851
|
Khan HA, Siddique KHM, Colmer TD. Vegetative and reproductive growth of salt-stressed chickpea are carbon-limited: sucrose infusion at the reproductive stage improves salt tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2001-2011. [PMID: 27140441 PMCID: PMC5429013 DOI: 10.1093/jxb/erw177] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Reproductive processes of chickpea (Cicer arietinum L.) are particularly sensitive to salinity. We tested whether limited photoassimilate availability contributes to reproductive failure in salt-stressed chickpea. Rupali, a salt-sensitive genotype, was grown in aerated nutrient solution, either with non-saline (control) or 30mM NaCl treatment. At flowering, stems were either infused with sucrose solution (0.44M), water only or maintained without any infusion, for 75 d. The sucrose and water infusion treatments of non-saline plants had no effect on growth or yield, but photosynthesis declined in response to sucrose infusion. Salt stress reduced photosynthesis, decreased tissue sugars by 22-47%, and vegetative and reproductive growth were severely impaired. Sucrose infusion of salt-treated plants increased total sugars in stems, leaves and developing pods, to levels similar to those of non-saline plants. In salt-stressed plants, sucrose infusion increased dry mass (2.6-fold), pod numbers (3.8-fold), seed numbers (6.5-fold) and seed yield (10.4-fold), yet vegetative growth and reproductive failure were not rescued completely by sucrose infusion. Sucrose infusion partly rescued reproductive failure in chickpea by increasing vegetative growth enabling more flower production and by providing sucrose for pod and seed growth. We conclude that insufficient assimilate availability limits yield in salt-stressed chickpea.
Collapse
Affiliation(s)
- Hammad A Khan
- School of Plant Biology, Faculty of Science, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
| | - Timothy D Colmer
- School of Plant Biology, Faculty of Science, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
| |
Collapse
|
852
|
Wei D, Zhang W, Wang C, Meng Q, Li G, Chen THH, Yang X. Genetic engineering of the biosynthesis of glycinebetaine leads to alleviate salt-induced potassium efflux and enhances salt tolerance in tomato plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 257:74-83. [PMID: 28224920 DOI: 10.1016/j.plantsci.2017.01.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/03/2017] [Accepted: 01/20/2017] [Indexed: 05/03/2023]
Abstract
Tomato (Solanum lycopersicum cv. 'Moneymaker') was transformed with the choline oxidase gene codA from Arthrobacter globiformis, which was modified to allow for targeting to both chloroplasts and the cytosol. Glycine betaine (GB) was accumulated in transformed plants, while no detectable GB was found in wild-type (WT) plants. Compared to WT plants, transgenic lines showed significantly higher photosynthetic rates (Pn) and antioxidant enzyme activities and lower reactive oxygen species (ROS) accumulation in the leaves when exposed to salt stress. Furthermore, compared with WT plants, K+ efflux decreased and Na+ efflux increased in roots of transgenic plants under salt stress; resulted in lower Na+/K+ ratios in transgenic lines. The exogenous application of GB also significantly reduced NaCl-induced K+ efflux and increased Na+ efflux in WT plants. A qRT-PCR assay indicated that GB enhanced NaCl-induced expression of genes encoding the K+ transporter, Na+/H+ antiporter, and H+-ATPase. These results suggest that the enhanced salt tolerance conferred by codA in transgenic tomato plants might be due to the regulation of ion channel and transporters by GB, which would allow high potassium levels and low sodium levels to be maintained in transgenic plants under salt stress condition.
Collapse
Affiliation(s)
- Dandan Wei
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Wen Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Cuicui Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Qingwei Meng
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Gang Li
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Tony H H Chen
- Department of Horticulture, ALS 4017, Oregon State University, Corvallis, OR 97331, USA
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
853
|
Yaish MW, Patankar HV, Assaha DVM, Zheng Y, Al-Yahyai R, Sunkar R. Genome-wide expression profiling in leaves and roots of date palm (Phoenix dactylifera L.) exposed to salinity. BMC Genomics 2017; 18:246. [PMID: 28330456 PMCID: PMC5423419 DOI: 10.1186/s12864-017-3633-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 03/16/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Date palm, as one of the most important fruit crops in North African and West Asian countries including Oman, is facing serious growth problems due to salinity, arising from persistent use of saline water for irrigation. Although date palm is a relatively salt-tolerant plant species, its adaptive mechanisms to salt stress are largely unknown. RESULTS In order to get an insight into molecular mechanisms of salt tolerance, RNA was profiled in leaves and roots of date palm seedlings subjected to NaCl for 10 days. Under salt stress, photosynthetic parameters were differentially affected; all gas exchange parameters were decreased but the quantum yield of PSII was unaffected while non-photochemical quenching was increased. Analyses of gene expression profiles revealed 2630 and 4687 genes were differentially expressed in leaves and roots, respectively, under salt stress. Of these, 194 genes were identified as commonly responding in both the tissue sources. Gene ontology (GO) analysis in leaves revealed enrichment of transcripts involved in metabolic pathways including photosynthesis, sucrose and starch metabolism, and oxidative phosphorylation, while in roots genes involved in membrane transport, phenylpropanoid biosynthesis, purine, thiamine, and tryptophan metabolism, and casparian strip development were enriched. Differentially expressed genes (DEGs) common to both tissues included the auxin responsive gene, GH3, a putative potassium transporter 8 and vacuolar membrane proton pump. CONCLUSIONS Leaf and root tissues respond differentially to salinity stress and this study has revealed genes and pathways that are associated with responses to elevated NaCl levels and thus may play important roles in salt tolerance providing a foundation for functional characterization of salt stress-responsive genes in the date palm.
Collapse
Affiliation(s)
- Mahmoud W Yaish
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman.
| | - Himanshu V Patankar
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Dekoum V M Assaha
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Yun Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Rashid Al-Yahyai
- Department of Crop Science, College of Agriculture and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
854
|
Rubio MB, Hermosa R, Vicente R, Gómez-Acosta FA, Morcuende R, Monte E, Bettiol W. The Combination of Trichoderma harzianum and Chemical Fertilization Leads to the Deregulation of Phytohormone Networking, Preventing the Adaptive Responses of Tomato Plants to Salt Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:294. [PMID: 28303151 PMCID: PMC5332374 DOI: 10.3389/fpls.2017.00294] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/17/2017] [Indexed: 05/29/2023]
Abstract
Plants have evolved effective mechanisms to avoid or reduce the potential damage caused by abiotic stresses. In addition to biocontrol abilities, Trichoderma genus fungi promote growth and alleviate the adverse effects caused by saline stress in plants. Morphological, physiological, and molecular changes were analyzed in salt-stressed tomato plants grown under greenhouse conditions in order to investigate the effects of chemical and biological fertilizations. The application of Trichoderma harzianum T34 to tomato seeds had very positive effects on plant growth, independently of chemical fertilization. The application of salt stress significantly changed the parameters related to growth and gas-exchange rates in tomato plants subject to chemical fertilization. However, the gas-exchange parameters were not affected in unfertilized plants under the same moderate saline stress. The combined application of T34 and salt significantly reduced the fresh and dry weights of NPK-fertilized plants, while the opposite effects were detected when no chemical fertilization was applied. Decaying symptoms were observed in salt-stressed and chemically fertilized plants previously treated with T34. This damaged phenotype was linked to significantly higher intercellular CO2 and slight increases in stomatal conductance and transpiration, and to the deregulation of phytohormone networking in terms of significantly lower expression levels of the salt overlay sensitivity 1 (SOS1) gene, and the genes involved in signaling abscisic acid-, ethylene-, and salicylic acid-dependent pathways and ROS production, in comparison with those observed in salt-challenged NPK-fertilized plants.
Collapse
Affiliation(s)
- M. B. Rubio
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of SalamancaSalamanca, Spain
| | - Rosa Hermosa
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of SalamancaSalamanca, Spain
| | - Rubén Vicente
- Abiotic Stress Department, Institute of Natural Resources and Agrobiology of Salamanca – Consejo Superior de Investigaciones CientíficasSalamanca, Spain
| | - Fabio A. Gómez-Acosta
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of SalamancaSalamanca, Spain
| | - Rosa Morcuende
- Abiotic Stress Department, Institute of Natural Resources and Agrobiology of Salamanca – Consejo Superior de Investigaciones CientíficasSalamanca, Spain
| | - Enrique Monte
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of SalamancaSalamanca, Spain
| | - Wagner Bettiol
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Department of Microbiology and Genetics, University of SalamancaSalamanca, Spain
- Embrapa EnvironmentJaguariúna, Brazil
| |
Collapse
|
855
|
Gharbi E, Martínez JP, Benahmed H, Lepoint G, Vanpee B, Quinet M, Lutts S. Inhibition of ethylene synthesis reduces salt-tolerance in tomato wild relative species Solanum chilense. JOURNAL OF PLANT PHYSIOLOGY 2017; 210:24-37. [PMID: 28040626 DOI: 10.1016/j.jplph.2016.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 05/23/2023]
Abstract
Exposure to salinity induces a burst in ethylene synthesis in the wild tomato halophyte plant species Solanum chilense. In order to gain information on the role of ethylene in salt adaptation, plants of Solanum chilense (accession LA4107) and of cultivated glycophyte Solanum lycopersicum (cv. Ailsa Craig) were cultivated for 7days in nutrient solution containing 0 or 125mM NaCl in the presence or absence of the inhibitor of ethylene synthesis (aminovinylglycine (AVG) 2μM). Salt-induced ethylene synthesis in S. chilense occurred concomitantly with an increase in stomatal conductance, an efficient osmotic adjustment and the maintenance of carbon isotope discrimination value (Δ13C). In contrast, in S. lycopersicum, salt stress decreased stomatal conductance and Δ13C values while osmotic potential remained higher than in S. chilense. Inhibition of stress-induced ethylene synthesis by AVG decreased stomatal conductance and Δ13C in S. chilense and compromised osmotic adjustment. Solanum chilense behaved as an includer and accumulated high amounts of Na in the shoot but remained able to maintain K nutrition in the presence of NaCl. This species however did not stimulate the expression of genes coding for high-affinity K transport but genes coding for ethylene responsive factor ERF5 and JREF1 were constitutively more expressed in S. chilense than in S. lycopersicum. It is concluded that ethylene plays a key role in salt tolerance of S. chilense.
Collapse
Affiliation(s)
- Emna Gharbi
- Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Laboratoire d'Ecologie végétale, Faculté des Sciences, Université de Tunis El Manar, Tunisie
| | | | - Hela Benahmed
- Laboratoire d'Ecologie végétale, Faculté des Sciences, Université de Tunis El Manar, Tunisie
| | - Gilles Lepoint
- Laboratoire d'Océanologie, MARE Center, Université de Liège, Belgium
| | - Brigitte Vanpee
- Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Muriel Quinet
- Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
856
|
Xie Y, Han S, Li X, Amombo E, Fu J. Amelioration of Salt Stress on Bermudagrass by the Fungus Aspergillus aculeatus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:245-254. [PMID: 28134574 DOI: 10.1094/mpmi-12-16-0263-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
There is considerable evidence that plant abiotic-stress tolerance can be evoked by the exploitation of a globally abundant microbe. A. aculeatus, which was initially isolated from the rhizosphere of bermudagrass, has been shown to increase heavy metal tolerance in turfgrasses. Here, we report on the potential of A. aculeatus to induce tolerance to salt stress in bermudagrass. Physiological markers for salt stress, such as plant growth rate, lipid peroxidation, photosynthesis, and ionic homeostasis were assessed. Results indicated that strain A. aculeatus produced indole-3-acetic acid (IAA) and siderophores and exhibited a greater capacity for Na+ absorption under salt stress. The plant inoculation by A. aculeatus increased plant growth and attenuated the NaCl-induced lipid peroxidation in roots and leaves of bermudagrass. The fungus significantly elevated the amount of IAA and glutathione and slightly enhanced photosynthetic efficiency of salt-treated bermudagrass. Tissues of inoculated plants had significantly increased concentrations of K+ but lower Na+ concentrations than those of uninoculated regimes. It appears that the role of A. aculeatus in alleviating bermudagrass salt stress is partly to produce IAA, to increase the activity of antioxidases, to absorb Na+ by fungal hyphae, and to prevent the plant from ionic homeostasis disruption.
