51
|
Yin X, Liu Z, Li C, Wang J. Hinokitiol ameliorates MASH in mice by therapeutic targeting of hepatic Nrf2 and inhibiting hepatocyte ferroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156472. [PMID: 39922149 DOI: 10.1016/j.phymed.2025.156472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Metabolic dysfunction-associated steatohepatitis (MASH), an advanced stage of metabolic dysfunction-associated steatotic liver disease (MASLD), still lacks approved effective clinical drugs. Ferroptosis, a form of regulated cell death driven by excessive iron accumulation and uncontrollable lipid peroxidation, has been proven to be a trigger of inflammation and initiation of steatohepatitis. The pathogenic interplay is modulated by oxidative stress, while the Nrf2-mediated antioxidant response plays a regulatory role in ferroptosis. Phytochemical hinokitiol (Hino) has demonstrated positive efficacy in hepatocellular carcinoma (HCC) in the reported work, but it remains unknown whether its therapeutic effect attributes to delaying the progress of steatohepatitis to HCC. PURPOSE This work aimed to systemically investigate the significance of ferroptosis in the pathogenesis of MASH and to demonstrate that Hino, a bioactive monoterpene compound, attenuates the primary pathological characteristics of MASH via promotion of Nrf2/GPX4 signaling. METHODS In this work, a MASH model was established using the high-fat/high-cholesterol (HFHC) diet-fed in vivo and palmitic acid/oleic acid (PO)-stimulated hepatocytes in vitro. Biochemical indexes, pathological analysis, western blot, PCR assay, energy metabolic phenotype, molecular docking, and confirmatory assays were performed comprehensively to reveal the key link between the Nrf2/GPX4 axis and the treatment of MASH. RESULTS Under MASH conditions with increased oxidative stress, we show that Nrf2 was remarkable downregulated in HFHC diet-fed mice and PO-managed hepatocytes. Mechanistically, hepatic upregulation of Nrf2 through phytochemical Hino supplementation inhibited ferroptosis, enhanced lipid metabolism, and thereby alleviated hepatic steatosis, inflammation, and fibrosis. Conversely, silencing Nrf2 in hepatocytes further promoted the accumulation of key markers of ferroptosis and aggravated MASH phenotypes. CONCLUSION Increased ferroptosis promoted steatosis which further drove inflammation and hepatic fibrosis. Our results suggested the significance of Nrf2 in ameliorating MASH, which was regulated through Hino. Thus, targeted inhibition of ferroptosis through Hino administration is a feasible and effective approach for treating MASH.
Collapse
Affiliation(s)
- Xunzhe Yin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No.5625, Ren Min Street, Changchun, Jilin 130022, China; Center for Theoretical Interdisciplinary Sciences, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No.5625, Ren Min Street, Changchun, Jilin 130022, China.
| | - Chang Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No.5625, Ren Min Street, Changchun, Jilin 130022, China
| | - Jin Wang
- Center for Theoretical Interdisciplinary Sciences, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China; Department of Chemistry and Physics, Stony Brook University, Stony Brook, New York 11794-3400, USA.
| |
Collapse
|
52
|
Ifuku S, Kaminaka H, Shams MI. Nanochitin From Crab Shells: Production, Chemical Modification, Composite Materials, and Physiological Functions. Macromol Rapid Commun 2025:e2400765. [PMID: 39895236 DOI: 10.1002/marc.202400765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/18/2025] [Indexed: 02/04/2025]
Abstract
Large quantities of crab shells are generated in food-processing plants. In this review, the authors summarize a series of research findings on the production of nanochitin, its physical properties, chemical modifications, and functions, which have not been fully addressed in existing literature. Nanochitin, which has a width of 10 nm, is derived from chitin, the main component of crab shells, using a technology similar to that used to produce nanocellulose from wood. Unlike conventional chitin, nanochitin is well dispersed in water, making it easy to mold and process into various products for different applications. They can also be modified for specific uses through processes such as acylation and etherification to enhance their physical properties and add functionality. Nanochitin, which are known for their exceptional mechanical strength, can be blended with resins to create composite films with improved strength and elasticity. These films maintain the transparency of the resin, reduce its thermal expansion, and offer reinforcement. Chitin and its derivative chitosan are used as wound dressings, hemostatic agents, and health foods. Nanochitin and its deacetyl derivatives have diverse functions such as topical medicine for the skin, ingestion as a health food, and use as pesticides or fertilizers for plants.
Collapse
Affiliation(s)
- Shinsuke Ifuku
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori, 680-8552, Japan
| | - Hironori Kaminaka
- Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, 680-8553, Japan
| | - Md Iftekhar Shams
- Forestry and Wood Technology Discipline, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
53
|
Wu M, Li K, Wu J, Ding X, Ma X, Wang W, Xiao W. Ginsenoside Rg1: A bioactive therapeutic agent for diverse liver diseases. Pharmacol Res 2025; 212:107571. [PMID: 39756553 DOI: 10.1016/j.phrs.2024.107571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/10/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Diverse liver diseases are characterised by late diagnosis and rapid progression and have become one of the major threats to human health. To delay the transition from benign tissue lesions to a substantial organ injury, scientists have gradually applied natural compounds derived from plants as a complementary therapy in the field of hepatology. Ginseng (Panax ginseng C. A. Meyer) is a tonic traditional Chinese herbal medicine, and natural products, including ginsenoside Rg1 (G-Rg1), which is a kind of 20(S)-protopanaxatriol saponin with a relatively high biological activity, can be isolated from the roots or stems of ginseng. Given these information, this review aimed to summarise and discuss the metabolic mechanisms of G-Rg1 in the regulation of diverse liver diseases and the measures to improve its bioavailability. As a kind of monomer in Chinese medicine with multitarget pharmacological effects, G-Rg1 can provide significant therapeutic benefits in the alleviation of alcoholic liver disease, nonalcoholic fatty liver disease, liver fibrosis, viral hepatitis, etc., which mainly rely on the inhibition of apoptosis, strengthening endogenous anti-inflammatory and antioxidant mechanisms, activation of immune responses and regulation of efflux transport signals, to improve pathological changes in the liver caused by lipid deposition, inflammation, oxidative stress, accumulation of hepatotoxic product, etc. However, the poor bioavailability of G-Rg1 must be overcome to improve its clinical application value. In summary, focusing on the hepatoprotective benefits of G-Rg1 will provide new insights into the development of natural Chinese medicine resources and their pharmaceutical products to target the treatment of liver diseases.
Collapse
Affiliation(s)
- Mingyu Wu
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Ke Li
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Jiabin Wu
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Xianyi Ding
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Xiaotong Ma
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Wenhong Wang
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; Biomedical Research Institute, Hunan University of Medicine, Huaihua 418000, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
54
|
Zhang Y, Li J, Zeng H, Liu S, Luo Y, Yu P, Liu J. Identification and Validation of Biomarkers in Metabolic Dysfunction-Associated Steatohepatitis Using Machine Learning and Bioinformatics. Mol Genet Genomic Med 2025; 13:e70063. [PMID: 39995143 PMCID: PMC11850758 DOI: 10.1002/mgg3.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/24/2024] [Accepted: 01/14/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND The incidence of metabolic dysfunction-associated steatohepatitis (MASH) is increasing annually. MASH can progress to cirrhosis and hepatocellular carcinoma. However, the early diagnosis of MASH is challenging. AIM To screen prospective biomarkers for MASH and verify their effectiveness through in vitro and in vivo experiments. METHODS Microarray datasets (GSE89632, GSE48452, and GSE63067) from the Gene Expression Omnibus database were used to identify differentially expressed genes (DEGs) between patients with MASH and healthy controls. Machine learning methods such as support vector machine recursive feature elimination and least absolute shrinkage and selection operator were utilized to identify optimum feature genes (OFGs). OFGs were validated using the GSE66676 dataset. CIBERSORT was utilized to illustrate the variations in immune cell abundance between patients with MASH and healthy controls. The correlation between OFGs and immune cell populations was evaluated. The OFGs were validated at both transcriptional and protein levels. RESULTS Initially, 37 DEGs were identified in patients with MASH compared with healthy controls. In the enrichment analysis, the DEGs were mainly related to inflammatory responses and immune signal-related pathways. Subsequently, using machine learning algorithms, five genes (FMO1, PEG10, TP53I3, ME1, and TRHDE) were identified as OFGs. The candidate biomarkers were validated in the testing dataset and through experiments with animal and cell models. The malic enzyme (ME1) gene (HGNC:6983) expression was significantly upregulated in MASH samples compared to controls (0.4353 ± 0.2262 vs. -0.06968 ± 0.3222, p = 0.00076). Immune infiltration analysis revealed a negative correlation between ME1 expression and plasma cells (R = -0.77, p = 0.0033). CONCLUSION This study found that ME1 plays a regulatory role in early MASH, which may affect disease progression by mediating plasma cells and T cells gamma delta to regulate immune microenvironment. This finding provides a new idea for the early diagnosis, monitoring and potential therapeutic intervention of MASH.
Collapse
Affiliation(s)
- Yu‐Ying Zhang
- Department of Endocrinology and Metabolism, The 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchang CityJiangxi ProvinceChina
| | - Jin‐E Li
- Department of Endocrinology and Metabolism, The 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchang CityJiangxi ProvinceChina
| | - Hai‐Xia Zeng
- Department of Endocrinology and Metabolism, The 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchang CityJiangxi ProvinceChina
| | - Shuang Liu
- Department of Endocrinology and Metabolism, The 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchang CityJiangxi ProvinceChina
| | - Yun‐Fei Luo
- Department of Endocrinology and Metabolism, The 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchang CityJiangxi ProvinceChina
| | - Peng Yu
- Department of Endocrinology and Metabolism, The 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchang CityJiangxi ProvinceChina
- Institute for the Study of Endocrinology and Metabolism in Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
- Branch of National Clinical Research Center for Metabolic DiseasesNanchang CityJiangxi ProvinceChina
| | - Jian‐Ping Liu
- Department of Endocrinology and Metabolism, The 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchang CityJiangxi ProvinceChina
- Institute for the Study of Endocrinology and Metabolism in Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
- Branch of National Clinical Research Center for Metabolic DiseasesNanchang CityJiangxi ProvinceChina
| |
Collapse
|
55
|
Xu J, Li QQ, Yang S, Teng HD, Lu ZY, Gu YZ, Xi JH, Mei ZN, Chen Y, Yang GZ. Garcibracgluinols A-C, structurally intriguing polycyclic polyprenylated acylphloroglucinols from Garcinia bracteata alleviate hepatocyte lipid accumulation and insulin resistance. J Mol Struct 2025; 1323:140755. [DOI: 10.1016/j.molstruc.2024.140755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
56
|
Li D, Chen J, Ye C, Lin B, Zhang T, Chen Q, Yu C, Wan X. Celastrol ameliorates fibrosis in Western diet/tetrachloromethane-induced nonalcoholic steatohepatitis by suppressing Notch/osteopontin signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 137:156369. [PMID: 39798343 DOI: 10.1016/j.phymed.2025.156369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Celastrol was recently identified as a potential treatment for obesity and hepatic steatosis. However, whether Celastrol effectively suppresses the nonalcoholic fatty liver disease (NAFLD) stage remains unknown. This study aimed to evaluate the role of Celastrol in the progression from simple steatosis to nonalcoholic steatohepatitis (NASH) and fibrosis. METHODS C57BL/6 mice were fed a Western diet combined with a weekly low-dose injection of CCl4 (WD/CCl4) for 16 weeks to establish NASH models. The effects of Celastrol on NASH were further explored through histopathological assessments, immunoblotting, and in vitro analyses. RESULTS Celastrol treatment effectively attenuated hepatic steatosis and fibrosis in WD/CCl4-induced NASH models, in which Notch2 was downregulated by Celastrol in a posttranscriptional manner. In vitro experiments revealed that Notch2 suppression in Celastrol-treated hepatocytes further decreased osteopontin (OPN) levels, inhibiting hepatic stellate cells (HSCs) activation. Moreover, the protective effects of Celastrol on NASH progression were abolished in Notch2-overexpressing mice. CONCLUSION This study demonstrated the protective effects of Celastrol on NASH-related liver fibrosis by modulating Notch/OPN signaling, providing fresh insights into the potential application of Celastrol in NASH treatment.
Collapse
Affiliation(s)
- Dingwu Li
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jianing Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Chenhui Ye
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Bingru Lin
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Tiantian Zhang
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Qingxia Chen
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chaohui Yu
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Xingyong Wan
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
57
|
Hur YK, Lee HE, Yoo JY, Park YN, Lee IH, Bae YS. NADPH oxidase 4-SH3 domain-containing YSC84-like 1 complex participates liver inflammation and fibrosis. Free Radic Biol Med 2025; 227:246-259. [PMID: 39645205 DOI: 10.1016/j.freeradbiomed.2024.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/19/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
There is growing evidence that NADPH oxidase 4 (Nox4) in hepatocytes contributes to liver inflammation and fibrosis during the development of metabolic dysfunction-associated steatohepatitis (MASH). However, how Nox4 is regulated and leads to liver pathogenesis is unclear. Our previous studies showed that the cytosolic protein SH3 domain-containing Ysc84-like 1 (SH3YL1) regulates Nox4 activity. Here, we asked whether SH3YL1 also participates in liver inflammation and fibrosis during MASH development. We generated that whole body SH3YL1 knockout (SH3YL1-/-), Nox4 knockout (Nox4-/-) mice, and the hepatocyte-specific SH3YL1 conditional knockout (Alb-Cre/SH3YL1fl/fl) mice were fed a methionine/choline-deficient (MCD) diet to induce liver inflammation and fibrosis in pathogenesis of MASH. Palmitate-stimulated primary SH3YL1-and Nox4-deficient hepatocytes and hepatic stellate cells (HSCs) did not generate H2O2. While the liver of MCD diet-fed wild type (WT) mice demonstrated elevated 3-nitrotyrosine as a protein oxidation and 4-hydroxynonenal adducts as a lipid oxidation and increased liver inflammation, hepatocyte apoptosis, and liver fibrosis, these events were markedly reduced in SH3YL1-/-, Nox4-/-, and Alb-Cre/SH3YL1fl/fl mice. The MCD diet-fed WT mice also showed elevated hepatocyte expression of SH3YL1 protein. Similarly, liver biopsies from MASH patients demonstrated strong hepatocyte SH3YL1 protein expression, whereas hepatocytes from patients with steatosis weakly expressed SH3YL1 and histologically normal patient hepatocytes exhibited very little SH3YL1 expression. The Nox4-SH3YL1 complex in murine hepatocytes elevates their H2O2 production, which promotes the liver inflammation, hepatocyte apoptosis, and liver fibrosis that characterize MASH. This axis may also participate in MASH in humans.
