B, Reichardt LF. TrkB receptor signaling is required for establishment of GABAergic synapses in the cerebellum. Nat Neurosci 2002; 5:225-33. [PMID: 11836532 PMCID: PMC2758226 DOI: 10.1038/nn808] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neurotrophins are essential to the normal development and maintenance of the nervous system. Neurotrophin signaling is mediated by Trk family tyrosine kinases such as TrkA, TrkB and TrkC, as well as by the pan-neurotrophin receptor p75NTR. Here we have deleted the trkB gene in cerebellar precursors by Wnt1-driven Cre--mediated recombination to study the function of the TrkB in the cerebellum. Despite the absence of TrkB, the mature cerebellum of mutant mice appears similar to that of wild type, with all types of cell present in normal numbers and positions. Granule and Purkinje cell dendrites appear normal and the former have typical numbers of excitatory synapses. By contrast, inhibitory interneurons are strongly affected: although present in normal numbers, they express reduced amounts of GABAergic markers and develop reduced numbers of GABAergic boutons and synaptic specializations. Thus, TrkB is essential to the development of GABAergic neurons and regulates synapse formation in addition to its role in the development of axon terminals.
Collapse
Affiliation(s)
- Beatriz Rico
- Howard Hughes Medical Institute and Department of Physiology, University of California, San Francisco, California 94143, USA
| | | | | |
Collapse
|
861
|
Miletic G, Miletic V. Increases in the concentration of brain derived neurotrophic factor in the lumbar spinal dorsal horn are associated with pain behavior following chronic constriction injury in rats. Neurosci Lett 2002; 319:137-40. [PMID: 11834312 DOI: 10.1016/s0304-3940(01)02576-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Animals exhibiting thermal hyperalgesia as a sign of neuropathic pain 7 days after loose ligation of the sciatic nerve exhibited a significant increase in the concentration of brain derived neurotrophic factor (BDNF) in their lumbar spinal dorsal horn. In contrast, following the disappearance of thermal hyperalgesia 28 days after loose ligation of the sciatic nerve, there were no differences in BDNF levels between control animals and those with sciatic ligations. These data suggest a close association in the timeline of the development and disappearance of behavioral signs of neuropathic pain with changes in BDNF levels in the lumbar spinal dorsal horn, and lend further support to the notion that plasticity in the processing of sensory information in the spinal dorsal horn may contribute to the development of persistent pain.
Collapse
Affiliation(s)
- Gordana Miletic
- Department of Comparative Biosciences, University of Wisconsin, 2015 Linden Drive, Madison, WI 53706-1102, USA.
| | | |
Collapse
|
862
|
Abstract
It is now 15 years since the discovery that N-methyl-d-aspartate receptor activity is required to maintain the refined topographic organization of retinotectal projections. Recent studies have identified additional components of the signaling pathways required for activity-dependent map formation and maintenance. Nitric oxide and brain-derived neurotrophic factor, candidate retrograde messengers, and serotonin and acetylcholine, modulators of neuronal excitability, all affect mapping. These studies indicate that the mapping process intersects with other processes fundamental to visual system development and function, such as process outgrowth, synaptic turnover and neuromodulation.
Collapse
Affiliation(s)
- Elizabeth A Debski
- Department of Biological Sciences, University of Kentucky, 101 Morgan Biological Science Building, Lexington, Kentucky 40506, USA
| | | |
Collapse
|
863
|
Abstract
The visual cortex is one of the favorite models for the study of experience-dependent changes in neuronal structure and function. A number of recent investigations indicate that the neurotrophic factors of the nerve growth factor family (neurotrophins) play a pivotal role in visual cortical plasticity. Neurotrophins and their receptors are present in the cortex during the critical period for plasticity, and neurotrophin levels are regulated by electrical activity. Neurotrophins modulate synaptic transmission and patterns of neuronal connectivity in the cortex. This review summarizes the in vivo and in vitro data that demonstrate the involvement of neurotrophins in visual cortical plasticity and discusses the possible mechanisms of their action.
Collapse
Affiliation(s)
- Matteo Caleo
- Scuola Normale Superiore, Istituto di Neurofisiologia del CNR, Pisa, Italy.
| | | |
Collapse
|
864
|
Abstract
The term neuropeptides commonly refers to a relatively large number of biologically active molecules that have been localized to discrete cell populations of central and peripheral neurons. I review here the most important histological and functional findings on neuropeptide distribution in the central nervous system (CNS), in relation to their role in the exchange of information between the nerve cells. Under this perspective, peptide costorage (presence of two or more peptides within the same subcellular compartment) and coexistence (concurrent presence of peptides and other messenger molecules within single nerve cells) are discussed in detail. In particular, the subcellular site(s) of storage and sorting mechanisms within neurons are thoroughly examined in the view of the mode of release and action of neuropeptides as neuronal messengers. Moreover, the relationship of neuropeptides and other molecules implicated in neural transmission is discussed in functional terms, also referring to the interactions with novel unconventional transmitters and trophic factors. Finally, a brief account is given on the presence of neuropeptides in glial cells.
Collapse
Affiliation(s)
- A Merighi
- Department of Veterinary Morphophysiology, Rita Levi-Montalcini Center for Brain Repair, University of Torino, UE, Italy.
| |
Collapse
|
865
|
Abstract
It has been suggested that NMDA receptor-dependent synaptic strengthening, like that observed after long-term potentiation (LTP), is a mechanism by which experience modifies responses in the neocortex. We report here that patterned (theta burst) stimulation of the dorsal lateral geniculate nucleus reliably induces LTP of field potentials (FPs) evoked in primary visual cortex (Oc1) of adult rats in vivo. The response enhancement is saturable, long-lasting, and dependent on NMDA receptor activation. To determine the laminar locus of these changes, current source density (CSD) analysis was performed on FP profiles obtained before and after LTP induction. LTP was accompanied by an enhancement of synaptic current sinks located in thalamorecipient (layer IV and deep layer III) and supragranular (layers II/III) cell layers. We also examined immunocytochemical labeling for the immediate early gene zif-268 1 hr after induction of LTP. In concert with the laminar changes observed in CSD analyses, we observed a significant increase in the number of zif-268-immunopositive neurons in layers II-IV that occurred over a wide extent of Oc1. Last, we investigated the functional consequences of LTP induction by monitoring changes in visually evoked potentials. After LTP, we observed that the cortical response to a full-field flash was significantly enhanced and that responses to grating stimuli were increased across a range of spatial frequencies. These findings are consistent with growing evidence that primary sensory cortex remains plastic into adulthood, and they show that the mechanisms of LTP can contribute to this plasticity.