Collapse
Affiliation(s)
- Yan Xie
- 1 Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan City, Hubei, 430074, P.R. China; and
| | - Shijuan Han
- 1 Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan City, Hubei, 430074, P.R. China; and
- 2 Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xiaoning Li
- 1 Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan City, Hubei, 430074, P.R. China; and
- 2 Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Erick Amombo
- 1 Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan City, Hubei, 430074, P.R. China; and
- 2 Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jinmin Fu
- 1 Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan City, Hubei, 430074, P.R. China; and
| |
Collapse
|
857
|
Woodrow P, Ciarmiello LF, Annunziata MG, Pacifico S, Iannuzzi F, Mirto A, D'Amelia L, Dell'Aversana E, Piccolella S, Fuggi A, Carillo P. Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism. PHYSIOLOGIA PLANTARUM 2017; 159:290-312. [PMID: 27653956 DOI: 10.1111/ppl.12513] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/22/2016] [Accepted: 09/07/2016] [Indexed: 05/03/2023]
Abstract
Durum wheat plants are extremely sensitive to drought and salinity during seedling and early development stages. Their responses to stresses have been extensively studied to provide new metabolic targets and improving the tolerance to adverse environments. Most of these studies have been performed in growth chambers under low light [300-350 µmol m-2 s-1 photosynthetically active radiation (PAR), LL]. However, in nature plants have to face frequent fluctuations of light intensities that often exceed their photosynthetic capacity (900-2000 µmol m-2 s-1 ). In this study we investigated the physiological and metabolic changes potentially involved in osmotic adjustment and antioxidant defense in durum wheat seedlings under high light (HL) and salinity. The combined application of the two stresses decreased the water potential and stomatal conductance without reducing the photosynthetic efficiency of the plants. Glycine betaine (GB) synthesis was inhibited, proline and glutamate content decreased, while γ-aminobutyric acid (GABA), amides and minor amino acids increased. The expression level and enzymatic activities of Δ1-pyrroline-5-carboxylate synthetase, asparagine synthetase and glutamate decarboxylase, as well as other enzymatic activities of nitrogen and carbon metabolism, were analyzed. Antioxidant enzymes and metabolites were also considered. The results showed that the complex interplay seen in durum wheat plants under salinity at LL was simplified: GB and antioxidants did not play a main role. On the contrary, the fine tuning of few specific primary metabolites (GABA, amides, minor amino acids and hexoses) remodeled metabolism and defense processes, playing a key role in the response to simultaneous stresses.
Collapse
Affiliation(s)
- Pasqualina Woodrow
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Loredana F Ciarmiello
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Maria Grazia Annunziata
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Severina Pacifico
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Federica Iannuzzi
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Antonio Mirto
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Luisa D'Amelia
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Emilia Dell'Aversana
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Simona Piccolella
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Amodio Fuggi
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
| | - Petronia Carillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, 81100, Italy
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| |
Collapse
|
858
|
Al Hassan M, Chaura J, Donat-Torres MP, Boscaiu M, Vicente O. Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AOB PLANTS 2017; 9:plx009. [PMID: 28439395 PMCID: PMC5391712 DOI: 10.1093/aobpla/plx009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/07/2017] [Accepted: 02/17/2017] [Indexed: 05/07/2023]
Abstract
Some deleterious effects of drought, soil salinity and other abiotic stresses are mediated by the generation of oxidative stress through an increase in reactive oxygen species (ROS) that damage cellular membranes, proteins and DNA. In response to increased ROS, plants activate an array of enzymatic and non-enzymatic antioxidant defences. We have correlated the activation of these responses with the contrasting tolerance to salinity and drought of three species of the genus Juncus, viz. J. maritimus, J. acutus (both halophytes) and J. articulatus (salt-sensitive). Both stresses were given for 8 weeks to 6-week-old seedlings in a controlled environment chamber. Each stress inhibited growth and degraded photosynthetic pigments in the three species with the most pronounced effects being in J. articulatus. Salt and water stress also generated oxidative stress in all three taxa with J. articulatus being the most affected in terms of accumulation of malondialdehyde (a reliable oxidative stress marker). The apparent lower oxidative stress in halophytic J. maritimus and J. acutus compared with salt-sensitive J. articulatus is explained by a more efficient activation of antioxidant systems since salt or water deficiency induced a stronger accumulation of antioxidant phenolic compounds and flavonoids in J. maritimus and J. acutus than in J. articulatus. Qualitative and quantitative differences in antioxidant enzymes were also detected when comparing the three species and the two stress treatments. Accordingly, glutathione reductase and superoxide dismutase activities increased in the two halophytes under both stresses, but only in response to drought in J. articulatus. In contrast, ascorbate peroxidase activity varied between and within species according to treatment. These results show the relative importance of different antioxidant responses for stress tolerance in species with distinct ecological requirements. The salt-sensitive J. articulatus, contrary to the tolerant taxa, did not activate enzymatic antioxidant responses to salinity-induced oxidative stress.
Collapse
Affiliation(s)
- Mohamad Al Hassan
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universitat Politècnica de València, 46022 Valencia, Spain
- Present address: The New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand
| | - Juliana Chaura
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universitat Politècnica de València, 46022 Valencia, Spain
- Permanent address: Department of Biological Sciences, Faculty of Natural Sciences, Universidad ICESI, Cali, Colombia
| | - María P. Donat-Torres
- Instituto de Investigación para la Gestión Integral de Zonas Costeras (UPV), Universitat Politècnica de València, 46730 Grao de Gandía, Spain
| | - Monica Boscaiu
- Instituto Agroforestal Mediterráneo (UPV), Universitat Politècnica de València, 46022 Valencia, Spain
| | - Oscar Vicente
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
859
|
Zhou M, Butterbach-Bahl K, Vereecken H, Brüggemann N. A meta-analysis of soil salinization effects on nitrogen pools, cycles and fluxes in coastal ecosystems. GLOBAL CHANGE BIOLOGY 2017; 23:1338-1352. [PMID: 27416519 DOI: 10.1111/gcb.13430] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
Salinity intrusion caused by land subsidence resulting from increasing groundwater abstraction, decreasing river sediment loads and increasing sea level because of climate change has caused widespread soil salinization in coastal ecosystems. Soil salinization may greatly alter nitrogen (N) cycling in coastal ecosystems. However, a comprehensive understanding of the effects of soil salinization on ecosystem N pools, cycling processes and fluxes is not available for coastal ecosystems. Therefore, we compiled data from 551 observations from 21 peer-reviewed papers and conducted a meta-analysis of experimental soil salinization effects on 19 variables related to N pools, cycling processes and fluxes in coastal ecosystems. Our results showed that the effects of soil salinization varied across different ecosystem types and salinity levels. Soil salinization increased plant N content (18%), soil NH4+ (12%) and soil total N (210%), although it decreased soil NO3- (2%) and soil microbial biomass N (74%). Increasing soil salinity stimulated soil N2 O fluxes as well as hydrological NH4+ and NO2- fluxes more than threefold, although it decreased the hydrological dissolved organic nitrogen (DON) flux (59%). Soil salinization also increased the net N mineralization by 70%, although salinization effects were not observed on the net nitrification, denitrification and dissimilatory nitrate reduction to ammonium in this meta-analysis. Overall, this meta-analysis improves our understanding of the responses of ecosystem N cycling to soil salinization, identifies knowledge gaps and highlights the urgent need for studies on the effects of soil salinization on coastal agro-ecosystem and microbial N immobilization. Additional increases in knowledge are critical for designing sustainable adaptation measures to the predicted intrusion of salinity intrusion so that the productivity of coastal agro-ecosystems can be maintained or improved and the N losses and pollution of the natural environment can be minimized.
Collapse
Affiliation(s)
- Minghua Zhou
- Institute of Bio- and Geosciences-Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, 52428, Germany
| | - Klaus Butterbach-Bahl
- Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, 82467, Germany
- International Livestock Research Institute (ILRI), Old Naivasha Road, Nairobi, 00100, Kenya
| | - Harry Vereecken
- Institute of Bio- and Geosciences-Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, 52428, Germany
| | - Nicolas Brüggemann
- Institute of Bio- and Geosciences-Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, 52428, Germany
| |
Collapse
|
860
|
Kordrostami M, Rabiei B, Kumleh HH. Different physiobiochemical and transcriptomic reactions of rice (Oryza sativa L.) cultivars differing in terms of salt sensitivity under salinity stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:7184-7196. [PMID: 28097484 DOI: 10.1007/s11356-017-8411-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 01/05/2017] [Indexed: 05/28/2023]
Abstract
Salinity stress is the most important and common environmental stresses throughout the world, including Iran. The aim of this study was to investigate the expression of several important genes involved in the salinity tolerance of the rice cultivars differing in salt sensitivity. In this research, the expression of four mitochondrial genes, H2O2, malondialdehyde (MDA), proline, sodium, potassium and superoxide dismutase (SOD), was measured in Iranian rice cultivars and two well-known international varieties as checks in response to 100 mM salt stress. The results show that the activity of SOD in the tolerant cultivars is much higher than in the susceptible ones under saline conditions (100 mM NaCl). The study of the gene expression in the tolerant and sensitive cultivars also showed that the expression of the genes increased in the early hours of the stress, with the exception of the OsGR1. Moreover, the amount of the expression in the tolerant cultivars was far more than the susceptible ones. The result of this study showed that the function of a set of antioxidant enzymes can lead to detoxification of the reactive oxygen species, so in order to better understand ROS scavengers, a comprehensive study on the antioxidant system should be conducted.
