51
|
Li Q, Cen W, Yang T, Tao S. Association between depressive symptoms and sarcopenia among middle-aged and elderly individuals in China: the mediation effect of activities of daily living (ADL) disability. BMC Psychiatry 2024; 24:432. [PMID: 38858698 PMCID: PMC11165901 DOI: 10.1186/s12888-024-05885-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Depressive symptoms and sarcopenia, often observed among middle-aged and elderly individuals, are significant health concerns in China, particularly given the country's rapidly aging population. Depressive symptoms, characterized by persistent feelings of sadness and loss of interest, can significantly impact quality of life. Little is known about the underlying pathway connecting these two conditions. METHODS The data for this study were derived from the China Health and Retirement Longitudinal Study (CHARLS). Depressive symptoms were evaluated using the Centre for Epidemiological Studies Depression (CSED) scale. Logistic regression analyses were employed to investigate the association between depressive symptoms, activities of daily living (ADL) disability, and sarcopenia, while adjusting for potential confounding factors. The selection of predictor variables, including social activity, chronic diseases, demographic factors, and lifestyle habits, was based on their known associations with mental health, physical functioning and sarcopenia. These variables were included to ensure a comprehensive adjustment for potential confounding factors and to provide a more accurate estimation of the relationship between depressive symptoms and sarcopenia. Additionally, mediation analysis was conducted to assess the mediating role of ADL disability in the relationship between depressive symptoms and sarcopenia. RESULTS A comprehensive study was conducted on a total of 8,238 participants aged 45 years and older, comprising 3,358 men and 4,880 women. Logistic regression analyses were conducted to identify significant associations between depressive symptoms (OR = 1.30, P = 0.0269,95%CI = 1.03-1.63), ADL disability (OR = 1.94, P < 0.001,95%CI = 1.37-2.75) and sarcopenia. The results revealed significant relationships among these variables. Furthermore, mediation effect analyses demonstrated that ADL disability partially mediated the association between depressive symptoms and sarcopenia (estimated indirect effect: 0.006, 95% CI: 0.003, 0.008, proportion of mediation effect: 20.00%). CONCLUSIONS The study underscores a significant association between depressive symptoms and sarcopenia among middle-aged and elderly individuals in China, with ADL disability acting as a mediator. These findings offer novel insights for targeted health interventions. Future interventions should effectively combat sarcopenia by integrating psychological support with muscle-strengthening exercise programs. By addressing both depressive symptoms and ADL disability, clinicians and public health professionals can enhance outcomes for this demographic. Collaborative efforts across disciplines are essential for providing comprehensive health management tailored to the needs of middle-aged and elderly individuals. Future research should longitudinally assess the impact of such integrated interventions on sarcopenia prevention and depressive symptom alleviation. Additionally, investigating the role of social and environmental factors in mediating this relationship is crucial for developing more effective health strategies for this vulnerable population.
Collapse
Affiliation(s)
- Qiugui Li
- School of Nursing, Jinan University, Guangzhou, Guangdong, China
| | - Wenjiao Cen
- School of Nursing, Jinan University, Guangzhou, Guangdong, China
| | - Tao Yang
- Department of Neurosurgery, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Shengru Tao
- Department of Healthcare-associated Infection Management, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
52
|
Ourry V, Binette AP, St-Onge F, Strikwerda-Brown C, Chagnot A, Poirier J, Breitner J, Arenaza-Urquijo EM, Rabin JS, Buckley R, Gonneaud J, Marchant NL, Villeneuve S. How Do Modifiable Risk Factors Affect Alzheimer's Disease Pathology or Mitigate Its Effect on Clinical Symptom Expression? Biol Psychiatry 2024; 95:1006-1019. [PMID: 37689129 DOI: 10.1016/j.biopsych.2023.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/11/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
Epidemiological studies show that modifiable risk factors account for approximately 40% of the population variability in risk of developing dementia, including sporadic Alzheimer's disease (AD). Recent findings suggest that these factors may also modify disease trajectories of people with autosomal-dominant AD. With positron emission tomography imaging, it is now possible to study the disease many years before its clinical onset. Such studies can provide key knowledge regarding pathways for either the prevention of pathology or the postponement of its clinical expression. The former "resistance pathway" suggests that modifiable risk factors could affect amyloid and tau burden decades before the appearance of cognitive impairment. Alternatively, the resilience pathway suggests that modifiable risk factors may mitigate the symptomatic expression of AD pathology on cognition. These pathways are not mutually exclusive and may appear at different disease stages. Here, in a narrative review, we present neuroimaging evidence that supports both pathways in sporadic AD and autosomal-dominant AD. We then propose mechanisms for their protective effect. Among possible mechanisms, we examine neural and vascular mechanisms for the resistance pathway. We also describe brain maintenance and functional compensation as bases for the resilience pathway. Improved mechanistic understanding of both pathways may suggest new interventions.
Collapse
Affiliation(s)
- Valentin Ourry
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| | - Alexa Pichet Binette
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada; Clinical Memory Research Unit, Department of Clinical Sciences, Lunds Universitet, Malmö, Sweden
| | - Frédéric St-Onge
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Cherie Strikwerda-Brown
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada; School of Psychological Science, The University of Western Australia, Perth, Western Australia, Australia
| | - Audrey Chagnot
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Judes Poirier
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - John Breitner
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Eider M Arenaza-Urquijo
- Environment and Health over the Lifecourse Programme, Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Jennifer S Rabin
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada; Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada; Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - Rachel Buckley
- Melbourne School of Psychological Sciences University of Melbourne, Parkville, Victoria, Australia; Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Julie Gonneaud
- Normandie University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Caen, France
| | - Natalie L Marchant
- Division of Psychiatry, University College London, London, United Kingdom
| | - Sylvia Villeneuve
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada; McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
53
|
Liang J, Ma T, Li Y, Sun R, Zhao S, Shen Y, Gao H, Jing Y, Bai X, He M, Wang Q, Xi H, Shi R, Yang Y. Association between sleep duration and serum neurofilament light chain levels among adults in the United States. Heliyon 2024; 10:e30699. [PMID: 38770343 PMCID: PMC11103434 DOI: 10.1016/j.heliyon.2024.e30699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Background Neurofilaments are neuron specific skeleton proteins maintaining axon transduction speed, leaked into cerebrospinal fluid and serum after axonal injury or neuron death. Sleep duration change has long related to many health issues but lack laboratory examination. Methods This study enrolled total 10,175 participants from 2013 to 2014 National Health and Nutrition Examination Survey and used a multi-variable linear model to analyze the relationship between sleep duration and serum neurofilament light chain (sNfL) level. Results There was a fixed relationship between sleep duration and sNfL level (β = 0.65, p = 0.0280). After adjusted for covariates, this relationship still (β = 0.82, p = 0.0052). Segmented regression showed that the turning point of sleep duration was 7 h 1 h decrease in sleep duration was significantly associated with -1.26 higher sNfL level (95 % CI: 2.25, -0.28; p = 0.0115) when sleep duration <7 h; however, 1 h increase in sleep duration was significantly associated with 3.20 higher sNfL level (95 % CI: 2.13, 4.27; p < 0.0001) when sleep duration >7 h. Furthermore, the stratified analysis indicated that the associations between sleep duration and sNfL level were stronger among those normal body mass index and trouble sleeping (p-interaction <0.0001 and 0.0003). Conclusion In summary, there was a J-shaped relationship between sleep duration and sNfL level in the United States of America representative group, these may suggest that extreme sleep duration can be deleterious judged by sNfL level. And still need large cohort study to determine the accurate relationship, and cluster analysis to infer the nervous disease connected with extreme sleep duration.
Collapse
Affiliation(s)
- Jiaxing Liang
- Medical School of Yan'an University, Yan'an, China
- Yan'an Key Laboratory of Neuroscience, Yan'an, China
| | - Tengchi Ma
- Medical School of Yan'an University, Yan'an, China
- The First Affiliated Hospital of Xi’an Jiao tong University Yulin Hospital, Yulin, China
| | - Youlei Li
- Medical School of Yan'an University, Yan'an, China
- Yan'an Key Laboratory of Neuroscience, Yan'an, China
| | - Ruixin Sun
- Medical School of Yan'an University, Yan'an, China
- Yan'an Key Laboratory of Neuroscience, Yan'an, China
- Medical School of Xi'an International University, Xi'an, China
| | - Shuaishuai Zhao
- Medical School of Yan'an University, Yan'an, China
- Yan'an Key Laboratory of Neuroscience, Yan'an, China
| | - Yuzhe Shen
- Medical School of Yan'an University, Yan'an, China
- Yan'an Key Laboratory of Neuroscience, Yan'an, China
| | - Hui Gao
- Medical School of Yan'an University, Yan'an, China
- Yan'an Key Laboratory of Neuroscience, Yan'an, China
| | - Yunhang Jing
- Medical School of Yan'an University, Yan'an, China
- Yan'an Key Laboratory of Neuroscience, Yan'an, China
- Imagining Department, Yan'an University Affiliated Hospital, Yan'an, China
| | - Xinyue Bai
- Medical School of Yan'an University, Yan'an, China
- Yan'an Key Laboratory of Neuroscience, Yan'an, China
| | - Mengze He
- Medical School of Yan'an University, Yan'an, China
- Yan'an Key Laboratory of Neuroscience, Yan'an, China
| | - Qingyan Wang
- Medical School of Yan'an University, Yan'an, China
- Yan'an Key Laboratory of Neuroscience, Yan'an, China
| | - Huilin Xi
- Medical School of Yan'an University, Yan'an, China
- Yan'an Key Laboratory of Neuroscience, Yan'an, China
| | - Rui Shi
- Department of Geriatrics Cardiology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yanling Yang
- Medical School of Yan'an University, Yan'an, China
- Yan'an Key Laboratory of Neuroscience, Yan'an, China
| |
Collapse
|
54
|
Yu Y, Yu S, Battaglia G, Tian X. Amyloid-β in Alzheimer's disease: Structure, toxicity, distribution, treatment, and prospects. IBRAIN 2024; 10:266-289. [PMID: 39346788 PMCID: PMC11427815 DOI: 10.1002/ibra.12155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 10/01/2024]
Abstract
Amyloid-β (Aβ) is a pivotal biomarker in Alzheimer's disease (AD), attracting considerable attention from numerous researchers. There is uncertainty regarding whether clearing Aβ is beneficial or harmful to cognitive function. This question has been a central topic of research, especially given the lack of success in developing Aβ-targeted drugs for AD. However, with the Food and Drug Administration's approval of Lecanemab as the first anti-Aβ medication in July 2023, there is a significant shift in perspective on the potential of Aβ as a therapeutic target for AD. In light of this advancement, this review aims to illustrate and consolidate the molecular structural attributes and pathological ramifications of Aβ. Furthermore, it elucidates the determinants influencing its expression levels while delineating the gamut of extant Aβ-targeted pharmacotherapies that have been subjected to clinical or preclinical evaluation. Subsequently, a comprehensive analysis is presented, dissecting the research landscape of Aβ across the domains above, culminating in the presentation of informed perspectives. Concluding reflections contemplate the supplementary advantages conferred by nanoparticle constructs, conceptualized within the framework of multivalent theory, within the milieu of AD diagnosis and therapeutic intervention, supplementing conventional modalities.
Collapse
Affiliation(s)
- Yifan Yu
- Institute for Bioengineering of Catalunya (IBEC)The Barcelona Institute of Science and Technology (BIST), Barcelona (Spain), Carrer Baldiri I ReixacBarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| | - Shilong Yu
- Institute for Bioengineering of Catalunya (IBEC)The Barcelona Institute of Science and Technology (BIST), Barcelona (Spain), Carrer Baldiri I ReixacBarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| | - Giuseppe Battaglia
- Institute for Bioengineering of Catalunya (IBEC)The Barcelona Institute of Science and Technology (BIST), Barcelona (Spain), Carrer Baldiri I ReixacBarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| | - Xiaohe Tian
- Institute for Bioengineering of Catalunya (IBEC)The Barcelona Institute of Science and Technology (BIST), Barcelona (Spain), Carrer Baldiri I ReixacBarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
55
|
Moon C, Schneider A, Cho YE, Zhang M, Dang H, Vu K. Sleep duration, sleep efficiency, and amyloid β among cognitively healthy later-life adults: a systematic review and meta-analysis. BMC Geriatr 2024; 24:408. [PMID: 38714912 PMCID: PMC11076214 DOI: 10.1186/s12877-024-05010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Abnormal amyloid β (Aβ) deposits in the brain are a hallmark of Alzheimer's disease (AD). Insufficient sleep duration and poor sleep quality are risk factors for developing AD. Sleep may play a role in Aβ regulation, but the magnitude of the relationship between sleep and Aβ deposition remains unclear. This systematic review examines the relationship between sleep (i.e., duration and efficiency) with Aβ deposition in later-life adults. METHODS A search of PubMed, CINAHL, Embase, and PsycINFO generated 5,005 published articles. Fifteen studies met the inclusion criteria for qualitative syntheses; thirteen studies for quantitative syntheses related to sleep duration and Aβ; and nine studies for quantitative syntheses related to sleep efficiency and Aβ. RESULTS Mean ages of the samples ranged from 63 to 76 years. Studies measured Aβ using cerebrospinal fluid, serum, and positron emission tomography scans with two tracers: Carbone 11-labeled Pittsburgh compound B or fluorine 18-labeled. Sleep duration was measured subjectively using interviews or questionnaires, or objectively using polysomnography or actigraphy. Study analyses accounted for demographic and lifestyle factors. Based on 13 eligible articles, our synthesis demonstrated that the average association between sleep duration and Aβ was not statistically significant (Fisher's Z = -0.055, 95% CI = -0.117 ~ 0.008). We found that longer self-report sleep duration is associated with lower Aβ (Fisher's Z = -0.062, 95% CI = -0.119 ~ -0.005), whereas the objectively measured sleep duration was not associated with Aβ (Fisher's Z = 0.002, 95% CI = -0.108 ~ 0.113). Based on 9 eligible articles for sleep efficiency, our synthesis also demonstrated that the average association between sleep efficiency and Aβ was not statistically significant (Fisher's Z = 0.048, 95% CI = -0.066 ~ 0.161). CONCLUSION The findings from this review suggest that shorter self-reported sleep duration is associated with higher Aβ levels. Given the heterogeneous nature of the sleep measures and outcomes, it is still difficult to determine the exact relationship between sleep and Aβ. Future studies with larger sample sizes should focus on comprehensive sleep characteristics and use longitudinal designs to better understand the relationship between sleep and AD.
Collapse
Affiliation(s)
- Chooza Moon
- University of Iowa College of Nursing, 50 Newton Rd, Iowa City, IA, 52242, USA.
| | - Aaron Schneider
- University of Iowa College of Liberal Arts and Sciences Department of Health and Human Physiology, 225 S. Grand Ave., Iowa City, IA, 52240, USA
| | - Young-Eun Cho
- University of Iowa College of Nursing, 50 Newton Rd, Iowa City, IA, 52242, USA
| | - Meina Zhang
- University of Iowa College of Nursing, 50 Newton Rd, Iowa City, IA, 52242, USA
| | - Hellen Dang
- University of Iowa College of Liberal Arts and Sciences Department of Health and Human Physiology, 225 S. Grand Ave., Iowa City, IA, 52240, USA
| | - Kelly Vu
- University of Iowa College of Pharmacy, 180 S. Grand Avenue, Iowa City, IA, 52242, USA
| |
Collapse
|
56
|
2024 Alzheimer's disease facts and figures. Alzheimers Dement 2024; 20:3708-3821. [PMID: 38689398 PMCID: PMC11095490 DOI: 10.1002/alz.13809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
This article describes the public health impact of Alzheimer's disease (AD), including prevalence and incidence, mortality and morbidity, use and costs of care and the ramifications of AD for family caregivers, the dementia workforce and society. The Special Report discusses the larger health care system for older adults with cognitive issues, focusing on the role of caregivers and non-physician health care professionals. An estimated 6.9 million Americans age 65 and older are living with Alzheimer's dementia today. This number could grow to 13.8 million by 2060, barring the development of medical breakthroughs to prevent or cure AD. Official AD death certificates recorded 119,399 deaths from AD in 2021. In 2020 and 2021, when COVID-19 entered the ranks of the top ten causes of death, Alzheimer's was the seventh-leading cause of death in the United States. Official counts for more recent years are still being compiled. Alzheimer's remains the fifth-leading cause of death among Americans age 65 and older. Between 2000 and 2021, deaths from stroke, heart disease and HIV decreased, whereas reported deaths from AD increased more than 140%. More than 11 million family members and other unpaid caregivers provided an estimated 18.4 billion hours of care to people with Alzheimer's or other dementias in 2023. These figures reflect a decline in the number of caregivers compared with a decade earlier, as well as an increase in the amount of care provided by each remaining caregiver. Unpaid dementia caregiving was valued at $346.6 billion in 2023. Its costs, however, extend to unpaid caregivers' increased risk for emotional distress and negative mental and physical health outcomes. Members of the paid health care and broader community-based workforce are involved in diagnosing, treating and caring for people with dementia. However, the United States faces growing shortages across different segments of the dementia care workforce due to a combination of factors, including the absolute increase in the number of people living with dementia. Therefore, targeted programs and care delivery models will be needed to attract, better train and effectively deploy health care and community-based workers to provide dementia care. Average per-person Medicare payments for services to beneficiaries age 65 and older with AD or other dementias are almost three times as great as payments for beneficiaries without these conditions, and Medicaid payments are more than 22 times as great. Total payments in 2024 for health care, long-term care and hospice services for people age 65 and older with dementia are estimated to be $360 billion. The Special Report investigates how caregivers of older adults with cognitive issues interact with the health care system and examines the role non-physician health care professionals play in facilitating clinical care and access to community-based services and supports. It includes surveys of caregivers and health care workers, focusing on their experiences, challenges, awareness and perceptions of dementia care navigation.
