901
|
The effect of a bromide leaving group on the properties of nitro analogs of the duocarmycins as hypoxia-activated prodrugs and phosphate pre-prodrugs for antitumor therapy. Bioorg Med Chem 2011; 19:5989-98. [DOI: 10.1016/j.bmc.2011.08.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 08/17/2011] [Accepted: 08/20/2011] [Indexed: 11/20/2022]
|
902
|
Kim SP, Kang MY, Kim JH, Nam SH, Friedman M. Composition and mechanism of antitumor effects of Hericium erinaceus mushroom extracts in tumor-bearing mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:9861-9. [PMID: 21846141 DOI: 10.1021/jf201944n] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We investigated antitumor effects of the following four extracts of freeze-dried Hericium erinaceus mushrooms in Balb/c mice intracutaneously transplanted on the backs with CT-26 colon cancer cells: HWE, hot water extraction by boiling in water for 3 h; MWE, microwaving in 50% ethanol/water at 60 W for 3 min; and ACE and AKE, boiling in 1% HCl or 3% NaOH for 2 h. HWE and MWE with a higher content of β-glucans, determined by an assay kit, than ACE and MKE were active in all bioassays. Gas chromatography/mass spectrometry analyses showed the presence of 40, 27, 16, and 13 compounds, respectively, in the four extracts. Daily intraperitoneal (ip) injections of HWE and MWE for 2 weeks significantly reduced tumor weights by 38 and 41%. Tumor regressions were associated with changes in the following cancer biomarkers as compared to phosphate buffer (PBS)-treated control mice: 2.7- and 2.4-fold increases in cytolytic activity of splenic natural killer (NK) cells; restored nitric oxide production and phagocytosis in peritoneal macrophages to 95-98% of normal levels; ∼2-fold increase in released pro-inflammatory cytokines tumor necrosis factor-α, interleukin-1β, and interleukin-6 from macrophages; and ∼56 and ∼60% reductions in the number of blood vessels inside the tumor. The pro-angiogenic factors vascular endothelial growth factor (VEGF), cyclooxygenase 2 (COX-2), and 5-lipoxygenase (5-LOX) were also significantly reduced in mRNA and protein expression by tumor genes. Enzyme-linked immunosorbent assay of tumor cells confirmed reduced expression of COX-2 and 5-LOX (32 and 31%). Reduced COX-2 and 5-LOX expression down-regulated VEGF expression, resulting in inhibition of neo-angiogenesis inside the tumors. The results indicate that induction of NK activity, activation of macrophages, and inhibition of angiogenesis all contribute to the mechanism of reduction of tumor size.
Collapse
Affiliation(s)
- Sung Phil Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Republic of Korea
| | | | | | | | | |
Collapse
|
903
|
Lin KT, Lien JC, Chung CH, Kuo SC, Huang TF. Bp5250 inhibits vascular endothelial growth factor-induced angiogenesis and HIF-1α expression on endothelial cells. Naunyn Schmiedebergs Arch Pharmacol 2011; 385:39-49. [DOI: 10.1007/s00210-011-0690-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 08/30/2011] [Indexed: 12/21/2022]
|
904
|
Stiehl DP, Bordoli MR, Abreu-Rodríguez I, Wollenick K, Schraml P, Gradin K, Poellinger L, Kristiansen G, Wenger RH. Non-canonical HIF-2α function drives autonomous breast cancer cell growth via an AREG-EGFR/ErbB4 autocrine loop. Oncogene 2011; 31:2283-97. [PMID: 21927022 DOI: 10.1038/onc.2011.417] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tumor progression is intrinsically tied to the clonal selection of tumor cells with acquired phenotypes allowing to cope with a hostile microenvironment. Hypoxia-inducible factors (HIFs) master the transcriptional response to local tissue hypoxia, a hallmark of solid tumors. Here, we report significantly longer patient survival in breast cancer with high levels of HIF-2α. Amphiregulin (AREG) and WNT1-inducible signaling pathway protein-2 (WISP2) expression was strongly HIF-2α-dependent and their promoters were particularly responsive to HIF-2α. The endogenous AREG promoter recruited HIF-2α in the absence of a classical HIF-DNA interaction motif, revealing a novel mechanism of gene regulation. Loss of AREG expression in HIF-2α-depleted cells was accompanied by reduced activation of epidermal growth factor (EGF) receptor family members. Apparently opposing results from patient and in vitro data point to an HIF-2α-dependent auto-stimulatory tumor phenotype that, while promoting EGF signaling in cellular models, increased the survival of diagnosed and treated human patients. Our findings suggest a model where HIF-2α-mediated autocrine growth signaling in breast cancer sustains a state of cellular self-sufficiency, thereby masking unfavorable microenvironmental growth conditions, limiting adverse selection and improving therapy efficacy. Importantly, HIF-2α/AREG/WISP2-expressing tumors were associated with luminal tumor differentiation, indicative of a better response to classical treatments. Shifting the HIF-1/2α balance toward an HIF-2-dominated phenotype could thus offer a novel approach in breast cancer therapy.
Collapse
Affiliation(s)
- D P Stiehl
- Institute of Physiology and Zürich Center for Human Physiology (ZIHP), University of Zürich, Zürich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
905
|
Roberts HR, Smartt HJM, Greenhough A, Moore AE, Williams AC, Paraskeva C. Colon tumour cells increase PGE(2) by regulating COX-2 and 15-PGDH to promote survival during the microenvironmental stress of glucose deprivation. Carcinogenesis 2011; 32:1741-7. [PMID: 21926111 DOI: 10.1093/carcin/bgr210] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Due to poor tumour-associated vasculature, tumour cells are subjected to a fluctuating microenvironment with periods of limited oxygen and glucose availability. Adaptive mechanisms to adverse microenvironments are important for tumour cell survival. The cyclooxygenase (COX)-2/prostaglandin E(2) (PGE(2)) pathway has key roles in colorectal tumorigenesis. Although glucose is important as an energy source and in maintaining endoplasmic reticulum homeostasis, relatively little is known regarding how tumour cells adapt to the microenvironmental stress of reduced glucose availability. Here, we report the novel findings that glucose deprivation of colorectal tumour cells not only increases COX-2 expression but also decreases 15-hydroxyprostaglandin dehydrogenase (15-PGDH) expression, resulting in increased extracellular PGE(2). Furthermore, we have shown that PGE(2) promotes tumour cell survival during glucose deprivation. Glucose deprivation enhances phosphoinositide 3-kinase/Akt activity, which has a role in both the up-regulation of COX-2 and down-regulation of 15-PGDH. Glucose deprivation also activates the unfolded protein response (UPR) resulting in elevated C/EBP-homologous protein (CHOP) expression. Interestingly, inhibiting CHOP expression by small interfering RNA during glucose deprivation attenuates the reduction in 15-PGDH expression. This is the first report linking activation of the UPR with a reduction in expression of tumour-suppressive 15-PGDH and may have implications for tumour cells' ability to survive exposure to therapeutic agents that activate the UPR. Our data suggest that diverse microenvironmental stresses converge to regulate PGE(2) as a common and crucial mediator of cell survival during adaptation to the tumour microenvironment and may lead to novel chemopreventive and therapeutic strategies.
Collapse
Affiliation(s)
- Heather R Roberts
- School of Cellular and Molecular Medicine, Cancer Research UK Colorectal Tumour Biology Research Group, University of Bristol, Bristol, BS8 1TD, UK
| | | | | | | | | | | |
Collapse
|
906
|
Hsieh CH, Shyu WC, Chiang CY, Kuo JW, Shen WC, Liu RS. NADPH oxidase subunit 4-mediated reactive oxygen species contribute to cycling hypoxia-promoted tumor progression in glioblastoma multiforme. PLoS One 2011; 6:e23945. [PMID: 21935366 PMCID: PMC3174133 DOI: 10.1371/journal.pone.0023945] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 07/27/2011] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Cycling and chronic tumor hypoxia are involved in tumor development and growth. However, the impact of cycling hypoxia and its molecular mechanism on glioblastoma multiforme (GBM) progression remain unclear. METHODOLOGY Glioblastoma cell lines, GBM8401 and U87, and their xenografts were exposed to cycling hypoxic stress in vitro and in vivo. Reactive oxygen species (ROS) production in glioblastoma cells and xenografts was assayed by in vitro ROS analysis and in vivo molecular imaging studies. NADPH oxidase subunit 4 (Nox4) RNAi-knockdown technology was utilized to study the role of Nox4 in cycling hypoxia-mediated ROS production and tumor progression. Furthermore, glioblastoma cells were stably transfected with a retroviral vector bearing a dual reporter gene cassette that allowed for dynamic monitoring of HIF-1 signal transduction and tumor cell growth in vitro and in vivo, using optical and nuclear imaging. Tempol, an antioxidant compound, was used to investigate the impact of ROS on cycling hypoxia-mediated HIF-1 activation and tumor progression. PRINCIPAL FINDINGS Glioblastoma cells and xenografts were compared under cycling hypoxic and normoxic conditions; upregulation of NOX4 expression and ROS levels were observed under cycling hypoxia in glioblastoma cells and xenografts, concomitant with increased tumor cell growth in vitro and in vivo. However, knockdown of Nox4 inhibited these effects. Moreover, in vivo molecular imaging studies demonstrated that Tempol is a good antioxidant compound for inhibiting cycling hypoxia-mediated ROS production, HIF-1 activation, and tumor growth. Immunofluorescence imaging and flow cytometric analysis for NOX4, HIF-1 activation, and Hoechst 3342 in glioblastoma also revealed high localized NOX4 expression predominantly in potentially cycling hypoxic areas with HIF-1 activation and blood perfusion within the endogenous solid tumor microenvironment. CONCLUSIONS Cycling hypoxia-induced ROS via Nox4 is a critical aspect of cancer biology to consider for therapeutic targeting of cycling hypoxia-promoted HIF-1 activation and tumor progression in GBM.