Collapse
Affiliation(s)
- Mojtaba Kordrostami
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, P.O. Box: 41635-1314, Rasht, Iran
| | - Babak Rabiei
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, P.O. Box: 41635-1314, Rasht, Iran.
| | - Hassan Hassani Kumleh
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, P.O. Box: 41635-1314, Rasht, Iran
| |
Collapse
|
861
|
Kumar P, Sharma V, Atmaram CK, Singh B. Regulated partitioning of fixed carbon ( 14C), sodium (Na +), potassium (K +) and glycine betaine determined salinity stress tolerance of gamma irradiated pigeonpea [Cajanus cajan (L.) Millsp]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:7285-7297. [PMID: 28102497 DOI: 10.1007/s11356-017-8406-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/05/2017] [Indexed: 06/06/2023]
Abstract
Soil salinity is a major constraint that limits legume productivity. Pigeonpea is a salt sensitive crop. Seed gamma irradiation at a very low dose (2.5 Gy) is known to enhance seedling establishment, plant growth and yield of cereals and other crops. The present study conducted using two genetically diverse varieties of pigeonpea viz., Pusa-991 and Pusa-992 aimed at establishing the role of pre-sowing seed gamma irradiation at 0, 0.0025, 0.005, 0.01, 0.02, 0.05 and 0.1 kGy on plant growth, seed yield and seed quality under salt stress at 0, 80 and 100 mM NaCl (soil solution EC equivalent 1.92, 5.86 and 8.02 dS/m, respectively) imposed right from the beginning of the experiment. Changes in carbon flow dynamics between shoot and root and concentration of osmolyte, glycine betaine, plant uptake and shoot and root partitioning of Na+ and K+ and activity of protein degrading enzyme protease were measured under the combined effect of gamma irradiation and salt stress. Positive affect of pre-sowing exposure of seed to low dose of gamma irradiation (<0.01 kGy) under salt stress was evident in pigeonpea. Pigeonpea variety, Pusa-992 showed a better salt tolerance response than Pusa-991 and that the radiated plants performed better than the unirradiated plants even at increasing salinity level. Seed yield and seed protein and iron content were also positively affected by the low dose gamma irradiation under NaCl stress. Multiple factors interacted to determine physiological salt tolerance response of pigeonpea varieties. Gamma irradiation caused a favourable alteration in the source-sink (shoot-root) partitioning of recently fixed carbon (14C) under salt stress in pigeonpea. Gamma irradiation of seeds prior to sowing enhanced glycine betaine content and reduced protease activity at 60-day stage under various salt stress regimes. Lower partitioning of Na+and relatively higher accumulation of K+ under irradiation treatment was the other important determinants that differentiated between salt-tolerant and salt-susceptible variety of pigeonpea. The study provides evidence and physiological basis for exploring exploitation of pre-sowing exposure of seeds with low-dose gamma ray for enhancing the salt tolerance response of crop plants.
Collapse
Affiliation(s)
- Pankaj Kumar
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, India
| | - Vasundhara Sharma
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, India
| | - Chobhe Kapil Atmaram
- Division of Soil Science and Agricultural Chemicals, Indian Agricultural Research Institute, New Delhi, India
| | - Bhupinder Singh
- Nuclear Research Laboratory, Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
862
|
Milewska-Hendel A, Baczewska AH, Sala K, Dmuchowski W, Brągoszewska P, Gozdowski D, Jozwiak A, Chojnacki T, Swiezewska E, Kurczynska E. Quantitative and qualitative characteristics of cell wall components and prenyl lipids in the leaves of Tilia x euchlora trees growing under salt stress. PLoS One 2017; 12:e0172682. [PMID: 28234963 PMCID: PMC5325302 DOI: 10.1371/journal.pone.0172682] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 02/08/2017] [Indexed: 01/11/2023] Open
Abstract
The study was focused on assessing the presence of arabinogalactan proteins (AGPs) and pectins within the cell walls as well as prenyl lipids, sodium and chlorine content in leaves of Tilia x euchlora trees. The leaves that were analyzed were collected from trees with and without signs of damage that were all growing in the same salt stress conditions. The reason for undertaking these investigations was the observations over many years that indicated that there are trees that present a healthy appearance and trees that have visible symptoms of decay in the same habitat. Leaf samples were collected from trees growing in the median strip between roadways that have been intensively salted during the winter season for many years. The sodium content was determined using atomic spectrophotometry, chloride using potentiometric titration and poly-isoprenoids using HPLC/UV. AGPs and pectins were determined using immunohistochemistry methods. The immunohistochemical analysis showed that rhamnogalacturonans I (RG-I) and homogalacturonans were differentially distributed in leaves from healthy trees in contrast to leaves from injured trees. In the case of AGPs, the most visible difference was the presence of the JIM16 epitope. Chemical analyses of sodium and chloride showed that in the leaves from injured trees, the level of these ions was higher than in the leaves from healthy trees. Based on chromatographic analysis, four poly-isoprenoid alcohols were identified in the leaves of T. x euchlora. The levels of these lipids were higher in the leaves from healthy trees. The results suggest that the differences that were detected in the apoplast and symplasm may be part of the defensive strategy of T. x euchlora trees to salt stress, which rely on changes in the chemical composition of the cell wall with respect to the pectic and AGP epitopes and an increased synthesis of prenyl lipids.
Collapse
Affiliation(s)
- Anna Milewska-Hendel
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Aneta H. Baczewska
- Polish Academy of Sciences Botanical Garden–Center for the Conservation of Biological Diversity, Warsaw, Poland
| | - Katarzyna Sala
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Wojciech Dmuchowski
- Polish Academy of Sciences Botanical Garden–Center for the Conservation of Biological Diversity, Warsaw, Poland
- Warsaw University of Life Sciences–SGGW, Warsaw, Poland
| | - Paulina Brągoszewska
- Institute of Environmental Protection–National Research Institute, Warsaw, Poland
| | | | - Adam Jozwiak
- Institute of Biochemistry and Biophysics–Polish Academy of Sciences, Warsaw, Poland
| | - Tadeusz Chojnacki
- Institute of Biochemistry and Biophysics–Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics–Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Kurczynska
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| |
Collapse
|
863
|
Abstract
This review deals with the adaptive mechanisms that plants can implement to cope with the challenge of salt stress. Plants tolerant to NaCl implement a series of adaptations to acclimate to salinity, including morphological, physiological and biochemical changes. These changes include increases in the root/canopy ratio and in the chlorophyll content in addition to changes in the leaf anatomy that ultimately lead to preventing leaf ion toxicity, thus maintaining the water status in order to limit water loss and protect the photosynthesis process. Furthermore, we deal with the effect of salt stress on photosynthesis and chlorophyll fluorescence and some of the mechanisms thought to protect the photosynthetic machinery, including the xanthophyll cycle, photorespiration pathway, and water-water cycle. Finally, we also provide an updated discussion on salt-induced oxidative stress at the subcellular level and its effect on the antioxidant machinery in both salt-tolerant and salt-sensitive plants. The aim is to extend our understanding of how salinity may affect the physiological characteristics of plants.
Collapse
|
864
|
Cambridge ML, Zavala-Perez A, Cawthray GR, Mondon J, Kendrick GA. Effects of high salinity from desalination brine on growth, photosynthesis, water relations and osmolyte concentrations of seagrass Posidonia australis. MARINE POLLUTION BULLETIN 2017; 115:252-260. [PMID: 27989371 DOI: 10.1016/j.marpolbul.2016.11.066] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/19/2016] [Accepted: 11/30/2016] [Indexed: 05/24/2023]
Abstract
Highly saline brines from desalination plants expose seagrass communities to salt stress. We examined effects of raised salinity (46 and 54psu) compared with seawater controls (37psu) over 6weeks on the seagrass, Posidonia australis, growing in tanks with the aim of separating effects of salinity from other potentially deleterious components of brine and determining appropriate bioindicators. Plants survived exposures of 2-4weeks at 54psu, the maximum salinity of brine released from a nearby desalination plant. Salinity significantly reduced maximum quantum yield of PSII (chlorophyll a fluorescence emissions). Leaf water potential (Ψw) and osmotic potential (Ψπ) were more negative at increased salinity, while turgor pressure (Ψp) was unaffected. Leaf concentrations of K+ and Ca2+ decreased, whereas concentrations of sugars (mainly sucrose) and amino acids increased. We recommend leaf osmolarity, ion, sugar and amino acid concentrations as bioindicators for salinity effects, associated with brine released in desalination plant outfalls.
Collapse
Affiliation(s)
- M L Cambridge
- UWA Oceans Institute and School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia.
| | - A Zavala-Perez
- UWA Oceans Institute and School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
| | - G R Cawthray
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
| | - J Mondon
- School of Life and Environmental Science, Deakin University, PO Box 423, Warrnambool, Victoria 3280, Australia
| | - G A Kendrick
- UWA Oceans Institute and School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
| |
Collapse
|
865
|
DoGMP1 from Dendrobium officinale contributes to mannose content of water-soluble polysaccharides and plays a role in salt stress response. Sci Rep 2017; 7:41010. [PMID: 28176760 PMCID: PMC5296857 DOI: 10.1038/srep41010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/14/2016] [Indexed: 12/20/2022] Open
Abstract
GDP-mannose pyrophosphorylase (GMP) catalyzed the formation of GDP-mannose, which serves as a donor for the biosynthesis of mannose-containing polysaccharides. In this study, three GMP genes from Dendrobium officinale (i.e., DoGMPs) were cloned and analyzed. The putative 1000 bp upstream regulatory region of these DoGMPs was isolated and cis-elements were identified, which indicates their possible role in responses to abiotic stresses. The DoGMP1 protein was shown to be localized in the cytoplasm. To further study the function of the DoGMP1 gene, 35S:DoGMP1 transgenic A. thaliana plants with an enhanced expression level of DoGMP1 were generated. Transgenic plants were indistinguishable from wild-type (WT) plants in tissue culture or in soil. However, the mannose content of the extracted water-soluble polysaccharides increased 67%, 96% and 92% in transgenic lines #1, #2 and #3, respectively more than WT levels. Germination percentage of seeds from transgenic lines was higher than WT seeds and the growth of seedlings from transgenic lines was better than WT seedlings under salinity stress (150 mM NaCl). Our results provide genetic evidence for the involvement of GMP genes in the biosynthesis of mannose-containing polysaccharides and the mediation of GMP genes in the response to salt stress during seed germination and seedling growth.
Collapse
|
866
|
Prado FE, Hilal MB, Albornoz PL, Gallardo MG, Ruiz VE. Anatomical and Physiological Responses of Four Quinoa Cultivars to Salinity at Seedling Stage. ACTA ACUST UNITED AC 2017. [DOI: 10.17485/ijst/2017/v10i7/111937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
867
|
Karuppanapandian T, Geilfus CM, Mühling KH, Novák O, Gloser V. Early changes of the pH of the apoplast are different in leaves, stem and roots of Vicia faba L. under declining water availability. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 255:51-58. [PMID: 28131341 DOI: 10.1016/j.plantsci.2016.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 05/10/2023]
Abstract
Changes in pH of the apoplast have recently been discussed as an important factor in adjusting transpiration and water relations under conditions of drought via modulatory effect on abscisic acid (ABA) concentration. Using Vicia faba L., we investigated whether changes in the root, shoot and leaf apoplastic pH correlated with (1) a drought-induced reduction in transpiration and with (2) changes in ABA concentration. Transpiration, leaf water potential and ABA in leaves were measured and correlated with root and shoot xylem pH, determined by a pH microelectrode, and pH of leaf apoplast quantified by microscopy-based in vivo ratiometric analysis. Results revealed that a reduction in transpiration rate in the early phase of soil drying could not be linked with changes in the apoplastic pH via effects on the stomata-regulating hormone ABA. Moreover, drought-induced increase in pH of xylem or leaf apoplast was not the remote effect of an acropetal transport of alkaline sap from root, because root xylem acidified during progressive soil drying, whereas the shoot apoplast alkalized. We reason that other, yet unknown signalling mechanism was responsible for reduction of transpiration rate in the early phase of soil drying.
