901
|
van Selm S, van Cann LM, Kolkman MAB, van der Zeijst BAM, van Putten JPM. Genetic basis for the structural difference between Streptococcus pneumoniae serotype 15B and 15C capsular polysaccharides. Infect Immun 2003; 71:6192-8. [PMID: 14573636 PMCID: PMC219561 DOI: 10.1128/iai.71.11.6192-6198.2003] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In a search for the genetic basis for the structural difference between the related Streptococcus pneumoniae capsular serotypes 15B and 15C and for the reported reversible switching between these serotypes, the corresponding capsular polysaccharide synthesis (cps) loci were investigated by keeping in mind that at the structural level, the capsules differ only in O acetylation. The cps locus of a serotype 15B strain was identified, partially PCR amplified with primers based on the related serotype 14 sequence, and sequenced. Sequence analysis revealed, among other open reading frames, an intact open reading frame (designated cps15bM) whose product, at the protein level, exhibited characteristics of previously identified acetyltransferases. Genetic analysis of the corresponding region in a serotype15C strain indicated that the same gene was present but had a premature stop in translation. Closer analysis indicated that the serotype 15B gene contained a short tandem TA repeat consisting of eight TA units. In serotype 15C, this gene contained nine TA units that resulted in a frameshift and a truncated product. Genetic analysis of 17 serotype 15B and 15C clinical isolates revealed a perfect correlation between the serotype and the length of the short tandem repeat in the putative O-acetyltransferase gene. The number of TA repeating units varied between seven and nine in the various isolates. Together, the data strongly suggest that the structural difference between serotypes 15B and 15C is based on variation in the short tandem TA repeat in the O-acetyltransferase gene and that the transition between serotypes is due to slipped-strand mispairing with deletion or insertion of TA units in the cps15bM gene.
Collapse
Affiliation(s)
- Saskia van Selm
- Department of Infectious Diseases and Immunology, Utrecht University, 3584 CL Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
902
|
References. Antibiotics (Basel) 2003. [DOI: 10.1128/9781555817886.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
903
|
Obregón V, García P, López R, García JL. VO1, a temperate bacteriophage of the type 19A multiresistant epidemic 8249 strain of Streptococcus pneumoniae: analysis of variability of lytic and putative C5 methyltransferase genes. Microb Drug Resist 2003; 9:7-15. [PMID: 12705678 DOI: 10.1089/107662903764736292] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A temperate bacteriophage (VO1) has been isolated from the Streptococcus pneumoniae type 19F multiresistant epidemic 8249 strain (South African strain). Structural analysis of the specific integration site, protein composition, restriction patterns, and molecular dissection of the lytic system of this phage revealed high sequence similarity with MM1, a temperate phage from the Spain23F-1 strain of pneumococcus, another multiresistant epidemic clone. The different pneumococcal strains sequenced so far exhibit an identical and single attB located in the same site of the genome. Remarkably, the LytA amidase coded by VO1 showed clear differences with that of the host bacterium in contrast with the situation previously documented for bacterial- and phage-coded amidases of pneumococcus. In addition, a new gene (orfmet) putatively coding for a C5 methyltransferase has been identified. A noticeable variability affecting the presence (or absence) of this supernumerary gene(s) in the same region of the genomes of three otherwise highly similar phages (i.e., VO1, MM1, and HB-3) suggests frequent recombinational events leading to introduce variability in this genome region. The peculiarities of genes like lytA and orfmet in VO1 provide interesting insights on mechanisms of horizontal transfer and lysogenic state co-evolution.
Collapse
|
904
|
Bender MH, Cartee RT, Yother J. Positive correlation between tyrosine phosphorylation of CpsD and capsular polysaccharide production in Streptococcus pneumoniae. J Bacteriol 2003; 185:6057-66. [PMID: 14526017 PMCID: PMC225014 DOI: 10.1128/jb.185.20.6057-6066.2003] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CpsA, CpsB, CpsC, and CpsD are part of a tyrosine phosphorylation regulatory system involved in modulation of capsule synthesis in Streptococcus pneumoniae and many other gram-positive and gram-negative bacteria. Using an immunoblotting technique, we observed distinct laddering patterns of S. pneumoniae capsular polysaccharides of various serotypes and found that transfer of the polymer from the membrane to the cell wall was independent of size. Deletion of cps2A, cps2B, cps2C, or cps2D in the serotype 2 strain D39 did not affect the ability to transfer capsule to the cell wall. Deletion of cps2C or cps2D, which encode two domains of an autophosphorylating tyrosine kinase, resulted in the production of only short-chain polymers. The function of Cps2A is unknown, and the polymer laddering pattern of the cps2A deletion mutants appeared similar to that of the parent, although the total amount of capsule was decreased. Loss of Cps2B, a tyrosine phosphatase and a kinase inhibitor, resulted in an increase in capsule amount and a normal ladder pattern. However, Cps2B mutants exhibited reduced virulence following intravenous inoculation of mice and were unable to colonize the nasopharynx, suggesting a diminished capacity to sense or respond to these environments. In D39 and its isogenic mutants, the amounts of capsule and tyrosine-phosphorylated Cps2D (Cps2D approximately P) correlated directly. In contrast, restoration of type 2 capsule production followed by deletion of cps2B in Rx1, a laboratory passaged D39 derivative containing multiple uncharacterized mutations, resulted in decreased capsule amounts but no alteration in Cps2D approximately P levels. Thus, a factor outside the capsule locus, which is either missing or defective in the Rx1 background, is important in the control of capsule synthesis.
Collapse
Affiliation(s)
- Matthew H Bender
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
905
|
Abstract
Archaea are microorganisms that are distinct from bacteria and eukaryotes. They are prevalent in extreme environments, and yet found in most ecosystems. They are a natural component of the microbiota of most, if not all, humans and other animals. Despite their ubiquity and close association with humans, animals and plants, no pathogenic archaea have been identified. Because no archaeal pathogens have yet been identified, there is a general assumption that archaeal pathogens do not exist. This review examines whether this is a good assumption by investigating the potential for archaea to be or become pathogens. This is achieved by addressing: the diversity of archaea versus known pathogens, opportunities for archaea to demonstrate pathogenicity and be detected as pathogens, reports linking archaea with disease, and immune responses to archaea. In addition, molecular and genomic data are examined for the presence of systems utilised in pathogenesis. The view of this report is that, although archaea can presently be described as non-pathogenic, they have the potential to be (discovered as) pathogens. The present optimistic view that there are no archaeal pathogens is tainted by a severe lack of relevant knowledge, which may have important consequences in the future.
Collapse
Affiliation(s)
- Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia.
| | | | | | | |
Collapse
|
906
|
Hermoso JA, Monterroso B, Albert A, Galán B, Ahrazem O, García P, Martínez-Ripoll M, García JL, Menéndez M. Structural Basis for Selective Recognition of Pneumococcal Cell Wall by Modular Endolysin from Phage Cp-1. Structure 2003; 11:1239-49. [PMID: 14527392 DOI: 10.1016/j.str.2003.09.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pneumococcal bacteriophage-encoded lysins are modular choline binding proteins that have been shown to act as enzymatic antimicrobial agents (enzybiotics) against streptococcal infections. Here we present the crystal structures of the free and choline bound states of the Cpl-1 lysin, encoded by the pneumococcal phage Cp-1. While the catalytic module displays an irregular (beta/alpha)(5)beta(3) barrel, the cell wall-anchoring module is formed by six similar choline binding repeats (ChBrs), arranged into two different structural regions: a left-handed superhelical domain configuring two choline binding sites, and a beta sheet domain that contributes in bringing together the whole structure. Crystallographic and site-directed mutagenesis studies allow us to propose a general catalytic mechanism for the whole glycoside hydrolase family 25. Our work provides the first complete structure of a member of the large family of choline binding proteins and reveals that ChBrs are versatile elements able to tune the evolution and specificity of the pneumococcal surface proteins.
Collapse
Affiliation(s)
- Juan A Hermoso
- Grupo de Cristalografía Macromolecular y Biología Estructural, de Macromoléculas Biológicas, Instituto Química-Física Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
907
|
Martín-Galiano AJ, Balsalobre L, Fenoll A, de la Campa AG. Genetic characterization of optochin-susceptible viridans group streptococci. Antimicrob Agents Chemother 2003; 47:3187-94. [PMID: 14506029 PMCID: PMC201122 DOI: 10.1128/aac.47.10.3187-3194.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2003] [Revised: 04/07/2003] [Accepted: 06/20/2003] [Indexed: 11/20/2022] Open
Abstract
Two clinical isolates of viridans group streptococci (VS) with different degrees of susceptibility to optochin (OPT), i.e., fully OPT-susceptible (Opt(s)) VS strain 1162/99 (for which the MIC was equal to that for Streptococcus pneumoniae, 0.75 micro g/ml) and intermediate Opt(s) VS strain 1174/97 (MIC, 6 micro g/ml) were studied. Besides being OPT susceptible, they showed characteristics typical of VS, such as bile insolubility; lack of reaction with pneumococcal capsular antibodies; and lack of hybridization with rRNA (AccuProbe)-, lytA-, and pnl-specific pneumococcal probes. However, these VS Opt(s) strains and VS type strains hybridized with ant, a gene not present in S. pneumoniae. A detailed characterization of the genes encoding the 16S rRNA and SodA classified isolates 1162/99 and 1174/97 as Streptococcus mitis. Analysis of the atpCAB region, which encodes the c, a, and b subunits of the F(0)F(1) H(+)-ATPase, the target of optochin, revealed high degrees of similarity between S. mitis 1162/99 and S. pneumoniae in atpC, atpA, and the N terminus of atpB. Moreover, amino acid identity between S. mitis 1174/97 and S. pneumoniae was found in alpha helix 5 of the a subunit. The organization of the chromosomal region containing the atp operon of the two Opt(s) VS and VS type strains was spr1284-atpC, with spr1284 being located 296 to 556 bp from atpC, whereas in S. pneumoniae this distance was longer than 68 kb. In addition, the gene order in S. pneumoniae was IS1239-74 bp-atpC. The results suggest that the full OPT susceptibility of S. mitis 1162/99 is due to the acquisition of atpC, atpA, and part of atpB from S. pneumoniae and that the intermediate OPT susceptibility of S. mitis 1174/97 correlates with the amino acid composition of its a subunit.