Collapse
|
57
|
Melikyan ZA, Kawas CH, Paganini‐Hill A, Jiang L, Bukhari S, Montine TJ, Mander BA, Corrada MM. Neuropathologic changes at age 90+ related to sleep duration 19 to 40 years earlier: The 90+ Study. Alzheimers Dement 2024; 20:3495-3503. [PMID: 38602280 PMCID: PMC11095440 DOI: 10.1002/alz.13798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/15/2024] [Accepted: 02/25/2024] [Indexed: 04/12/2024]
Abstract
INTRODUCTION We investigated the association between sleep duration and neuropathologic changes 19 to 40 years later in oldest-old (age 90+) participants of The 90+ Study. METHODS Participants self-reported sleep duration and underwent neuropathologic evaluation. We categorized sleep duration as < 7, 7 to 8 = reference, > 8 hours and dichotomized neuropathologic changes as present/absent. We estimated odds ratio (OR) and 95% confidence intervals (CI) using logistic regression. RESULTS In 264 participants, mean age at sleep self-report was 69 years, mean age at autopsy was 98 years, and mean interval between sleep self-report and autopsy was 29 years (range: 19-40). Those reporting > 8 hours of sleep had lower likelihood of limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) inclusions (OR = 0.18; CI = 0.04-0.82) and amyloid beta deposits (OR = 0.34; 95% CI = 0.12-0.94). DISCUSSION Long self-reported sleep is associated with lower odds of neurodegenerative neuropathologic changes 19 to 40 years later in the oldest-old, suggesting a potential role of sleep in accumulation of dementia-related neuropathologies. HIGHLIGHTS Association of self-reported sleep with non-Alzheimer's disease neuropathologic changes has not been explored. Whether sleep duration is related to dementia neuropathologic changes decades later is unclear. Long self-reported sleep is associated with lower odds of Alzheimer's disease neuropathologic change 19 to 40 years later in the oldest-old. Long self-reported sleep is associated with lower odds of limbic-predominant age-related TDP-43 encephalopathy neuropathologic change 19 to 40 years later in the oldest-old.
Collapse
Affiliation(s)
- Zarui A. Melikyan
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Claudia H. Kawas
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
- Department of NeurologyUniversity of CaliforniaOrangeCaliforniaUSA
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | | | - Luohua Jiang
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaIrvineCaliforniaUSA
| | - Syed Bukhari
- Department of PathologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Thomas J. Montine
- Department of PathologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Bryce A. Mander
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Psychiatry and Human BehaviorUniversity of CaliforniaOrangeCaliforniaUSA
- Center for the Neurobiology of Learning and MemoryUniversity of CaliforniaIrvineCaliforniaUSA
| | - María M. Corrada
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
- Department of NeurologyUniversity of CaliforniaOrangeCaliforniaUSA
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaIrvineCaliforniaUSA
| |
Collapse
|
58
|
Haldar P, Tripathi M, Prasad K, Kant S, Dwivedi SN, Vibha D, Pandit AK, Srivastava AK, Kumar A, Ikram MA, Henning T. Association of obstructive sleep apnea and sleep quality with cognitive function: a study of middle-aged and elderly persons in India. Sleep Breath 2024; 28:975-987. [PMID: 38055152 DOI: 10.1007/s11325-023-02953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/28/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023]
Abstract
INTRODUCTION Symptoms of obstructive sleep apnea (OSA) and poor sleep quality affect around one in ten people in India. We aimed to determine if OSA symptoms and poor sleep quality are independently associated with cognition in middle-aged and elderly urban Indian populations. METHODS We studied the cross-sectional association between OSA symptoms (by Berlin Questionnaire), poor sleep quality (by Pittsburgh Sleep Quality Index), and cognitive function in adults ≥ 50 years. Using a standard neuropsychological battery for cognitive function, a G-factor was derived as the first rotated principal component assessing domains of information processing, memory, and executive function. The associations of exposures with cognitive measures were modeled using linear regression, adjusted for metabolic risk factors, lifestyle factors, and psychosocial problems, followed by stratified analysis by decadal age group. RESULTS A total of 7505 adults were enrolled. Excluding those with MMSE < 26 (n 710), of 6795 individuals (49.2% women), mean (SD) age 64.2 (9.0) years, 38.3% had high risk of OSA symptoms, and 15.9% had poor sleep quality. OSA symptoms were negatively associated with cognitive domains of information processing (adjusted beta coefficient of z-score - 0.02, p-value 0.006), memory (- 0.03, 0.014), and G-factor (- 0.11, 0.014) in full-model. Stratified analysis by age group showed significant adverse effects of OSA symptoms on cognition for middle-aged people (50-60 years) (- 0.26, 0.001), but not in later age groups. Poor sleep quality was also associated with lower cognitive scores for G-factor (- 0.48, < 0.001), memory (- 0.08, 0.005), and executive domains (- 0.12, < 0.001), but not with information domain. CONCLUSION The findings suggest that both symptoms of OSA and poor sleep quality have a direct adverse impact on cognition in an Indian setting. A modest effect of age on the relationship of OSA and cognition was also observed.
Collapse
Affiliation(s)
- Partha Haldar
- Centre for Community Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Kameshwar Prasad
- Rajendra Institute of Medical Sciences, Ranchi, 834009, Jharkhand, India.
| | - Shashi Kant
- Centre for Community Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sada Nand Dwivedi
- Formerly at: Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Deepti Vibha
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Awadh Kishor Pandit
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Amit Kumar
- Rajendra Institute of Medical Sciences, Ranchi, 834009, Jharkhand, India
| | - MArfan Ikram
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tiemeier Henning
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
59
|
Chen LK. Multifaceted roles of sleep on healthy longevity. Arch Gerontol Geriatr 2024; 120:105355. [PMID: 38309104 DOI: 10.1016/j.archger.2024.105355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Affiliation(s)
- Liang-Kung Chen
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan; Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Taipei Municipal Gan-Dau Hospital (Managed by Taipei Veterans General Hospital), Taipei, Taiwan.
| |
Collapse
|
60
|
Tang S, Liu R, Ren J, Song L, Dong L, Qin Y, Zhao M, Wang Y, Dong Y, Zhao T, Liu C, Hou T, Cong L, Sindi S, Winblad B, Du Y, Qiu C. Association of objective sleep duration with cognition and brain aging biomarkers in older adults. Brain Commun 2024; 6:fcae144. [PMID: 38756537 PMCID: PMC11098043 DOI: 10.1093/braincomms/fcae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 02/21/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
The neuropathological mechanisms underlying the association between sleep duration and mild cognitive impairment remain poorly understood. This population-based study included 2032 dementia-free people (age ≥ 60 years; 55.1% women) derived from participants in the Multimodal Interventions to Delay Dementia and Disability in Rural China; of these, data were available in 841 participants for Alzheimer's plasma biomarkers (e.g. amyloid-β, total tau and neurofilament light chain), 1044 for serum microvascular biomarkers (e.g. soluble adhesion molecules) and 834 for brain MRI biomarkers (e.g. whiter matter, grey matter, hippocampus, lacunes, enlarged perivascular spaces and white matter hyperintensity WMH). We used electrocardiogram-based cardiopulmonary coupling analysis to measure sleep duration, a neuropsychological test battery to assess cognitive function and the Petersen's criteria to define mild cognitive impairment. Data were analysed with multivariable logistic and general linear models. In the total sample (n = 2032), 510 participants were defined with mild cognitive impairment, including 438 with amnestic mild cognitive impairment and 72 with non-amnestic mild cognitive impairment. Long sleep duration (>8 versus 6-8 h) was significantly associated with increased likelihoods of mild cognitive impairment and non-amnestic mild cognitive impairment and lower scores in global cognition, verbal fluency, attention and executive function (Bonferroni-corrected P < 0.05). In the subsamples, long sleep duration was associated with higher plasma amyloid-β40 and total tau, a lower amyloid-β42/amyloid-β40 ratio and smaller grey matter volume (Bonferroni-corrected P < 0.05). Sleep duration was not significantly associated with serum-soluble adhesion molecules, white matter hyperintensity volume, global enlarged perivascular spaces and lacunes (P > 0.05). Alzheimer's and neurodegenerative pathologies may represent common pathways linking long sleep duration with mild cognitive impairment and low cognition in older adults.
Collapse
Affiliation(s)
- Shi Tang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Rui Liu
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Juan Ren
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
| | - Lin Song
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Lingling Dong
- Department of Neurology, Dongying People’s Hospital, Dongying 257091, China
| | - Yu Qin
- Department of Neurology, Liaocheng People’s Hospital, Liaocheng 252000, China
| | - Mingqing Zhao
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
| | - Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
- Institute of Brain Science and Brain-Inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, 171 65 Solna, Sweden
| | - Yi Dong
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Tong Zhao
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
| | - Cuicui Liu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Tingting Hou
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Lin Cong
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Shireen Sindi
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, 171 65 Solna, Sweden
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
- Neuroepidemiology and Ageing Research Unit (AGE), School of Public Health, Imperial College London, London SW7 2AZ, United Kingdom
| | - Bengt Winblad
- Division of Neurogeriatrics and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, 141 83 Huddinge, Sweden
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
- Institute of Brain Science and Brain-Inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Chengxuan Qiu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Institute of Brain Science and Brain-Inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, 171 65 Solna, Sweden
| |
Collapse
|
61
|
Wang S, Rossheim ME, Nandy RR, Nguyen US. Interaction between sleep duration and trouble sleeping on depressive symptoms among U.S. adults, NHANES 2015-2018. J Affect Disord 2024; 351:285-292. [PMID: 38302062 DOI: 10.1016/j.jad.2024.01.260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND This study aims to examine the associations and interaction effects of sleep duration and trouble sleeping on depressive symptoms among U.S. adults. METHODS National Health and Nutrition Examination Survey (NHANES) data from 2015 to 2018 were analyzed (N = 10,044). Trouble sleeping and sleep duration were self-reported. Sleep duration was defined as short (≤6 h) or long (≥9 h), compared with normal (>6 and < 9 h). Depressive symptoms were determined by the Patient Health Questionnaire-9 score ≥ 10. Both multiplicative interaction and additive interaction were reported. RESULTS There was a significant positive additive interaction between short sleep duration and trouble sleeping on depressive symptoms in the fully adjusted model (Relative excess risk due to interaction, RERIOR = 4.42, 95 % CI: 1.12, 7.73), with 43 % of the association with depressive symptoms attributed to the interaction (attributable proportion of interaction, AP = 0.43, 95 % CI: 0.22, 0.64). Similarly, a significant positive additive interaction between long sleep duration and trouble sleeping on depressive symptoms was found (RERIOR = 4.17, 95 % CI: 0.96, 7.38), with 41 % of the association with depressive symptoms attributed to the interaction (AP = 0.41, 95 % CI: 0.21, 0.60). No multiplicative interaction was detected between short or long sleep duration and trouble sleeping. LIMITATIONS The cross-sectional design limits the ability to draw causal inferences. CONCLUSIONS Findings suggest that different aspects of sleep health interact synergistically, accounting for a substantial portion of the association with depressive symptoms. This underscores the importance of simultaneously considering multiple dimensions of sleep health in relation to depressive symptoms.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Population & Community Health, School of Public Health, University of North Texas Health Science Center, Fort Worth, TX, USA.
| | - Matthew E Rossheim
- Department of Health Administration & Health Policy, School of Public Health, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Rajesh R Nandy
- Department of Population & Community Health, School of Public Health, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Uyen-Sa Nguyen
- Department of Population & Community Health, School of Public Health, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
62
|
Wiranto Y, Siengsukon C, Mazzotti DR, Burns JM, Watts A. Sex Differences in the Role of Sleep on Cognition in Older Adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.08.24300996. [PMID: 38633788 PMCID: PMC11023683 DOI: 10.1101/2024.01.08.24300996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Study Objectives The study aimed to investigate sex differences in the relationship between sleep quality (self-report and objective) and cognitive function across three domains (executive function, verbal memory, and attention) in older adults. Methods We analyzed cross-sectional data from 207 participants with normal cognition or mild cognitive impairment (89 males and 118 females) aged over 60. The relationship between sleep quality and cognitive performance was estimated using generalized additive models. Objective sleep was measured with the GT9X Link Actigraph, and self-reported sleep was measured with the Pittsburgh Sleep Quality Index. Results We found that females exhibited stable performance of executive function with up to about 400 minutes of total sleep time, with significant declines in performance (p = 0.02) when total sleep time was longer. Additionally, a longer total sleep time contributed to lower verbal memory in a slightly non-linear manner (p = 0.03). Higher self-reported sleep complaints were associated with poorer executive function in females with normal cognition (p = 0.02). In males, a positive linear relationship emerged between sleep efficiency and executive function (p = 0.04), while self-reported sleep was not associated with cognitive performance in males with normal cognition. Conclusions Our findings suggest that the relationships between sleep quality and cognition differ between older males and females, with executive function being the most influenced by objective and self-reported sleep. Interventions targeting sleep quality to mitigate cognitive decline in older adults may need to be tailored according to sex, with distinct approaches for males and females.
Collapse
Affiliation(s)
- Yumiko Wiranto
- Department of Psychology, University of Kansas, Lawrence, Kansas, United States of America
| | - Catherine Siengsukon
- University of Kansas Medical Center, Department of Physical Therapy and Rehabilitation Science, Kansas City, KS USA
| | - Diego R. Mazzotti
- Division of Medical Informatics, Department of Internal Medicine, University of Kansas Medical Center
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center
| | - Jeffrey M. Burns
- University of Kansas, Alzheimer’s Disease Research Center, Fairway, Kansas, United States of America
| | - Amber Watts
- Department of Psychology, University of Kansas, Lawrence, Kansas, United States of America
- University of Kansas, Alzheimer’s Disease Research Center, Fairway, Kansas, United States of America
| |
Collapse
|
63
|
Pu L, Zhang R, Wang H, Zhao T, Zeng J, Yang H, Han L, Fang J, Sun N. Association between sleep pattern and incidence of hypertension: A prospective cohort study of older adult participants in the Chinese longitudinal healthy longevity survey. Arch Gerontol Geriatr 2024; 119:105314. [PMID: 38176123 DOI: 10.1016/j.archger.2023.105314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND The relationship between sleep duration or sleep quality and the risk of hypertension has been previously examined. However, little is known regarding the association between sleep duration and quality and the risk of developing hypertension in the older adult Chinese population. METHODS The sleep patterns of 5683 participants without hypertension at baseline from the Chinese Longitudinal Healthy Longevity Survey were analyzed. Cox proportional hazard models were used to study the associations between sleep patterns and hypertension. RESULTS It was found that 1712 (30.12%) of the 5683 participants had an unhealthy sleep pattern. After an average follow-up of 3.31 years, 1350 of the participants had hypertension. Compared with participants with an unhealthy sleep pattern, those with a healthy sleep pattern had a 20% (hazard ratio = 0.80, 95% confidence interval = 0.67-0.94, P = = 0.008) lower risk of incident hypertension in the fully adjusted models. In addition, an approximately linear dose-response association was observed between sleep duration and the incidence of hypertension (P for non-linear =0.43). Subgroup analyses demonstrated significant interactions between age and sleep pattern concerning hypertension (P for interaction <0.05). Several sensitivity analyses were conducted, and the obtained findings were similar to the main results. CONCLUSIONS A healthy sleep pattern, comprising an adequate sleep duration and good sleep quality, can help reduce hypertension risk. Thus, a healthy sleep pattern is crucial to decreasing hypertension in older Chinese adults in a rapidly aging society.