Collapse
Affiliation(s)
- Yeo Kyu Hur
- Department of Life Sciences, Ewha Womans University, 52 Ewhayeodae-Gil, Seodaemoon-Gu, Seoul, 03760, South Korea
| | - Hye Eun Lee
- Celros Biotech, 52 Ewhayeodae-Gil, Seodaemoon-Gu, Seoul, 03760, South Korea
| | - Jung-Yeon Yoo
- Department of Life Sciences, Ewha Womans University, 52 Ewhayeodae-Gil, Seodaemoon-Gu, Seoul, 03760, South Korea
| | - Young Nyun Park
- Department of Pathology Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - In Hye Lee
- Department of Life Sciences, Ewha Womans University, 52 Ewhayeodae-Gil, Seodaemoon-Gu, Seoul, 03760, South Korea.
| | - Yun Soo Bae
- Department of Life Sciences, Ewha Womans University, 52 Ewhayeodae-Gil, Seodaemoon-Gu, Seoul, 03760, South Korea; Celros Biotech, 52 Ewhayeodae-Gil, Seodaemoon-Gu, Seoul, 03760, South Korea.
| |
Collapse
|
58
|
Fan J, Xiao Z, Dong Y, Ye F, Qiu Y, Zhang C, Yin X, Li Y, Wang T. Nanocarrier-Mediated RNA Delivery Platform as a Frontier Strategy for Hepatic Disease Treatment: Challenges and Opportunities. Adv Healthc Mater 2025; 14:e2402933. [PMID: 39723654 DOI: 10.1002/adhm.202402933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/13/2024] [Indexed: 12/28/2024]
Abstract
Hepatic diseases cause serious public health problems worldwide, and there is an urgent need to develop effective therapeutic agents. In recent years, significant progress is made in RNA therapy, and RNA molecules, such as mRNAs, siRNAs, miRNAs, and RNA aptamers, are shown to provide significant advantages in the treatment of hepatic diseases. However, the drawbacks of RNAs, such as their poor biological stability, easy degradation by nucleases in vivo, low bioavailability, and low concentrations in target tissues, significantly limit the clinical application of RNA-based drugs. Therefore, exploring and developing effective nanoscale delivery platforms for RNA therapeutics are of immense value. This review focuses on the different types of hepatic diseases and RNA therapeutics, summarizing various nanoscale delivery platforms and their strengths and weaknesses. Finally, the current status and future prospects of nanoscale delivery systems for RNA therapy are discussed.
Collapse
Affiliation(s)
- Jinhui Fan
- School of Medicine, 411 Hospital of Shanghai University, Shanghai University, Shanghai, 200444, China
| | - Zhicheng Xiao
- School of Medicine, 411 Hospital of Shanghai University, Shanghai University, Shanghai, 200444, China
| | - Yafen Dong
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, 201200, China
| | - Fei Ye
- School of Medicine, 411 Hospital of Shanghai University, Shanghai University, Shanghai, 200444, China
| | - Yan Qiu
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, 201200, China
| | - Chuan Zhang
- School of Medicine, 411 Hospital of Shanghai University, Shanghai University, Shanghai, 200444, China
| | - Xiaolan Yin
- Cancer center, Shanghai 411 hospital, China RongTong Medical Healthcare Group Co. Ltd./411 Hospital, Shanghai University, Shanghai, 200081, China
| | - Yi Li
- School of Medicine, 411 Hospital of Shanghai University, Shanghai University, Shanghai, 200444, China
| | - Tingfang Wang
- School of Medicine, 411 Hospital of Shanghai University, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
59
|
Xu M, Zhao J, Zhu L, Ge C, Sun Y, Wang R, Li Y, Dai X, Kuang Q, Hu L, Luo J, Kuang G, Ren Y, Wang B, Tan J, Shi S. Targeting PYK2 with heterobifunctional T6BP helps mitigate MASLD and MASH-HCC progression. J Hepatol 2025; 82:277-300. [PMID: 39260704 DOI: 10.1016/j.jhep.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND & AIMS The mechanisms underlying the regulation of hepatocyte non-receptor tyrosine kinases in metabolic dysfunction-associated steatohepatitis (MASH) remain largely unclear. METHODS Hepatocyte-specific overexpression or deletion and anti-protein tyrosine kinase 2 beta (PYK2) or anti-TRAF6-binding protein (T6BP) crosslinking were utilized to study fatty liver protection by T6BP. A P-PTC (peptide-proteolysis targeting chimera) degrades PYK2 to block MASH progression. RESULTS We found that T6BP is a novel and critical suppressor of PYK2 that reduces hepatic lipid accumulation, pro-inflammatory factor release, and pro-fibrosis production. Mechanistic evidence suggests that T6BP directly targets PYK2 and prevents its N-terminal FERM domain-triggered dimerization, disrupting downstream PYK2-JNK signaling hyperactivation. Additionally, T6BP favorably recruits CBL, a particular E3 ubiquitin ligase targeting PYK2, to form a complex and degrade PYK2. T6BP (F1), a core fragment of T6BP, directly blocks N-terminal FERM domain-associated dimerization of PYK2, followed by T6BP-recruiting CBL-mediated PYK2 degradation in a typical T6BP-dependent manner when the tiny fragment is specifically expressed using thyroxine binding globulin (TBG) vectors. This inhibits the progression of MASH, MASH-related hepatocellular carcinoma, and metabolic syndrome in dietary rodent models. We devised, and validated in animal models, the first-ever P-PTC based on the core segment of T6BP, as a ligand for the targeted recruitment of CBL, that could be used to target metabolic disorders like MASH. CONCLUSIONS Our study uncovered a previously unknown mechanism, with T6BP identified as a key suppressor of steatosis. This, alongside the discovery of crucial T6BP-based fragments that interrupt PYK2 dimerization hold much promise for the treatment of MASH. IMPACT AND IMPLICATIONS Excessive high-energy diet ingestion is critical in driving steatohepatitis via regulation of hepatocyte non-receptor tyrosine kinases. The mechanisms underlying the regulation of hepatocyte PYK2 in metabolic dysfunction-associated steatohepatitis remain largely unclear. Here, we found that T6BP as a critical fatty liver eliminator could be used for the development of promising therapeutic options. Additionally, vital T6BP-based pharmacon fragments that impede PYK2 dimerization have been found, offering new and effective treatments for advanced fatty liver symptoms and complications.
Collapse
Affiliation(s)
- Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| | - Junjie Zhao
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Yan Sun
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Ranran Wang
- College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China; School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing University of Education, Chongqing 400067, PR China
| | - Yuanyuan Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China
| | - Xianling Dai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Qin Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Linfeng Hu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Jing Luo
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China
| | - Gang Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China
| | - Yanrong Ren
- College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China; School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China.
| | - Shengbin Shi
- Department of Gastrointestinal Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, Jinan 250117, PR China.
| |
Collapse
|
60
|
Kim Y, Kang M, Mamo MG, Adisasmita M, Huch M, Choi D. Liver organoids: Current advances and future applications for hepatology. Clin Mol Hepatol 2025; 31:S327-S348. [PMID: 39722609 PMCID: PMC11925438 DOI: 10.3350/cmh.2024.1040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024] Open
Abstract
The creation of self-organizing liver organoids represents a significant, although modest, step toward addressing the ongoing organ shortage crisis in allogeneic liver transplantation. However, researchers have recognized that achieving a fully functional whole liver remains a distant goal, and the original ambition of organoid-based liver generation has been temporarily put on hold. Instead, liver organoids have revolutionized the field of hepatology, extending their influence into various domains of precision and molecular medicine. These 3D cultures, capable of replicating key features of human liver function and pathology, have opened new avenues for human-relevant disease modeling, CRISPR gene editing, and high-throughput drug screening that animal models cannot accomplish. Moreover, advancements in creating more complex systems have led to the development of multicellular assembloids, dynamic organoid-on-chip systems, and 3D bioprinting technologies. These innovations enable detailed modeling of liver microenvironments and complex tissue interactions. Progress in regenerative medicine and transplantation applications continues to evolve and strives to overcome the obstacles of biocompatibility and tumorigenecity. In this review, we examine the current state of liver organoid research by offering insights into where the field currently stands, and the pivotal developments that are shaping its future.
Collapse
Affiliation(s)
- Yohan Kim
- Department of MetaBioHealth, Sungkyunkwan University, Suwon, Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Korea
- Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Korea
| | - Minseok Kang
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Michael Girma Mamo
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
| | - Michael Adisasmita
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
| | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
- Department of HY-KIST Bio-convergence, Hanyang University, Seoul, Korea
| |
Collapse
|
61
|
Hwang SY, Danpanichkul P, Agopian V, Mehta N, Parikh ND, Abou-Alfa GK, Singal AG, Yang JD. Hepatocellular carcinoma: updates on epidemiology, surveillance, diagnosis and treatment. Clin Mol Hepatol 2025; 31:S228-S254. [PMID: 39722614 PMCID: PMC11925437 DOI: 10.3350/cmh.2024.0824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a major global burden, ranking as the third leading cause of cancer-related mortality. HCC due to chronic hepatitis B virus (HBV) or C virus (HCV) infection has decreased due to universal vaccination for HBV and effective antiviral therapy for both HBV and HCV, but HCC related to metabolic dysfunction-associated steatotic liver disease and alcohol-associated liver disease is increasing. Biannual liver ultrasonography and serum α-fetoprotein are the primary surveillance tools for early HCC detection among high-risk patients (e.g., cirrhosis, chronic HBV). Alternative surveillance tools such as blood-based biomarker panels and abbreviated magnetic resonance imaging (MRI) are being investigated. Multiphasic computed tomography or MRI is the standard for HCC diagnosis, but histological confirmation should be considered, especially when inconclusive findings are seen on cross-sectional imaging. Staging and treatment decisions are complex and should be made in multidisciplinary settings, incorporating multiple factors including tumor burden, degree of liver dysfunction, patient performance status, available expertise, and patient preferences. Early-stage HCC is best treated with curative options such as resection, ablation, or transplantation. For intermediate-stage disease, locoregional therapies are primarily recommended although systemic therapies may be preferred for patients with large intrahepatic tumor burden. In advanced-stage disease, immune checkpoint inhibitor-based therapy is the preferred treatment regimen. In this review article, we discuss the recent global epidemiology, risk factors, and HCC care continuum encompassing surveillance, diagnosis, staging, and treatments.
Collapse
Affiliation(s)
- Soo Young Hwang
- Department of Internal Medicine, University of Maryland Medical Center, Midtown Campus, Baltimore, Maryland, USA
| | - Pojsakorn Danpanichkul
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Vatche Agopian
- Dumont-UCLA Transplant and Liver Cancer Centers, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Neil Mehta
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, California, USA
| | - Neehar D Parikh
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ghassan K Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
- Department of Medicine, Weill Medical College at Cornell University, New York, USA
- Trinity College Dublin, Dublin, Ireland
| | - Amit G Singal
- Division of Digestive and Liver Diseases, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Comprehensive Transplant Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
62
|
Chen X, Huang J, You Y, Xue H, Wu L, Zeng D, Xing Q, Wu M, Wang M, Pan J, Lin S, Zhu Y. 1-phenyl-3-methyl-5-pyrazolone activates the AMPK pathway to alleviate western-diet induced metabolic dysfunction-associated steatohepatitis in mice. Clin Nutr 2025; 45:136-147. [PMID: 39799716 DOI: 10.1016/j.clnu.2024.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/12/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND & AIMS Approved drugs for the treatment of metabolic dysfunction-associated steatohepatitis (MASH) are limited, although it has become the most common chronic liver disease worldwide. 1-phenyl-3-methyl-5-pyrazolone (PMP) possesses various biological effects such as anti-inflammatory and antioxidant. However, the effects and underlying mechanism of PMP in MASH remain unclear. METHODS Steatosis cells were induced by palmitate/oleic acid (PO). Then, the contents of lipids and reactive oxygen species were measured. To further investigate the effects of PMP on MASH models, C57BL/6J mice were fed a western diet (WD) for 24 weeks and PMP was administered daily by intragastric gavage. Serum enzymes and lipids were assayed by a biochemistry analyzer. RNA sequencing, real-time qPCR, and western blotting were used to measure the expression of different genes. Histological analysis of the liver included HE, Oil red O, and Sirius red staining. RESULTS PMP alleviated lipid accumulation and oxidative stress induced by PO (P < 0.001). In vivo, WD-induced significant elevation of blood glucose and serum lipids were reduced by PMP (P < 0.05). Furthermore, PMP effectively prevented hepatic steatosis, inflammation, and fibrosis in MASH mice. Western blot results suggested PMP promoted the phosphorylation of LKB1 and AMPKα at T172, which is a marker of activation of the AMPK pathway. RNA sequencing also demonstrated that PMP facilitated the activation of the AMPK pathway. Furthermore, the protective effects of PMP on steatosis cells and MASH mice disappeared after treatment with an AMPK inhibitor. CONCLUSIONS PMP protects against metabolic-stress-induced MASH through activating AMPK signaling, indicating that PMP may be a candidate for MASH therapy in the future.