Collapse
Affiliation(s)
- Chia-Hung Hsieh
- Graduate Institute of Basic Medical Science, China Medical University and Hospital, Taichung, Taiwan.
| | | | | | | | | | | |
Collapse
|
907
|
Debnath J. The multifaceted roles of autophagy in tumors-implications for breast cancer. J Mammary Gland Biol Neoplasia 2011; 16:173-87. [PMID: 21779879 PMCID: PMC3170851 DOI: 10.1007/s10911-011-9223-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 06/23/2011] [Indexed: 12/21/2022] Open
Abstract
Autophagy is an evolutionarily conserved lysosomal degradation process that is crucial for adaptation to stress as well as in cellular homeostasis. In cancer, our current understanding has uncovered multifaceted roles for autophagy in tumor initiation and progression. Although genetic evidence corroborates a critical role for autophagy as a tumor suppressor mechanism, autophagy can also promote the survival and fitness of advanced tumors subject to stress, which has important implications during breast cancer progression and metastasis. Here, I discuss the mechanisms and the evidence underlying these diverse roles for autophagy in cancer and speculate on specific circumstances in which autophagy can be most effectively targeted for breast cancer treatment.
Collapse
Affiliation(s)
- Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 513 Parnassus Ave, HSW450B, San Francisco, CA 94143, USA.
| |
Collapse
|
908
|
Abstract
Hypoxia is a feature of most solid tumors and is associated with poor prognosis in several cancer types, including breast cancer. The master regulator of the hypoxic response is the Hypoxia-inducible factor 1α (HIF-1α). It is becoming clear that HIF-1α expression alone is not a reliable marker of tumor response to hypoxia, and recent studies have focused on determining gene and microRNA (miRNA) signatures for this complex process. The results of these studies are likely to pave the way towards the development of a robust hypoxia signature for breast and other cancers that will be useful for diagnosis and therapy. In this review, we outline the existing markers of hypoxia and recently identified gene and miRNA expression signatures, and discuss their potential as prognostic and predictive biomarkers. We also highlight how the hypoxia response is being targeted in the development of cancer therapies.
Collapse
Affiliation(s)
- Elena Favaro
- The Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, UK.
| | | | | | | |
Collapse
|
909
|
Xu Z, Marko NF, Angelov L, Barnett GH, Chao ST, Vogelbaum MA, Suh JH, Weil RJ. Impact of preexisting tumor necrosis on the efficacy of stereotactic radiosurgery in the treatment of brain metastases in women with breast cancer. Cancer 2011; 118:1323-33. [PMID: 22009460 DOI: 10.1002/cncr.26314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 03/29/2011] [Accepted: 05/03/2011] [Indexed: 01/28/2023]
Abstract
BACKGROUND Breast cancer is the second most common source of brain metastasis. Stereotactic radiosurgery (SRS) can be an effective treatment for some patients with brain metastasis (BM). Necrosis is a common feature of many brain tumors, including BM; however, the influence of tumor necrosis on treatment efficacy of SRS in women with breast cancer metastatic to the brain is unknown. METHODS A cohort of 147 women with breast cancer and BM treated consecutively with SRS over 10 years were studied. Of these, 80 (54.4%) had necrosis identified on pretreatment magnetic resonance images and 67 (46.4%) did not. Survival times were computed using the Kaplan-Meier method. Log-rank tests were used to compare groups with respect to survival times, Cox proportional hazards regression models were used to perform univariate and multivariate analyses, and chi-square and Fisher exact tests were used to compare clinicopathologic covariates. RESULTS Neurological survival (NS) and survival after SRS were decreased in BM patients with necrosis at the time of SRS compared with patients without necrosis by 32% and 27%, respectively (NS median survival, 25 vs 17 months [log-rank test, P = .006]; SRS median survival, 15 vs 11 months [log-rank test, P = .045]). On multivariate analysis, HER2 amplification status and necrosis influenced NS and SRS after adjusting for standard clinical features, including BM number, size, and volume as well as Karnofsky performance status. CONCLUSION Neuroimaging evidence of necrosis at the time of SRS significantly diminished the efficacy of therapy and was a potent prognostic marker.
Collapse
Affiliation(s)
- Zhiyuan Xu
- Brain Tumor & Neuro-Oncology Center, Department of Neurosurgery, Neurological Institute, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
910
|
Wennemers M, Bussink J, Scheijen B, Nagtegaal ID, van Laarhoven HWM, Raleigh JA, Varia MA, Heuvel JJTM, Rouschop KM, Sweep FCGJ, Span PN. Tribbles homolog 3 denotes a poor prognosis in breast cancer and is involved in hypoxia response. Breast Cancer Res 2011; 13:R82. [PMID: 21864376 PMCID: PMC3236345 DOI: 10.1186/bcr2934] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 08/02/2011] [Accepted: 08/24/2011] [Indexed: 11/10/2022] Open
Abstract
Introduction Hypoxia in solid tumors is associated with treatment resistance, resulting in poor prognosis. Tribbles homolog 3 (TRIB3) is induced during hypoxia and is involved in multiple cellular pathways involved in cell survival. Here, we investigated the role of TRIB3 in breast cancer. Methods TRIB3 mRNA expression was measured in breast tumor tissue from 247 patients and correlated with clinicopathological parameters and clinical outcome. Furthermore, we studied TRIB3 expression regulation in cell lines, xenografts tissues and human breast cancer material using Reverse transcriptase, quantitative polymerase chain reaction (RT-qPCR) and immunohistochemical staining. Finally, the effect of small interfering RNA (siRNA) mediated TRIB3 knockdown on hypoxia tolerance was assessed. Results Breast cancer patients with low, intermediate or high TRIB3 expression exhibited a mean disease free survival (DFS) of 80 (95% confidence interval [CI] = 74 to 86), 74 (CI = 67 to 81), and 63 (CI = 55 to 71) months respectively (P = .002, Mantel-Cox log-rank). The prognostic value of TRIB3 was limited to those patients that had received radiotherapy as part of their primary treatment (n = 179, P = .005) and remained statistically significant after correction for other clinicopathological parameters (DFS, Hazard Ratio = 1.90, CI = 1.17 to 3.08, P = .009). In breast cell lines TRIB3 expression was induced by hypoxia, nutrient starvation, and endoplasmic reticulum stress in an hypoxia inducible factor 1 (HIF-1) independent manner. TRIB3 induction after hypoxia did not increase with decreasing oxygen levels. In breast tumor xenografts and human breast cancer tissues TRIB3 co-localized with the hypoxic cell marker pimonidazole. The induction of TRIB3 by hypoxia was shown to be regulated via the PERK/ATF4/CHOP pathway of the unfolded protein response and knockdown of TRIB3 resulted in a dose-dependent increase in hypoxia sensitivity. Conclusions TRIB3 is independently associated with poor prognosis of breast cancer patients, possibly through its association with tumor cell hypoxia.
Collapse
Affiliation(s)
- Marloes Wennemers
- Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
911
|
Saelen MG, Flatmark K, Folkvord S, de Wijn R, Rasmussen H, Fodstad Ø, Ree AH. Tumor kinase activity in locally advanced rectal cancer: angiogenic signaling and early systemic dissemination. Angiogenesis 2011; 14:481-9. [PMID: 21833622 PMCID: PMC3214264 DOI: 10.1007/s10456-011-9231-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/30/2011] [Indexed: 01/08/2023]
Abstract
Tumor hypoxia is a common determinant of resistance to cytotoxic therapies and metastatic behavior. In rectal cancer patients receiving preoperative chemoradiotherapy, tyrosine kinase activities in tumors with poor and good treatment responses were found to differ. Given that tyrosine kinase signaling mediates hypoxic tissue adaptation, the present study examined whether tumor kinase activity might also correlate with systemic dissemination of rectal cancer. Immunomagnetic selection of disseminated tumor cells (DTC) from bone marrow aspirates was undertaken in 55 patients with locally advanced rectal cancer. Using peptide arrays with 144 tyrosine kinase substrates, phosphopeptide signatures were generated from patients' baseline tumor biopsies, to study association between DTC and tumor tyrosine kinase activity regulated ex vivo by sunitinib. Disseminated tumor cells were detected in 60% of cases, and these patients had significantly poorer metastasis-free survival than patients without DTC. Phosphorylation of 31 array tyrosine kinase substrates by tumor samples was significantly more strongly inhibited by sunitinib in the DTC-negative patients, with a number of phosphosubstrates representing angiogenic factors. In this cohort of rectal cancer patients, tumor phenotypes defined by a subset of tyrosine kinase activities correlating with weak ex vivo inhibition by sunitinib, was associated with early systemic dissemination.