Collapse
Affiliation(s)
- Liyuan Pu
- Health Examination Center, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China; Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang, China
| | - Ruijie Zhang
- Health Examination Center, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China; Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang, China
| | - Han Wang
- Health Examination Center, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China; Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang, China
| | - Tian Zhao
- Health Examination Center, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China; Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang, China
| | - Jingjing Zeng
- Health Examination Center, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China; Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang, China
| | - Huiqun Yang
- Health Examination Center, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China; Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang, China
| | - Liyuan Han
- Health Examination Center, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China; Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang, China
| | - Jianfei Fang
- Health Examination Center, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China.
| | - Ning Sun
- School of Nursing, Ningbo College of Health Sciences, Ningbo, Zhejiang, China.
| |
Collapse
|
64
|
Pivac LN, Brown BM, Sewell KR, Doecke JD, Villemagne VL, Doré V, Weinborn M, Sohrabi HR, Gardener SL, Bucks RS, Laws SM, Taddei K, Maruff P, Masters CL, Rowe C, Martins RN, Rainey‐Smith SR. Suboptimal self-reported sleep efficiency and duration are associated with faster accumulation of brain amyloid beta in cognitively unimpaired older adults. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12579. [PMID: 38651160 PMCID: PMC11033837 DOI: 10.1002/dad2.12579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/28/2024] [Accepted: 03/10/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION This study investigated whether self-reported sleep quality is associated with brain amyloid beta (Aβ) accumulation. METHODS Linear mixed effect model analyses were conducted for 189 cognitively unimpaired (CU) older adults (mean ± standard deviation 74.0 ± 6.2; 53.2% female), with baseline self-reported sleep data, and positron emission tomography-determined brain Aβ measured over a minimum of three time points (range 33.3-72.7 months). Analyses included random slopes and intercepts, interaction for apolipoprotein E (APOE) ε4 allele status, and time, adjusting for sex and baseline age. RESULTS Sleep duration <6 hours, in APOE ε4 carriers, and sleep efficiency <65%, in the whole sample and APOE ε4 non-carriers, is associated with faster accumulation of brain Aβ. DISCUSSION These findings suggest a role for self-reported suboptimal sleep efficiency and duration in the accumulation of Alzheimer's disease (AD) neuropathology in CU individuals. Additionally, poor sleep efficiency represents a potential route via which individuals at lower genetic risk may progress to preclinical AD. Highlights In cognitively unimpaired older adults self-report sleep is associated with brain amyloid beta (Aβ) accumulation.Across sleep characteristics, this relationship differs by apolipoprotein E (APOE) genotype.Sleep duration <6 hours is associated with faster brain Aβ accumulation in APOE ε4 carriers.Sleep efficiency < 65% is associated with faster brain Aβ accumulation in APOE ε4 non-carriers.Personalized sleep interventions should be studied for potential to slow Aβ accumulation.
Collapse
Affiliation(s)
- Louise N. Pivac
- Centre for Healthy Ageing, Health Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
- Alzheimer's Research Australia, Sarich Neuroscience Research InstituteNedlandsWestern AustraliaAustralia
| | - Belinda M. Brown
- Centre for Healthy Ageing, Health Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Kelsey R. Sewell
- Centre for Healthy Ageing, Health Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - James D. Doecke
- Australian E‐Health Research Centre, CSIROHerstonQueenslandAustralia
| | | | - Vincent Doré
- Australian E‐Health Research Centre, CSIROHerstonQueenslandAustralia
- Department of Molecular ImagingAustin HealthHeidelbergVictoriaAustralia
| | - Michael Weinborn
- School of Psychological ScienceUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Hamid R. Sohrabi
- Centre for Healthy Ageing, Health Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Samantha L. Gardener
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
| | - Romola S. Bucks
- School of Psychological ScienceUniversity of Western AustraliaPerthWestern AustraliaAustralia
- School of Population and Global HealthUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Simon M. Laws
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Centre for Precision HealthEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Collaborative Genomics and Translation GroupEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Curtin Medical SchoolCurtin UniversityBentleyWestern AustraliaAustralia
| | - Kevin Taddei
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
| | - Paul Maruff
- Cogstate Ltd., MelbourneMelbourneVictoriaAustralia
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVictoriaAustralia
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVictoriaAustralia
| | - Christopher Rowe
- Department of Molecular ImagingAustin HealthHeidelbergVictoriaAustralia
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVictoriaAustralia
| | - Ralph N. Martins
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- Department of Biomedical SciencesMacquarie UniversityMacquarie UniversitySydneyNew South WalesAustralia
| | - Stephanie R. Rainey‐Smith
- Centre for Healthy Ageing, Health Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
- Alzheimer's Research Australia, Sarich Neuroscience Research InstituteNedlandsWestern AustraliaAustralia
- School of Psychological ScienceUniversity of Western AustraliaPerthWestern AustraliaAustralia
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
| |
Collapse
|
65
|
Briggs AQ, Tall SO, Boza-Calvo C, Bernard MA, Bubu OM, Masurkar AV. Drivers of Memory Loss Underreport in Mild Cognitive Impairment Due to Alzheimer Versus Vascular Disease. Alzheimer Dis Assoc Disord 2024; 38:128-132. [PMID: 38755756 PMCID: PMC11141209 DOI: 10.1097/wad.0000000000000627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND We examined drivers of self and study partner reports of memory loss in mild cognitive impairment (MCI) from Alzheimer (AD-MCI) and vascular disease (Va-MCI). METHODS We performed retrospective cross-sectional analyses of participants with AD-MCI (n=2874) and Va-MCI (n=376) from the National Alzheimer Coordinating Center data set. Statistical analysis utilized 2-sided t test or the Fisher exact test. RESULTS Compared with AD-MCI, Va-MCI subjects (24.5% vs. 19.7%, P =0.031) and study partners (31.4% vs. 21.6%, P <0.0001) were more likely to deny memory loss. Black/African Americans were disproportionately represented in the group denying memory loss in AD-MCI (20.0% vs. 13.2%, P <0.0001) and Va-MCI (33.7% vs. 18.0%, P =0.0022). Study partners of participants with these features also disproportionately denied memory loss: female (AD-MCI: 60.1% vs. 51.7%, P =0.0002; Va-MCI: 70.3% vs. 52.3%, P =0.0011), Black/African American (AD-MCI: 23.5% vs. 11.98%, P <0.0001; Va-MCI: 48.8% vs. 26.5%, P =0.0002), and <16 years of education (AD-MCI only: 33.9% vs. 16.3%, P =0.0262). In AD-MCI and Va-MCI, participants with anxiety were disproportionately represented in the group endorsing memory loss (AD: 28.2% vs. 17.4%, P <0.0001; Va: 31.5% vs. 16.1%, P =0.0071), with analogous results with depression. CONCLUSION The findings would suggest extra vigilance in interview-based MCI detection of persons at-risk for self-based or informant-based misreport.
Collapse
Affiliation(s)
- Anthony Q. Briggs
- Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, New York, NY
| | | | - Carolina Boza-Calvo
- Centro de Investigación en Hematología y Trastornos Afines (CIHATA), Universidad de Costa Rica, San José, Costa Rica
- Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica
| | - Mark A. Bernard
- Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, New York, NY
| | - Omonigho M. Bubu
- Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, New York, NY
- Departments of Psychiatry, NYU Grossman School of Medicine, New York, NY
- Departments of Population of Health, NYU Grossman School of Medicine, New York, NY
| | - Arjun V. Masurkar
- Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, New York, NY
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY
| |
Collapse
|
66
|
Mayer G, Frohnhofen H, Jokisch M, Hermann DM, Gronewold J. Associations of sleep disorders with all-cause MCI/dementia and different types of dementia - clinical evidence, potential pathomechanisms and treatment options: A narrative review. Front Neurosci 2024; 18:1372326. [PMID: 38586191 PMCID: PMC10995403 DOI: 10.3389/fnins.2024.1372326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Due to worldwide demographic change, the number of older persons in the population is increasing. Aging is accompanied by changes of sleep structure, deposition of beta-amyloid (Aß) and tau proteins and vascular changes and can turn into mild cognitive impairment (MCI) as well as dementia. Sleep disorders are discussed both as a risk factor for and as a consequence of MCI/dementia. Cross-sectional and longitudinal population-based as well as case-control studies revealed sleep disorders, especially sleep-disorderded breathing (SDB) and excessive or insufficient sleep durations, as risk factors for all-cause MCI/dementia. Regarding different dementia types, SDB was especially associated with vascular dementia while insomnia/insufficient sleep was related to an increased risk of Alzheimer's disease (AD). Scarce and still inconsistent evidence suggests that therapy of sleep disorders, especially continuous positive airway pressure (CPAP) in SDB, can improve cognition in patients with sleep disorders with and without comorbid dementia and delay onset of MCI/dementia in patients with sleep disorders without previous cognitive impairment. Regarding potential pathomechanisms via which sleep disorders lead to MCI/dementia, disturbed sleep, chronic sleep deficit and SDB can impair glymphatic clearance of beta-amyloid (Aß) and tau which lead to amyloid deposition and tau aggregation resulting in changes of brain structures responsible for cognition. Orexins are discussed to modulate sleep and Aß pathology. Their diurnal fluctuation is suppressed by sleep fragmentation and the expression suppressed at the point of hippocampal atrophy, contributing to the progression of dementia. Additionally, sleep disorders can lead to an increased vascular risk profile and vascular changes such as inflammation, endothelial dysfunction and atherosclerosis which can foster neurodegenerative pathology. There is ample evidence indicating that changes of sleep structure in aging persons can lead to dementia and also evidence that therapy of sleep disorder can improve cognition. Therefore, sleep disorders should be identified and treated early.
Collapse
Affiliation(s)
- Geert Mayer
- Department of Neurology, Philipps-Universität Marburg, Marburg, Germany
| | - Helmut Frohnhofen
- Department of Orthopedics and Trauma Surgery, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Department of Medicine, Geriatrics, Faculty of Health, University Witten-Herdecke, Witten, Germany
| | - Martha Jokisch
- Department of Neurology and Center for Translational Neuro-and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Dirk M. Hermann
- Department of Neurology and Center for Translational Neuro-and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Janine Gronewold
- Department of Neurology and Center for Translational Neuro-and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
67
|
You Y, Chen Y, Liu R, Zhang Y, Wang M, Yang Z, Liu J, Ma X. Inverted U-shaped relationship between sleep duration and phenotypic age in US adults: a population-based study. Sci Rep 2024; 14:6247. [PMID: 38486063 PMCID: PMC10940593 DOI: 10.1038/s41598-024-56316-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/05/2024] [Indexed: 03/18/2024] Open
Abstract
Sleep is a modifiable behavior that can be targeted in interventions aimed at promoting healthy aging. This study aims to (i) identify the sleep duration trend in US adults; (ii) investigate the relationship between sleep duration and phenotypic age; and (iii) explore the role of exercise in this relationship. Phenotypic age as a novel index was calculated according to biomarkers collected from US adults based on the National Health and Nutrition Examination Survey (NHANES). Sleep information was self-reported by participants and discerned through individual interviews. The principal analytical method employed was weighted multivariable linear regression modeling, which accommodated for the complex multi-stage sampling design. The potential non-linear relationship was explored using a restricted cubic spline (RCS) model. Furthermore, subgroup analyses evaluated the potential effects of sociodemographic and lifestyle factors on the primary study outcomes. A total of 13,569 participants were finally included in, thereby resulting in a weighted population of 78,880,615. An examination of the temporal trends in sleep duration revealed a declining proportion of individuals with insufficient and markedly deficient sleep time since the 2015-2016 cycle. Taken normal sleep group as a reference, participants with extreme short sleep [β (95% CI) 0.582 (0.018, 1.146), p = 0.044] and long sleep [β (95% CI) 0.694 (0.186, 1.203), p = 0.010] were both positively associated with phenotypic age using the fully adjusted model. According to the dose-response relationship between sleep duration and phenotypic age, long sleep duration can benefit from regular exercise activity, whereas short sleep duration with more exercise tended to have higher phenotypic age. There is an inverted U-shaped relationship between short and long sleep durations and phenotypic age. This study represents an important step forward in our understanding of the complex relationship between sleep and healthy aging. By shedding light on this topic and providing practical exercise recommendations for promoting healthy sleep habits, researchers can help individuals live longer, healthier, and more fulfilling lives.
Collapse
Affiliation(s)
- Yanwei You
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, 100084, China
- School of Social Sciences, Tsinghua University, Beijing, 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Yuquan Chen
- School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, VIC, 3004, Australia
| | - Ruidong Liu
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, 100084, China
- Sports Coaching College, Beijing Sport University, Beijing, 100091, China
| | - Yangchang Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, 100169, China
| | - Meiqing Wang
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, 100084, China
- School of Social Sciences, Tsinghua University, Beijing, 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Zihao Yang
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, 100084, China
- School of Social Sciences, Tsinghua University, Beijing, 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Jianxiu Liu
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, 100084, China.
- Vanke School of Public Health, Tsinghua University, Beijing, 100084, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China.
| | - Xindong Ma
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, 100084, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
68
|
Leng Y, Yaffe K. Harnessing Brain Pathology for Dementia Prevention. JAMA Neurol 2024; 81:229-231. [PMID: 38315478 DOI: 10.1001/jamaneurol.2023.5490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Affiliation(s)
- Yue Leng
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco
| | - Kristine Yaffe
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco
- Departments of Neurology and Epidemiology, University of California, San Francisco, San Francisco
- San Francisco VA Health Care System, San Francisco, California
| |
Collapse
|
69
|
Xiao X, Rui Y, Jin Y, Chen M. Relationship of Sleep Disorder with Neurodegenerative and Psychiatric Diseases: An Updated Review. Neurochem Res 2024; 49:568-582. [PMID: 38108952 DOI: 10.1007/s11064-023-04086-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Sleep disorders affect many people worldwide and can accompany neurodegenerative and psychiatric diseases. Sleep may be altered before the clinical manifestations of some of these diseases appear. Moreover, some sleep disorders affect the physiological organization and function of the brain by influencing gene expression, accelerating the accumulation of abnormal proteins, interfering with the clearance of abnormal proteins, or altering the levels of related hormones and neurotransmitters, which can cause or may be associated with the development of neurodegenerative and psychiatric diseases. However, the detailed mechanisms of these effects are unclear. This review mainly focuses on the relationship between and mechanisms of action of sleep in Alzheimer's disease, depression, and anxiety, as well as the relationships between sleep and Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. This summary of current research hotspots may provide researchers with better clues and ideas to develop treatment solutions for neurodegenerative and psychiatric diseases associated with sleep disorders.
Collapse
Affiliation(s)
- Xiao Xiao
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yimin Rui
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yu Jin
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Ming Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
70
|
Wu J, Wang C, Qi S, Qin Z, Xu H, Hong X. Joint associations of sleep duration and physical activity with cognitive impairment among rural elderly over 65 years old: a cross-sectional study. Psychogeriatrics 2024; 24:174-181. [PMID: 38097502 DOI: 10.1111/psyg.13056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/09/2023] [Accepted: 11/26/2023] [Indexed: 03/04/2024]
Abstract
BACKGROUND During the long preclinical phase of dementia, accelerated cognitive impairment is regarded as a cardinal marker. Thus, the identification of risk factors for cognitive impairment is of great significance for dementia prevention. This study aims to examine the joint associations of sleep duration and physical activity with cognitive impairment among rural elderly over 65 years old, and provide suggestions for improving the cognitive function in rural elderly over 65 years old. METHODS A cross-sectional study was conducted in rural Nanjing by recruiting 1147 individuals aged above 65 years. Cognitive function was assessed using the brief community screening instrument for dementia. Physical activity was assessed using the Global Physical Activity Questionnaire. Data were analyzed by multivariate logistic regression models, and a significant difference was set at P < 0.05. RESULTS Compared with participants with proper sleep duration and sufficient physical activity, participants with short sleep duration and insufficient physical activity (odds ratio (OR): 1.820; 95% CI: 1.265 ~ 2.618), long sleep duration and sufficient physical activity (OR: 2.428; 95% CI: 1.137 ~ 5.183) showed an increased likelihood of cognitive impairment. CONCLUSIONS Inappropriate sleep duration combined with insufficient physical activity was associated with a significantly higher likelihood of cognitive impairment in rural elderly over 65 years old.