Collapse
Affiliation(s)
| | - C-M Geilfus
- Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, Germany; Institute of Crop Science, Division of Crop Product Quality, University of Hohenheim, Emil-Wolff-Straße 25, 70599 Stuttgart, Germany
| | - K-H Mühling
- Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, Germany
| | - O Novák
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany Academy of Sciences of the Czech Republic, Olomouc, Czechia
| | - V Gloser
- Department of Experimental Biology, Masaryk University, Brno, Czechia.
| |
Collapse
|
868
|
Enhanced Nitrogen and Phosphorus Removal by Woody Plants with Deep-Planting Technique for the Potential Environmental Management of Carcass Burial Sites. SUSTAINABILITY 2017. [DOI: 10.3390/su9010155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
869
|
Zhang X, Li K, Liu S, Zou P, Xing R, Yu H, Chen X, Qin Y, Li P. Relationship between the Degree of Polymerization of Chitooligomers and Their Activity Affecting the Growth of Wheat Seedlings under Salt Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:501-509. [PMID: 28005356 DOI: 10.1021/acs.jafc.6b03665] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Seven chitooligomers (COSs) with determined degrees of polymerization (DPs) (chitotetraose to chitooctaose, DP 8-10, DP 10-12) and a heterogeneous COS with various DPs were first applied to explore the relationship between the DP of COSs and their effect on the growth of wheat seedlings under salt stress. The results showed that COS could promote the growth of wheat seedlings under salt stress. Moreover, chitohexaose, chitoheptaose, and chitooctaose exhibited stronger activity compared with other COS samples, which suggested that their activity had a close relationship with the DP. After 10 days of treatment with chitohexaose, chitoheptaose, and chitooctaose, the photosynthetic parameters were obviously improved. The soluble sugar and proline contents were improved by 26.7-53.3 and 43.6-70.2%, respectively, whereas the concentration of malondialdehyde (MDA) was reduced by 36.8-49.6%. In addition, the antioxidant enzyme activities were clearly activated. At the molecular level, the results revealed that they could obviously induce the expression of Na+/H+ antiporter genes.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Kecheng Li
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071, China
- Nantong Marine Science and Technology R&D Center, IOCAS , Jiangsu 226006, China
| | - Song Liu
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071, China
| | - Ping Zou
- Institute of Tobacco Research of CAAS , Qingdao 266101, China
| | - Ronge Xing
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071, China
| | - Huahua Yu
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071, China
| | - Xiaolin Chen
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071, China
| | - Yukun Qin
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071, China
| | - Pengcheng Li
- Key Laborotory Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071, China
| |
Collapse
|
870
|
Eshel G, Shaked R, Kazachkova Y, Khan A, Eppel A, Cisneros A, Acuna T, Gutterman Y, Tel-Zur N, Rachmilevitch S, Fait A, Barak S. Anastatica hierochuntica, an Arabidopsis Desert Relative, Is Tolerant to Multiple Abiotic Stresses and Exhibits Species-Specific and Common Stress Tolerance Strategies with Its Halophytic Relative, Eutrema ( Thellungiella) salsugineum. FRONTIERS IN PLANT SCIENCE 2017; 7:1992. [PMID: 28144244 PMCID: PMC5239783 DOI: 10.3389/fpls.2016.01992] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/15/2016] [Indexed: 05/08/2023]
Abstract
The search for novel stress tolerance determinants has led to increasing interest in plants native to extreme environments - so called "extremophytes." One successful strategy has been comparative studies between Arabidopsis thaliana and extremophyte Brassicaceae relatives such as the halophyte Eutrema salsugineum located in areas including cold, salty coastal regions of China. Here, we investigate stress tolerance in the desert species, Anastatica hierochuntica (True Rose of Jericho), a member of the poorly investigated lineage III Brassicaceae. We show that A. hierochuntica has a genome approximately 4.5-fold larger than Arabidopsis, divided into 22 diploid chromosomes, and demonstrate that A. hierochuntica exhibits tolerance to heat, low N and salt stresses that are characteristic of its habitat. Taking salt tolerance as a case study, we show that A. hierochuntica shares common salt tolerance mechanisms with E. salsugineum such as tight control of shoot Na+ accumulation and resilient photochemistry features. Furthermore, metabolic profiling of E. salsugineum and A. hierochuntica shoots demonstrates that the extremophytes exhibit both species-specific and common metabolic strategies to cope with salt stress including constitutive up-regulation (under control and salt stress conditions) of ascorbate and dehydroascorbate, two metabolites involved in ROS scavenging. Accordingly, A. hierochuntica displays tolerance to methyl viologen-induced oxidative stress suggesting that a highly active antioxidant system is essential to cope with multiple abiotic stresses. We suggest that A. hierochuntica presents an excellent extremophyte Arabidopsis relative model system for understanding plant survival in harsh desert conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Simon Barak
- French Associates Institute for Biotechnology and Agriculture of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the NegevSde Boker, Israel
| |
Collapse
|
871
|
Cao D, Lutz A, Hill CB, Callahan DL, Roessner U. A Quantitative Profiling Method of Phytohormones and Other Metabolites Applied to Barley Roots Subjected to Salinity Stress. FRONTIERS IN PLANT SCIENCE 2017; 7:2070. [PMID: 28119732 PMCID: PMC5222860 DOI: 10.3389/fpls.2016.02070] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/27/2016] [Indexed: 05/22/2023]
Abstract
As integral parts of plant signaling networks, phytohormones are involved in the regulation of plant metabolism and growth under adverse environmental conditions, including salinity. Globally, salinity is one of the most severe abiotic stressors with an estimated 800 million hectares of arable land affected. Roots are the first plant organ to sense salinity in the soil, and are the initial site of sodium (Na+) exposure. However, the quantification of phytohormones in roots is challenging, as they are often present at extremely low levels compared to other plant tissues. To overcome this challenge, we developed a high-throughput LC-MS method to quantify ten endogenous phytohormones and their metabolites of diverse chemical classes in roots of barley. This method was validated in a salinity stress experiment with six barley varieties grown hydroponically with and without salinity. In addition to phytohormones, we quantified 52 polar primary metabolites, including some phytohormone precursors, using established GC-MS and LC-MS methods. Phytohormone and metabolite data were correlated with physiological measurements including biomass, plant size and chlorophyll content. Root and leaf elemental analysis was performed to determine Na+ exclusion and K+ retention ability in the studied barley varieties. We identified distinct phytohormone and metabolite signatures as a response to salinity stress in different barley varieties. Abscisic acid increased in the roots of all varieties under salinity stress, and elevated root salicylic acid levels were associated with an increase in leaf chlorophyll content. Furthermore, the landrace Sahara maintained better growth, had lower Na+ levels and maintained high levels of the salinity stress linked metabolite putrescine as well as the phytohormone metabolite cinnamic acid, which has been shown to increase putrescine concentrations in previous studies. This study highlights the importance of root phytohormones under salinity stress and the multi-variety analysis provides an important update to analytical methodology, and adds to the current knowledge of salinity stress responses in plants at the molecular level.
Collapse
Affiliation(s)
- Da Cao
- School of BioSciences, The University of Melbourne, ParkvilleVIC, Australia
| | - Adrian Lutz
- Metabolomics Australia, School of BioSciences, The University of Melbourne, ParkvilleVIC, Australia
| | - Camilla B. Hill
- School of BioSciences, The University of Melbourne, ParkvilleVIC, Australia
- School of Veterinary and Life Sciences, Murdoch University, MurdochWA, Australia
| | - Damien L. Callahan
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, BurwoodVIC, Australia
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, ParkvilleVIC, Australia
- Metabolomics Australia, School of BioSciences, The University of Melbourne, ParkvilleVIC, Australia
| |
Collapse
|
872
|
Annunziata MG, Ciarmiello LF, Woodrow P, Maximova E, Fuggi A, Carillo P. Durum Wheat Roots Adapt to Salinity Remodeling the Cellular Content of Nitrogen Metabolites and Sucrose. FRONTIERS IN PLANT SCIENCE 2017; 7:2035. [PMID: 28119716 PMCID: PMC5220018 DOI: 10.3389/fpls.2016.02035] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/20/2016] [Indexed: 05/20/2023]
Abstract
Plants are currently experiencing increasing salinity problems due to irrigation with brackish water. Moreover, in fields, roots can grow in soils which show spatial variation in water content and salt concentration, also because of the type of irrigation. Salinity impairs crop growth and productivity by inhibiting many physiological and metabolic processes, in particular nitrate uptake, translocation, and assimilation. Salinity determines an increase of sap osmolality from about 305 mOsmol kg-1 in control roots to about 530 mOsmol kg-1 in roots under salinity. Root cells adapt to salinity by sequestering sodium in the vacuole, as a cheap osmoticum, and showing a rearrangement of few nitrogen-containing metabolites and sucrose in the cytosol, both for osmotic adjustment and oxidative stress protection, thus providing plant viability even at low nitrate levels. Mainly glycine betaine and sucrose at low nitrate concentration, and glycine betaine, asparagine and proline at high nitrate levels can be assumed responsible for the osmotic adjustment of the cytosol, the assimilation of the excess of ammonium and the scavenging of ROS under salinity. High nitrate plants with half of the root system under salinity accumulate proline and glutamine in both control and salt stressed split roots, revealing that osmotic adjustment is not a regional effect in plants. The expression level and enzymatic activities of asparagine synthetase and Δ1-pyrroline-5-carboxylate synthetase, as well as other enzymatic activities of nitrogen and carbon metabolism, are analyzed.
Collapse
Affiliation(s)
- Maria Grazia Annunziata
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Loredana F. Ciarmiello
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”Caserta, Italy
| | - Pasqualina Woodrow
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”Caserta, Italy
| | - Eugenia Maximova
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Amodio Fuggi
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”Caserta, Italy
| | - Petronia Carillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”Caserta, Italy
| |
Collapse
|
873
|
Al-Taisan WA, Gabr DG. Comparative morphological and anatomical characters of Cakile arabica from different habitat in eastern region of Saudi Arabia. Saudi J Biol Sci 2017; 24:226-233. [PMID: 28053594 PMCID: PMC5198990 DOI: 10.1016/j.sjbs.2016.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/05/2016] [Accepted: 04/14/2016] [Indexed: 11/29/2022] Open
Abstract
Morphological, anatomical and physiological plasticity was examined for Cakile arabica from three different sites at the coastal part of the Arabian Gulf near Ad Dammam city in the eastern region of Saudi Arabia. Morphological investigation showed that the size and number of lobes of the leaves are increased in sites (I) which have high salt stress. Also anatomical investigation using a light microscope showed that the plant is adaptive for salt stress by increasing the thickening of the cuticle or epidermis layer and increase in the area of vascular bundles. Physiological studies showed that plant growing under high salt stress is characterized by increase content of electrical conductivity and increase in chlorophyll a, b, carotenoids and proline content in the plant tissues. This can be explained as an osmotic adjustment mechanism for the investigated species growing under high salinity stress.