Collapse
|
866
|
Frost DO. BDNF/trkB signaling in the developmental sculpting of visual connections. PROGRESS IN BRAIN RESEARCH 2002; 134:35-49. [PMID: 11702553 DOI: 10.1016/s0079-6123(01)34004-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neurotrophins are a family of secreted molecules that have multiple, profound actions on the structure and function of both developing and mature neurons. Neurotrophins exert their influences by signaling through the trk family of receptor tyrosine kinases and the p75 low affinity neurotrophin receptor. Here we review the contributions of neurotrophins to the development of neural circuitry in the mammalian visual system. We emphasize: (1) the role of neurotrophins as components of the cellular mechanisms by which neuroelectric activity sculpts pattern of brain connectivity; and (2) the results of recent experiments suggesting that the trafficking of neurotrophin proteins may be activity dependent.
Collapse
Affiliation(s)
- D O Frost
- Department of Pharmacology and Experimental Therapeutics, Department of Anesthesiology and Neuroscience Program, University of Maryland School of Medicine, 655 West Baltimore St., Baltimore, MD 21201, USA.
| |
Collapse
|
867
|
Porciatti V, Pizzorusso T, Maffei L. Electrophysiology of the postreceptoral visual pathway in mice. Doc Ophthalmol 2002; 104:69-82. [PMID: 11949810 DOI: 10.1023/a:1014463212001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Pattern VEPs have been recorded locally from the binocular portion of the primary visual cortex of wild type- and different transgenic mice by means of microelectrodes. Local pattern VEPs have been used on the one hand to obtain information on basic cortical layout (topography, laminar analysis) and ocularity (relative contribution of the contralateral and ipsilateral eye), and on the other hand to evaluate several aspects of visual physiology that have a counterpart in visual behavior (visual acuity, contrast sensitivity, motion sensitivity, response latency). As compared to visual behavior, pattern VEPs offer the advantage that several aspects of vision can be evaluated in the same animals, including those with poor behavior due to motor- or cognitive deficits, even during the postnatal development. Pattern VEPs provide a means for characterizing the visual phenotype of mutant mice and for the evaluation of the effects induced by experimental manipulation.
Collapse
|
868
|
Philpot BD, Weisberg MP, Ramos MS, Sawtell NB, Tang YP, Tsien JZ, Bear MF. Effect of transgenic overexpression of NR2B on NMDA receptor function and synaptic plasticity in visual cortex. Neuropharmacology 2001; 41:762-70. [PMID: 11640931 DOI: 10.1016/s0028-3908(01)00136-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The NMDA receptor (NMDAR) is a heteromer comprised of NR1 and NR2 subunits. Mice that overexpress the NR2B subunit exhibit enhanced hippocampal LTP, prolonged NMDAR currents, and improved memory ( Tang et al., 1999). In the current study, we explored visual cortex plasticity and NMDAR function in NR2B overexpressing transgenic mice. Unlike the hippocampus, in vitro synaptic plasticity of the visual cortex was unaltered by NR2B overexpression. Consistent with the plasticity findings, NMDAR excitatory postsynaptic current (EPSC) durations from layer 2/3 pyramidal cells were similar in wild-type (wt) and transgenic (tg) mice. Furthermore, temporal summation of NMDAR EPSCs to 10, 20, and 40 Hz stimulation did not differ between cells from wt and tg mice. Finally, although in situ studies clearly demonstrate overexpression of NR2B mRNA in visual cortex, we failed to observe a significant elevation in the synaptic expression of NR2B protein. We conclude that the synaptic ratio of NR2B over NR2A in the NMDA receptor complex in the visual cortex is not significantly influenced by the transgene overexpression. These data suggest that mRNA availability is not a limiting factor for the synthesis of NR2B protein in the visual cortex, and support the hypothesis that levels of NR2A, rather than NR2B, normally determine the subunit composition of NMDARs in visual cortex.
Collapse
Affiliation(s)
- B D Philpot
- Howard Hughes Medical Institute, Department of Neuroscience, Brown University, Box 1953, Providence, RI 02912, USA
| | | | | | | | | | | | | |
Collapse
|
869
|
Alsina B, Vu T, Cohen-Cory S. Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF. Nat Neurosci 2001; 4:1093-101. [PMID: 11593233 DOI: 10.1038/nn735] [Citation(s) in RCA: 285] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Dynamic developmental changes in axon arbor morphology may directly reflect the formation, stabilization and elimination of synapses. We used dual-color imaging to study, in the live, developing animal, the relationship between axon arborization and synapse formation at the single cell level, and to examine the participation of brain-derived neurotrophic factor (BDNF) in synaptogenesis. Green fluorescent protein (GFP)-tagged synaptobrevin II served as a marker to visualize synaptic sites in individual fluorescently labeled Xenopus optic axons. Time-lapse confocal microscopy revealed that although most synapses remain stable, synapses are also formed and eliminated as axons branch and increase their complexity. Most new branches originated at GFP-labeled synaptic sites. Increasing BDNF levels significantly increased both axon arborization and synapse number, with BDNF increasing synapse number per axon terminal. The ability to visualize central synapses in real time provides insights about the dynamic mechanisms underlying synaptogenesis, and reveals BDNF as a modulator of synaptogenesis in vivo.