Collapse
Affiliation(s)
- Antonio J Martín-Galiano
- Unidad de Genética Bacteriana (Consejo Superior de Investigaciones Científicas), Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | | | | |
Collapse
|
908
|
Buell CR, Joardar V, Lindeberg M, Selengut J, Paulsen IT, Gwinn ML, Dodson RJ, Deboy RT, Durkin AS, Kolonay JF, Madupu R, Daugherty S, Brinkac L, Beanan MJ, Haft DH, Nelson WC, Davidsen T, Zafar N, Zhou L, Liu J, Yuan Q, Khouri H, Fedorova N, Tran B, Russell D, Berry K, Utterback T, Van Aken SE, Feldblyum TV, D'Ascenzo M, Deng WL, Ramos AR, Alfano JR, Cartinhour S, Chatterjee AK, Delaney TP, Lazarowitz SG, Martin GB, Schneider DJ, Tang X, Bender CL, White O, Fraser CM, Collmer A. The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A 2003; 100:10181-6. [PMID: 12928499 PMCID: PMC193536 DOI: 10.1073/pnas.1731982100] [Citation(s) in RCA: 620] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2003] [Indexed: 12/24/2022] Open
Abstract
We report the complete genome sequence of the model bacterial pathogen Pseudomonas syringae pathovar tomato DC3000 (DC3000), which is pathogenic on tomato and Arabidopsis thaliana. The DC3000 genome (6.5 megabases) contains a circular chromosome and two plasmids, which collectively encode 5,763 ORFs. We identified 298 established and putative virulence genes, including several clusters of genes encoding 31 confirmed and 19 predicted type III secretion system effector proteins. Many of the virulence genes were members of paralogous families and also were proximal to mobile elements, which collectively comprise 7% of the DC3000 genome. The bacterium possesses a large repertoire of transporters for the acquisition of nutrients, particularly sugars, as well as genes implicated in attachment to plant surfaces. Over 12% of the genes are dedicated to regulation, which may reflect the need for rapid adaptation to the diverse environments encountered during epiphytic growth and pathogenesis. Comparative analyses confirmed a high degree of similarity with two sequenced pseudomonads, Pseudomonas putida and Pseudomonas aeruginosa, yet revealed 1,159 genes unique to DC3000, of which 811 lack a known function.
Collapse
Affiliation(s)
- C Robin Buell
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
909
|
Varmanen P, Vogensen FK, Hammer K, Palva A, Ingmer H. ClpE from Lactococcus lactis promotes repression of CtsR-dependent gene expression. J Bacteriol 2003; 185:5117-24. [PMID: 12923084 PMCID: PMC180999 DOI: 10.1128/jb.185.17.5117-5124.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The heat shock response in bacterial cells is characterized by rapid induction of heat shock protein expression, followed by an adaptation period during which heat shock protein synthesis decreases to a new steady-state level. In this study we found that after a shift to a high temperature the Clp ATPase (ClpE) in Lactococcus lactis is required for such a decrease in expression of a gene negatively regulated by the heat shock regulator (CtsR). Northern blot analysis showed that while a shift to a high temperature in wild-type cells resulted in a temporal increase followed by a decrease in expression of clpP encoding the proteolytic component of the Clp protease complex, this decrease was delayed in the absence of ClpE. Site-directed mutagenesis of the zinc-binding motif conserved in ClpE ATPases interfered with the ability to repress CtsR-dependent expression. Quantification of ClpE by Western blot analysis revealed that at a high temperature ClpE is subjected to ClpP-dependent processing and that disruption of the zinc finger domain renders ClpE more susceptible. Interestingly, this domain resembles the N-terminal region of McsA, which was recently reported to interact with the CtsR homologue in Bacillus subtilis. Thus, our data point to a regulatory role of ClpE in turning off clpP gene expression following temporal heat shock induction, and we propose that this effect is mediated through CtsR.
Collapse
Affiliation(s)
- Pekka Varmanen
- Department of Dairy and Food Science, The Royal Veterinary and Agricultural University, DK-1958 Frederiksberg C, Denmark.
| | | | | | | | | |
Collapse
|
910
|
Wilkins JC, Beighton D, Homer KA. Effect of acidic pH on expression of surface-associated proteins of Streptococcus oralis. Appl Environ Microbiol 2003; 69:5290-6. [PMID: 12957916 PMCID: PMC194962 DOI: 10.1128/aem.69.9.5290-5296.2003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus oralis, a member of the mitis group of oral streptococci, is implicated in the pathogenesis of infective endocarditis and is the predominant aciduric non-mutans-group streptococcus in dental plaque. We undertook to identify the most abundant surface-associated proteins of S. oralis and to investigate changes in protein expression when the organism was grown under acidic culture conditions. Surface-associated proteins were extracted from cells grown in batch culture, separated by two-dimensional gel electrophoresis, excised, digested with trypsin, and analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry and liquid chromatography-tandem mass spectrometry. Putative functions were assigned by homology to a translated genomic database of Streptococcus pneumoniae. A total of 27 proteins were identified; these included a lipoprotein, a ribosome recycling factor, and the glycolytic enzymes phosphoglycerate kinase, fructose bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, and enolase. The most abundant protein, phosphocarrier protein HPr, was present as three isoforms. Neither lactate dehydrogenase nor pyruvate oxidase, dominant intracellular proteins, were present among the proteins on the gels, demonstrating that proteins in the surface-associated pool did not arise as a result of cell lysis. Eleven of the proteins identified were differentially expressed when cells were grown at pH 5.2 versus pH 7.0, and these included superoxide dismutase, a homologue of dipeptidase V from Lactococcus lactis, and the protein translation elongation factors G, Tu, and Ts. This study has extended the range of streptococcal proteins known to be expressed at the cell surface. Further investigations are required to ascertain their functions at this extracellular location and determine how their expression is influenced by other environmental conditions.
Collapse
Affiliation(s)
- Joanna C Wilkins
- Department of Microbiology, Guy's, King's and St. Thomas' Dental Institute, King's College London, London, United Kingdom
| | | | | |
Collapse
|
911
|
Xu DQ, Thompson J, Cisar JO. Genetic loci for coaggregation receptor polysaccharide biosynthesis in Streptococcus gordonii 38. J Bacteriol 2003; 185:5419-30. [PMID: 12949094 PMCID: PMC193766 DOI: 10.1128/jb.185.18.5419-5430.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell wall polysaccharide of Streptococcus gordonii 38 functions as a coaggregation receptor for surface adhesins on other members of the oral biofilm community. The structure of this receptor polysaccharide (RPS) is defined by a heptasaccharide repeat that includes a GalNAcbeta1-->3Gal-containing recognition motif. The same RPS has now been identified from S. gordonii AT, a partially sequenced strain. PCR primers designed from sequences in the genomic database of strain AT were used to identify and partially characterize the S. gordonii 38 RPS gene cluster. This cluster includes genes for seven putative glycosyltransferases, a polysaccharide polymerase (Wzy), an oligosaccharide repeating unit transporter (Wzx), and a galactofuranose mutase, the enzyme that promotes synthesis of UDP-Galf, one of five predicted RPS precursors. Genes outside this region were identified for the other four nucleotide-linked sugar precursors of RPS biosynthesis, namely, those for formation of UDP-Glc, UDP-Gal, UDP-GalNAc, and dTDP-Rha. Two genes for putative galactose 4-epimerases were identified. The first, designated galE1, was identified as a pseudogene in the galactose operon, and the second, designated galE2, was transcribed with three of the four genes for dTDP-Rha biosynthesis (i.e., rmlA, rmlC, and rmlB). Insertional inactivation of galE2 abolished (i) RPS production, (ii) growth on galactose, and (iii) both UDP-Gal and UDP-GalNAc 4-epimerase activities in cell extracts. Repair of the galE1 pseudogene in this galE2 mutant restored growth on galactose but not RPS production. Cell extracts containing functional GalE1 but not GalE2 contained UDP-Gal 4-epimerase but not UDP-GalNAc 4-epimerase activity. Thus, provision of both UDP-Gal and UDP-GalNAc for RPS production by S. gordonii 38 depends on the dual specificity of the epimerase encoded by galE2.
Collapse
Affiliation(s)
- De-Qi Xu
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
912
|
Nelson KE, Fleischmann RD, DeBoy RT, Paulsen IT, Fouts DE, Eisen JA, Daugherty SC, Dodson RJ, Durkin AS, Gwinn M, Haft DH, Kolonay JF, Nelson WC, Mason T, Tallon L, Gray J, Granger D, Tettelin H, Dong H, Galvin JL, Duncan MJ, Dewhirst FE, Fraser CM. Complete genome sequence of the oral pathogenic Bacterium porphyromonas gingivalis strain W83. J Bacteriol 2003; 185:5591-601. [PMID: 12949112 PMCID: PMC193775 DOI: 10.1128/jb.185.18.5591-5601.2003] [Citation(s) in RCA: 321] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete 2,343,479-bp genome sequence of the gram-negative, pathogenic oral bacterium Porphyromonas gingivalis strain W83, a major contributor to periodontal disease, was determined. Whole-genome comparative analysis with other available complete genome sequences confirms the close relationship between the Cytophaga-Flavobacteria-Bacteroides (CFB) phylum and the green-sulfur bacteria. Within the CFB phyla, the genomes most similar to that of P. gingivalis are those of Bacteroides thetaiotaomicron and B. fragilis. Outside of the CFB phyla the most similar genome to P. gingivalis is that of Chlorobium tepidum, supporting the previous phylogenetic studies that indicated that the Chlorobia and CFB phyla are related, albeit distantly. Genome analysis of strain W83 reveals a range of pathways and virulence determinants that relate to the novel biology of this oral pathogen. Among these determinants are at least six putative hemagglutinin-like genes and 36 previously unidentified peptidases. Genome analysis also reveals that P. gingivalis can metabolize a range of amino acids and generate a number of metabolic end products that are toxic to the human host or human gingival tissue and contribute to the development of periodontal disease.