Collapse
Affiliation(s)
- Xiaoning Chen
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China; Fujian Clinical Research Center for Hepatopathy and Intestinal Diseases, China; Key Speciality of Infection in Fujian Province, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Jiaofeng Huang
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China; Fujian Clinical Research Center for Hepatopathy and Intestinal Diseases, China; Key Speciality of Infection in Fujian Province, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Yanying You
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China; Fujian Clinical Research Center for Hepatopathy and Intestinal Diseases, China; Key Speciality of Infection in Fujian Province, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Hanxin Xue
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China; Fujian Clinical Research Center for Hepatopathy and Intestinal Diseases, China; Key Speciality of Infection in Fujian Province, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Lisha Wu
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China; Fujian Clinical Research Center for Hepatopathy and Intestinal Diseases, China; Key Speciality of Infection in Fujian Province, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Danyi Zeng
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China; Fujian Clinical Research Center for Hepatopathy and Intestinal Diseases, China; Key Speciality of Infection in Fujian Province, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Qingqing Xing
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China; Fujian Clinical Research Center for Hepatopathy and Intestinal Diseases, China; Key Speciality of Infection in Fujian Province, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Minxia Wu
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China; Fujian Clinical Research Center for Hepatopathy and Intestinal Diseases, China; Key Speciality of Infection in Fujian Province, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Mingfang Wang
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China; Fujian Clinical Research Center for Hepatopathy and Intestinal Diseases, China; Key Speciality of Infection in Fujian Province, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Jinshui Pan
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China; Fujian Clinical Research Center for Hepatopathy and Intestinal Diseases, China; Key Speciality of Infection in Fujian Province, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China.
| | - Su Lin
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China; Fujian Clinical Research Center for Hepatopathy and Intestinal Diseases, China; Key Speciality of Infection in Fujian Province, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China.
| | - Yueyong Zhu
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China; Fujian Clinical Research Center for Hepatopathy and Intestinal Diseases, China; Key Speciality of Infection in Fujian Province, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
63
|
Coyne ES, Nie Y, Lee D, Pandovski S, Yang T, Zhou H, Rosahl TW, Carballo-Jane E, Abdurrachim D, Zhou Y, Hendra C, Ali AAB, Meyers S, Blumenschein W, Gongol B, Liu Y, Zhou Y, Talukdar S. Loss of mitochondrial amidoxime-reducing component 1 (mARC1) prevents disease progression by reducing fibrosis in multiple mouse models of chronic liver disease. Hepatol Commun 2025; 9:e0637. [PMID: 39927988 PMCID: PMC11809980 DOI: 10.1097/hc9.0000000000000637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/02/2024] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease is a prevalent disease that affects nearly one-third of the global population. Recent genome-wide association studies revealed that a common missense variant in the gene encoding mitochondrial amidoxime reducing component 1 (mARC1) is associated with protection from metabolic dysfunction-associated steatotic liver disease, all-cause cirrhosis, and liver-related mortality suggesting a role for mARC1 in liver pathophysiology; however, little is known about its function in the liver. In this study, we aimed to evaluate the impact of mARC1 hepatoprotective variants on protein function, the effect of loss of mARC1 on cellular lipotoxic stress response, and the effect of global or hepatocyte-specific loss of mARC1 in various mouse models of metabolic dysfunction-associated steatohepatitis and liver fibrosis. METHODS AND RESULTS Expression and characterization of mARC1 hepatoprotective variants in cells and mouse liver revealed that the mARC1 p.A165T exhibited lower protein levels but maintained its mitochondrial localization. In cells, the knockdown of mARC1 improved cellular bioenergetics and decreased mitochondrial superoxide production in response to lipotoxic stress. Global genetic deletion and hepatocyte-specific knockdown of mARC1 in mice significantly reduced liver steatosis and fibrosis in multiple mouse models of metabolic dysfunction-associated steatohepatitis and liver fibrosis. Furthermore, RNA-seq analysis revealed that the pathways involved in extracellular matrix remodeling and collagen formation were downregulated in the liver, and the plasma lipidome was significantly altered in response to the loss of mARC1 in mice. CONCLUSIONS Overall, we have demonstrated that loss of mARC1 alters hepatocyte response to lipotoxic stress and protects mice from diet-induced MASH and liver fibrosis consistent with findings from human genetics.
Collapse
Affiliation(s)
- Erin S. Coyne
- Department of Cardiometabolic Disease, Merck & Co. Inc., South San Francisco, California, USA
| | - Yilin Nie
- Department of Cardiometabolic Disease, Merck & Co. Inc., South San Francisco, California, USA
| | - Darwin Lee
- Department of Cardiometabolic Disease, Merck & Co. Inc., South San Francisco, California, USA
| | - Sentibel Pandovski
- Department of Cardiometabolic Disease, Merck & Co. Inc., South San Francisco, California, USA
| | - Tiffany Yang
- Department of Cardiometabolic Disease, Merck & Co. Inc., South San Francisco, California, USA
| | - Heather Zhou
- Department of Quantitative Biosciences, Merck & Co. Inc., Rahway, New Jersey, USA
| | - Thomas W. Rosahl
- Department of Quantitative Biosciences, Merck & Co. Inc., Rahway, New Jersey, USA
| | - Ester Carballo-Jane
- Department of Quantitative Biosciences, Merck & Co. Inc., Rahway, New Jersey, USA
| | - Desiree Abdurrachim
- Department of Quantitative Biosciences, Merck & Co. Inc., Rahway, New Jersey, USA
| | - Yongqi Zhou
- Department of Quantitative Biosciences, Merck & Co. Inc., Rahway, New Jersey, USA
| | - Christopher Hendra
- Department of Quantitative Biosciences, Merck & Co. Inc., Rahway, New Jersey, USA
| | - Asad Abu Bakar Ali
- Department of Quantitative Biosciences, Merck & Co. Inc., Rahway, New Jersey, USA
| | - Stacey Meyers
- Department of Quantitative Biosciences, Merck & Co. Inc., Rahway, New Jersey, USA
| | - Wendy Blumenschein
- Department of Quantitative Biosciences, Merck & Co. Inc., Rahway, New Jersey, USA
| | - Brendan Gongol
- Department of Data, AI & Genome Sciences, MSD, Singapore
| | - Yang Liu
- Department of Data, AI & Genome Sciences, MSD, Singapore
| | - Yingjiang Zhou
- Department of Cardiometabolic Disease, Merck & Co. Inc., South San Francisco, California, USA
| | - Saswata Talukdar
- Department of Cardiometabolic Disease, Merck & Co. Inc., South San Francisco, California, USA
| |
Collapse
|
64
|
Ehret V, Ustsinau U, Friske J, Scherer T, Fürnsinn C, Helbich TH, Philippe C, Krššák M. Evaluation of Hepatic Glucose and Palmitic Acid Metabolism in Rodents on High-Fat Diet Using Deuterium Metabolic Imaging. J Magn Reson Imaging 2025; 61:958-967. [PMID: 38721871 PMCID: PMC11706318 DOI: 10.1002/jmri.29437] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND One of the main features of several metabolic disorders is dysregulation of hepatic glucose and lipid metabolism. Deuterium metabolic imaging (DMI) allows for assessing the uptake and breakdown of 2H-labeled substrates, giving specific insight into nutrient processing in healthy and diseased organs. Thus, DMI could be a useful approach for analyzing the differences in liver metabolism of healthy and diseased subjects to gain a deeper understanding of the alterations related to metabolic disorders. PURPOSE Evaluating the feasibility of DMI as a tool for the assessment of metabolic differences in rodents with healthy and fatty livers (FLs). STUDY TYPE Animal Model. POPULATION 18 male Sprague Dawley rats on standard (SD, n = 9, healthy) and high-fat diet (HFD, n = 9, FL disease). FIELD STRENGTH/SEQUENCE Phase-encoded 1D pulse-acquire sequence and anatomy co-registered phase-encoded 3D pulse-acquire chemical shift imaging for 2H at 9.4T. ASSESSMENT Localized and nonlocalized liver spectroscopy was applied at eight time points over 104 minutes post injection. The obtained spectra were preprocessed and quantified using jMRUI (v7.0) and the resulting amplitudes translated to absolute concentration (mM) according to the 2H natural abundance water peak. STATISTICAL TESTS Two-way repeated measures ANOVA were employed to assess between-group differences, with statistical significance at P < 0.05. RESULTS DMI measurements demonstrated no significant difference (P = 0.98) in the uptake of [6,6'-2H2]glucose between healthy and impaired animals (AUCSD = 1966.0 ± 151.5 mM - minutes vs. AUCHFD = 2027.0 ± 167.6 mM·minutes). In the diseased group, the intrahepatic uptake of palmitic acid d-31 was higher (AUCHFD = 57.4 ± 17.0 mM·minutes, AUCSD = 33.3 ± 10.5 mM·minutes), but without statistical significance owing to substantial in-group variation (P = 0.73). DATA CONCLUSION DMI revealed higher concentrations of palmitic acid in rats with FL disease and no difference in hepatic glucose concentration between healthy and impaired animals. Thus, DMI appears to be a useful tool for evaluating metabolism in rodents with FL disease. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Viktoria Ehret
- Division of Endocrinology and Metabolism, Department of Medicine IIIMedical University of ViennaViennaAustria
| | - Usevalad Ustsinau
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | - Joachim Friske
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | - Thomas Scherer
- Division of Endocrinology and Metabolism, Department of Medicine IIIMedical University of ViennaViennaAustria
| | - Clemens Fürnsinn
- Division of Endocrinology and Metabolism, Department of Medicine IIIMedical University of ViennaViennaAustria
| | - Thomas H. Helbich
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | - Cécile Philippe
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | - Martin Krššák
- Division of Endocrinology and Metabolism, Department of Medicine IIIMedical University of ViennaViennaAustria
| |
Collapse
|
65
|
Tian HY, Yu DJ, Xie T, Xu MX, Wang YH, Sun XL, Zhou XM, Han YX, Liao QQ, Zhao YJ, Liao J, El-Kassas M, Sun XD, Zhang YY. Cordycepin alleviates metabolic dysfunction-associated liver disease by restoring mitochondrial homeostasis and reducing oxidative stress via Parkin-mediated mitophagy. Biochem Pharmacol 2025; 232:116750. [PMID: 39793718 DOI: 10.1016/j.bcp.2025.116750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/01/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) keeps rising with only a few drugs available. The present study aims to investigate the effects and mechanisms of cordycepin on MASLD. Male C57BL/6 mice were induced with a 90-day high-fat diet (HFD) and intraperitoneal administration with streptozotocin to establish MASLD murine model. Then they were randomly divided into the HFD and cordycepin groups (15, 30, 45 mg/kg). Cordycepin was orally given for 30 days. Serum total cholesterol (TC), triacylglyceride (TG), and aspartate aminotransferase (AST) levels were measured. L02 cells were induced by oleate acid (OA) or lipopolysaccharides (LPS), and treated with cordycepin or combined with inhibitors including chloroquine, 3-Methyladenine, and compound C. Atg7 and Parkin were knocked down in L02 cells using siRNA. Oil Red O and Nile Red staining for measuring lipid deposition. Mitochondria were visualized by transfection with mCherry-TOMM20-N10. Quantitative real-time PCR, Western blotting, and immunofluorescence staining were used to determine expressions of key molecules in inflammation, lipid metabolism, mitochondria homeostasis, and oxidative stress. Cordycepin significantly mitigated lipid deposition and ballooning in the livers of MASLD mice. Serum TC, TG, and AST levels were decreased by cordycepin. Cordycepin alleviated OA-induced lipid deposition and LPS-induced inflammation in L02 cells, attenuated oxidative stress, promoted autophagy, and maintained the autophagic flux by activating AMP-activated protein kinase (AMPK). Cordycepin reduced the accumulation of impaired mitochondria by enhancing Parkin-dependent mitophagy and promoting mitochondrial biogenesis. Cordycepin alleviates MASLD by restoring mitochondrial homeostasis and reducing oxidative stress via activating the Parkin-mediated mitophagy.
Collapse
Affiliation(s)
- Hai-Ying Tian
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Dao-Jiang Yu
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Teng Xie
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Meng-Xia Xu
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yu-Hao Wang
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Xi-Lu Sun
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Xin-Meng Zhou
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Ying-Xuan Han
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Qing-Qing Liao
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yu-Jie Zhao
- Medical College, Tibet University, Lhasa 850000, China
| | - Juan Liao
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Mohamed El-Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt; Liver Disease Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Steatotic Liver Disease Study Foundation in Middle East and North Africa (SLMENA), Cairo, Egypt
| | - Xiao-Dong Sun
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Medical College, Tibet University, Lhasa 850000, China.
| | - Yuan-Yuan Zhang
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China.
| |
Collapse
|
66
|
Qin W, Ding Y, Zhang W, Sun L, Weng J, Zheng X, Luo S. Small molecule-driven LKB1 deacetylation is responsible for the inhibition of hepatic lipid response in NAFLD. J Lipid Res 2025; 66:100740. [PMID: 39755206 PMCID: PMC11808498 DOI: 10.1016/j.jlr.2024.100740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 12/07/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a progressive condition characterized by ectopic fat accumulation in the liver, for which no FAD-approved drugs currently exist. Emerging evidence highlights the role of liver kinase B1 (LKB1), a key metabolic regulator, has been proposed in NAFLD, particularly in response to excessive nutrient levels. However, few agents have been identified that can prevent the progression of nonalcoholic steatohepatitis (NASH) by targeting LKB1 deacetylation. Through comprehensive screening of our in-house chemical library, we identified tranilast, a small molecule with remarkable inhibitory efficacy against lipid deposition induced by palmitic acid/oleic acid (PO). In this study, we investigated the novel biological function and mechanism of tranilast in regulating hepatic lipid response in NAFLD, focusing on its role in LKB1 deacetylation within hepatocytes. Our findings demonstrate that tranilast effectively reduced hepatic steatosis, inflammation, and fibrosis in NASH models induced by high-fat and high-cholesterol (HFHC) and methionine choline-deficient (MCD) diets. Mechanistic analysis using RNA sequencing revealed that tranilast mitigated hepatic lipid response by promoting LKB1 deacetylation and activating AMPK. Notably, in vivo experiments showed that the beneficial effects of tranilast in MCD diet-induced NASH model were reversed by the compound C (C-C), a known AMPK inhibitor, confirming that tranilast's effects on hepatic lipid response are mediated through the AMPK pathway. In summary, tranilast inhibits hepatic lipid response in NAFLD through LKB1 deacetylation, providing robust experimental evidence for the role of LKB1 in NAFLD. These findings position tranilast as a promising therapeutic candidate for the pharmacological management of metabolic diseases.
Collapse
Affiliation(s)
- Weiwei Qin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China; Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yu Ding
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenhao Zhang
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lu Sun
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jianping Weng
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xueying Zheng
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Sihui Luo
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
67
|
Stefan N, Yki-Järvinen H, Neuschwander-Tetri BA. Metabolic dysfunction-associated steatotic liver disease: heterogeneous pathomechanisms and effectiveness of metabolism-based treatment. Lancet Diabetes Endocrinol 2025; 13:134-148. [PMID: 39681121 DOI: 10.1016/s2213-8587(24)00318-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 12/18/2024]
Abstract
The global epidemic of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing worldwide. People with MASLD can progress to cirrhosis and hepatocellular carcinoma and are at increased risk of developing type 2 diabetes, cardiovascular disease, chronic kidney disease, and extrahepatic cancers. Most people with MASLD die from cardiac-related causes. This outcome is attributed to the shared pathogenesis of MASLD and cardiometabolic diseases, involving unhealthy dietary habits, dysfunctional adipose tissue, insulin resistance, and subclinical inflammation. In addition, the steatotic and inflamed liver affects the vasculature and heart via increased glucose production and release of procoagulant factors, dyslipidaemia, and dysregulated release of hepatokines and microRNAs. However, there is substantial heterogeneity in the contributors to the pathophysiology of MASLD, which might influence its rate of progression, its relationship with cardiometabolic diseases, and the response to therapy. The most effective non-pharmacological treatment approaches for people with MASLD include weight loss. Paradoxically, some effective pharmacological approaches to improve liver health in people with MASLD are associated with no change in bodyweight or even with weight gain, and similar response heterogeneity has been observed for changes in cardiometabolic risk factors. In this Review, we address the heterogeneity of MASLD with respect to its pathogenesis, outcomes, and metabolism-based treatment responses. Although there is currently insufficient evidence for the implementation of precision medicine for risk prediction, prevention, and treatment of MASLD, we discuss whether knowledge about this heterogeneity might help achieving this goal in the future.