Collapse
Affiliation(s)
- Wafa’a A. Al-Taisan
- Department of Biology, Faculty of Science, University of Dammam, Saudi Arabia
- Corresponding author.
| | - Dalia G. Gabr
- Department of Basic Science, Faculty of Education, University of Dammam, Saudi Arabia
| |
Collapse
|
874
|
Arshad M, Gruber MY, Wall K, Hannoufa A. An Insight into microRNA156 Role in Salinity Stress Responses of Alfalfa. FRONTIERS IN PLANT SCIENCE 2017; 8:356. [PMID: 28352280 PMCID: PMC5348497 DOI: 10.3389/fpls.2017.00356] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/01/2017] [Indexed: 05/21/2023]
Abstract
Salinity is one of the major abiotic stresses affecting alfalfa productivity. Developing salinity tolerant alfalfa genotypes could contribute to sustainable crop production. The functions of microRNA156 (miR156) have been investigated in several plant species, but so far, no studies have been published that explore the role of miR156 in alfalfa response to salinity stress. In this work, we studied the role of miR156 in modulating commercially important traits of alfalfa under salinity stress. Our results revealed that overexpression of miR156 increased biomass, number of branches and time to complete growth stages, while it reduced plant height under control and salinity stress conditions. We observed a miR156-related reduction in neutral detergent fiber under non-stress, and acid detergent fiber under mild salinity stress conditions. In addition, enhanced total Kjeldahl nitrogen content was recorded in miR156 overexpressing genotypes under severe salinity stress. Furthermore, alfalfa genotypes overexpressing miR156 exhibited an altered ion homeostasis under salinity conditions. Under severe salinity stress, miR156 downregulated SPL transcription factor family genes, modified expression of other important transcription factors, and downstream salt stress responsive genes. Taken together, our results reveal that miR156 plays a role in mediating physiological and transcriptional responses of alfalfa to salinity stress.
Collapse
Affiliation(s)
| | | | - Ken Wall
- Agriculture and Agri-Food Canada, Swift CurrentSK, Canada
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, LondonON, Canada
- *Correspondence: Abdelali Hannoufa,
| |
Collapse
|
875
|
Liu K, Qi S, Li D, Jin C, Gao C, Duan S, Feng B, Chen M. TRANSPARENT TESTA GLABRA 1 ubiquitously regulates plant growth and development from Arabidopsis to foxtail millet (Setaria italica). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 254:60-69. [PMID: 27964785 DOI: 10.1016/j.plantsci.2016.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/21/2016] [Accepted: 10/21/2016] [Indexed: 05/18/2023]
Abstract
TRANSPARENT TESTA GLABRA 1 of Arabidopsis thaliana (AtTTG1) is a WD40 repeat transcription factor that plays multiple roles in plant growth and development, particularly in seed metabolite production. In the present study, to determine whether SiTTG1 of the phylogenetically distant monocot foxtail millet (Setaria italica) has similar functions, we used transgenic Arabidopsis and Nicotiana systems to explore its activities. We found that SiTTG1 functions as a transcription factor. Overexpression of the SiTTG1 gene rescued many of the mutant phenotypes in Arabidopsis ttg1-13 plants. Additionally, SiTTG1 overexpression fully corrected the reduced expression of mucilage biosynthetic genes, and the induced expression of genes involved in accumulation of seed fatty acids and storage proteins in developing seeds of ttg1-13 plants. Ectopic expression of SiTTG1 restored the sensitivity of the ttg1-13 mutant to salinity and high glucose stresses during germination and seedling establishment, and restored altered expression levels of some stress-responsive genes in ttg1-13 seedlings to the wild type level under salinity and glucose stresses. Our results provide information that will be valuable for understanding the function of TTG1 from monocot to dicot species and identifying a promising target for genetic manipulation of foxtail millet to improve the amount of seed metabolites.
Collapse
Affiliation(s)
- Kaige Liu
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuanghui Qi
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dong Li
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Changyu Jin
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chenhao Gao
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shaowei Duan
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Baili Feng
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingxun Chen
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
876
|
Luo L, Zhang P, Zhu R, Fu J, Su J, Zheng J, Wang Z, Wang D, Gong Q. Autophagy Is Rapidly Induced by Salt Stress and Is Required for Salt Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:1459. [PMID: 28878796 PMCID: PMC5572379 DOI: 10.3389/fpls.2017.01459] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 08/04/2017] [Indexed: 05/18/2023]
Abstract
Salinity stress challenges agriculture and food security globally. Upon salt stress, plant growth slows down, nutrients are recycled, osmolytes are produced, and reallocation of Na+ takes place. Since autophagy is a high-throughput degradation pathway that contributes to nutrient remobilization in plants, we explored the involvement of autophagic flux in salt stress response of Arabidopsis with various approaches. Confocal microscopy of GFP-ATG8a in transgenic Arabidopsis showed that autophagosome formation is induced shortly after salt treatment. Immunoblotting of ATG8s and the autophagy receptor NBR1 confirmed that the level of autophagy peaks within 30 min of salt stress, and then settles to a new homeostasis in Arabidopsis. Such an induction is absent in mutants defective in autophagy. Within 3 h of salt treatment, accumulation of oxidized proteins is alleviated in the wild-type; however, such a reduction is not seen in atg2 or atg7. Consistently, the Arabidopsis atg mutants are hypersensitive to both salt and osmotic stresses, and plants overexpressing ATG8 perform better than the wild-type in germination assays. Quantification of compatible osmolytes further confirmed that the autophagic flux contributes to salt stress adaptation. Imaging of intracellular Na+ revealed that autophagy is required for Na+ sequestration in the central vacuole of root cortex cells following salt treatment. These data suggest that rapid protein turnover through autophagy is a prerequisite for salt stress tolerance in Arabidopsis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dan Wang
- *Correspondence: Dan Wang, Qingqiu Gong,
| | | |
Collapse
|
877
|
Tripathy MK, Tiwari BS, Reddy MK, Deswal R, Sopory SK. Ectopic expression of PgRab7 in rice plants (Oryza sativa L.) results in differential tolerance at the vegetative and seed setting stage during salinity and drought stress. PROTOPLASMA 2017; 254:109-124. [PMID: 26666551 DOI: 10.1007/s00709-015-0914-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/19/2015] [Indexed: 05/23/2023]
Abstract
In this work, we have overexpressed a vesicle trafficking protein, Rab7, from a stress-tolerant plant, Pennisetum glaucum, in a high-yielding but stress-sensitive rice variety Pusa Basmati-1 (PB-1). The transgenic rice plants were tested for tolerance against salinity and drought stress. The transgenic plants showed considerable tolerance at the vegetative stage against both salinity (200 mM NaCl) and drought stress (up to 12 days after withdrawing water). The protection against salt and drought stress may be by regulating Na+ ion homeostasis, as the transgenic plants showed altered expression of multiple transporter genes, including OsNHX1, OsNHX2, OsSOS1, OsVHA, and OsGLRs. In addition, decreased generation and maintenance of lesser reactive oxygen species (ROS), with maintenance of chloroplast grana and photosynthetic machinery was observed. When evaluated for reproductive growth, 89-96 % of seed setting was maintained in transgenic plants during drought stress; however, under salt stress, a 33-53 % decrease in seed setting was observed. These results indicate that PgRab7 overexpression in rice confers differential tolerance at the seed setting stage during salinity and drought stress and could be a favored target for raising drought-tolerant crops.
Collapse
Affiliation(s)
- Manas Kumar Tripathy
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Budhi Sagar Tiwari
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Malireddy K Reddy
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Renu Deswal
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Sudhir K Sopory
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
878
|
Bekele A, Besufekad Y, Adugna S, Yinur D. Screening of selected accessions of Ethiopian sesame (Sesame indicum L.) for salt tolerance. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2016.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
879
|
Babu NN, Krishnan SG, Vinod KK, Krishnamurthy SL, Singh VK, Singh MP, Singh R, Ellur RK, Rai V, Bollinedi H, Bhowmick PK, Yadav AK, Nagarajan M, Singh NK, Prabhu KV, Singh AK. Marker Aided Incorporation of Saltol, a Major QTL Associated with Seedling Stage Salt Tolerance, into Oryza sativa 'Pusa Basmati 1121'. FRONTIERS IN PLANT SCIENCE 2017; 8:41. [PMID: 28184228 PMCID: PMC5266695 DOI: 10.3389/fpls.2017.00041] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/09/2017] [Indexed: 05/20/2023]
Abstract
Pusa Basmati 1121 (PB1121), an elite Basmati rice cultivar is vulnerable to salinity at seedling stage. A study was undertaken to impart seedling-stage salt tolerance into PB1121 by transferring a quantitative trait locus (QTL), Saltol, using FL478 as donor, through marker assisted backcrossing. Sequence tagged microsatellite site (STMS) marker RM 3412, tightly linked to Saltol was used for foreground selection. Background recovery was estimated using 90 genome-wide STMS markers. Systematic phenotypic selection helped in accelerated recovery of recurrent parent phenome (RPP). A set of 51 BC3F2 lines homozygous for Saltol were advanced to develop four improved near isogenic lines (NILs) of PB1121 with seedling stage salt tolerance. The background genome recovery in the NILs ranged from 93.3 to 99.4%. The improved NILs were either similar or better than the recurrent parent PB1121 for yield, grain and cooking quality and duration. Biochemical analyses revealed significant variation in shoot and root Na+ and K+ concentrations. Correlation between shoot and root Na+ concentration was stronger than that between root and shoot K+ concentration. The effect of QTL integration into the NILs was studied through expression profiling of OsHKT1;5, one of the genes present in the Saltol region. The NILs had significantly higher OsHKT1;5 expression than the recurrent parent PB1121, but lower than FL478 on salt exposure validating the successful introgression of Saltol in the NILs. This was also confirmed under agronomic evaluation, wherein the NILs showed greater salt tolerance at seedling stage. One of the NILs, Pusa1734-8-3-3 (NIL3) showed comparable yield and cooking quality to the recurrent parent PB1121, with high field level seedling stage salinity tolerance and shorter duration. This is the first report of successful introgression of Saltol into a Basmati rice cultivar.
