851
|
Abstract
The mechanisms by which mutations of the SOD1 gene cause selective motor neuron death remain uncertain, although interest continues to focus on the role of peroxynitrite, altered peroxidase activity of mutant SOD1, changes in intracellular copper homeostasis, protein aggregation, and changes in the function of glutamate transporters leading to excitotoxicity. Neurofilaments and peripherin appear to play some part in motor neuron degeneration, and amyotrophic lateral sclerosis is occasionally associated with mutations of the neurofilament heavy chain gene. Linkage to several chromosomal loci has been established for other forms of familial amyotrophic lateral sclerosis, but no new genes have been identified. In the clinical field, interest has been shown in the population incidence and prevalence of amyotrophic lateral sclerosis and the clinical variants that cause diagnostic confusion. Transcranial magnetic stimulation has been used to detect upper motor neuron damage and to explore cortical excitability in amyotrophic lateral sclerosis, and magnetic resonance imaging including proton magnetic resonance spectroscopy and diffusion weighted imaging also provide useful information on the upper motor neuron lesion. Aspects of care including assisted ventilation, nutrition, and patient autonomy are addressed, and underlying these themes is the requirement to measure quality of life with a new disease-specific instrument. Progress has been made in developing practice parameters. Riluzole remains the only drug to slow disease progression, although interventions such as non-invasive ventilation and gastrostomy also extend survival.
Collapse
Affiliation(s)
- A Al-Chalabi
- Department of Neurology, Guy's King's and St Thomas' School of Medicine and Institute of Psychiatry, De Crespigny Park, London, UK
| | | |
Collapse
|
852
|
Okado-Matsumoto A, Myint T, Fujii J, Taniguchi N. Gain in functions of mutant Cu,Zn-superoxide dismutases as a causative factor in familial amyotrophic lateral sclerosis: less reactive oxidant formation but high spontaneous aggregation and precipitation. Free Radic Res 2000; 33:65-73. [PMID: 10826922 DOI: 10.1080/10715760000300621] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Eight mutant Cu,Zn-superoxide dismutases (SODs) related to familial amyotrophic lateral sclerosis (FALS) were produced in a baculovirus/insect cell expression system and their molecular properties in terms of hydroxyl radical formation and aggregation were compared with the wild-type enzyme. Treatment of the enzymes with Chelex 100 resin decreased Cu contents as well as SOD activities in all mutant Cu,Zn-SODs, indicating that the affinities of the enzymes for copper ion were decreased. Contrary to previous reports, all the mutant Cu,Zn-SODs exhibited less reactive oxidant producing ability in the presence of hydrogen peroxide than the wild-type enzyme. Both SOD activities and their reactive oxidant forming correlated well with the copper ion content of the molecules. In addition, the proteins spontaneously aggregated and were precipitated by simple centrifugation at 12,000g for 20 min in keeping their enzyme activities. Since hyaline inclusions found in FALS patients with SOD1 mutations contained components which were reactive to anti-Cu,Zn-SOD antibody, a primary reaction caused by mutant SOD1 may be attributed to their propensity to form aggregates. Aggregated but still active mutant SOD1 would be expected to mediate the formation of reactive oxygen species and nitrosylation in a more condensed state.
Collapse
Affiliation(s)
- A Okado-Matsumoto
- Department of Biochemistry, Osaka University Medical School, Suita, Japan
| | | | | | | |
Collapse
|
853
|
Vanselow BK, Keller BU. Calcium dynamics and buffering in oculomotor neurones from mouse that are particularly resistant during amyotrophic lateral sclerosis (ALS)-related motoneurone disease. J Physiol 2000; 525 Pt 2:433-45. [PMID: 10835045 PMCID: PMC2269959 DOI: 10.1111/j.1469-7793.2000.t01-1-00433.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Motoneurones are particularly vulnerable both in human forms of amyotrophic lateral sclerosis (ALS) and corresponding animal models of the disease. While most motoneurone populations are selectively impaired, oculomotor neurones are essentially resistant to ALS-related damage. Motoneurone vulnerability has been closely linked to disruptions of calcium signalling. To investigate underlying events, we performed a quantitative analysis of calcium homeostasis in oculomotor neurones from mice by simultaneous patch-clamp recordings in sliced tissue and microfluorometric-calcium measurements. Somatic calcium dynamics were investigated by using a computer-controlled microfluorometric system. In oculomotor neurones, basal calcium concentrations were around 80 nM and depolarisation-induced calcium responses were observed for membrane voltages positive to -40 u1u1u approximately mV1 approximately . Endogenous calcium homeostasis was quantified by using the 'added buffer' approach. The recovery phase of depolarisation-induced calcium transients was well approximated by a mono-exponential function with a decay time constant that showed a linear dependence on dye concentration. The extrapolated time constant in the absence of indicator dye was 1.7 +/- 0.2 s (n = 11 cells, 21C). Endogenous calcium binding ratios (kappa(s)) were found to be 264 +/- 25 (n = 11 cells), indicating that 99.6 % of cytosolic calcium ions were taken up by endogenous buffers. Recovery of calcium transients was characterised by an 'effective' extrusion rate gamma = 156 +/- 20 s-1 (n = 11 cells, 21 C). Endogenous calcium binding ratios in oculomotor neurones were 5- to 6-fold larger compared with those of more vulnerable motoneurones in the nucleus hypoglossus and spinal cord. In a first order approximation, they reduced the volume of local calcium elevations around open calcium channels, lowered peak amplitudes of global calcium transients for a given influx and prolonged calcium recovery times for a given set of uptake and extrusion mechanisms. With respect to motoneurone degeneration, our measurements suggest that the exceptional stability of oculomotor neurones partially results from a specialised calcium homeostasis based on high buffering capacities. Furthermore, they indicate that cellular adaptations that account for rapid calcium signalling in hypoglossal and spinal motoneurones enhance their vulnerability during ALS-related motoneurone disease.
Collapse
Affiliation(s)
- B K Vanselow
- Zentrum Physiologie und Pathophysiologie, Universitat Gottingen, Humboldtallee 23, 37073 Gottingen, Germany
| | | |
Collapse
|
854
|
Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases. J Neurosci 2000. [PMID: 10729333 DOI: 10.1523/jneurosci.20-07-02534.2000] [Citation(s) in RCA: 494] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The addition or loss of synapses in response to changes in activity, disease, or aging is a major aspect of nervous system plasticity in the adult. The mechanisms that affect the turnover and maintenance of synapses in the adult are poorly understood and are difficult to investigate in the brain. Here, we exploited a unique anatomical arrangement in the neuromuscular system to determine whether subtypes of synapses can differ in anatomical plasticity and vulnerability. In three genetic mouse models of motoneuron disease of diverse origin and severity, we observed a gradual and selective loss of synaptic connections that begun long before the onset of clinical deficits and correlated with the timing of disease progression. A subgroup of fast-type (fast-fatiguable) neuromuscular synapses was highly vulnerable and was lost very early on. In contrast, slow-type synapses resisted up to the terminal phase of the disease. Muscle-specific differences were also evident. Similar selective losses were detected in aged mice. These selective vulnerability properties of synapses coincided with hitherto unrecognized major differences in stimulus-induced anatomical plasticity that could also be revealed in healthy mice. Using paralysis and/or growth-associated protein 43 overexpression to induce synaptic sprouting, we found that slow-type, disease-resistant synapses were particularly plastic. In contrast, fast-type synapses with the highest vulnerability failed to exhibit any stimulus-induced change. The results reveal pronounced subtype specificity in the anatomical plasticity and susceptibility to loss of neuromuscular synapses and suggest that degenerative motoneuron diseases involve a common early pathway of selective and progressive synaptic weakening also associated with aging.