Collapse
Affiliation(s)
- Karen E Nelson
- The Institute for Genomic Research, Rockville, Maryland 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
913
|
Neely MN, Lyon WR, Runft DL, Caparon M. Role of RopB in growth phase expression of the SpeB cysteine protease of Streptococcus pyogenes. J Bacteriol 2003; 185:5166-74. [PMID: 12923089 PMCID: PMC181010 DOI: 10.1128/jb.185.17.5166-5174.2003] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The Rgg family of transcription regulators is widely distributed among gram-positive bacteria; however, how the members of this family control transcription is poorly understood. In the pathogen Streptococcus pyogenes, the Rgg family member RopB is required for transcription of the gene that encodes the secreted SpeB cysteine protease. Expression of the protease follows distinct kinetics that involves control of transcription in response to the growth phase. In this study, the contribution of RopB to growth phase control was examined. The gene encoding the protease (speB) and ropB are transcribed divergently from a 940-bp intergenic region. Primer extension analyses, in conjunction with reporter fusion studies, revealed that the major region controlling the transcription of both speB and ropB is adjacent to ropB and that the promoters for the two genes likely overlap. Furthermore, it was found that RopB is a DNA-binding protein that specifically binds to sequences in this control region. The interrelationship between ropB and speB expression was further reflected in the observation that transcription of ropB itself is subject to growth phase control. However, while expression of ropB from a promoter expressed during the early logarithmic phase of growth could complement a ropB deletion mutant, ectopic expression of ropB did not uncouple the expression of speB from its growth phase signal. These data implicate other factors in growth phase control and suggest that regulation of ropB expression itself is not the central mechanism of control.
Collapse
Affiliation(s)
- Melody N Neely
- Department of Immunology and Microbiology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
914
|
Alpert CA, Crutz-Le Coq AM, Malleret C, Zagorec M. Characterization of a theta-type plasmid from Lactobacillus sakei: a potential basis for low-copy-number vectors in lactobacilli. Appl Environ Microbiol 2003; 69:5574-84. [PMID: 12957947 PMCID: PMC194969 DOI: 10.1128/aem.69.9.5574-5584.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2003] [Accepted: 06/16/2003] [Indexed: 11/20/2022] Open
Abstract
The complete nucleotide sequence of the 13-kb plasmid pRV500, isolated from Lactobacillus sakei RV332, was determined. Sequence analysis enabled the identification of genes coding for a putative type I restriction-modification system, two genes coding for putative recombinases of the integrase family, and a region likely involved in replication. The structural features of this region, comprising a putative ori segment containing 11- and 22-bp repeats and a repA gene coding for a putative initiator protein, indicated that pRV500 belongs to the pUCL287 subfamily of theta-type replicons. A 3.7-kb fragment encompassing this region was fused to an Escherichia coli replicon to produce the shuttle vector pRV566 and was observed to be functional in L. sakei for plasmid replication. The L. sakei replicon alone could not support replication in E. coli. Plasmid pRV500 and its derivative pRV566 were determined to be at very low copy numbers in L. sakei. pRV566 was maintained at a reasonable rate over 20 generations in several lactobacilli, such as Lactobacillus curvatus, Lactobacillus casei, and Lactobacillus plantarum, in addition to L. sakei, making it an interesting basis for developing vectors. Sequence relationships with other plasmids are described and discussed.
Collapse
Affiliation(s)
- Carl-Alfred Alpert
- Flore Lactique et Environnement Carné, Institut National de la Recherche Agronomique, 78350 Jouy en Josas, France
| | | | | | | |
Collapse
|
915
|
Blue CE, Paterson GK, Kerr AR, Bergé M, Claverys JP, Mitchell TJ. ZmpB, a novel virulence factor of Streptococcus pneumoniae that induces tumor necrosis factor alpha production in the respiratory tract. Infect Immun 2003; 71:4925-35. [PMID: 12933834 PMCID: PMC187332 DOI: 10.1128/iai.71.9.4925-4935.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2003] [Revised: 05/01/2003] [Accepted: 05/30/2003] [Indexed: 01/01/2023] Open
Abstract
Inflammation is a prominent feature of Streptococcus pneumoniae infection in both humans and animal models. Indeed, an intense host immune response to infection is thought to contribute significantly to the pathology of pneumococcal pneumonia and meningitis. Previously, induction of the inflammatory response following infection with S. pneumoniae has been attributed to certain cell wall constituents and the toxin pneumolysin. Here we present data implicating a putative zinc metalloprotease, ZmpB, as having a role in inflammation. Null mutations were created in the zmpB gene of the virulent serotype 2 strain D39 and analyzed in a murine model of infection. Isogenic mutants were attenuated in pneumonia and septicemia models of infection, as determined by levels of bacteremia and murine survival. Mutants were not attenuated in colonization of murine airways or lung tissue. Examination of cytokine profiles within the lung tissue revealed significantly lower levels of the proinflammatory cytokine tumor necrosis factor alpha following challenge with the Delta zmpB mutant (Delta 739). These data identify ZmpB as a novel virulence factor capable of inducing inflammation in the lower respiratory tract. The possibility that ZmpB was involved in inhibition of complement activity was examined, but the data indicated that ZmpB does not have a significant effect on this important host defense. The regulation of ZmpB by a two-component system (TCS09) located immediately upstream of the zmpB gene was examined. TCS09 was not required for the expression of zmpB during exponential growth in vitro.
Collapse
Affiliation(s)
- C E Blue
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Scotland, United Kingdom
| | | | | | | | | | | |
Collapse
|
916
|
Xue L, Morris SW, Orihuela C, Tuomanen E, Cui X, Wen R, Wang D. Defective development and function of Bcl10-deficient follicular, marginal zone and B1 B cells. Nat Immunol 2003; 4:857-65. [PMID: 12910267 DOI: 10.1038/ni963] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2003] [Accepted: 07/10/2003] [Indexed: 01/16/2023]
Abstract
Bcl10 is an intracellular protein essential for nuclear factor (NF)-kappaB activation after lymphocyte antigen receptor stimulation. Using knockout mice, we show that absence of Bcl10 impeded conversion from transitional type 2 to mature follicular B cells and caused substantial decreases in marginal zone and B1 B cells. Bcl10-deficient B cells showed no excessive apoptosis. However, both Bcl10-deficient follicular and marginal zone B cells failed to proliferate normally, although Bcl10-deficient marginal zone B cells uniquely failed to activate NF-kappaB efficiently after stimulation with lipopolysaccharide. Bcl10-deficient marginal zone B cells did not capture antigens, and Bcl10-deficient (Bcl10-/-) mice failed to initiate humoral responses, leading to an inability to clear blood-borne bacteria. Thus, Bcl10 is essential for the development of all mature B cell subsets.
Collapse
Affiliation(s)
- Liquan Xue
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | |
Collapse
|
917
|
Swiatlo E, Ware D. Novel vaccine strategies with protein antigens of Streptococcus pneumoniae. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2003; 38:1-7. [PMID: 12900048 DOI: 10.1016/s0928-8244(03)00146-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Infections caused by Streptococcus pneumoniae (pneumococcus) are a major cause of mortality throughout the world. This organism is primarily a commensal in the upper respiratory tract of humans, but can cause pneumonia in high-risk persons and disseminate from the lungs by invasion of the bloodstream. Currently, prevention of pneumococcal infections is by immunization with vaccines which contain capsular polysaccharides from the most common serotypes causing invasive disease. However, there are more than 90 antigenically distinct serotypes and there is concern that serotypes not included in the vaccines may become more prevalent in the face of continued use of polysaccharide vaccines. Also, certain high-risk groups have poor immunological responses to some of the polysaccharides in the vaccine formulations. Protein antigens that are conserved across all capsular serotypes would induce more effective and durable humoral immune responses and could potentially protect against all clinically relevant pneumococcal capsular types. This review provides a summary of work on pneumococcal proteins that are being investigated as components for future generations of improved pneumococcal vaccines.
Collapse
Affiliation(s)
- Edwin Swiatlo
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS, USA.
| | | |
Collapse
|
918
|
Roche H, Ren B, McDaniel LS, Håkansson A, Briles DE. Relative roles of genetic background and variation in PspA in the ability of antibodies to PspA to protect against capsular type 3 and 4 strains of Streptococcus pneumoniae. Infect Immun 2003; 71:4498-505. [PMID: 12874329 PMCID: PMC166025 DOI: 10.1128/iai.71.8.4498-4505.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2002] [Revised: 11/12/2002] [Accepted: 05/27/2003] [Indexed: 11/20/2022] Open
Abstract
Pneumococcal surface protein A (PspA) is able to elicit antibodies in mice and humans that can protect mice against fatal infection with Streptococcus pneumoniae. It has been observed that immunization with a single family 1 PspA can protect mice against infections with capsular type 3 or 6B strains expressing PspA family 1 or 2. However, several studies have shown that immunity to PspA is less efficacious against several capsular type 4 strains than against strains of capsular types 3, 6A, and 6B. To determine whether the greater difficulty in protecting against capsular type 4 strains resulted from differences in their PspAs or from differences in their genetic backgrounds, we performed protection experiments using four different challenge strains: a capsular type 3 strain expressing a family 1 PspA (WU2), a capsular type 4 strain expressing a family 2 PspA (TIGR4), and genetically engineered variants of WU2 and TIGR4 expressing each other's PspAs. Prior to infection, the mice were immunized with recombinant family 1 or family 2 PspA. The results revealed that much of the difficulty in protecting against capsular type 4 strains was eliminated when mice were immunized with a homologous PspA of the same PspA family. However, regardless of which PspA the strains expressed, those on the TIGR4 background were about twice as hard to protect against as WU2 strains expressing the same PspA based on the efficacy rates seen in our experiments. These results point out the importance of including more than one PspA in any PspA vaccines developed for human use.