Collapse
Affiliation(s)
- B Alsina
- Mental Retardation Research Center, Department of Psychiatry and Biobehavioral Sciences, 760 Westwood Plaza, NPI 58-258, University of California Los Angeles, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
870
|
Hashimoto R, Nakamura Y, Imamura K, Nakadate K, Kashiwagi Y, Matsumoto N, Takeda M. Visual stimulation-induced phosphorylation of neurofilament-L in the visual cortex of dark-reared rats. Eur J Neurosci 2001; 14:1237-45. [PMID: 11703453 DOI: 10.1046/j.0953-816x.2001.01747.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In dark-reared animals, visual exposure is expected to induce drastic changes in both the physiology and anatomy of the cortical neurons, including the rearrangement of their cytoskeletal structures. Phosphorylation of neurofilament-L (NF-L) is probably associated with relatively short-term structural plasticity in vivo, because the assembly and disassembly of the filaments are regulated by phosphorylation of the head domain of NF-L. Thus, by using a series of site- and phosphorylation state-specific antibodies against NF-L, we examined how visual activation induces the phosphorylation of NF-L in the rat brain. We found no specific immunoreactivity for phosphorylated NF-L in the brain of naive rats, whereas one-hour ambient light exposure after dark rearing for ten weeks from birth induced marked phosphorylation of NF-L selectively. Also, the NF-L phosphorylation was found to be localized in the primary and secondary visual cortical areas. These findings suggest that the selective phosphorylation of NF-L plays an important role in the structural plasticity related to the visual experience.
Collapse
Affiliation(s)
- R Hashimoto
- Division of Psychiatry and Behavioral Proteomics, Department of Post-Genomics and Diseases, Course of Advanced Medicine, Osaka University, Graduate School of Medicine, Suita-shi, Osaka, 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
871
|
Tropea D, Domenici L. Expression of TrkB receptors in developing visual cortex is not regulated by light. Cell Mol Neurobiol 2001; 21:545-52. [PMID: 11860191 PMCID: PMC11533823 DOI: 10.1023/a:1013875508373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. Neurotrophins are very good candidates which relate electrical activity to molecular changes in activity-dependent phenomena. They exert their action through binding to specific tyrosine-kinase receptors: Trk receptors. It is important to consider Trk distribution in order to understand better the role of neurotrophins in the Central Nervous System (CNS). We focused our attention on brain-derived neurotrophic factor (BDNF) Trk receptors (TrkB) during development of the rat visual cortex, since this neurotrophin has been shown to play an important role in visual system development and plasticity. 2. We investigated the full length form of TrkB receptors considering both its total amount and its cellular distribution. To address this issue we used an antibody that recognizes the full length form of TrkB and we used it both in Western blot and immunohistochemistry. 3. We found that the expression of TrkB receptor increases during development, but that there is no effect on visual experience, since dark-reared animals show the same protein level and pattern of TrkB expression compared to age-matched, normally reared controls.
Collapse
Affiliation(s)
- D Tropea
- Scuola Internazionale Supériore di Studi Avanzati, Trieste, Italy
| | | |
Collapse
|
872
|
Developmental inhibitory gate controls the relay of activity to the superficial layers of the visual cortex. J Neurosci 2001. [PMID: 11517267 DOI: 10.1523/jneurosci.21-17-06791.2001] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A developmental reduction in the radial transmission of synaptic activity has been proposed to underlie the end of the critical period for experience-dependent modification in layers II/III of the visual cortex. Using paired-pulse stimulation, we investigated in visual cortical slices how the propagation of synaptic activity to the superficial layers changes during development and how this process is affected by sensory experience. The results can be summarized as follows. (1) Layers II/III responses to repetitive stimulation of the white matter become increasingly depressed between the third and sixth week of postnatal development, a time course that parallels the end of the critical period. (2) Paired-pulse depression is reduced after dark rearing and also by blocking inhibitory synaptic transmission. (3) Paired-pulse depression and its regulation by age and sensory experience is more pronounced when stimulation is applied to the white matter than when applied to layer IV. Together, these results are consistent with the idea that the maturation of intracortical inhibition reduces the capability of the cortex to relay incoming high-frequency patterns of activity to the supragranular layers.
Collapse
|
873
|
Ohira K, Shimizu K, Hayashi M. TrkB dimerization during development of the prefrontal cortex of the macaque. J Neurosci Res 2001; 65:463-9. [PMID: 11536331 DOI: 10.1002/jnr.1175] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To date, two subtypes of TrkB, a BDNF receptor, have been described. One is full-length TrkB (TK+), which has a tyrosine kinase-containing intracellular domain. The other is truncated TrkB (TK-), which has a short intracellular domain lacking the tyrosine kinase. In this study, we investigated the dimerization of TrkB subtypes in the developing monkey prefrontal cortex by means of cross-linking. At embryonic day 120, the TK+/TK+ and the 100 kDa/100 kDa homodimers were observed with BDNF stimulation. At the newborn stage, the TK+/TK+ and the TK-/TK- homodimers were observed with BDNF stimulation. At the adult stage, the TK-/TK- homodimer and the TK+/TK- heterodimer were formed by BDNF stimulation. The levels of all dimers increased in proportion to the concentration of BDNF. Moreover, the dimers were clearly formed within 5 min of treatment with BDNF. BDNF and NT-4/5 induced the dimers, whereas NT-3 formed slight dimers but NGF did not. Furthermore, anti-BDNF antibody inhibited the TrkB dimerization. Moreover, the intercellular binding proteins of TrkB were not cross-linked by BS3. Therefore, these results suggest that the change in dimerization among TrkB subtypes occurs during development of the monkey prefrontal cortex.
Collapse
Affiliation(s)
- K Ohira
- Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Kanrin, Inuyama, Aichi, Japan
| | | | | |
Collapse
|
874
|
Pham TA, Rubenstein JL, Silva AJ, Storm DR, Stryker MP. The CRE/CREB pathway is transiently expressed in thalamic circuit development and contributes to refinement of retinogeniculate axons. Neuron 2001; 31:409-20. [PMID: 11516398 DOI: 10.1016/s0896-6273(01)00381-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The development of precise connections in the mammalian brain proceeds through refinement of initially diffuse patterns, a process that occurs largely within critical developmental windows. To elucidate the molecular pathways that orchestrate these early periods of circuit remodeling, we have examined the role of a calcium- and cAMP-regulated transcriptional pathway. We show that there is a window of CRE/CREB-mediated gene expression in the developing thalamus, which precedes neocortical expression. In the LGN, this wave of gene expression occurs prior to visual experience, but requires retinal function. Mutant mice with reduced CREB expression show loss of refinement of retinogeniculate projections. These results suggest an important role of the CRE/CREB transcriptional pathway in the coordination of experience-independent circuit remodeling during forebrain development.