Collapse
|
855
|
Bartlett SE, Singala R, Hashikawa A, Shaw L, Hendry IA. Development and characterization of human and mouse specific antibodies to CuZn-superoxide dismutase (SOD1). J Neurosci Methods 2000; 98:63-7. [PMID: 10837872 DOI: 10.1016/s0165-0270(00)00189-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mutations in the copper/zinc superoxide dismutase (SOD1) gene are associated with 15-20% of the familial forms of motor neuron disease. Mice where a transgene has been incorporated that encodes for the human SOD1 mutation develop a form of motor neurone disease that closely resembles human forms of this disease. We have produced and characterized species-specific antibodies to epitopes in the SOD1 protein, amino acids 25-37, a region that distinguishes between the human and the mouse species of SOD1. The antisera generated were unable to immunoprecipitate the mouse or the human forms of SOD1 from tissue extracts unless the homodimeric complex of SOD1 was denatured. As SOD1 exists as a homodimeric complex in the cytoplasm of cells, this suggests that amino acids in position, 25-37 are close to the dimeric interface of SOD1.
Collapse
Affiliation(s)
- S E Bartlett
- Department of Physiology and Pharmacology, The University of Queensland, St Lucia, QLD 4072, Brisbane, Australia.
| | | | | | | | | |
Collapse
|
856
|
Williamson TL, Corson LB, Huang L, Burlingame A, Liu J, Bruijn LI, Cleveland DW. Toxicity of ALS-linked SOD1 mutants. Science 2000; 288:399. [PMID: 10798964 DOI: 10.1126/science.288.5465.399a] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- T L Williamson
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
857
|
Abstract
Data are now rapidly accumulating to show that metallochemical reactions might be the common denominator underlying Alzheimer's disease, amyotrophic lateral sclerosis, prion diseases, cataracts, mitochondrial disorders and Parkinson's disease. In these disorders, an abnormal reaction between a protein and a redox-active metal ion (copper or iron) promotes the formation of reactive oxygen species or radicalization. It is especially intriguing how the powerful catalytic redox activity of antioxidant Cu/Zn-superoxide dismutase can convert into a pro-oxidant activity, a theme echoed in the recent proposal that Abeta and PrP, the proteins respectively involved in Alzheimer's disease and prion diseases, possess similar redox activities.
Collapse
Affiliation(s)
- A I Bush
- Laboratory for Oxidation Biology, Genetics and Aging Unit, Massachusetts General Hospital East, Charlestown, MA 02129, USA.
| |
Collapse
|
858
|
Kong J, Xu Z. Overexpression of neurofilament subunit NF-L and NF-H extends survival of a mouse model for amyotrophic lateral sclerosis. Neurosci Lett 2000; 281:72-4. [PMID: 10686419 DOI: 10.1016/s0304-3940(00)00808-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mutations in superoxide dismutase 1 (SOD1) cause amyotrophic lateral sclerosis (ALS) in a subset of patients. Neurofilaments (NFs), the most abundant protein in motoneurons, may play a role in motoneuron degeneration. To investigate this role, we crossed transgenic mice expressing SOD1 mutant G93A (G93A mice) with mice overexpressing mouse neurofilament subunit H (H mice) or L (L mice). G93A mice overexpressing either NF-L or NF-H developed ALS later and survived longer than the G93A mice on a wild type background. These results illustrate a beneficial role of neurofilaments in ALS and call into question of several hypotheses regarding the role of neurofilaments in the development of ALS.
Collapse
Affiliation(s)
- J Kong
- Department of Pharmacology and Molecular Toxicology, University of Massachusetts Medical School, Worcester 01655, USA
| | | |
Collapse
|
859
|
Abstract
The recent broad advance in our understanding of human neurodegenerative diseases is based on the application of a new molecular approach. Through linkage analysis, the genes responsible for Huntington's disease, the spinocerebellar ataxias, and familial forms of Alzheimer's disease and amyotrophic lateral sclerosis (ALS) have been identified and cloned. The characterization of pathogenic mutations in such genes allows the creation of informative transgenic mouse models as, without exception, the genetic forms of adult neurodegenerative disease are due to toxicity of the mutant protein. Transgenic models provide insight into the oxidative mechanisms in ALS pathogenesis, the pathogenicity of expanded polyglutamine tracts in CAG triplet repeat disorders, and amyloidogenesis in Alzheimer's disease. Although such models have their limitations, they currently provide the best entry point for the study of human neurodegenerative diseases.
Collapse
Affiliation(s)
- M E Gurney
- CNS Therapeutic Area, Pharmacia and Upjohn, Inc., 301 Henrietta St., Kalamazoo, MI 49007, USA
| |
Collapse
|
860
|
Stieber A, Gonatas JO, Gonatas NK. Aggregation of ubiquitin and a mutant ALS-linked SOD1 protein correlate with disease progression and fragmentation of the Golgi apparatus. J Neurol Sci 2000; 173:53-62. [PMID: 10675580 DOI: 10.1016/s0022-510x(99)00300-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transgenic mice that express the G93A mutation of human Cu,Zn superoxide dismutase (SOD1(G93A)), found in familial amyotrophic lateral sclerosis (FALS), showed clinical symptoms and histopathological changes of sporadic ALS, including fragmentation of the neuronal Golgi apparatus (GA). The finding of fragmented neuronal GA in asymptomatic mice, months before the onset of paralysis, suggests that the GA is an early target of the pathological processes causing neuronal degeneration. Transgenic mice expressing human SOD1(G93A) have aggregates of mutant protein and ubiquitin in neuronal and glial cytoplasm; they appeared first in the neuropil and later in the perikarya of motor neurons, where they were adjacent to fragmented GA. The aggregates of SOD1(G93A) appeared in neuronal perikarya of asymptomatic mice containing fragmented GA. The numbers of neurons with deposits of SOD1(G93A) and fragmented GA progressively increased with age. Immuno-electron microscopy using colloidal gold showed labeling of ubiquitin and SOD1 over 13 nm thick cytoplasmic filaments. Spinal cord extracts showed a 20-fold increase of SOD1(G93A) in transgenic mice compared to the wild-type protein in controls. The results suggest a causal relationship between the aggregation of mutant SOD1 and ubiquitin, fragmentation of the Golgi apparatus of motor neurons and neurodegeneration.
