901
|
Tsai MH, Peng CL, Yao CJ, Shieh MJ. Enhanced efficacy of chemotherapeutic drugs against colorectal cancer using ligand-decorated self-breakable agents. RSC Adv 2015. [DOI: 10.1039/c5ra16175d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Targeting self-breakable micelles could facilitate Caco2 cancer cells in acidic tumor microenvironment to take up SN38 which the micelle loaded with and trigger drug release in cancer cells, resulting in enhanced drug efficacy.
Collapse
Affiliation(s)
- Ming-Hsien Tsai
- Institute of Biomedical Engineering
- College of Medicine and College of Engineering
- National Taiwan University
- Taipei
- Taiwan
| | - Cheng-Liang Peng
- Isotope Application Division
- Institute of Nuclear Energy Research
- Taoyuan
- Taiwan
| | - Cheng-Jung Yao
- Division of Gastroenterology
- Department of Internal Medicine
- Wan Fang Hospital
- Taipei Medical University
- Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering
- College of Medicine and College of Engineering
- National Taiwan University
- Taipei
- Taiwan
| |
Collapse
|
902
|
Wang M, Wang Y, Hu K, Shao N, Cheng Y. Tumor extracellular acidity activated “off–on” release of bortezomib from a biocompatible dendrimer. Biomater Sci 2015. [DOI: 10.1039/c4bm00365a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A nanoparticle with a specific response to tumor extracellular acidity provides a new option in the design of tumor-targeted delivery systems.
Collapse
Affiliation(s)
- Mingming Wang
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Yu Wang
- Department of Spine Surgery
- First Affiliated Hospital of Wenzhou Medical University
- Zhejiang 325000
- P.R. China
| | - Ke Hu
- Department of Gynecology and Obstetrics
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai
| | - Naimin Shao
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| |
Collapse
|
903
|
Pistollato F, Giampieri F, Battino M. The use of plant-derived bioactive compounds to target cancer stem cells and modulate tumor microenvironment. Food Chem Toxicol 2015; 75:58-70. [DOI: 10.1016/j.fct.2014.11.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/03/2014] [Accepted: 11/06/2014] [Indexed: 12/18/2022]
|
904
|
Chen LQ, Pagel MD. Evaluating pH in the Extracellular Tumor Microenvironment Using CEST MRI and Other Imaging Methods. ADVANCES IN RADIOLOGY 2015; 2015:206405. [PMID: 27761517 PMCID: PMC5066878 DOI: 10.1155/2015/206405] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tumor acidosis is a consequence of altered metabolism, which can lead to chemoresistance and can be a target of alkalinizing therapies. Noninvasive measurements of the extracellular pH (pHe) of the tumor microenvironment can improve diagnoses and treatment decisions. A variety of noninvasive imaging methods have been developed for measuring tumor pHe. This review provides a detailed description of the advantages and limitations of each method, providing many examples from previous research reports. A substantial emphasis is placed on methods that use MR spectroscopy and MR imaging, including recently developed methods that use chemical exchange saturation transfer MRI that combines some advantages of MR spectroscopy and imaging. Together, this review provides a comprehensive overview of methods for measuring tumor pHe, which may facilitate additional creative approaches in this research field.
Collapse
Affiliation(s)
- Liu Qi Chen
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Mark D. Pagel
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
- Department of Medical Imaging, University of Arizona, Tucson, AZ 85724, USA
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
905
|
Fack F, Espedal H, Keunen O, Golebiewska A, Obad N, Harter PN, Mittelbronn M, Bähr O, Weyerbrock A, Stuhr L, Miletic H, Sakariassen PØ, Stieber D, Rygh CB, Lund-Johansen M, Zheng L, Gottlieb E, Niclou SP, Bjerkvig R. Bevacizumab treatment induces metabolic adaptation toward anaerobic metabolism in glioblastomas. Acta Neuropathol 2015; 129:115-31. [PMID: 25322816 PMCID: PMC4282692 DOI: 10.1007/s00401-014-1352-5] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 10/29/2022]
Abstract
Anti-angiogenic therapy in glioblastoma (GBM) has unfortunately not led to the anticipated improvement in patient prognosis. We here describe how human GBM adapts to bevacizumab treatment at the metabolic level. By performing (13)C6-glucose metabolic flux analysis, we show for the first time that the tumors undergo metabolic re-programming toward anaerobic metabolism, thereby uncoupling glycolysis from oxidative phosphorylation. Following treatment, an increased influx of (13)C6-glucose was observed into the tumors, concomitant to increased lactate levels and a reduction of metabolites associated with the tricarboxylic acid cycle. This was confirmed by increased expression of glycolytic enzymes including pyruvate dehydrogenase kinase in the treated tumors. Interestingly, L-glutamine levels were also reduced. These results were further confirmed by the assessment of in vivo metabolic data obtained by magnetic resonance spectroscopy and positron emission tomography. Moreover, bevacizumab led to a depletion in glutathione levels indicating that the treatment caused oxidative stress in the tumors. Confirming the metabolic flux results, immunohistochemical analysis showed an up-regulation of lactate dehydrogenase in the bevacizumab-treated tumor core as well as in single tumor cells infiltrating the brain, which may explain the increased invasion observed after bevacizumab treatment. These observations were further validated in a panel of eight human GBM patients in which paired biopsy samples were obtained before and after bevacizumab treatment. Importantly, we show that the GBM adaptation to bevacizumab therapy is not mediated by clonal selection mechanisms, but represents an adaptive response to therapy.
Collapse
Affiliation(s)
- Fred Fack
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Centre de Recherche Public de la Santé, Strassen, Luxembourg
| | - Heidi Espedal
- NorLux Neuro-Oncology, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5019 Bergen, Norway
| | - Olivier Keunen
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Centre de Recherche Public de la Santé, Strassen, Luxembourg
| | - Anna Golebiewska
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Centre de Recherche Public de la Santé, Strassen, Luxembourg
| | - Nina Obad
- NorLux Neuro-Oncology, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5019 Bergen, Norway
| | - Patrick N. Harter
- Edinger Institute, Institute of Neurology, Goethe University, Hospital Frankfurt, Frankfurt am Main, Germany
| | - Michel Mittelbronn
- Edinger Institute, Institute of Neurology, Goethe University, Hospital Frankfurt, Frankfurt am Main, Germany
| | - Oliver Bähr
- Dr. Senckenberg Institute of Neurooncology, Goethe University, Hospital Frankfurt, Frankfurt am Main, Germany
| | - Astrid Weyerbrock
- Department of Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| | - Linda Stuhr
- Matrix Biology Group, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Hrvoje Miletic
- NorLux Neuro-Oncology, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5019 Bergen, Norway
- Department of Pathology, Haukeland University Hospital, The Gade Institute, Bergen, Norway
- KG Jebsen Brain Tumour Research Center, University of Bergen, Bergen, Norway
| | - Per Ø. Sakariassen
- NorLux Neuro-Oncology, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5019 Bergen, Norway
| | - Daniel Stieber
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Centre de Recherche Public de la Santé, Strassen, Luxembourg
| | - Cecilie B. Rygh
- Department of Biomedicine, Molecular Imaging Center, University of Bergen, Bergen, Norway
| | - Morten Lund-Johansen
- Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway
- KG Jebsen Brain Tumour Research Center, University of Bergen, Bergen, Norway
| | - Liang Zheng
- Cancer Research UK, Beatson Institute, Glasgow, Scotland, UK
| | - Eyal Gottlieb
- Cancer Research UK, Beatson Institute, Glasgow, Scotland, UK
| | - Simone P. Niclou
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Centre de Recherche Public de la Santé, Strassen, Luxembourg
- KG Jebsen Brain Tumour Research Center, University of Bergen, Bergen, Norway
| | - Rolf Bjerkvig
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Centre de Recherche Public de la Santé, Strassen, Luxembourg
- NorLux Neuro-Oncology, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5019 Bergen, Norway
- KG Jebsen Brain Tumour Research Center, University of Bergen, Bergen, Norway
| |
Collapse
|
906
|
Huang C, Qin H, Qian J, Zhang J, Zhao S, Changyi Y, Li B, Zhang J, Zhu J, Xing D, Yang S, Li C. Multi-parametric imaging of the invasiveness-permissive acidic microenvironment in human glioma xenografts. RSC Adv 2015. [DOI: 10.1039/c5ra07685d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Non-invasive multi-parametric imaging demonstrated the positive correlation between the invasiveness and extracellular acidity in glioma xenografts.
Collapse
|
907
|
Choi SYC, Lin D, Gout PW, Collins CC, Xu Y, Wang Y. Lessons from patient-derived xenografts for better in vitro modeling of human cancer. Adv Drug Deliv Rev 2014; 79-80:222-37. [PMID: 25305336 DOI: 10.1016/j.addr.2014.09.009] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 09/02/2014] [Accepted: 09/23/2014] [Indexed: 12/21/2022]
Abstract
The development of novel cancer therapeutics is often plagued by discrepancies between drug efficacies obtained in preclinical studies and outcomes of clinical trials. The inconsistencies can be attributed to a lack of clinical relevance of the cancer models used for drug testing. While commonly used in vitro culture systems are advantageous for addressing specific experimental questions, they are often gross, fidelity-lacking simplifications that largely ignore the heterogeneity of cancers as well as the complexity of the tumor microenvironment. Factors such as tumor architecture, interactions among cancer cells and between cancer and stromal cells, and an acidic tumor microenvironment are critical characteristics observed in patient-derived cancer xenograft models and in the clinic. By mimicking these crucial in vivo characteristics through use of 3D cultures, co-culture systems and acidic culture conditions, an in vitro cancer model/microenvironment that is more physiologically relevant may be engineered to produce results more readily applicable to the clinic.