Collapse
Affiliation(s)
- T A Pham
- Department of Psychiatry and Behavioral Sciences, Graduate Program in Neurobiology and Behavior, University of Washington School of Medicine, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
875
|
Silver MA, Stryker MP. TrkB-like immunoreactivity is present on geniculocortical afferents in layer IV of kitten primary visual cortex. J Comp Neurol 2001; 436:391-8. [PMID: 11447584 PMCID: PMC2553095 DOI: 10.1002/cne.1075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Exogenous administration of the neurotrophins brain-derived neurotrophic factor (BDNF) or neurotrophin-4/5 (NT-4/5), or blockade of their endogenous actions, have been reported to affect the anatomic organization and physiological responses of neurons in developing mammalian primary visual cortex. Experimental alteration of levels of these neurotrophic factors can also influence the morphology of the geniculocortical afferents that project from the lateral geniculate nucleus (LGN) to primary visual cortex. BDNF and NT-4/5 are ligands of the TrkB tyrosine kinase receptor. Although multiple populations of cortical neurons express TrkB, it is not known whether geniculocortical afferents express this receptor on their axon branches in visual cortex. We have anatomically labeled geniculocortical afferents of postnatal day 40 kittens with the anterograde neuronal tracer Phaseolus vulgaris leucoagglutinin (PHA-L) and performed double-label immunofluorescence with a panel of anti-TrkB antibodies. Confocal microscopy and object-based colocalization analysis were used to measure levels of TrkB-like immunoreactivity (IR) on geniculocortical afferents in layer IV of primary visual cortex. By using a conservative analysis involving a comparison of measured colocalization with the amount of colocalization expected based on random overlap of TrkB puncta and PHA-L--labeled afferents, 3 of 5 anti-TrkB antibodies tested showed significant colocalization with the geniculocortical axons. Results for the other two antibodies were indeterminate. The indices obtained for colocalization of TrkB and geniculocortical afferents were also compared with the equivalent index obtained for GAD65, a protein that has a similar overall expression pattern to that of TrkB but is not expressed on geniculocortical axons. This analysis indicated that TrkB was present on geniculocortical axons for all five TrkB antibodies tested. TrkB-like IR was also observed on neuronal somata in the LGN. These results indicate that TrkB receptors on geniculocortical afferents are potential mediators of the actions of BDNF and NT-4/5 in developing visual cortex.
Collapse
Affiliation(s)
- M A Silver
- W.M. Keck Center for Integrative Neuroscience, Department of Physiology, University of California, San Francisco, California 94143-0444, USA
| | | |
Collapse
|
876
|
Gabaergic inhibition antagonizes adaptive adjustment of the owl's auditory space map during the initial phase of plasticity. J Neurosci 2001. [PMID: 11404421 DOI: 10.1523/jneurosci.21-12-04356.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We studied the influence of GABA-mediated inhibition on adaptive adjustment of the owl's auditory space map during the initial phase of plasticity. Plasticity of the auditory space map was induced by subjecting owls to a chronic prismatic displacement of the visual field. In the initial stages of plasticity, inhibition suppressed responses to behaviorally appropriate, newly functional excitatory inputs. As a result, adaptive changes in excitatory input were only partially expressed as postsynaptic spike activity. This masking effect of inhibition on map plasticity did not depend on the activity of NMDA receptors at the synapses that supported the newly learned responses. On the basis of these results, we propose that the pattern of feedforward inhibition is less dynamic than the pattern of feedforward excitation at the site of plasticity. As a result, initially in the adjustment process the preexisting pattern of feedforward GABAergic inhibition opposes changes in the auditory space map and tends to preserve the established response properties of the network. The implications of this novel role of inhibition for the functional plasticity of the brain are discussed.
Collapse
|
877
|
Di Cristo G, Berardi N, Cancedda L, Pizzorusso T, Putignano E, Ratto GM, Maffei L. Requirement of ERK activation for visual cortical plasticity. Science 2001; 292:2337-40. [PMID: 11423664 DOI: 10.1126/science.1059075] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Experience-dependent plasticity in the developing visual cortex depends on electrical activity and molecular signals involved in stabilization or removal of inputs. Extracellular signal-regulated kinase 1,2 (also called p42/44 mitogen-activated protein kinase) activation in the cortex is regulated by both factors. We show that two different inhibitors of the ERK pathway suppress the induction of two forms of long-term potentiation (LTP) in rat cortical slices and that their intracortical administration to monocularly deprived rats prevents the shift in ocular dominance towards the nondeprived eye. These results demonstrate that the ERK pathway is necessary for experience-dependent plasticity and for LTP of synaptic transmission in the developing visual cortex.
Collapse
Affiliation(s)
- G Di Cristo
- Scuola Normale Superiore, Piazza Cavalieri, 7 56126 Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
878
|
Effects of early visual experience and diurnal rhythms on BDNF mRNA and protein levels in the visual system, hippocampus, and cerebellum. J Neurosci 2001. [PMID: 11356880 DOI: 10.1523/jneurosci.21-11-03923.2001] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The expression of brain-derived neurotrophic factor (BDNF) mRNA and the secretion of BDNF protein are tightly regulated by neuronal activity. Thus, BDNF has been proposed as a mediator of activity-dependent neural plasticity. Previous studies showed that dark rearing (DR) reduces BDNF mRNA levels in the primary visual cortex (V1), but the effects of visual experience on BDNF protein levels are unknown. We report that rearing in constant light or DR alters BDNF mRNA and protein levels in the retina, superior colliculus (SC), V1, hippocampus (HIPP), and cerebellum (CBL), although the changes in mRNA and protein are not always correlated. Most notably, DR increases BDNF protein levels in V1 although BDNF mRNA is decreased. BDNF protein levels also undergo diurnal changes. In the retina, V1, and SC, BDNF protein levels are higher during the light phase of the circadian cycle than during the dark phase. By contrast, in HIPP and CBL, the tissue concentration of BDNF protein is higher during the dark phase. The discrepancies between the experience-dependent changes in BDNF mRNA and protein suggest that via its effects on neuronal activity, early sensory experience alters the trafficking, as well as the synthesis, of BDNF protein. The circadian changes in BDNF protein suggest that BDNF could cause the diurnal modulation of synaptic efficacy in some neural circuits. The fluctuations in BDNF levels in nonvisual structures suggest a potential role of BDNF in mediating plasticity induced by hormones or motor activity.