Collapse
Affiliation(s)
- Jie Wu
- Department of Non-communicable Disease Prevention, Nanjing Municipal Centre for Disease Control and Prevention, Nanjing, China
| | - Chenchen Wang
- Department of Non-communicable Disease Prevention, Nanjing Municipal Centre for Disease Control and Prevention, Nanjing, China
| | - Shengxiang Qi
- Department of Non-communicable Disease Prevention, Nanjing Municipal Centre for Disease Control and Prevention, Nanjing, China
| | - Zhenzhen Qin
- Department of Non-communicable Disease Prevention, Nanjing Municipal Centre for Disease Control and Prevention, Nanjing, China
| | - Hao Xu
- Department of Non-communicable Disease Prevention, Nanjing Municipal Centre for Disease Control and Prevention, Nanjing, China
| | - Xin Hong
- Department of Non-communicable Disease Prevention, Nanjing Municipal Centre for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
71
|
Lam A, Kong S, Naismith SL. Recent advances in understanding of sleep disorders and disturbances for dementia risk and prevention. Curr Opin Psychiatry 2024; 37:94-100. [PMID: 38226546 DOI: 10.1097/yco.0000000000000921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
PURPOSE OF REVIEW To synthesise the recent work examining the relationship between sleep disturbances and dementia, emphasising studies involving individuals with mild cognitive impairment (MCI) or Alzheimer's disease (AD) and/or those investigating AD biomarkers. Additionally, we provide an update on recent interventions targeting sleep-related issues in older adults with MCI or AD. RECENT FINDINGS Various studies have examined obstructive sleep apnoea, sleep duration, and circadian alterations in relation to Alzheimer's pathology and dementia risk, with an emerging body of evidence suggesting that cardiovascular disease, hypertension, glymphatic function, and inflammation might serve as plausible pathophysiological mechanisms contributing to dementia during critical brain periods. Conversely, recent studies investigating insomnia have produced disparate results. Regarding intervention studies, the scarcity of prospective randomised control trials poses a challenge in establishing the benefits of addressing sleep disorders and disturbances. SUMMARY Recent work examining the pathophysiological links between sleep and dementia is strongest for obstructive sleep apnoea and sleep duration, while findings in insomnia studies exhibit inconsistency, possibly due to varied associations with dementia among different insomnia subtypes. It is apparent that more longitudinal studies examining the underlying pathophysiological mechanisms are necessary, alongside more rigorous clinical trials. Although some trials are underway in this field, there is still scarcity in trials examining interventions for circadian disturbances.
Collapse
Affiliation(s)
- Aaron Lam
- Healthy Brain Ageing Program, Brain and Mind Centre
- School of Psychology, Faculty of Science
- Charles Perkins Centre, The University of Sydney, Camperdown
- The Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | - Shawn Kong
- Healthy Brain Ageing Program, Brain and Mind Centre
- School of Psychology, Faculty of Science
- Charles Perkins Centre, The University of Sydney, Camperdown
| | - Sharon L Naismith
- Healthy Brain Ageing Program, Brain and Mind Centre
- School of Psychology, Faculty of Science
- Charles Perkins Centre, The University of Sydney, Camperdown
| |
Collapse
|
72
|
Liao Y, Li J, Yang J, Zhao W, Chen Z, Wu S, Jin L, Huang F, Liang L. Sleep Quality in Patients With Ocular Graft-Versus-Host Disease After Allogeneic Hematopoietic Stem Cell Transplantation. Eye Contact Lens 2024; 50:145-151. [PMID: 37791837 DOI: 10.1097/icl.0000000000001039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2023] [Indexed: 10/05/2023]
Abstract
OBJECTIVES To investigate the sleep quality in patients with ocular graft-versus-host disease (oGVHD) compared with patients without oGVHD after allogeneic hematopoietic stem cell transplantation (alloHCT) and healthy controls. METHODS This cross-sectional study analyzed 142 patients after alloHCT including 94 patients with oGVHD and 48 without. Fifty healthy controls were also enrolled. oGVHD was diagnosed according to International Chronic Ocular GVHD Consensus Group (ICOGCG) criteria. Sleep quality was assessed by the Chinese version of the Pittsburgh Sleep Quality Index (CPSQI). Poor sleep quality was defined as CPQSI score greater than 6. RESULTS Patients after alloHCT demonstrated a significantly higher CPQSI score than those of controls {7.0 [interquartile range (IQR) 5.0-10.0] vs. 5.5 [IQR 4.8-7.0], P =0.002}, especially in the oGVHD subgroup (7.5 [IQR 5.0-11.0] vs. 6.0 [IQR 5.0-8.0], P =0.04) with nearly double prevalence of poor sleep quality (58 [62%] vs. 18 [37%], P =0.006). Poor sleep quality was strikingly correlated with oGVHD diagnosis (adjusted odds ratio [OR]=2.55, 95% confidence interval [CI]: 1.02-6.34, P =0.04) and systemic immunosuppressants (adjusted OR=2.61, 95% CI: 1.32-5.71, P =0.02). Among the ocular parameters, poor sleep quality was significantly associated with higher ICOGCG score (adjusted OR=1.20, 95% CI: 1.03-1.39, P =0.02) and lower tear film break-up time (adjusted OR=0.85, 95% CI: 0.74-0.99, P =0.05). CONCLUSIONS Poor sleep quality was associated with an increased severity of oGVHD and tear film instability in the long-term alloHCT survivorship.
Collapse
Affiliation(s)
- Yinglin Liao
- State Key Laboratory of Ophthalmology (Y.L., J.L., J.Y., W.Z., Z.C., S.W., L.J., L.L.), Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Disease; and Department of Hematology (F.H.), Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Rezende TA, Giatti L, de Menezes ST, Griep RH, Ribeiro PCC, Barreto SM. Sleep duration, insomnia and cognitive performance in the Elsa-Brasil cohort: a cross-sectional analysis. REVISTA BRASILEIRA DE EPIDEMIOLOGIA 2024; 27:e240006. [PMID: 38324870 PMCID: PMC10846421 DOI: 10.1590/1980-549720240006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 02/09/2024] Open
Abstract
OBJECTIVE To investigate the single and combined associations between sleep disturbances (sleep duration, insomnia symptoms in the last 30 nights, and daytime tiredness) and performance in cognitive tests. METHODS Cross-sectional analysis of data from visit 2 (2012-2014) of the Longitudinal Study of Adult Health from a cohort of active and retired civil servants from six Brazilian capitals. Polynomial regression with quadratic term and multiple linear regression models were performed to assess single and combined associations between sleep disturbances and memory performance, fluency, executive functions, and global cognition. RESULTS A total of 7,248 participants were included, with a mean age of 62.7 years (standard deviation [SD]=5.9), and 55.2% were women. Inverted U-shaped associations were observed between sleep duration and performance on all cognitive abilities, suggesting that durations shorter or longer than seven hours are associated with worse performance, regardless of age. Reported insomnia was associated with worse executive function (β: -0.08; 95% confidence interval [CI]: -0.15 to -0.01), and the magnitudes of associations were higher for individuals with insomnia at two or more moments (β: -0.12; 95%CI -0.19 to -0.05) or, especially, insomnia combined with short sleep (β: -0.18; 95%CI -0.24 to -0.11). Insomnia in two or more periods was also associated with lower memory and global cognition. There was no association between any sleep disturbance tested and verbal fluency. Isolated daytime tiredness was not associated with performance in the evaluated tests. CONCLUSION The results suggest that extreme sleep durations are detrimental to almost all cognitive abilities investigated, whereas insomnia appears to affect more severely the executive function.
Collapse
Affiliation(s)
- Tamiris Amanda Rezende
- Universidade Federal de Minas Gerais, Posgraduate Program in Public Health, Medical School – Belo Horizonte (MG), Brazil
| | - Luana Giatti
- Universidade Federal de Minas Gerais, Medical School and Clinical Hospital/EBSERH – Belo Horizonte (MG), Brazil
| | - Sara Teles de Menezes
- Universidade Federal de Minas Gerais, Medical School and Clinical Hospital/EBSERH – Belo Horizonte (MG), Brazil
| | - Rosane Harter Griep
- Instituto Oswaldo Cruz, Laboratory of Health and Environment Education – Rio de Janeiro (RJ), Brazil
| | - Pricila Cristina Correa Ribeiro
- Universidade Federal de Minas Gerais, Department of Psychology, Faculty of Philosophy and Human Sciences – Belo Horizonte (MG), Brazil
| | - Sandhi Maria Barreto
- Universidade Federal de Minas Gerais, Medical School and Clinical Hospital/EBSERH – Belo Horizonte (MG), Brazil
| |
Collapse
|
74
|
Ferini-Strambi L, Liguori C, Lucey BP, Mander BA, Spira AP, Videnovic A, Baumann C, Franco O, Fernandes M, Gnarra O, Krack P, Manconi M, Noain D, Saxena S, Kallweit U, Randerath W, Trenkwalder C, Rosenzweig I, Iranzo A, Bradicich M, Bassetti C. Role of sleep in neurodegeneration: the consensus report of the 5th Think Tank World Sleep Forum. Neurol Sci 2024; 45:749-767. [PMID: 38087143 DOI: 10.1007/s10072-023-07232-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/26/2023] [Indexed: 01/18/2024]
Abstract
Sleep abnormalities may represent an independent risk factor for neurodegeneration. An international expert group convened in 2021 to discuss the state-of-the-science in this domain. The present article summarizes the presentations and discussions concerning the importance of a strategy for studying sleep- and circadian-related interventions for early detection and prevention of neurodegenerative diseases. An international expert group considered the current state of knowledge based on the most relevant publications in the previous 5 years; discussed the current challenges in the field of relationships among sleep, sleep disorders, and neurodegeneration; and identified future priorities. Sleep efficiency and slow wave activity during non-rapid eye movement (NREM) sleep are decreased in cognitively normal middle-aged and older adults with Alzheimer's disease (AD) pathology. Sleep deprivation increases amyloid-β (Aβ) concentrations in the interstitial fluid of experimental animal models and in cerebrospinal fluid in humans, while increased sleep decreases Aβ. Obstructive sleep apnea (OSA) is a risk factor for dementia. Studies indicate that positive airway pressure (PAP) treatment should be started in patients with mild cognitive impairment or AD and comorbid OSA. Identification of other measures of nocturnal hypoxia and sleep fragmentation could better clarify the role of OSA as a risk factor for neurodegeneration. Concerning REM sleep behavior disorder (RBD), it will be crucial to identify the subset of RBD patients who will convert to a specific neurodegenerative disorder. Circadian sleep-wake rhythm disorders (CSWRD) are strong predictors of caregiver stress and institutionalization, but the absence of recommendations or consensus statements must be considered. Future priorities include to develop and validate existing and novel comprehensive assessments of CSWRD in patients with/at risk for dementia. Strategies for studying sleep-circadian-related interventions for early detection/prevention of neurodegenerative diseases are required. CSWRD evaluation may help to identify additional biomarkers for phenotyping and personalizing treatment of neurodegeneration.
Collapse
Affiliation(s)
- Luigi Ferini-Strambi
- Sleep Disorders Center, Division of Neuroscience, Università Vita-Salute San Raffaele, Milan, Italy.
| | - Claudio Liguori
- Sleep Medicine Center, University of Rome Tor Vergata, Rome, Italy
| | - Brendan P Lucey
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Bryce A Mander
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Adam P Spira
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Aleksandar Videnovic
- Department of Neurology, Division of Sleep Medicine, Massachussets General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian Baumann
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Oscar Franco
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | | | - Oriella Gnarra
- Department of Neurology, University of Bern, Bern, Switzerland
| | - Paul Krack
- Department of Neurology, University of Bern, Bern, Switzerland
| | - Mauro Manconi
- Sleep Medicine Unit, Faculty of Biomedical Sciences, Neurocenter of the Southern Switzerland, Regional Hospital of Lugano, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Daniela Noain
- Department of Neurology, University of Bern, Bern, Switzerland
| | - Smita Saxena
- Department of Neurology, University of Bern, Bern, Switzerland
| | - Ulf Kallweit
- Clinical Sleep and Neuroimmunology, University Witten/Herdecke, Witten, Germany
| | | | - C Trenkwalder
- Department of Neurosurgery, Paracelsus-Elena Klinik, University Medical Center, KasselGoettingen, Germany
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, King's College London, London, UK
| | - Alex Iranzo
- Sleep Center, Neurology Service, Hospital Clinic de Barcelona, Barcelona, IDIBAPS, CIBERNED, Barcelona, Spain
| | - Matteo Bradicich
- Department of Pulmonology and Sleep Disorders Centre, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
75
|
Kron JOZJ, Keenan RJ, Hoyer D, Jacobson LH. Orexin Receptor Antagonism: Normalizing Sleep Architecture in Old Age and Disease. Annu Rev Pharmacol Toxicol 2024; 64:359-386. [PMID: 37708433 DOI: 10.1146/annurev-pharmtox-040323-031929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Sleep is essential for human well-being, yet the quality and quantity of sleep reduce as age advances. Older persons (>65 years old) are more at risk of disorders accompanied and/or exacerbated by poor sleep. Furthermore, evidence supports a bidirectional relationship between disrupted sleep and Alzheimer's disease (AD) or related dementias. Orexin/hypocretin neuropeptides stabilize wakefulness, and several orexin receptor antagonists (ORAs) are approved for the treatment of insomnia in adults. Dysregulation of the orexin system occurs in aging and AD, positioning ORAs as advantageous for these populations. Indeed, several clinical studies indicate that ORAs are efficacious hypnotics in older persons and dementia patients and, as in adults, are generally well tolerated. ORAs are likely to be more effective when administered early in sleep/wake dysregulation to reestablish good sleep/wake-related behaviors and reduce the accumulation of dementia-associated proteinopathic substrates. Improving sleep in aging and dementia represents a tremendous opportunity to benefit patients, caregivers, and health systems.
Collapse
Affiliation(s)
- Jarrah O-Z J Kron
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia;
| | - Ryan J Keenan
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia;
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Daniel Hoyer
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia;
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia;
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Laura H Jacobson
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia;
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia;
| |
Collapse
|
76
|
Cook JD, Malik A, Plante DT, Norton D, Langhough Koscik R, Du L, Bendlin BB, Kirmess KM, Holubasch MS, Meyer MR, Venkatesh V, West T, Verghese PB, Yarasheski KE, Thomas KV, Carlsson CM, Asthana S, Johnson SC, Gleason CE, Zuelsdorff M. Associations of sleep duration and daytime sleepiness with plasma amyloid beta and cognitive performance in cognitively unimpaired, middle-aged and older African Americans. Sleep 2024; 47:zsad302. [PMID: 38011629 PMCID: PMC10782500 DOI: 10.1093/sleep/zsad302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/01/2023] [Indexed: 11/29/2023] Open
Abstract
STUDY OBJECTIVES Given the established racial disparities in both sleep health and dementia risk for African American populations, we assess cross-sectional and longitudinal associations of self-report sleep duration (SRSD) and daytime sleepiness with plasma amyloid beta (Aβ) and cognition in an African American (AA) cohort. METHODS In a cognitively unimpaired sample drawn from the African Americans Fighting Alzheimer's in Midlife (AA-FAiM) study, data on SRSD, Epworth Sleepiness Scale, demographics, and cognitive performance were analyzed. Aβ40, Aβ42, and the Aβ42/40 ratio were quantified from plasma samples. Cross-sectional analyses explored associations between baseline predictors and outcome measures. Linear mixed-effect regression models estimated associations of SRSD and daytime sleepiness with plasma Aβ and cognitive performance levels and change over time. RESULTS One hundred and forty-seven participants comprised the cross-sectional sample. Baseline age was 63.2 ± 8.51 years. 69.6% self-identified as female. SRSD was 6.4 ± 1.1 hours and 22.4% reported excessive daytime sleepiness. The longitudinal dataset included 57 participants. In fully adjusted models, neither SRSD nor daytime sleepiness is associated with cross-sectional or longitudinal Aβ. Associations with level and trajectory of cognitive test performance varied by measure of sleep health. CONCLUSIONS SRSD was below National Sleep Foundation recommendations and daytime sleepiness was prevalent in this cohort. In the absence of observed associations with plasma Aβ, poorer self-reported sleep health broadly predicted poorer cognitive function but not accelerated decline. Future research is necessary to understand and address modifiable sleep mechanisms as they relate to cognitive aging in AA at disproportionate risk for dementia. CLINICAL TRIAL INFORMATION Not applicable.