Collapse
Affiliation(s)
- N. Naresh Babu
- Division of Genetics, ICAR – Indian Agricultural Research InstituteNew Delhi, India
| | - S. Gopala Krishnan
- Division of Genetics, ICAR – Indian Agricultural Research InstituteNew Delhi, India
| | - K. K. Vinod
- ICAR – Indian Agricultural Research Institute, Rice Breeding and Genetics Research CentreAduthurai, India
| | | | - Vivek K. Singh
- Division of Genetics, ICAR – Indian Agricultural Research InstituteNew Delhi, India
| | - Madan P. Singh
- Division of Plant Physiology, ICAR – Indian Agricultural Research InstituteNew Delhi, India
| | - Renu Singh
- ICAR – National Research Centre on Plant BiotechnologyNew Delhi, India
| | - Ranjith K. Ellur
- Division of Genetics, ICAR – Indian Agricultural Research InstituteNew Delhi, India
| | - Vandna Rai
- ICAR – National Research Centre on Plant BiotechnologyNew Delhi, India
| | - Haritha Bollinedi
- Division of Genetics, ICAR – Indian Agricultural Research InstituteNew Delhi, India
| | - Prolay K. Bhowmick
- Division of Genetics, ICAR – Indian Agricultural Research InstituteNew Delhi, India
| | - Ashutosh K. Yadav
- Division of Genetics, ICAR – Indian Agricultural Research InstituteNew Delhi, India
| | - Mariappan Nagarajan
- ICAR – Indian Agricultural Research Institute, Rice Breeding and Genetics Research CentreAduthurai, India
| | - Nagendra K. Singh
- ICAR – National Research Centre on Plant BiotechnologyNew Delhi, India
| | - Kumble V. Prabhu
- Division of Genetics, ICAR – Indian Agricultural Research InstituteNew Delhi, India
| | - Ashok K. Singh
- Division of Genetics, ICAR – Indian Agricultural Research InstituteNew Delhi, India
- *Correspondence: Ashok K. Singh,
| |
Collapse
|
880
|
Zapata PJ, Serrano M, García-Legaz MF, Pretel MT, Botella MA. Short Term Effect of Salt Shock on Ethylene and Polyamines Depends on Plant Salt Sensitivity. FRONTIERS IN PLANT SCIENCE 2017; 8:855. [PMID: 28588603 PMCID: PMC5440749 DOI: 10.3389/fpls.2017.00855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/08/2017] [Indexed: 05/08/2023]
Abstract
In the present manuscript the short term effect (3-24 h) of a saline shock (NaCl 100 mM) on fresh weight, water content, respiration rate, ethylene production and Na+, Cl-, ACC and polyamine concentration was studied in four plant species with different salt sensitivity, pepper, lettuce, spinach, and beetroot. Higher reduction in fresh weight and water content as a consequence of saline shock was found in pepper and lettuce plants than in spinach and beetroot, the latter behaving as more salinity tolerant. In general, salinity led to rapid increases in respiration rate, ethylene production and ACC and polyamine (putrescine, spermidine, and spermine) concentrations in shoot and root. These increases were related to plant salinity sensitivity, since they were higher in the most sensitive species and vice versa. However, ethylene and respiration rates in salt stressed plants recovered similar values to controls after 24 h of treatment in salt tolerant plants, while still remaining high in the most sensitive. On the other hand, sudden increases in putrescine, spermidine, and spermine concentration were higher and occurred earlier in pepper and lettuce, the most sensitive species, than in spinach and beetroot, the less sensitive ones. These increases tended to disappear after 24 h, except in lettuce. These changes would support the conclusion that ethylene and polyamine increases could be considered as a plant response to saline shock and related to the plant species sensitivity to this stress. In addition, no competition between polyamines and ethylene biosynthesis for their common precursor was observed.
Collapse
Affiliation(s)
- Pedro J. Zapata
- Departamento de Tecnología Agroalimentaria, Universidad Miguel HernándezOrihuela, Spain
| | - María Serrano
- Departamento de Biología Aplicada, Universidad Miguel HernándezOrihuela, Spain
| | - Manuel F. García-Legaz
- Departamento de Agroquímica y Medioambiente, Universidad Miguel HernándezOrihuela, Spain
| | - M. T. Pretel
- Departamento de Biología Aplicada, Universidad Miguel HernándezOrihuela, Spain
| | - M. A. Botella
- Departamento de Biología Aplicada, Universidad Miguel HernándezOrihuela, Spain
- *Correspondence: M. A. Botella,
| |
Collapse
|
881
|
Shu K, Qi Y, Chen F, Meng Y, Luo X, Shuai H, Zhou W, Ding J, Du J, Liu J, Yang F, Wang Q, Liu W, Yong T, Wang X, Feng Y, Yang W. Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis. FRONTIERS IN PLANT SCIENCE 2017; 8:1372. [PMID: 28848576 PMCID: PMC5554363 DOI: 10.3389/fpls.2017.01372] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/24/2017] [Indexed: 05/20/2023]
Abstract
Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA) while positively mediating abscisic acid (ABA) biogenesis, which leads to a decrease in the GA/ABA ratio. This study suggests that fluridone (FLUN), an ABA biogenesis inhibitor, might be a potential plant growth regulator that can promote soybean seed germination under saline stress. Different soybean cultivars, which possessed distinct genetic backgrounds, showed a similar repressed phenotype during seed germination under exogenous NaCl application. Biochemical analysis revealed that NaCl treatment led to high MDA (malondialdehyde) level during germination and the post-germinative growth stages. Furthermore, catalase, superoxide dismutase, and peroxidase activities also changed after NaCl treatment. Subsequent quantitative Real-Time Polymerase Chain Reaction analysis showed that the transcription levels of ABA and GA biogenesis and signaling genes were altered after NaCl treatment. In line with this, phytohormone measurement also revealed that NaCl considerably down-regulated active GA1, GA3, and GA4 levels, whereas the ABA content was up-regulated; and therefore ratios, such as GA1/ABA, GA3/ABA, and GA4/ABA, are decreased. Consistent with the hormonal quantification, FLUN partially rescued the delayed-germination phenotype caused by NaCl-treatment. Altogether, these results demonstrate that NaCl stress inhibits soybean seed germination by decreasing the GA/ABA ratio, and that FLUN might be a potential plant growth regulator that could promote soybean seed germination under salinity stress.
Collapse
Affiliation(s)
- Kai Shu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Engineering Research Center for Crop Strip Intercropping System, Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
- *Correspondence: Kai Shu, Wenyu Yang,
| | - Ying Qi
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Engineering Research Center for Crop Strip Intercropping System, Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
| | - Feng Chen
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Engineering Research Center for Crop Strip Intercropping System, Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
| | - Yongjie Meng
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Engineering Research Center for Crop Strip Intercropping System, Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
| | - Xiaofeng Luo
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Engineering Research Center for Crop Strip Intercropping System, Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
| | - Haiwei Shuai
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Engineering Research Center for Crop Strip Intercropping System, Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
| | - Wenguan Zhou
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Engineering Research Center for Crop Strip Intercropping System, Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
| | - Jun Ding
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan UniversityWuhan, China
| | - Junbo Du
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Engineering Research Center for Crop Strip Intercropping System, Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
| | - Jiang Liu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Engineering Research Center for Crop Strip Intercropping System, Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
| | - Feng Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Engineering Research Center for Crop Strip Intercropping System, Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
| | - Qiang Wang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Engineering Research Center for Crop Strip Intercropping System, Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
| | - Weiguo Liu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Engineering Research Center for Crop Strip Intercropping System, Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
| | - Taiwen Yong
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Engineering Research Center for Crop Strip Intercropping System, Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
| | - Xiaochun Wang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Engineering Research Center for Crop Strip Intercropping System, Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
| | - Yuqi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan UniversityWuhan, China
| | - Wenyu Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Engineering Research Center for Crop Strip Intercropping System, Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
- *Correspondence: Kai Shu, Wenyu Yang,
| |
Collapse
|
882
|
E. Shareif A, A. Kandil A, A. Gad M. Effect of Salinity on Germination and Seeding Parameters of Forage Cowpea Seed. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/rjss.2017.17.26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
883
|
Daliakopoulos IN, Tsanis IK, Koutroulis A, Kourgialas NN, Varouchakis AE, Karatzas GP, Ritsema CJ. The threat of soil salinity: A European scale review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 573:727-739. [PMID: 27591523 DOI: 10.1016/j.scitotenv.2016.08.177] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/19/2016] [Accepted: 08/26/2016] [Indexed: 05/20/2023]
Abstract
Soil salinisation is one of the major soil degradation threats occurring in Europe. The effects of salinisation can be observed in numerous vital ecological and non-ecological soil functions. Drivers of salinisation can be detected both in the natural and man-made environment, with climate and the foreseen climate change also playing an important role. This review outlines the state of the art concerning drivers and pressures, key indicators as well as monitoring, modeling and mapping methods for soil salinity. Furthermore, an overview of the effect of salinisation on soil functions and the respective mechanism is presented. Finally, the state of salinisation in Europe is presented according to the most recent literature and a synthesis of consistent datasets. We conclude that future research in the field of soil salinisation should be focused on among others carbon dynamics of saline soil, further exploration of remote sensing of soil properties and the harmonization and enrichment of soil salinity maps across Europe within a general context of a soil threat monitoring system to support policies and strategies for the protection of European soils.
Collapse
Affiliation(s)
- I N Daliakopoulos
- School of Environmental Engineering, Technical University of Crete, Chania, Greece
| | - I K Tsanis
- School of Environmental Engineering, Technical University of Crete, Chania, Greece; Department of Civil Engineering, McMaster University, Hamilton, Ontario, Canada.
| | - A Koutroulis
- School of Environmental Engineering, Technical University of Crete, Chania, Greece
| | - N N Kourgialas
- School of Environmental Engineering, Technical University of Crete, Chania, Greece
| | - A E Varouchakis
- School of Environmental Engineering, Technical University of Crete, Chania, Greece
| | - G P Karatzas
- School of Environmental Engineering, Technical University of Crete, Chania, Greece
| | - C J Ritsema
- Soil Physics and Land Management Group, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
884
|
Kandoi D, Mohanty S, Tripathy BC. Towards efficient photosynthesis: overexpression of Zea mays phosphoenolpyruvate carboxylase in Arabidopsis thaliana. PHOTOSYNTHESIS RESEARCH 2016; 130:47-72. [PMID: 26897549 DOI: 10.1007/s11120-016-0224-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/25/2016] [Indexed: 05/26/2023]
Abstract
Plants with C4 photosynthesis are efficient in carbon assimilation and have an advantage over C3 photosynthesis. In C4 photosynthesis, the primary CO2 fixation is catalyzed by phosphoenolpyruvate carboxylase (PEPC). Here, we show that overexpression of Zea mays PEPC cDNA, under the control of 35S promoter, in Arabidopsis thaliana resulted in ~7-10 fold higher protein abundance and ~7-10 fold increase in PEPC activity in the transgenic lines than that in the vector control. We suggest that overexpression of PEPC played an anaplerotic role to increase the supply of 4-carbon carboxylic acids, which provided carbon skeletons for increased amino acid and protein synthesis. Higher protein content must have been responsible for increased metabolic processes including chlorophyll biosynthesis, photosynthesis, and respiration. Consequently, the PEPC-overexpressed transgenic plants had higher chlorophyll content, enhanced electron transport rate (ETR), lower non-photochemical quenching (NPQ) of chlorophyll a fluorescence, and a higher performance index (PI) than the vector control. Consistent with these observations, the rate of CO2 assimilation, the starch content, and the dry weight of PEPC-overexpressed plants increased by 14-18 %, 10-18 %, and 6.5-16 %, respectively. Significantly, transgenics were tolerant to salt stress as they had increased ability to synthesize amino acids, including the osmolyte proline. NaCl (150 mM)-treated transgenic plants had higher variable to maximum Chl a fluorescence (F v/F m) ratio, higher PI, higher ETR, and lower NPQ than the salt-treated vector controls. These results suggest that expression of C4 photosynthesis enzyme(s) in a C3 plant can improve its photosynthetic capacity with enhanced tolerance to salinity stress.