Collapse
|
879
|
Target-derived neurotrophic factors regulate the death of developing forebrain neurons after a change in their trophic requirements. J Neurosci 2001. [PMID: 11356878 DOI: 10.1523/jneurosci.21-11-03904.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many neurons die as the normal brain develops. How this is regulated and whether the mechanism involves neurotrophic molecules from target cells are unknown. We found that cultured neurons from a key forebrain structure, the dorsal thalamus, develop a need for survival factors including brain-derived neurotrophic factor (BDNF) from their major target, the cerebral cortex, at the age at which they innervate it. Experiments in vivo have shown that rates of dorsal thalamic cell death are reduced by increasing cortical levels of BDNF and are increased in mutant mice lacking functional BDNF receptors or thalamocortical projections; these experiments have also shown that an increase in the rates of dorsal thalamic cell death can be achieved by blocking BDNF in the cortex. We suggest that the onset of a requirement for cortex-derived neurotrophic factors initiates a competitive mechanism regulating programmed cell death among dorsal thalamic neurons.
Collapse
|
880
|
Abstract
Numerous evidences suggest that early life events can affect the development of the nervous system, contributing in shaping interindividual differences in vulnerability to stress or psychopathology. A number of studies have shown that mothering style in rodents can produce neuroendocrine, neurochemical, and behavioral changes in the adult, although the basic mechanisms initiating this cascade of events still need to be investigated. This paper reviews research performed in our and other laboratories investigating some of the features characterizing hypothalamic--pituitary--adrenal (HPA) axis activity of rodents during early development, with a special emphasis on extrinsic, social regulatory factors, such as the mother and the siblings. In addition, a possible role for neurotrophins as mediators of the effects of external manipulations on brain development is suggested.
Collapse
Affiliation(s)
- F Cirulli
- Behavioral Pathophysiology Section, Lab. Fisiopatologia di Organo e di Sistema, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Rome, Italy.
| |
Collapse
|
881
|
Rossi FM, Pizzorusso T, Porciatti V, Marubio LM, Maffei L, Changeux JP. Requirement of the nicotinic acetylcholine receptor beta 2 subunit for the anatomical and functional development of the visual system. Proc Natl Acad Sci U S A 2001; 98:6453-8. [PMID: 11344259 PMCID: PMC33489 DOI: 10.1073/pnas.101120998] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2001] [Indexed: 11/18/2022] Open
Abstract
In the mammalian visual system the formation of eye-specific layers at the thalamic level depends on retinal waves of spontaneous activity, which rely on nicotinic acetylcholine receptor activation. We found that in mutant mice lacking the beta2 subunit of the neuronal nicotinic receptor, but not in mice lacking the alpha4 subunit, retinofugal projections do not segregate into eye-specific areas, both in the dorso-lateral geniculate nucleus and in the superior colliculus. Moreover, beta2-/- mice show an expansion of the binocular subfield of the primary visual cortex and a decrease in visual acuity at the cortical level but not in the retina. We conclude that the beta2 subunit of the nicotinic acetylcholine receptor is necessary for the anatomical and functional development of the visual system.
Collapse
Affiliation(s)
- F M Rossi
- Laboratoire de Neurobiologie Moléculaire, Centre National de la Recherche Scientifique, Unité de Recherche Associée 2182, Récepteurs et Cognition, Institut Pasteur, 28 Rue du Dr. Roux, 75724 Paris Cédex 15, France
| | | | | | | | | | | |
Collapse
|
882
|
Endogenous serotonin contributes to a developmental decrease in long-term potentiation in the rat visual cortex. J Neurosci 2001. [PMID: 11222643 DOI: 10.1523/jneurosci.21-05-01532.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The primary visual cortex shows synaptic plasticity during a postnatal "critical period," and its plasticity declines with development. Indeed, we found a developmental decrease in the induction of long-term potentiation (LTP) in the rat visual cortex. In visual cortex slices obtained from 2- to 3-week-old rats, tetanic stimulation (100 Hz for 1 sec, twice at an interval of 30 sec) of the white matter reproducibly induced LTP of field potentials in layer II/III. However, in slices from 5-week-old rats, the same tetanic stimulation failed to induce LTP. We hypothesized that endogenous serotonin (5-HT) is responsible for the developmental decrease in visual cortex LTP, because the induction of visual cortex LTP was suppressed by the addition of exogenous 5-HT (10 microm) and because the amount of 5-HT in the visual cortex increased during development. To test this hypothesis, we investigated the effect of methysergide, a 5-HT receptor antagonist, on the induction of visual cortex LTP. When visual cortex slices from 5-week-old rats were perfused with 50 microm methysergide, tetanic stimulation of the white matter induced robust LTP in layer II/III. Furthermore, serotonergic neurons were lesioned by intracerebroventricular injection of 5,7-dihydroxytryptamine (5,7-DHT). LTP was induced in visual cortex slices from 5,7-DHT-treated, 5-week-old rats. These results suggest that the induction of visual cortex LTP in 5-week-old rats is suppressed by endogenous 5-HT. 5-HT may be a factor that determines a critical period for synaptic plasticity in the rat visual cortex.
Collapse
|
883
|
Cheung ME, Broman SH. Adaptive learning: interventions for verbal and motor deficits. Neurorehabil Neural Repair 2001; 14:159-69. [PMID: 11272472 DOI: 10.1177/154596830001400301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Advances in basic and clinical neuroscience are uniting to form new optimism for treatment and rehabilitation of persons with a variety of neurologic disorders. Both cognitive and motor systems have shown remarkable degrees of plasticity in response to incoming stimuli. Understanding the brain (and spinal cord) capacity for change will lead to new topics for research as well as new approaches to rehabilitation. Adaptive learning has been shown to be a fundamental part of the developmental process and has been used in remediation of a variety of language difficulties. Using such principles to approach motor functions also is showing promise. Expanding these observations to encompass other areas of disease and rehabilitation is an area for further research. Interdisciplinary approaches including the fields of computer technology, imaging, and genetic analysis will provide new tools. Contribution of new concepts within adaptive learning must address such topics as the relation between motor and sensory responses, measures that accurately indicate cognitive health, the brain and spinal cord areas involved in particular learning tasks, the optimal time windows for intervention, and the importance of behavior and motivation in treatment and rehabilitation.