Collapse
Affiliation(s)
- A Stieber
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
861
|
Stieber A, Gonatas JO, Collard J, Meier J, Julien J, Schweitzer P, Gonatas NK. The neuronal Golgi apparatus is fragmented in transgenic mice expressing a mutant human SOD1, but not in mice expressing the human NF-H gene. J Neurol Sci 2000; 173:63-72. [PMID: 10675581 DOI: 10.1016/s0022-510x(99)00301-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fragmentation of the Golgi apparatus (GA) of motor neurons was first described in sporadic amyotrophic lateral sclerosis (ALS) and later confirmed in transgenic mice expressing the G93A mutation of the gene encoding the enzyme Cu,Zn superoxide dismutase (SOD1(G93A)) found in some cases of familial ALS. In these transgenic mice, however, the fragmentation of the neuronal GA was associated with cytoplasmic and mitochondrial vacuoles not seen in ALS. The present new series of transgenic mice expressing 14-17 trans gene copies of SOD1(G93A), compared to 25 copies in the mice we studied previously, showed consistent fragmentation of the GA of spinal cord motor neurons, axonal swellings, Lewy-like body inclusions in neurons and glia, but none of the cytoplasmic or mitochondrial vacuoles originally reported. Thus, this animal model recapitulates the clinical and most neuropathological findings of sporadic ALS. Neurofilaments (NF) accumulate in axons and, less often, in neuronal perikarya in most cases of sporadic ALS and they have been implicated in its pathogenesis. In order to investigate whether fragmentation of the neuronal GA also occurs in association with accumulation of perikaryal NFs, we studied the organelle in transgenic mice expressing the heavy subunit of human neurofilaments (NF-H) which developed a motor neuronopathy resembling ALS. The neuronal GA of mice expressing NF-H, however, was intact despite massive accumulation of NFs in both perikarya and axons of motor neurons. In contrast, in transgenic mice expressing SOD1(G93A), the GA was fragmented despite the absence of accumulation of perikaryal NFs. These findings suggest that, in transgenic mice with neuronopathies caused by the expression of mutant SOD1(G93A) or the human NF-H, the GA and the perikaryal NFs are independently involved in the pathogenesis. The evidence suggests that the GA plays a central role in the pathogenesis of the vast majority of sporadic ALS and in FALS with SOD1 mutations.
Collapse
Affiliation(s)
- A Stieber
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
862
|
Goto JJ, Zhu H, Sanchez RJ, Nersissian A, Gralla EB, Valentine JS, Cabelli DE. Loss of in vitro metal ion binding specificity in mutant copper-zinc superoxide dismutases associated with familial amyotrophic lateral sclerosis. J Biol Chem 2000; 275:1007-14. [PMID: 10625639 DOI: 10.1074/jbc.275.2.1007] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The presence of the copper ion at the active site of human wild type copper-zinc superoxide dismutase (CuZnSOD) is essential to its ability to catalyze the disproportionation of superoxide into dioxygen and hydrogen peroxide. Wild type CuZnSOD and several of the mutants associated with familial amyotrophic lateral sclerosis (FALS) (Ala(4) --> Val, Gly(93) --> Ala, and Leu(38) --> Val) were expressed in Saccharomyces cerevisiae. Purified metal-free (apoproteins) and various remetallated derivatives were analyzed by metal titrations monitored by UV-visible spectroscopy, histidine modification studies using diethylpyrocarbonate, and enzymatic activity measurements using pulse radiolysis. From these studies it was concluded that the FALS mutant CuZnSOD apoproteins, in direct contrast to the human wild type apoprotein, have lost their ability to partition and bind copper and zinc ions in their proper locations in vitro. Similar studies of the wild type and FALS mutant CuZnSOD holoenzymes in the "as isolated" metallation state showed abnormally low copper-to-zinc ratios, although all of the copper acquired was located at the native copper binding sites. Thus, the copper ions are properly directed to their native binding sites in vivo, presumably as a result of the action of the yeast copper chaperone Lys7p (yeast CCS). The loss of metal ion binding specificity of FALS mutant CuZnSODs in vitro may be related to their role in ALS.
Collapse
Affiliation(s)
- J J Goto
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095-1569, USA
| | | | | | | | | | | | | |
Collapse
|
863
|
Nimchinsky EA, Young WG, Yeung G, Shah RA, Gordon JW, Bloom FE, Morrison JH, Hof PR. Differential vulnerability of oculomotor, facial, and hypoglossal nuclei in G86R superoxide dismutase transgenic mice. J Comp Neurol 2000; 416:112-25. [PMID: 10578106 DOI: 10.1002/(sici)1096-9861(20000103)416:1<112::aid-cne9>3.0.co;2-k] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In recent years, several mouse models of amyotrophic lateral sclerosis (ALS) have been developed. One, caused by a G86R mutation in the superoxide dismutase-1 (SOD-1) gene associated with familial ALS, has been subjected to extensive quantitative analyses in the spinal cord. However, the human form of ALS includes pathology elsewhere in the nervous system. In the present study, analyses were extended to three motor nuclei in the brainstem. Mutant mice and control littermates were evaluated daily, and mutants, along with their littermate controls, were killed when they were severely affected. Brains were removed after perfusion and processed for Nissl staining, the samples were randomized, and the investigators were blinded to their genetic status. Stereologic methods were used to estimate the number of neurons, mean neuronal volumes, and nuclear volume in three brainstem motor nuclei known to be differentially involved in the human form of the disease, the oculomotor, facial, and hypoglossal nuclei. In the facial nucleus, neuron number consistently declined (48%), an effect that was correlated with disease severity. The nuclear volume of the facial nucleus was smaller in the SOD-1 mutant mice (45.7% difference from control mice) and correlated significantly with neuron number. The oculomotor and hypoglossal nuclei showed less extreme involvement (<10% neuronal loss overall), with a trend toward fewer neurons in the hypoglossal nucleus of animals with severe facial nucleus involvement. In the oculomotor nucleus, neuronal loss was seen only once in five mice, associated with very severe disease. There was no significant change in the volume of individual neurons in any of these three nuclei in any transgenic mouse. These results suggest that different brainstem motor nuclei are differentially affected in this SOD-1 mutant model of ALS. The relatively moderate and late involvement of the hypoglossal nucleus indicates that, although the general patterns of neuronal pathology match closely those seen in ALS patients, some differences exist in this transgenic model compared with the progression of the disease in humans. However, these patterns of cellular vulnerability may provide clues for understanding the differential susceptibility of neural structures in ALS and other neurodegenerative diseases.
Collapse
Affiliation(s)
- E A Nimchinsky
- Kastor Neurobiology of Aging Laboratories and Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
864
|
Azzouz M, Poindron P, Guettier S, Leclerc N, Andres C, Warter JM, Borg J. Prevention of mutant SOD1 motoneuron degeneration by copper chelators in vitro. JOURNAL OF NEUROBIOLOGY 2000; 42:49-55. [PMID: 10623900 DOI: 10.1002/(sici)1097-4695(200001)42:1<49::aid-neu5>3.0.co;2-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
An animal model of familial amyotrophic lateral sclerosis (FALS) has been generated by overexpression of human CuZn superoxide dismutase (SOD1) containing a substitution of glycine to alanine at position 93 in transgenic G93A mice. The loss of motoneurons shown in this model has been attributed to a dominant gain of function of this mutated enzyme, which might be due to copper toxicity. This hypothesis was tested in purified spinal motoneurons cultures originating from G93A transgenic embryos. Spinal motoneurons were isolated from E13 embryos by several steps including density gradient centrifugation. The effect of copper chelators on survival and neurite growth of motoneurons was investigated. Survival of G93A motoneurons was decreased by 46% as compared to wild-type motoneurons. Moreover, G93A motoneurons showed reduced neurite outgrowth. Copper chelators strikingly increased viability of G93A motoneurons (by over 200%) but had no effect on wild-type cells. Presence of DDC in the medium increases the length of neurites from G93A motoneurons. The present results suggest the capacity of copper chelators to reduce the effect of reverse function of mutated SOD1 on motoneurons.