Collapse
Affiliation(s)
- Norbert Stefan
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany.
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | | |
Collapse
|
68
|
Chen D, Shen Y, Huang F, Huang B, Xu S, Li L, Liu J, Li Z, Li X. Ethanol extract of Polygonatum cyrtonema Hua mitigates non-alcoholic steatohepatitis in mice. Front Pharmacol 2025; 15:1487738. [PMID: 39949396 PMCID: PMC11821971 DOI: 10.3389/fphar.2024.1487738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/20/2024] [Indexed: 02/16/2025] Open
Abstract
Background Polygonum cyrtonema Hua is a kind of traditional Chinese botanic drug. Modern pharmacological research has confirmed that Polygonum cyrtonema Hua is able to alleviate nonalcoholic fatty liver disease, but the precise mechanism requires further investigation. This study investigated the protective effects and underlying mechanisms of Polygonatum cyrtonema ethanol extract (PCE) against Non-alcoholic steatohepatitis (NASH) in mice. Methods UHPLC-MS/MS was utilized to analyze the metabolites of PCE. The NASH mouse model was establishment in C57BL/6J mice via high-fat diet (HFD) feeding for 12 weeks, and from the 9th week, mice were gavaged with PCE (100, 300, and 900 mg/kg/day), simvastatin (4 mg/kg) or saline. One hand, liver injury was assessed by serum enzymes, biochemistry, and histopathology; On the other hand, RNA-seq, qPCR, and Western blot were employed to investigate the related molecular mechanisms. Results 211 metabolites were identified through UHPLC-MS/MS analysis. PCE ameliorated HFD induced liver injury and improved hepatocellular degeneration and steatosis in a dose-dependent way. PCE restored the expression of AMPK, SIRT1, SREBP1 and PPAR-α both in mRNA and protein levels. RNAseq identified unique gene expression profiles in response to high-fat diet (HFD) compared to the PCE treatments. HFD-induced DEGs were attenuated or abolished following PCE treatments. Ingenuity pathway analysis of RNA-seq data revealed key canonical pathways and upstream molecules regulated by PCE. Conclusion Our findings confirm the ability of PCE in alleviating NASH and underscores AMPK/SIRT1 pathway as a potential theraputic target for NASH treatment.
Collapse
Affiliation(s)
- Dongliang Chen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yue Shen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Department of Pharmacy, Bijie City Qixingguan District Hospital of Traditional Chinese Medicine, Bijie, Guizhou, China
| | - Fang Huang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Bo Huang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Shangfu Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lisheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jie Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Zheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xia Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
69
|
Yu G, Wen W, Li Q, Chen H, Zhang S, Huang H, Zhang Q, Fu L. Heat-Processed Diet Rich in Advanced Glycation End Products Induced the Onset and Progression of NAFLD via Disrupting Gut Homeostasis and Hepatic Lipid Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2510-2526. [PMID: 39635825 DOI: 10.1021/acs.jafc.4c08360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Epidemiologic studies have suggested an association between the consumption of dietary advanced glycation end products (dAGEs) and the incidence of nonalcoholic fatty liver disease (NAFLD). However, the precise mechanism by which dAGEs induce NAFLD development, particularly the pathogenic role of the gut-liver axis, remains poorly understood. In this study, by establishing a high-AGE diet (HAD)-fed C57BL/6 mouse model, we employed multiomics approaches combined with a series of biological analyses to investigate the effect of HAD on NAFLD in vivo. Our results showed that exposure to HAD led to fat accumulation, oxidative stress, inflammation, and fibrosis in the liver of mice. Transcriptome analysis further revealed that HAD exposure disrupted lipid metabolism and activated inflammation-related signaling pathways in the liver. Additionally, exposure to HAD induced perturbations in gut homeostasis, as evidenced by the compromised gut barrier function, reduced probiotic abundance, and increases in pathogenic bacterial proportions. Dysbiosis of gut homeostasis may further act as a trigger for the initiation and progression of NAFLD via the gut-liver axis. This study sheds light on the underlying mechanisms through which dAGEs contribute to the development of NAFLD and helps to understand the detrimental effects of food ultraprocessing products in modern diets. Future studies are needed to explore the in-depth mechanisms related to the gut-liver axis to consolidate our conclusions.
Collapse
Affiliation(s)
- Gang Yu
- School of Statistics and Mathematics and Collaborative Innovation Centre of Statistical Data, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
| | - Wenjiabao Wen
- School of Statistics and Mathematics and Collaborative Innovation Centre of Statistical Data, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
| | - Qianqian Li
- School of Statistics and Mathematics and Collaborative Innovation Centre of Statistical Data, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
| | - Hongbo Chen
- National Pre-packaged Food Quality Supervision and Inspection Center, Zhejiang Fangyuan Test Group Co., LTD., Hangzhou 310018, China
| | - Shuifeng Zhang
- National Pre-packaged Food Quality Supervision and Inspection Center, Zhejiang Fangyuan Test Group Co., LTD., Hangzhou 310018, China
| | - Hua Huang
- Quzhou Institute for Food and Drug Control, Quzhou 324000, China
| | - Qiaozhi Zhang
- School of Statistics and Mathematics and Collaborative Innovation Centre of Statistical Data, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
| | - Linglin Fu
- School of Statistics and Mathematics and Collaborative Innovation Centre of Statistical Data, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
| |
Collapse
|
70
|
Clark AT, Russo-Savage L, Ashton LA, Haghshenas N, Amselle NA, Schulman IG. A mutation in LXRα uncovers a role for cholesterol sensing in limiting metabolic dysfunction-associated steatohepatitis. Nat Commun 2025; 16:1102. [PMID: 39875396 PMCID: PMC11775210 DOI: 10.1038/s41467-025-56565-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
Liver x receptor alpha (LXRα) functions as an intracellular cholesterol sensor that regulates lipid metabolism at the transcriptional level in response to the direct binding of cholesterol derivatives. We have generated mice with a mutation in LXRα that reduces activity in response to endogenous cholesterol derived LXR ligands while still allowing transcriptional activation by synthetic agonists. The mutant LXRα functions as a dominant negative that shuts down cholesterol sensing. When fed a high fat, high cholesterol diet LXRα mutant mice rapidly develop pathologies associated with Metabolic Dysfunction-Associated Steatohepatitis (MASH) including ballooning hepatocytes, liver inflammation, and fibrosis. Strikingly LXRα mutant mice have decreased liver triglycerides but increased liver cholesterol. Therefore, elevated cholesterol in the liver may play a critical role in the development of MASH. Reengaging LXR signaling by treatment with synthetic agonist reverses MASH in LXRα mutant mice suggesting that LXRα normally functions to impede the development of liver disease.
Collapse
Affiliation(s)
- Alexis T Clark
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Lillian Russo-Savage
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Neurological Sciences, University of Vermont, Burlington, VT, USA
| | - Luke A Ashton
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Niki Haghshenas
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Nicolas A Amselle
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ira G Schulman
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
71
|
Wang W, Cai Z, Liang Z, Liao Z, Liu Y, Geng X, Yang Y, Chen Y, Huang Z, Yang Y, Li Z. Design, synthesis, and biological evaluation of novel highly potent FXR agonists bearing piperidine scaffold. Eur J Med Chem 2025; 282:117082. [PMID: 39580912 DOI: 10.1016/j.ejmech.2024.117082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) has become a serious threat to human health, which exhibited an increasing prevalence globally. Recently, the farnesoid X receptor (FXR) has been identified as a promising strategy for the treatment of MASH by regulating multiple pathogenesis. In this study, a new series of FXR agonists bearing piperidine scaffold was designed to reduce the high lipophilicity of the existing FXR agonists. After comprehensive multiparameter optimization, LZ-007 was discovered as a highly potent FXR agonist with suitable stability in liver microsomes of multiple species. LZ-007 exhibited highly oral bioavailability and targeted tissue exposure in the liver and ileum, while the plasma exposure is low, which might minimize the systemic side effects. Moreover, LZ-007 was significantly up-regulated the expressions of FXR and its downstream genes in the liver and ileum. In MASH model, LZ-007 exerted potent anti-MASH effects by regulating the multiple signal pathways related to lipid metabolism, oxidative stress, inflammation and fibrosis. In a 30-day toxicity study, no apparent adverse effects were observed in LZ-007 treated groups, even at the high doses of 250 and 500 mg/kg. With the positive pharmacodynamics and safety profiles, LZ-007 is worthy of further evaluation as a new anti-MASH agent.
Collapse
Affiliation(s)
- Wenxin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zongyu Cai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zhilin Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zibin Liao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yuxia Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Xinqian Geng
- Department of Endocrinology, The Affiliated Hospital of Yunnan University and the Second People's Hospital of Yunnan Province, Kunming, Yunnan, 650021, PR China
| | - Yuanqian Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yisi Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zibin Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Ying Yang
- Department of Endocrinology, The Affiliated Hospital of Yunnan University and the Second People's Hospital of Yunnan Province, Kunming, Yunnan, 650021, PR China.
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
72
|
Peng H, Zhao Z, Gong J, He K. BMI trajectories are associated with NAFLD and advanced fibrosis via aging-inflammation mediation. BMC Public Health 2025; 25:147. [PMID: 39806323 PMCID: PMC11730164 DOI: 10.1186/s12889-025-21322-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND As the global epidemic of obesity fuels metabolic conditions, the burden of nonalcoholic fatty liver disease (NAFLD) will become enormous. Abundant studies revealed the association between high body mass index (BMI) and NAFLD but overlooked the BMI patterns across life stages. We aimed to explore how BMI trajectories over age relate to NAFLD. METHODS Selecting 3212 participants in NHANES 2017-2020, we tracked BMI records at different ages. Using a latent class trajectory model (LCTM), we identified BMI trajectories over age. Multinomial logistic regression assessed their association with NAFLD and advanced fibrosis. Structural equation modeling (SEM) revealed mediation effects. RESULTS We identified 3 BMI trajectories: Steady Progression, Increase to Decrease, and Rapid Ascending. There was no significant difference in NAFLD/advanced fibrosis risk between the increase-to-decrease group and the steady progression group. The Rapid Ascending trajectory significantly correlated with NAFLD (OR = 2.21, 95% CI 1.29-3.77) and advanced fibrosis (OR = 3.04, 95% CI 1.13-8.22). This association was influenced by a chain-mediated process of phenotypic age and C-reactive protein (mediated effect to NAFLD = 0.010, p < 0.01; mediated effect to advanced fibrosis = 0.003, p < 0.05). This mediation on NAFLD was independent of insulin resistance (IR). The association between rapid ascending trajectory and advanced fibrosis was more pronounced among the male subgroup (p for interaction = 0.008). CONCLUSION The rapid ascending trajectory of BMI correlates with an increased susceptibility to NAFLD and advanced fibrosis independent of BMI, mediated by aging and inflammation. Our results suggest that long-term maintenance of BMI is pivotal in NAFLD prevention. Aging-inflammation may represent a distinct mechanism of sustained obesity to NAFLD, independent of IR.
Collapse
Affiliation(s)
- Haiyang Peng
- Department of Hepatobiliary Surgery, Second Hospital Affiliated to Chongqing Medical University, Chongqing, P. R. China
| | - Zhibo Zhao
- Department of Hepatobiliary Surgery, Second Hospital Affiliated to Chongqing Medical University, Chongqing, P. R. China
| | - Jianping Gong
- Department of Hepatobiliary Surgery, Second Hospital Affiliated to Chongqing Medical University, Chongqing, P. R. China
| | - Kun He
- Department of Hepatobiliary Surgery, Second Hospital Affiliated to Chongqing Medical University, Chongqing, P. R. China.
| |
Collapse
|
73
|
Liu D, Chen L, Wang Z, Li Z, Liu L, Peng L. Ubiquitination of TFEB increased intestinal permeability to aggravate metabolic dysfunction-associated steatohepatitis. Hepatology 2025:01515467-990000000-01134. [PMID: 39792087 DOI: 10.1097/hep.0000000000001214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND AND AIMS Increased intestinal permeability exacerbates the development of metabolic dysfunction-associated steatohepatitis (MASH), but the underlying mechanisms remain unclear. Autophagy is important for maintaining normal intestinal permeability. Here, we investigated the impact of intestinal transcription factor EB (TFEB), a key regulator of autophagy, on intestinal permeability and MASH progression. APPROACH AND RESULTS TFEB expression was analyzed in the proximal colon of 45 individuals with metabolic dysfunction-associated steatotic liver disease and 23 healthy controls. We used immunoprecipitation-mass spectrometry to identify TFEB-interacting proteins. Intestine-specific Tfeb knockout mice were generated by mating Tfebfl/fl mice with Villin- Cre mice. The mice were fed a high-fat, high-sucrose diet, and assessments were performed to evaluate intestinal permeability and MASH progression. Intestinal TFEB levels were reduced in patients with MASH and negatively correlated with intestinal permeability and hepatic toxicity. Intestine-specific TFEB deficiency increased intestinal permeability and worsened MASH severity, whereas moderate TFEB overexpression conferred protective effects. Mechanistically, the E3 ligase TRIP12 promotes the ubiquitination and degradation of nuclear TFEB, thereby inhibiting autophagic flux to aggravate intestinal barrier impairment and subsequently promote MASH progression. Importantly, a peptide PT1 designed to block the TRIP12-TFEB interaction reduced MASH progression. CONCLUSIONS The ubiquitination of TFEB plays a pivotal role in increasing intestinal permeability and promoting the progression of MASH by inhibiting autophagy. Intestinal TFEB may represent a novel therapeutic target for the treatment of MASH.
Collapse
Affiliation(s)
- Donghai Liu
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lang Chen
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Zai Wang
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Zecheng Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Lihong Liu
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
74
|
Wu Y, Zhang Z, Cai H, Zhang W, Zhang L, Li Z, Yang L, Chen Y, Corner TP, Song Z, Yue J, Yang F, Li X, Schofield CJ, Zhang X. Discovery of ZG-2305, an Orally Bioavailable Factor Inhibiting HIF Inhibitor for the Treatment of Obesity and Fatty Liver Disease. J Med Chem 2025; 68:212-235. [PMID: 39432709 DOI: 10.1021/acs.jmedchem.4c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Genetic loss of the 2-oxoglutarate oxygenase factor inhibiting hypoxia-inducible factor (FIH) enhances both glycolysis and aerobic metabolism. FIH is thus a potential target for adiposity control and improving hepatic steatosis. We describe development of a series of novel, potent, and selective FIH inhibitors that occupy both the FIH catalytic site and a recently defined tyrosine conformational-flip pocket. ZG-2305, with a Ki of 79.6 nM for FIH, manifests 38-fold selectivity over the hypoxia-inducible factor (HIF) prolyl hydroxylase PHD2. Oral administration of ZG-2305 in the western-diet induced obesity mouse model results in improved lipid accumulation and recovery from abnormal body weight/hepatic steatosis. Amelioration of nonalcoholic steatohepatitis (NASH) related pathological phenotypes in the HF-CDAA-diet induced NASH mouse model was observed. Preliminary preclinical studies indicate ZG-2305 has good pharmacokinetic properties and an acceptable safety profile. The results imply ZG-2305 is a promising candidate for treatment of obesity and fatty liver disease.