Collapse
Affiliation(s)
- M E Cheung
- Department of Repair and Plasticity, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-9525, USA.
| | | |
Collapse
|
884
|
Chugani DC, Muzik O, Juhász C, Janisse JJ, Ager J, Chugani HT. Postnatal maturation of human GABAAreceptors measured with positron emission tomography. Ann Neurol 2001. [DOI: 10.1002/ana.1003] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
885
|
Brünig I, Penschuck S, Berninger B, Benson J, Fritschy JM. BDNF reduces miniature inhibitory postsynaptic currents by rapid downregulation of GABA(A) receptor surface expression. Eur J Neurosci 2001; 13:1320-8. [PMID: 11298792 DOI: 10.1046/j.0953-816x.2001.01506.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Changes in neurotransmitter receptor density at the synapse have been proposed as a mechanism underlying synaptic plasticity. Neurotrophic factors are known to influence synaptic strength rapidly. In the present study, we found that brain-derived neurotrophic factor (BDNF) acts postsynaptically to reduce gamma-aminobutyric acid (GABA)-ergic function. Using primary cultures of rat hippocampal neurons, we investigated the effects of BDNF on GABAergic miniature inhibitory postsynaptic currents (mIPSCs) and on the localization of GABAA receptors. Application of BDNF (100 ng/mL) led within minutes to a marked reduction (33.5%) of mIPSC amplitudes in 50% of neurons, recorded in the whole-cell patch-clamp mode, leaving frequency and decay kinetics unaffected. This effect was blocked by the protein kinase inhibitor K252a, which binds with high affinity to trkB receptors. Immunofluorescence staining with an antibody against trkB revealed that about 70% of cultured hippocampal pyramidal cells express trkB. In dual labelling experiments, use of neurobiotin injections to label the recorded cells revealed that all cells responsive to BDNF were immunopositive for trkB. Treatment of cultures with BDNF reduced the immunoreactivity for the GABAA receptor subunits-alpha2, -beta2,3 and -gamma2 in the majority of neurons. This effect was detectable after 15 min and lasted at least 12 h. Neurotrophin-4 (NT-4), but not neurotrophin-3 (NT-3), also reduced GABAA receptor immunoreactivity, supporting the proposal that this effect is mediated by trkB. Altogether the results suggest that exposure to BDNF induces a rapid reduction in postsynaptic GABAA receptor number that is responsible for the decline in GABAergic mIPSC amplitudes.
Collapse
Affiliation(s)
- I Brünig
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
886
|
Abstract
The development of cortical layers, areas and networks is mediated by a combination of factors that are present in the cortex and are influenced by thalamic input. Electrical activity of thalamocortical afferents has a progressive role in shaping cortex. For early thalamic innervation and patterning, the presence of activity might be sufficient; for features that develop later, such as intracortical networks that mediate emergent responses of cortex, the spatiotemporal pattern of activity often has an instructive role. Experiments that route projections from the retina to the auditory pathway alter the pattern of activity in auditory thalamocortical afferents at a very early stage and reveal the progressive influence of activity on cortical development. Thus, cortical features such as layers and thalamocortical innervation are unaffected, whereas features that develop later, such as intracortical connections, are affected significantly. Surprisingly, the behavioural role of 'rewired' cortex is also influenced profoundly, indicating the importance of patterned activity for this key aspect of cortical function.
Collapse
Affiliation(s)
- M Sur
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 45 Carleton Street, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
887
|
Chen L, Yang C, Mower GD. Developmental changes in the expression of GABA(A) receptor subunits (alpha(1), alpha(2), alpha(3)) in the cat visual cortex and the effects of dark rearing. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 88:135-43. [PMID: 11295239 DOI: 10.1016/s0169-328x(01)00042-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present study used Western blots and Northern slot blots to determine changes in the level of expression of GABA(A) receptor subunits alpha(1), alpha(2), and alpha(3), in relation to the "critical period" in cat visual cortex. Levels of the GABA(A) alpha(1) subunit were lowest at 1 week, increased four-fold to a maximum at 10 weeks, and declined slightly (35%) into adulthood. Levels of the GABA(A) alpha(2) and alpha(3) subunits were highest at 1 week of age, decreased two-fold by 10 weeks of age and were constant thereafter. Comparison between visual cortex from normal and dark-reared cats at 5 weeks and 20 weeks showed that alpha(1) and alpha(3) subunit expression was elevated in dark-reared animals by approximately 50% at both ages. alpha(2) expression was not affected. These results implicate the importance of a shift from putative immature to mature GABA(A) receptor subunits during the critical period of visual cortex and in conjunction with parallel analysis of NMDA receptor subunit maturation, further support the notion that a changing excitatory/inhibitory balance is critical for neuronal plasticity.
Collapse
Affiliation(s)
- L Chen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, KY 40292, USA
| | | | | |
Collapse
|
888
|
Bolton MM, Lo DC, Sherwood NT. Long-term regulation of excitatory and inhibitory synaptic transmission in hippocampal cultures by brain-derived neurotrophic factor. PROGRESS IN BRAIN RESEARCH 2001; 128:203-18. [PMID: 11105680 DOI: 10.1016/s0079-6123(00)28018-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- M M Bolton
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
889
|
Lu B, Gottschalk W. Modulation of hippocampal synaptic transmission and plasticity by neurotrophins. PROGRESS IN BRAIN RESEARCH 2001; 128:231-41. [PMID: 11105682 DOI: 10.1016/s0079-6123(00)28020-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- B Lu
- Unit on Synapse Development and Plasticity, NICHD, NIH, Bethesda, MD 20892-4480, USA.