Collapse
Affiliation(s)
- Marie Grøn Saelen
- Department of Tumor Biology, Oslo University Hospital--Radiumhospitalet, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
912
|
Abstract
Extensive research in the past decade has revealed cancer to be a multigenic disease caused by perturbation of multiple cell signalling pathways and dysregulation of numerous gene products, all of which have been linked to inflammation. It is also becoming evident that various lifestyle factors, such as tobacco and alcohol use, diet, environmental pollution, radiation and infections, can cause chronic inflammation and lead to tumourigenesis. Chronic diseases caused by ongoing inflammation therefore require chronic, not acute, treatment. Nutraceuticals, compounds derived from fruits, vegetables, spices and cereals, can be used chronically. This study discusses the molecular targets of some nutraceuticals that happen to be markers of chronic inflammation and how they can prevent or treat cancer. These naturally-occurring agents in the diet have great potential as anti-cancer drugs, thus proving Hippocrates, who proclaimed 25 centuries ago, 'Let food be thy medicine and medicine be thy food'.
Collapse
Affiliation(s)
- Bokyung Sung
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
913
|
Hayashi M, Yoo YYG, Christensen J, Huang LE. Requirement of evading apoptosis for HIF-1α-induced malignant progression in mouse cells. Cell Cycle 2011; 10:2364-72. [PMID: 21654209 DOI: 10.4161/cc.10.14.16313] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Tumor hypoxia is correlated with genetic alteration and malignant progression. Our previous studies indicated that the hypoxia-inducible transcription factor, HIF-1α, is responsible for hypoxic suppression of DNA repair in tumor cells by a non-canonical mode of action that requires the HIF-1α PAS-B subdomain. The involvement of HIF-1α in genetic alteration has raised an intriguing question as to whether normal cells would respond to hypoxic stress differently to avert genetic alteration. In this study, we chose several mouse cell types ranging from benign to malignant, apoptosis-proficient to apoptosis-deficient, and determined their responses to HIF-1α expression. In agreement with our previous findings, transient hypoxia and HIF-1α expression inhibited DNA repair and induced DNA damage in all cell types examined; however, cumulative DNA damage only occurred in apoptosis-deficient, malignant cells transduced for sustained expression of HIF-1α or HIF-1α PAS-B itself. In keeping with the theory of apoptosis as a cancer barrier, only these apoptosis-deficient cells acquired anchorage-independent growth and epithelial-mesenchymal transition. Furthermore, these cells exhibited increased Akt activity and resistance to etoposide by inhibiting autophagy. Altogether, our results define an essential role for apoptosis to prevent HIF-1α-induced genetic alteration and thereby malignant progression.
Collapse
Affiliation(s)
- Masami Hayashi
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | | | | | | |
Collapse
|
914
|
Wahlström O, Linder CH, Ansell A, Kalén A, Söderström M, Magnusson P. Acidic preparations of lysed platelets upregulate proliferative pathways in osteoblast-like cells as demonstrated by genome-wide microarray analysis. Platelets 2011; 22:452-60. [DOI: 10.3109/09537104.2011.565432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
915
|
Mao XG, Yan M, Xue XY, Zhang X, Ren HG, Guo G, Wang P, Zhang W, Huo JL. Overexpression of ZNF217 in glioblastoma contributes to the maintenance of glioma stem cells regulated by hypoxia-inducible factors. J Transl Med 2011; 91:1068-78. [PMID: 21483406 DOI: 10.1038/labinvest.2011.56] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and common kind of primary brain tumor in adults, and is thought to be driven by a subpopulation of glioma stem cells (GSCs). GSCs reside in a specialized hypoxic niche, which can regulate the tumorigenic capacity of GSCs primarily through the hypoxia-inducible factors (HIFs), HIF1α and HIF2α. ZNF217 is an oncogene frequently amplified in many kinds of tumors. It is associated with aggressive tumor behavior and poor clinical prognosis, but its role in gliomas is poorly known. Gene expression and copy number analysis from TCGA data reveal that ZNF217 is amplified in 32% and overexpressed in 71.2% of GBMs. Quantitative RT-PCR and western blotting of a cohort of glioma samples showed that ZNF217 was highly expressed in gliomas and increased with tumor grade. Analysis of a molecular database demonstrated that ZNF217 expression correlated with poor survival of glioma patients. Investigation of ZNF217 expression in GSCs, non-GSCs and normal neural stem cells (NSCs) indicated that ZNF217 was more highly expressed in GSCs than in non-GSCs and NSCs. Knockdown of ZNF217 in GSCs by small-interfering RNA (siRNA) inhibited their growth and promoted their differentiation. Interestingly, ZNF217 was upregulated in GSCs and the GBM cell line U87 when exposed to the hypoxic environment of 1% oxygen. Knockdown of either HIF1α or HIF2α, which has a central role in the hypoxia-induced responses of these cells, inhibited ZNF217 expression. In addition, ZNF217 upregulation was compromised under hypoxia in U87 and GSCs when either HIF1α or HIF2α was targeted by siRNA. HIF2α knockdown inhibited ZNF217 expression more efficiently in both normoxia and hypoxia than HIF1α knockdown. Therefore, ZNF217 is overexpressed in GBMs and contributes to the maintenance of GSCs, which is regulated by HIFs released by the hypoxic environment of the tumor.
Collapse
Affiliation(s)
- Xing-gang Mao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
916
|
Zhang H, Zhang G, Gonzalez FJ, Park SM, Cai D. Hypoxia-inducible factor directs POMC gene to mediate hypothalamic glucose sensing and energy balance regulation. PLoS Biol 2011; 9:e1001112. [PMID: 21814490 PMCID: PMC3144184 DOI: 10.1371/journal.pbio.1001112] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/14/2011] [Indexed: 01/07/2023] Open
Abstract
Hypoxia-inducible factor (HIF) is a nuclear transcription factor that responds to environmental and pathological hypoxia to induce metabolic adaptation, vascular growth, and cell survival. Here we found that HIF subunits and HIF2α in particular were normally expressed in the mediobasal hypothalamus of mice. Hypothalamic HIF was up-regulated by glucose to mediate the feeding control of hypothalamic glucose sensing. Two underlying molecular pathways were identified, including suppression of PHDs by glucose metabolites to prevent HIF2α degradation and the recruitment of AMPK and mTOR/S6K to regulate HIF2α protein synthesis. HIF activation was found to directly control the transcription of POMC gene. Genetic approach was then employed to develop conditional knockout mice with HIF inhibition in POMC neurons, revealing that HIF loss-of-function in POMC neurons impaired hypothalamic glucose sensing and caused energy imbalance to promote obesity development. The metabolic effects of HIF in hypothalamic POMC neurons were independent of leptin signaling or pituitary ACTH pathway. Hypothalamic gene delivery of HIF counteracted overeating and obesity under conditions of nutritional excess. In conclusion, HIF controls hypothalamic POMC gene to direct the central nutrient sensing in regulation of energy and body weight balance.
Collapse
Affiliation(s)
- Hai Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Physiology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Cellular & Molecular Biology Program, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Guo Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Frank J. Gonzalez
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Sung-min Park
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Physiology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
917
|
Stasinopoulos I, Penet MF, Chen Z, Kakkad S, Glunde K, Bhujwalla ZM. Exploiting the tumor microenvironment for theranostic imaging. NMR IN BIOMEDICINE 2011; 24:636-47. [PMID: 21793072 PMCID: PMC3146040 DOI: 10.1002/nbm.1664] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 11/29/2010] [Accepted: 12/06/2010] [Indexed: 05/12/2023]
Abstract
The integration of chemistry and molecular biology with imaging is providing some of the most exciting opportunities in the treatment of cancer. The field of theranostic imaging, where diagnosis is combined with therapy, is particularly suitable for a disease as complex as cancer, especially now that genomic and proteomic profiling can provide an extensive 'fingerprint' of each tumor. Using this information, theranostic agents can be shaped for personalized treatment to target specific compartments, such as the tumor microenvironment (TME), whilst minimizing damage to normal tissue. These theranostic agents can also be used to target multiple pathways or networks by incorporating multiple small interfering RNAs (siRNAs) within a single agent. A decade ago genetic alterations were the primary focus in cancer research. Now it is apparent that the tumor physiological microenvironment, interactions between cancer cells and stromal cells, such as endothelial cells, fibroblasts and macrophages, the extracellular matrix (ECM), and a host of secreted factors and cytokines, influence progression to metastatic disease, aggressiveness and the response of the disease to treatment. In this review, we outline some of the characteristics of the TME, describe the theranostic agents currently available to target the TME and discuss the unique opportunities the TME provides for the design of novel theranostic agents for cancer therapy.
Collapse
Affiliation(s)
- Ioannis Stasinopoulos
- JHU ICMIC Program, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marie-France Penet
- JHU ICMIC Program, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhihang Chen
- JHU ICMIC Program, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samata Kakkad
- JHU ICMIC Program, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristine Glunde
- JHU ICMIC Program, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zaver M. Bhujwalla
- JHU ICMIC Program, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Correspondence to: Z. M. Bhujwalla, Department of Radiology, The Johns Hopkins University School of Medicine, Rm 208C, Traylor Bldg., 720, Rutland Avenue, Baltimore, MD 21205, USA.
| |
Collapse
|
918
|
Yoo YG, Christensen J, Gu J, Huang LE. HIF-1α mediates tumor hypoxia to confer a perpetual mesenchymal phenotype for malignant progression. Sci Signal 2011; 4:pt4. [PMID: 21693763 DOI: 10.1126/scisignal.2002072] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Although tumor progression involves genetic and epigenetic alterations to normal cellular biology, the underlying mechanisms of these changes remain obscure. Numerous studies have shown that hypoxia-inducible factor 1α (HIF-1α) is overexpressed in many human cancers and up-regulates a host of hypoxia-responsive genes for cancer growth and survival. We recently identified an alternative mechanism of HIF-1α function that induces genetic alterations by suppressing DNA repair. Here, we show that long-term hypoxia, which mimics the tumor microenvironment, drives a perpetual epithelial-mesenchymal transition (EMT) through up-regulation of the zinc finger E-box binding homeobox protein ZEB2, whereas short-term hypoxia induces a reversible EMT that requires the transcription factor Twist1. Moreover, we show that the perpetual EMT driven by chronic hypoxia depends on HIF-1α induction of genetic alterations rather than its canonical transcriptional activator function. These mesenchymal tumor cells not only acquire tumorigenicity but also display characteristics of advanced cancers, including necrosis, aggressive invasion, and metastasis. Hence, these results reveal a mechanism by which HIF-1α promotes a perpetual mesenchymal phenotype, thereby advancing tumor progression.