Collapse
Affiliation(s)
- M Azzouz
- Laboratoire de PCCNM (UPRES 2308), UFR des Sciences Pharmaceutiques, Université Louis Pasteur de Strasbourg, BP 24, 67401 Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
865
|
Estévez AG, Crow JP, Sampson JB, Reiter C, Zhuang Y, Richardson GJ, Tarpey MM, Barbeito L, Beckman JS. Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science 1999; 286:2498-500. [PMID: 10617463 DOI: 10.1126/science.286.5449.2498] [Citation(s) in RCA: 439] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mutations in copper, zinc superoxide dismutase (SOD) have been implicated in the selective death of motor neurons in 2 percent of amyotrophic lateral sclerosis (ALS) patients. The loss of zinc from either wild-type or ALS-mutant SODs was sufficient to induce apoptosis in cultured motor neurons. Toxicity required that copper be bound to SOD and depended on endogenous production of nitric oxide. When replete with zinc, neither ALS-mutant nor wild-type copper, zinc SODs were toxic, and both protected motor neurons from trophic factor withdrawal. Thus, zinc-deficient SOD may participate in both sporadic and familial ALS by an oxidative mechanism involving nitric oxide.
Collapse
Affiliation(s)
- A G Estévez
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
866
|
Liu D, Wen J, Liu J, Li L. The roles of free radicals in amyotrophic lateral sclerosis: reactive oxygen species and elevated oxidation of protein, DNA, and membrane phospholipids. FASEB J 1999; 13:2318-28. [PMID: 10593879 DOI: 10.1096/fasebj.13.15.2318] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To explore whether reactive oxygen species (ROS) play a role in the pathogenesis of amyotrophic lateral sclerosis (ALS), a unique microdialysis or microcannula sampling technique was used in mice transfected with a mutant Cu,Zn-superoxide dismutase (SOD1) gene from humans with familial ALS, mice transfected with the normal human SOD1 gene, and normal mice. We demonstrate for the first time that the levels of hydrogen peroxide (H(2)O(2)) and the hydroxyl radical ((.)OH) are significantly higher, and the level of the superoxide anion (O(2)(.-)) is significantly lower in ALS mutant mice than in controls, supporting by in vivo evidence the hypothesis that the mutant enzyme catalyzes (.)OH formation by the sequence: O(2)(.-) --> H(2)O(2) --> (.)OH. This removes doubts regarding the relevance of elevated ROS in FALS raised by in vitro experiments. The levels of oxidation products are also significantly higher in the mutant mice than in controls, consistent with some previous reports. Only the superoxide concentration differs between two controls among all the measurements. Our findings correlate in vivo a gene mutation to both elevated H(2)O(2) and (.)OH and increased oxidation of cellular constituents. The elevated H(2)O(2) in mutant mice indicates impairment of its detoxification pathways, perhaps by changed interactions between SOD1 and H(2)O(2) detoxification enzymes.-Liu, D., Wen, J., Liu, J., Li, L. The roles of free radicals in amyotrophic lateral sclerosis: reactive oxygen species and elevated oxidation of protein, DNA, and membrane phospholipids.
Collapse
Affiliation(s)
- D Liu
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas 77555-0653, USA.
| | | | | | | |
Collapse
|
867
|
Mittag TW, Bayer AU, La VAIL MM. Light-induced retinal damage in mice carrying a mutated SOD I gene. Exp Eye Res 1999; 69:677-83. [PMID: 10620397 DOI: 10.1006/exer.1999.0748] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transgenic mice expressing mutated mouse Cu/Zn superoxide dismutase (SOD I), corresponding to a mutation associated with familial amyotrophic lateral sclerosis, develop a fatal motorneuron degeneration that resembles the human disease. The biochemical properties of some mutant SOD I enzymes indicate that a gain of catalytic functions, (such as increased peroxidase activity) may be the pathologic factor(s). However, at the present time there is little in vivo evidence that a mutation-induced change in the catalytic activity of SOD I is directly involved in neuronal cell death or that vulnerability to cell death is related to the level of functional/metabolic activity of cells carrying mutated SOD I. In pigmented mice carrying the G86R mutation of mouse SOD I, exposure to constant bright light for 20 days caused a diminution of electroretinographic activity and specific degeneration of photoreceptor cells, while no pathological effects were seen in transgenic littermates not exposed to bright light or in light exposed non-transgenic littermates. These findings are the first to indicate that one mechanism for neuronal cell death by mutated SOD I is use-dependent and/or related to metabolic activity, and therefore may be due to a gain in function of catalytic activities involving superoxide/hydrogen peroxide. The light-exposure pathology in this transgenic mouse model indicates an essential role for SOD I in the protection of photoreceptors from light-damage.
Collapse
Affiliation(s)
- T W Mittag
- Ophthalmology, Mount Sinai School of Medicine, Box 1183, New York, NY, 10029-6574, USA
| | | | | |
Collapse
|
868
|
Levine JB, Kong J, Nadler M, Xu Z. Astrocytes interact intimately with degenerating motor neurons in mouse amyotrophic lateral sclerosis (ALS). Glia 1999. [DOI: 10.1002/(sici)1098-1136(199912)28:3<215::aid-glia5>3.0.co;2-c] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
869
|
Weber GF. Final common pathways in neurodegenerative diseases: regulatory role of the glutathione cycle. Neurosci Biobehav Rev 1999; 23:1079-86. [PMID: 10643818 DOI: 10.1016/s0149-7634(99)00041-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Attempts to unify diverse mechanisms of neurotoxicity have led to the concept of final common pathways which characterize frequently occurring cellular responses to disruption of homeostasis. The clinical presentation and common patho-biochemistry of reactive oxygen intermediates of Guam's disease have suggested that such pathways may be operative in three major neurodegenerative disorders: Alzheimer's dementia, amyotrophic lateral sclerosis and Parkinson's disease. A candidate-signaling pathway in this regard is characterized by the cascade arachidonic acid/HPETE/*OH/cGMP followed by activation of cGMP-dependent kinase and phosphorylation of NF-kB proteins and possibly CREB. This sequence may lead to apoptosis as well as long-term potentiation and memory and constitutes a biochemical correlate to excitotoxicity. The predominant control of *OH release from HPETE, a checkpoint in this pathway, is exerted by the glutathione cycle, a central biochemical process that is also intimately associated with the synthesis of the neurotransmitters glutamate and GABA and is connected to energy metabolism. Modifications in the activity of the glutathione cycle may provide treatment options.