| | | |
Collapse
|
890
|
Neuronal activity and brain-derived neurotrophic factor regulate the density of inhibitory synapses in organotypic slice cultures of postnatal hippocampus. J Neurosci 2001. [PMID: 11050130 DOI: 10.1523/jneurosci.20-21-08087.2000] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hippocampal interneurons inhibit pyramidal neurons through the release of the neurotransmitter GABA. Given the importance of this inhibition for the proper functioning of the hippocampus, the development of inhibitory synapses must be tightly regulated. In this study, the possibility that neuronal activity and neurotrophins regulate the density of GABAergic inhibitory synapses was investigated in organotypic slice cultures taken from postnatal day 7 rats. In hippocampal slices cultured for 13 d in the presence of the GABA(A) receptor antagonist bicuculline, the density of glutamic acid decarboxylase (GAD) 65-immunoreactive terminals was increased in the CA1 area when compared with control slices. Treatment with the glutamate receptor antagonist 6,7-dinitroquinoxaline-2,3-dione decreased the density of GAD65-immunoreactive terminals in the stratum oriens of CA1. These treatments had parallel effects on the density of GABA-immunoreactive processes. Electron microscopic analysis after postembedding immunogold labeling with antibodies against GABA indicated that bicuculline treatment increased the density of inhibitory but not excitatory synapses. Application of exogenous BDNF partly mimicked the stimulatory effect of bicuculline on GAD65-immunoreactive terminals. Finally, antibodies against BDNF, but not antibodies against nerve growth factor, decrease the density of GAD65-immunoreactive terminals in bicuculline-treated slices. Thus, neuronal activity regulates the density of inhibitory synapses made by postnatal hippocampal interneurons, and BDNF could mediate part of this regulation. This regulation of the density of inhibitory synapses could represent a feedback mechanism aimed at maintaining an appropriate level of activity in the developing hippocampal networks.
Collapse
|
891
|
Tropea D, Capsoni S, Tongiorgi E, Giannotta S, Cattaneo A, Domenici L. Mismatch between BDNF mRNA and protein expression in the developing visual cortex: the role of visual experience. Eur J Neurosci 2001; 13:709-21. [PMID: 11207806 DOI: 10.1046/j.0953-816x.2000.01436.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) messenger RNA (mRNA) expression in the rat visual cortex of young and postnatal day 90 (P90) animals is developmentally regulated and influenced by visual experience. In the present paper we compared the expression of BDNF mRNA to the actual changes of BDNF protein occurring during postnatal development and verified whether BDNF protein distribution is controlled by visual activity. To achieve this aim we analysed BDNF mRNA and/or BDNF protein cellular distribution in the rat visual cortex at different postnatal ages by using immunohistochemistry and highly sensitive in situ hybridization. We found that before eye opening (P13), in all cortical layers a large number of visual cortical neurons contain BDNF mRNA with no detectable amount of BDNF protein. At later ages (P23 and P90), the number of BDNF-immunostained cells increases; most neurons are double labelled for BDNF mRNA and protein, and a small group of neurons is labelled only for BDNF protein. The cellular increase of BDNF immunolabelling is blocked in animals deprived of visual experience from birth (dark rearing), with a large population of neurons containing BDNF mRNA but not BDNF protein. This is similar to what is observed before eye opening. Exposure of dark-reared rats to a brief period (2 h) of light restores a good match between BDNF mRNA and BDNF protein cellular expression. We propose that visual experience controls the neuronal content of BDNF mRNA and BDNF protein in developing visual cortex.
Collapse
Affiliation(s)
- D Tropea
- Neuroscience Program, International School for Advanced Studies (SISSA), Via Beirut 2-4, 34014 Trieste, Italy
| | | | | | | | | | | |
Collapse
|
892
|
Mower GD, Guo Y. Comparison of the expression of two forms of glutamic acid decarboxylase (GAD67 and GAD65) in the visual cortex of normal and dark-reared cats. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 126:65-74. [PMID: 11172887 DOI: 10.1016/s0165-3806(00)00139-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In normal development, there are dramatic changes in both the level and the laminar pattern of expression of the two forms of glutamate decarboxylase (GAD67, GAD65), the synthetic enzyme for gamma-aminobutyric acid (GABA). We have used antibodies to determine whether these normal postnatal changes in the expression of the two GADs depend on visual input by comparing normal and dark-reared cat visual cortex. Western blot analysis showed no significant differences in the levels of expression of the two enzymes between rearing conditions at either 5 or 20 weeks. Immunohistochemistry was used to compare the laminar distribution of the GADs in the two rearing conditions. At 1 week of age, both GAD67 and GAD65 immunoreactivity is concentrated in deep layers of visual cortex. At 5 and 20 weeks in both rearing conditions, GAD67-stained cells bodies were distributed rather uniformly across all cortical layers. GAD65 primarily labeled puncta (synaptic terminals) and these were also distributed rather uniformly across all visual cortical layers in both rearing conditions. Counts of GAD67-positive cell bodies and GAD65-positive puncta also revealed no differences between the rearing conditions. Thus, both GAD67, which produces the basal pool of GABA, and GAD65, which is specialized to respond to short-term increases in demand in synaptic terminals, developed normal levels of expression and normal intracellular and laminar distributions in the absence of visual input. Physiological studies suggest immaturity in the GABA system of dark-reared visual cortex. The present results indicate that such abnormalities are not due to presynaptic alterations in GABA synthetic enzymes.
Collapse
Affiliation(s)
- G D Mower
- Department of Anatomical Sciences and Neurobiology, Health Sciences Center, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | | |
Collapse
|
893
|
Abstract
The role of neurotrophins as regulatory factors that mediate the differentiation and survival of neurons has been well described. More recent evidence indicates that neurotrophins may also act as synaptic modulators. Here, I review the evidence that synaptic activity regulates the synthesis, secretion and action of neurotrophins, which can in turn induce immediate changes in synaptic efficacy and morphology. By this account, neurotrophins may participate in activity-dependent synaptic plasticity, linking synaptic activity with long-term functional and structural modification of synaptic connections.