Collapse
Affiliation(s)
- Jesse D Cook
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Madison VA GRECC, William S. Middleton Memorial Hospital, Madison, WI, USA
| | - Ammara Malik
- Madison VA GRECC, William S. Middleton Memorial Hospital, Madison, WI, USA
| | - David T Plante
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Derek Norton
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Rebecca Langhough Koscik
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Lianlian Du
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Barbara B Bendlin
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | | | | | | | | | - Tim West
- C2N Diagnostics, St. Louis, MO, USA
| | | | | | - Kevin V Thomas
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Cynthia M Carlsson
- Madison VA GRECC, William S. Middleton Memorial Hospital, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Sanjay Asthana
- Madison VA GRECC, William S. Middleton Memorial Hospital, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C Johnson
- Madison VA GRECC, William S. Middleton Memorial Hospital, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Carey E Gleason
- Madison VA GRECC, William S. Middleton Memorial Hospital, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Megan Zuelsdorff
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- School of Nursing, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
77
|
Baril AA, Kojis DJ, Himali JJ, Decarli CS, Sanchez E, Johnson KA, El Fakhri G, Thibault E, Yiallourou SR, Himali D, Cavuoto MG, Pase MP, Beiser AS, Seshadri S. Association of Sleep Duration and Change Over Time With Imaging Biomarkers of Cerebrovascular, Amyloid, Tau, and Neurodegenerative Pathology. Neurology 2024; 102:e207807. [PMID: 38165370 PMCID: PMC10834132 DOI: 10.1212/wnl.0000000000207807] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/13/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Both short and long sleep duration were previously associated with incident dementia, but underlying mechanisms remain unclear. We evaluated how self-reported sleep duration and its change over time associate with (A)myloid, (T)au, (N)eurodegeneration, and (V)ascular neuroimaging markers of Alzheimer disease. METHODS Two Framingham Heart Study overlapping samples were studied: participants who underwent 11C-Pittsburg Compound B amyloid and 18F-flortaucipir tau PET imaging and participants who underwent an MRI. MRI metrics estimated neurodegeneration (total brain volume) and cerebrovascular injuries (white matter hyperintensities [WMHs] volume, covert brain infarcts, free-water [FW] fraction). Self-reported sleep duration was assessed and split into categories both at the time of neuroimaging testing and approximately 13 years before: short ≤6 hours. average 7-8 hours, and long ≥9 hours. Logistic and linear regression models were used to examine sleep duration and neuroimaging metrics. RESULTS The tested cohort was composed of 271 participants (age 53.6 ± 8.0 years; 51% male) in the PET imaging sample and 2,165 participants (age 61.3 ± 11.1 years; 45% male) in the MRI sample. No fully adjusted association was observed between cross-sectional sleep duration and neuroimaging metrics. In fully adjusted models compared with consistently sleeping 7-8 hours, groups transitioning to a longer sleep duration category over time had higher FW fraction (short to average β [SE] 0.0062 [0.0024], p = 0.009; short to long β [SE] 0.0164 [0.0076], p = 0.031; average to long β [SE] 0.0083 [0.0022], p = 0.002), and those specifically going from average to long sleep duration also had higher WMH burden (β [SE] 0.29 [0.11], p = 0.007). The opposite associations (lower WMH and FW) were observed in participants consistently sleeping ≥9 hours as compared with people consistently sleeping 7-8 hours in fully adjusted models (β [SE] -0.43 [0.20], p = 0.028; β [SE] -0.019 [0.004], p = 0.020). Each hour of increasing sleep (continuous, β [SE] 0.12 [0.04], p = 0.003; β [SE] 0.002 [0.001], p = 0.021) and extensive increase in sleep duration (≥2 hours vs 0 ± 1 hour change; β [SE] 0.24 [0.10], p = 0.019; β [SE] 0.0081 [0.0025], p = 0.001) over time was associated with higher WMH burden and FW fraction in fully adjusted models. Sleep duration change was not associated with PET amyloid or tau outcomes. DISCUSSION Longer self-reported sleep duration over time was associated with neuroimaging biomarkers of cerebrovascular pathology as evidenced by higher WMH burden and FW fraction. A longer sleep duration extending over time may be an early change in the neurodegenerative trajectory.
Collapse
Affiliation(s)
- Andrée-Ann Baril
- From the Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; The Framingham Heart Study (A.-A.B., D.J.K., J.J.H., D.H., M.P.P., A.S.B., S.S.); Boston University School of Public Health (D.J.K., J.J.H.), MA; Boston University School of Medicine (J.J.H., S.S.), MA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (J.J.H., S.S.), UT Health San Antonio, TX; UC Davis Center for Neuroscience (C.S.D.), CA; Sunnybrook Research Institute (E.S.), University of Toronto, Ontario, Canada; Harvard Aging Brain Institute (K.A.J.), Harvard Medical School, Boston, MA; Gordon Center for Medical Imaging (G.E.F., E.T.), Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston; Turner Institute for Brain and Mental Health (S.R.Y., M.G.C., M.P.P.), Monash University, Clayton, Australia; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Daniel J Kojis
- From the Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; The Framingham Heart Study (A.-A.B., D.J.K., J.J.H., D.H., M.P.P., A.S.B., S.S.); Boston University School of Public Health (D.J.K., J.J.H.), MA; Boston University School of Medicine (J.J.H., S.S.), MA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (J.J.H., S.S.), UT Health San Antonio, TX; UC Davis Center for Neuroscience (C.S.D.), CA; Sunnybrook Research Institute (E.S.), University of Toronto, Ontario, Canada; Harvard Aging Brain Institute (K.A.J.), Harvard Medical School, Boston, MA; Gordon Center for Medical Imaging (G.E.F., E.T.), Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston; Turner Institute for Brain and Mental Health (S.R.Y., M.G.C., M.P.P.), Monash University, Clayton, Australia; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Jayandra J Himali
- From the Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; The Framingham Heart Study (A.-A.B., D.J.K., J.J.H., D.H., M.P.P., A.S.B., S.S.); Boston University School of Public Health (D.J.K., J.J.H.), MA; Boston University School of Medicine (J.J.H., S.S.), MA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (J.J.H., S.S.), UT Health San Antonio, TX; UC Davis Center for Neuroscience (C.S.D.), CA; Sunnybrook Research Institute (E.S.), University of Toronto, Ontario, Canada; Harvard Aging Brain Institute (K.A.J.), Harvard Medical School, Boston, MA; Gordon Center for Medical Imaging (G.E.F., E.T.), Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston; Turner Institute for Brain and Mental Health (S.R.Y., M.G.C., M.P.P.), Monash University, Clayton, Australia; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Charles S Decarli
- From the Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; The Framingham Heart Study (A.-A.B., D.J.K., J.J.H., D.H., M.P.P., A.S.B., S.S.); Boston University School of Public Health (D.J.K., J.J.H.), MA; Boston University School of Medicine (J.J.H., S.S.), MA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (J.J.H., S.S.), UT Health San Antonio, TX; UC Davis Center for Neuroscience (C.S.D.), CA; Sunnybrook Research Institute (E.S.), University of Toronto, Ontario, Canada; Harvard Aging Brain Institute (K.A.J.), Harvard Medical School, Boston, MA; Gordon Center for Medical Imaging (G.E.F., E.T.), Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston; Turner Institute for Brain and Mental Health (S.R.Y., M.G.C., M.P.P.), Monash University, Clayton, Australia; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Erlan Sanchez
- From the Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; The Framingham Heart Study (A.-A.B., D.J.K., J.J.H., D.H., M.P.P., A.S.B., S.S.); Boston University School of Public Health (D.J.K., J.J.H.), MA; Boston University School of Medicine (J.J.H., S.S.), MA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (J.J.H., S.S.), UT Health San Antonio, TX; UC Davis Center for Neuroscience (C.S.D.), CA; Sunnybrook Research Institute (E.S.), University of Toronto, Ontario, Canada; Harvard Aging Brain Institute (K.A.J.), Harvard Medical School, Boston, MA; Gordon Center for Medical Imaging (G.E.F., E.T.), Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston; Turner Institute for Brain and Mental Health (S.R.Y., M.G.C., M.P.P.), Monash University, Clayton, Australia; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Keith A Johnson
- From the Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; The Framingham Heart Study (A.-A.B., D.J.K., J.J.H., D.H., M.P.P., A.S.B., S.S.); Boston University School of Public Health (D.J.K., J.J.H.), MA; Boston University School of Medicine (J.J.H., S.S.), MA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (J.J.H., S.S.), UT Health San Antonio, TX; UC Davis Center for Neuroscience (C.S.D.), CA; Sunnybrook Research Institute (E.S.), University of Toronto, Ontario, Canada; Harvard Aging Brain Institute (K.A.J.), Harvard Medical School, Boston, MA; Gordon Center for Medical Imaging (G.E.F., E.T.), Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston; Turner Institute for Brain and Mental Health (S.R.Y., M.G.C., M.P.P.), Monash University, Clayton, Australia; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Georges El Fakhri
- From the Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; The Framingham Heart Study (A.-A.B., D.J.K., J.J.H., D.H., M.P.P., A.S.B., S.S.); Boston University School of Public Health (D.J.K., J.J.H.), MA; Boston University School of Medicine (J.J.H., S.S.), MA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (J.J.H., S.S.), UT Health San Antonio, TX; UC Davis Center for Neuroscience (C.S.D.), CA; Sunnybrook Research Institute (E.S.), University of Toronto, Ontario, Canada; Harvard Aging Brain Institute (K.A.J.), Harvard Medical School, Boston, MA; Gordon Center for Medical Imaging (G.E.F., E.T.), Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston; Turner Institute for Brain and Mental Health (S.R.Y., M.G.C., M.P.P.), Monash University, Clayton, Australia; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Emma Thibault
- From the Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; The Framingham Heart Study (A.-A.B., D.J.K., J.J.H., D.H., M.P.P., A.S.B., S.S.); Boston University School of Public Health (D.J.K., J.J.H.), MA; Boston University School of Medicine (J.J.H., S.S.), MA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (J.J.H., S.S.), UT Health San Antonio, TX; UC Davis Center for Neuroscience (C.S.D.), CA; Sunnybrook Research Institute (E.S.), University of Toronto, Ontario, Canada; Harvard Aging Brain Institute (K.A.J.), Harvard Medical School, Boston, MA; Gordon Center for Medical Imaging (G.E.F., E.T.), Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston; Turner Institute for Brain and Mental Health (S.R.Y., M.G.C., M.P.P.), Monash University, Clayton, Australia; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Stephanie R Yiallourou
- From the Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; The Framingham Heart Study (A.-A.B., D.J.K., J.J.H., D.H., M.P.P., A.S.B., S.S.); Boston University School of Public Health (D.J.K., J.J.H.), MA; Boston University School of Medicine (J.J.H., S.S.), MA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (J.J.H., S.S.), UT Health San Antonio, TX; UC Davis Center for Neuroscience (C.S.D.), CA; Sunnybrook Research Institute (E.S.), University of Toronto, Ontario, Canada; Harvard Aging Brain Institute (K.A.J.), Harvard Medical School, Boston, MA; Gordon Center for Medical Imaging (G.E.F., E.T.), Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston; Turner Institute for Brain and Mental Health (S.R.Y., M.G.C., M.P.P.), Monash University, Clayton, Australia; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Dibya Himali
- From the Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; The Framingham Heart Study (A.-A.B., D.J.K., J.J.H., D.H., M.P.P., A.S.B., S.S.); Boston University School of Public Health (D.J.K., J.J.H.), MA; Boston University School of Medicine (J.J.H., S.S.), MA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (J.J.H., S.S.), UT Health San Antonio, TX; UC Davis Center for Neuroscience (C.S.D.), CA; Sunnybrook Research Institute (E.S.), University of Toronto, Ontario, Canada; Harvard Aging Brain Institute (K.A.J.), Harvard Medical School, Boston, MA; Gordon Center for Medical Imaging (G.E.F., E.T.), Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston; Turner Institute for Brain and Mental Health (S.R.Y., M.G.C., M.P.P.), Monash University, Clayton, Australia; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Marina G Cavuoto
- From the Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; The Framingham Heart Study (A.-A.B., D.J.K., J.J.H., D.H., M.P.P., A.S.B., S.S.); Boston University School of Public Health (D.J.K., J.J.H.), MA; Boston University School of Medicine (J.J.H., S.S.), MA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (J.J.H., S.S.), UT Health San Antonio, TX; UC Davis Center for Neuroscience (C.S.D.), CA; Sunnybrook Research Institute (E.S.), University of Toronto, Ontario, Canada; Harvard Aging Brain Institute (K.A.J.), Harvard Medical School, Boston, MA; Gordon Center for Medical Imaging (G.E.F., E.T.), Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston; Turner Institute for Brain and Mental Health (S.R.Y., M.G.C., M.P.P.), Monash University, Clayton, Australia; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Matthew P Pase
- From the Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; The Framingham Heart Study (A.-A.B., D.J.K., J.J.H., D.H., M.P.P., A.S.B., S.S.); Boston University School of Public Health (D.J.K., J.J.H.), MA; Boston University School of Medicine (J.J.H., S.S.), MA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (J.J.H., S.S.), UT Health San Antonio, TX; UC Davis Center for Neuroscience (C.S.D.), CA; Sunnybrook Research Institute (E.S.), University of Toronto, Ontario, Canada; Harvard Aging Brain Institute (K.A.J.), Harvard Medical School, Boston, MA; Gordon Center for Medical Imaging (G.E.F., E.T.), Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston; Turner Institute for Brain and Mental Health (S.R.Y., M.G.C., M.P.P.), Monash University, Clayton, Australia; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Alexa S Beiser
- From the Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; The Framingham Heart Study (A.-A.B., D.J.K., J.J.H., D.H., M.P.P., A.S.B., S.S.); Boston University School of Public Health (D.J.K., J.J.H.), MA; Boston University School of Medicine (J.J.H., S.S.), MA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (J.J.H., S.S.), UT Health San Antonio, TX; UC Davis Center for Neuroscience (C.S.D.), CA; Sunnybrook Research Institute (E.S.), University of Toronto, Ontario, Canada; Harvard Aging Brain Institute (K.A.J.), Harvard Medical School, Boston, MA; Gordon Center for Medical Imaging (G.E.F., E.T.), Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston; Turner Institute for Brain and Mental Health (S.R.Y., M.G.C., M.P.P.), Monash University, Clayton, Australia; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| | - Sudha Seshadri
- From the Douglas Mental Health University Institute (A.-A.B.), McGill University, Montreal, Quebec, Canada; The Framingham Heart Study (A.-A.B., D.J.K., J.J.H., D.H., M.P.P., A.S.B., S.S.); Boston University School of Public Health (D.J.K., J.J.H.), MA; Boston University School of Medicine (J.J.H., S.S.), MA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (J.J.H., S.S.), UT Health San Antonio, TX; UC Davis Center for Neuroscience (C.S.D.), CA; Sunnybrook Research Institute (E.S.), University of Toronto, Ontario, Canada; Harvard Aging Brain Institute (K.A.J.), Harvard Medical School, Boston, MA; Gordon Center for Medical Imaging (G.E.F., E.T.), Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston; Turner Institute for Brain and Mental Health (S.R.Y., M.G.C., M.P.P.), Monash University, Clayton, Australia; and Harvard T.H. Chan School of Public Health (M.P.P.), Harvard University, Boston, MA
| |
Collapse
|
78
|
Fisher DW, Dunn JT, Dong H. Distinguishing features of depression in dementia from primary psychiatric disease. DISCOVER MENTAL HEALTH 2024; 4:3. [PMID: 38175420 PMCID: PMC10767128 DOI: 10.1007/s44192-023-00057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Depression is a common and devastating neuropsychiatric symptom in the elderly and in patients with dementia. In particular, nearly 80% of patients with Alzheimer's Disease dementia experience depression during disease development and progression. However, it is unknown whether the depression in patients with dementia shares the same molecular mechanisms as depression presenting as primary psychiatric disease or occurs and persists through alternative mechanisms. In this review, we discuss how the clinical presentation and treatment differ between depression in dementia and as a primary psychiatric disease, with a focus on major depressive disorder. Then, we hypothesize several molecular mechanisms that may be unique to depression in dementia such as neuropathological changes, inflammation, and vascular events. Finally, we discuss existing issues and future directions for investigation and treatment of depression in dementia.
Collapse
Affiliation(s)
- Daniel W Fisher
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave, Chicago, IL, 60611, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356560, Seattle, WA, 98195, USA
| | - Jeffrey T Dunn
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave, Chicago, IL, 60611, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave, Chicago, IL, 60611, USA.