Collapse
Affiliation(s)
- Stephen Yiu Chuen Choi
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada.
| | - Dong Lin
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada.
| | - Peter W Gout
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada.
| | - Colin C Collins
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada.
| | - Yong Xu
- Department of Urology, Second Affiliated Hospital of Tianjin Medical University, Tianjin, P.R. China.
| | - Yuzhuo Wang
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada.
| |
Collapse
|
908
|
Katt WP, Antonyak MA, Cerione RA. Simultaneously targeting tissue transglutaminase and kidney type glutaminase sensitizes cancer cells to acid toxicity and offers new opportunities for therapeutic intervention. Mol Pharm 2014; 12:46-55. [PMID: 25426679 PMCID: PMC4291776 DOI: 10.1021/mp500405h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Most cancer cells undergo characteristic metabolic changes that are commonly referred to as the Warburg effect, with one of the hallmarks being a dramatic increase in the rate of lactic acid fermentation. This leads to the production of protons, which in turn acidifies the microenvironment surrounding tumors. Cancer cells have acquired resistance to acid toxicity, allowing them to survive and grow under these detrimental conditions. Kidney type glutaminase (GLS1), which is responsible for the conversion of glutamine to glutamate, produces ammonia as part of its catalytic activities and has been shown to modulate cellular acidity. In this study, we show that tissue, or type 2, transglutaminase (TG2), a γ-glutamyl transferase that is highly expressed in metastatic cancers and produces ammonia as a byproduct of its catalytic activity, is up-regulated by decreases in cellular pH and helps protect cells from acid-induced cell death. Since both TG2 and GLS1 can similarly function to protect cancer cells, we then proceeded to demonstrate that treatment of a variety of cancer cell types with inhibitors of each of these proteins results in synthetic lethality. The combination doses of the inhibitors induce cell death, while individual treatment with each compound shows little or no ability to kill cells. These results suggest that combination drug treatments that simultaneously target TG2 and GLS1 might provide an effective strategy for killing cancer cells.
Collapse
Affiliation(s)
- William P Katt
- Department of Molecular Medicine and Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853-6401, United States
| | | | | |
Collapse
|
909
|
Ivanova L, Zandberga E, Siliņa K, Kalniņa Z, Ābols A, Endzeliņš E, Vendina I, Romanchikova N, Hegmane A, Trapencieris P, Eglītis J, Linē A. Prognostic relevance of carbonic anhydrase IX expression is distinct in various subtypes of breast cancer and its silencing suppresses self-renewal capacity of breast cancer cells. Cancer Chemother Pharmacol 2014; 75:235-46. [PMID: 25422154 DOI: 10.1007/s00280-014-2635-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/14/2014] [Indexed: 11/26/2022]
Abstract
PURPOSE Carbonic anhydrase IX (CAIX) is a hypoxia-inducible enzyme with extracellular catalytic domain that is overexpressed in a variety of cancers including breast cancer and plays a crucial role in maintaining favourable intracellular pH and reducing extracellular pH. The purpose of the current study was to elucidate the prognostic significance of CAIX in the intrinsic subtypes of breast cancer and to characterise CAIX as a drug target in breast cancer. METHODS The prognostic significance of CAIX mRNA expression was interrogated in a cohort of 3,455 breast tumours by using an online tool, Kaplan-Meier plotter. The functional effects of stable CAIX depletion by shRNA in three breast cancer cell lines—MDA-MB-231, MCF7 and SKBR-3, representing basal-like, luminal A and HER2+ subtypes, respectively—were studied by proliferation, invasion, clonal spheroid formation and chemosensitivity assays under normoxia and hypoxia. Finally, the effect of pharmacological CA inhibition alone or in the combination with doxorubicin on self-renewal was assessed by spheroid-forming assay. RESULTS High CAIX mRNA expression was significantly associated with poor survival in patients with basal-like, luminal B and triple-negative breast cancer, but not luminal A and HER+ subtypes. Silencing of CAIX expression had no significant effect on the cell proliferation or viability upon treatment with doxorubicin in any of the cell lines studied, while it inhibited spheroid formation in hypoxic conditions. Furthermore, pharmacological inhibition of CAs using acetazolamide had a synergistic effect with doxorubicin on decreasing the spheroid-forming efficiency in MDA-MB-231 cells. CONCLUSIONS Inhibition of CAIX reduces the self-renewal capacity of breast cancer cells, and the combination of doxorubicin and CAIX inhibition is an attractive therapeutic strategy in basal-like and triple-negative breast cancer, which warrants further investigations.
Collapse
Affiliation(s)
- Lāsma Ivanova
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, Riga, 1067, Latvia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
910
|
Karabadzhak A, An M, Yao L, Langenbacher R, Moshnikova A, Adochite RC, Andreev OA, Reshetnyak YK, Engelman DM. pHLIP-FIRE, a cell insertion-triggered fluorescent probe for imaging tumors demonstrates targeted cargo delivery in vivo. ACS Chem Biol 2014; 9:2545-53. [PMID: 25184440 PMCID: PMC4245173 DOI: 10.1021/cb500388m] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/03/2014] [Indexed: 12/20/2022]
Abstract
We have developed an improved tool for imaging acidic tumors by reporting the insertion of a transmembrane helix: the pHLIP-Fluorescence Insertion REporter (pHLIP-FIRE). In acidic tissues, such as tumors, peptides in the pHLIP family insert as α-helices across cell membranes. The cell-inserting end of the pHLIP-FIRE peptide has a fluorophore-fluorophore or fluorophore-quencher pair. A pair member is released by disulfide cleavage after insertion into the reducing environment inside a cell, resulting in dequenching of the probe. Thus, the fluorescence of the pHLIP-FIRE probe is enhanced upon cell-insertion in the targeted tissues but is suppressed elsewhere due to quenching. Targeting studies in mice bearing breast tumors show strong signaling by pHLIP-FIRE, with a contrast index of ∼17, demonstrating (i) direct imaging of pHLIP insertion and (ii) cargo translocation in vivo. Imaging and targeted cargo delivery should each have clinical applications.
Collapse
Affiliation(s)
- Alexander
G. Karabadzhak
- Department
of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Ming An
- Department of Chemistry and Department of Physics,
Applied Physics and Astronomy, State University
of New York, Binghamton University, Binghamton, New York 13902, United States
| | - Lan Yao
- Department of Chemistry and Department of Physics,
Applied Physics and Astronomy, State University
of New York, Binghamton University, Binghamton, New York 13902, United States
| | - Rachel Langenbacher
- Department of Chemistry and Department of Physics,
Applied Physics and Astronomy, State University
of New York, Binghamton University, Binghamton, New York 13902, United States
| | - Anna Moshnikova
- Department
of Physics, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Ramona-Cosmina Adochite
- Department
of Physics, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Oleg A. Andreev
- Department
of Physics, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Yana K. Reshetnyak
- Department
of Physics, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Donald M. Engelman
- Department
of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
911
|
Deacon JC, Engelman DM, Barrera FN. Targeting acidity in diseased tissues: mechanism and applications of the membrane-inserting peptide, pHLIP. Arch Biochem Biophys 2014; 565:40-8. [PMID: 25444855 DOI: 10.1016/j.abb.2014.11.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 12/24/2022]
Abstract
pHLIPs are a family of soluble ∼36 amino acid peptides, which bind to membrane surfaces. If the environment is acidic, a pHLIP folds and inserts across the membrane to form a stable transmembrane helix, thus preferentially locating itself in acidic tissues. Since tumors and other disease tissues are acidic, pHLIPs' low-pH targeting behavior leads to applications as carriers for diagnostic and surgical imaging agents. The energy of membrane insertion can also be used to promote the insertion of modestly polar, normally cell-impermeable cargos across the cell membrane into the cytosol of targeted cells, leading to applications in tumor-targeted delivery of therapeutic molecules. We review the biochemical and biophysical basis of pHLIPs' unique properties, diagnostic and therapeutic applications, and the principles upon which translational applications are being developed.
Collapse
Affiliation(s)
- John C Deacon
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Donald M Engelman
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Francisco N Barrera
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
912
|
Inhibition of lactate dehydrogenase activity as an approach to cancer therapy. Future Med Chem 2014; 6:429-45. [PMID: 24635523 DOI: 10.4155/fmc.13.206] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the attempt of developing innovative anticancer treatments, growing interest has recently focused on the peculiar metabolic properties of cancer cells. In this context, LDH, which converts pyruvate to lactate at the end of glycolysis, is emerging as one of the most interesting molecular targets for the development of new inhibitors. In fact, because LDH activity is not needed for pyruvate metabolism through the TCA cycle, inhibitors of this enzyme should spare glucose metabolism of normal non-proliferating cells, which usually completely degrade the glucose molecule to CO2. This review is aimed at summarizing the available data on LDH biology in normal and neoplastic cells, which support the anticancer therapeutic approach based on LDH inhibition. These data encouraged pharmaceutical industries and academic institutions in the search of small-molecule inhibitors and promising candidates have recently been identified. The availability of inhibitors with drug-like properties will allow the evaluation in the near future of the real potential of LDH inhibition in anticancer treatment, also making the identification of the most responsive neoplastic conditions possible.
Collapse
|
913
|
Mitochondrial dysfunction in cancer chemoresistance. Biochem Pharmacol 2014; 92:62-72. [DOI: 10.1016/j.bcp.2014.07.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 12/19/2022]
|
914
|
Chen LQ, Howison CM, Jeffery JJ, Robey IF, Kuo PH, Pagel MD. Evaluations of extracellular pH within in vivo tumors using acidoCEST MRI. Magn Reson Med 2014; 72:1408-17. [PMID: 24281951 PMCID: PMC4033731 DOI: 10.1002/mrm.25053] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 10/26/2013] [Accepted: 10/28/2013] [Indexed: 11/07/2022]
Abstract
PURPOSE A practical, noninvasive method is needed to measure the extracellular pH (pHe) within in vivo tumors to longitudinally monitor tumor acidosis. We have optimized a biomedical imaging method, termed acidoCEST MRI, to provide noninvasive assessments of tumor pHe in preclinical models of mammary carcinoma. METHODS A CEST-FISP MRI method was optimized to detect the chemical exchange saturation transfer (CEST) of two amide protons of a clinically approved CT contrast agent, iopromide. The ratio of the two CEST effects was used to measure pH. Routes of administration of iopromide were evaluated to ensure sufficient delivery of the agent to the tumor. The optimized acidoCEST MRI method was then used to evaluate the change in tumor pHe following alkalinizing bicarbonate treatment. RESULTS The acidoCEST MRI protocol measured pH between 6.2 and 7.2 pH units. Greater delivery of iopromide was shown to improve the precision of the measurement of tumor pHe, but the agent did not influence the tumor pHe. AcidoCEST MRI was used to longitudinally monitor the effect of bicarbonate treatment on the pHe of tumors and bladders. CONCLUSION This study demonstrates that an optimized acidoCEST MRI method is a practical, noninvasive method for assessing changes in tumor acidosis.