Collapse
Affiliation(s)
- Young-Gun Yoo
- Department of Neurosurgery, University of Utah, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
919
|
Zhang C, Kang C, Wang P, Cao Y, Lv Z, Yu S, Wang G, Zhang A, Jia Z, Han L, Yang C, Ishiyama H, Teh BS, Xu B, Pu P. MicroRNA-221 and -222 regulate radiation sensitivity by targeting the PTEN pathway. Int J Radiat Oncol Biol Phys 2011; 80:240-8. [PMID: 21481725 DOI: 10.1016/j.ijrobp.2010.12.049] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 10/05/2010] [Accepted: 12/05/2010] [Indexed: 12/17/2022]
Abstract
PURPOSE MicroRNAs (miRNAs) are noncoding RNAs inhibiting expression of numerous target genes by posttranscriptional regulation. miRNA-221 and miRNA-222 (miRNA-221/-222) expression is elevated in radioresistant tumor cell lines; however, it is not known whether and how miRNAs control cellular responses to ionizing irradiation. METHODS AND MATERIALS We used bioinformatic analyses, luciferase reporter assay, and genetic knockdown and biochemical assays to characterize the regulation pathways of miRNA-221/-222 in response to radiation treatment. RESULTS We identified the PTEN gene as a target of miRNA-221/-222. Furthermore, we found that knocking down miRNA-221/-222 by antisense oligonucleotides upregulated PTEN expression. Upregulated PTEN expression suppressed AKT activity and increased radiation-induced apoptosis, resulting in enhancement of radiosensitivity in tumor cells. CONCLUSIONS miRNA-221/-222 control radiation sensitivity by regulating the PTEN/AKT pathway and can be explored as novel targets for radiosensitization.
Collapse
Affiliation(s)
- Chunzhi Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin 300052, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
920
|
Burrows N, Babur M, Resch J, Williams KJ, Brabant G. Hypoxia-inducible factor in thyroid carcinoma. J Thyroid Res 2011; 2011:762905. [PMID: 21765994 PMCID: PMC3134378 DOI: 10.4061/2011/762905] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/20/2011] [Indexed: 12/19/2022] Open
Abstract
Intratumoural hypoxia (low oxygen tension) is associated with aggressive disease and poor prognosis. Hypoxia-inducible factor-1 is a transcription factor activated by hypoxia that regulates the expression of genes that promote tumour cell survival, progression, metastasis, and resistance to chemo/radiotherapy. In addition to hypoxia, HIF-1 can be activated by growth factor-signalling pathways such as the mitogen-activated protein kinases- (MAPK-) and phosphatidylinositol-3-OH kinases- (PI3K-) signalling cascades. Mutations in these pathways are common in thyroid carcinoma and lead to enhanced HIF-1 expression and activity. Here, we summarise current data that highlights the potential role of both hypoxia and MAPK/PI3K-induced HIF-1 signalling in thyroid carcinoma progression, metastatic characteristics, and the potential role of HIF-1 in thyroid carcinoma response to radiotherapy. Direct or indirect targeting of HIF-1 using an MAPK or PI3K inhibitor in combination with radiotherapy may be a new potential therapeutic target to improve the therapeutic response of thyroid carcinoma to radiotherapy and reduce metastatic burden.
Collapse
Affiliation(s)
- Natalie Burrows
- Hypoxia and Therapeutics Group, School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | |
Collapse
|
921
|
Mayes PA, Dolloff NG, Daniel CJ, Liu JJ, Hart LS, Kuribayashi K, Allen JE, Jee DIH, Dorsey JF, Liu YY, Dicker DT, Brown JM, Furth EE, Klein PS, Sears RC, El-Deiry WS. Overcoming hypoxia-induced apoptotic resistance through combinatorial inhibition of GSK-3β and CDK1. Cancer Res 2011; 71:5265-75. [PMID: 21646472 DOI: 10.1158/0008-5472.can-11-1383] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tumor hypoxia is an inherent impediment to cancer treatment that is both clinically significant and problematic. In this study, we conducted a cell-based screen to identify small molecules that could reverse the apoptotic resistance of hypoxic cancer cells. Among the compounds, we identified were a structurally related group that sensitized hypoxic cancer cells to apoptosis by inhibiting the kinases GSK-3β and cyclin-dependent kinase (CDK) 1. Combinatorial inhibition of these proteins in hypoxic cancer cells and tumors increased levels of c-Myc and decreased expression of c-IAP2 and the central hypoxia response regulator hypoxia-inducible factor (HIF) 1α. In mice, these compounds augmented the hypoxic tumor cell death induced by cytotoxic chemotherapy, blocking angiogenesis and tumor growth. Taken together, our findings suggest that combinatorial inhibition of GSK-3β and CDK1 augment the apoptotic sensitivity of hypoxic tumors, and they offer preclinical validation of a novel and readily translatable strategy to improve cancer therapy.
Collapse
Affiliation(s)
- Patrick A Mayes
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
922
|
Martin SK, Diamond P, Gronthos S, Peet DJ, Zannettino ACW. The emerging role of hypoxia, HIF-1 and HIF-2 in multiple myeloma. Leukemia 2011; 25:1533-42. [PMID: 21637285 DOI: 10.1038/leu.2011.122] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hypoxia is an imbalance between oxygen supply and demand, which deprives cells or tissues of sufficient oxygen. It is well-established that hypoxia triggers adaptive responses, which contribute to short- and long-term pathologies such as inflammation, cardiovascular disease and cancer. Induced by both microenvironmental hypoxia and genetic mutations, the elevated expression of the hypoxia-inducible transcription factor-1 (HIF-1) and HIF-2 is a key feature of many human cancers and has been shown to promote cellular processes, which facilitate tumor progression. In this review, we discuss the emerging role of hypoxia and the HIFs in the pathogenesis of multiple myeloma (MM), an incurable hematological malignancy of BM PCs, which reside within the hypoxic BM microenvironment. The need for current and future therapeutic interventions to target HIF-1 and HIF-2 in myeloma will also be discussed.
Collapse
Affiliation(s)
- S K Martin
- Division of Haematology, Centre for Cancer Biology, SA Pathology, CSCR, University of Adelaide, Adelaide, South Australia
| | | | | | | | | |
Collapse
|
923
|
Fang J, Ma I, Allalunis-Turner J. Knockdown of cytoglobin expression sensitizes human glioma cells to radiation and oxidative stress. Radiat Res 2011; 176:198-207. [PMID: 21631290 DOI: 10.1667/rr2517.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cytoglobin is a recently identified vertebrate globin whose functions include scavenging reactive oxygen and nitrosative species. In tumor cells, CYGB may function as a tumor suppressor gene. Here we show that knockdown of cytoglobin expression can sensitize human glioma cells to oxidative stress induced by chemical inhibitors of the electron transport chain and as well can increase cellular radiosensitivity. When treated with antimycin A, an inhibitor of the mitochondrial electron transport chain, cytoglobin-deficient cells showed significantly higher H₂O₂ levels, whereas H₂O₂ levels were significantly reduced in cytoglobin-overexpressing cells. In addition, cytoglobin knockdown significantly decreased the doubling time of glioma cell lines, consistent with a putative tumor suppressor function. These finding suggest that modulating cytoglobin levels may be a promising treatment strategy for sensitizing human glioma cells to oxidative stress that is induced by ionizing radiation, certain chemotherapies and ischemia-reperfusion.
Collapse
Affiliation(s)
- Jingye Fang
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
924
|
Bartkowiak K, Riethdorf S, Pantel K. The interrelating dynamics of hypoxic tumor microenvironments and cancer cell phenotypes in cancer metastasis. CANCER MICROENVIRONMENT 2011; 5:59-72. [PMID: 21626313 DOI: 10.1007/s12307-011-0067-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 05/18/2011] [Indexed: 02/04/2023]
Abstract
The interrelating dynamics of the primary tumor cells and their surrounding microenvironment might determine phenotypic characteristics of disseminated tumor cells and contribute to cancer metastasis. Cytoprotective mechanisms (e.g., energy metabolism control, DNA damage response, global translation control and unfolded protein response) exert selective pressure in the tumor microenvironment. In particular, adaptation to hypoxia is vital for survival of malignant cells in the tumor and at distant sites such as the bone marrow. In addition to the stress response, the ability of tumor cells to undergo certain cellular re-differentiation programmes like the epithelial-mesenchymal transition (EMT), which is linked to cancer stemness, appears to be important for successful cancer cell spread. Here we will discuss the selection pressures that eventually lead to the formation of overt metastases. We will focus the properties of the microenvironment including (i) metabolic and cytoprotective programs that ensure survival of disseminated tumor cells, (ii) blood vessel structure, and (iii) the hypoxia-normoxia switch as well as intrinsic factors affecting the evolvement of novel tumor cell populations.