Collapse
Affiliation(s)
- Deepika Kandoi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- School of Biotechnology, Kalinga Institute of Industrial Technology University, Bhubaneswar, Odisha, 751024, India
| | - Sasmita Mohanty
- School of Biotechnology, Kalinga Institute of Industrial Technology University, Bhubaneswar, Odisha, 751024, India
| | - Baishnab C Tripathy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
885
|
Rajput VD, Minkina T, Yaning C, Sushkova S, Chapligin VA, Mandzhieva S. A review on salinity adaptation mechanism and characteristics of Populus euphratica, a boon for arid ecosystems. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.chnaes.2016.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
886
|
Moles TM, Pompeiano A, Huarancca Reyes T, Scartazza A, Guglielminetti L. The efficient physiological strategy of a tomato landrace in response to short-term salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:262-272. [PMID: 27769016 DOI: 10.1016/j.plaphy.2016.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 05/11/2023]
Abstract
Landraces represent an important part of the biodiversity well-adapted under limiting environmental conditions. We investigated the response of two Southern Italy tomato landraces, the well-known San Marzano (our commercial standard) and a local accession called "Ciettaicale", to different levels of sodium chloride in water irrigation (from 0 up to 600 mM) for a short-time exposure (one week). The combination of the chlorophyll a fluorescence and gas exchange analyses suggested that Ciettaicale maintained a higher efficiency of photosystem II (PSII) photochemistry and CO2 utilization at high salinity concentrations than San Marzano. Stomatal and non-stomatal limitations occurred in San Marzano according to the reduction of maximum efficiency of PSII photochemistry and the increase of intercellular CO2 concentration. Higher Na+/K+ ratio and higher concentration of total soluble sugars contributed to non-stomatal limitations in San Marzano leaves. These effects were significantly less evident in Ciettaicale. We also observed changes in total antioxidant capacity and leaf pigment content that emphasized the occurrence of modifications in the photosynthetic apparatus according to salt gradient. The more efficient assimilates supply and an integrated root protection system provided by sugars and antioxidants can explain the significantly higher root/shoot ratio in Ciettaicale. Overall, our results suggest that a comprehensive assessment of salinity tolerance in a genotypes comparison could be also obtained evaluating plant response to high salinity levels at early vegetative stage. In addition, further studies will be carried out in order to evaluate the possibility of using Ciettaicale in tomato improvement programs.
Collapse
Affiliation(s)
| | - Antonio Pompeiano
- Laboratory of Ecological Plant Physiology, Global Change Research Institute CAS, Brno, Czech Republic
| | | | - Andrea Scartazza
- Institute of Agro-environmental and Forest Biology, National Research Council, Monterotondo Scalo, RM, Italy
| | - Lorenzo Guglielminetti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy; Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, Pisa, Italy.
| |
Collapse
|
887
|
Li Y, Duan B, Chen J, Korpelainen H, Niinemets Ü, Li C. Males exhibit competitive advantages over females of Populus deltoides under salinity stress. TREE PHYSIOLOGY 2016; 36:1573-1584. [PMID: 27587482 DOI: 10.1093/treephys/tpw070] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/20/2016] [Accepted: 07/02/2016] [Indexed: 06/06/2023]
Abstract
Sexual competition among dioecious plants affects sex ratios and the spatial distribution of the sexes in different environments. At present, little is known about sexual dimorphisms induced by different competition patterns under salinity stress. We employed Populus deltoides as a model to investigate sex-related growth as well as physiological and biochemical responses to salinity stress under conditions of intrasexual and intersexual competition. Potted seedlings (two seedlings per pot; two females, two males, or one female and one male) were exposed to two salt levels (0 and 50 mM NaCl) and salinity- and competition-driven differences in growth, assimilation rate, water use, contents of leaf pigments and osmotica, hydrogen peroxide (H2O2), and antioxidant enzyme and nitrate reductase activity were examined. In the absence of salinity, no significant differences in competitive ability between males and females subjected to intrasexual competition were observed, although the growth of females was moderately greater under intersexual competition. The salinity treatment significantly increased the sex differences in competitive ability, especially under intersexual competition. Under salinity stress, males showed decreased height, but displayed greater capacity for osmotic adjustment, enhancement of long-term water-use efficiency and increase in antioxidant enzyme activities. The absolute values of these traits were greater in salt-stressed males than in females under intersexual competition. In addition, salt-stressed males accumulated less Cl- and had lower H2O2 contents than females. These data collectively demonstrate that the competitive advantage of females in non-stressed conditions is lost under salinity. Greater salinity resistance of males growing intermixed with females under salt stress can importantly affect the sex ratio of P. deltoides populations.
Collapse
Affiliation(s)
- Yan Li
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, Sichuan, China
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an 311300, Zhejiang, China
| | - Baoli Duan
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Juan Chen
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, Sichuan, China
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki FI-00014, Finland
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
| | - Chunyang Li
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an 311300, Zhejiang, China
| |
Collapse
|
888
|
Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nat Commun 2016; 7:13342. [PMID: 27853175 PMCID: PMC5118543 DOI: 10.1038/ncomms13342] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 09/25/2016] [Indexed: 01/04/2023] Open
Abstract
High-throughput phenotyping produces multiple measurements over time, which require new methods of analyses that are flexible in their quantification of plant growth and transpiration, yet are computationally economic. Here we develop such analyses and apply this to a rice population genotyped with a 700k SNP high-density array. Two rice diversity panels, indica and aus, containing a total of 553 genotypes, are phenotyped in waterlogged conditions. Using cubic smoothing splines to estimate plant growth and transpiration, we identify four time intervals that characterize the early responses of rice to salinity. Relative growth rate, transpiration rate and transpiration use efficiency (TUE) are analysed using a new association model that takes into account the interaction between treatment (control and salt) and genetic marker. This model allows the identification of previously undetected loci affecting TUE on chromosome 11, providing insights into the early responses of rice to salinity, in particular into the effects of salinity on plant growth and transpiration. Image-based plant phenotyping can be used to collect data with high temporal and spatial resolution. Here, the authors develop a computationally efficient method using smoothing splines and a new marker-by-trait association model to identify loci in a diverse rice population associated with early response to salinity.
Collapse
|
889
|
Han J, Wang H, Zhou Y, Zhou C. Sodium uptake of Iris wilsonii and its photosynthetic responses to high-salinity stress in microcosm submerged beds. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 74:2185-2191. [PMID: 27842038 DOI: 10.2166/wst.2016.404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In order to investigate the performance of Iris wilsonii in high-salinity wastewater, seven microcosm submerged beds were built with rectangular plastic tanks and packed with marble chips and sand. Each submerged bed was transplanted with six stems of I. wilsonii. The submerged beds were operated in a 7-d batch mode in a greenhouse with artificial wastewater for three 42-d periods. Influent to the seven submerged beds had different contents of NaCl, 0, 1, 2, 4, 6, 8, and 10% (by weight). The results suggested that lower salinity contents (1-2%) in influent or during short stress time (0-14d) did not inhibit net photosynthetic rate, stomatal conductance, and transpiration rate of I. wilsonii, and the chlorophyll of I. wilsonii was not damaged. When initial NaCl contents were at 4% and above, however, all photosynthetic parameters were significantly decreased. It was concluded that I. wilsonii could take up Na+ in wastewater, but higher salinity (4-10%) in wastewater would inhibit the growth of I. wilsonii.
Collapse
Affiliation(s)
- Jianqiu Han
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China E-mail:
| | - Haiyan Wang
- College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Yumei Zhou
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China E-mail:
| | - Chunliang Zhou
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China E-mail:
| |
Collapse
|
890
|
Azri W, Barhoumi Z, Chibani F, Borji M, Bessrour M, Mliki A. Proteomic responses in shoots of the facultative halophyte Aeluropus littoralis (Poaceae) under NaCl salt stress. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:1028-1047. [PMID: 32480524 DOI: 10.1071/fp16114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/13/2016] [Indexed: 06/11/2023]
Abstract
Salinity is an environmental constraint that limits agricultural productivity worldwide. Studies on the halophytes provide valuable information to describe the physiological and molecular mechanisms of salinity tolerance. Therefore, because of genetic relationships of Aeluropus littoralis (Willd) Parl. with rice, wheat and barley, the present study was conducted to investigate changes in shoot proteome patterns in response to different salt treatments using proteomic methods. To examine the effect of salinity on A. littoralis proteome pattern, salt treatments (0, 200 and 400mM NaCl) were applied for 24h and 7 and 30 days. After 24h and 7 days exposure to salt treatments, seedlings were fresh and green, but after 30 days, severe chlorosis was established in old leaves of 400mM NaCl-salt treated plants. Comparative proteomic analysis of the leaves revealed that the relative abundance of 95 and 120 proteins was significantly altered in 200 and 400mM NaCl treated plants respectively. Mass spectrometry-based identification was successful for 66 out of 98 selected protein spots. These proteins were mainly involved in carbohydrate, energy, amino acids and protein metabolisms, photosynthesis, detoxification, oxidative stress, translation, transcription and signal transduction. These results suggest that the reduction of proteins related to photosynthesis and induction of proteins involved in glycolysis, tricarboxylic acid (TCA) cycle, and energy metabolism could be the main mechanisms for salt tolerance in A. littoralis. This study provides important information about salt tolerance, and a framework for further functional studies on the identified proteins in A. littoralis.
Collapse
Affiliation(s)
- Wassim Azri
- Laboratory of Plant Molecular Physiology, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Zouhaier Barhoumi
- Laboratory of Extremophyle Plants, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Farhat Chibani
- Laboratory of Plant Molecular Physiology, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Manel Borji
- Laboratory of Plant Molecular Physiology, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Mouna Bessrour
- Laboratory of Extremophyle Plants, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
891
|
Percey WJ, McMinn A, Bose J, Breadmore MC, Guijt RM, Shabala S. Salinity effects on chloroplast PSII performance in glycophytes and halophytes. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:1003-1015. [PMID: 32480522 DOI: 10.1071/fp16135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/12/2016] [Indexed: 06/11/2023]
Abstract
The effects of NaCl stress and K+ nutrition on photosynthetic parameters of isolated chloroplasts were investigated using PAM fluorescence. Intact mesophyll cells were able to maintain optimal photosynthetic performance when exposed to salinity for more than 24h whereas isolated chloroplasts showed declines in both the relative electron transport rate (rETR) and the maximal photochemical efficiency of PSII (Fv/Fm) within the first hour of treatment. The rETR was much more sensitive to salt stress compared with Fv/Fm, with 40% inhibition of rETR observed at apoplastic NaCl concentration as low as 20mM. In isolated chloroplasts, absolute K+ concentrations were more essential for the maintenance of the optimal photochemical performance (Fv/Fm values) rather than sodium concentrations per se. Chloroplasts from halophyte species of quinoa (Chenopodium quinoa Willd.) and pigface (Carpobrotus rosii (Haw.) Schwantes) showed less than 18% decline in Fv/Fm under salinity, whereas the Fv/Fm decline in chloroplasts from glycophyte pea (Pisum sativum L.) and bean (Vicia faba L.) species was much stronger (31 and 47% respectively). Vanadate (a P-type ATPase inhibitor) significantly reduced Fv/Fm in both control and salinity treated chloroplasts (by 7 and 25% respectively), whereas no significant effects of gadolinium (blocker of non-selective cation channels) were observed in salt-treated chloroplasts. Tetraethyl ammonium (TEA) (K+ channel inhibitor) and amiloride (inhibitor of the Na+/H+ antiporter) increased the Fv/Fm of salinity treated chloroplasts by 16 and 17% respectively. These results suggest that chloroplasts' ability to regulate ion transport across the envelope and thylakoid membranes play a critical role in leaf photosynthetic performance under salinity.