Collapse
Affiliation(s)
- Liu Qi Chen
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | | | - Justin J. Jeffery
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Ian F. Robey
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Phillip H. Kuo
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Mark D. Pagel
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
915
|
Wang L, Fan Z, Zhang J, Changyi Y, Huang C, Gu Y, Xu Z, Tang Z, Lu W, Wei X, Li C. Evaluating tumor metastatic potential by imaging intratumoral acidosisviapH-activatable near-infrared fluorescent probe. Int J Cancer 2014; 136:E107-16. [DOI: 10.1002/ijc.29153] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/12/2014] [Accepted: 08/15/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Lu Wang
- Key Laboratory of Smart Drug Delivery; Ministry of Education, School of Pharmacy, Fudan University; Shanghai 201203 China
| | - Zhichao Fan
- Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai 200030 China
| | - Jingye Zhang
- Key Laboratory of Smart Drug Delivery; Ministry of Education, School of Pharmacy, Fudan University; Shanghai 201203 China
| | - Yinzhi Changyi
- Key Laboratory of Smart Drug Delivery; Ministry of Education, School of Pharmacy, Fudan University; Shanghai 201203 China
| | - Cuiyun Huang
- Key Laboratory of Smart Drug Delivery; Ministry of Education, School of Pharmacy, Fudan University; Shanghai 201203 China
| | - Yanjuan Gu
- Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University, Hung Hom; Kowloon Hong Kong China
| | - Ziyao Xu
- Key Laboratory of Smart Drug Delivery; Ministry of Education, School of Pharmacy, Fudan University; Shanghai 201203 China
| | - Zhijia Tang
- Key Laboratory of Smart Drug Delivery; Ministry of Education, School of Pharmacy, Fudan University; Shanghai 201203 China
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery; Ministry of Education, School of Pharmacy, Fudan University; Shanghai 201203 China
| | - Xunbin Wei
- Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai 200030 China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery; Ministry of Education, School of Pharmacy, Fudan University; Shanghai 201203 China
| |
Collapse
|
916
|
Growth and remodelling for profound circular wounds in skin. Biomech Model Mechanobiol 2014; 14:357-70. [PMID: 25183422 PMCID: PMC4349964 DOI: 10.1007/s10237-014-0609-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 08/01/2014] [Indexed: 12/22/2022]
Abstract
Wound healing studies both in vitro and in vivo have received a lot of attention recently. In vivo wound healing is a multi-step process involving physiological factors such as fibrinogen forming the clot, the infiltrated inflammatory cells, the recruited fibroblasts and the differentiated myofibroblasts as well as deposited collagens. All these actors play their roles at different times, aided by a cascade of morphogenetic agents and the result for the repair is approximatively successful but the imperfection is remained for large scars with fibrosis. Here, we want to study wound healing from the viewpoint of skin biomechanics, integrating the particular layered geometry of the skin, and the role of the neighbouring wound epidermis. After 2 days post-injury, it migrates towards the wound centre to cover the hole, the migration being coupled to proliferation at the wound border. Such a process is dominated by the skin properties which varies with ages, locations, pathologies, radiations, etc. It is also controlled by passive (actin, collagen) and active (myo-fibroblasts) fibres. We explore a growth model in finite elasticity of a bilayer surrounding a circular wound, only the interior one being proliferative and contractile. We discuss the occurrence of an irregular wound geometry generated by stresses and show quantitatively that it results from the combined effects of the stiffness, the size of the wound, eventually weakened by actin cables. Comparison of our findings is made with known observations or experiments in vivo.
Collapse
|
917
|
Acid-mediated tumor proteolysis: contribution of cysteine cathepsins. Neoplasia 2014; 15:1125-37. [PMID: 24204192 DOI: 10.1593/neo.13946] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/28/2013] [Accepted: 08/28/2013] [Indexed: 12/21/2022] Open
Abstract
One of the noncellular microenvironmental factors that contribute to malignancy of solid tumors is acidic peritumoral pH. We have previously demonstrated that extracellular acidosis leads to localization of the cysteine pro-tease cathepsin B on the tumor cell membrane and its secretion. The objective of the present study was to determine if an acidic extracellular pH such as that observed in vivo (i.e., pHe 6.8) affects the activity of proteases, e.g., cathepsin B, that contribute to degradation of collagen IV by tumor cells when grown in biologically relevant three-dimensional (3D) cultures. For these studies, we used 1) 3D reconstituted basement membrane overlay cultures of human carcinomas, 2) live cell imaging assays to assess proteolysis, and 3) in vivo imaging of active tumor proteases. At pHe 6.8, there were increases in pericellular active cysteine cathepsins and in degradation of dye-quenched collagen IV, which was partially blocked by a cathepsin B inhibitor. Imaging probes for active cysteine cathepsins localized to tumors in vivo. The amount of bound probe decreased in tumors in bicarbonate-treated mice, a treatment previously shown to increase peritumoral pHe and reduce local invasion of the tumors. Our results are consistent with the acid-mediated invasion hypothesis and with a role for cathepsin B in promoting degradation of a basement membrane protein substrate, i.e., type IV collagen, in an acidic peritumoral environment.
Collapse
|
918
|
Takahashi W, Bobko AA, Dhimitruka I, Hirata H, Zweier JL, Samouilov A, Khramtsov VV. Proton-Electron Double-Resonance Imaging of pH using phosphonated trityl probe. APPLIED MAGNETIC RESONANCE 2014; 45:817-826. [PMID: 25530673 PMCID: PMC4268155 DOI: 10.1007/s00723-014-0570-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Variable Radio Frequency Proton-Electron Double-Resonance Imaging (VRF PEDRI) enables extracting a functional map from a limited number of images acquired at pre-selected EPR frequencies using specifically designed paramagnetic probes with high quality spatial resolution and short acquisition times. In this work we explored potential of VRF PEDRI for pH mapping of aqueous samples using recently synthesized pH-sensitive phosphonated trityl radical, pTR. The ratio of Overhauser enhancements measured at each pixel at two different excitation frequencies corresponding to the resonances of protonated and deprotonated forms of pTR probe allows for a pH map extraction. Long relaxation times of pTR allow for pH mapping at EPR irradiation power as low as 1.25 W during 130 s acquisition time with spatial resolution of about 1 mm. This is particularly important for in vivo applications enabling one to avoid sample overheating by reducing RF power deposition.
Collapse
Affiliation(s)
- Wataru Takahashi
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Internal Medicine and Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, USA ; Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Andrey A Bobko
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Internal Medicine and Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Ilirian Dhimitruka
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Internal Medicine and Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Hiroshi Hirata
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Jay L Zweier
- Division of Cardiology and Dorothy M. Davis Heart & Lung Research Institute, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Alexandre Samouilov
- Division of Cardiology and Dorothy M. Davis Heart & Lung Research Institute, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Valery V Khramtsov
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Internal Medicine and Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
919
|
Kruspig B, Zhivotovsky B, Gogvadze V. Mitochondrial substrates in cancer: drivers or passengers? Mitochondrion 2014; 19 Pt A:8-19. [PMID: 25179741 DOI: 10.1016/j.mito.2014.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/26/2014] [Indexed: 01/20/2023]
Abstract
The majority of cancers demonstrate various tumor-specific metabolic aberrations, such as increased glycolysis even under aerobic conditions (Warburg effect), whereas mitochondrial metabolic activity and their contribution to cellular energy production are restrained. One of the most important mechanisms for this metabolic switch is the alteration in the abundance, utilization, and localization of various mitochondrial substrates. Numerous lines of evidence connect disturbances in mitochondrial metabolic pathways with tumorigenesis and provide an intriguing rationale for utilizing mitochondria as targets for anti-cancer therapy.
Collapse
Affiliation(s)
- Björn Kruspig
- Division of Toxicology, Institute of Environmental Medicine Karolinska Institutet, Box 210 171 77 Stockholm, Sweden
| | - Boris Zhivotovsky
- Division of Toxicology, Institute of Environmental Medicine Karolinska Institutet, Box 210 171 77 Stockholm, Sweden; MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir Gogvadze
- Division of Toxicology, Institute of Environmental Medicine Karolinska Institutet, Box 210 171 77 Stockholm, Sweden; MV Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
920
|
Beun LH, Storm IM, Werten MWT, de Wolf FA, Cohen Stuart MA, de Vries R. From micelles to fibers: balancing self-assembling and random coiling domains in pH-responsive silk-collagen-like protein-based polymers. Biomacromolecules 2014; 15:3349-57. [PMID: 25133990 PMCID: PMC4260859 DOI: 10.1021/bm500826y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
![]()
We
study the self-assembly of genetically engineered protein-based
triblock copolymers consisting of a central pH-responsive silk-like
middle block (SHn, where SH is a silk-like octapeptide, (GA)3GH and n is the number of repeats) flanked by hydrophilic random
coil outer blocks (C2). Our previous work has already shown
that triblocks with very long midblocks (n = 48)
self-assemble into long, stiff protein filaments at pH values where
the middle blocks are uncharged. Here we investigate the self-assembly
behavior of the triblock copolymers for a range of midblock lengths,
n = 8, 16, 24, 48. Upon charge neutralization of SHn by adjusting the pH, we find that C2SH8C2 and C2SH16C2 form spherical micelles, whereas both C2SH24C2 and C2SH48C2 form protein filaments with a characteristic
beta-roll secondary structure of the silk midblocks. Hydrogels formed
by C2SH48C2 are much stronger
and form much faster than those formed by C2SH24C2. Enzymatic digestion of much of the hydrophilic
outer blocks is used to show that with much of the hydrophilic outer
blocks removed, all silk-midblocks are capable of self-assembling
into stiff protein filaments. In that case, reduction of the steric
repulsion by the hydrophilic outer blocks also leads to extensive
fiber bundling. Our results highlight the opposing roles of the hydrophilic
outer blocks and central silk-like midblocks in driving protein filament
formation. They provide crucial information for future designs of
triblock protein-based polymers that form stiff filaments with controlled
bundling, that could mimick properties of collagen in the extracellular
matrix.
Collapse
Affiliation(s)
- Lennart H Beun
- Laboratory of Physical Chemistry and Colloid Science, Wageningen University , Dreijenplein 6, NL-6703 HB Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
921
|
Corbet C, Draoui N, Polet F, Pinto A, Drozak X, Riant O, Feron O. The SIRT1/HIF2α axis drives reductive glutamine metabolism under chronic acidosis and alters tumor response to therapy. Cancer Res 2014; 74:5507-19. [PMID: 25085245 DOI: 10.1158/0008-5472.can-14-0705] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extracellular tumor acidosis largely results from an exacerbated glycolytic flux in cancer and cancer-associated cells. Conversely, little is known about how tumor cells adapt their metabolism to acidosis. Here, we demonstrate that long-term exposure of cancer cells to acidic pH leads to a metabolic reprogramming toward glutamine metabolism. This switch is triggered by the need to reduce the production of protons from glycolysis and further maintained by the NAD(+)-dependent increase in SIRT1 deacetylase activity to ensure intracellular pH homeostasis. A consecutive increase in HIF2α activity promotes the expression of various transporters and enzymes supporting the reductive and oxidative glutamine metabolism, whereas a reduction in functional HIF1α expression consolidates the inhibition of glycolysis. Finally, in vitro and in vivo experiments document that acidosis accounts for a net increase in tumor sensitivity to inhibitors of SIRT1 and glutaminase GLS1. These findings highlight the influence that tumor acidosis and metabolism exert on each other.