Collapse
Affiliation(s)
- Yue Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Zewei Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Haiping Cai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Weiqing Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Linjian Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Zhihong Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Le Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Yafen Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Thomas P Corner
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Zhe Song
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Yue
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Fulai Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xiang Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Xiaojin Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
75
|
Lin S, Qiu X, Fu X, Zhang S, Tang C, Kuang J, Guan H, Lai S. SNRK modulates mTOR-autophagy pathway for liver lipid homeostasis in MAFLD. Mol Ther 2025; 33:279-296. [PMID: 39521960 PMCID: PMC11764968 DOI: 10.1016/j.ymthe.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/02/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Metabolism-related fatty liver disease (MAFLD) is associated with abnormal fat accumulation in the liver. The exact mechanism underlying the occurrence and development of MAFLD remains to be elucidated. Here, we discovered that the expression of sucrose non-fermenting-related kinase (SNRK) is elevated in the liver of the MAFLD population. Mice deficient in SNRK exhibited damage to fatty acid oxidation and persistent accumulation of lipids in the liver. Pharmacological inhibition of the mTOR pathway in SNRK-deficient mice restored autophagy and improved lipid accumulation. In terms of mechanism, we observed that SNRK binds to the raptor component of mTOR complex 1, promoting fatty acid oxidation in the liver by activating autophagy. Overexpression of SNRK in high-fat diet-induced obese mice restored autophagy and ameliorated lipid accumulation. Notably, we also demonstrated that overexpression of SNRK significantly enhanced fatty acid oxidation in the mouse liver. We further confirmed that SNRK is essential for the liver to regulate autophagy and fatty acid oxidation. These findings underscore the importance of the potential of SNRK in the treatment of MAFLD.
Collapse
Affiliation(s)
- Shan Lin
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, China
| | - Xiusheng Qiu
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Xiaoying Fu
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, China
| | - Shuting Zhang
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, China
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Jian Kuang
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, China.
| | - Haixia Guan
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, China.
| | - Shuiqing Lai
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, China.
| |
Collapse
|
76
|
Jian J, Zhang R, Dong Y, Zheng H, Liao X. Association between NAFLD and liver fibrosis with nutritional risk index based on the NHANES 2017-2018. Lipids Health Dis 2025; 24:6. [PMID: 39773264 PMCID: PMC11705686 DOI: 10.1186/s12944-024-02427-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Nutrition and its associated inflammation have been acknowledged as vital factors in the etiopathogenesis of non-alcoholic fatty liver disease (NAFLD) and liver fibrosis. The nutritional risk index (NRI) has been widely recognized as a valid indicator of nutritional status in several diseases, including osteoporosis and cardiovascular disease. However, the role of NRI in NAFLD and liver fibrosis remains unclear. METHODS Participants were selected from the National Health and Nutrition Examination Survey data for the 2017-2018 cycle. Association between NRI and both NAFLD and liver fibrosis was evaluated using multiple logistic regression and restricted cubic spline (RCS) analysis. Mediation analysis was employed to assess the influence of inflammation on the association between NRI and both NAFLD and liver fibrosis. RESULTS Compared to their respective control groups, individuals with NAFLD and liver fibrosis exhibited higher NRI levels. Multiple logistic regression analyses indicated that NRI was positively associated with the odds of NAFLD and liver fibrosis across both continuous scales and quantile groups, with adjustments for relevant covariables. The RCS model demonstrated a dose-response effect between NRI and the odds of NAFLD, but not with liver fibrosis. Receiver operating characteristic (ROC) analysis revealed the area under the ROC curves of 0.798 and 0.775 for NAFLD and liver fibrosis, respectively. Mediation analysis showed that inflammation accounted for 3.139% of the effect of NRI on the odds of NAFLD, suggesting inflammation might partially mediate the impact of NRI on NAFLD. CONCLUSIONS Our findings indicate that NRI may serve as a potential associated marker for these liver diseases, underscoring the importance of nutritional status in their etiopathogenesis.
Collapse
Affiliation(s)
- Jieming Jian
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Rui Zhang
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Yuan Dong
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Hongting Zheng
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China.
| | - Xiaoyu Liao
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
77
|
Zhou L, Zhao J, Ma K, Hao R, Yao C, Gou X, Tian C, Wan L, Li M, Tong X. Targeting immune cellular populations and transcription factors: unraveling the therapeutic potential of JQF for NAFLD. Front Immunol 2025; 15:1445924. [PMID: 39840059 PMCID: PMC11746100 DOI: 10.3389/fimmu.2024.1445924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 12/06/2024] [Indexed: 01/23/2025] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) constitutes the most prevalent chronic liver disease worldwide. Progression to non-alcoholic steatohepatitis (NASH), the immune cell reservoir within the liver undergoes remodeling, exacerbating liver inflammation and potentially leading to liver fibrosis. Jiangtang Qingre Formula (JQF) is an effective prescription for the clinical treatment of NAFLD. However, its underlying mechanism of action remains unclear. Methods Using a high-fat diet-induced NAFLD mouse model, we evaluated JQF's effects with biochemical tests and histopathology. Single-cell RNA sequencing and spatial transcriptomics furthered our understanding of NAFLD pathophysiology and JQF's treatment mechanisms. Results Our findings initially revealed significant improvements in JQF on hepatic steatosis, inflammation, fibrosis and glucose tolerance in NAFLD mice. Furthermore, significant changes were observed in the immune cells including monocytes, macrophages, and T cells in the livers of NAFLD mice. Notably, regions infiltrated by T cells presented the most severe liver inflammation and fibrosis. Importantly, JQF effectively modulated these immune cells. Advanced subcluster and cell communication analyses identified key macrophage (KCs, MoMFs) and T cell (Tc, Th2) subpopulations in JQF's therapeutic actions. Further SCENIC analysis additionally uncovered the essential transcription factors that regulate these cell subclusters, such as Stat2, Mta3, Eomes, and Etv5. Conclusion Overall, our research suggests a promising potential therapeutic agent and identifies critical cell populations and transcription factors that contribute to its therapeutic effects, thereby revealing potential therapeutic targets for NAFLD.
Collapse
Affiliation(s)
- Lijuan Zhou
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingyi Zhao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kaile Ma
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Hao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chensi Yao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaowen Gou
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuanxi Tian
- Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Li Wan
- Molecular Biology Laboratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- Molecular Biology Laboratory, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
78
|
Zhang F, Li W. Association between the Fatty Liver Index, Metabolic Dysfunction-Associated Steatotic Liver Disease, and the Risk of Kidney Stones. Kidney Blood Press Res 2025; 50:115-130. [PMID: 39746337 PMCID: PMC11844708 DOI: 10.1159/000543404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025] Open
Abstract
INTRODUCTION This study aimed to investigate the potential association between the fatty liver index (FLI), metabolic dysfunction-associated steatotic liver disease (MASLD), and the risk of kidney stones using large-scale population-based data. METHODS This study employed a cross-sectional design, utilizing data from the 2007 to 2018 National Health and Nutrition Examination Survey (NHANES) database. A total of 24,342 participants were enrolled in the study, and fatty liver status was assessed by calculating the FLI. MASLD was diagnosed by FLI in conjunction with cardiometabolic criteria. Data on the history of kidney stones were obtained by self-report. We employed logistic regression models to analyze the association between FLI, MASLD, and kidney stone risk and constructed multivariable adjustment models to control for potential confounders. Furthermore, we used restricted cubic spline curve models to investigate the dose-response relationship between FLI and kidney stone risk and conducted subgroup and interaction analyses. RESULTS The study's results indicate a strong correlation between increasing FLI quartiles and a notable rise in the prevalence of kidney stones. Specifically, the risk of developing kidney stones was 1.68 times higher among participants in the highest FLI quartile compared to those in the lowest. Furthermore, patients with MASLD exhibited a 1.35-fold increased risk of developing kidney stones compared to those with non-MASLD. Subgroup analyses demonstrated that the correlation between MASLD and kidney stone risk was consistent across multiple subgroups. However, a significant interaction was observed in the subgroups of smoking status, physical activity level, and hypertension (interaction p < 0.05). The restricted cubic spline analysis did not yield a statistically significant nonlinear association between FLI and kidney stone risk. However, the study did identify inflection point values for FLI. CONCLUSION This study demonstrated an association between FLI and MASLD and the risk of kidney stones. This suggests that these conditions may be pivotal risk factors for kidney stones. Further investigation is required to elucidate these associations' underlying mechanisms and develop efficacious interventions to reduce the risk of kidney stones. Also, formulating personalized prevention and treatment strategies for different population subgroups is paramount.
Collapse
Affiliation(s)
- Fan Zhang
- Changzhou Clinical College, Xuzhou Medical University, Changzhou, China
- Department of Endocrinology, Changzhou Third People’s Hospital, Changzhou, China
- Department of Clinical Nutrition, Changzhou Third People’s Hospital, Changzhou, China
| | - Wenjian Li
- Changzhou Clinical College, Xuzhou Medical University, Changzhou, China
- Department of Urology, Changzhou Third People’s Hospital, Changzhou, China
| |
Collapse
|
79
|
Xuan Y, He F, Liu Q, Dai D, Wu D, Shi Y, Yao Q. Elevated GGT to HDL ratio as a marker for the risk of NAFLD and liver fibrosis. Sci Rep 2025; 15:10. [PMID: 39748013 PMCID: PMC11695851 DOI: 10.1038/s41598-024-84649-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/25/2024] [Indexed: 01/04/2025] Open
Abstract
This study investigated the association between NAFLD and liver fibrosis and the ratio of gamma-glutamyl transferase to high-density lipoprotein cholesterol (GGT/HDL-C). In this cross-sectional study, we included 4764 subjects who participated in the National Health and Nutrition Examination Survey (NHANES) during 2017-2018. Adjusted multivariate logistic regression analysis was utilized to evaluate the relationships between GGT/HDL-C levels and NAFLD, fatty liver degree, and liver fibrosis. The non-linear link between NAFLD and the GGT/HDL-C ratio was examined using generalized additive models. There was a non-linear association between GGT/HDL-C and the risk of NAFLD, and all regression models demonstrated a strong relationship between GGT/HDL-C levels and the risk of liver fibrosis, the degree of hepatic steatosis, and the prevalence of NAFLD. Subgroup analyses revealed a significant correlation between the risk of NAFLD and the GGT/HDL-C ratio among Mexican Americans and young people in the 20-40 age range. The receiver operating characteristic (ROC) study showed that GGT/HDL-C was a more accurate predictor of NAFLD than GGT or HDL-C alone. In the U.S. population, an increased risk of NAFLD, the severity of hepatic steatosis, and the risk of liver fibrosis are independently correlated with an elevated GGT/HDL-C ratio.
Collapse
Affiliation(s)
- Yanyan Xuan
- Department of Hospital Infection, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Hepatology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Geriatrics Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Fangfang He
- Department of Hospital Infection, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qing Liu
- Department of Hepatology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Dandan Dai
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Dingting Wu
- Department of Clinical Nutrition, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanmei Shi
- Department of Hepatology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Qi Yao
- Department of Geriatrics Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
80
|
Hu Y, Hu X, Jiang L, Luo J, Huang J, Sun Y, Qiao Y, Wu H, Zhou S, Li H, Li J, Zhou L, Zheng S. Microbiome and metabolomics reveal the effect of gut microbiota on liver regeneration of fatty liver disease. EBioMedicine 2025; 111:105482. [PMID: 39644773 PMCID: PMC11667181 DOI: 10.1016/j.ebiom.2024.105482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) is associated with impaired regenerative capacity and poor postoperative prognosis following hepatectomy. Previous research has highlighted the importance of the gut-liver axis in the physiological and pathological processes of the liver. However, the contribution of gut bacteria to the regeneration of livers with MAFLD and its metabolic regulatory mechanisms remain elusive. METHODS Partial hepatectomy (PHx) was performed on C57Bl/6J mice fed with high-fat diet (HFD) for 12 weeks. Pathological examination, immunohistochemistry, and qRT-PCR analysis were performed to assess the severity of steatosis and proliferative potential. The gut microbiome was examined by 16S rRNA gene sequencing and shotgun metagenomics, whereas liver metabolomics was analysed via untargeted and targeted metabolomics using liquid chromatography-tandem mass spectrometry (LC-MS). FINDINGS HFD-induced hepatic steatosis in mice led to impaired liver regeneration following PHx. The gut microbiota and liver metabolites were altered along with the liver regeneration process. Longitudinal time-series analysis revealed dynamic alterations in these data, whereas correlation analysis screened out bacterial candidates that potentially influence liver regeneration in MAFLD by modulating metabolic pathways. Among these bacteria, the dominant bacterium Akkermansia was selected for subsequent investigation. MAFLD mice gavaged with Akkermansia muciniphila (A. muciniphila) exhibited reduced liver lipid accumulation and accelerated liver regeneration, possibly through the regulation of the tricarboxylic acid (TCA) cycle. INTERPRETATION These data demonstrated the interplay between the gut microbiome, liver metabolomics, and liver regeneration in mice with MAFLD. A. muciniphila has the potential to serve as a clinical intervention agent to accelerate postoperative recovery in MAFLD. FUNDING This work was supported by the Research Project of Jinan Microecological Biomedicine Shandong Laboratory [JNL-2022008B]; the Zhejiang Provincial Natural Science Foundation of China [LZ21H180001]; the Fundamental Research Funds for the Central Universities [No. 2022ZFJH003].