Collapse
Affiliation(s)
- Hazeline Roche
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | |
Collapse
|
919
|
Oggioni MR, Memmi G, Maggi T, Chiavolini D, Iannelli F, Pozzi G. Pneumococcal zinc metalloproteinase ZmpC cleaves human matrix metalloproteinase 9 and is a virulence factor in experimental pneumonia. Mol Microbiol 2003; 49:795-805. [PMID: 12864860 DOI: 10.1046/j.1365-2958.2003.03596.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ZmpC zinc metalloproteinase of Streptococcus pneumoniae, annotated in the type 4 genome as SP0071, was found to cleave human matrix metalloproteinase 9 (MMP-9). The previously described IgA protease activity was confirmed to be specifically linked to the IgA1-protease/SP1154 zinc metalloproteinase. MMP-9 is a protease cleaving extracellular matrix gelatin and collagen and is activated by proteolytic cleavage like most proteases. MMP-9 is a human protease and is involved in a variety of physiological and pathological matrix degrading processes, including tissue invasion of metastases and opening of the blood-brain barrier. While TIGR4 (serotype 4) and G54 (serotype 19) pneumococcal genome strains have a highly conserved copy of zmpC, the genome of R6 (a derivative of serotype 2 D39 strain) lacks zmpC. Both the analysis for zmpC presence and MMP-9 cleavage activity in various pneumococcal strains showed correlation of ZmpC with MMP-9 cleavage activity. When assaying clinical isolates of S. pneumoniae, the zmpC gene was not found in any of the nasal and conjunctival swab isolates, but it was present in 1 out of 13 meningitis isolates and in 6 out of 11 pneumonia isolates. In a murine pneumonia model, infection with a zmpC-mutant reduced mortality at 3-4 days post-infection by 75%, when compared with infection with wild-type strains. These data indicate that the ZmpC pneumococcal protease may play a role in pneumococcal virulence and pathogenicity in the lung.
Collapse
Affiliation(s)
- Marco R Oggioni
- Dipartimento di Biologia Molecolare, Laboratorio di Microbiologia Molecolare e Biotecnologia, Università di Siena, Siena, Italy.
| | | | | | | | | | | |
Collapse
|
920
|
Carroll PM, Dougherty B, Ross-Macdonald P, Browman K, FitzGerald K. Model systems in drug discovery: chemical genetics meets genomics. Pharmacol Ther 2003; 99:183-220. [PMID: 12888112 DOI: 10.1016/s0163-7258(03)00059-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Animal model systems are an intricate part of the discovery and development of new medicines. The sequencing of not only the human genome but also those of the various pathogenic bacteria, the nematode Caenorhabditis elegans, the fruitfly Drosophila, and the mouse has enabled the discovery of new drug targets to push forward at an unprecedented pace. The knowledge and tools in these "model" systems are allowing researchers to carry out experiments more efficiently and are uncovering previously hidden biological connections. While the history of bacteria, yeast, and mice in drug discovery are long, their roles are ever evolving. In contrast, the history of Drosophila and C. elegans at pharmaceutical companies is short. We will briefly review the historic role of each model organism in drug discovery and then update the readers as to the abilities and liabilities of each model within the context of drug development.
Collapse
Affiliation(s)
- Pamela M Carroll
- Department of Applied Genomics, Bristol-Myers Squibb, Pennington NJ 08534, USA
| | | | | | | | | |
Collapse
|
921
|
Blue CE, Mitchell TJ. Contribution of a response regulator to the virulence of Streptococcus pneumoniae is strain dependent. Infect Immun 2003; 71:4405-13. [PMID: 12874319 PMCID: PMC166049 DOI: 10.1128/iai.71.8.4405-4413.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bacterial two-component signal transduction systems (TCS) enable bacteria to respond to environmental changes and regulate a range of genes accordingly. They have a crucial role in regulating many cellular responses and have excellent potential as antibacterial-drug targets. We have constructed mutations in a TCS response regulator gene for two different strains of the human pathogen Streptococcus pneumoniae. These mutants have been analyzed in our murine model of infection. Data suggest that in a D39 background the response regulator gene is essential for virulence; an isogenic mutant is avirulent via intraperitoneal, intranasal, and intravenous routes of infection. This mutant, which does not show impaired growth in vitro, is unable to grow in the lung tissue or in blood. Mutation of the response regulator in a 0100993 background results in a strain that is fully virulent intraperitoneally and intravenously but shows decreased levels of bacteremia and increased murine survival following intranasal infection. The ability to grow in the lung tissue is not impaired in this mutant, suggesting that it has an impaired ability to disseminate from the lungs to the systemic circulation. Our data highlight the importance of assessing the contribution of putative virulence factors to the infection process at different sites of infection and provide evidence that virulence determinants can behave very differently based on the genetic background of the bacterial strain. These important findings may be relevant to other bacterial pathogens.
Collapse
Affiliation(s)
- Clare E Blue
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | | |
Collapse
|
922
|
Abstract
The first decade of the millennium should mark the beginning of a new era in vaccine development, reaping the rewards of advances in genome characterization, antigen identification, understanding the molecular bases of protective immune responses, and adjuvant design and development. Advances in all of these areas have culminated in vaccine candidates entering clinical testing. These include vaccines against two of humankind's oldest and deadliest diseases, tuberculosis and malaria. Several vaccine candidates for each of these diseases will be tested in humans during the next few years. A candidate vaccine for leishmaniasis, an infection that has taught us much about T-cell regulation of protection and disease in animal models, has been developed and is now in the clinic. There are indications both in animal models and in patients that vaccines may be used not only to protect but also to treat leishmania infections.
Collapse
Affiliation(s)
- Steven G Reed
- Infectious Disease Research Institute, Seattle, WA 98104, USA.
| | | |
Collapse
|
923
|
Chiavolini D, Memmi G, Maggi T, Iannelli F, Pozzi G, Oggioni MR. The three extra-cellular zinc metalloproteinases of Streptococcus pneumoniae have a different impact on virulence in mice. BMC Microbiol 2003; 3:14. [PMID: 12841855 PMCID: PMC166150 DOI: 10.1186/1471-2180-3-14] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Accepted: 07/03/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae possesses large zinc metalloproteinases on its surface. To analyse the importance in virulence of three of these metalloproteinases, intranasal challenge of MF1 outbred mice was carried out using a range of infecting doses of wild type and knock-out pneumococcal mutant strains, in order to compare mice survival. RESULTS Observation of survival percentages over time and detection of LD50s of knock out mutants in the proteinase genes in comparison to the type 4 TIGR4 wild type strain revealed two major aspects: i) Iga and ZmpB, present in all strains of S. pneumoniae, strongly contribute to virulence in mice; (ii) ZmpC, only present in about 25% of pneumococcal strains, has a lower influence on virulence in mice. CONCLUSIONS These data suggest Iga, ZmpB and ZmpC as candidate surface proteins responsible for pneumococcal infection and potentially involved in distinct stages of pneumococcal disease.
Collapse
Affiliation(s)
- Damiana Chiavolini
- Dipartimento di Biologia Molecolare, Laboratorio di Microbiologia Molecolare e Biotecnologia, Università di Siena, Siena, Italy
| | - Guido Memmi
- Dipartimento di Biologia Molecolare, Laboratorio di Microbiologia Molecolare e Biotecnologia, Università di Siena, Siena, Italy
| | - Tiziana Maggi
- Dipartimento di Biologia Molecolare, Laboratorio di Microbiologia Molecolare e Biotecnologia, Università di Siena, Siena, Italy
| | - Francesco Iannelli
- Dipartimento di Biologia Molecolare, Laboratorio di Microbiologia Molecolare e Biotecnologia, Università di Siena, Siena, Italy
| | - Gianni Pozzi
- Dipartimento di Biologia Molecolare, Laboratorio di Microbiologia Molecolare e Biotecnologia, Università di Siena, Siena, Italy
| | - Marco R Oggioni
- Dipartimento di Biologia Molecolare, Laboratorio di Microbiologia Molecolare e Biotecnologia, Università di Siena, Siena, Italy
| |
Collapse
|
924
|
Brown JR, Gentry D, Becker JA, Ingraham K, Holmes DJ, Stanhope MJ. Horizontal transfer of drug-resistant aminoacyl-transfer-RNA synthetases of anthrax and Gram-positive pathogens. EMBO Rep 2003; 4:692-8. [PMID: 12792655 PMCID: PMC1326320 DOI: 10.1038/sj.embor.embor881] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2003] [Revised: 04/30/2003] [Accepted: 05/13/2003] [Indexed: 11/08/2022] Open
Abstract
The screening of new antibiotics against several bacterial strains often reveals unexpected occurrences of natural drug resistance. Two examples of this involve specific inhibitors of Staphylococcus aureus isoleucyl-transfer-RNA synthetase 1 (IleRS1) and, more recently, Streptococcus pneumoniae methionyl-tRNA synthetase 1 (MetRS1). In both cases, resistance is due to the presence of a second gene that encodes another synthetase (IleRS2 or MetRS2). Here, we show that both S. pneumoniae MetRS2 and S. aureus IleRS2 have closely related homologues in the Gram-positive bacterium Bacillus anthracis, the causative agent of anthrax. Furthermore, similar to drug-resistant pathogens, strains of B. anthracis and its closest relative, B. cereus, also have wild-type ileS1 and metS1 genes. Clostridium perfringens, the causative agent of gangrene, also has two metS genes, whereas Oceanobacillus iheyensis isolated from deep-sea sediments has a single ileS2-type gene. This study shows the importance of understanding complex evolutionary networks of ancient horizontal gene transfer for the development of novel antibiotics.