Collapse
Affiliation(s)
- Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Nihed Draoui
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Florence Polet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Adan Pinto
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Xavier Drozak
- Molecules, Solids and Reactivity (MOST), Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Olivier Riant
- Molecules, Solids and Reactivity (MOST), Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
922
|
Wang T, Liu G, Wang R. The Intercellular Metabolic Interplay between Tumor and Immune Cells. Front Immunol 2014; 5:358. [PMID: 25120544 PMCID: PMC4112791 DOI: 10.3389/fimmu.2014.00358] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/12/2014] [Indexed: 01/14/2023] Open
Abstract
Functional and effective immune response requires a metabolic rewiring of immune cells to meet their energetic and anabolic demands. Beyond this, the availability of extracellular and intracellular metabolites may serve as metabolic signals interconnecting with cellular signaling events to influence cellular fate and immunological function. As such, tumor microenvironment represents a dramatic example of metabolic derangement, where the highly metabolic demanding tumor cells may compromise the function of some immune cells by competing nutrients (a form of intercellular competition), meanwhile may support the function of other immune cells by forming a metabolic symbiosis (a form of intercellular collaboration). It has been well known that tumor cells harness immune system through information exchanges that are largely attributed to soluble protein factors and intercellular junctions. In this review, we will discuss recent advance on tumor metabolism and immune metabolism, as well as provide examples of metabolic communications between tumor cells and immune system, which may represent a novel mechanism of conveying tumor-immune privilege.
Collapse
Affiliation(s)
- Tingting Wang
- Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital , Columbus, OH , USA
| | - Guangwei Liu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Immunology, School of Basic Medical Sciences, Fudan University , Shanghai , China ; Biotherapy Research Center, Fudan University , Shanghai , China
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital , Columbus, OH , USA ; Hematology/Oncology & BMT, The Research Institute at Nationwide Children's Hospital , Columbus, OH , USA ; Department of Pediatrics, The Ohio State University School of Medicine , Columbus, OH , USA
| |
Collapse
|
923
|
Edmonds MD, Eischen CM. Differences in miRNA expression in early stage lung adenocarcinomas that did and did not relapse. PLoS One 2014; 9:e101802. [PMID: 25028925 PMCID: PMC4100742 DOI: 10.1371/journal.pone.0101802] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/11/2014] [Indexed: 12/31/2022] Open
Abstract
Relapse of adenocarcinoma, the most common non-small cell lung cancer (NSCLC), is a major clinical challenge to improving survival. To gain insight into the early molecular events that contribute to lung adenocarcinoma relapse, and taking into consideration potential cell type specificity, we used stringent criteria for sample selection. We measured miRNA expression only from flash frozen stage I lung adenocarcinomas, excluding other NSCLC subtypes. We compared miRNA expression in lung adenocarcinomas that relapsed within two years to those that did not relapse within three years after surgical resection prior to adjuvant therapy. The most significant differences in mRNA expression for recurrent tumors compared to non-recurrent tumors were decreases in miR-106b*, -187, -205, -449b, -774* and increases in miR-151-3p, let-7b, miR-215, -520b, and -512-3p. A unique comparison between adjacent normal lung tissue from relapse and non-relapse groups revealed dramatically different miRNA expression, suggesting dysregulation of miRNA in the environment around the tumor. To assess patient-to-patient variability, miRNA levels in the tumors were normalized to levels in matched adjacent normal lung tissue. This analysis revealed a different set of significantly altered miRNA in tumors that recurred compared to tumors that did not. Together our analyses elucidated miRNA not previously linked to lung adenocarcinoma that likely have important roles in its development and progression. Our results also highlight the differences in miRNA expression in normal lung tissue in adenocarcinomas that do and do not recur. Most notably, our data identified those miRNA that distinguish early stage tumors likely to relapse prior to treatment and miRNA that could be further studied for use as biomarkers for prognosis, patient monitoring, and/or treatment decisions.
Collapse
Affiliation(s)
- Mick D. Edmonds
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Christine M. Eischen
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
924
|
Ohno A, Yorita K, Haruyama Y, Kondo K, Kato A, Ohtomo T, Kawaguchi M, Marutuska K, Chijiiwa K, Kataoka H. Aberrant expression of monocarboxylate transporter 4 in tumour cells predicts an unfavourable outcome in patients with hepatocellular carcinoma. Liver Int 2014; 34:942-52. [PMID: 24433439 DOI: 10.1111/liv.12466] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 01/06/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The tumour cell microenvironment, which includes local oxygen saturation, pericellular pH and stromal cells, can modulate tumour progression. This study determined the prognostic impact of infiltrating tumour-associated macrophages and the expression of monocarboxylate transporter 4 (MCT4) and glypican 3 (GPC3) in hepatocellular carcinoma (HCC) clinical specimens. METHODS A total of 225 cases of resected HCC were subjected to immunohistochemical analyses of CD68, CD204, MCT4 and GPC3. Immunoreactivities and other common clinicopathological parameters were subjected to univariate prognostic analyses for overall survival (OS, n = 225) and disease-free survival (DFS, n = 222). All variables with prognostic impact were further analysed in multivariate analysis. RESULTS Increased intratumoural infiltration of CD204-positive or MCT4-positive macrophages suggested shorter OS (P = 0.015 or P = 0.001 respectively), but DFS was not altered. The GPC3 score (with an emphasis on circumferential immunoreactivity) was correlated with shorter OS and DFS. Aberrant expression of MCT4 in HCC cells was observed in a subset of HCC cases (21%, 47/225). In those cases, significantly poorer OS (P < 0.0001) and DFS (P = 0.0003) were observed, and there was a positive correlation with the intratumoural infiltration of CD204- or MCT4-positive macrophages and the GPC3 score. Multivariate analysis showed that aberrant MCT4 expression in HCC cells was an independent prognostic factor for shorter OS (P = 0.018) and DFS (P = 0.006) after resection of HCC. CONCLUSION Aberrant expression of MCT4 in carcinoma cells serves as a novel, independent prognostic factor for HCC, indicating a poorer patient outcome.
Collapse
Affiliation(s)
- Akinobu Ohno
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan; Pathology Section, University of Miyazaki Hospital, Miyazaki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
925
|
Unsoy G, Khodadust R, Yalcin S, Mutlu P, Gunduz U. Synthesis of Doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery. Eur J Pharm Sci 2014; 62:243-50. [PMID: 24931189 DOI: 10.1016/j.ejps.2014.05.021] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/30/2014] [Accepted: 05/26/2014] [Indexed: 01/23/2023]
Abstract
Targeted drug delivery is a promising alternative to overcome the limitations of classical chemotherapy. In an ideal targeted drug delivery system carrier nanoparticles would be directed to the tumor tissue and selectively release therapeutic molecules. As a novel approach, chitosan coated magnetic nanoparticles (CS MNPs) maintain a pH dependent drug delivery which provides targeting of drugs to the tumor site under a magnetic field. Among various materials, chitosan has a great importance as a pH sensitive, natural, biodegradable, biocompatible and bioadhesive polymer. The aim of this study was to obtain an effective targeted delivery system for Doxorubicin, using chitosan coated MNPs. Different sized CS MNPs were produced by in situ synthesis method. The anti-cancer agent Doxorubicin was loaded onto CS MNPs which were characterized previously. Doxorubicin loading was confirmed by FTIR. Drug loading and release characteristics, and stability of the nanoparticles were investigated. Our results showed that the CS MNPs have pH responsive release characteristics. The cellular internalization of Doxorubicin loaded CS MNPs were visualized by fluorescent microscopy. Doxorubicin loaded CS MNPs are efficiently taken up by MCF-7 (MCF-7/S) and Doxorubicin resistant MCF-7 (MCF-7/1 μM) breast cancer cells, which increases the efficacy of drug and also maintains overcoming the resistance of Doxorubicin in MCF-7/Dox cells. Consequently, CS MNPs synthesized at various sizes can be effectively used for the pH dependent release of Doxorubicin in cancer cells. Results of this study can provide new insights in the development of pH responsive targeted drug delivery systems to overcome the side effects of conventional chemotherapy.
Collapse
Affiliation(s)
- Gozde Unsoy
- Middle East Technical University, Department of Biotechnology, 06800 Ankara, Turkey.
| | - Rouhollah Khodadust
- Middle East Technical University, Department of Biotechnology, 06800 Ankara, Turkey
| | - Serap Yalcin
- Ahi Evran University, Department of Food Engineering, 40000 Kırşehir, Turkey
| | - Pelin Mutlu
- Middle East Technical University, Central Laboratory, Molecular Biology and Biotechnology R&D Center, 06800 Ankara, Turkey
| | - Ufuk Gunduz
- Middle East Technical University, Department of Biotechnology, 06800 Ankara, Turkey.
| |
Collapse
|
926
|
Epstein T, Xu L, Gillies RJ, Gatenby RA. Separation of metabolic supply and demand: aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane. Cancer Metab 2014; 2:7. [PMID: 24982758 PMCID: PMC4060846 DOI: 10.1186/2049-3002-2-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 05/07/2014] [Indexed: 01/05/2023] Open
Abstract
Background Cancer cells, and a variety of normal cells, exhibit aerobic glycolysis, high rates of glucose fermentation in the presence of normal oxygen concentrations, also known as the Warburg effect. This metabolism is considered abnormal because it violates the standard model of cellular energy production that assumes glucose metabolism is predominantly governed by oxygen concentrations and, therefore, fermentative glycolysis is an emergency back-up for periods of hypoxia. Though several hypotheses have been proposed for the origin of aerobic glycolysis, its biological basis in cancer and normal cells is still not well understood. Results We examined changes in glucose metabolism following perturbations in membrane activity in different normal and tumor cell lines and found that inhibition or activation of pumps on the cell membrane led to reduction or increase in glycolysis, respectively, while oxidative phosphorylation remained unchanged. Computational simulations demonstrated that these findings are consistent with a new model of normal physiological cellular metabolism in which efficient mitochondrial oxidative phosphorylation supplies chronic energy demand primarily for macromolecule synthesis and glycolysis is necessary to supply rapid energy demands primarily to support membrane pumps. A specific model prediction was that the spatial distribution of ATP-producing enzymes in the glycolytic pathway must be primarily localized adjacent to the cell membrane, while mitochondria should be predominantly peri-nuclear. The predictions were confirmed experimentally. Conclusions Our results show that glycolytic metabolism serves a critical physiological function under normoxic conditions by responding to rapid energetic demand, mainly from membrane transport activities, even in the presence of oxygen. This supports a new model for glucose metabolism in which glycolysis and oxidative phosphorylation supply different types of energy demand. Cells use efficient but slow-responding aerobic metabolism to meet baseline, steady energy demand and glycolytic metabolism, which is inefficient but can rapidly increase adenosine triphosphate (ATP) production, to meet short-timescale energy demands, mainly from membrane transport activities. In this model, the origin of the Warburg effect in cancer cells and aerobic glycolysis in general represents a normal physiological function due to enhanced energy demand for membrane transporters activity required for cell division, growth, and migration.