Collapse
Affiliation(s)
- Yiqing Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Xiaoyi Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Li Jiang
- Laboratory of Animal Research Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jia Luo
- The Affiliated Hospital of Kunming University of Science and Technology, The First People' Hospital of Yunnan Province, Kunming, 650500, China
| | - Jiacheng Huang
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Yaohan Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Yinbiao Qiao
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Hao Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Shijie Zhou
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Haoyu Li
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Jianhui Li
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, 310015, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China; Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, 310015, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, China.
| |
Collapse
|
81
|
Tang M, Wang X, Wang S, Xing C, Xu Q, Mu Y, Wu X, Zhao ZA, Li F. 10-Hydroxy-2-decenoic acid attenuates nonalcoholic fatty liver disease by activating AMPK-α signaling pathway. Biochem Pharmacol 2025; 231:116648. [PMID: 39581533 DOI: 10.1016/j.bcp.2024.116648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/01/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) originates from metabolic dysfunctions, is one of the most commonly encountered liver disorders worldwide, characterized by ectopic lipid deposition within hepatocytes, accompanied by hepatocellular injury and necroinflammation. Currently, NAFLD has very few treatment options. Purified from royal jelly, 10-hydroxy-2-decenoic acid (10-HDA) is the primary bioactive ingredient with a series of beneficial effects against various metabolic diseases. Herein, we investigated the effects of 10-HDA in methionine and choline deficiency (MCD) diet induced NAFLD model and free fatty acids (FFAs) induced lipid-laden hepatocyte model and explored the underlying mechanisms. In the mice fed with MCD diet, 10-HDA treatment significantly reduced hepatic steatosis, hepatocellular injury, apoptosis, inflammatory response and fibrosis. In vitro, 10-HDA treatment reduced lipid accumulation and apoptosis in hepatocytes induced by FFAs. Mechanistically, 10-HDA therapy restored AMPK-α phosphorylation, leading to the phosphorylation and inactivation acetyl-CoA carboxylase (ACC). Consequently, this increased the expression of carnitine palmitoyl transferase 1α(CPT1α), and peroxisome proliferators-activated receptors α (PPARα), and lowered the expression of cleavage forms of sterol regulatory element binding protein-1 (SREBP-1) and fatty acid synthetase (FASN). Furthermore, pretreating the cells with the AMPK-α inhibitor, compound C, greatly eliminated these beneficial effects of 10-HDA. Additionally, molecular docking analysis indicated that 10-HDA bound the domain of AMPK-α1 subunit. Based on these findings, 10-HDA suppresses hepatic lipogenesis via AMPK-α-dependent suppression of the ACC pathway, thus inhibiting hepatocellular injury, apoptosis, inflammatory response and fibrosis. 10-HDA may represent a promising candidate drug for the treatment of NAFLD.
Collapse
Affiliation(s)
- Minyi Tang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinzi Wang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuai Wang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Chaofeng Xing
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Southern Medical University, Foshan 528308, China
| | - Qihua Xu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
| | - Yunping Mu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoli Wu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zijian Allan Zhao
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Southern Medical University, Foshan 528308, China.
| | - Fanghong Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
82
|
Hasan AH, Abid MA, Abid MH, Suhail L, Nazir A. A New Hope for the Patients of Non-Alcoholic Steatohepatitis: FDA Gives Green Signal for Resmetirom Use. Health Sci Rep 2025; 8:e70394. [PMID: 39846038 PMCID: PMC11752137 DOI: 10.1002/hsr2.70394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 11/24/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
Background and Aims Non-Alcoholic Steatohepatitis (NASH), a severe form of Non-Alcoholic Fatty Liver Disease (NAFLD), is characterized by inflammation and fibrosis in the liver, often progressing to cirrhosis and hepatocellular carcinoma. Despite its rising prevalence and significant disease burden, effective pharmacological treatments have been limited to lifestyle modifications and surgical interventions. Recently, resmetirom, a thyroid hormone receptor-β agonist, received FDA approval for treating NASH, offering new hope to patients. This review explores the current understanding of NASH and the role of resmetirom as a breakthrough therapeutic option. Methods This study is a comprehensive literature review analyzing peer-reviewed articles, clinical trial data, and public health reports. No original analyses were conducted, and no statistical software was utilized in this review. Results Resmetirom demonstrated efficacy in resolving NASH without fibrosis progression and improving fibrosis scores in patients with biopsy-confirmed NASH. In a randomized Phase 3 trial, significant histological improvements were observed in 25.9% and 29.9% of patients receiving 80 and 100 mg doses, respectively, compared to 9.7% in the placebo group. Similar trends were noted in fibrosis improvement, with 24.2% and 25.9% of patients showing ≥ 1 stage improvement compared to 14.2% in the placebo group. Adverse effects, including nausea and diarrhea, were reported more frequently in the treatment groups, but the rates of serious adverse events were comparable across groups. Conclusion The approval of resmetirom marks a significant advancement in the treatment of NASH, addressing the limitations of lifestyle-based interventions. As the obesity epidemic drives the increasing prevalence of NASH, resmetirom provides a promising therapeutic option, paving the way for improved patient outcomes and future research.
Collapse
Affiliation(s)
| | | | | | - Laiba Suhail
- Department of MedicineKing Edward Medical UniversityLahorePakistan
| | - Abubakar Nazir
- Department of MedicineKing Edward Medical UniversityLahorePakistan
- Oli Health Magazine OrganizationKigaliRwanda
| |
Collapse
|
83
|
Rajak S, Shah A, Yadav A, Shahi A, Raza S, Singh MM, Chaturvedi CP, Sinha RA. Inhibition of histone methyltransferase G9a aggravates phenotypic severity of hepatic lipotoxicity in non-alcoholic steatohepatitis (NASH). Biochem Biophys Res Commun 2025; 743:151171. [PMID: 39693938 DOI: 10.1016/j.bbrc.2024.151171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Lipotoxicity is a key pathological feature in the development of non-alcoholic steatohepatitis (NASH), which is characterized by liver injury, inflammation, and fibrosis. Although lipotoxicity has been shown to induce transcriptomic alterations in liver cells, the specific role of epigenetic regulators in NASH remains elusive. In this study, we demonstrate that pharmacological inhibition of histone methyltransferase G9a significantly worsens NASH progression in mice, as evidenced by increased hepatic cell death, inflammation, and fibrosis. Additionally, at a cellular level both genetic and pharmacological inhibition of G9a in HepG2 cells increased their susceptibility to palmitic acid-induced apoptosis and sub-cellular stress. Furthermore, treatment with G9a inhibitor enhanced TGF-β induced activation of primary human hepatic stellate cells (hHSCs), implicating the role of G9a in NASH pathobiology.
Collapse
Affiliation(s)
- Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, 226014, Lucknow, India
| | - Arunim Shah
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, 226014, Lucknow, India
| | - Abhishek Yadav
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, 226014, Lucknow, India
| | - Ambuj Shahi
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, 226014, Lucknow, India
| | - Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, 226014, Lucknow, India
| | - Mable M Singh
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, 226014, Lucknow, India
| | - Chandra P Chaturvedi
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, 226014, Lucknow, India.
| | - Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, 226014, Lucknow, India.
| |
Collapse
|
84
|
Chianelli M, Armellini M, Carpentieri M, Coccaro C, Cuttica CM, Fusco A, Marucci S, Nelva A, Nizzoli M, Ponziani MC, Sciaraffia M, Tassone F, Busetto L. Obesity in Prediabetic Patients: Management of Metabolic Complications and Strategies for Prevention of Overt Diabetes. Endocr Metab Immune Disord Drug Targets 2025; 25:8-36. [PMID: 38778593 PMCID: PMC11826913 DOI: 10.2174/0118715303282327240507184902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 05/25/2024]
Abstract
Obesity and prediabetes affect a substantial part of the general population, but are largely underdiagnosed, underestimated, and undertreated. Prediabetes differs from diabetes only in the degree of hyperglycaemia consequent to the progressive decline in residual beta-cell function. Both prediabetes and diabetes occur as a consequence of insulin resistance that starts several years before the clinical onset of overt diabetes. Macrovascular complications in patients with diabetes are mainly caused by insulin resistance. This is why in prediabetes, the overall cardiovascular risk is, by all means, similar to that in patients with diabetes. It is important, therefore, to identify prediabetes and treat patients not only to prevent or delay the onset of diabetes, but to reduce the cardiovascular risk associated with prediabetes. This review provides an overview of the pathophysiology of prediabetes in patients with obesity and the progression toward overt diabetes. We have reviewed nutritional and pharmacological approaches to the management of obesity and reduced glucose tolerance, and the treatment of the major comorbidities in these patients, including hypertension, dyslipidaemia, and Metabolic dysfunction-associated Steatotic Liver Disease (MASLD), has also been reviewed. In patients with obesity and prediabetes, the nutritional approach is similar to that adopted for patients with obesity and diabetes; treatments of dyslipidaemia and hypertension also have the same targets compared to patients with diabetes. MASLD is a critical issue in these patients; in the prediabetic state, MASLD rarely progresses into fibrosis. This highlights the importance of the early recognition of this pathological condition before patients become diabetic when the risk of fibrosis is much higher. It is necessary to raise awareness of the clinical relevance of this pathological condition in order to prompt early intervention before complications occur. The single most important therapeutic goal is weight loss, which must be early and persistent.
Collapse
Affiliation(s)
- Marco Chianelli
- Unit of Endocrinology and Metabolism, Regina Apostolorum Hospital, Albano, Rome, Italy
| | - Marina Armellini
- Endocrinology and Metabolism Unit, University-Hospital S. Maria della Misericordia, Udine, Italy
| | - Maria Carpentieri
- Endocrinology and Metabolism Unit, University-Hospital S. Maria della Misericordia, Udine, Italy
| | - Carmela Coccaro
- Department of Civil Disability, Istituto Nazionale della Previdenza Sociale, Rome, Italy
| | | | - Alessandra Fusco
- Diabetology Center Villaricca, Azienza Sanitaria 2 Naples, Naples, Italy
| | - Simonetta Marucci
- Scienza dell'Alimentazione e Nutrizione Umana, University Campus Biomedico, Rome, Italy
| | - Anna Nelva
- Unit of Endocrinology and Diabetology, Ospedale degli Infermi, Ponderano, Italy
| | - Maurizio Nizzoli
- Unit of Endocrinology and Metabolism G.B. Morgagni Hospital, Forlì, Italy
| | | | | | - Francesco Tassone
- Department of Endocrinology, Diabetes & Metabolism, Santa Croce e Carle Hospital, Cuneo, Italy
| | - Luca Busetto
- Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
85
|
Cui X, Li H, Li L, Xie C, Gao J, Chen Y, Zhang H, Hao W, Fu J, Guo H. Rodent model of metabolic dysfunction-associated fatty liver disease: a systematic review. J Gastroenterol Hepatol 2025; 40:48-66. [PMID: 39322221 PMCID: PMC11771679 DOI: 10.1111/jgh.16749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Although significant progress has been made in developing preclinical models for metabolic dysfunction-associated steatotic liver disease (MASLD), few have encapsulated the essential biological and clinical outcome elements reflective of the human condition. We conducted a comprehensive literature review of English-language original research articles published from 1990 to 2023, sourced from PubMed, Embase, and Web of Science, aiming to collate studies that provided a comparative analysis of physiological, metabolic, and hepatic histological characteristics between MASLD models and control groups. The establishment of a robust metabolic dysfunction-associated steatotic liver rodent model hinges on various factors, including animal species and strains, sex, induction agents and methodologies, and the duration of induction. Through this review, we aim to guide researchers in selecting suitable induction methods and animal species for constructing preclinical models aligned with their specific research objectives and laboratory conditions. Future studies should strive to develop simple, reliable, and reproducible models, considering the model's sensitivity to factors such as light-dark cycles, housing conditions, and environmental temperature. Additionally, the potential of diverse in vitro models, including 3D models and liver organ technology, warrants further exploration as valuable tools for unraveling the cellular mechanisms underlying fatty liver disease.
Collapse
Affiliation(s)
- Xiao‐Shan Cui
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Hong‐Zheng Li
- Guang'an men HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Liang Li
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Cheng‐Zhi Xie
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Jia‐Ming Gao
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Yuan‐Yuan Chen
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Hui‐Yu Zhang
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Wei Hao
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Jian‐Hua Fu
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Hao Guo
- Safety Laboratory, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
86
|
Hu S, Wang Z, Zhu K, Shi H, Qin F, Zhang T, tian S, Ji Y, Zhang J, Qin J, She Z, Zhang X, Zhang P, Li H. USP29 alleviates the progression of MASLD by stabilizing ACSL5 through K48 deubiquitination. Clin Mol Hepatol 2025; 31:147-165. [PMID: 39355870 PMCID: PMC11791544 DOI: 10.3350/cmh.2024.0478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND/AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic steatosis. Ubiquitin-specific protease 29 (USP29) plays pivotal roles in hepatic ischemiareperfusion injury and hepatocellular carcinoma, but its role in MASLD remains unexplored. Therefore, the aim of this study was to reveal the effects and underlying mechanisms of USP29 in MASLD progression. METHODS USP29 expression was assessed in liver samples from MASLD patients and mice. The role and molecular mechanism of USP29 in MASLD were assessed in high-fat diet-fed and high-fat/high-cholesterol diet-fed mice and palmitic acid and oleic acid treated hepatocytes. RESULTS USP29 protein levels were significantly reduced in mice and humans with MASLD. Hepatic steatosis, inflammation and fibrosis were significantly exacerbated by USP29 deletion and relieved by USP29 overexpression. Mechanistically, USP29 significantly activated the expression of genes related to fatty acid β-oxidation (FAO) under metabolic stimulation, directly interacted with long-chain acyl-CoA synthase 5 (ACSL5) and repressed ACSL5 degradation by increasing ACSL5 K48-linked deubiquitination. Moreover, the effect of USP29 on hepatocyte lipid accumulation and MASLD was dependent on ACSL5. CONCLUSION USP29 functions as a novel negative regulator of MASLD by stabilizing ACSL5 to promote FAO. The activation of the USP29-ACSL5 axis may represent a potential therapeutic strategy for MASLD.
Collapse
Affiliation(s)
- Sha Hu
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Zhouxiang Wang
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Kun Zhu
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Hongjie Shi
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Fang Qin
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Tuo Zhang
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Song tian
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Yanxiao Ji
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Jianqing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Juanjuan Qin
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhigang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaojing Zhang
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Peng Zhang
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Hongliang Li
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| |
Collapse
|
87
|
El-Kassas M, Othman HA, Elbadry M, Alswat K, Yilmaz Y. Risk Stratification of Patients with Metabolic Dysfunction-associated Steatotic Liver Disease: Steatohepatitis, Fibrosis, and Hepatocellular Carcinoma. J Clin Exp Hepatol 2025; 15:102415. [DOI: 10.1016/j.jceh.2024.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2025] Open
|
88
|
Wang H, Wang W, Jiang Y, Cui S, Kong Y, Chen YQ, Zhu S. F2RL1 Inhibition Alleviates Lipotoxicity-Induced Kidney Injury Through the Hippo Pathway in Diabetic Kidney Disease. Inflammation 2024:10.1007/s10753-024-02215-y. [PMID: 39738821 DOI: 10.1007/s10753-024-02215-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025]
Abstract
Diabetic kidney disease (DKD), which is emerging as a pervasive global health concern and a considerable economic burden, is characterized by a detrimental effect on renal function and structure. Recent research indicates that the progression of DKD is facilitated by lipotoxic injury to tubular epithelial cells (TECs). However, the specific mechanisms that contribute to this cellular damage have yet to be fully elucidated. Our results revealed a significant upregulation of F2RL1 in vivo and in vitro models, which was positively correlated with the expression of inflammatory factors. Knockdown of F2RL1 significantly reduced inflammatory response in palmitate-stimulated HK-2 cells. Mechanistically, F2RL1 might exacerbate lipotoxicity-induced DKD through the modulation of the Hippo signaling pathway. Collectively, these findings suggest that modulating F2RL1 expression may be a strategic approach to mitigate the inflammatory damage to RTECs associated with DKD, potentially through its involvement in the Hippo signaling pathway. Given these findings, F2RL1 merits consideration as a candidate therapeutic target for DKD.