Collapse
Affiliation(s)
- G F Weber
- Department of Medicine, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
870
|
Yim MB, Yim HS, Chock PB, Stadtman ER. Enhanced free radical generation of FALS-associated Cu,Zn-SOD mutants. Neurotox Res 1999; 1:91-7. [PMID: 12835105 DOI: 10.1007/bf03033273] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Familial amyotrophic lateral sclerosis (FALS) is an inherited disorder of motor neurons, which is associated with missense mutations in the Cu,Zn-superoxide dismutase (Cu,Zn-SOD) gene. Mice from the G93A transgenic line were reported to develop a syndrome of FALS. The fact that the symptoms occurred against a background of normal mouse Cu,Zn-SOD activity suggests that dominant, gain-of-function mutations in SOD play a role in the pathogenesis of FALS. We investigated the nature of this gain-of-function of FALS mutants. We have previously reported that Cu,Zn-SOD has the free radical-generating function in addition to normal dismutation activity. These two enzymic activities were compared by using mutants (G93A and A4V) and the wild-type Cu,Zn-SOD prepared by recombinant method. Our results showed that the wild-type, G93A, and A4V enzymes have identical dismutation activity. However, the free radical-generating function of the G93A and A4V mutants, as measured by the spin trapping and EPR method, is enhanced relative to that of the wild-type enzyme (wild type < G93A < A4V), particularly at lower H(2)O(2) concentrations. This is due to the decrease in the K(m) value for H(2)O(2), wild-type > G93A > A4V. The catalytic activity to generate free radicals is correlated to the clinical severity of the disorder induced by these mutant enzymes. Furthermore, we found that intact FALS mutants failed to enhance tyrosine nitration. Together our results indicate that the amyotrophic lateral sclerosis symptoms are not caused by the reduction of Cu,Zn-SOD dismutation activity with the mutant enzymes; rather, it is induced in part by enhancement of the free radical-generating function.
Collapse
Affiliation(s)
- M B Yim
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 3, Room 202, MSC-0342, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
871
|
Van Landeghem GF, Tabatabaie P, Beckman G, Beckman L, Andersen PM. Manganese-containing superoxide dismutase signal sequence polymorphism associated with sporadic motor neuron disease. Eur J Neurol 1999; 6:639-44. [PMID: 10529750 DOI: 10.1046/j.1468-1331.1999.660639.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An alanin-9valin (Ala-9Val) polymorphism in the mitochondrial targeting sequence of manganese-containing superoxide dismutase (Mn-SOD) has recently been described. We studied this polymorphism in 72 Swedish patients with sporadic motor neuron diseases (MND) and controls using an oligonucleotide ligation assay. There were significant differences in genotype between MND patients and controls (P = 0.025), and between male and female MND patients (P = 0.009). Individuals homozygous for the Ala allele had a higher risk for MND [odds ratio, 2.9; 95% confidence interval (CI), 1.3-6.6], which was increased when including only females in the analysis (odds ratio, 5.0; 95% CI, 1.8-14.0). In classical amyotrophic lateral sclerosis, the odds ratio was 3.8 (95% CI, 1.3-10.0), and 5. 5 (95% CI, 1.5-19.9) when including only females. The results suggest that mutations influencing the cellular allocation of Mn-SOD may be a risk factor in MND, especially in females, and that MND may be a disease of misdistribution of the superoxide dismutase enzymes.
Collapse
|
872
|
Affiliation(s)
- D W Cleveland
- Ludwig Institute for Cancer Research and Department of Medicine and Neuroscience, University of California, San Diego, La Jolla 92093, USA.
| |
Collapse
|
873
|
Abstract
Although the role of intraneuronal neurofilamentous aggregates in the pathogenesis of ALS is unknown, their presence forms a key neuropathological hallmark of the disease process. Conversely, the experimental induction of neurofilamentous aggregates in either neurotoxic or transgenic mice gives rise to motor system degeneration. To determine whether alterations in the physiochemical properties of NF are present in sporadic ALS, we purified NF subunit proteins from cervical spinal cord of ALS and age-matched control patients. The cytoskeleton-enriched, Triton X-100 insoluble fraction was further separated into individual NF subunits using hydroxyapatite HPLC. We observed no differences between control and ALS in the characteristics of NFH, including migration patterns on 2D-IEF, sensitivity to E. coli, alkaline phosphatase mediated dephosphorylation, peptide mapping, or proteolysis (calpain, calpain/calmodulin mediated, phosphorylated or dephosphorylated NFH). NFL showed no differences in 2D-IEF migration patterns, peptide mapping, or the extent of NFL nitrotyrosine immunoreactivity in either the Triton soluble or insoluble fractions. The latter observation demonstrated that NFL nitration is a ubiquitous occurrence in neurons and suggests that NFL might function as a sink for free reactive nitrating species. In contrast to the lack of differences in the post-translational processing of NF in ALS, we did observe a selective suppression of NFL steady state mRNA levels in the limb innervating lateral motor neuron column of ALS. This occurred in the absence of modifications in NFH, NFM or neuronal nitric oxide synthase (Type I NOS; nNOS) steady state mRNA levels. Coupled with previous observations of nNOS immunoreactivity co-localizing with NF aggregates in ALS motor neurons, this suggests activation of the nNOS enzyme complex in ALS, which would be predicted to contribute directly to the generation of reactive nitrating species. Given this, the isolated suppression of NFL steady state mRNA levels in ALS may indicate that ALS motor neurons are at an intrinsic deficit in the ability to buffer free reactive nitrating species.
Collapse
Affiliation(s)
- M J Strong
- The John P Robarts Research Institute, and the Department of Clinical Neurological Sciences, The University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
874
|
Chou SM, Han CY, Wang HS, Vlassara H, Bucala R. A receptor for advanced glycosylation endproducts (AGEs) is colocalized with neurofilament-bound AGEs and SOD1 in motoneurons of ALS: immunohistochemical study. J Neurol Sci 1999; 169:87-92. [PMID: 10540014 DOI: 10.1016/s0022-510x(99)00222-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurofilament (NF)-bound AGEs colocalize immunochemically with SOD1 in the motoneurons of patients with ALS. Among three types of AGE receptors reported in the human brain, AGE-R1 (oligosaccharyltransferase family) and AGE-R2 (substrate of protein kinase C) have been found in neurons, while AGE-R3 is restricted to glia. The present study investigates which of these receptors may be responsible for binding AGEs in the NF conglomerates of motoneurons. Immunostaining of paraffin sections from eight ALS patients (five sporadic and three familial) and three control cases was performed with antibodies directed against R1 and R2, in parallel with those against AGEs and SOD1. The sites of AGE-R1 immunoreactivity (IR) in motoneurons were in conformity to those of NF-associated AGE and SOD1 IRs. By contrast, the IR of R2 was negative in NF conglomerates. Negative R2 IR for NF conglomerates was outlined by surrounding coarse R2 immunopositive granules in the perikaryon. No IR for R1 or R2 was found in hyaline or Bunina inclusions. There was no extraneuronal expression of IR for AGE-R1 or AGEs in microglia or astroglia around the NF accumulation. The colocalization of AGE, AGE-R1, and SOD1 at NF conglomerates in motoneurons supports the notion that AGE-mediated oxidative stress and protein aggregation may be implicated in NF conglomeration and ALS pathogenesis.