Collapse
Affiliation(s)
- Tamir Epstein
- Program of Cancer Biology and Evolution, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Liping Xu
- Department of Cancer Imaging and Metabolism, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Robert J Gillies
- Department of Cancer Imaging and Metabolism, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Robert A Gatenby
- Department of Radiology and Program of Cancer Biology and Evolution, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA
| |
Collapse
|
927
|
Aggarwal N, Sloane BF. Cathepsin B: multiple roles in cancer. Proteomics Clin Appl 2014; 8:427-37. [PMID: 24677670 PMCID: PMC4205946 DOI: 10.1002/prca.201300105] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/05/2013] [Accepted: 12/19/2013] [Indexed: 12/21/2022]
Abstract
Proteases, including intracellular proteases, play roles at many different stages of malignant progression. Our focus here is cathepsin B, a lysosomal cysteine cathepsin. High levels of cathepsin B are found in a wide variety of human cancers, levels that often induce secretion and association of cathepsin B with the tumor cell membrane. In experimental models, such as transgenic models of murine pancreatic and mammary carcinomas, causal roles for cathepsin B have been demonstrated in initiation, growth/tumor cell proliferation, angiogenesis, invasion, and metastasis. Tumor growth in transgenic models is promoted by cathepsin B in tumor-associated cells, for example, tumor-associated macrophages, as well as in tumor cells. In transgenic models, the absence of cathepsin B has been associated with enhanced apoptosis, yet cathepsin B also has been shown to contribute to apoptosis. Cathepsin B is part of a proteolytic pathway identified in xenograft models of human glioma; targeting only cathepsin B in these tumors is less effective than targeting cathepsin B in combination with other proteases or protease receptors. Understanding the mechanisms responsible for increased expression of cathepsin B in tumors and association of cathepsin B with tumor cell membranes is needed to determine whether targeting cathepsin B could be of therapeutic benefit.
Collapse
Affiliation(s)
- Neha Aggarwal
- Department of Physiology, Wayne State University School of Medicine, Detroit, Ml, USA
| | - Bonnie F. Sloane
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Ml, USA
| |
Collapse
|
928
|
Gong P, Yang Y, Yi H, Fang S, Zhang P, Sheng Z, Gao G, Gao D, Cai L. Polypeptide micelles with dual pH activatable dyes for sensing cells and cancer imaging. NANOSCALE 2014; 6:5416-5424. [PMID: 24714804 DOI: 10.1039/c4nr00519h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
pH is an important control parameter for maintenance of cell viability and tissue functions. pH monitoring provides valuable information on cell metabolic processes and the living environment. In this study, we prepared dual pH-sensitive, fluorescent dye-loaded polypeptide nanoparticles (DPNs) for ratiometric sensing of pH changes in living cells. DPNs contain two types of dyes: N-(rhodamine B) lactam cystamine (RBLC), an acid activatable fluorescent dye with increased fluorescence in an acidic environment, and fluorescein isothiocyanate (FITC), a base activatable fluorescent dye with enhanced fluorescence in an alkaline environment. Hence, DPNs exhibited a dual response signal with strong red fluorescence and weak green fluorescence under acidic conditions; in contrast, they showed strong green fluorescence and almost no red fluorescence under alkaline and neutral conditions. The favorable inverse pH responses of the two fluorescent dyes resulted in ratiometric pH determination for DPNs with an optimized pH-sensitive range of pH 4.5-7.5. Quantitative analysis of the intracellular pH of intact MCF-7 cells has been successfully demonstrated with our nanosensor. Moreover, single acid activatable fluorescent dye doped polypeptide nanoparticles that only contained RBLC can distinguish tumor tissue from normal tissue by monitoring the acidic extracellular environment.
Collapse
Affiliation(s)
- Ping Gong
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Key Laboratory of Cancer Nanotechnology, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
929
|
Wang Z, Butner JD, Kerketta R, Cristini V, Deisboeck TS. Simulating cancer growth with multiscale agent-based modeling. Semin Cancer Biol 2014; 30:70-8. [PMID: 24793698 DOI: 10.1016/j.semcancer.2014.04.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/18/2014] [Accepted: 04/04/2014] [Indexed: 01/01/2023]
Abstract
There have been many techniques developed in recent years to in silico model a variety of cancer behaviors. Agent-based modeling is a specific discrete-based hybrid modeling approach that allows simulating the role of diversity in cell populations as well as within each individual cell; it has therefore become a powerful modeling method widely used by computational cancer researchers. Many aspects of tumor morphology including phenotype-changing mutations, the adaptation to microenvironment, the process of angiogenesis, the influence of extracellular matrix, reactions to chemotherapy or surgical intervention, the effects of oxygen and nutrient availability, and metastasis and invasion of healthy tissues have been incorporated and investigated in agent-based models. In this review, we introduce some of the most recent agent-based models that have provided insight into the understanding of cancer growth and invasion, spanning multiple biological scales in time and space, and we further describe several experimentally testable hypotheses generated by those models. We also discuss some of the current challenges of multiscale agent-based cancer models.
Collapse
Affiliation(s)
- Zhihui Wang
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Joseph D Butner
- Department of Chemical Engineering and Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | - Romica Kerketta
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Vittorio Cristini
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131, USA; Department of Chemical Engineering and Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131, USA; Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | |
Collapse
|
930
|
Conway JRW, Carragher NO, Timpson P. Developments in preclinical cancer imaging: innovating the discovery of therapeutics. Nat Rev Cancer 2014; 14:314-28. [PMID: 24739578 DOI: 10.1038/nrc3724] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Integrating biological imaging into early stages of the drug discovery process can provide invaluable readouts of drug activity within complex disease settings, such as cancer. Iterating this approach from initial lead compound identification in vitro to proof-of-principle in vivo analysis represents a key challenge in the drug discovery field. By embracing more complex and informative models in drug discovery, imaging can improve the fidelity and statistical robustness of preclinical cancer studies. In this Review, we highlight how combining advanced imaging with three-dimensional systems and intravital mouse models can provide more informative and disease-relevant platforms for cancer drug discovery.
Collapse
Affiliation(s)
- James R W Conway
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre Sydney, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2010, Sydney, Australia
| | - Neil O Carragher
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Paul Timpson
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre Sydney, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2010, Sydney, Australia
| |
Collapse
|
931
|
Understanding the pharmacological properties of a metabolic PET tracer in prostate cancer. Proc Natl Acad Sci U S A 2014; 111:7254-9. [PMID: 24785505 DOI: 10.1073/pnas.1405240111] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Generally, solid tumors (>400 mm(3)) are inherently acidic, with more aggressive growth producing greater acidity. If the acidity could be targeted as a biomarker, it would provide a means to gauge the pace of tumor growth and degree of invasiveness, as well as providing a basis for predicting responses to pH-dependent chemotherapies. We have developed a (64)Cu pH (low) insertion peptide (pHLIP) for targeting, imaging, and quantifying acidic tumors by PET, and our findings reveal utility in assessing prostate tumors. The new pHLIP version limits indiscriminate healthy tissue binding, and we demonstrate its targeting of extracellular acidification in three different prostate cancer models, each with different vascularization and acid-extruding protein carbonic anhydrase IX (CAIX) expression. We then describe the tumor distribution of this radiotracer ex vivo, in association with blood perfusion and known biomarkers of acidity, such as hypoxia, lactate dehydrogenase A, and CAIX. We find that the probe reveals metabolic variations between and within tumors, and discriminates between necrotic and living tumor areas.
Collapse
|
932
|
Gorbatenko A, Olesen CW, Boedtkjer E, Pedersen SF. Regulation and roles of bicarbonate transporters in cancer. Front Physiol 2014; 5:130. [PMID: 24795638 PMCID: PMC3997025 DOI: 10.3389/fphys.2014.00130] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 03/14/2014] [Indexed: 12/20/2022] Open
Abstract
A unifying feature of solid tumors is a markedly altered pH profile compared to normal tissues. This reflects that solid tumors, despite completely different origins, often share several phenotypic properties with implications for intra- and extracellular pH. These include: a metabolic shift in most cancer cells toward more acid-producing pathways, reflecting both oncogenic signaling and the development of hypoxia in poorly perfused regions of the tumors; the poorly perfused and often highly dense tumor microenvironment, reducing the diffusive flux of acid equivalents compared to that in normal tissues; and the markedly altered regulation of the expression and activity of pH-regulatory transport proteins in cancer cells. While some of these properties of tumors have been well described in recent years, the great majority of the research in this clinically important area has focused on proton transport, in particular via the Na+/H+ exchanger 1 (SLC9A1, NHE1) and various H+ ATPases. We have, however, recently demonstrated that at least under some conditions, including in vitro models of HER2 positive breast cancer, and measurements obtained directly in freshly dissected human mammary carcinomas, bicarbonate transporters such as the electroneutral Na+, HCO−3 cotransporter (SLC4A7, NBCn1), are upregulated and play central roles in pH regulation. In this review, we summarize and discuss the current knowledge regarding the regulation and roles of bicarbonate transporters in cancer. Furthermore, we present new analyses of publicly available expression data demonstrating widely altered expression levels of SLC4- and SLC26 family transporters in breast-, lung-, and colon cancer patients, and we hypothesize that bicarbonate transporter dysregulation may have both diagnostic and therapeutic potential in cancer treatment.