Collapse
Affiliation(s)
- Kai Bartkowiak
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | | | | |
Collapse
|
925
|
Zeng J, Wang J, Gao W, Mohammadreza A, Kelbauskas L, Zhang W, Johnson RH, Meldrum DR. Quantitative single-cell gene expression measurements of multiple genes in response to hypoxia treatment. Anal Bioanal Chem 2011; 401:3-13. [PMID: 21614642 DOI: 10.1007/s00216-011-5084-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/26/2011] [Accepted: 04/29/2011] [Indexed: 01/28/2023]
Abstract
Cell-to-cell heterogeneity in gene transcription plays a central role in a variety of vital cell processes. To quantify gene expression heterogeneity patterns among cells and to determine their biological significance, methods to measure gene expression levels at the single-cell level are highly needed. We report an experimental technique based on the DNA-intercalating fluorescent dye SYBR green for quantitative expression level analysis of up to ten selected genes in single mammalian cells. The method features a two-step procedure consisting of a step to isolate RNA from a single mammalian cell, synthesize cDNA from it, and a qPCR step. We applied the method to cell populations exposed to hypoxia, quantifying expression levels of seven different genes spanning a wide dynamic range of expression in randomly picked single cells. In the experiment, 72 single Barrett's esophageal epithelial (CP-A) cells, 36 grown under normal physiological conditions (controls) and 36 exposed to hypoxia for 30 min, were randomly collected and used for measuring the expression levels of 28S rRNA, PRKAA1, GAPDH, Angptl4, MT3, PTGES, and VEGFA genes. The results demonstrate that the method is sensitive enough to measure alterations in gene expression at the single-cell level, clearly showing heterogeneity within a cell population. We present technical details of the method development and implementation, and experimental results obtained by use of the procedure. We expect the advantages of this technique will facilitate further developments and advances in the field of single-cell gene expression profiling on a nanotechnological scale, and eventually as a tool for future point-of-care medical applications.
Collapse
Affiliation(s)
- Jia Zeng
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-6501, USA
| | | | | | | | | | | | | | | |
Collapse
|
926
|
Chung C, Mader CC, Schmitz J, Atladottir J, Fitchev P, Cornwell M, Koleske AJ, Crawford SE, Gorelick F. The vacuolar-ATPase modulates matrix metalloproteinase isoforms in human pancreatic cancer. J Transl Med 2011; 91:732-43. [PMID: 21339745 PMCID: PMC3084324 DOI: 10.1038/labinvest.2011.8] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The vacuolar-ATPase (v-ATPase) is a proton transporter found on many intracellular organelles and the plasma membrane (PM). The v-ATPase on PMs of cancer cells may contribute to their invasive properties in vitro. Its relevance to human cancer tissues remains unclear. We investigated whether the expression and cellular localization of v-ATPase corresponded to the stage of human pancreatic cancer, and its effect on matrix metalloproteinase (MMP) activation in vitro. The intensity of v-ATPase staining increased significantly across the range of pancreatic histology from normal ducts to pancreatic intraepithelial neoplasms (PanIN), and finally pancreatic ductal adenocarcinoma (PDAC). Low-grade PanIN lesions displayed polarized staining confined to the basal aspect of the cell in the majority (86%) of fields examined. High-grade PanIN lesions and PDAC showed intense and diffuse v-ATPase localization. In pancreatic cancer cells, PM-associated v-ATPase colocalized with cortactin, a component of the leading edge that helps direct MMP release. Blockade of the v-ATPase with concanamycin or short-hairpin RNA targeting the V₁E subunit reduced MMP-9 activity; this effect was greatest in cells with prominent PM-associated v-ATPase. In cells with detectable MMP-2 activities, however, treatment with concanamycin markedly increased MMP-2's most activated forms. V-ATPase blockade inhibited functional migration and invasion in those cells with predominantly MMP-9 activity. These results indicate that human PDAC specimens show loss of v-ATPase polarity and increased expression that correlates with increasing invasive potential. Thus, v-ATPase selectively modulates specific MMPs that may be linked to an invasive cancer phenotype.
Collapse
Affiliation(s)
- Chuhan Chung
- Department of Medicine, Section of Digestive Diseases, VA CT Research, VA CT Healthcare System, Yale University School of Medicine, West Haven, CT 06516, USA.
| | | | | | | | - Phillip Fitchev
- Department of Surgery, NorthShore Research Institute, University of Chicago Pritzker School of Medicine
| | - Mona Cornwell
- Department of Surgery, NorthShore Research Institute, University of Chicago Pritzker School of Medicine
| | | | - Susan E Crawford
- Department of Surgery, NorthShore Research Institute, University of Chicago Pritzker School of Medicine
| | - Fred Gorelick
- Section of Digestive Diseases, Department of Medicine, VA CT Healthcare System, Yale University School of Medicine
| |
Collapse
|
927
|
Mohammed N, Rodriguez M, Garcia V, Garcia JM, Dominguez G, Peña C, Herrera M, Gomez I, Diaz R, Soldevilla B, Herrera A, Silva J, Bonilla F. EPAS1 mRNA in plasma from colorectal cancer patients is associated with poor outcome in advanced stages. Oncol Lett 2011; 2:719-724. [PMID: 22848255 DOI: 10.3892/ol.2011.294] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 04/08/2011] [Indexed: 12/18/2022] Open
Abstract
The presence of free nucleic acids in plasma has been detected in cancer patients and is associated with poor prognosis. In the present study, the mRNA levels of three genes (EPAS1, KIAA0101 and UBE2D3) in plasma from colorectal cancer patients were analyzed. These genes were selected from a previous study of genomic profiles, discriminating between healthy controls and colorectal cancer patients. mRNA levels were analyzed by real-time PCR in the plasma of 154 patients with colorectal cancer. The association of plasma mRNA levels with clinicopathological parameters and patient survival were analyzed. High levels of EPAS1 in the plasma were associated with patients aged over 50 years, relapse of disease and patient mortality. When patients were divided into two groups, early (I and II) and advanced (III and IV) stages, an association was observed between high levels of EPAS1 mRNA and worse disease-free and overall survival in advanced stages. The expression of KIAA0101 and UBE2D3 was not associated with poor prognosis. Thus, our results suggest that EPAS1 mRNA levels may be an indicator of poor prognosis in colorectal cancer patients at advanced stages, obtained by a non-invasive method.
Collapse
Affiliation(s)
- N Mohammed
- Department of Medical Oncology, University Hospital Puerta de Hierro Majadahonda, E-28222 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
928
|
Alizadeh E, Cloutier P, Hunting D, Sanche L. Soft X-ray and low energy electron-induced damage to DNA under N2 and O2 atmospheres. J Phys Chem B 2011; 115:4523-31. [PMID: 21452797 PMCID: PMC3846624 DOI: 10.1021/jp200947g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
DNA damage induced by low energy electrons (LEEs) and soft X-rays is measured under dry nitrogen and oxygen at atmospheric pressure and temperature. Five-monolayer plasmid DNA films deposited on tantalum and glass substrates are exposed to Al K(α) X-rays of 1.5 keV in the two different environments. From the damage yields for DNA, G values are extracted for X-rays and LEEs. The G values for LEEs are 3.5 and 3.4 higher than those for X-ray photons under N(2) and O(2) atmospheres, respectively. Because most of the measured damage is in the form of single strand breaks (SSB), this result indicates a much higher effectiveness for LEEs relative to X-rays in causing SSB in both environments. The results indicate that the oxygen fixation mechanism, which is highly effective in increasing radiobiological effectiveness, under aerobic conditions, is operative on the type of damage created at the early stage of DNA radiolysis by LEEs.
Collapse
Affiliation(s)
- Elahe Alizadeh
- Département de Médecine Nucléaire et Radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | | | | | | |
Collapse
|
929
|
Goldstein R, Pickering L, Larkin J. Does axitinib (AG-01376) have a future role in metastatic renal cell carcinoma and other malignancies? Expert Rev Anticancer Ther 2011; 10:1545-57. [PMID: 20942625 DOI: 10.1586/era.10.134] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Axitinib (Pfizer Inc., UK) is an oral small-molecule receptor tyrosine kinase inhibitor that targets angiogenesis. Axitinib has greater affinity and is a more selective inhibitor of VEGF receptor 1, -2 and -3, PDGFR and c-KIT than both sunitinib and sorafenib. It has encouraging efficacy and safety data in Phase II trials for metastatic renal cell carcinoma and advanced thyroid cancer patients. It is now being investigated in two Phase III trials in metastatic renal cell carcinoma and in Phase II trials in a range of tumor types. These trials will determine whether axitinib is an effective and safe antiangiogenic therapy.