Collapse
Affiliation(s)
- S M Chou
- Norris ALS/MDA Research Center, California Pacific Medical Center, San Francisco, CA 94116, USA
| | | | | | | | | |
Collapse
|
875
|
Palecek J, Lips MB, Keller BU. Calcium dynamics and buffering in motoneurones of the mouse spinal cord. J Physiol 1999; 520 Pt 2:485-502. [PMID: 10523417 PMCID: PMC2269591 DOI: 10.1111/j.1469-7793.1999.00485.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. A quantitative analysis of endogenous calcium homeostasis was performed on 65 motoneurones in slices of the lumbar spinal cord from 2- to 8-day-old mice by simultaneous patch-clamp and microfluorometric calcium measurements. 2. Somatic calcium concentrations were monitored with a temporal resolution in the millisecond time domain. Measurements were performed by using a monochromator for excitation and a photomultiplier detection system. 3. Somatic calcium signalling was investigated during defined voltage-clamp protocols. Calcium responses were observed for membrane depolarizations positive to -50 mV. A linear relation between depolarization time and free calcium concentrations ([Ca2+]i) indicated that voltage-dependent calcium influx dominated the response. 4. Endogenous calcium homeostasis was quantified by using the 'added buffer' approach. In the presence of fura-2 and mag-fura-5, calcium transients decayed according to a monoexponential function. Decay-time constants showed a linear dependence on dye concentration and the extrapolated constant in the absence of indicator dye was 371 +/- 120 ms (n = 13 cells, 21 C). 5. For moderate elevations (< 1 microM), recovery kinetics of depolarization-induced calcium transients were characterized by a calcium-independent, 'effective' extrusion rate gamma = 140 +/- 47 s-1 (n = 13 cells, 21 C). 6. The endogenous calcium binding ratio for fixed buffers in spinal motoneurones was kappaB' = 50 +/- 17 (n = 13 cells), indicating that less than 2 % of cytosolic calcium ions contributed to [Ca2+]i. 7. Endogenous binding ratios in spinal motoneurones were small compared to those found in hippocampal or cerebellar Purkinje neurones. From a functional perspective, they provided motoneurones with rapid dynamics of cytosolic [Ca2+]i for a given set of influx, extrusion and uptake mechanisms. 8. With respect to pathophysiological conditions, our measurements are in agreement with a model where the selective vulnerability of spinal motoneurones during excitotoxic conditions and motoneurone disease partially results from low endogenous calcium buffering.
Collapse
Affiliation(s)
- J Palecek
- Zentrum Physiologie und Pathophysiologie, Universitat Gottingen, Humboldtallee 23, 37073 Gottingen, Germany
| | | | | |
Collapse
|
876
|
Fujii J, Taniguchi N. Down regulation of superoxide dismutases and glutathione peroxidase by reactive oxygen and nitrogen species. Free Radic Res 1999; 31:301-8. [PMID: 10517534 DOI: 10.1080/10715769900300861] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The levels of antioxidative enzymes are regulated by gene expressions as well as by post-translational modifications. Although their functions are to scavenge reactive oxygen (ROS) and nitrogen species (RNS), they may also be targets of various oxidants. When ROS and RNS modify the functions of antioxidative enzymes, especially glutathione peroxidase, they may induce apoptotic cell death in susceptible cells. It is conceivable, therefore, that at least a part of the apoptotic pathways mediated by ROS and RNS may be associated with modification of the redox regulation of cellular functions due to elevations of such substances. In this article we review recent findings about the effects of various oxidative conditions associated with alteration of these antioxidative enzymes and the concomitant cellular damage induced.
Collapse
Affiliation(s)
- J Fujii
- Department of Biochemistry, Osaka University Medical School, Suita, Japan
| | | |
Collapse
|
877
|
Abstract
Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative disease characterized by the progressive loss of motor neurons, leading to profound weakness and eventual death of affected individuals. For the vast majority of patients with ALS, the etiology of the disorder is unknown, and although multiple clinical trials of various therapeutic agents have been undertaken, truly effective therapy is not currently available for the disease. The selection of treatments used in ALS clinical trials frequently has its basis in promising data obtained from experimental model systems in which the proposed agent has shown some effect in protecting motor neurons from a particular insult. The likelihood of a successful clinical outcome for a given treatment in ALS would therefore depend on two principal factors, including the similarity of the model to the disease and the biologic action of the potential therapeutic agent. Partly because early experimental models of ALS failed to replicate the disease process, treatment success in these models did not carry over into human trials. Recently, however, a variety of newer model systems have been developed and utilized to investigate motor neuron degeneration as related to ALS. For example, in this issue, Corse et al. use a rat spinal cord organotypic slice subjected to glutamate excitotoxicity as a model system to test the effectiveness of neurotrophic factors in preventing motor neuron degeneration. This review will assess the strengths and weaknesses of differing ALS model systems that have been used to preclinically test potential drug efficacy in ALS.
Collapse
Affiliation(s)
- J L Elliott
- Department of Neurology, University of Texas, Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas, 75235, USA
| |
Collapse
|
878
|
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that involves motoneuron degeneration, paralysis, and death. Mutations in Cu, Zn superoxide dismutase (SOD1) are one cause of this disease. It has been a puzzle as to why mutations in SOD1, an enzyme expressed in many neuronal types, selectively kill motoneurons. To begin to explore the factors that determine this selectivity, we carried out peripheral axotomy in mice expressing a mutant SOD1 (G93A mice) and controls (nontransgenic mice and mice expressing wild-type human SOD1). Axotomy in controls induced a predicted axonal atrophy and a small degree of axon loss. The axonal atrophy led to an increase in the number of small axons and a decrease in the number of large axons. In contrast to the controls, axotomy in G93A mice reduced the extent of axon degeneration at the end stage of the disease, leading to an increase in the number of surviving motor axons. Interestingly, all of the increased surviving axons were in the axon group with diameters smaller than 4.5 microm. This result suggests an apparent threshold of vulnerability that is correlated with axon size.
Collapse
Affiliation(s)
- J Kong
- Department of Pharmacology and Molecular Toxicology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | |
Collapse
|
879
|
Gabbianelli R, Ferri A, Rotilio G, Carrì MT. Aberrant copper chemistry as a major mediator of oxidative stress in a human cellular model of amyotrophic lateral sclerosis. J Neurochem 1999; 73:1175-80. [PMID: 10461909 DOI: 10.1046/j.1471-4159.1999.0731175.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have investigated the response to oxidative stress in a model system obtained by stable transfection of the human neuroblastoma cell line SH-SY5Y with plasmids directing constitutive expression of either wild-type human Cu,Zn superoxide dismutase or a mutant of this enzyme (H46R) associated with familial amyotrophic lateral sclerosis. We report that expression of mutant H46R Cu,Zn superoxide dismutase induces a selective increase in paraquat sensitivity that is reverted by addition of D-penicillamine. Furthermore, expression of this mutant enzyme affects the activity of the endogenous wild-type enzyme both in basal conditions and in copper overloading experiments. Our data indicate that aberrant metal chemistry of this mutant enzyme is the actual mediator of oxidative stress and that concurrent impairment of the activity of wild-type endogenous enzyme compromises the cell's ability to respond to oxidative stress.