Collapse
Affiliation(s)
| | | | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University Aarhus, Denmark
| | - Stine F Pedersen
- Department of Biology, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
933
|
Mouradian M, Kikawa KD, Dranka BP, Komas SM, Kalyanaraman B, Pardini RS. Docosahexaenoic acid attenuates breast cancer cell metabolism and the Warburg phenotype by targeting bioenergetic function. Mol Carcinog 2014; 54:810-20. [PMID: 24729481 DOI: 10.1002/mc.22151] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/05/2014] [Accepted: 03/06/2014] [Indexed: 01/19/2023]
Abstract
Docosahexaenoic acid (DHA; C22:6n-3) depresses mammary carcinoma proliferation and growth in cell culture and in animal models. The current study explored the role of interrupting bioenergetic pathways in BT-474 and MDA-MB-231 breast cancer cell lines representing respiratory and glycolytic phenotypes, respectively and comparing the impacts of DHA with a non-transformed cell line, MCF-10A. Metabolic investigation revealed that DHA supplementation significantly diminished the bioenergetic profile of the malignant cell lines in a dose-dependent manner. DHA enrichment also resulted in decreases in hypoxia-inducible factor (HIF-1α) total protein level and transcriptional activity in the malignant cell lines but not in the non-transformed cell line. Downstream targets of HIF-1α, including glucose transporter 1 (GLUT 1) and lactate dehydrogenase (LDH), were decreased by DHA treatment in the BT-474 cell line, as well as decreases in LDH protein level in the MDA-MB-231 cell line. Glucose uptake, total glucose oxidation, glycolytic metabolism, and lactate production were significantly decreased in response to DHA supplementation; thereby enhancing metabolic injury and decreasing oxidative metabolism. The DHA-induced metabolic changes led to a marked decrease of intracellular ATP levels by 50% in both cancer cell lines, which mediated phosphorylation of metabolic stress marker, AMPK, at Thr172. These findings show that DHA contributes to impaired cancer cell growth and survival by altering cancer cell metabolism, increasing metabolic stress and altering HIF-1α-associated metabolism, while not affecting non-transformed MCF-10A cells. This study provides rationale for enhancement of current cancer prevention models and current therapies by combining them with dietary sources, like DHA.
Collapse
Affiliation(s)
- Michael Mouradian
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, Nevada
| | - Keith D Kikawa
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, Nevada
| | - Brian P Dranka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Steven M Komas
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Ronald S Pardini
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, Nevada
| |
Collapse
|
934
|
Bailey KM, Wojtkowiak JW, Cornnell HH, Ribeiro MC, Balagurunathan Y, Hashim AI, Gillies RJ. Mechanisms of buffer therapy resistance. Neoplasia 2014; 16:354-64.e1-3. [PMID: 24862761 PMCID: PMC4094835 DOI: 10.1016/j.neo.2014.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 12/15/2022]
Abstract
Many studies have shown that the acidity of solid tumors contributes to local invasion and metastasis. Oral pH buffers can specifically neutralize the acidic pH of tumors and reduce the incidence of local invasion and metastatic formation in multiple murine models. However, this effect is not universal as we have previously observed that metastasis is not inhibited by buffers in some tumor models, regardless of buffer used. B16-F10 (murine melanoma), LL/2 (murine lung) and HCT116 (human colon) tumors are resistant to treatment with lysine buffer therapy, whereas metastasis is potently inhibited by lysine buffers in MDA-MB-231 (human breast) and PC3M (human prostate) tumors. In the current work, we confirmed that sensitive cells utilized a pH-dependent mechanism for successful metastasis supported by a highly glycolytic phenotype that acidifies the local tumor microenvironment resulting in morphological changes. In contrast, buffer-resistant cell lines exhibited a pH-independent metastatic mechanism involving constitutive secretion of matrix degrading proteases without elevated glycolysis. These results have identified two distinct mechanisms of experimental metastasis, one of which is pH-dependent (buffer therapy sensitive cells) and one which is pH-independent (buffer therapy resistant cells). Further characterization of these models has potential for therapeutic benefit.
Collapse
Affiliation(s)
- Kate M Bailey
- Department of Cancer Imaging and Metabolism, Tampa, FL, USA; Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | | | | | | | | | | | - Robert J Gillies
- Department of Cancer Imaging and Metabolism, Tampa, FL, USA; Department of Radiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
935
|
Thoma CR, Zimmermann M, Agarkova I, Kelm JM, Krek W. 3D cell culture systems modeling tumor growth determinants in cancer target discovery. Adv Drug Deliv Rev 2014; 69-70:29-41. [PMID: 24636868 DOI: 10.1016/j.addr.2014.03.001] [Citation(s) in RCA: 335] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/19/2014] [Accepted: 03/05/2014] [Indexed: 12/17/2022]
Abstract
Phenotypic heterogeneity of cancer cells, cell biological context, heterotypic crosstalk and the microenvironment are key determinants of the multistep process of tumor development. They sign responsible, to a significant extent, for the limited response and resistance of cancer cells to molecular-targeted therapies. Better functional knowledge of the complex intra- and intercellular signaling circuits underlying communication between the different cell types populating a tumor tissue and of the systemic and local factors that shape the tumor microenvironment is therefore imperative. Sophisticated 3D multicellular tumor spheroid (MCTS) systems provide an emerging tool to model the phenotypic and cellular heterogeneity as well as microenvironmental aspects of in vivo tumor growth. In this review we discuss the cellular, chemical and physical factors contributing to zonation and cellular crosstalk within tumor masses. On this basis, we further describe 3D cell culture technologies for growth of MCTS as advanced tools for exploring molecular tumor growth determinants and facilitating drug discovery efforts. We conclude with a synopsis on technological aspects for on-line analysis and post-processing of 3D MCTS models.
Collapse
|
936
|
Cuninghame S, Jackson R, Zehbe I. Hypoxia-inducible factor 1 and its role in viral carcinogenesis. Virology 2014; 456-457:370-83. [PMID: 24698149 DOI: 10.1016/j.virol.2014.02.027] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/17/2014] [Accepted: 02/26/2014] [Indexed: 01/05/2023]
Abstract
The advent of modern molecular biology has allowed for the discovery of several mechanisms by which oncoviruses promote carcinogenesis. Remarkably, nearly all human oncogenic viruses increase levels of the transcription factor hypoxia-inducible factor 1 (HIF-1). In this review, we highlight HIF-1׳s significance in viral oncogenesis, while providing an in-depth analysis of its activation mechanisms by the following oncoviruses: human papillomaviruses (HPVs), hepatitis B/C viruses (HBV/HCVs), Epstein-Barr virus (EBV), Kaposi׳s sarcoma-associated herpes virus (KSHV), and human T-cell lymphotropic virus (HTLV-1). We discuss virus-induced HIF-1׳s role in transcriptional upregulation of metabolic, angiogenic, and microenvironmental factors that are integral for oncogenesis. Admittedly, conclusive evidence is lacking as to whether activation of HIF-1 target genes is necessary for malignant transformation or merely a result thereof. In addition, a complete understanding of host-virus interactions, the effect of viral genomic variation, and the clinical (and potential therapeutic) relevance of HIF-1 in viral oncogenesis warrant further investigation.
Collapse
Affiliation(s)
- Sean Cuninghame
- Probe Development & Biomarker Exploration, Thunder Bay Regional Research Institute, 980 Oliver Rd, Thunder Bay, Ont., Canada P7B 6V4; Department of Biology, Lakehead University, Thunder Bay, Ont., Canada
| | - Robert Jackson
- Probe Development & Biomarker Exploration, Thunder Bay Regional Research Institute, 980 Oliver Rd, Thunder Bay, Ont., Canada P7B 6V4; Department of Biology, Lakehead University, Thunder Bay, Ont., Canada
| | - Ingeborg Zehbe
- Probe Development & Biomarker Exploration, Thunder Bay Regional Research Institute, 980 Oliver Rd, Thunder Bay, Ont., Canada P7B 6V4; Department of Biology, Lakehead University, Thunder Bay, Ont., Canada.
| |
Collapse
|
937
|
Systemic Activin signaling independently regulates sugar homeostasis, cellular metabolism, and pH balance in Drosophila melanogaster. Proc Natl Acad Sci U S A 2014; 111:5729-34. [PMID: 24706779 DOI: 10.1073/pnas.1319116111] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ability to maintain cellular and physiological metabolic homeostasis is key for the survival of multicellular organisms in changing environmental conditions. However, our understanding of extracellular signaling pathways that modulate metabolic processes remains limited. In this study we show that the Activin-like ligand Dawdle (Daw) is a major regulator of systemic metabolic homeostasis and cellular metabolism in Drosophila. We find that loss of canonical Smad signaling downstream of Daw leads to defects in sugar and systemic pH homeostasis. Although Daw regulates sugar homeostasis by positively influencing insulin release, we find that the effect of Daw on pH balance is independent of its role in insulin signaling and is caused by accumulation of organic acids that are primarily tricarboxylic acid (TCA) cycle intermediates. RNA sequencing reveals that a number of TCA cycle enzymes and nuclear-encoded mitochondrial genes including genes involved in oxidative phosphorylation and β-oxidation are up-regulated in the daw mutants, indicating either a direct or indirect role of Daw in regulating these genes. These findings establish Activin signaling as a major metabolic regulator and uncover a functional link between TGF-β signaling, insulin signaling, and metabolism in Drosophila.