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave, Chicago, IL, 60611, USA.
| |
Collapse
|
79
|
Carpi M, Fernandes M, Mercuri NB, Liguori C. Sleep Biomarkers for Predicting Cognitive Decline and Alzheimer's Disease: A Systematic Review of Longitudinal Studies. J Alzheimers Dis 2024; 97:121-143. [PMID: 38043016 DOI: 10.3233/jad-230933] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
BACKGROUND Sleep disturbances are considered a hallmark of dementia, and strong evidence supports the association between alterations in sleep parameters and cognitive decline in patients with mild cognitive impairment and Alzheimer's disease (AD). OBJECTIVE This systematic review aims to summarize the existing evidence on the longitudinal association between sleep parameters and cognitive decline, with the goal of identifying potential sleep biomarkers of AD-related neurodegeneration. METHODS Literature search was conducted in PubMed, Web of Science, and Scopus databases from inception to 28 March 2023. Longitudinal studies investigating the association between baseline objectively-measured sleep parameters and cognitive decline were assessed for eligibility. RESULTS Seventeen studies were included in the qualitative synthesis. Sleep fragmentation, reduced sleep efficiency, reduced REM sleep, increased light sleep, and sleep-disordered breathing were identified as predictors of cognitive decline. Sleep duration exhibited a U-shaped relation with subsequent neurodegeneration. Additionally, several sleep microstructural parameters were associated with cognitive decline, although inconsistencies were observed across studies. CONCLUSIONS These findings suggest that sleep alterations hold promise as early biomarker of cognitive decline, but the current evidence is limited due to substantial methodological heterogeneity among studies. Further research is necessary to identify the most reliable sleep parameters for predicting cognitive impairment and AD, and to investigate interventions targeting sleep that can assist clinicians in the early recognition and treatment of cognitive decline. Standardized procedures for longitudinal studies evaluating sleep and cognition should be developed and the use of continuous sleep monitoring techniques, such as actigraphy or EEG headband, might be encouraged.
Collapse
Affiliation(s)
- Matteo Carpi
- Sleep Medicine Centre, Neurology Unit, University Hospital Tor Vergata, Rome, Italy
| | - Mariana Fernandes
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Biagio Mercuri
- Sleep Medicine Centre, Neurology Unit, University Hospital Tor Vergata, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Claudio Liguori
- Sleep Medicine Centre, Neurology Unit, University Hospital Tor Vergata, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
80
|
Gills JL, Bubu OM. Obstructive Sleep Apnea and Alzheimer's Disease Pathology: Is Sleep Architecture the Missing Key? J Alzheimers Dis 2024; 98:69-73. [PMID: 38363613 PMCID: PMC11851638 DOI: 10.3233/jad-231385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Impairments of the sleep architecture due to disrupted sleep in individuals with obstructive sleep apnea (OSA) may result in reduced slow wave sleep (SWS), intermittent hypoxemia, and excessive day time sleepiness- all factors that have been shown to impact Alzheimer's disease (AD) risk. In this commentary, we comment on the work by Cavuoto and colleagues in which they examine the associations between nocturnal hypoxemia or sleep disruptions (during SWS) and amyloid-β burden in individuals with OSA. We review the findings in the context of other similar studies and highlight the strengths and weaknesses of these published studies. We note the importance of examining these relationships longitudinally with a large sample size, including considering sleep health disparities, vascular components, and multiple cognitive domain tests.
Collapse
Affiliation(s)
- Joshua L. Gills
- Department of Psychiatry, Healthy Brain Aging Sleep Center,
NYU Grossman School of Medicine, New York, NY, USA
- Department of Population Health, Institute of Excellence in
Health Equity, Center for Healthful Behavior Change, NYU Grossman School of
Medicine, New York, NY, USA
| | - Omonigho M. Bubu
- Department of Psychiatry, Healthy Brain Aging Sleep Center,
NYU Grossman School of Medicine, New York, NY, USA
- Department of Population Health, Institute of Excellence in
Health Equity, Center for Healthful Behavior Change, NYU Grossman School of
Medicine, New York, NY, USA
- Department of Neurology, NYU Alzheimer’s Disease
Research Center, Center for Cognitive Neurology, NYU Grossman School of Medicine,
New York, NY, USA
- Department of Neuroscience and Physiology, NYU Neuroscience
Institute, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
81
|
Bransby L, Rosenich E, Maruff P, Lim YY. How Modifiable Are Modifiable Dementia Risk Factors? A Framework for Considering the Modifiability of Dementia Risk Factors. J Prev Alzheimers Dis 2024; 11:22-37. [PMID: 38230714 PMCID: PMC10995020 DOI: 10.14283/jpad.2023.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/06/2023] [Indexed: 01/18/2024]
Abstract
Many risk factors for dementia, identified from observational studies, are potentially modifiable. This raises the possibility that targeting key modifiable dementia risk factors may reduce the prevalence of dementia, which has led to the development of dementia risk reduction and prevention strategies, such as intervention trials or dementia prevention guidelines. However, what has rarely been considered in the studies that inform these strategies is the extent to which modifiable dementia risk factors can (1) be identified by individuals, and (2) be readily modified by individuals. Characteristics of modifiable dementia risk factors such as readiness of identification and targeting, as well as when they should be targeted, can influence the design, or success of strategies for reducing dementia risk. This review aims to develop a framework for classifying the degree of modifiability of dementia risk factors for research studies. The extent to which these modifiable dementia risk factors could be modified by an individual seeking to reduce their dementia risk is determined, as well as the resources that might be needed for both risk factor identification and modification, and whether modification may be optimal in early-life (aged <45 years), midlife (aged 45-65 years) or late-life (aged >65 years). Finally, barriers that could influence the ability of an individual to engage in risk factor modification and, ultimately, dementia risk reduction are discussed.
Collapse
Affiliation(s)
- L Bransby
- Lisa Bransby, Turner Institute for Brain and Mental Health, 18 Innovation Walk, Clayton, VIC 3800, Australia;
| | | | | | | |
Collapse
|
82
|
Wei J, Wang M, Guo Y, Liu Y, Dong X. Sleep structure assessed by objective measurement in patients with mild cognitive impairment: A meta-analysis. Sleep Med 2024; 113:397-405. [PMID: 38134714 DOI: 10.1016/j.sleep.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVES A meta-analysis was used to explore the characteristic changes in objective sleep structure of patients with mild cognitive impairment (MCI) compared with cognitively healthy older adults. MATERIALS AND METHODS PubMed, EMBAS, Cochrane Library, Scopus, and Web of Science were searched until November 2023. A literature quality evaluation was performed according to the Newcastle-Ottawa Scale, and a meta-analysis was performed by RevMan 5.3 software. RESULTS Fifteen studies with 771 participants were finally included. Compared with normal control groups, patients with MCI had a decreased total sleep time by 34.44 min, reduction in sleep efficiency by 7.96 %, increased waking after sleep onset by 19.61 min, and increased sleep latency by 6.97 min. Ten included studies showed that the patients with MCI had increased N1 sleep by 2.72 % and decreased N3 sleep by 0.78 %; however, there was no significant difference between the MCI and control groups in percentage of N2 sleep. Moreover, Twelve included studies reported the MCI groups had shorter REM sleep of 2.69 %. CONCLUSION Our results provide evidence of abnormal sleep architecture in patients with MCI. As a "plastic state," abnormal sleep architecture may be a promising therapeutic target for slowing cognitive decline and dementia prevention.
Collapse
Affiliation(s)
- Jianing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Min Wang
- Department of Nursing, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuanli Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yanjin Liu
- Department of Nursing, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaofang Dong
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| |
Collapse
|
83
|
Wang X, Yang X, He W, Song X, Zhang G, Niu P, Chen T. The association of serum neurofilament light chains with early symptoms related to Parkinson's disease: A cross-sectional study. J Affect Disord 2023; 343:144-152. [PMID: 37805158 DOI: 10.1016/j.jad.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/02/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Neurofilament light chains (NfL), released with neural axon injury, is considered as a potential biomarker for Parkinson's disease (PD). The relationship between NfL and PD has been studied mainly in diagnosed patients. Few large-scale studies analyze the association between NfL levels and multiple non-motor symptoms linked to early PD in the general population. Therefore, this study aims to determine the association of NfL with early symptoms of PD, and effectively respond to the development of early symptoms of PD. We examined the relationship between serum NfL and early non-motor symptoms of PD (smell dysfunction, sleep problems, cognitive function) and serum Klotho levels in the general population using data from the 2013-2014 National Health and Nutrition Examination Survey (NHANES). The relationship between serum NfL and early symptoms of PD in 1125 participants was analyzed by multiple linear regression and logistic regression models. The results showed a significant association between serum NfL and early symptoms of PD. There was a significant positive correlation between NfL and smell dysfunction, short sleep and long sleep. There was a significant negative correlation between NfL and Klotho levels and cognitive function test results. Further, we observed gender and age differences in the association of NfL with early symptoms of PD. Our study demonstrate that elevated serum NfL levels are positively associated with an increased risk of early PD-related symptoms, suggesting that serum NfL can be a promising biomarker for early PD.
Collapse
Affiliation(s)
- Xueting Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xin Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Weifeng He
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xin Song
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Gaoman Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Piye Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Tian Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
84
|
Deng MG, Liu F, Wang K, Liang Y, Nie JQ, Liu J. Relationship between dietary carotenoid intake and sleep duration in American adults: a population-based study. Nutr J 2023; 22:68. [PMID: 38062512 PMCID: PMC10704834 DOI: 10.1186/s12937-023-00898-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
OBJECTIVE To investigate the relationship between dietary carotenoid intake and sleep duration. METHODS Adults enrolled in the National Health and Nutrition Examination Survey (NHANES) 2007-2018 without missing information on dietary carotenoid intake (α-carotene, β-carotene, β-cryptoxanthin, lycopene, and lutein + zeaxanthin), sleep duration, and covariates were included. Participants' carotenoid consumption was divided into three groups by quartiles and sleep duration was grouped as short (< 7 h/night), optimal (7-8 h/night), and long (> 8 h/night). Multinominal logistic regression was constructed to examine the association between dietary carotenoid intake and sleep duration. Restricted cubic spline (RCS) regression was further utilized to explore their dose-response relationship. The weighted quantile sum (WQS) model was adopted to calculate the mixed and individual effect of 5 carotenoid sub-types on sleep duration. RESULTS Multinominal logistic regression presented that people with higher intakes of α-carotene, β-carotene, β-cryptoxanthin, lycopene, and lutein + zeaxanthin were less likely to sleep too short or too long. Consistent with the findings from multinominal logistic regression, the RCS models suggested a reverse U-shaped relationship between sleep duration and carotenoid intakes. The mixed effects were also significant, where β-cryptoxanthin and lutein + zeaxanthin were the top 2 contributors associated with the decreased risks of short sleep duration, while β-carotene, α-carotene, and β-cryptoxanthin were the main factors related to the lower risk of long sleep duration. CONCLUSION Our study revealed that the American adults with optimal sleep duration were associated with more dietary carotenoid intake, in comparison to short or long sleepers.
Collapse
Affiliation(s)
- Ming-Gang Deng
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, Hubei, 430012, China.
- Department of Psychiatry, Wuhan Hospital for Psychotherapy, Wuhan, 430012, Hubei, China.
| | - Fang Liu
- School of Public Health, Wuhan University, Wuhan, 430071, Hubei, China
| | - Kai Wang
- Department of Public Health, Wuhan Fourth Hospital, Wuhan, 430000, Hubei, China
| | - Yuehui Liang
- School of Public Health, Wuhan University, Wuhan, 430071, Hubei, China
| | - Jia-Qi Nie
- Xiaogan Center for Disease Control and Prevention, Xiaogan, 432000, Hubei, China
| | - Jiewei Liu
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, Hubei, 430012, China.
- Department of Psychiatry, Wuhan Hospital for Psychotherapy, Wuhan, 430012, Hubei, China.
| |
Collapse
|
85
|
Mohamed M, Mohamed N, Kim JG. Advancements in Wearable EEG Technology for Improved Home-Based Sleep Monitoring and Assessment: A Review. BIOSENSORS 2023; 13:1019. [PMID: 38131779 PMCID: PMC10741861 DOI: 10.3390/bios13121019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Sleep is a fundamental aspect of daily life, profoundly impacting mental and emotional well-being. Optimal sleep quality is vital for overall health and quality of life, yet many individuals struggle with sleep-related difficulties. In the past, polysomnography (PSG) has served as the gold standard for assessing sleep, but its bulky nature, cost, and the need for expertise has made it cumbersome for widespread use. By recognizing the need for a more accessible and user-friendly approach, wearable home monitoring systems have emerged. EEG technology plays a pivotal role in sleep monitoring, as it captures crucial brain activity data during sleep and serves as a primary indicator of sleep stages and disorders. This review provides an overview of the most recent advancements in wearable sleep monitoring leveraging EEG technology. We summarize the latest EEG devices and systems available in the scientific literature, highlighting their design, form factors, materials, and methods of sleep assessment. By exploring these developments, we aim to offer insights into cutting-edge technologies, shedding light on wearable EEG sensors for advanced at-home sleep monitoring and assessment. This comprehensive review contributes to a broader perspective on enhancing sleep quality and overall health using wearable EEG sensors.
Collapse
Affiliation(s)
| | | | - Jae Gwan Kim
- Biomedical Science and Engineering Department, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; (M.M.); (N.M.)
| |
Collapse
|
86
|
Wiese LK, Pratt BA, Heinze K, Besser L, Ifill A(A, Williams CL. Community-Based Strategies to Reduce Alzheimer's Disease and Related Dementia Incidence Among Rural, Racially/Ethnically Diverse Older Adults. CURRENT GERIATRICS REPORTS 2023; 12:205-219. [PMID: 38223294 PMCID: PMC10783445 DOI: 10.1007/s13670-023-00400-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 01/16/2024]
Abstract
Purpose of Review The purpose of this paper was to address the research question "What recent advances in Alzheimer's Disease and Related Dementias (ADRD) risk reduction strategies can be tailored for rural, racially/ethnically diverse populations?" A rural resident's life story that grounded the work is shared. Next, a brief description is provided regarding ADRD risk factors of importance in rural, multicultural settings. Gaps in U.S.-based research are highlighted. Policy actions and interventions that may make a difference in alleviating rural, ADRD-related disparities are offered. Recent Findings More than a dozen factors, including lack of built environment, periodontitis, poor air quality, and sensory loss, were identified that are of particular relevance to rural groups. Evidence of importance to underserved residents has also emerged regarding the harmful effects of ultra-processed foods on brain health, benefits of even minimal physical activity, and importance of social engagement, on brain health. Summary Resident-led initiatives will be key to creating change at the community level. Health providers are also called to assist in identifying and adapting culturally specific upstream approaches, in partnership with community stakeholders. These mechanisms are vital for decreasing ADRD burdens in underserved communities facing the largest disparities in preventive care.
Collapse
Affiliation(s)
- Lisa Kirk Wiese
- C. E. Lynn College of Nursing, Florida Atlantic University, 777 Glades Road, Mail Code #84, Boca Raton FL 33431, USA
| | - Beth A. Pratt
- C. E. Lynn College of Nursing, Florida Atlantic University, 777 Glades Road, Mail Code #84, Boca Raton FL 33431, USA
| | - Katherine Heinze
- C. E. Lynn College of Nursing, Florida Atlantic University, 777 Glades Road, Mail Code #84, Boca Raton FL 33431, USA
| | - Lilah Besser
- Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, FL, USA
| | - Antoinita (Annie) Ifill
- Palm Health Foundation/Community Partners of South Florida, 491 E. Main Street Suite 5A, Pahokee FL 33476, USA
| | - Christine L. Williams
- C. E. Lynn College of Nursing, Florida Atlantic University, 777 Glades Road, Mail Code #84, Boca Raton FL 33431, USA
| |
Collapse
|
87
|
Ho PTN, van Arendonk J, Steketee RM, van Rooij FJ, Roshchupkin GV, Arfan Ikram M, Vernooij MW, Neitzel J. Predicting amyloid-beta pathology in the general population. Alzheimers Dement 2023; 19:5506-5517. [PMID: 37303116 PMCID: PMC7616996 DOI: 10.1002/alz.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/06/2023] [Accepted: 04/28/2023] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Reliable models to predict amyloid beta (Aβ) positivity in the general aging population are lacking but could become cost-efficient tools to identify individuals at risk of developing Alzheimer's disease. METHODS We developed Aβ prediction models in the clinical Anti-Amyloid Treatment in Asymptomatic Alzheimer's (A4) Study (n = 4,119) including a broad range of easily ascertainable predictors (demographics, cognition and daily functioning, health and lifestyle factors). Importantly, we determined the generalizability of our models in the population-based Rotterdam Study (n = 500). RESULTS The best performing model in the A4 Study (area under the curve [AUC] = 0.73 [0.69-0.76]), including age, apolipoprotein E (APOE) ε4 genotype, family history of dementia, and subjective and objective measures of cognition, walking duration and sleep behavior, was validated in the independent Rotterdam Study with higher accuracy (AUC = 0.85 [0.81-0.89]). Yet, the improvement relative to a model including only age and APOE ε4 was marginal. DISCUSSION Aβ prediction models including inexpensive and non-invasive measures were successfully applied to a general population-derived sample more representative of typical older non-demented adults.