Collapse
|
880
|
Ratovitski T, Corson LB, Strain J, Wong P, Cleveland DW, Culotta VC, Borchelt DR. Variation in the biochemical/biophysical properties of mutant superoxide dismutase 1 enzymes and the rate of disease progression in familial amyotrophic lateral sclerosis kindreds. Hum Mol Genet 1999; 8:1451-60. [PMID: 10400992 DOI: 10.1093/hmg/8.8.1451] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in superoxide dismutase 1 (SOD1) polypeptides cause a form of familial amyotrophic lateral sclerosis (FALS). In different kindreds, harboring different mutations, the duration of illness tends to be similar for a given mutation. For example, patients inheriting a substitution of valine for alanine at position four (A4V) average a 1.5 year life expectancy after the onset of symptoms, whereas patients harboring a substitution of arginine for histidine at position 46 (H46R) average an 18 year life expectancy after disease onset. Here, we examine a number of biochemical and biophysical properties of nine different FALS variants of SOD1 polypeptides, including enzymatic activity (which relates indirectly to the affinity of the enzyme for copper), polypeptide half-life, resistance to proteolytic degradation and solubility, in an effort to determine whether a specific property of these enzymes correlates with clinical progression. We find that although all the mutants tested appear to be soluble, the different mutants show a remarkable degree of variation with respect to activity, polypeptide half-life and resistance to proteolysis. However, these variables do not stratify in a manner that correlates with clinical progression. We conclude that the basis for the different life expectancies of patients in different kindreds of sod1-linked FALS may result from an as yet unidentified property of these mutant enzymes.
Collapse
Affiliation(s)
- T Ratovitski
- Department of Pathology, Johns Hopkins School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
881
|
Abstract
Copper is an essential trace metal which plays a fundamental role in the biochemistry of the human nervous system. Menkes disease and Wilson disease are inherited disorders of copper metabolism and the dramatic neurodegenerative phenotypes of these two diseases underscore the essential nature of copper in nervous system development as well as the toxicity of this metal when neuronal copper homeostasis is perturbed. Ceruloplasmin contains 95% of the copper found in human plasma and inherited loss of this essential ferroxidase is associated with progressive neurodegeneration of the retina and basal ganglia. Gain-of-function mutations in the cytosolic copper enzyme superoxide dismutase result in the motor neuron degeneration of amyotrophic lateral sclerosis and current evidence suggests a direct pathogenic role for copper in this process. Recent studies have also implicated copper in the pathogenesis of neuronal injury in Alzheimer's disease and the prion-mediated encephalopathies, suggesting that further elucidation of the mechanisms of copper trafficking and metabolism within the nervous system will be of direct relevance to our understanding of the pathophysiology and treatment of neurodegenerative disease.
Collapse
Affiliation(s)
- D J Waggoner
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | |
Collapse
|
882
|
Affiliation(s)
- A C Ludolph
- Department of Neurology, University of Ulm, Germany.
| | | |
Collapse
|
883
|
Flood DG, Reaume AG, Gruner JA, Hoffman EK, Hirsch JD, Lin YG, Dorfman KS, Scott RW. Hindlimb motor neurons require Cu/Zn superoxide dismutase for maintenance of neuromuscular junctions. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 155:663-72. [PMID: 10433959 PMCID: PMC1866863 DOI: 10.1016/s0002-9440(10)65162-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/28/1999] [Indexed: 10/18/2022]
Abstract
The role of oxidative damage in neurodegenerative disease was investigated in mice lacking cytoplasmic Cu/Zn superoxide dismutase (SOD), created by deletion of the SOD1 gene (SOD1(-/-)). SOD1(-/-) mice developed a chronic peripheral hindlimb axonopathy. Mild denervation of muscle was detected at 2 months, and behavioral and physiological motor deficits were present at 5-7 months of age. Ventral root axons were shrunken but were normal in number. The somatosensory system in SOD1(-/-) mice was mildly affected. SOD1(-/-) mice expressing Cu/Zn SOD only in brain and spinal cord were generated using transgenic mice expressing mouse SOD1 driven by the neuron-specific synapsin promoter. Neuron-specific expression of Cu/Zn SOD in SOD1(-/-) mice rescued motor neurons from the neuropathy. Therefore, Cu/Zn SOD is not required for normal motor neuron survival, but is necessary for the maintenance of normal neuromuscular junctions by hindlimb motor neurons.
Collapse
Affiliation(s)
- D G Flood
- Department of Molecular Biology, Cephalon, Inc., West Chester, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
884
|
Kilpatrick TJ, Soilu-Hänninen M. Molecular mechanisms regulating motor neuron development and degeneration. Mol Neurobiol 1999; 19:205-28. [PMID: 10495104 DOI: 10.1007/bf02821714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Motor neurons are a well-defined, although heterogeneous group of cells responsible for transmitting information from the central nervous system to the locomotor system. Spinal motor neurons are specified by soluble factors produced by structures adjacent to the primordial spinal cord, signaling through homeodomain proteins. Axonal pathfinding is regulated by cell-surface receptors that interact with extracellular ligands and once synaptic connections have formed, the survival of the somatic motor neuron is dependent on the provision of target-derived growth factors, although nontarget-derived factors, produced by either astrocytes or Schwann cells, are also potentially implicated. Somatic motor neuron degeneration leads to profound disability, and multiple pathogenetic mechanisms including aberrant growth factor signaling, abnormal neurofilament accumulation, excitotoxicity, and autoimmunity have been postulated to be responsible. Even when specific deficits have been identified, for example, mutations of the superoxide dismutase-1 gene in familial amyotrophic sclerosis and polyglutamine expansion of the androgen receptor in spinal and bulbar muscular atrophy, the mechanisms by which somatic motor neuronal degeneration occurs remain unclear. In order to treat motor system degeneration effectively, we will need to understand these mechanisms more thoroughly.
Collapse
Affiliation(s)
- T J Kilpatrick
- Development and Neurobiology Group, The Walter and Eliza Hall Institute of Medical Research, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | |
Collapse
|
885
|
Abstract
Since the first transgenic mouse was reported in 1980, genetically engineered mice have become an invaluable biological tool for better understanding of physiological and pathological processes in many fields of biomedical research. The transgenic technology allows researchers to carry out specific genetic manipulation in all cells of a laboratory animal, and makes it possible to dissect gene function in a living organism. In the field of neurosciences these animals have contributed greatly to shed light on basic mechanisms of brain function as well as to generate useful animal models for studying human neurological disorders. In this review, the different techniques available for generating specific mutations in the mouse genome will be described, from pronuclear microinjection to gene targeting in embryonic stem cells, and to the second generation of inducible and conditional knockout mice. Then, the impact of transgenic mouse models as an alternative or additional approach to neuropharmacology will be discussed, not only for the study of molecular mechanisms in the central nervous system but also for the identification of new biological targets for innovative pharmacological therapy.