Collapse
|
938
|
Faustino V, Pinho D, Yaginuma T, Calhelha RC, Ferreira IC, Lima R. Extensional flow-based microfluidic device: deformability assessment of red blood cells in contact with tumor cells. BIOCHIP JOURNAL 2014. [DOI: 10.1007/s13206-014-8107-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
939
|
Phospho-NHE3 forms membrane patches and interacts with beta-actin to sense and maintain constant direction during cell migration. Exp Cell Res 2014; 324:13-29. [PMID: 24657527 DOI: 10.1016/j.yexcr.2014.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 02/28/2014] [Accepted: 03/02/2014] [Indexed: 01/14/2023]
Abstract
The Na(+)/H(+) exchanger NHE3 colocalizes with beta-actin at the leading edge of directionally migrating cells. Using human osteosarcoma cells (SaOS-2), rat osteoblasts (calvaria), and human embryonic kidney (HEK) cells, we identified a novel role for NHE3 via beta-actin in anode and cathode directed motility, during electrotaxis. NHE3 knockdown by RNAi revealed that NHE3 expression is required to achieve constant directionality and polarity in migrating cells. Phosphorylated NHE3 (pNHE3) and beta-actin complex formation was impaired by the NHE3 inhibitor S3226 (IC50 0.02µM). Fluorescence cross-correlation spectroscopy (FCCS) revealed that the molecular interactions between NHE3 and beta-actin in membrane protrusions increased 1.7-fold in the presence of a directional cue and decreased 3.3-fold in the presence of cytochalasin D. Data from flow cytometric analysis showed that membrane potential of cells (Vmem) decreases in directionally migrating, NHE3-deficient osteoblasts and osteosarcoma cells whereas only Vmem of wild type osteoblasts is affected during directional migration. These findings suggest that pNHE3 has a mechanical function via beta-actin that is dependent on its physiological activity and Vmem. Furthermore, phosphatidylinositol 3,4,5-trisphosphate (PIP3) levels increase while PIP2 remains stable when cells have persistent directionality. Both PI3 kinase (PI3K) and Akt expression levels change proportionally to NHE3 levels. Interestingly, however, the content of pNHE3 level does not change when PI3K/Akt is inhibited. Therefore, we conclude that NHE3 can act as a direction sensor for cells and that NHE3 phosphorylation in persistent directional cell migration does not involve PI3K/Akt during electrotaxis.
Collapse
|
940
|
Swietach P, Vaughan-Jones RD, Harris AL, Hulikova A. The chemistry, physiology and pathology of pH in cancer. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130099. [PMID: 24493747 PMCID: PMC3917353 DOI: 10.1098/rstb.2013.0099] [Citation(s) in RCA: 383] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell survival is conditional on the maintenance of a favourable acid-base balance (pH). Owing to intensive respiratory CO2 and lactic acid production, cancer cells are exposed continuously to large acid-base fluxes, which would disturb pH if uncorrected. The large cellular reservoir of H(+)-binding sites can buffer pH changes but, on its own, is inadequate to regulate intracellular pH. To stabilize intracellular pH at a favourable level, cells control trans-membrane traffic of H(+)-ions (or their chemical equivalents, e.g. ) using specialized transporter proteins sensitive to pH. In poorly perfused tumours, additional diffusion-reaction mechanisms, involving carbonic anhydrase (CA) enzymes, fine-tune control extracellular pH. The ability of H(+)-ions to change the ionization state of proteins underlies the exquisite pH sensitivity of cellular behaviour, including key processes in cancer formation and metastasis (proliferation, cell cycle, transformation, migration). Elevated metabolism, weakened cell-to-capillary diffusive coupling, and adaptations involving H(+)/H(+)-equivalent transporters and extracellular-facing CAs give cancer cells the means to manipulate micro-environmental acidity, a cancer hallmark. Through genetic instability, the cellular apparatus for regulating and sensing pH is able to adapt to extracellular acidity, driving disease progression. The therapeutic potential of disturbing this sequence by targeting H(+)/H(+)-equivalent transporters, buffering or CAs is being investigated, using monoclonal antibodies and small-molecule inhibitors.
Collapse
Affiliation(s)
- Pawel Swietach
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Adrian L. Harris
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Alzbeta Hulikova
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
941
|
Bloom AB, Zaman MH. Influence of the microenvironment on cell fate determination and migration. Physiol Genomics 2014; 46:309-14. [PMID: 24619520 DOI: 10.1152/physiolgenomics.00170.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Several critical cell functions are influenced not only by internal cellular machinery but also by external mechanical and biochemical cues from the surrounding microenvironment. Slight changes to the microenvironment can result in dramatic changes to the cell's phenotype; for example, a change in the nutrients or pH of a tumor microenvironment can result in increased tumor metastasis. While cellular fate and the regulators of cell fate have been studied in detail for several decades now, our understanding of the extracellular regulators remains qualitative and far from comprehensive. In this review, we discuss the microenvironment influence on cell fate in terms of adhesion, migration, and differentiation and focus on both developments in experimental and computation tools to analyze cellular fate.
Collapse
Affiliation(s)
- Alexander B Bloom
- Department of Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, Massachusetts; and
| | | |
Collapse
|
942
|
Abstract
Prostate cancer is no longer viewed mostly as a disease of abnormally proliferating epithelial cells, but rather as a disease affecting the complex interactions between the cells of the prostate epithelial compartment and the surrounding stromal compartment in which they live. Indeed, the microenvironment in which tumor cells evolve towards an aggressive phenotype is highly heterogeneous, as it is composed of different cell populations such as endothelial cells, fibroblasts, macrophages, and lymphocytes, either resident or trans-differentiated by bone marrow-derived mesenchymal stem cells recruited at the tumor site. Cancer-associated fibroblasts, the most abundant population within this microenvironment, exert a mandatory role in prostate cancer progression as they metabolically sustain cancer cell survival and growth, recruit inflammatory and immune cells, and promote cancer cells stemness and epithelial mesenchymal transition, thereby favoring metastatic dissemination of aggressive cancers. The interruption of this two-compartment crosstalk, together with the idea that stromal cells are mostly vulnerable, being drug-sensitive, could lead to the development of anticancer therapies that target tumor stromal elements.
Collapse
Affiliation(s)
- Paola Chiarugi
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, University of Florence, Tuscany Tumor Institute, viale Morgagni 50, 50134 Florence, Italy.
| | - Paolo Paoli
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, University of Florence, Tuscany Tumor Institute, viale Morgagni 50, 50134 Florence, Italy
| | - Paolo Cirri
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, University of Florence, Tuscany Tumor Institute, viale Morgagni 50, 50134 Florence, Italy
| |
Collapse
|
943
|
Ippolito JE, Piwnica-Worms D. A fluorescence-coupled assay for gamma aminobutyric acid (GABA) reveals metabolic stress-induced modulation of GABA content in neuroendocrine cancer. PLoS One 2014; 9:e88667. [PMID: 24551133 PMCID: PMC3923810 DOI: 10.1371/journal.pone.0088667] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/15/2014] [Indexed: 11/18/2022] Open
Abstract
Pathways involved in the synthesis of the neurotransmitter gamma-aminobutyric acid (GABA) have been implicated in the pathogenesis of high grade neuroendocrine (NE) neoplasms as well as neoplasms from a non-NE lineage. Using The Cancer Genome Atlas, overexpression of the GABA synthetic enzyme, glutamate decarboxylase 1 (GAD1), was found to be associated with decreased disease free-survival in prostate adenocarcinoma and decreased overall survival in clear cell renal cell carcinomas. Furthermore, GAD1 was found to be expressed in castrate-resistant prostate cancer cell lines, but not androgen-responsive cell lines. Using a novel fluorescence-coupled enzymatic microplate assay for GABA mediated through reduction of resazurin in a prostate neuroendocrine carcinoma (PNEC) cell line, acid microenvironment-induced stress increased GABA levels while alkaline microenvironment-induced stress decreased GABA through modulation of GAD1 and glutamine synthetase (GLUL) activities. Moreover, glutamine but not glucose deprivation decreased GABA through modulation of GLUL. Consistent with evidence in prokaryotic and eukaryotic organisms that GABA synthesis mediated through GAD1 may play a crucial role in surviving stress, GABA may be an important mediator of stress survival in neoplasms. These findings identify GABA synthesis and metabolism as a potentially important pathway for regulating cancer cell stress response as well as a potential target for therapeutic strategies.
Collapse
Affiliation(s)
- Joseph E. Ippolito
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (JEI); (DP-W)
| | - David Piwnica-Worms
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (JEI); (DP-W)
| |
Collapse
|
944
|
Kasinskas RW, Venkatasubramanian R, Forbes NS. Rapid uptake of glucose and lactate, and not hypoxia, induces apoptosis in three-dimensional tumor tissue culture. Integr Biol (Camb) 2014; 6:399-410. [PMID: 24503640 DOI: 10.1039/c4ib00001c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The spatial arrangement of cellular metabolism in tumor tissue critically affects the treatment of cancer. However, little is known about how diffusion and cellular uptake relate to intracellular metabolism and cell death in three dimensions. To quantify these mechanisms, fluorescent microscopy and multicellular tumor cylindroids were used to measure pH and oxygen profiles, and quantify the distribution of viable, apoptotic and necrotic cells. Spheroid dissociation, enzymatic analysis, and mass spectrometry were used to measure concentration profiles of glucose, lactate and glutamine. A mathematical model was used to integrate these measurements and calculate metabolic rate parameters. It was found that large cylindroids, >500 μm in diameter, contained apoptotic and necrotic cells, whereas small cylindroids contained apoptotic but not necrotic cells. The center of cylindroids was found to be acidic but not hypoxic. From the edge to the center, concentrations of glucose, lactate and glutamine decreased rapidly. Throughout the cell masses lactate was consumed and not produced. These measurements indicate that apoptosis was the primary mechanism of cell death; acidity was not caused by lactic acid; and cell death was caused by depletion of carbon sources and not hypoxia. The mathematical model showed that the transporter enzymes for glucose and lactate were not saturated; oxygen uptake was limited by intracellular metabolism; and oxygen uptake was not limited by membrane-transport or diffusion. Unsaturated transmembrane uptake may be the cause of both proliferative and apoptotic regimes in cancer. These results suggest that transporter enzymes are excellent targets for treating well oxygenated tumors.
Collapse
Affiliation(s)
- Rachel W Kasinskas
- N525 Life Sciences Laboratory, Department of Chemical Engineering, University of Massachusetts, Amherst, 240 Thatcher Road, Amherst, Massachusetts 01003, USA.
| | | | | |
Collapse
|
945
|
Sedlakova O, Svastova E, Takacova M, Kopacek J, Pastorek J, Pastorekova S. Carbonic anhydrase IX, a hypoxia-induced catalytic component of the pH regulating machinery in tumors. Front Physiol 2014; 4:400. [PMID: 24409151 PMCID: PMC3884196 DOI: 10.3389/fphys.2013.00400] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/19/2013] [Indexed: 12/19/2022] Open
Abstract
Acidic tissue microenvironment contributes to tumor progression via multiple effects including the activation of angiogenic factors and proteases, reduced cell-cell adhesion, increased migration and invasion, etc. In addition, intratumoral acidosis can influence the uptake of anticancer drugs and modulate the response of tumors to conventional therapy. Acidification of the tumor microenvironment often develops due to hypoxia-triggered oncogenic metabolism, which leads to the extensive production of lactate, protons, and carbon dioxide. In order to avoid intracellular accumulation of the acidic metabolic products, which is incompatible with the survival and proliferation, tumor cells activate molecular machinery that regulates pH by driving transmembrane inside-out and outside-in ion fluxes. Carbonic anhydrase IX (CA IX) is a hypoxia-induced catalytic component of the bicarbonate import arm of this machinery. Through its catalytic activity, CA IX directly participates in many acidosis-induced features of tumor phenotype as demonstrated by manipulating its expression and/or by in vitro mutagenesis. CA IX can function as a survival factor protecting tumor cells from hypoxia and acidosis, as a pro-migratory factor facilitating cell movement and invasion, as a signaling molecule transducing extracellular signals to intracellular pathways (including major signaling and metabolic cascades) and converting intracellular signals to extracellular effects on adhesion, proteolysis, and other processes. These functional implications of CA IX in cancer are supported by numerous clinical studies demonstrating the association of CA IX with various clinical correlates and markers of aggressive tumor behavior. Although our understanding of the many faces of CA IX is still incomplete, existing knowledge supports the view that CA IX is a biologically and clinically relevant molecule, exploitable in anticancer strategies aimed at targeting adaptive responses to hypoxia and/or acidosis.