Collapse
Affiliation(s)
- Robert Goldstein
- Department of Oncology, St George's Hospital, London, SW17 0QT, UK
| | | | | |
Collapse
|
930
|
Rohwer N, Cramer T. Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist Updat 2011; 14:191-201. [PMID: 21466972 DOI: 10.1016/j.drup.2011.03.001] [Citation(s) in RCA: 465] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/08/2011] [Accepted: 03/09/2011] [Indexed: 12/23/2022]
Abstract
Resistance towards chemotherapy, either primary or acquired, represents a major obstacle in clinical oncology. Three basic categories underlie most cases of chemotherapy failure: Inadequate pharmacokinetic properties of the drug, tumor cell intrinsic factors such as the expression of drug efflux pumps and tumor cell extrinsic conditions present in the tumor microenvironment, characterized by such hostile conditions as hypoxia, acidosis, nutrient starvation and increased interstitial pressure. Tumor hypoxia has been known to negatively affect therapy outcome for decades. Hypoxia inhibits tumor cell proliferation and induces cell cycle arrest, ultimately conferring chemoresistance since anticancer drugs preferentially target rapidly proliferating cells. However, this knowledge has been largely neglected while screening for anti-proliferative substances in vitro, resulting in hypoxia-mediated failure of most newly identified substances in vivo. To achieve a tangible therapeutic benefit from this knowledge, the mechanisms that drive tumoral responses to hypoxia need to be identified and exploited for their validity as innovative therapy targets. The HIF family of hypoxia-inducible transcription factors represents the main mediator of the hypoxic response and is widely upregulated in human cancers. HIF-1α and to a lesser extent HIF-2α, the oxygen-regulated HIF isoforms, have been associated with chemotherapy failure and interference with HIF function holds great promise to improve future anticancer therapy. In this review we summarize recent findings on the molecular mechanisms that underlie the role of the HIFs in drug resistance. Specifically, we will highlight the multifaceted interaction of HIF with apoptosis, senescence, autophagy, p53 and mitochondrial activity and outline how these are at the heart of HIF-mediated therapy failure.
Collapse
Affiliation(s)
- Nadine Rohwer
- Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | | |
Collapse
|
931
|
Abstract
Hypoxia-inducible factor (HIF) regulates the major transcriptional cascade central to the response of all mammalian cells to alterations in oxygen tension. Expression arrays indicate that many hundreds of genes are regulated by this pathway, controlling diverse processes that in turn orchestrate both oxygen delivery and utilization. However, the extent to which HIF exerts direct versus indirect control over gene expression together with the factors dictating the range of HIF-regulated genes remains unclear. Using chromatin immunoprecipitation linked to high throughput sequencing, we identify HIF-binding sites across the genome, independently of gene architecture. Using gene set enrichment analysis, we demonstrate robust associations with the regulation of gene expression by HIF, indicating that these sites operate over long genomic intervals. Analysis of HIF-binding motifs demonstrates sequence preferences outside of the core RCGTG-binding motif but does not reveal any additional absolute sequence requirements. Across the entire genome, only a small proportion of these potential binding sites are bound by HIF, although occupancy of potential sites was enhanced approximately 20-fold at normoxic DNAse1 hypersensitivity sites (irrespective of distance from promoters), suggesting that epigenetic regulation of chromatin may have an important role in defining the response to hypoxia.
Collapse
|
932
|
Klotzsche-von Ameln A, Muschter A, Mamlouk S, Kalucka J, Prade I, Franke K, Rezaei M, Poitz DM, Breier G, Wielockx B. Inhibition of HIF prolyl hydroxylase-2 blocks tumor growth in mice through the antiproliferative activity of TGFβ. Cancer Res 2011; 71:3306-16. [PMID: 21436457 DOI: 10.1158/0008-5472.can-10-3838] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Virtually all solid tumors are dependent on a vascular network to provide them with the right amount of nutrients and oxygen. In that sense, low oxygen tension or hypoxia leads to an adaptive response that is transcriptionally regulated by the hypoxia-inducible factors (HIF), which are tightly controlled by the HIF prolyl hydroxylases (PHD). In this study, we show that inhibition of the oxygen sensor PHD2 in tumor cells stimulates vessel formation but paradoxically results in a profound reduction of tumor growth. This effect relies on the antiproliferative nature of the TGFβ signaling pathway, in a largely HIF-independent manner. Moreover, our findings reveal that PHD2 has an essential function in controlling the dual nature of TGFβ during tumorigenesis and may offer an alternative opportunity for anticancer therapy.
Collapse
MESH Headings
- Animals
- Bone Neoplasms/enzymology
- Bone Neoplasms/metabolism
- Bone Neoplasms/pathology
- Cell Growth Processes/physiology
- Cell Line, Tumor
- Female
- Gene Knockdown Techniques
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor-Proline Dioxygenases
- Melanoma, Experimental/enzymology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Neoplasms, Experimental/enzymology
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Osteosarcoma/enzymology
- Osteosarcoma/metabolism
- Osteosarcoma/pathology
- Procollagen-Proline Dioxygenase/antagonists & inhibitors
- Procollagen-Proline Dioxygenase/genetics
- Procollagen-Proline Dioxygenase/metabolism
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- Transforming Growth Factor beta/metabolism
Collapse
|
933
|
Demaria M, Giorgi C, Lebiedzinska M, Esposito G, D'Angeli L, Bartoli A, Gough DJ, Turkson J, Levy DE, Watson CJ, Wieckowski MR, Provero P, Pinton P, Poli V. A STAT3-mediated metabolic switch is involved in tumour transformation and STAT3 addiction. Aging (Albany NY) 2011; 2:823-42. [PMID: 21084727 PMCID: PMC3006025 DOI: 10.18632/aging.100232] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The pro-oncogenic transcription factor STAT3 is constitutively activated in a wide variety of tumours that often become addicted to its activity, but no unifying view of a core function determining this widespread STAT3-dependence has yet emerged. We show here that constitutively active STAT3 acts as a master regulator of cell metabolism, inducing aerobic glycolysis and down-regulating mitochondrial activity both in primary fibroblasts and in STAT3-dependent tumour cell lines. As a result, cells are protected from apoptosis and senescence while becoming highly sensitive to glucose deprivation. We show that enhanced glycolysis is dependent on HIF-1α up-regulation, while reduced mitochondrial activity is HIF-1α-independent and likely caused by STAT3-mediated down-regulation of mitochondrial proteins. The induction of aerobic glycolysis is an important component of STAT3 pro-oncogenic activities, since inhibition of STAT3 tyrosine phosphorylation in the tumour cell lines down-regulates glycolysis prior to leading to growth arrest and cell death, both in vitro and in vivo. We propose that this novel, central metabolic role is at the core of the addiction for STAT3 shown by so many biologically different tumours.
Collapse
Affiliation(s)
- Marco Demaria
- Molecular Biotechnology Center and Department of Genetics, Biology and Biochemistry, University of Turin, Via Nizza 52, 10126 Turin, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
934
|
KS900: A hypoxia-directed, reductively activated methylating antitumor prodrug that selectively ablates O(6)-alkylguanine-DNA alkyltransferase in neoplastic cells. Biochem Pharmacol 2011; 81:1201-10. [PMID: 21396917 DOI: 10.1016/j.bcp.2011.02.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 02/24/2011] [Accepted: 02/28/2011] [Indexed: 11/22/2022]
Abstract
To most effectively treat cancer it may be necessary to preferentially destroy tumor tissue while sparing normal tissues. One strategy to accomplish this is to selectively cripple the involved tumor resistance mechanisms, thereby allowing the affected anticancer drugs to gain therapeutic efficacy. Such an approach is exemplified by our design and synthesis of the intracellular hypoxic cell activated methylating agent, 1,2-bis(methylsulfonyl)-1-methyl-2-[[1-(4-nitrophenyl)ethoxy]carbonyl]hydrazine (KS900) that targets the O-6 position of guanine in DNA. KS900 is markedly more cytotoxic in clonogenic experiments under conditions of oxygen deficiency than the non-intracellularly activated agents KS90, and 90M, when tested in O(6)-alkylguanine-DNA alkyltransferase (AGT) non-expressing cells (EMT6 mouse mammary carcinoma, CHO/AA8 hamster ovary, and U251 human glioma), and than temozolomide when tested in AGT expressing cells (DU145 human prostate carcinoma). Furthermore, KS900 more efficiently ablates AGT in HL-60 human leukemia and DU145 cells than the spontaneous globally activated methylating agent KS90, with an IC(50) value over 9-fold lower than KS90. Finally, KS900 under oxygen-deficient conditions selectively sensitizes DU145 cells to the chloroethylating agent, onrigin, through the ablation of the resistance protein AGT. Thus, under hypoxia, KS900 is more cytotoxic at substantially lower concentrations than methylating agents such as temozolomide that are not preferentially activated in neoplastic cells by intracellular reductase catalysts. The necessity for intracellular activation of KS900 permits substantially greater cytotoxic activity against cells containing the resistance protein O(6)-alkylguanine-DNA alkyltransferase (AGT) than agents such as temozolomide. Furthermore, the hypoxia-directed intracellular activation of KS900 allows it to preferentially ablate AGT pools under the oxygen-deficient conditions that are present in malignant tissue.
Collapse
|
935
|
Nagasawa H. Pathophysiological response to hypoxia - from the molecular mechanisms of malady to drug discovery: drug discovery for targeting the tumor microenvironment. J Pharmacol Sci 2011; 115:446-52. [PMID: 21422725 DOI: 10.1254/jphs.10r25fm] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The tumor microenvironment, characterized by regions of hypoxia, low nutrition, and acidosis due to incomplete blood vessel networks, has been recognized as a major factor that influences not only the response to conventional anti-cancer therapies but also malignant progression and metastasis. However, exploiting such a cumbersome tumor microenvironment for cancer treatment could provide tumor-specific therapeutic approaches. In particular, hypoxia is now considered a fundamentally important characteristic of the tumor microenvironment in which hypoxia inducible factor (HIF)-1-mediated gene regulation is considered essential for angiogenesis and tumor development. Additional oxygen sensitive signaling pathways including mammalian target of rapamycin (mTOR) signaling and signaling through activation of the unfolded protein response (UPR) also contribute to the adaptation in the tumor microenvironment. This in turn has led to the current extensive interest in the signal molecules related to adaptive responses in the tumor microenvironment as potential molecular targets for cancer therapy against refractory cancer and recurrence in preparation for the aging society. Therefore, we should focus on the drug discovery for targeting the tumor microenvironment to develop tumor-specific cytostatic agents including angiogenesis inhibitors. In this paper, the development of hypoxia-selective prodrugs, HIF-1 inhibitors, and modulators of the tumor microenvironment will be discussed.