Collapse
Affiliation(s)
- William J Percey
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart 7001, Australia
| | - Andrew McMinn
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart 7001, Australia
| | - Jayakumar Bose
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart 7001, Australia
| | - Michael C Breadmore
- Australian Centre for Research on Separation Science (ACROSS) and School of Chemistry, University of Tasmania, Private Bag 75, Hobart 7001, Australia
| | - Rosanne M Guijt
- School of Medicine and Australian Centre for Research on Separation Science, University of Tasmania, Private Bag 34, Hobart 7001, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart 7001, Australia
| |
Collapse
|
892
|
Halophilic microalgaeDunaliella salinaextracts improve seed germination and seedling growth ofTriticum aestivumL. under salt stress. ACTA ACUST UNITED AC 2016. [DOI: 10.17660/actahortic.2016.1148.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
893
|
Pilahome W, Bunnag S, Suwanagul A. Two-Step Salt Stress Acclimatization Confers Marked Salt Tolerance Improvement in Four Rice Genotypes Differing in Salt Tolerance. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2016. [DOI: 10.1007/s13369-016-2335-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
894
|
Iseki K, Takahashi Y, Muto C, Naito K, Tomooka N. Diversity and Evolution of Salt Tolerance in the Genus Vigna. PLoS One 2016; 11:e0164711. [PMID: 27736995 PMCID: PMC5063378 DOI: 10.1371/journal.pone.0164711] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 09/27/2016] [Indexed: 11/19/2022] Open
Abstract
Breeding salt tolerant plants is difficult without utilizing a diversity of wild crop relatives. Since the genus Vigna (family Fabaceae) is comprised of many wild relatives adapted to various environmental conditions, we evaluated the salt tolerance of 69 accessions of this genus, including that of wild and domesticated accessions originating from Asia, Africa, Oceania, and South America. We grew plants under 50 mM and 200 mM NaCl for two weeks and then measured the biomass, relative quantum yield of photosystem II, leaf Na+ concentrations, and leaf K+ concentrations. The accessions were clustered into four groups: the most tolerant, tolerant, moderately susceptible, and susceptible. From the most tolerant group, we selected six accessions, all of which were wild accessions adapted to coastal environments, as promising sources of salt tolerance because of their consistently high relative shoot biomass and relative quantum yield. Interestingly, variations in leaf Na+ concentration were observed between the accessions in the most tolerant group, suggesting different mechanisms were responsible for their salt tolerance. Phylogenetic analysis with nuclear DNA sequences revealed that salt tolerance had evolved independently at least four times in the genus Vigna, within a relatively short period. The findings suggested that simple genetic changes in a few genes might have greatly affected salt tolerances. The elucidation of genetic mechanisms of salt tolerances in the selected accessions may contribute to improving the poor salt tolerance in legume crops.
Collapse
Affiliation(s)
- Kohtaro Iseki
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
| | - Yu Takahashi
- Genetic Resources Center, National Agriculture and Food Science Organization, Tsukuba, Ibaraki, Japan
| | - Chiaki Muto
- Genetic Resources Center, National Agriculture and Food Science Organization, Tsukuba, Ibaraki, Japan
| | - Ken Naito
- Genetic Resources Center, National Agriculture and Food Science Organization, Tsukuba, Ibaraki, Japan
| | - Norihiko Tomooka
- Genetic Resources Center, National Agriculture and Food Science Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
895
|
Soda N, Sharan A, Gupta BK, Singla-Pareek SL, Pareek A. Evidence for nuclear interaction of a cytoskeleton protein (OsIFL) with metallothionein and its role in salinity stress tolerance. Sci Rep 2016; 6:34762. [PMID: 27708383 PMCID: PMC5052524 DOI: 10.1038/srep34762] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/19/2016] [Indexed: 02/05/2023] Open
Abstract
Soil salinity is being perceived as a major threat to agriculture. Plant breeders and molecular biologist are putting their best efforts to raise salt-tolerant crops. The discovery of the Saltol QTL, a major QTL localized on chromosome I, responsible for salt tolerance at seedling stage in rice has given new hopes for raising salinity tolerant rice genotypes. In the present study, we have functionally characterized a Saltol QTL localized cytoskeletal protein, intermediate filament like protein (OsIFL), of rice. Studies related to intermediate filaments are emerging in plants, especially with respect to their involvement in abiotic stress response. Our investigations clearly establish that the heterologous expression of OsIFL in three diverse organisms (bacteria, yeast and tobacco) provides survival advantage towards diverse abiotic stresses. Screening of rice cDNA library revealed OsIFL to be strongly interacting with metallothionein protein. Bimolecular fluorescence complementation assay further confirmed this interaction to be occurring inside the nucleus. Overexpression of OsIFL in transgenic tobacco plants conferred salinity stress tolerance by maintaining favourable K+/Na+ ratio and thus showed protection from salinity stress induced ion toxicity. This study provides the first evidence for the involvement of a cytoskeletal protein in salinity stress tolerance in diverse organisms.
Collapse
Affiliation(s)
- Neelam Soda
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashutosh Sharan
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Brijesh K Gupta
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi 110067, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
896
|
Chamekh Z, Ayadi S, Karmous C, Trifa Y, Amara H, Boudabbous K, Yousfi S, Serret MD, Araus JL. Comparative effect of salinity on growth, grain yield, water use efficiency, δ(13)C and δ(15)N of landraces and improved durum wheat varieties. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 251:44-53. [PMID: 27593462 DOI: 10.1016/j.plantsci.2016.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/04/2016] [Accepted: 07/13/2016] [Indexed: 05/03/2023]
Abstract
Supplemental irrigation with low-quality water will be paramount in Mediterranean agriculture in the future, where durum wheat is a major crop. Breeding for salinity tolerance may contribute towards improving resilience to irrigation with brackish water. However, identification of appropriate phenotyping traits remains a bottleneck in breeding. A set of 25 genotypes, including 19 landraces and 6 improved varieties most cultivated in Tunisia, were grown in the field and irrigated with brackish water (6, 13 and 18dSm(-1)). Improved genotypes exhibited higher grain yield (GY) and water use efficiency at the crop level (WUEyield or 'water productivity'), shorter days to flowering (DTF), lower N concentration (N) and carbon isotope composition (δ(13)C) in mature kernels and lower nitrogen isotope composition (δ(15)N) in the flag leaf compared with landraces. GY was negatively correlated with DTF and the δ(13)C and N of mature kernels and was positively correlated with the δ(15)N of the flag leaf. Moreover, δ(13)C of mature kernels was negatively correlated with WUEyield. The results highlight the importance of shorter phenology together with photosynthetic resilience to salt-induced water stress (lower δ(13)C) and nitrogen metabolism (higher N and δ(15)N) for assessing genotypic performance to salinity.
Collapse
Affiliation(s)
- Zoubeir Chamekh
- National Agronomic Institute of Tunisia, Carthage University, 43 Avenue Charles Nicole, 1082 Tunis, Tunisie
| | - Sawsen Ayadi
- National Agronomic Institute of Tunisia, Carthage University, 43 Avenue Charles Nicole, 1082 Tunis, Tunisie
| | - Chahine Karmous
- National Agronomic Institute of Tunisia, Carthage University, 43 Avenue Charles Nicole, 1082 Tunis, Tunisie
| | - Youssef Trifa
- National Agronomic Institute of Tunisia, Carthage University, 43 Avenue Charles Nicole, 1082 Tunis, Tunisie
| | - Hajer Amara
- National Agronomic Institute of Tunisia, Carthage University, 43 Avenue Charles Nicole, 1082 Tunis, Tunisie
| | - Khaoula Boudabbous
- National Agronomic Institute of Tunisia, Carthage University, 43 Avenue Charles Nicole, 1082 Tunis, Tunisie
| | - Salima Yousfi
- Unit of Plant Physiology, Department of Plant Biology, University of Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Maria Dolors Serret
- Unit of Plant Physiology, Department of Plant Biology, University of Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - José Luis Araus
- Unit of Plant Physiology, Department of Plant Biology, University of Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain.
| |
Collapse
|
897
|
Gleadow R, Pegg A, Blomstedt CK. Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5403-5413. [PMID: 27506218 PMCID: PMC5049390 DOI: 10.1093/jxb/erw302] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Rising sea levels are threatening agricultural production in coastal regions due to inundation and contamination of groundwater. The development of more salt-tolerant crops is essential. Cassava is an important staple, particularly among poor subsistence farmers. Its tolerance to drought and elevated temperatures make it highly suitable for meeting global food demands in the face of climate change, but its ability to tolerate salt is unknown. Cassava stores nitrogen in the form of cyanogenic glucosides and can cause cyanide poisoning unless correctly processed. Previous research demonstrated that cyanide levels are higher in droughted plants, possibly as a mechanism for increasing resilience to oxidative stress. We determined the tolerance of cassava to salt at two different stages of development, and tested the hypothesis that cyanide toxicity would be higher in salt-stressed plants. Cassava was grown at a range of concentrations of sodium chloride (NaCl) at two growth stages: tuber initiation and tuber expansion. Established plants were able to tolerate 100mM NaCl but in younger plants 40mM was sufficient to retard plant growth severely. Nutrient analysis showed that plants were only able to exclude sodium at low concentrations. The foliar cyanogenic glucoside concentration in young plants increased under moderate salinity stress but was lower in plants grown at high salt. Importantly, there was no significant change in the cyanogenic glucoside concentration in the tubers. We propose that the mechanisms for salinity tolerance are age dependent, and that this can be traced to the relative cost of leaves in young and old plants.
Collapse
Affiliation(s)
- Ros Gleadow
- School of Biological Sciences, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Amelia Pegg
- School of Biological Sciences, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Cecilia K Blomstedt
- School of Biological Sciences, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| |
Collapse
|
898
|
Evaluation of Dicentrarchus labrax Meats and the Vegetable Quality of Beta vulgaris var. cicla Farmed in Freshwater and Saltwater Aquaponic Systems. WATER 2016. [DOI: 10.3390/w8100423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
899
|
|
900
|
Wang C, Yang Y, Wang H, Ran X, Li B, Zhang J, Zhang H. Ectopic expression of a cytochrome P450 monooxygenase gene PtCYP714A3 from Populus trichocarpa reduces shoot growth and improves tolerance to salt stress in transgenic rice. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1838-51. [PMID: 26970512 PMCID: PMC5069455 DOI: 10.1111/pbi.12544] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/02/2016] [Accepted: 01/22/2016] [Indexed: 05/03/2023]
Abstract
In Arabidopsis thaliana and Oryza sativa, the cytochrome P450 (CYP) 714 protein family represents a unique group of CYP monooxygenase, which functions as a shoot-specific regulator in plant development through gibberellin deactivation. Here, we report the functional characterizations of PtCYP714A3, an OsCYP714D1/Eui homologue from Populus trichocarpa. PtCYP714A3 was ubiquitously expressed with the highest transcript level in cambium-phloem tissues, and was greatly induced by salt and osmotic stress in poplar. Subcellular localization analyses indicated that PtCYP714A3-YFP fusion protein was targeted to endoplasmic reticulum (ER). Expression of PtCYP714A3 in the rice eui mutant could rescue its excessive-shoot-growth phenotype. Ectopic expression of PtCYP714A3 in rice led to semi-dwarfed phenotype with promoted tillering and reduced seed size. Transgenic lines which showed significant expression of PtCYP714A3 also accumulated lower GA level than did the wild-type (WT) plants. The expression of some GA biosynthesis genes was significantly suppressed in these transgenic plants. Furthermore, transgenic rice plants exhibited enhanced tolerance to salt and maintained more Na(+) in both shoot and root tissues under salinity stress. All these results not only suggest a crucial role of PtCYP714A3 in shoot responses to salt toxicity in rice, but also provide a molecular basis for genetic engineering of salt-tolerant crops.
Collapse
Affiliation(s)
- Cuiting Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yang Yang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Haihai Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaojuan Ran
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Bei Li
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jiantao Zhang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Hongxia Zhang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|