Collapse
Affiliation(s)
- Olga Sedlakova
- Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences Bratislava, Slovakia
| | - Eliska Svastova
- Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences Bratislava, Slovakia
| | - Martina Takacova
- Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences Bratislava, Slovakia
| | - Juraj Kopacek
- Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences Bratislava, Slovakia
| | - Jaromir Pastorek
- Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences Bratislava, Slovakia
| | - Silvia Pastorekova
- Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences Bratislava, Slovakia
| |
Collapse
|
946
|
McDonald PC, Dedhar S. Carbonic anhydrase IX (CAIX) as a mediator of hypoxia-induced stress response in cancer cells. Subcell Biochem 2014; 75:255-269. [PMID: 24146383 DOI: 10.1007/978-94-007-7359-2_13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The development of hypoxic microenvironments within many types of solid tumors imposes a significant stress on cancer cells to which they must respond appropriately in order to survive and grow. Tumor-specific, hypoxia-induced upregulation of Carbonic Anhydrase IX (CAIX) is a component of the complex response of cancer cells to the evolving low oxygen environment. Here, we discuss evidence from in vivo tumor models employing inhibition or enhancement of CAIX expression, using gene depletion or overexpression strategies, respectively, or inhibition of its catalytic activity, using CAIX-specific small molecules or antibodies, to demonstrate that CAIX is a functional mediator of tumor growth and metastasis. We also discuss the functional contribution of CAIX to several specific biological processes critical for cancer progression, including pH regulation and cell survival, adhesion, migration and invasion, the maintenance of cancer stem cell function, and the acquisition of chemo and radioresistant properties. The demonstration of CAIX as a functional mediator of cancer progression provides a biological rationale for its use as a cancer-specific, clinically relevant therapeutic target.
Collapse
Affiliation(s)
- Paul C McDonald
- Department of Integrative Oncology, British Columbia Cancer Agency Centre, Vancouver, BC, Canada,
| | | |
Collapse
|
947
|
Si Z, Huang C, Gao X, Li C. pH-responsive near-infrared nanoprobe imaging metastases by sensing acidic microenvironment. RSC Adv 2014. [DOI: 10.1039/c4ra07984a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A pH responsive near-infrared fluorescence nanoprobe was developed and visualized pulmonary metastases in a mouse model with a volume as small as 0.5 mm3 by sensing the acidic tumor microenvironment.
Collapse
Affiliation(s)
- Zhan Si
- Key Laboratory of Smart Drug Delivery
- Ministry of Education
- School of Pharmacy
- Fudan University
- Shanghai 201203, China
| | - Cuiyun Huang
- Key Laboratory of Smart Drug Delivery
- Ministry of Education
- School of Pharmacy
- Fudan University
- Shanghai 201203, China
| | - Xihui Gao
- Key Laboratory of Smart Drug Delivery
- Ministry of Education
- School of Pharmacy
- Fudan University
- Shanghai 201203, China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery
- Ministry of Education
- School of Pharmacy
- Fudan University
- Shanghai 201203, China
| |
Collapse
|
948
|
Honasoge A, Shelton KA, Sontheimer H. Autocrine regulation of glioma cell proliferation via pHe-sensitive K(+) channels. Am J Physiol Cell Physiol 2013; 306:C493-505. [PMID: 24380845 DOI: 10.1152/ajpcell.00097.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Since the seminal studies of Otto Warburg in the 1920s, it has been widely recognized that cancers grow glycolytically, even in the presence of oxygen. This generates an abundance of protons in a gradient across most solid tumors with an acidic core and an alkaline rim. Whether and how this proton gradient may also serve in an autocrine fashion in these tumors is unclear. We demonstrate that human glioma cells form spheroids that act as a viable three-dimensional tumor model, forming physiologically relevant extracellular pH (pHe) and cell proliferation gradients. Using fluorescent cell cycle trackers, we determined that the rate of cell proliferation is directly dependent on pHe and that cells adjust their growth rate according to their position within the pH gradient. We further show that glioma cells sense pH via H(+)-sensitive K(+) channels, which translate changes in pH into changes in membrane voltage. These channels are tonically active and blocked by acidic pHe, quinine, and ruthenium red. Blockade of this K(+) conductance by acidic pHe or drug inhibition depolarized glioma cells and tumor spheroids and prevented their passage through the hyperpolarization-dependent G1-to-S phase cell cycle checkpoint, thereby inhibiting cell division. In this way, pHe directly determines the proliferative state of glioma cells.
Collapse
Affiliation(s)
- Avinash Honasoge
- Department of Neurobiology and Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | |
Collapse
|
949
|
Rivas C, Stasiuk G, Gallo J, Minuzzi F, Rutter GA, Long NJ. Lanthanide(III) complexes of rhodamine-DO3A conjugates as agents for dual-modal imaging. Inorg Chem 2013; 52:14284-93. [PMID: 24304423 PMCID: PMC4024063 DOI: 10.1021/ic402233g] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Indexed: 01/09/2023]
Abstract
Two novel dual-modal MRI/optical probes based on a rhodamine-DO3A conjugate have been prepared. The bis(aqua)gadolinium(III) complex Gd.L1 and mono(aqua)gadolinium(III) complex Gd.L2 behave as dual-modal imaging probes (r1 = 8.5 and 3.8 mM(-1) s(-1) for Gd.L1 and Gd.L2, respectively; λex = 560 nm and λem = 580 nm for both complexes). The rhodamine fragment is pH-sensitive, and upon lowering of the pH, an increase in fluorescence intensity is observed as the spirolactam ring opens to give the highly fluorescent form of the molecule. The ligands are bimodal when coordinated to Tb(III) ions, inducing fluorescence from both the lanthanide center and the rhodamine fluorophore, on two independent time frames. Confocal imaging experiments were carried out to establish the localization of Gd.L2 in HEK293 cells and primary mouse islet cells (∼70% insulin-containing β cells). Colocalization with MitoTracker Green demonstrated Gd.L2's ability to distinguish between tumor and healthy cells, with compartmentalization believed to be in the mitochondria. Gd.L2 was also evaluated as an MRI probe for imaging of tumors in BALB/c nude mice bearing M21 xenografts. A 36.5% decrease in T1 within the tumor was observed 30 min post injection, showing that Gd.L2 is preferentially up taken in the tumor. Gd.L2 is the first small-molecule MR/fluorescent dual-modal imaging agent to display an off-on pH switch upon its preferential uptake within the more acidic microenvironment of tumor cells.
Collapse
Affiliation(s)
- Charlotte Rivas
- Department
of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, U.K.
| | - Graeme
J. Stasiuk
- Department
of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, U.K.
| | - Juan Gallo
- Department
of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, U.K.
| | - Florencia Minuzzi
- Section
of Cell Biology, Division of Diabetes, Endocrinology and Metabolism,
Department of Medicine, Imperial College
London, South Kensington, London SW7 2AZ, U.K.
| | - Guy A. Rutter
- Section
of Cell Biology, Division of Diabetes, Endocrinology and Metabolism,
Department of Medicine, Imperial College
London, South Kensington, London SW7 2AZ, U.K.
| | - Nicholas J. Long
- Department
of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, U.K.
| |
Collapse
|
950
|
Greco MR, Antelmi E, Busco G, Guerra L, Rubino R, Casavola V, Reshkin SJ, Cardone RA. Protease activity at invadopodial focal digestive areas is dependent on NHE1-driven acidic pHe. Oncol Rep 2013; 31:940-6. [PMID: 24337203 DOI: 10.3892/or.2013.2923] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/29/2013] [Indexed: 11/05/2022] Open
Abstract
Degradation of the extracellular matrix (ECM) is a critical step of tumor cell invasion and requires protease-dependent proteolysis focalized at the invadopodia where the proteolysis of the ECM occurs. Most of the extracellular proteases belong to serine- or metallo-proteases and the invadopodia is where protease activity is regulated. While recent data looking at global protease activity in the growth medium reported that their activity and role in invasion is dependent on Na+/H+ exchanger 1 (NHE1)-driven extracellular acidification, there is no data on this aspect at the invadopodia, and an open question remains whether this acid extracellular pH (pHe) activation of proteases in tumor cells occurs preferentially at invadopodia. We previously reported that the NHE1 is expressed in breast cancer invadopodia and that the NHE1‑dependent acidification of the peri-invadopodial space is critical for ECM proteolysis. In the present study, using, for the first time, in situ zymography analysis, we demonstrated a concordance between NHE1 activity, extracellular acidification and protease activity at invadopodia to finely regulate ECM digestion. We demonstrated that: (i) ECM proteolysis taking place at invadopodia is driven by acidification of the peri-invadopodia microenvironment; (ii) that the proteases have a functional pHe optimum that is acidic; (iii) more than one protease is functioning to digest the ECM at these invadopodial sites of ECM proteolysis; and (iv) lowering pHe or inhibiting the NHE1 increases protease secretion while blocking protease activity changes NHE1 expression at the invadopodia.
Collapse
Affiliation(s)
- Maria Raffaella Greco
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, I-70126 Bari, Italy
| | - Ester Antelmi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, I-70126 Bari, Italy
| | - Giovanni Busco
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, I-70126 Bari, Italy
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, I-70126 Bari, Italy
| | - Rosa Rubino
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, I-70126 Bari, Italy
| | - Valeria Casavola
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, I-70126 Bari, Italy
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, I-70126 Bari, Italy
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, I-70126 Bari, Italy
| |
Collapse
|