Collapse
Affiliation(s)
- James R. Brown
- Bioinformatics Division, GlaxoSmithKline, 1250 South Collegeville Road, UP1345, Collegeville, Pennsylvania 19426, USA
- Tel: +1 610 917 6374; Fax: +1 610 917 7901;
| | - Daniel Gentry
- Microbial Genetics Department, GlaxoSmithKline, 1250 South Collegeville Road, UP1345, Collegeville, Pennsylvania 19426, USA
| | - Julie A. Becker
- Bioinformatics Division, GlaxoSmithKline, 1250 South Collegeville Road, UP1345, Collegeville, Pennsylvania 19426, USA
| | - Karen Ingraham
- Microbial Genetics Department, GlaxoSmithKline, 1250 South Collegeville Road, UP1345, Collegeville, Pennsylvania 19426, USA
| | - David J. Holmes
- Microbial Genetics Department, GlaxoSmithKline, 1250 South Collegeville Road, UP1345, Collegeville, Pennsylvania 19426, USA
| | - Michael J. Stanhope
- Bioinformatics Division, GlaxoSmithKline, 1250 South Collegeville Road, UP1345, Collegeville, Pennsylvania 19426, USA
- Tel: +1 610 917 6577; Fax: +1 610 917 7901;
| |
Collapse
|
925
|
Abstract
The genome sequencing approach has proved to be highly effective and invaluable for gaining an insight on structure of bacteria genomes and the biology and evolution of bacteria. The diversity of bacteria genomes is beyond expectation. Gaining a full understanding of the biology and pathogenic mechanisms of these pathogens will be a major task because on an average only approximately 69% of the encoded proteins in each genome have known functions. Genome sequence analyses have identified novel putative virulence genes, vaccine candidates, targets for antibacterial drugs, and specific diagnostic probes. Microarray technology that makes use of the genomic sequences of human and bacterial pathogens will be a major tool for gaining full understanding of the complexity of host-pathogen interactions and mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Voon Loong Chan
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
926
|
Kwon HY, Kim SW, Choi MH, Ogunniyi AD, Paton JC, Park SH, Pyo SN, Rhee DK. Effect of heat shock and mutations in ClpL and ClpP on virulence gene expression in Streptococcus pneumoniae. Infect Immun 2003; 71:3757-65. [PMID: 12819057 PMCID: PMC162022 DOI: 10.1128/iai.71.7.3757-3765.2003] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Spread of Streptococcus pneumoniae from the nasopharynx to other host tissues would require the organism to adapt to a variety of environmental conditions. Since heat shock proteins are induced by environmental stresses, we investigated the effect of heat shock on ClpL and ClpP synthesis and the effect of clpL and clpP mutations on the expression of key pneumococcal virulence genes. Pulse labeling with [(35)S]methionine and chase experiments as well as immunoblot analysis demonstrated that ClpL, DnaK, and GroEL were stable. Purified recombinant ClpL refolded urea-denatured rhodanese in a dose-dependent manner, demonstrating ClpL's chaperone activity. Although growth of the clpL mutant was not affected at 30 or 37 degrees C, growth of the clpP mutant was severely affected at these temperatures. However, both clpL and clpP mutants were sensitive to 43 degrees C. Although it was further induced by heat shock, the level of expression of ClpL in the clpP mutant was high at 30 degrees C, suggesting that ClpP represses expression of ClpL. Furthermore, the clpP mutation significantly attenuated the virulence of S. pneumoniae in a murine intraperitoneal infection model, whereas the clpL mutation did not. Interestingly, immunoblot and real-time reverse transcription-PCR analysis demonstrated that pneumolysin and pneumococcal surface antigen A were induced by heat shock in wild-type S. pneumoniae. Other virulence genes were also affected by heat shock and clpL and clpP mutations. Virulence gene expression seems to be modulated not only by heat shock but also by the ClpL and ClpP proteases.
Collapse
Affiliation(s)
- Hyog-Young Kwon
- College of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea
| | | | | | | | | | | | | | | |
Collapse
|
927
|
Balsalobre L, Ferrándiz MJ, Liñares J, Tubau F, de la Campa AG. Viridans group streptococci are donors in horizontal transfer of topoisomerase IV genes to Streptococcus pneumoniae. Antimicrob Agents Chemother 2003; 47:2072-81. [PMID: 12821449 PMCID: PMC161831 DOI: 10.1128/aac.47.7.2072-2081.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A total of 46 ciprofloxacin-resistant (Cip(r)) Streptococcus pneumoniae strains were isolated from 1991 to 2001 at the Hospital of Bellvitge. Five of these strains showed unexpectedly high rates of nucleotide variations in the quinolone resistance-determining regions (QRDRs) of their parC, parE, and gyrA genes. The nucleotide sequence of the full-length parC, parE, and gyrA genes of one of these isolates revealed a mosaic structure compatible with an interspecific recombination origin. Southern blot analysis and nucleotide sequence determinations showed the presence of an ant-like gene in the intergenic parE-parC regions of the S. pneumoniae Cip(r) isolates with high rates of variations in their parE and parC QRDRs. The ant-like gene was absent from typical S. pneumoniae strains, whereas it was present in the intergenic parE-parC regions of the viridans group streptococci (Streptococcus mitis and Streptococcus oralis). These results suggest that the viridans group streptococci are acting as donors in the horizontal transfer of fluoroquinolone resistance genes to S. pneumoniae.
Collapse
Affiliation(s)
- Luz Balsalobre
- Unidad de Genética Bacteriana (Consejo Superior de Investigaciones Científicas), Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | | | | | | | | |
Collapse
|
928
|
Gianninò V, Santagati M, Guardo G, Cascone C, Rappazzo G, Stefani S. Conservation of the mosaic structure of the four internal transcribed spacers and localisation of the rrn operons on the Streptococcus pneumoniae genome. FEMS Microbiol Lett 2003; 223:245-52. [PMID: 12829294 DOI: 10.1016/s0378-1097(03)00376-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The detection of heterogeneity of the 16S-23S ribosomal intergenic transcribed spacer (ITS) region has become rather common over the past years for identification and typing purposes of bacteria. The ITS not only varies in sequence and length, but also in number of alleles per genome and in their position on the chromosome together with the ribosomal clusters. The ITS characterisation has allowed discrimination of several species within a genus and variation in ITS sequences between the multiple rrn operons present within a genome may be as high or greater than between strains of the same species or subspecies. It is important to understand the variability of ITS sequences in a given genome to gain insights into bacterial physiology and taxonomy. The present study describes the possibility to type Streptococcus pneumoniae by PCR-ribotyping of the spacer region, the determination of the molecular structure of the ITS, and the determination of the number and localisation of rrn operons in this microorganism. Our results show that the genome of S. pneumoniae contains four ribosomal operons, showing the same genomic organisation among strains, each containing a single ITS allele of 270 bp. The ITS sequence presents a mosaic organisation of blocks highly conserved intra- and inter-species within the genus Streptococcus, giving no possibility for variations to arise.
Collapse
Affiliation(s)
- Viviana Gianninò
- Department of Microbiological and Gynaecological Sciences, University of Catania, Via Androne 81, Italy
| | | | | | | | | | | |
Collapse
|
929
|
Abstract
Much has been gained from genomic and evolutionary studies of species. Combining the perspectives of these different approaches suggests that an integrated phylogenomic approach will be beneficial.
Collapse
|
930
|
Nakagawa I, Kurokawa K, Yamashita A, Nakata M, Tomiyasu Y, Okahashi N, Kawabata S, Yamazaki K, Shiba T, Yasunaga T, Hayashi H, Hattori M, Hamada S. Genome sequence of an M3 strain of Streptococcus pyogenes reveals a large-scale genomic rearrangement in invasive strains and new insights into phage evolution. Genome Res 2003; 13:1042-55. [PMID: 12799345 PMCID: PMC403657 DOI: 10.1101/gr.1096703] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Group Astreptococcus (GAS) is a gram-positive bacterial pathogen that causes various suppurative infections and nonsuppurative sequelae. Since the late 1980s, streptococcal toxic-shock like syndrome (STSS) and severe invasive GAS infections have been reported globally. Here we sequenced the genome of serotype M3 strain SSI-1, isolated from an STSS patient in Japan, and compared it with those of other GAS strains. The SSI-1 genome is composed of 1,884,275 bp, and 1.7 Mb of the sequence is highly conserved relative to strain SF370 (serotype M1) and MGAS8232 (serotype M18), and almost completely conserved relative to strain MGAS315 (serotype M3). However, a large genomic rearrangement has been shown to occur across the replication axis between the homologous rrn-comX1 regions and between two prophage-coding regions across the replication axis. Atotal of 1 Mb of chromosomal DNA is inverted across the replication axis. Interestingly, the recombinations between the prophage regions are within the phage genes, and the genes encoding superantigens and mitogenic factors are interchanged between two prophages. This genomic rearrangement occurs in 65% of clinical isolates (64/94) collected after 1990, whereas it is found in only 25% of clinical isolates (7/28) collected before 1985. These observations indicate that streptococcal phages represent important plasticity regions in the GAS chromosome where recombination between homologous phage genes can occur and result not only in new phage derivatives, but also in large chromosomal rearrangements.
Collapse
Affiliation(s)
- Ichiro Nakagawa
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
931
|
Canchaya C, Proux C, Fournous G, Bruttin A, Brüssow H. Prophage genomics. Microbiol Mol Biol Rev 2003; 67:238-76, table of contents. [PMID: 12794192 PMCID: PMC156470 DOI: 10.1128/mmbr.67.2.238-276.2003] [Citation(s) in RCA: 500] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The majority of the bacterial genome sequences deposited in the National Center for Biotechnology Information database contain prophage sequences. Analysis of the prophages suggested that after being integrated into bacterial genomes, they undergo a complex decay process consisting of inactivating point mutations, genome rearrangements, modular exchanges, invasion by further mobile DNA elements, and massive DNA deletion. We review the technical difficulties in defining such altered prophage sequences in bacterial genomes and discuss theoretical frameworks for the phage-bacterium interaction at the genomic level. The published genome sequences from three groups of eubacteria (low- and high-G+C gram-positive bacteria and gamma-proteobacteria) were screened for prophage sequences. The prophages from Streptococcus pyogenes served as test case for theoretical predictions of the role of prophages in the evolution of pathogenic bacteria. The genomes from further human, animal, and plant pathogens, as well as commensal and free-living bacteria, were included in the analysis to see whether the same principles of prophage genomics apply for bacteria living in different ecological niches and coming from distinct phylogenetical affinities. The effect of selection pressure on the host bacterium is apparently an important force shaping the prophage genomes in low-G+C gram-positive bacteria and gamma-proteobacteria.