Collapse
Affiliation(s)
- Phuong Thuy Nguyen Ho
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, the Netherlands
| | - Joyce van Arendonk
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, the Netherlands
| | - Rebecca M.E. Steketee
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, the Netherlands
| | - Frank J.A. van Rooij
- Department of Epidemiology, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, the Netherlands
| | - Gennady V. Roshchupkin
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, the Netherlands
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, the Netherlands
| | - Meike W. Vernooij
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, the Netherlands
| | - Julia Neitzel
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, the Netherlands
- Department of Epidemiology, Harvard T.H Chan School of Public Health, Boston, MA 02115, United States
| |
Collapse
|
88
|
Yoon SH, Kim HK, Lee JH, Chun JH, Sohn YH, Lee PH, Ryu YH, Cho H, Yoo HS, Lyoo CH. Association of Sleep Disturbances With Brain Amyloid and Tau Burden, Cortical Atrophy, and Cognitive Dysfunction Across the AD Continuum. Neurology 2023; 101:e2162-e2171. [PMID: 37813585 PMCID: PMC10663023 DOI: 10.1212/wnl.0000000000207917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/24/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Patients with Alzheimer disease (AD) frequently suffer from various sleep disturbances. However, how sleep disturbance is associated with AD and its progression remains poorly investigated. We investigated the association of total sleep time with brain amyloid and tau burden, cortical atrophy, cognitive dysfunction, and their longitudinal changes in the AD spectrum. METHODS In this retrospective cohort study, we enrolled participants on the AD spectrum who were positive on 18F-florbetaben (FBB) PET. All participants underwent the Pittsburgh Sleep Quality Index, brain MRI, FBB PET, 18F-flortaucipir (FTP) PET, and detailed neuropsychological testing. In addition, a subset of participants completed follow-up assessments. We analyzed the association of total sleep time with the baseline and longitudinal FBB-standardized uptake value ratio (SUVR), FTP-SUVR, cortical thickness, and cognitive domain composite scores. RESULTS We examined 138 participants on the AD spectrum (15 with preclinical AD, 62 with prodromal AD, and 61 with AD dementia; mean age 73.4 ± 8.0 years; female 58.7%). Total sleep time was longer in the AD dementia group (7.4 ± 1.6 hours) compared with the preclinical (6.5 ± 1.4 hours; p = 0.026) and prodromal groups (6.6 ± 1.4 hours; p = 0.001), whereas other sleep parameters did not differ between groups. Longer total sleep time was not associated with amyloid accumulation but rather with tau accumulation, especially in the amygdala, hippocampus, basal forebrain, insular, cingulate, occipital, inferior temporal cortices, and precuneus. Longer total sleep time predicted faster tau accumulation in Braak regions V-VI (β = 0.016, p = 0.007) and disease progression to mild cognitive impairment or dementia (hazard ratio = 1.554, p = 0.024). Longer total sleep time was also associated with memory deficit (β = -0.19, p = 0.008). DISCUSSION Prolonged total sleep time was associated with tau accumulation in sleep-related cortical and subcortical areas as well as memory dysfunction. It also predicted faster disease progression with tau accumulation. Our study highlights the clinical importance of assessing total sleep time as a marker for disease severity and prognosis in the AD spectrum.
Collapse
Affiliation(s)
- So Hoon Yoon
- From the Department of Neurology (S.H.Y.), International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon; Departments of Neurology (H.-K.K., H.C., H.S.Y., C.H.L.) and Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital; Departments of Nuclear Medicine (J.-H.C.) and Neurology (Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Han-Kyeol Kim
- From the Department of Neurology (S.H.Y.), International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon; Departments of Neurology (H.-K.K., H.C., H.S.Y., C.H.L.) and Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital; Departments of Nuclear Medicine (J.-H.C.) and Neurology (Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Hoon Lee
- From the Department of Neurology (S.H.Y.), International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon; Departments of Neurology (H.-K.K., H.C., H.S.Y., C.H.L.) and Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital; Departments of Nuclear Medicine (J.-H.C.) and Neurology (Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joong-Hyun Chun
- From the Department of Neurology (S.H.Y.), International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon; Departments of Neurology (H.-K.K., H.C., H.S.Y., C.H.L.) and Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital; Departments of Nuclear Medicine (J.-H.C.) and Neurology (Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young H Sohn
- From the Department of Neurology (S.H.Y.), International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon; Departments of Neurology (H.-K.K., H.C., H.S.Y., C.H.L.) and Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital; Departments of Nuclear Medicine (J.-H.C.) and Neurology (Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Phil Hyu Lee
- From the Department of Neurology (S.H.Y.), International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon; Departments of Neurology (H.-K.K., H.C., H.S.Y., C.H.L.) and Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital; Departments of Nuclear Medicine (J.-H.C.) and Neurology (Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Hoon Ryu
- From the Department of Neurology (S.H.Y.), International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon; Departments of Neurology (H.-K.K., H.C., H.S.Y., C.H.L.) and Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital; Departments of Nuclear Medicine (J.-H.C.) and Neurology (Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hanna Cho
- From the Department of Neurology (S.H.Y.), International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon; Departments of Neurology (H.-K.K., H.C., H.S.Y., C.H.L.) and Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital; Departments of Nuclear Medicine (J.-H.C.) and Neurology (Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Han Soo Yoo
- From the Department of Neurology (S.H.Y.), International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon; Departments of Neurology (H.-K.K., H.C., H.S.Y., C.H.L.) and Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital; Departments of Nuclear Medicine (J.-H.C.) and Neurology (Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Chul Hyoung Lyoo
- From the Department of Neurology (S.H.Y.), International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon; Departments of Neurology (H.-K.K., H.C., H.S.Y., C.H.L.) and Nuclear Medicine (J.-H.L., Y.H.R.), Gangnam Severance Hospital; Departments of Nuclear Medicine (J.-H.C.) and Neurology (Y.H.S., P.H.L.), Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
89
|
Nielson SA, Kay DB, Dzierzewski JM. Sleep and Depression in Older Adults: A Narrative Review. Curr Psychiatry Rep 2023; 25:643-658. [PMID: 37740851 DOI: 10.1007/s11920-023-01455-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 09/25/2023]
Abstract
PURPOSE OF REVIEW The sleep-depression association has been recognized for decades. Efforts to clarify this association continue at an increasing pace. This review summarizes recent research on the sleep-depression association in older adults. RECENT FINDINGS Research over the past 4 years has utilized cross-sectional, longitudinal, cohort, and intervention designs to examine these associations. Short (< 7 h) and long (> 8-9 h) sleep durations and insomnia symptoms are risk factors for depression in older adults. Similarly, short sleep, long sleep, insomnia symptoms, and depression are all risk factors for poorer health in late life, including increased risk of cognitive decline, falls, and poorer quality-of-life. Intervention studies have produced mixed findings, with some studies suggesting that sleep interventions may be potentially effective in improving both insomnia and mood symptoms. Intervention studies incorporating both behavioral and physiological measures of sleep, and larger and diverse samples may enhance the field's understanding of the complex interplay between sleep and mood in older adults.
Collapse
Affiliation(s)
- Spencer A Nielson
- Department of Psychology, Virginia Commonwealth University, Richmond, USA
| | - Daniel B Kay
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | - Joseph M Dzierzewski
- National Sleep Foundation, 2001 Massachusetts Ave NW, Washington, DC, 20036, USA.
| |
Collapse
|
90
|
Ren X, Jiang M, Han L, Zheng X. Depressive symptoms and sleep duration in relation to chronic kidney disease: Evidence from the China health and retirement longitudinal study. J Psychosom Res 2023; 174:111494. [PMID: 37708593 DOI: 10.1016/j.jpsychores.2023.111494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVE Nowadays, the joint effects of depressive symptoms and sleep duration on the risk of chronic kidney disease (CKD) are still unclear. We aimed to prospectively assess the combined effect of depressive symptoms and sleep duration on the incidence of CKD in middle-aged and elderly Chinese population. METHODS A total of 10,953 participants from the China Health and Retirement Longitudinal Study (CHARLS) were included. Depressive symptoms were measured using the 10-item Center for Epidemiological Studies Depression scale (CESD-10). Sleep duration was evaluated by self-reported. CKD events were based on self-reported physicians' diagnosis or personal estimate glomerular filtration rate level (eGFR <60 mL/min/1.73 m2). Cox regression models were established to analyze the correlation between depressive symptoms, sleep duration and the risk of CKD. RESULTS Over a mean follow-up time was 6.76 ± 0.98 years, 851 (7.8%) participants had reported CKD events during the follow-up. Elevated depressive symptoms (HR = 1.65, 95% CI = 1.43-1.90) and short sleep duration (HR = 1.48, 95% CI = 1.27-1.72) were independently associated with an increased CKD risk after adjusting for potential confounding factors. Participants with short sleep duration (< 6 h)/elevated depressive symptoms (HR = 2.24, 95% CI = 1.89-2.65) were associated with the highest risk of CKD than those with normal sleep duration/low depressive symptoms. CONCLUSIONS Elevated depressive symptoms and short sleep duration were independent risk factors for CKD. There was a combined effect between depressive symptoms and sleep duration in increasing the risk of CKD.
Collapse
Affiliation(s)
- Xiao Ren
- Public Health Research Center and Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Minglan Jiang
- Public Health Research Center and Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Longyang Han
- Public Health Research Center and Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaowei Zheng
- Public Health Research Center and Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
91
|
Sen A, Tai XY. Sleep Duration and Executive Function in Adults. Curr Neurol Neurosci Rep 2023; 23:801-813. [PMID: 37957525 PMCID: PMC10673787 DOI: 10.1007/s11910-023-01309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 11/15/2023]
Abstract
PURPOSE OF REVIEW To review the literature examining the relationship between sleep and cognition, specifically examining the sub-domain of executive function. We explore the impact of sleep deprivation and the important question of how much sleep is required for optimal cognitive performance. We consider how other sleep metrics, such as sleep quality, may be a more meaningful measure of sleep. We then discuss the putative mechanisms between sleep and cognition followed by their contribution to developing dementia. RECENT FINDINGS Sleep duration and executive function display a quadratic relationship. This suggests an optimal amount of sleep is required for daily cognitive processes. Poor sleep efficiency and sleep fragmentation are linked with poorer executive function and increased risk of dementia during follow-up. Sleep quality may therefore be more important than absolute duration. Biological mechanisms which may underpin the relationship between sleep and cognition include brain structural and functional changes as well as disruption of the glymphatic system. Sleep is an important modifiable lifestyle factor to improve daily cognition and, possibly, reduce the risk of developing dementia. The impact of optimal sleep duration and sleep quality may have important implications for every ageing individual.
Collapse
Affiliation(s)
- Aayushi Sen
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, Level 6 West Wing, Oxford, UK.
| | - Xin You Tai
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, Level 6 West Wing, Oxford, UK
| |
Collapse
|
92
|
Mayer G, Stenmanns C, Doeppner TR, Hermann DM, Gronewold J. [Sleep and dementia]. Z Gerontol Geriatr 2023; 56:556-560. [PMID: 37676320 DOI: 10.1007/s00391-023-02237-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 09/08/2023]
Abstract
Aging is associated with changes in sleep structure and cerebral deposition of amyloid beta and tau proteins. Sleep disturbances precede the onset of dementia by years. Comorbid sleep disorders, such as insomnia and sleep-disordered breathing, a family history of dementia and epigenetic factors can contribute to the development of dementia. This article explores the question of the interaction between sleep and dementia based on the existing literature. Alterations caused by slow wave sleep lead to changes in the glymphatic clearance of amyloid beta, tau proteins and other proteins. Transient and chronic sleep disorders cause disturbances in the brain areas responsible for cognition and behavior. Sleep-regulating brain areas are the first to be affected in the neurodegenerative process and accelerate the risk of dementia. Circadian age-related changes in amyloid beta and tau proteins affect the amount and depth of sleep and vice versa. Amyloid beta in cerebrospinal fluid shows an inverse correlation with sleep. Orexins modulate amyloid beta and sleep.
Collapse
Affiliation(s)
- Geert Mayer
- Philipps-Universität Marburg, Marburg, Deutschland.
- , Privatweg 2, 34582, Borken, Deutschland.
| | - Carla Stenmanns
- Klinik für Orthopädie und Unfallchirurgie, Altersmedizin, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Deutschland
| | - Thorsten R Doeppner
- Klinik für Neurologie, Universitätsklinkum Gießen und Marburg, Gießen, Deutschland
| | - Dirk M Hermann
- Klinik für Neurologie, Universitätsklinikum Essen, Essen, Deutschland
| | - Janine Gronewold
- Klinik für Neurologie, Universitätsklinikum Essen, Essen, Deutschland
| |
Collapse
|
93
|
Kim H, Zhu X, Zhao Y, Bell SA, Gehrman PR, Cohen D, Devanand DP, Goldberg TE, Lee S. Resting-state functional connectivity changes in older adults with sleep disturbance and the role of amyloid burden. Mol Psychiatry 2023; 28:4399-4406. [PMID: 37596355 PMCID: PMC10842478 DOI: 10.1038/s41380-023-02214-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/19/2023] [Accepted: 08/02/2023] [Indexed: 08/20/2023]
Abstract
Sleep and related disorders could lead to changes in various brain networks, but little is known about the role of amyloid β (Aβ) burden-a key Alzheimer's disease (AD) biomarker-in the relationship between sleep disturbance and altered resting state functional connectivity (rsFC) in older adults. This cross-sectional study examined the association between sleep disturbance, Aβ burden, and rsFC using a large-scale dataset from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Sample included 489 individuals (53.6% cognitively normal, 32.5% mild cognitive impairment, and 13.9% AD) who had completed sleep measures (Neuropsychiatric Inventory), PET Aβ data, and resting-state fMRI scans at baseline. Within and between rsFC of the Salience (SN), the Default Mode (DMN) and the Frontal Parietal network (FPN) were compared between participants with sleep disturbance versus without sleep disturbance. The interaction between Aβ positivity and sleep disturbance was evaluated using the linear regressions, controlling for age, diagnosis status, gender, sedatives and hypnotics use, and hypertension. Although no significant main effect of sleep disturbance was found on rsFC, a significant interaction term emerged between sleep disturbance and Aβ burden on rsFC of SN (β = 0.11, P = 0.006). Specifically, sleep disturbance was associated with SN hyperconnectivity, only with the presence of Aβ burden. Sleep disturbance may lead to altered connectivity in the SN when Aβ is accumulated in the brain. Individuals with AD pathology may be at increased risk for sleep-related aberrant rsFC; therefore, identifying and treating sleep problems in these individuals may help prevent further disease progression.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA.
- Area Brain Aging and Mental Health, New York State Psychiatric Institute, New York, NY, USA.
| | - Xi Zhu
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Division of Anxiety, Mood, Eating, and Related Disorders, New York State Psychiatric Institute, New York, NY, USA
| | - Yiming Zhao
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Sophie A Bell
- Area Brain Aging and Mental Health, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Philip R Gehrman
- Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
- Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Daniel Cohen
- Area Brain Aging and Mental Health, New York State Psychiatric Institute, New York, NY, USA
| | - D P Devanand
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Area Brain Aging and Mental Health, New York State Psychiatric Institute, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Terry E Goldberg
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Area Brain Aging and Mental Health, New York State Psychiatric Institute, New York, NY, USA
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Seonjoo Lee
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Area Brain Aging and Mental Health, New York State Psychiatric Institute, New York, NY, USA
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
- Division of Mental Health Data Science, New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
94
|
Sewell KR, Rainey-Smith SR, Peiffer J, Sohrabi HR, Doecke J, Frost NJ, Markovic SJ, Erickson K, Brown BM. The influence of baseline sleep on exercise-induced cognitive change in cognitively unimpaired older adults: A randomised clinical trial. Int J Geriatr Psychiatry 2023; 38:e6016. [PMID: 37864564 DOI: 10.1002/gps.6016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVES Observational studies consistently demonstrate that physical activity is associated with elevated cognitive function, however, there remains significant heterogeneity in cognitive outcomes from randomized exercise interventions. Individual variation in sleep behaviours may be a source of variability in the effectiveness of exercise-induced cognitive change, however this has not yet been investigated. The current study aimed to (1) investigate the influence of a 6-month exercise intervention on sleep, assessed pre- and post-intervention and, (2) investigate whether baseline sleep measures moderate exercise-induced cognitive changes. METHODS We utilised data from the Intense Physical Activity and Cognition (IPAC) study (n = 89), a 6-month moderate intensity and high intensity exercise intervention, in cognitively unimpaired community-dwelling older adults aged 60-80 (68.76 ± 5.32). Exercise was supervised and completed on a stationary exercise bicycle, and cognitive function was measured using a comprehensive neuropsychological battery administered pre- and post-intervention. Sleep was measured using the Pittsburgh sleep quality index. There was no effect of the exercise intervention on any sleep outcomes from pre- to post-intervention. RESULTS There was a significant moderating effect of baseline sleep efficiency on both episodic memory and global cognition within the moderate intensity exercise group, such that those with poorer sleep efficiency at baseline showed greater exercise-induced improvements in episodic memory. CONCLUSIONS These results suggest that those with poorer sleep may have the greatest exercise-induced cognitive benefits and that baseline sleep behaviours may be an important source of heterogeneity in previous exercise interventions targeting cognitive outcomes.