Collapse
Affiliation(s)
- Hideko Nagasawa
- Laboratory of Medicinal and Pharmaceutical Chemistry, Gifu Pharmaceutical University, Japan.
| |
Collapse
|
936
|
Onozuka H, Tsuchihara K, Esumi H. Hypoglycemic/hypoxic condition in vitro mimicking the tumor microenvironment markedly reduced the efficacy of anticancer drugs. Cancer Sci 2011; 102:975-82. [PMID: 21255190 DOI: 10.1111/j.1349-7006.2011.01880.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tumor tissues are often hypoxic because of defective vasculature. We previously showed that tumor tissues are also often deprived of glucose. The efficacy of anticancer drugs is affected by the tumor microenvironment, partly because of the drug delivery and cellular drug resistance; however, the precise mechanisms remain to be clarified. In the present study, we attempted to clarify whether hypoglycemic/hypoxic condition, which mimics the tumor microenvironment, might induce drug resistance, and if it did, to elucidate the underlying mechanisms. Pancreatic cancer-derived PANC-1 cells were treated with serial dilutions of anticancer drugs and incubated in either normoglycemic (1.0 g/L glucose) or hypoglycemic (0 g/L glucose) and normoxic (21% O(2)) or hypoxic (1% O(2) ) conditions. The 50% inhibitory concentration of gemcitabine was 1000 times higher for PANC-1 cells incubated under the hypoglycemic/hypoxic condition than for those incubated under the normoglycemic/normoxic condition. Conventional anticancer drugs target rapidly growing cells, so that non-proliferating or slowly proliferating cells usually show resistance to drugs. Though the cell cycle was delayed, sufficient cellular uptake and DNA incorporation of gemcitabine occurred under the hypoglycemic/hypoxic condition to cause DNA lesions and S-phase arrest. To overcome hypoglycemic/hypoxia-induced drug resistance, we examined kinase inhibitors targeting Chk1 or cell-survival signaling pathways. Among the compounds examined, the combination of UCN-01 and LY294002 partially sensitized the cells to gemcitabine under the hypoglycemic/hypoxic condition. These findings suggested that the adoption of suitable strategies may enhance the cytotoxicities of clinically used anticancer drugs against cancer cells.
Collapse
Affiliation(s)
- Hiroko Onozuka
- Cancer Physiology Project, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | | | | |
Collapse
|
937
|
Retention of the in vitro radiosensitizing potential of gemcitabine under anoxic conditions, in p53 wild-type and p53-deficient non-small-cell lung carcinoma cells. Int J Radiat Oncol Biol Phys 2011; 80:558-66. [PMID: 21377279 DOI: 10.1016/j.ijrobp.2010.12.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 12/08/2010] [Accepted: 12/17/2010] [Indexed: 11/23/2022]
Abstract
PURPOSE Whereas radiosensitization by gemcitabine is well studied under normal oxygen conditions, little is known about its radiosensitizing potential under reduced oxygen conditions. Therefore, the present study evaluated the impact of anoxia on gemcitabine-mediated radiosensitization. METHODS AND MATERIALS The clonogenic assay was performed in three isogenic A549 cell lines differing in p53 status (24 h, 0-15 nM gemcitabine, 0-8 Gy irradiation, normoxia vs. anoxia). Using radiosensitizing conditions, cells were collected for cell cycle analysis and apoptosis detection. RESULTS Whereas wild-type p53 A549-LXSN cells were more sensitive to radiation than p53-deficient A549-E6 cells, both cell lines showed similar radiosensitization by gemcitabine under normoxia and anoxia. Independent of p53 functionality, gemcitabine was able to overcome anoxia-induced G(0/1) arrest and established an (early) S phase block in normoxic and anoxic cells. The percentage early and late apoptotic/necrotic cells increased with the gemcitabine/radiation combination, with a significant difference between A549-LXSN and A549-E6. CONCLUSIONS This study is the first to show that gemcitabine retains its radiosensitizing potential under low oxygen conditions. Although radiosensitization was observed in both p53 wild-type and p53-deficient cells, p53 status might influence induction of apoptosis after gemcitabine/radiation treatment, whereas no effect on cell cycle progression was noticed.
Collapse
|
938
|
Tercel M, Atwell GJ, Yang S, Ashoorzadeh A, Stevenson RJ, Botting KJ, Gu Y, Mehta SY, Denny WA, Wilson WR, Pruijn FB. Selective Treatment of Hypoxic Tumor Cells In Vivo: Phosphate Pre-Prodrugs of Nitro Analogues of the Duocarmycins. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201004456] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
939
|
Tercel M, Atwell GJ, Yang S, Ashoorzadeh A, Stevenson RJ, Botting KJ, Gu Y, Mehta SY, Denny WA, Wilson WR, Pruijn FB. Selective treatment of hypoxic tumor cells in vivo: phosphate pre-prodrugs of nitro analogues of the duocarmycins. Angew Chem Int Ed Engl 2011; 50:2606-9. [PMID: 21370347 DOI: 10.1002/anie.201004456] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 01/02/2011] [Indexed: 11/07/2022]
Affiliation(s)
- Moana Tercel
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
940
|
Yoo YG, Christensen J, Huang LE. HIF-1α confers aggressive malignant traits on human tumor cells independent of its canonical transcriptional function. Cancer Res 2011; 71:1244-52. [PMID: 21303984 DOI: 10.1158/0008-5472.can-10-2360] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hypoxia is known to favor tumor survival and progression. Numerous studies have shown that hypoxia-inducible factor 1α (HIF-1α), an oxygen-sensitive transcription factor, is overexpressed in various types of human cancers and upregulates a battery of hypoxia-responsive genes for the growth and survival of cancer cells. Although tumor progression involves the acquisition of genetic and/or epigenetic changes that confer additional malignant traits, the underlying mechanisms of these changes remain obscure. We recently identified an alternative mechanism of HIF-1α function by which HIF-1α suppresses DNA repair by counteracting c-Myc transcriptional activity that maintains gene expression. Here, we show that this HIF-α-c-Myc pathway plays an essential role in mediating hypoxic effects on malignant progression via genetic alterations, resulting in the formation of malignant tumors with aggressive local invasion and epithelial-mesenchymal transition. We show an absolute requirement of the HIF-α-c-Myc pathway for malignant progression, whereas the canonical transcription function of HIF-1α alone is insufficient and seemingly dispensable. This study indicates that HIF-1α induction of genetic alteration is the underlying cause of tumor progression, especially by the hypoxic microenvironment.
Collapse
Affiliation(s)
- Young-Gun Yoo
- Departments of Neurosurgery and Oncological Sciences, University of Utah, Salt Lake City, Utah, USA
| | | | | |
Collapse
|
941
|
Abstract
Interest in the topic of tumour metabolism has waxed and waned over the past century of cancer research. The early observations of Warburg and his contemporaries established that there are fundamental differences in the central metabolic pathways operating in malignant tissue. However, the initial hypotheses that were based on these observations proved inadequate to explain tumorigenesis, and the oncogene revolution pushed tumour metabolism to the margins of cancer research. In recent years, interest has been renewed as it has become clear that many of the signalling pathways that are affected by genetic mutations and the tumour microenvironment have a profound effect on core metabolism, making this topic once again one of the most intense areas of research in cancer biology.
Collapse
Affiliation(s)
- Rob A Cairns
- The Campbell Family Cancer Research Institute, Toronto, ON M56 2M9, Canada
| | | | | |
Collapse
|
942
|
Affiliation(s)
- Minoru Koi
- Division of Gastroenterology, Department of Internal Medicine, Sammons Cancer Center, Baylor Research Institute, Dallas, Texas 75246, USA.