Collapse
Affiliation(s)
- Hui Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wei Wang
- The Second Clinical Medical School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yao Jiang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Siyuan Cui
- The Affiliated Wuxi No.2, People's Hospital of Nanjing Medical University , Wuxi, China
| | - Yulin Kong
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yong Q Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, China.
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
89
|
Dewar S, Janevic MR, Batsis JA, Alexander NB. Older Adults With Obesity: Need for 4Ms Age-Friendly Approach to Care. J Am Geriatr Soc 2024. [PMID: 39731520 DOI: 10.1111/jgs.19353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024]
Affiliation(s)
- Shenbagam Dewar
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Mary R Janevic
- Department of Health Behavior and Health Education, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - John A Batsis
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Geriatric Medicine, UNC School of Medicine, Chapel Hill, North Carolina, USA
| | - Neil B Alexander
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| |
Collapse
|
90
|
Tang C, Peng D, Zong K, Wu Z, Gong M, Li H, Huang Z, Li S. Association between the lymphocyte-to-high-density lipoprotein ratio and metabolic dysfunction-associated steatotic liver disease among US adults: a cross-sectional study from NHANES 2017 to 2020. BMC Gastroenterol 2024; 24:470. [PMID: 39716074 DOI: 10.1186/s12876-024-03565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a liver disease that is strongly associated with chronic low-grade inflammation. Stage 3 of MASLD is characterized by excessive formation of connective tissues, commonly referred to as liver fibrosis. Although numerous inflammatory markers have been identified and extensively studied, including the tumor necrosis factor-α and interleukin-6 have been studied [Byrne CD, Targher G. NAFLD: a multisystem disease. J Hepatol. 2015;62(1 Suppl):S47-64], the lymphocyte-to-high-density lipoprotein ratio (LHR) as a new biomarker that has not been sufficiently studied. This study aims to investigate the relationship between LHR levels and MASLD, determine its potential as a predictive marker for steatosis and fibrosis stages. METHODS This was a population-based study using data from 15,560 participants in the 2017-2020 National Health and Nutrition Examination Survey (NHANES) database. The study aimed to explore the relationship between LHR and MASLD. The disease progression was tracked by continuously measuring CAP and liver stiffness measurements. Participants who exhibited a median Controlled Attenuation Parameter (CAP) of 248 dB/m or higher were deemed to have hepatic steatosis. The LHR was calculated by dividing the lymphocyte count by the high-density lipoprotein cholesterol (HDL-C) level. Multivariate linear regression models were employed to explore the linear association between LHR and MASLD. Fitted smoothing curves and threshold effect analysis were employed to display nonlinear relationships. A two-part linear regression model was employed to estimate threshold effects. Subgroup analyses were conducted to determine the consistency of this association across various demographic groups. RESULTS A total of 6,950 adults aged 18 years and older were enrolled in the study, with an average age of 48.15 ± 17.10 years (49.14% male, 50.86% female). The adjusted multiple logistic regression analysis revealed a significant positive correlation between LHR and MASLD (OR: 1.64, 95% CI: 1.40-1.92). Using the complex two-piece linear regression model, we observed an inverted L-shaped association between LHR and CAP, suggesting a critical inflection point at -2.58. Subgroup analyses indicated a pronounced association of the LHR index with obese individuals (OR: 1.96, 95% CI: 1.66-2.32) and females (OR: 1.76, 95% CI: 1.25-2.46). There was no significant association between LHR and clinically significant fibrosis. CONCLUSION The LHR index is positively correlated with MASLD among US adults. Therefore, LHR may be a robust marker for early screening, diagnosis, and monitoring of treatment efficacy in clinical practice.
Collapse
Affiliation(s)
- Chuanzhi Tang
- Division of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing, 400000, China
| | - Dadi Peng
- Division of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing, 400000, China
| | - Kezhen Zong
- Division of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing, 400000, China
| | - Zhongjun Wu
- Division of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing, 400000, China
| | - Miao Gong
- Division of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing, 400000, China
| | - Hui Li
- Chongqing University Cancer Hospital, Chongqing, 400000, China
| | - Zuotian Huang
- Division of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing, 400000, China.
- Chongqing University Cancer Hospital, Chongqing, 400000, China.
| | - Shanshan Li
- Division of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing, 400000, China.
| |
Collapse
|
91
|
Queathem ED, Stagg D, Nelson A, Chaves AB, Crown SB, Fulghum K, D Avignon DA, Ryder JR, Bolan PJ, Hayir A, Gillingham JR, Jannatpour S, Rome FI, Williams AS, Muoio DM, Ikramuddin S, Hughey CC, Puchalska P, Crawford PA. Ketogenesis protects against MASLD-MASH progression through mechanisms that extend beyond overall fat oxidation rate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618895. [PMID: 39464122 PMCID: PMC11507910 DOI: 10.1101/2024.10.17.618895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The progression of metabolic-dysfunction-associated steatotic liver disease (MASLD) to metabolic-dysfunction-associated steatohepatitis (MASH) involves complex alterations in both liver-autonomous and systemic metabolism that influence the liver's balance of fat accretion and disposal. Here, we quantify the relative contribution of hepatic oxidative pathways to liver injury in MASLD-MASH. Using NMR spectroscopy, UHPLC-MS, and GC-MS, we performed stable-isotope tracing and formal flux modeling to quantify hepatic oxidative fluxes in humans across the spectrum of MASLD-MASH, and in mouse models of impaired ketogenesis. We found in humans with MASH, that liver injury correlated positively with ketogenesis and total fat oxidation, but not with turnover of the tricarboxylic acid cycle. The use of loss-of-function mouse models demonstrated that disruption of mitochondrial HMG-CoA synthase (HMGCS2), the rate-limiting step of ketogenesis, impairs overall hepatic fat oxidation and induces a MASLD-MASH-like phenotype. Disruption of mitochondrial β-hydroxybutyrate dehydrogenase (BDH1), the terminal step of ketogenesis, also impaired fat oxidation, but surprisingly did not exacerbate steatotic liver injury. Taken together, these findings suggest that quantifiable variations in overall hepatic fat oxidation may not be a primary determinant of MASLD-to-MASH progression, but rather, that maintenance of hepatic ketogenesis could serve a protective role through additional mechanisms that extend beyond quantified overall rates of fat oxidation.
Collapse
|
92
|
Darwish OI, Koch V, Vogl TJ, Wolf M, Schregel K, Purushotham A, Vilgrain V, Paradis V, Neji R, Sinkus R. MR Elastography Using the Gravitational Transducer. SENSORS (BASEL, SWITZERLAND) 2024; 24:8038. [PMID: 39771774 PMCID: PMC11679839 DOI: 10.3390/s24248038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
MR elastography is a non-invasive imaging technique that provides quantitative maps of tissue biomechanical properties, i.e., elasticity and viscosity. Currently, hepatic MR elastography is deployed in the clinic to assess liver fibrosis in MAFLD patients. In addition, research has demonstrated MR elastography's ability to non-invasively assess chronic liver disease and to characterize breast cancer lesions and brain tumors. MR elastography requires efficient mechanical wave generation and penetration, motion-sensitized MRI sequences, and MR elastography inversion algorithms to retrieve the biomechanical properties of the tissue. MR elastography promises to enable non-invasive and versatile assessment of tissue, leading to better diagnosis and staging of several clinical conditions.
Collapse
Affiliation(s)
- Omar Isam Darwish
- Research Department of Imaging Physics and Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London WC2R 2LS, UK; (R.N.)
- MR Predevelopment, Siemens Healthineers, 91052 Erlangen, Germany
| | - Vitali Koch
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60629 Frankfurt am Main, Germany
| | - Thomas J. Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60629 Frankfurt am Main, Germany
| | - Marcos Wolf
- Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Katharina Schregel
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Arnie Purushotham
- School of Cancer & Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK
| | - Valérie Vilgrain
- INSERM, Centre de Recherche sur l’Inflammation, Universite Paris Cite, 45018 Paris, France
- Department of Radiology, Hospital Beaujon, 92110 Clichy, France
| | - Valérie Paradis
- INSERM, Centre de Recherche sur l’Inflammation, Universite Paris Cite, 45018 Paris, France
- Department of Pathology, Hospital Beaujon, 92110 Clichy, France
| | - Radhouene Neji
- Research Department of Imaging Physics and Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London WC2R 2LS, UK; (R.N.)
| | - Ralph Sinkus
- Research Department of Imaging Physics and Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London WC2R 2LS, UK; (R.N.)
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, 75877 Paris, France
| |
Collapse
|
93
|
Shen J, Xie E, Shen S, Song Z, Li X, Wang F, Min J. Essentiality of SLC7A11-mediated nonessential amino acids in MASLD. Sci Bull (Beijing) 2024; 69:3700-3716. [PMID: 39366830 DOI: 10.1016/j.scib.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/27/2024] [Accepted: 09/13/2024] [Indexed: 10/06/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) remains a rapidly growing global health burden. Here, we report that the nonessential amino acid (NEAA) transporter SLC7A11 plays a key role in MASLD. In patients with MASLD, we found high expression levels of SLC7A11 that were correlated directly with clinical grade. Using both loss-of-function and gain-of-function genetic models, we found that Slc7a11 deficiency accelerated MASLD progression via classic cystine/cysteine deficiency-induced ferroptosis, while serine deficiency and a resulting impairment in de novo cysteine production were attributed to ferroptosis-induced MASLD progression in mice overexpressing hepatic Slc7a11. Consistent with these findings, we found that both serine supplementation and blocking ferroptosis significantly alleviated MASLD, and the serum serine/glutamate ratio was significantly lower in these preclinical disease models, suggesting that it might serve as a prognostic biomarker for MASLD in patients. These findings indicate that defects in NEAA metabolism are involved in the progression of MASLD and that serine deficiency-triggered ferroptosis may provide a therapeutic target for its treatment.
Collapse
Affiliation(s)
- Jie Shen
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Enjun Xie
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Zhejiang University School of Medicine, Hangzhou 310058, China; The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China; School of Public Health, School of Basic Medical Sciences, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; School of Public Health, School of Basic Medical Sciences, The First Affiliated Hospital, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuying Shen
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zijun Song
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaopeng Li
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China; School of Public Health, School of Basic Medical Sciences, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; School of Public Health, School of Basic Medical Sciences, The First Affiliated Hospital, Xinxiang Medical University, Xinxiang 453003, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
94
|
Jiang S, Fan X, Hua J, Liu S, Feng Y, Shao D, Shen Y, Wang Z, Yan X, Wang J. Integrated metabolomics and network pharmacology analysis to reveal the protective effect of Complanatoside A on nonalcoholic fatty liver disease. Eur J Pharmacol 2024; 985:177074. [PMID: 39481627 DOI: 10.1016/j.ejphar.2024.177074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
INTRODUCTION The rising prevalence and severe consequences of nonalcoholic fatty liver disease (NAFLD) have driven the quest for preventive medications. Complanatoside A (CA) is the marked flavonoid of Astragali complanati semen, a traditional Chinese herb that acts on the liver meridian and is widely used to treat liver problems. CA has been proven to have considerable lipid-lowering and liver-protective effects in vitro. However, the efficacy of CA in preventing NAFLD has yet to be shown in vivo. METHODS First, the effectiveness of CA against NAFLD was assessed using a high-fat diet (HFD) mouse model. Second, the CA protective mechanism against NAFLD was investigated using a combined metabolomics and network pharmacology strategy. Differential metabolites were identified by metabolomics-based analyses, and metabolic pathway analysis was accomplished by MetaboAnalyst. Potential therapeutic targets were obtained through network pharmacology. Finally, key targets were identified via compound-target networks and validated by molecular docking and western blotting. RESULTS CA prevented NAFLD mainly by reducing liver lipid accumulation in HFD mice. Metabolomics identified 22 potential biomarkers for CA treatment of NAFLD, primarily involving glycerophospholipid and arachidonic acid metabolism. Fifty-one potential targets were determined by network pharmacology. Co-analysis revealed that albumin, peroxisome proliferator-activated receptor-alpha, retinoid X receptor alpha, interleukin-6, and tumor necrosis factor alpha were key targets. CONCLUSION This experiment revealed that CA has a preventive effect on NAFLD, primarily by regulating the peroxisome proliferator-activated receptor-alpha/retinoid X receptor alpha pathway. Furthermore, it provides evidence supporting the potential use of CA in the long-term prevention of NAFLD.