Collapse
Affiliation(s)
- Kelsey R Sewell
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Stephanie R Rainey-Smith
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia
- School of Psychological Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Jeremiah Peiffer
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Hamid R Sohrabi
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - James Doecke
- Royal Brisbane and Women's Hospital, CSIRO Health and Biosecurity/Australian E-Health Research Centre, Brisbane, Queensland, Australia
| | - Natalie J Frost
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia
- School of Psychological Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Shaun J Markovic
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia
| | - Kirk Erickson
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- AdventHealth Research Institute, Orlando, Florida, USA
| | - Belinda M Brown
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia
| |
Collapse
|
95
|
Wu X, Zhang T, Tu Y, Deng X, Sigen A, Li Y, Jing X, Wei L, Huang N, Cheng Y, Deng L, Jia S, Li J, Jiang N, Dong B. Multidomain interventions for non-pharmacological enhancement (MINE) program in Chinese older adults with mild cognitive impairment: a multicenter randomized controlled trial protocol. BMC Neurol 2023; 23:341. [PMID: 37759178 PMCID: PMC10537159 DOI: 10.1186/s12883-023-03390-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Dementia is characterized by progressive neurodegeneration and therefore early intervention could have the best chance of preserving brain health. There are significant differences in health awareness, living customs, and daily behaviors among Chinese older adults compared to Europeans and Americans. Because the synergistic benefits of multidomain non-pharmacological interventions are consistent with the multifactorial pathogenicity of MCI, such interventions are more appealing, easier to adhere to, and more relevant to daily life than single-mode interventions. One of the aims of this study is to verify the effect of multidomain intervention strategies for MCI patients based on Chinese population characteristics, and the other is to establish a biobank and image database to investigate the pathogenesis and pathways of cognitive impairment. METHODS Our study was designed as a national multicenter, community-based randomized controlled trial (RCT). Twelve medical institutions in ten Chinese cities will participate in our study from 2020 to 2024, and 1080 community residents aged 50 and above will be enrolled as participants. Each sub-center will be responsible for 90 participants (30 people per community) across three communities (non-contact control group, health education group, and multidomain intervention group). The community will be the basic unit of the present study, and all participants in each community will receive the same intervention/control measure. Three working groups are set up in each sub-center to manage the three communities independently to minimize interference at the implementation level between the groups. The multidomain intervention group will receive integrated interventions including exercise, nutrition, sleep, health education and mindfulness meditation. All data generated by the research will be analyzed and processed by statistical software (such as SPSS 21.0, Python 3.0, etc.), and part of the research data will be displayed in the form of graphs and tables. DISCUSSION In order to achieve a high-quality community intervention study, it is crucial to have a well-designed experimental protocol that follows rigorous scientific methodology. In addition, effective management of quality control measures and monitoring compliance throughout the study process are essential components. This study provides a detailed discussion of stakeholder compliance, research quality control, potential harm and mitigation, auditing, and future plans in order to better address research issues. TRIAL REGISTRATION ChiCTR2000035012 (July 27, 2020).
Collapse
Affiliation(s)
- Xiaochu Wu
- National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Tianyao Zhang
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yanhao Tu
- Strength and Conditioning Center, Chengdu Sport University, Chengdu, China
| | - Xueling Deng
- National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - A Sigen
- National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Yuxiao Li
- National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaofan Jing
- National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Lixuan Wei
- National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Ning Huang
- National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Ying Cheng
- National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Linghui Deng
- National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Shuli Jia
- National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Jun Li
- National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Ning Jiang
- National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.
| | - Birong Dong
- National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
96
|
Tang M, Wu L, Shen Z, Chen J, Yang Y, Zhang M, Zhao P, Jiang G. Association between Sleep and Alzheimer's Disease: A Bibliometric Analysis from 2003 to 2022. Neuroepidemiology 2023; 57:377-390. [PMID: 37699365 DOI: 10.1159/000533700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/26/2023] [Indexed: 09/14/2023] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) often presents with sleep disorders, which are also an important risk factor for AD, affecting cognitive function to a certain extent. This study aimed to reveal the current global status, present hotspots, and discuss emerging trends of sleep and AD using a bibliometric approach. METHODS Research and review articles related to sleep and AD from 2003 to 2022 were extracted from the Web of Science Core Collection. VOSviewer 1.6.18.0, Scimago Graphica, and CiteSpace 6.2.R2 were used to map the productive and highly cited countries, institutions, journals, authors, references, and keywords in the field. RESULTS Overall, 4,008 publications were included in this bibliometric analysis. The number of publications and citations showed an increasing trend over the past two decades. The USA and China had the largest and second largest, respectively, number of publications and citations and cooperated with other countries more closely. Ancoli-Israel Sonia published the most papers, and Holtzman David M was co-cited most frequently. The most productive journal was Journal of Alzheimer's Disease, and Neurology was the most frequently cited journal. The risk factors, β-amyloid (Aβ), tau, neuroinflammation, astrocytes, glymphatic system, orexin, functional connectivity, and management have been the main research directions of researchers over the past few years and may be the future trend of valuable research. CONCLUSION We identified hotspots and emerging trends including risk factors, Aβ, tau, neuroinflammation, the glymphatic system, orexin, and management, which may help identify new therapeutic targets and improve clinical efficacy of sleep and AD.
Collapse
Affiliation(s)
- Ming Tang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Li Wu
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Ziyi Shen
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Junwen Chen
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Yang Yang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Ming Zhang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Peilin Zhao
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
97
|
Tan X, Åkerstedt T, Lagerros YT, Åkerstedt AM, Bellocco R, Adami HO, Ye W, Pei JJ, Wang HX. Interactive association between insomnia symptoms and sleep duration for the risk of dementia-a prospective study in the Swedish National March Cohort. Age Ageing 2023; 52:afad163. [PMID: 37676841 PMCID: PMC10484328 DOI: 10.1093/ageing/afad163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Indexed: 09/09/2023] Open
Abstract
OBJECTIVE Given the importance of sleep in maintaining neurocognitive health, both sleep duration and quality might be component causes of dementia. However, the possible role of insomnia symptoms as risk factors for dementia remain uncertain. METHODS We prospectively studied 22,078 participants in the Swedish National March Cohort who were free from dementia and stroke at baseline. Occurrence of dementia was documented by national registers during a median follow-up period of 19.2 years. Insomnia symptoms and sleep duration were ascertained by Karolinska Sleep Questionnaire. Multivariable Cox proportional hazards models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI). RESULTS Compared to participants without insomnia at baseline, those who reported any insomnia symptom experienced a greater incidence of dementia during follow-up (HR 1.08, 95% CI: 1.03, 1.35). Difficulty initiating sleep versus non-insomnia (HR 1.24, 95% CI: 1.02, 1.52), but not difficulty maintaining sleep or early morning awakening was associated with an increased risk of dementia. Short sleep duration was associated with increased risk of dementia (6 h vs. 8 h, HR 1.29, 95% CI: 1.11-1.51; 5 h vs. 8 h, HR 1.26, 95% CI: 1.00-1.57). Stratified analyses suggested that insomnia symptoms increased the risk of dementia only amongst participants with ≥7 h sleep (vs. non-insomnia HR 1.24, 95% CI: 1.00-1.54, P = 0.05), but not amongst short sleepers (<7 h). Short sleep duration also did not further inflate the risk of dementia amongst insomniacs. CONCLUSION Insomnia and short sleep duration increase the risk of dementia amongst middle-aged to older adults.
Collapse
Affiliation(s)
- Xiao Tan
- Department of Big Data in Health Science, Zhejiang University School of Public Health and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Torbjörn Åkerstedt
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Ylva Trolle Lagerros
- Clinical Epidemiology Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Center for Obesity, Academic Specialist Center, Stockholm Health Services, Stockholm, Sweden
| | - Anna Miley Åkerstedt
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Division of Medical Psychology, Karolinska University Hospital, Stockholm, Sweden
| | - Rino Bellocco
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milan, Italy
| | - Hans-Olov Adami
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Clinical Effectiveness Group, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jin-Jing Pei
- Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Hui-Xin Wang
- Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
98
|
Ding X, Pan Y, Chen Y, Li Y. Association between dependency and long sleep duration among elderly people: a community-based study. Psychogeriatrics 2023; 23:789-799. [PMID: 37332148 DOI: 10.1111/psyg.12998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/22/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Long sleep duration is a common sleep disorder among elderly people. Dependency increases with increasing age. This study aimed to assess the association between dependency and long sleep duration among elderly people. METHODS This study is a population-based cross-sectional study. A total of 1152 participants aged ≥ 60 years were selected from 26 locations in China by a complex multistage sampling design. Data were collected through face-to-face interviews. Sleep duration was measured using the Pittsburgh Sleep Quality Index. Dependency was assessed using Minnesota Multiphasic Personality Inventory-II. Hierarchical multiple linear regression analysis was used to evaluate the efficacy of sleep-related factors and psychological factors for sleep duration. Analysis of covariance and logistic regression analysis were performed to evaluate the association between the dependency score and sleep duration, and the strength of dependency effect on sleep duration. RESULTS A total of 1120 participants were valid for the analysis. Among them, 15.8% of participants had a dependency score ≥60 points. The results of hierarchical multiple linear regression analysis showed that sleep duration was positively associated with dependency scores. Analysis of covariance indicated a J-shaped association between dependency scores and sleep duration. The results of logistic regression analysis showed dependency was significantly associated with long sleep duration, and the odds ratio was 3.52 (95% CI, 1.87-6.63; P < 0.001). CONCLUSION Dependency was significantly associated with long sleep duration among elderly people. The results suggested that dependent intervention may be a strategy that needs urgent implementation to reduce long sleep duration among elderly people.
Collapse
Affiliation(s)
- XiWen Ding
- Department of Social Medicine, School of Public Health, Zhejiang University, Hangzhou, China
| | - YiYang Pan
- Department of Social Medicine, School of Public Health, Zhejiang University, Hangzhou, China
| | - Yuan Chen
- Department of Social Medicine, School of Public Health, Zhejiang University, Hangzhou, China
- Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Ying Li
- Department of Social Medicine, School of Public Health, Zhejiang University, Hangzhou, China
- School of medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
99
|
Davidson PSR, Jensen A. Executive function and episodic memory composite scores in older adults: relations with sex, mood, and subjective sleep quality. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2023; 30:778-801. [PMID: 37624047 DOI: 10.1080/13825585.2022.2086682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/02/2022] [Indexed: 08/26/2023]
Abstract
Executive function and episodic memory processes are particularly vulnerable to aging. We sought to learn the degree to which sex, mood, and subjective sleep quality might be related to executive function and episodic memory composite scores in community-dwelling older adults. We replicated Glisky and colleagues' two-factor (i.e., executive function [N=263] versus episodic memory [N=151]) structure, and found that it did not significantly differ between males and females. Moderation analyses revealed no interactions between sex, mood, and sleep in predicting either composite score. However, females significantly outperformed males on the episodic memory composite, and on all the individual tests comprising it. Ours is the first study to look at sex differences in this battery's factor structure and its potential relations with mood and sleep. Future longitudinal studies in both healthy and clinical populations will help us further probe the possible influence of these variables on executive function and episodic memory in aging.
Collapse
Affiliation(s)
| | - Adelaide Jensen
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
100
|
Collatuzzo G, Pelucchi C, Negri E, Kogevinas M, Huerta JM, Vioque J, de la Hera MG, Tsugane S, Shigueaki Hamada G, Hidaka A, Zhang ZF, Camargo MC, Curado MP, Lunet N, La Vecchia C, Boffetta P. Sleep Duration and Stress Level in the Risk of Gastric Cancer: A Pooled Analysis of Case-Control Studies in the Stomach Cancer Pooling (StoP) Project. Cancers (Basel) 2023; 15:4319. [PMID: 37686594 PMCID: PMC10486543 DOI: 10.3390/cancers15174319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The association between sleep and stress and cancer is underinvestigated. We evaluated these factors in association with gastric cancer (GC). Five case-control studies from the Stomach Cancer Pooling (StoP) Project were included. We calculated the odds ratios (ORs) and the corresponding 95% confidence intervals (CIs) for sleep duration and stress level in association with GC through multiple logistic regression models adjusted for several lifestyle factors. The analysis included 1293 cases and 4439 controls, 215 cardia and 919 noncardia GC, and 353 diffuse and 619 intestinal types. Sleep duration of ≥9 h was associated with GC (OR =1.57, 95% CI = 1.23-2.00) compared to 8 h. This was confirmed when stratifying by subsite (noncardia OR = 1.59, 95% CI = 1.22-2.08, and cardia OR = 1.63, 95% CI = 0.97-2.72) and histological type (diffuse OR = 1.65, 95% CI = 1.14-2.40 and intestinal OR = 1.24, 95% CI = 0.91-1.67). Stress was associated with GC (OR = 1.33, 95% CI = 1.18-1.50, continuous). This relationship was selectively related to noncardia GC (OR = 1.28, 95% 1.12-1.46, continuous). The risk of diffuse (OR = 1.32, 95% CI = 1.11-1.58) and intestinal type (OR = 1.23, 95% CI = 1.07-1.42) were higher when stress was reported. Results for the association between increasing level of stress and GC were heterogeneous by smoking and socioeconomic status (p for heterogeneity = 0.02 and <0.001, respectively). In conclusion, long sleep duration (≥9 h) was associated with GC and its subtype categories. Stress linearly increased the risk of GC and was related to noncardia GC.
Collapse
Affiliation(s)
- Giulia Collatuzzo
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy (E.N.)
| | - Claudio Pelucchi
- Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry and Epidemiology “G.A. Maccacaro”, University of Milan, 20133 Milan, Italy; (C.P.); (C.L.V.)
| | - Eva Negri
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy (E.N.)
- Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry and Epidemiology “G.A. Maccacaro”, University of Milan, 20133 Milan, Italy; (C.P.); (C.L.V.)
| | - Manolis Kogevinas
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain; (M.K.); (J.V.); (M.G.d.l.H.)
- Barcelona Institute for Global Health—ISGlobal, 08036 Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
- Department de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - José María Huerta
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain; (M.K.); (J.V.); (M.G.d.l.H.)
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, 30120 Murcia, Spain
| | - Jesus Vioque
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain; (M.K.); (J.V.); (M.G.d.l.H.)
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernandez (ISABIAL-UMH), 03010 Alicante, Spain
| | - Manoli García de la Hera
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain; (M.K.); (J.V.); (M.G.d.l.H.)
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernandez (ISABIAL-UMH), 03010 Alicante, Spain
| | - Shoichiro Tsugane
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo 104-0045, Japan
- National Institute of Biomedical Innovation, Health and Nutrition, Tokyo 566-0002, Japan
| | | | - Akihisa Hidaka
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo 104-0045, Japan
| | - Zuo-Feng Zhang
- Department of Epidemiology, UCLA Fielding School of Public Health and Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA;
| | - M. Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Maria Paula Curado
- Centro Internacional de Pesquisas, A.C.Camargo Cancer Center, São Paulo 01509-010, Brazil
| | - Nuno Lunet
- EPIUnit—Instituto de Saúde Pública da Universidade do Porto, 4050-091 Porto, Portugal;
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), 4050-600 Porto, Portugal
- Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina da Universidade do Porto, 4200-450 Porto, Portugal
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry and Epidemiology “G.A. Maccacaro”, University of Milan, 20133 Milan, Italy; (C.P.); (C.L.V.)
| | - Paolo Boffetta
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy (E.N.)
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|