Collapse
Affiliation(s)
- Carlos Canchaya
- Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| | | | | | | | | |
Collapse
|
932
|
Zagursky RJ, Olmsted SB, Russell DP, Wooters JL. Bioinformatics: how it is being used to identify bacterial vaccine candidates. Expert Rev Vaccines 2003; 2:417-36. [PMID: 12903807 DOI: 10.1586/14760584.2.3.417] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genomic sequencing has provided a tremendous amount of information that can be useful in vaccine target identification. The sheer volume of information available necessitates the use of new research disciplines and techniques. Using bioinformatics, researchers sift through available data to identify appropriate candidates for biological analysis. This review provides an overview of available bioinformatic techniques for vaccine candidate identification and a few examples of how these techniques are being applied to specific bacterial pathogens.
Collapse
|
933
|
Gentry DR, Ingraham KA, Stanhope MJ, Rittenhouse S, Jarvest RL, O'Hanlon PJ, Brown JR, Holmes DJ. Variable sensitivity to bacterial methionyl-tRNA synthetase inhibitors reveals subpopulations of Streptococcus pneumoniae with two distinct methionyl-tRNA synthetase genes. Antimicrob Agents Chemother 2003; 47:1784-9. [PMID: 12760849 PMCID: PMC155832 DOI: 10.1128/aac.47.6.1784-1789.2003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As reported previously (J. R. Jarvest et al., J. Med. Chem. 45:1952-1962, 2002), potent inhibitors (at nanomolar concentrations) of Staphylococcus aureus methionyl-tRNA synthetase (MetS; encoded by metS1) have been derived from a high-throughput screening assay hit. Optimized compounds showed excellent activities against staphylococcal and enterococcal pathogens. We report on the bimodal susceptibilities of S. pneumoniae strains, a significant fraction of which was found to be resistant (MIC, > or =8 mg/liter) to these inhibitors. Using molecular genetic techniques, we have found that the mechanism of resistance is the presence of a second, distantly related MetS enzyme, MetS2, encoded by metS2. We present evidence that the metS2 gene is necessary and sufficient for resistance to MetS inhibitors. PCR analysis for the presence of metS2 among a large sample (n = 315) of S. pneumoniae isolates revealed that it is widespread geographically and chronologically, occurring at a frequency of about 46%. All isolates tested also contained the metS1 gene. Searches of public sequence databases revealed that S. pneumoniae MetS2 was most similar to MetS in Bacillus anthracis, followed by MetS in various non-gram-positive bacterial, archaeal, and eukaryotic species, with streptococcal MetS being considerably less similar. We propose that the presence of metS2 in specific strains of S. pneumoniae is the result of horizontal gene transfer which has been driven by selection for resistance to some unknown class of naturally occurring antibiotics with similarities to recently reported synthetic MetS inhibitors.
Collapse
Affiliation(s)
- Daniel R Gentry
- Department of Microbiology, Microbial, Musculoskeletal, and Proliferative Diseases Center of Excellence for Drug Discovery, GlaxoSmithKline, Collegeville, Pennsylvania 19426, USA.
| | | | | | | | | | | | | | | |
Collapse
|
934
|
Abstract
The availability of genome sequences is revolutionizing the field of microbiology. Genetic methods are being modified to facilitate rapid analysis at a genome-wide level and are blossoming for human pathogens that were previously considered intractable. This revolution coincided with a growing concern about the emergence of microbial drug resistance, compelling the pharmaceutical industry to search for new antimicrobial agents. The availability of the new technologies, combined with many genetic strategies, has changed the way that researchers approach antibacterial drug discovery.
Collapse
Affiliation(s)
- Lynn Miesel
- Department of Antimicrobial Therapy, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033-0530, USA.
| | | | | |
Collapse
|
935
|
de Greeff A, Hamilton A, Sutcliffe IC, Buys H, van Alphen L, Smith HE. Lipoprotein signal peptidase of Streptococcus suis serotype 2. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1399-1407. [PMID: 12777481 DOI: 10.1099/mic.0.26329-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This paper reports the complete coding sequence for a proliprotein signal peptidase (SP-ase) of Streptococcus suis, Lsp. This is believed to be the first SP-ase described for S. suis. SP-ase II is involved in the removal of the signal peptide from glyceride-modified prolipoproteins. By using in vitro transcription/translation systems, it was shown that the lsp gene was transcribed in vitro. Functionality of Lsp in Escherichia coli was demonstrated by using an in vitro globomycin resistance assay, to show that expression of Lsp in E. coli increased the globomycin resistance. An isogenic mutant of S. suis serotype 2 unable to produce Lsp was constructed and shown to process lipoproteins incorrectly, including an S. suis homologue of the pneumococcal PsaA lipoprotein. Five piglets were inoculated with a mixture of both strains in an experimental infection, to determine the virulence of the mutant strain relative to that of the wild-type strain in a competitive challenge experiment. The data showed that both strains were equally virulent, indicating that the knockout mutant of lsp is not attenuated in vivo.
Collapse
Affiliation(s)
- Astrid de Greeff
- Department of Medical Microbiology, University of Amsterdam, 1100 DD Amsterdam, The Netherlands
- Division of Infectious Diseases and Food Chain Quality, Cluster of Endemic Diseases, Institute of Animal Science and Health, 8200 AB Lelystad, The Netherlands
| | - Andrea Hamilton
- Institute of Pharmacy, Chemistry and Biomedical Sciences, University of Sunderland, UK
| | - Iain C Sutcliffe
- Institute of Pharmacy, Chemistry and Biomedical Sciences, University of Sunderland, UK
| | - Herma Buys
- Division of Infectious Diseases and Food Chain Quality, Cluster of Endemic Diseases, Institute of Animal Science and Health, 8200 AB Lelystad, The Netherlands
| | - Loek van Alphen
- Laboratory for Vaccine Research, RIVM, National Institute of Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
- Department of Medical Microbiology, University of Amsterdam, 1100 DD Amsterdam, The Netherlands
| | - Hilde E Smith
- Division of Infectious Diseases and Food Chain Quality, Cluster of Endemic Diseases, Institute of Animal Science and Health, 8200 AB Lelystad, The Netherlands
| |
Collapse
|
936
|
Abstract
Complete genome sequences are available for an increasing number of pathogenic bacteria. These new data are beginning to make an impact on the understanding of bacterial evolution and virulence. Thus far, however, vaccine development has had little benefit from genomics. Here we discuss how genomic sequence is being used in ways that could help identify useful bacterial antigens or create attenuated live vaccines.
Collapse
Affiliation(s)
- Samantha L Sampson
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | |
Collapse
|
937
|
Bae T, Schneewind O. The YSIRK-G/S motif of staphylococcal protein A and its role in efficiency of signal peptide processing. J Bacteriol 2003; 185:2910-9. [PMID: 12700270 PMCID: PMC154403 DOI: 10.1128/jb.185.9.2910-2919.2003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many surface proteins of pathogenic gram-positive bacteria are linked to the cell wall envelope by a mechanism requiring a C-terminal sorting signal with an LPXTG motif. Surface proteins of Streptococcus pneumoniae harbor another motif, YSIRK-G/S, which is positioned within signal peptides. The signal peptides of some, but not all, of the 20 surface proteins of Staphylococcus aureus carry a YSIRK-G/S motif, whereas those of surface proteins of Listeria monocytogenes and Bacillus anthracis do not. To determine whether the YSIRK-G/S motif is required for the secretion or cell wall anchoring of surface proteins, we analyzed variants of staphylococcal protein A, an immunoglobulin binding protein with an LPXTG sorting signal. Deletion of the YSIR sequence or replacement of G or S significantly reduced the rate of signal peptide processing of protein A precursors. In contrast, cell wall anchoring or the functional display of protein A was not affected. The fusion of cell wall sorting signals to reporter proteins bearing N-terminal signal peptides with or without the YSIRK-G/S motif resulted in hybrid proteins that were anchored in a manner similar to that of wild-type protein A. The requirement of the YSIRK-G/S motif for efficient secretion implies the existence of a specialized mode of substrate recognition by the secretion pathway of gram-positive cocci. It seems, however, that this mechanism is not essential for surface protein anchoring to the cell wall envelope.
Collapse
Affiliation(s)
- Taeok Bae
- Committee on Microbiology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
938
|
Kharat AS, Tomasz A. Inactivation of the srtA gene affects localization of surface proteins and decreases adhesion of Streptococcus pneumoniae to human pharyngeal cells in vitro. Infect Immun 2003; 71:2758-65. [PMID: 12704150 PMCID: PMC153252 DOI: 10.1128/iai.71.5.2758-2765.2003] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Inactivation of sortase gene srtA in Streptococcus pneumoniae strain R6 caused the release of beta-galactosidase and neuraminidase A (NanA) from the cell wall into the surrounding medium. Both of these surface proteins contain the LPXTG motif in the C-terminal domain. Complementation with plasmid-borne srtA reversed protein release. Deletion of murM, a gene involved in the branching of pneumococcal peptidoglycan, also caused partial release of beta-galactosidase, suggesting preferential attachment of the protein to branched muropeptides in the cell wall. Inactivation of srtA caused decreased adherence to human pharyngeal cells in vitro but had no effect on the virulence of a capsular type III strain of S. pneumoniae in the mouse intraperitoneal model. The observations suggest that--as in other gram-positive bacteria--sortase-dependent display of proteins occurs in S. pneumoniae and that some of these proteins may be involved in colonization of the human host.