Collapse
Affiliation(s)
- Sijia Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, China
| | - Xiaoxu Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, China
| | - Jian Hua
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, China
| | - Shuangqiao Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, China
| | - Yingtong Feng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, China
| | - Danyue Shao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, China
| | - Yiwei Shen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, China
| | - Zhen Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, China
| | - Xuehua Yan
- Institute of Traditional Chinese Medicine, Xinjiang Medical University, 830011, Urumqi, China.
| | - Jingxia Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, China.
| |
Collapse
|
95
|
Ma ZJ, Qiu YK, Yu ZW, Song TT, Hu YT, Peng AK, Qi R. Natural small molecule hinokitone mitigates NASH fibrosis by targeting regulation of FXR-mediated hepatocyte apoptosis. J Adv Res 2024:S2090-1232(24)00593-9. [PMID: 39675503 DOI: 10.1016/j.jare.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/23/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024] Open
Abstract
INTRODUCTION Liver fibrosis is the common fate of NASH and poses a major health threat with very limited pharmacological treatments. OBJECTIVES This study aims to investigate the preventive effect of hinokitone (HO), an isolated compound from Agathis dammara, on NASH fibrosis and its underlying mechanism. METHODS To investigate the effect of HO on NASH fibrosis, C57BL/6 mice were either fed a high-fat diet (HFD) in conjunction with intraperitoneal injection of CCl4 for 8 weeks or single CCl4 for 14 days to establish mouse liver fibrosis model, and HO was administered by gavage simultaneously. To elucidate the underlying mechanisms, HepG2 cells were stimulated by palmitic acid (PA) or tumor necrosis factor α plus actinomycin-D (Act-D + TNFα) to induce hepatocyte apoptosis model. Furthermore, hepatocyte Farnesoid-X-receptor (FXR) specifically knocked out mice were established by the albumin-Cre-loxP recombination enzyme system to ascertain the role of FXR in the anti-NASH fibrosis effects of HO. RESULTS The results showed that HO presented dose-dependent anti-liver fibrosis efficacy in NASH mice induced by HFD + CCl4 and CCl4-induced mouse liver fibrosis. Cellularly, HO significantly inhibited PA-induced lipotoxic apoptosis and Act-D + TNFα-induced exogenous apoptosis in hepatocytes, which in turn prevented HSC activation. Mechanistically, bioinformatics analysis and surface plasmon resonance assay had identified hepatocyte FXR as a target of HO. Specifically, HO directly bound to FXR and upregulated its protein level by inhibiting proteasomal degradation. In turn, HO attenuated hepatocyte lipid deposition through upregulating the FXR's downstream target genes SHP and CES1, and reduced cleaved-CASP8 level, thereby inhibiting hepatocyte apoptosis. Furthermore, HO lost its function in the inhibition of hepatocyte apoptosis and liver fibrosis when knockout hepatocyte FXR. CONCLUSION In conclusion, HO has an inhibitory effect on NASH fibrosis. This effect is mediated by targeting upregulation of hepatocyte FXR, which in turn attenuates hepatocyte apoptosis and thus indirectly inhibits the activation of HSCs.
Collapse
Affiliation(s)
- Ze-Jiang Ma
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing 100191, China; Department of Physiology, School of Basic Medical Sciences, Xinjiang Second Medical College, Karamay, China
| | - Ying-Kun Qiu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Zhe-Wei Yu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Tian-Tian Song
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing 100191, China
| | - Yi-Tong Hu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing 100191, China
| | - An-Kang Peng
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing 100191, China; Department of Cardiology, Pu'er People's Hospital, Yunnan, China
| | - Rong Qi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing 100191, China.
| |
Collapse
|
96
|
Tao J, Li H, Wang H, Tan J, Yang X. Metabolic dysfunction-associated fatty liver disease and osteoporosis: the mechanisms and roles of adiposity. Osteoporos Int 2024; 35:2087-2098. [PMID: 39136721 DOI: 10.1007/s00198-024-07217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/26/2024] [Indexed: 11/21/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has recently been renamed metabolic dysfunction-associated fatty liver disease (MAFLD) by international consensus. Both MAFLD and osteoporosis are highly prevalent metabolic diseases. Recent evidence indicates that NAFLD increases the risk of low bone mineral density and osteoporosis, likely mediated by obesity. NAFLD has a close association with obesity and other metabolic disorders. Although obesity was previously thought to protect against bone loss, it now heightens osteoporotic fracture risk. This overview summarizes current clinical correlations between obesity, NAFLD, and osteoporosis, with a focus on recent insights into potential mechanisms interconnecting these three conditions. This study reviewed the scientific literature on the relationship between obesity, nonalcoholic fatty liver disease, and osteoporosis as well as the scientific literature that reveals the underlying pathophysiologic mechanisms between the three. Emerging evidence suggests obesity plays a key role in mediating the relationship between NAFLD and osteoporosis. Accumulating laboratory evidence supports plausible pathophysiological links between obesity, NAFLD, and osteoporosis, including inflammatory pathways, insulin resistance, gut microbiota dysbiosis, bone marrow adiposity, and alterations in insulin-like growth factor-1 signaling. Adiposity has important associations with NAFLD and osteoporosis, the underlying pathophysiologic mechanisms between the three may provide new therapeutic targets for this complex patient population.
Collapse
Affiliation(s)
- Jie Tao
- Department of General Practice, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Hong Li
- Department of Health Management Center, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Honggang Wang
- Department of Gastroenterology, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Juan Tan
- Department of General Practice, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China.
| | - Xiaozhong Yang
- Department of Gastroenterology, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China.
| |
Collapse
|
97
|
Corbalan JJ, Jagadeesan P, Frietze KK, Taylor R, Gao GL, Gallagher G, Nickels JT. Humanized monoacylglycerol acyltransferase 2 mice develop metabolic dysfunction-associated steatohepatitis. J Lipid Res 2024; 65:100695. [PMID: 39505262 DOI: 10.1016/j.jlr.2024.100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Mice lacking monoacylglycerol acyltransferase 2 (mMGAT21) are resistant to diet-induced fatty liver, suggesting hMOGAT2 inhibition is a viable option for treating metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH). We generated humanized hMOGAT2 mice (HuMgat2) for use in pre-clinical studies testing the efficacy of hMOGAT2 inhibitors for treating MASLD/MASH. HuMgat2 mice developed MASH when fed a steatotic diet. Computer-aided histology revealed the presence of hepatocyte cell ballooning, immune cell infiltration, and fibrosis. Hepatocytes accumulated Mallory-Denk bodies containing phosphorylated p62/sequestosome-1-ubiquitinated protein aggregates likely caused by defects in autophagy. Metainflammation and apoptotic cell death were seen in the livers of HuMgat2 mice. Treating HuMgat2 mice with elafibranor reduced several MASH phenotypes. RNASeq analysis predicted changes in bile acid transporter expression that correlated with altered bile acid metabolism indicative of cholestasis. Our results suggest that HuMgat2 mice will serve as a pre-clinical model for testing hMOGAT2 inhibitor efficacy and toxicity and allow for the study of hMOGAT2 in the context of MASH.
Collapse
Affiliation(s)
- J Jose Corbalan
- The Institute of Metabolic Disorders, Genesis Research and Development Institute, Genesis Biotechnology Group, Hamilton, NJ, USA
| | - Pranavi Jagadeesan
- The Institute of Metabolic Disorders, Genesis Research and Development Institute, Genesis Biotechnology Group, Hamilton, NJ, USA
| | - Karla K Frietze
- The Institute of Metabolic Disorders, Genesis Research and Development Institute, Genesis Biotechnology Group, Hamilton, NJ, USA
| | - Rulaiha Taylor
- Department of Pharmacology and Toxicology, Earnest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Grace L Gao
- Department of Pharmacology and Toxicology, Earnest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA; Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, USA
| | - Grant Gallagher
- Oncoveda, Genesis Research and Development Institute, Genesis Biotechnology Group, Hamilton, NJ, USA
| | - Joseph T Nickels
- The Institute of Metabolic Disorders, Genesis Research and Development Institute, Genesis Biotechnology Group, Hamilton, NJ, USA; Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
98
|
Storms S, Oberhoff GH, Schooren L, Kroh A, Koch A, Rheinwalt KP, Vondran FWR, Neumann UP, Alizai PH, Schmitz SMT. Preoperative nonalcoholic steatohepatitis and resolution of metabolic comorbidities after bariatric surgery. Surg Obes Relat Dis 2024; 20:1288-1296. [PMID: 39304459 DOI: 10.1016/j.soard.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Most patients undergoing bariatric surgery demonstrate elements of the metabolic syndrome (MetS) and can therefore be diagnosed with metabolically unhealthy obesity (MUO). Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) as hepatic manifestations of the MetS occur in many patients with obesity, but their leverage on postoperative improvement to Metabolic Health (MH), defined as absence of any metabolic comorbidity, remains unclear. OBJECTIVES The aim of this study was to assess the influence of liver health status, operative procedure, and sex on postoperative switch from a MUO to an MH phenotype. Secondary objective was weight loss to MH. SETTING University Hospital, Germany. METHODS Patients who underwent either Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG) at our obesity surgery center were included in this retrospective study. Liver biopsy was taken and evaluated for presence of NAFLD/NASH. For diagnosis of MH, blood pressure and laboratory values referring to the MetS were assessed preoperatively and at 3, 6, 12, and 24 months' postoperatively. RESULTS One hundred thirty-three patients (73% female) with a mean body mass index of 52.0 kg/m2 and mean age of 43 years were included in this study. A total of 55.6% underwent RYGB and 44.4% underwent SG. NAFLD was found in 51.1% of patients and NASH in 33.8%. All patients were diagnosed MUO at baseline. Postoperatively, 38.3% patients (n = 51) switched to a MH condition. Mean time to MH was 321 days and mean excess body mass index loss to MH was 63.8%. There were no differences regarding liver health status, operative procedure, or sex. CONCLUSIONS Bariatric surgery can resolve MUO independent of liver health status, operative procedure, and sex. However, patients should be closely monitored to ensure sustainable long-term outcomes following the switch to the MH condition.
Collapse
Affiliation(s)
- Sebastian Storms
- Department of General, Visceral- and Transplantation Surgery, RWTH Aachen University Hospital, Aachen, Germany.
| | - Grace H Oberhoff
- Department of General, Visceral- and Transplantation Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Lena Schooren
- Department of General, Visceral- and Transplantation Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Andreas Kroh
- Department of General, Visceral- and Transplantation Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Alexander Koch
- Department of Gastroenterology, Digestive Diseases and Intensive Care Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Karl-Peter Rheinwalt
- Department for Bariatric, Metabolic and Plastic Surgery, St. Franziskus-Hospital, Cologne, Germany
| | - Florian W R Vondran
- Department of General, Visceral- and Transplantation Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Ulf P Neumann
- Department of General, Visceral- and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Patrick H Alizai
- Department of General and Visceral Surgery, Gemeinschaftskrankenhaus Bonn, Bonn, Germany
| | - Sophia M-T Schmitz
- Department of General, Visceral- and Transplantation Surgery, University Hospital Essen, Essen, Germany
| |
Collapse
|
99
|
Tello-Palencia MA, Yang T, Sularz O, Demers LE, Ma Y, Boycott C, Zhang HA, Lubecka-Gajewska K, Kumar S, Ramsey BS, Torregrosa-Allen S, Elzey BD, Lanman NA, Korthauer K, Stefanska B. Pterostilbene Targets Hallmarks of Aging in the Gene Expression Landscape in Blood of Healthy Rats. Mol Nutr Food Res 2024; 68:e2400662. [PMID: 39562169 DOI: 10.1002/mnfr.202400662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/05/2024] [Indexed: 11/21/2024]
Abstract
SCOPE Polyphenols from the phytoestrogen group, including pterostilbene (PTS), are known for their antioxidant, anti-inflammatory, and anti-cancer effects. In recent reports, phytoestrogens attenuate age-related diseases; however, their pro-longevity effects in healthy models in mammals remain unknown. As longevity research demonstrates age-related transcriptomic signatures in human blood, the current study hypothesizes that phytoestrogen-supplemented diet may induce changes in gene expression that ultimately confer pro-longevity benefits. METHODS AND RESULTS In the present study, RNA sequencing is conducted to determine transcriptome-wide changes in gene expression in whole blood of healthy rats consuming diets supplemented with phytoestrogens. Ortholog cell deconvolution is applied to analyze the omics data. The study discovered that PTS leads to changes in the gene expression landscape and PTS-target genes are associated with functions counteracting hallmarks of aging, including genomic instability, epigenetic alterations, compromised autophagy, mitochondrial dysfunction, deregulated nutrient sensing, altered intercellular interaction, and loss of proteostasis. These functions bridge together under anti-inflammatory effects through multiple pathways, including immunometabolism, where changes in cellular metabolism (e.g., ribosome biogenesis) impact the immune system. CONCLUSION The findings provide a rationale for pre-clinical and clinical longevity studies and encourage investigations on PTS in maintaining cellular homeostasis, decelerating the process of aging, and improving conditions with chronic inflammation.
Collapse
Affiliation(s)
- Marco A Tello-Palencia
- Department of Statistics, Faculty of Science, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tony Yang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Olga Sularz
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Krakow, 31-120, Poland
| | - Louis Erik Demers
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Parasitology, McGill University, Montreal, QC, H9X 3V9, Canada
| | - Yuexi Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cayla Boycott
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Huiying Amelie Zhang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | | - Sadhri Kumar
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Benjamin S Ramsey
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
| | - Sandra Torregrosa-Allen
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
| | - Bennett D Elzey
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Nadia Atallah Lanman
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Keegan Korthauer
- Department of Statistics, Faculty of Science, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Vancouver, BC, V6H 0B3, Canada
| | - Barbara Stefanska
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
100
|
Gautam J, Aggarwal H, Kumari D, Gupta SK, Kumar Y, Dikshit M. A methionine-choline-deficient diet induces nonalcoholic steatohepatitis and alters the lipidome, metabolome, and gut microbiome profile in the C57BL/6J mouse. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159545. [PMID: 39089643 DOI: 10.1016/j.bbalip.2024.159545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The methionine-choline-deficient (MCD) diet-induced non-alcoholic steatohepatitis (NASH) in mice is a well-established model. Our study aims to elucidate the factors influencing liver pathology in the MCD mouse model by examining physiological, biochemical, and molecular changes using histology, molecular techniques, and OMICS approaches (lipidomics, metabolomics, and metagenomics). Male C57BL/6J mice were fed a standard chow diet, a methionine-choline-sufficient (MCS) diet, or an MCD diet for 10 weeks. The MCD diet resulted in reduced body weight and fat mass, along with decreased plasma triglyceride, cholesterol, glucose, and insulin levels. However, it notably induced steatosis, inflammation, and alterations in gene expression associated with lipogenesis, inflammation, fibrosis, and the synthesis of apolipoproteins, sphingolipids, ceramides, and carboxylesterases. Lipid analysis revealed significant changes in plasma and tissues: most ceramide non-hydroxy-sphingosine lipids significantly decreased in the liver and plasma but increased in the adipose tissue of MCD diet-fed animals. Oxidized glycerophospholipids mostly increased in the liver but decreased in the adipose tissue of the MCD diet-fed group. The gut microbiome of the MCD diet-fed group showed an increase in Firmicutes and a decrease in Bacteroidetes and Actinobacteria. Metabolomic profiling demonstrated that the MCD diet significantly altered amino acid biosynthesis, metabolism, and nucleic acid metabolism pathways in plasma, liver, fecal, and cecal samples. LC-MS data indicated higher total plasma bile acid intensity and reduced fecal glycohyodeoxycholic acid intensity in the MCD diet group. This study demonstrates that although the MCD diet induces hepatic steatosis, the mechanisms underlying NASH in this model differ from those in human NASH pathology.
Collapse
Affiliation(s)
- Jyoti Gautam
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Hobby Aggarwal
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Deepika Kumari
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Sonu Kumar Gupta
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Yashwant Kumar
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| | - Madhu Dikshit
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| |
Collapse
|