Collapse
Affiliation(s)
- R Brusa
- Schering-Plough Research Institute, San Raffaele Science Park, Via Olgettina 58, Milan, Italy
| |
Collapse
|
886
|
Wigley WC, Fabunmi RP, Lee MG, Marino CR, Muallem S, DeMartino GN, Thomas PJ. Dynamic association of proteasomal machinery with the centrosome. J Cell Biol 1999; 145:481-90. [PMID: 10225950 PMCID: PMC2185077 DOI: 10.1083/jcb.145.3.481] [Citation(s) in RCA: 398] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Although the number of pathologies known to arise from the inappropriate folding of proteins continues to grow, mechanisms underlying the recognition and ultimate disposition of misfolded polypeptides remain obscure. For example, how and where such substrates are identified and processed is unknown. We report here the identification of a specific subcellular structure in which, under basal conditions, the 20S proteasome, the PA700 and PA28 (700- and 180-kD proteasome activator complexes, respectively), ubiquitin, Hsp70 and Hsp90 (70- and 90-kD heat shock protein, respectively) concentrate in HEK 293 and HeLa cells. The structure is perinuclear, surrounded by endoplasmic reticulum, adjacent to the Golgi, and colocalizes with gamma-tubulin, an established centrosomal marker. Density gradient fractions containing purified centrosomes are enriched in proteasomal components and cell stress chaperones. The centrosome-associated structure enlarges in response to inhibition of proteasome activity and the level of misfolded proteins. For example, folding mutants of CFTR form large inclusions which arise from the centrosome upon inhibition of proteasome activity. At high levels of misfolded protein, the structure not only expands but also extensively recruits the cytosolic pools of ubiquitin, Hsp70, PA700, PA28, and the 20S proteasome. Thus, the centrosome may act as a scaffold, which concentrates and recruits the systems which act as censors and modulators of the balance between folding, aggregation, and degradation.
Collapse
Affiliation(s)
- W C Wigley
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | | | | | | | |
Collapse
|
887
|
Affiliation(s)
- P B Tran
- Dept of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
888
|
Abstract
Multiple lines of evidence implicate redox-active transition metals as mediators of oxidative stress in neurodegenerative diseases. Among the recent research discoveries is the finding that transition metals bind to proteins associated with neurodegeneration, including the prion protein. Whereas binding in the latter case may serve an antioxidant function, adventitious binding of metals to other proteins appears to preserve their catalytic redox activity in a manner that disturbs free radical homeostasis. Alterations in the levels of copper- and iron-containing metalloenzymes, involved in processing partially reduced oxygen species, are also likely to contribute to altered redox balance in neurodegenerative diseases. Nonetheless, even in familial forms of amyotrophic lateral sclerosis linked to mutations in superoxide dismutase, it is unclear whether an altered enzyme activity or, indirectly, a disturbance in transition-metal homeostasis is involved in the disease pathogenesis.
Collapse
Affiliation(s)
- L M Sayre
- Department of Chemistry, Case Western Reserve University, Cleveland, OH44106, USA.
| | | | | |
Collapse
|
889
|
Sánchez I, Xu CJ, Juo P, Kakizaka A, Blenis J, Yuan J. Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron 1999; 22:623-33. [PMID: 10197541 DOI: 10.1016/s0896-6273(00)80716-3] [Citation(s) in RCA: 295] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We show here that caspase-8 is required for the death of primary rat neurons induced by an expanded polyglutamine repeat (Q79). Expression of Q79 recruited and activated caspase-8. Inhibition of caspase-8 blocked polyglutamine-induced cell death. Coexpression of Q79 with the caspase inhibitor CrmA, a dominant-negative mutant of FADD (FADD DN), Bcl-2, or Bcl-xL, but not an N-terminally tagged Bcl-xL, prevented the recruitment of caspase-8 and inhibited polyglutamine-induced cell death. Furthermore, Western blot analysis revealed the presence of activated caspase-8 in the insoluble fraction of affected brain regions from Huntington's disease (HD) patients but not in those from neurologically unremarkable controls, suggesting the relocation and activation of caspase-8 during the pathogenesis of HD. These results suggest an essential role of caspase-8 in HD-related neural degenerative diseases.
Collapse
Affiliation(s)
- I Sánchez
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
890
|
Williamson TL, Cleveland DW. Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nat Neurosci 1999; 2:50-6. [PMID: 10195180 DOI: 10.1038/4553] [Citation(s) in RCA: 445] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mutations in copper/zinc superoxide dismutase 1 (SOD1), primary causes of human amyotrophic lateral sclerosis (ALS), provoke motor neuron death through an unidentified toxic property. The known neurofilament-dependent slowing of axonal transport, combined with the prominent misaccumulation of neurofilaments in ALS, suggests that an important aspect of toxicity may arise from damage to transport. Here we verify this hypothesis for two SOD1 mutations linked to familial ALS. Reduced transport of selective cargoes of slow transport, especially tubulin, arises months before neurodegeneration. For one mutant, this represents the earliest detectable abnormality. Thus, damage to the cargoes or machinery of slow transport is an early feature of toxicity mediated by mutant SOD1.
Collapse
Affiliation(s)
- T L Williamson
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla 92093, USA
| | | |
Collapse
|
891
|
Pasinelli P, Borchelt DR, Houseweart MK, Cleveland DW, Brown RH. Caspase-1 is activated in neural cells and tissue with amyotrophic lateral sclerosis-associated mutations in copper-zinc superoxide dismutase. Proc Natl Acad Sci U S A 1998; 95:15763-8. [PMID: 9861044 PMCID: PMC28118 DOI: 10.1073/pnas.95.26.15763] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanism by which mutations in the superoxide dismutase (SOD1) gene cause motor neuron degeneration in familial amyotrophic lateral sclerosis (ALS) is unknown. Recent reports that neuronal death in SOD1-familial ALS is apoptotic have not documented activation of cell death genes. We present evidence that the enzyme caspase-1 is activated in neurons expressing mutant SOD1 protein. Proteolytic processing characteristic of caspase-1 activation is seen both in spinal cords of transgenic ALS mice and neurally differentiated neuroblastoma (line N2a) cells with SOD1 mutations. This activation of caspase-1 is enhanced by oxidative challenge (xanthine/xanthine oxidase), which triggers cleavage and secretion of the interleukin 1beta converting enzyme substrate, pro-interleukin 1beta, and induces apoptosis. This N2a culture system should be an instructive in vitro model for further investigation of the proapoptotic properties of mutant SOD1.
Collapse
Affiliation(s)
- P Pasinelli
- Massachusetts General Hospital-East, Charlestown, MA 02129, USA
| | | | | | | | | |
Collapse
|
892
|
|
893
|
Abstract
Significant progress has been made in the identification of genes and chromosomal loci associated with several types of motor neuron disease. Of particular interest is recent work on the pathogenic mechanisms underlying these diseases, especially studies in in vitro model systems and in transgenic and gene-targeted mice.
Collapse
Affiliation(s)
- P C Wong
- Department of Pathology, Division of Neuropathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205-2196, USA.
| | | | | |
Collapse
|