| | | |
Collapse
|
943
|
Papageorgis P, Cheng K, Ozturk S, Gong Y, Lambert AW, Abdolmaleky HM, Zhou JR, Thiagalingam S. Smad4 inactivation promotes malignancy and drug resistance of colon cancer. Cancer Res 2011; 71:998-1008. [PMID: 21245094 DOI: 10.1158/0008-5472.can-09-3269] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SMAD4 is localized to chromosome 18q21, a frequent site for loss of heterozygosity in advanced stage colon cancers. Although Smad4 is regarded as a signaling mediator of the TGFβ signaling pathway, its role as a major suppressor of colorectal cancer progression and the molecular events underlying this phenomenon remain elusive. Here, we describe the establishment and use of colon cancer cell line model systems to dissect the functional roles of TGFβ and Smad4 inactivation in the manifestation of a malignant phenotype. We found that loss of function of Smad4 and retention of intact TGFβ receptors could synergistically increase the levels of VEGF, a major proangiogenic factor. Pharmacologic inhibition studies suggest that overactivation of the TGFβ-induced MEK-Erk and p38-MAPK (mitogen-activated protein kinase) auxiliary pathways are involved in the induction of VEGF expression in SMAD4 null cells. Overall, SMAD4 deficiency was responsible for the enhanced migration of colon cancer cells with a corresponding increase in matrix metalloprotease 9 enhanced hypoxia-induced GLUT1 expression, increased aerobic glycolysis, and resistance to 5'-fluoruracil-mediated apoptosis. Interestingly, Smad4 specifically interacts with hypoxia-inducible factor (HIF) 1α under hypoxic conditions providing a molecular basis for the differential regulation of target genes to suppress a malignant phenotype. In summary, our results define a molecular mechanism that explains how loss of the tumor suppressor Smad4 promotes colorectal cancer progression. These findings are also consistent with targeting TGFβ-induced auxiliary pathways, such as MEK-ERK, and p38-MAPK and the glycolytic cascade, in SMAD4-deficient tumors as attractive strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Panagiotis Papageorgis
- Department of Medicine, Genetics & Genomics Graduate Program, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
944
|
Muthana M, Giannoudis A, Scott SD, Fang HY, Coffelt SB, Morrow FJ, Murdoch C, Burton J, Cross N, Burke B, Mistry R, Hamdy F, Brown NJ, Georgopoulos L, Hoskin P, Essand M, Lewis CE, Maitland NJ. Use of Macrophages to Target Therapeutic Adenovirus to Human Prostate Tumors. Cancer Res 2011; 71:1805-15. [DOI: 10.1158/0008-5472.can-10-2349] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
945
|
Sergeant G, Lerut E, Ectors N, Hendrickx T, Aerts R, Topal B. The prognostic relevance of tumor hypoxia markers in resected carcinoma of the gallbladder. Eur J Surg Oncol 2011; 37:80-6. [PMID: 21109386 DOI: 10.1016/j.ejso.2010.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 09/18/2010] [Accepted: 10/26/2010] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Intratumoral hypoxia has been suggested to drive more aggressive tumor behavior. Our aim was to define whether markers of tumor hypoxia are predictors of outcome in patients with gallbladder carcinoma. PATIENTS AND METHODS From 1996 to 2006, 34 patients underwent resection for gallbladder carcinoma. The median follow-up was 12.6 months. Immunohistochemical stains for VEGF, HIF1α, GLUT1, GLUT3, CA9 and EGFR were performed on archival tissue. Immunohistochemical results were correlated with clinical and histopathological parameters. Cumulative overall survival (OS) rates were estimated using the Kaplan-Meier method. Multivariable Cox regression models were used to identify predictors of OS. RESULTS The median OS was 11.9 (IQR: 3.4-22.0) months. Ubiquitous VEGF staining was observed in all gallbladder carcinomas. High (>50% of tumor cells) EGFR expression was associated with worse OS (p0.03). CA9 expression was less prevalent in poorly differentiated tumors (p0.02). GLUT3, GLUT1 and HIF1α expression were not associated with survival, but did correlate with the presence of lymph node metastasis (p0.02), tumor differentiation (p0.04) and tumor stage (p0.03) respectively. High EGFR expression, TNM stage and preoperative serum CA19.9 were retained as independent predictors of OS in multivariable analysis. CONCLUSION In gallbladder cancer high expression of EGFR is an independent predictor of survival.
Collapse
Affiliation(s)
- G Sergeant
- Department of Abdominal Surgery, University Hospital Leuven, Herestraat 49, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
946
|
Ban HS, Uto Y, Nakamura H. Hypoxia-inducible factor inhibitors: a survey of recent patented compounds (2004 – 2010). Expert Opin Ther Pat 2011; 21:131-46. [DOI: 10.1517/13543776.2011.547477] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
947
|
Parks SK, Chiche J, Pouyssegur J. pH control mechanisms of tumor survival and growth. J Cell Physiol 2011; 226:299-308. [PMID: 20857482 DOI: 10.1002/jcp.22400] [Citation(s) in RCA: 267] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A distinguishing phenotype of solid tumors is the presence of an alkaline cellular feature despite the surrounding acidic microenvironment. This phenotypic characteristic of tumors, originally described by Otto Warburg, arises due to alterations in metabolism of solid tumors. Hypoxic regions of solid tumors develop due to poor vascularization and in turn regulate the expression of numerous genes via the transcription factor HIF-1. Ultimately, the tumor microenvironment directs the development of tumor cells adapted to survive in an acidic surrounding where normal cells perish. The provision of unique pH characteristics in tumor cells provides a defining trait that has led to the pursuit of treatments that target metabolism, hypoxia, and pH-related mechanisms to selectively kill cancer cells. Numerous studies over the past decade involving the cancer-specific carbonic anhydrase IX have re-kindled an interest in pH disruption-based therapies. Although an acidification of the intracellular compartment is established as a means to induce normal cell death, the defining role of acid-base disturbances in tumor physiology and survival remains unclear. The aim of this review is to summarize recent data relating to the specific role of pH regulation in tumor cell survival. We focus on membrane transport and enzyme studies in an attempt to elucidate their respective functions regarding tumor cell pH regulation. These data are discussed in the context of future directions for the field of tumor cell acid-base-related research.
Collapse
Affiliation(s)
- Scott K Parks
- Institute of Developmental Biology and Cancer Research, CNRS UMR 6543, University of Nice, Centre A. Lacassagne, Nice, France.
| | | | | |
Collapse
|
948
|
Pocock R. Invited review: decoding the microRNA response to hypoxia. Pflugers Arch 2011; 461:307-15. [PMID: 21207057 DOI: 10.1007/s00424-010-0910-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 12/01/2010] [Indexed: 12/19/2022]
Abstract
microRNAs (miRNAs) were discovered nearly two decades ago by researchers who sought to understand how basic developmental mechanisms work in the nematode Caenorhabditis elegans. Since the identification of conserved miRNA families in higher eukaryotes, there has been an explosion of interest into how these tiny RNA molecules function. miRNAs are 20-24 nucleotide non-coding RNA molecules that predominantly regulate transcripts of target genes through translational inhibition. Much recent interest has focused on the influence of miRNAs on homeostatic regulation, and in particular, hypoxic responses. The ability to sense and respond to hypoxia is of fundamental importance to aerobic organisms and dysregulated oxygen homeostasis is a hallmark in the pathophysiology of cancer, neurological dysfunction, myocardial infarction, and lung disease. miRNAs are ideal mediators of hypoxic stress responses as they are able to modify gene expression both rapidly and reversibly. This enables miRNA-mediated gene regulatory circuits to modify metabolic networks with immaculate precision and control. Therefore, one may consider miRNAs as molecular rheostats which effect tuning and switching of regulatory circuits to facilitate survival and adaptation to hypoxic conditions. Such miRNA-mediated regulatory circuits would provide flexible and conditional alternatives to "conventional" transcriptional regulation. Here, I review recent discoveries that have boosted our understanding of miRNA regulation of hypoxia and discuss where future breakthroughs in this area may be made.
Collapse
Affiliation(s)
- Roger Pocock
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, 2200, Denmark.
| |
Collapse
|
949
|
Sato SB, Sato S, Kawamoto J, Kurihara T. Differential roles of internal and terminal double bonds in docosahexaenoic acid: Comparative study of cytotoxicity of polyunsaturated fatty acids to HT-29 human colorectal tumor cell line. Prostaglandins Leukot Essent Fatty Acids 2011; 84:31-7. [PMID: 20952172 DOI: 10.1016/j.plefa.2010.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 09/27/2010] [Accepted: 09/28/2010] [Indexed: 10/18/2022]
Abstract
The role of the double bonds in docosahexaenoic acid (22:6(Δ4,7,10,13,16,19); DHA) in cytotoxic lipid peroxidation was studied in a superoxide dismutase-defective human colorectal tumor cell line, HT-29. In a conventional culture, DHA and other polyunsaturated fatty acids (PUFAs) were found to induce acute lipid peroxidation and subsequent cell death. PUFAs that lack one or both the terminal double bonds (Δ19 and Δ4) but share Δ7,10,13,16 such as 22:5(Δ7,10,13,16,19), 22:5(Δ4,7,10,13,16), and 22:4(Δ7,10,13,16) were more effective than DHA. Lipid peroxidation and cell death were completely inhibited, except by 22:4(Δ7,10,13,16) when radical-mediated reactions were suppressed by culturing cells in 2% O(2) in the presence of vitamin E. DHA and C22:5 PUFAs but not 22:4(Δ7,10,13,16) were efficiently incorporated in phosphatidylinositol, regardless of the culturing conditions. These and other results suggested that the internal unsaturations Δ7,10,13,16 were sensitive to lipid peroxidation, whereas the terminal ones Δ19 and Δ4 appeared to be involved in assimilation into phospholipids.
Collapse
Affiliation(s)
- Satoshi B Sato
- Research Center for Low Temperature and Material Sciences, Kyoto University, Kyoto 606-8501, Japan.
| | | | | | | |
Collapse
|
950
|
Otsuka K, Ojima M, Hamada N, Imaoka T, Maeda M. The 1st YRBAJ Seminar: Techniques and knowledge to probe biological cellular responses occurring in a hypoxic microenvironment. JOURNAL OF RADIATION RESEARCH 2011; 52:110-111. [PMID: 21293075 DOI: 10.1269/jrr.10179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Affiliation(s)
- Kensuke Otsuka
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, Komae, Tokyo, Japan.
| | | | | | | | | |
Collapse
|