Collapse
Affiliation(s)
- Arun S Kharat
- Laboratory of Microbiology, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
939
|
Read TD, Peterson SN, Tourasse N, Baillie LW, Paulsen IT, Nelson KE, Tettelin H, Fouts DE, Eisen JA, Gill SR, Holtzapple EK, Okstad OA, Helgason E, Rilstone J, Wu M, Kolonay JF, Beanan MJ, Dodson RJ, Brinkac LM, Gwinn M, DeBoy RT, Madpu R, Daugherty SC, Durkin AS, Haft DH, Nelson WC, Peterson JD, Pop M, Khouri HM, Radune D, Benton JL, Mahamoud Y, Jiang L, Hance IR, Weidman JF, Berry KJ, Plaut RD, Wolf AM, Watkins KL, Nierman WC, Hazen A, Cline R, Redmond C, Thwaite JE, White O, Salzberg SL, Thomason B, Friedlander AM, Koehler TM, Hanna PC, Kolstø AB, Fraser CM. The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 2003; 423:81-6. [PMID: 12721629 DOI: 10.1038/nature01586] [Citation(s) in RCA: 572] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2002] [Accepted: 03/28/2003] [Indexed: 11/09/2022]
Abstract
Bacillus anthracis is an endospore-forming bacterium that causes inhalational anthrax. Key virulence genes are found on plasmids (extra-chromosomal, circular, double-stranded DNA molecules) pXO1 (ref. 2) and pXO2 (ref. 3). To identify additional genes that might contribute to virulence, we analysed the complete sequence of the chromosome of B. anthracis Ames (about 5.23 megabases). We found several chromosomally encoded proteins that may contribute to pathogenicity--including haemolysins, phospholipases and iron acquisition functions--and identified numerous surface proteins that might be important targets for vaccines and drugs. Almost all these putative chromosomal virulence and surface proteins have homologues in Bacillus cereus, highlighting the similarity of B. anthracis to near-neighbours that are not associated with anthrax. By performing a comparative genome hybridization of 19 B. cereus and Bacillus thuringiensis strains against a B. anthracis DNA microarray, we confirmed the general similarity of chromosomal genes among this group of close relatives. However, we found that the gene sequences of pXO1 and pXO2 were more variable between strains, suggesting plasmid mobility in the group. The complete sequence of B. anthracis is a step towards a better understanding of anthrax pathogenesis.
Collapse
Affiliation(s)
- Timothy D Read
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, Maryland 20850, USA. )
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
940
|
Chapuy-Regaud S, Ogunniyi AD, Diallo N, Huet Y, Desnottes JF, Paton JC, Escaich S, Trombe MC. RegR, a global LacI/GalR family regulator, modulates virulence and competence in Streptococcus pneumoniae. Infect Immun 2003; 71:2615-25. [PMID: 12704136 PMCID: PMC153264 DOI: 10.1128/iai.71.5.2615-2625.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The homolactic and catalase-deficient pathogen Streptococcus pneumoniae is not only tolerant to oxygen but requires the activity of its NADH oxidase, Nox, to develop optimal virulence and competence for genetic transformation. In this work, we show that the global regulator RegR is also involved in these traits. Genetic dissection revealed that RegR regulates competence and the expression of virulence factors, including hyaluronidase. In bacteria grown in vitro, RegR represses hyaluronidase. At neutral pH, it increases adherence to A549 epithelial cells, and at alkaline pH, it acts upstream of the CiaRH two-component signaling system to activate competence. These phenotypes are not associated with changes in antibiotic resistance, central metabolism, and carbohydrate utilization. Although the RegR(0) (where 0 indicates the loss of the protein) mutation is sufficient to attenuate experimental virulence of strain 23477 in mice, the introduction of an additional hyl(0) (where 0 indicates the loss of function) mutation in the RegR(0) strain 23302 dramatically reduces its virulence. This indicates that residual virulence of the RegR(0) Hyl(+) derivative is due to hyaluronidase and supports the dual role of RegR in virulence. This LacI/GalR regulator, not essential for in vitro growth in rich media, is indeed involved in the adaptive response of the pneumococcus via its control of competence, adherence, and virulence.
Collapse
Affiliation(s)
- Sabine Chapuy-Regaud
- Laboratoire Interactions et Signalisation Cellulaire: Relation Hôte Pathogène, Institut Louis Bugnard, Centre Hospitalo-Universitaire de Rangueil, Université Paul Sabatier, 31403 Toulouse Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
941
|
Dalton JP, Brindley PJ, Knox DP, Brady CP, Hotez PJ, Donnelly S, O'Neill SM, Mulcahy G, Loukas A. Helminth vaccines: from mining genomic information for vaccine targets to systems used for protein expression. Int J Parasitol 2003; 33:621-40. [PMID: 12782060 DOI: 10.1016/s0020-7519(03)00057-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The control of helminth diseases of people and livestock continues to rely on the widespread use of anti-helminthic drugs. However, concerns with the appearance of drug resistant parasites and the presence of pesticide residues in food and the environment, has given further incentive to the goal of discovering molecular vaccines against these pathogens. The exponential rate at which gene and protein sequence information is accruing for many helminth parasites requires new methods for the assimilation and analysis of the data and for the identification of molecules capable of inducing immunological protection. Some promising vaccine candidates have been discovered, in particular cathepsin L proteases from Fasciola hepatica, aminopeptidases from Haemonchus contortus, and aspartic proteases from schistosomes and hookworms, all of which are secreted into the host tissues or into the parasite intestine where they play important roles in host-parasite interactions. Since secreted proteins, in general, are exposed to the immune system of the host they represent obvious candidates at which vaccines could be targeted. Therefore, in this article, we consider the potential values and uses of algorithms for characterising cDNAs amongst the collated helminth genomic information that encode secreted proteins, and methods for their selective isolation and cloning. We also review the variety of prokaryotic and eukaryotic cell expression systems that have been employed for the production and downstream purification of recombinant proteins in functionally active form, and provide an overview of the parameters that must be considered if these recombinant proteins are to be commercialised as vaccine therapeutics in humans and/or animals.
Collapse
Affiliation(s)
- John P Dalton
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
942
|
Robertson GT, Ng WL, Gilmour R, Winkler ME. Essentiality of clpX, but not clpP, clpL, clpC, or clpE, in Streptococcus pneumoniae R6. J Bacteriol 2003; 185:2961-6. [PMID: 12700276 PMCID: PMC154392 DOI: 10.1128/jb.185.9.2961-2966.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We show by using a regulated promoter that clpX of Streptococcus pneumoniae R6 is essential, whereas clpP, clpL, clpC, and clpE can be disrupted. The essentiality of clpX was initially missed because of duplication and rearrangement in the region of the chromosome containing clpX. Depletion of ClpX resulted in a rapid loss of viability without overt changes in cell morphology. Essentiality of clpX, but not clpP, has not been reported previously.
Collapse
Affiliation(s)
- Gregory T Robertson
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | | | | | | |
Collapse
|
943
|
Kreikemeyer B, McIver KS, Podbielski A. Virulence factor regulation and regulatory networks in Streptococcus pyogenes and their impact on pathogen-host interactions. Trends Microbiol 2003; 11:224-32. [PMID: 12781526 DOI: 10.1016/s0966-842x(03)00098-2] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Streptococcus pyogenes (group A streptococcus, GAS) is a very important human pathogen with remarkable adaptation capabilities. Survival within the harsh host surroundings requires sensing potential on the bacterial side, which leads in particular to coordinately regulated virulence factor expression. GAS 'stand-alone' response regulators (RRs) and two-component signal transduction systems (TCSs) link the signals from the host environment with adaptive responses of the bacterial cell. Numerous putative regulatory systems emerged from GAS genome sequences. Only three RRs [Mga, RofA-like protein (RALP) and Rgg/RopB] and three TCSs (CsrRS/CovRS, FasBCAX and Ihk/Irr) have been studied in some detail with respect to their growth-phase-dependent activity and their influence on GAS-host cell interaction. In particular, the Mga-, RALP- and Rgg/RopB-regulated pathways display interconnected activities that appear to influence GAS colonization, persistence and spreading mechanisms, in a growth-phase-related fashion. Here, we have summarized our current knowledge about these RRs and TCSs to highlight the questions that should be addressed in future research on GAS pathogenicity.
Collapse
Affiliation(s)
- Bernd Kreikemeyer
- University Hospital Rostock, Department of Medical Microbiology and Hospital Hygiene, Schillingallee 70, 18055 Rostock, Germany.
| | | | | |
Collapse
|
944
|
Kahmann JD, Sass HJ, Allan MG, Seto H, Thompson CJ, Grzesiek S. Structural basis for antibiotic recognition by the TipA class of multidrug-resistance transcriptional regulators. EMBO J 2003; 22:1824-34. [PMID: 12682015 PMCID: PMC154473 DOI: 10.1093/emboj/cdg181] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2002] [Revised: 02/21/2003] [Accepted: 02/24/2003] [Indexed: 11/15/2022] Open
Abstract
The TipAL protein, a bacterial transcriptional regulator of the MerR family, is activated by numerous cyclic thiopeptide antibiotics. Its C-terminal drug-binding domain, TipAS, defines a subfamily of broadly distributed bacterial proteins including Mta, a central regulator of multidrug resistance in Bacillus subtilis. The structure of apo TipAS, solved by solution NMR [Brookhaven Protein Data Bank entry 1NY9], is composed of a globin-like alpha-helical fold with a deep surface cleft and an unfolded N-terminal region. Antibiotics bind within the cleft at a position that is close to the corresponding heme pocket in myo- and hemoglobin, and induce folding of the N-terminus. Thus the classical globin fold is well adapted not only for accommodating its canonical cofactors, heme and other tetrapyrroles, but also for the recognition of a variety of antibiotics where ligand binding leads to transcriptional activation and drug resistance.