Collapse
Affiliation(s)
- M M Poo
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA.
| |
Collapse
|
894
|
Schore AN. Effects of a secure attachment relationship on right brain development, affect regulation, and infant mental health. Infant Ment Health J 2001. [DOI: 10.1002/1097-0355(200101/04)22:1%3c7::aid-imhj2%3e3.0.co;2-n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
895
|
Schore AN. Effects of a secure attachment relationship on right brain development, affect regulation, and infant mental health. Infant Ment Health J 2001. [DOI: 10.1002/1097-0355(200101/04)22:1<7::aid-imhj2>3.0.co;2-n] [Citation(s) in RCA: 645] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
896
|
Philpot BD, Sekhar AK, Shouval HZ, Bear MF. Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex. Neuron 2001; 29:157-69. [PMID: 11182088 DOI: 10.1016/s0896-6273(01)00187-8] [Citation(s) in RCA: 321] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The receptive fields of visual cortical neurons are bidirectionally modified by sensory deprivation and experience, but the synaptic basis for these changes is unknown. Here we demonstrate bidirectional, experience-dependent regulation of the composition and function of synaptic NMDA receptors (NMDARs) in visual cortex layer 2/3 pyramidal cells of young rats. Visual experience decreases the proportion of NR2B-only receptors, shortens the duration of NMDAR-mediated synaptic currents, and reduces summation of synaptic NMDAR currents during bursts of high-frequency stimulation. Visual deprivation exerts an opposite effect. Although the effects of experience and deprivation are reversible, the rates of synaptic modification vary. Experience can induce a detectable change in synaptic transmission within hours, while deprivation-induced changes take days. We suggest that experience-dependent changes in NMDAR composition and function regulate the development of receptive field organization in visual cortex.
Collapse
Affiliation(s)
- B D Philpot
- Howard Hughes Medical Institute, Department of Neuroscience, Brown University, Box 1953, Providence, RI 02912, USA
| | | | | | | |
Collapse
|
897
|
Abstract
Neurotrophins regulate development, maintenance, and function of vertebrate nervous systems. Neurotrophins activate two different classes of receptors, the Trk family of receptor tyrosine kinases and p75NTR, a member of the TNF receptor superfamily. Through these, neurotrophins activate many signaling pathways, including those mediated by ras and members of the cdc-42/ras/rho G protein families, and the MAP kinase, PI-3 kinase, and Jun kinase cascades. During development, limiting amounts of neurotrophins function as survival factors to ensure a match between the number of surviving neurons and the requirement for appropriate target innervation. They also regulate cell fate decisions, axon growth, dendrite pruning, the patterning of innervation and the expression of proteins crucial for normal neuronal function, such as neurotransmitters and ion channels. These proteins also regulate many aspects of neural function. In the mature nervous system, they control synaptic function and synaptic plasticity, while continuing to modulate neuronal survival.
Collapse
Affiliation(s)
- Eric J Huang
- Department of Pathology, University of California, San Francisco, California 94143; e-mail:
| | - Louis F Reichardt
- Department of Physiology, University of California, San Francisco, California 94143, and Howard Hughes Medical Institute, San Francisco, California 94143; e-mail:
| |
Collapse
|
898
|
Abstract
Topographic refinement of synaptic connections within the developing visual system involves a variety of molecules which interact with impulse activity in order to produce the precise retinotopic maps found in the adult brain. Nitric oxide (NO) has been implicated in this process, as have various growth factors. Within the subcortical visual system, we have recently shown that nitric oxide contributes to pathway refinement in the superior colliculus (SC). Long-term potentiation (LTP) and long-term depression (LTD) are also expressed in SC during the time that this pathway undergoes refinement. The role of NO has been demonstrated by showing that refinement of ipsilateral fibers in the retinocollicular pathway is significantly delayed in gene knockout mice in which both the endothelial and neuronal isoforms of nitric oxide synthase (NOS) have been disrupted. The effect also depends upon Ca(2+) channels because refinement of both the ipsilateral retinocollicular and retinogeniculate pathways is disrupted in genetic mutants in which the beta3 subunit of the Ca(2+) channel has been deleted. LTD may also be involved in this process, because the time course of its expression correlates with that of pathway refinement and LTD magnitude is depressed by nitrendipine, an L-type Ca(2+) channel blocker. LTP is also expressed during early postnatal development in the LGN and SC and may contribute to synaptic stabilization. The role of neurotrophins in pathway refinement in the visual system is also reviewed.
Collapse
Affiliation(s)
- R R Mize
- Department of Cell Biology and Anatomy and The Neuroscience Center, Louisiana State University Health Sciences Center, 70112, New Orleans, LA, USA.
| | | |
Collapse
|
899
|
Bibel M, Barde YA. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 2000; 14:2919-37. [PMID: 11114882 DOI: 10.1101/gad.841400] [Citation(s) in RCA: 798] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- M Bibel
- Department of Neurobiochemistry, Max-Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany
| | | |
Collapse
|
900
|
Du J, Feng L, Yang F, Lu B. Activity- and Ca(2+)-dependent modulation of surface expression of brain-derived neurotrophic factor receptors in hippocampal neurons. J Cell Biol 2000; 150:1423-34. [PMID: 10995446 PMCID: PMC2150695 DOI: 10.1083/jcb.150.6.1423] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has been shown to regulate neuronal survival and synaptic plasticity in the central nervous system (CNS) in an activity-dependent manner, but the underlying mechanisms remain unclear. Here we report that the number of BDNF receptor TrkB on the surface of hippocampal neurons can be enhanced by high frequency neuronal activity and synaptic transmission, and this effect is mediated by Ca(2+) influx. Using membrane protein biotinylation as well as receptor binding assays, we show that field electric stimulation increased the number of TrkB on the surface of cultured hippocampal neurons. Immunofluorescence staining suggests that the electric stimulation facilitated the movement of TrkB from intracellular pool to the cell surface, particularly on neuronal processes. The number of surface TrkB was regulated only by high frequency tetanic stimulation, but not by low frequency stimulation. The activity dependent modulation appears to require Ca(2+) influx, since treatment of the neurons with blockers of voltage-gated Ca(2+) channels or NMDA receptors, or removal of extracellular Ca(2+), severely attenuated the effect of electric stimulation. Moreover, inhibition of Ca(2+)/calmodulin-dependent kinase II (CaMKII) significantly reduced the effectiveness of the tetanic stimulation. These findings may help us to understand the role of neuronal activity in neurotrophin function and the mechanism for receptor tyrosine kinase signaling.
Collapse
Affiliation(s)
- J Du
- Unit on Synapse Development and Plasticity, Laboratory of Developmental Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4480, USA
| | | | | | | |
Collapse
|