Collapse
Affiliation(s)
- Jan D Kahmann
- Division of Structural Biology, Biozentrum der Universität Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
945
|
Martín-Galiano AJ, de la Campa AG. High-efficiency generation of antibiotic-resistant strains of Streptococcus pneumoniae by PCR and transformation. Antimicrob Agents Chemother 2003; 47:1257-61. [PMID: 12654655 PMCID: PMC152537 DOI: 10.1128/aac.47.4.1257-1261.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We designed a method by which to generate antibiotic-resistant strains of Streptococcus pneumoniae at frequencies 4 orders of magnitude greater than the spontaneous mutation rate. The method is based on the natural ability of this organism to be genetically transformed with PCR products carrying sequences homologous to its chromosome. The genes encoding the targets of ciprofloxacin (parC, encoding the ParC subunit of DNA topoisomerase IV), rifampin (rpoB, encoding the beta subunit of RNA polymerase), and streptomycin (rpsL, encoding the S12 ribosomal protein) from susceptible laboratory strain R6 were amplified by PCR and used to transform the same strain. Resistant mutants were obtained with a frequency of 10(-4) to 10(-5), depending on the fidelity of the DNA polymerase used for PCR amplifications. Ciprofloxacin-resistant mutants, for which the MICs were four-to eightfold higher than that for R6, carried a single mutation of a residue in the quinolone resistance-determining region: S79 (change to A, F, or Y) or D83 (change to N or V). Rifampin-resistant strains, for which the MICs were at least 133-fold higher than that for R6, contained a single mutation within cluster I of rpoB: S482 (change to P), Q486 (change to L), D489 (change to V), or H499 (change to L or Y). Streptomycin-resistant mutants, for which the MICs were at least 64-fold higher than that for R6, carried a mutation at either K56 (change to I, R, or T) or K101 (change to E). PCR products obtained from the mutants were able to transform R6 to resistance with high efficiency (>10(4)). This method could be used to efficiently obtain resistant mutants for any drug whose target is known.
Collapse
Affiliation(s)
- Antonio J Martín-Galiano
- Unidad de Genética Bacteriana (Consejo Superior de Investigaciones Científicas), Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | | |
Collapse
|
946
|
Abstract
Although recent clinical trials suggest that conjugate vaccination will be less effective for the prevention of AOM than for IPD, these trials have demonstrated impressive reductions in the incidence of AOM due to invasive and antibiotic-resistant pneumococcal serotypes. These data suggest that if serotype replacement does occur in immunized children, the causative agents are likely to be less virulent than vaccine strains. Furthermore, a recent cost-effectiveness analysis projected that immunization of healthy infants with the heptavalent conjugate vaccine could prevent over one million episodes of AOM and 12,000 cases of invasive pneumococcal disease. Because significant reductions have been demonstrated in the incidence of frequently recurrent AOM, children with the worst disease stand to benefit most from vaccination. Based on data currently available, however, the conjugate vaccine is not going to eradicate AOM. Consequently, there will continue to be a need to scrutinize the threshold for prescribing antibiotics. In addition, there will be an ongoing need for surgery in some cases of recurrent AOM and persistent OME.
Collapse
Affiliation(s)
- Stephen M Weber
- Immunology Training Program and Section of Infectious Diseases, Boston University School of Medicine, 80 East Concord Street, Box #171, Boston, MA 02118, USA
| | | |
Collapse
|
947
|
Obregón V, García JL, García E, López R, García P. Genome organization and molecular analysis of the temperate bacteriophage MM1 of Streptococcus pneumoniae. J Bacteriol 2003; 185:2362-8. [PMID: 12644508 PMCID: PMC151507 DOI: 10.1128/jb.185.7.2362-2368.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of MM1 (40,248 bp), a temperate bacteriophage from the Spain(23F)-1 multiresistant epidemic clone of Streptococcus pneumoniae, is organized in 53 open reading frames (ORFs) and in at least five functional clusters. Bioinformatic and N-terminal amino acid sequence analyses enabled the assignment of possible functions to 26 ORFs. Analyses comparing the MM1 genome with those of other bacteriophages revealed similarities, mainly with genomes of phages infecting gram-positive bacteria, which suggest recent exchange of genes between species colonizing the same habitat.
Collapse
Affiliation(s)
- Virginia Obregón
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, CSIC, 28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
948
|
Martin M, Turco JH, Zegans ME, Facklam RR, Sodha S, Elliott JA, Pryor JH, Beall B, Erdman DD, Baumgartner YY, Sanchez PA, Schwartzman JD, Montero J, Schuchat A, Whitney CG. An outbreak of conjunctivitis due to atypical Streptococcus pneumoniae. N Engl J Med 2003; 348:1112-21. [PMID: 12646668 DOI: 10.1056/nejmoa022521] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND In February 2002, clinicians at the Dartmouth College Health Service recognized an outbreak of conjunctivitis; cultures of conjunctival swabs implicated Streptococcus pneumoniae. An investigation was begun to determine the extent of the outbreak, confirm the cause, identify modes of transmission, and implement control measures. METHODS Investigators reviewed the health service's data base for diagnoses of conjunctivitis. Viral and bacterial cultures were obtained from ill students. Bile-soluble isolates that were susceptible to ethylhydrocupreine (optochin) and therefore were presumed to be pneumococci underwent serotyping, capsular staining, pulsed-field gel electrophoresis, a DNA probe, and multilocus sequence typing. A cohort study of risk factors was conducted with the use of the Internet. Control measures included distribution of alcohol-based hand gel and messages about prevention. RESULTS Among 5060 students, 698 (13.8 percent) received a diagnosis of conjunctivitis from January 1, 2002, through April 12, 2002, including 22 percent of first-year students. Presumed pneumococci were isolated from 43.3 percent of conjunctival swabs (110 of 254); viral cultures performed on 85 specimens were negative. DNA probes and multilocus sequence typing confirmed that the organisms were pneumococci, although the bacteria did not have the characteristic capsule. On pulsed-field gel electrophoresis, strains were found to be identical to pneumococci that caused outbreaks of conjunctivitis in other parts of the country in 1980. Analysis of survey data from 1832 students indicated that close contact with a student with conjunctivitis, wearing contact lenses, membership on a sports team, and attending parties at or living in a fraternity or sorority house were associated with conjunctivitis. The rate of diagnosis of conjunctivitis declined after the implementation of control measures and after spring break. CONCLUSIONS This large outbreak of conjunctivitis on a college campus was caused by an atypical, unencapsulated strain of S. pneumoniae that was identical to strains that had caused outbreaks two decades earlier.
Collapse
Affiliation(s)
- Michael Martin
- Respiratory Diseases Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
949
|
Edman M, Berg S, Storm P, Wikström M, Vikström S, Ohman A, Wieslander A. Structural features of glycosyltransferases synthesizing major bilayer and nonbilayer-prone membrane lipids in Acholeplasma laidlawii and Streptococcus pneumoniae. J Biol Chem 2003; 278:8420-8. [PMID: 12464611 DOI: 10.1074/jbc.m211492200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In membranes of Acholeplasma laidlawii two consecutively acting glucosyltransferases, the (i) alpha-monoglucosyldiacylglycerol (MGlcDAG) synthase (alMGS) (EC ) and the (ii) alpha-diglucosyl-DAG (DGlcDAG) synthase (alDGS) (EC ), are involved in maintaining (i) a certain anionic lipid surface charge density and (ii) constant nonbilayer/bilayer conditions (curvature packing stress), respectively. Cloning of the alDGS gene revealed related uncharacterized sequence analogs especially in several Gram-positive pathogens, thermophiles and archaea, where the encoded enzyme function of a potential Streptococcus pneumoniae DGS gene (cpoA) was verified. A strong stimulation of alDGS by phosphatidylglycerol (PG), cardiolipin, or nonbilayer-prone 1,3-DAG was observed, while only PG stimulated CpoA. Several secondary structure prediction and fold recognition methods were used together with SWISS-MODEL to build three-dimensional model structures for three MGS and two DGS lipid glycosyltransferases. Two Escherichia coli proteins with known structures were identified as the best templates, the membrane surface-associated two-domain glycosyltransferase MurG and the soluble GlcNAc epimerase. Differences in electrostatic surface potential between the different models and their individual domains suggest that electrostatic interactions play a role for the association to membranes. Further support for this was obtained when hybrids of the N- and C-domain, and full size alMGS with green fluorescent protein were localized to different regions of the E. coli inner membrane and cytoplasm in vivo. In conclusion, it is proposed that the varying abilities to bind, and sense lipid charge and curvature stress, are governed by typical differences in charge (pI values), amphiphilicity, and hydrophobicity for the N- and (catalytic) C-domains of these structurally similar membrane-associated enzymes.
Collapse
Affiliation(s)
- Maria Edman
- Department of Biochemistry, Umeå University, Sweden
| | | | | | | | | | | | | |
Collapse
|
950
|
Chan PF, O'Dwyer KM, Palmer LM, Ambrad JD, Ingraham KA, So C, Lonetto MA, Biswas S, Rosenberg M, Holmes DJ, Zalacain M. Characterization of a novel fucose-regulated promoter (PfcsK) suitable for gene essentiality and antibacterial mode-of-action studies in Streptococcus pneumoniae. J Bacteriol 2003; 185:2051-8. [PMID: 12618474 PMCID: PMC150135 DOI: 10.1128/jb.185.6.2051-2058.2003] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The promoter of the Streptococcus pneumoniae putative fuculose kinase gene (fcsK), the first gene of a novel fucose utilization operon, is induced by fucose and repressed by glucose or sucrose. When the streptococcal polypeptide deformylase (PDF) gene (def1, encoding PDF) was placed under the control of P(fcsK), fucose-dependent growth of the S. pneumoniae (P(fcsK)::def1) strain was observed, confirming the essential nature of PDF in this organism. The mode of antibacterial action of actinonin, a known PDF inhibitor, was also confirmed with this strain. The endogenous fuculose kinase promoter is a tightly regulated, titratable promoter which will be useful for target validation and for confirmation of the mode of action of novel antibacterial drugs in S. pneumoniae.
Collapse
Affiliation(s)
- Pan F Chan
- Microbial, Musculoskeletal and Proliferative Diseases Center of Excellence for Drug Discovery, GlaxoSmithKline Pharmaceuticals, Collegeville, Pennsylvania 19426, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|