51
|
Chen S, Ye J, Lin Y, Chen W, Huang S, Yang Q, Qian H, Gao S, Hua C. Crucial Roles of RSAD2/viperin in Immunomodulation, Mitochondrial Metabolism and Autoimmune Diseases. Inflammation 2024:10.1007/s10753-024-02076-5. [PMID: 38909344 DOI: 10.1007/s10753-024-02076-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/24/2024]
Abstract
Autoimmune diseases are typically characterized by aberrant activation of immune system that leads to excessive inflammatory reactions and tissue damage. Nevertheless, precise targeted and efficient therapies are limited. Thus, studies into novel therapeutic targets for the management of autoimmune diseases are urgently needed. Radical S-adenosyl methionine domain-containing 2 (RSAD2) is an interferon-stimulated gene (ISG) renowned for the antiviral properties of the protein it encodes, named viperin. An increasing number of studies have underscored the new roles of RSAD2/viperin in immunomodulation and mitochondrial metabolism. Previous studies have shown that there is a complex interplay between RSAD2/vipeirn and mitochondria and that binding of the iron-sulfur (Fe-S) cluster is necessary for the involvement of viperin in mitochondrial metabolism. Viperin influences the proliferation and development of immune cells as well as inflammation via different signaling pathways. However, the function of RSAD2/viperin varies in different studies and a comprehensive overview of this emerging theme is lacking. This review will describe the characteristics of RSAD2/viperin, decipher its function in immunometabolic processes, and clarify the crosstalk between RSAD2/viperin and mitochondria. Furthermore, we emphasize the crucial roles of RSAD2 in autoimmune diseases and its potential application value.
Collapse
Affiliation(s)
- Siyan Chen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Jiani Ye
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Yinfang Lin
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Wenxiu Chen
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Shenghao Huang
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Qianru Yang
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Hengrong Qian
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| |
Collapse
|
52
|
Tasharrofi B, Karimzadeh P, Asadollahi M, Hasani S, Heidari M, Keramatipour M. Aicardi-Goutières Syndrome Type 1: A Novel Missense Variant and Review of the Mutational Spectrum. IRANIAN JOURNAL OF CHILD NEUROLOGY 2024; 18:117-129. [PMID: 38988838 PMCID: PMC11231675 DOI: 10.22037/ijcn.v18i3.43274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/20/2023] [Indexed: 07/12/2024]
Abstract
Objectives Mutations in the TREX1 gene cause Aicardi-Goutières syndrome (AGS) 1, associated with a spectrum of autoimmune and neurodegenerative manifestations. AGS 1, the most severe neonatal type of AGS, is characterized by abnormal neurologic findings, visual inattention, hepatosplenomegaly, thrombocytopenia, skin rash, restlessness, and fever. Materials & Methods The present study described two affected siblings from an Iranian family whose phenotypes overlap with intrauterine infections. They had almost similar presentations, including developmental delay, microcephaly, no fix and follow epileptic seizures and the same pattern of brain CT scan involvements. Following clinical and paraclinical assessments, whole-exome sequencing was employed to determine the disease-causing variant, and subsequently, PCR-Sanger sequencing was performed to indicate the segregation pattern of the candidate variant in family members. Results Genetic analysis revealed a novel homozygous missense variant (c.461A>C; p.D154A) in the TREX1 gene in affected family members. Sanger sequencing of other family members showed the expected zygosities. Conclusion This study identifies a novel mutation in the TREX1 gene in this family and highlights the efficiency of next-generation sequencing-based techniques for obtaining a definite diagnosis in patients with early-onset encephalopathy.
Collapse
Affiliation(s)
- Behnoosh Tasharrofi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parvaneh Karimzadeh
- Pediatric Neurology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Pediatric Neurology Department, Mofid Children's Hospital, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Asadollahi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Hasani
- Watson Genetic Laboratory, North Kargar Street, Tehran, Iran & Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Heidari
- Department of Pediatrics, Division of Pediatric Neurology, Children›s Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Keramatipour
- Watson Genetic Laboratory, North Kargar Street, Tehran, Iran & Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
53
|
Kundnani DL, Yang T, Gombolay AL, Mukherjee K, Newnam G, Meers C, Verma I, Chhatlani K, Mehta ZH, Mouawad C, Storici F. Distinct features of ribonucleotides within genomic DNA in Aicardi-Goutières syndrome ortholog mutants of Saccharomyces cerevisiae. iScience 2024; 27:110012. [PMID: 38868188 PMCID: PMC11166700 DOI: 10.1016/j.isci.2024.110012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/15/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Ribonucleoside monophosphates (rNMPs) are abundantly found within genomic DNA of cells. The embedded rNMPs alter DNA properties and impact genome stability. Mutations in ribonuclease (RNase) H2, a key enzyme for rNMP removal, are associated with the Aicardi-Goutières syndrome (AGS), a severe neurological disorder. Here, we engineered orthologs of the human RNASEH2A-G37S and RNASEH2C-R69W AGS mutations in yeast Saccharomyces cerevisiae: rnh201-G42S and rnh203-K46W. Using the ribose-seq technique and the Ribose-Map bioinformatics toolkit, we unveiled rNMP abundance, composition, hotspots, and sequence context in these AGS-ortholog mutants. We found a high rNMP presence in the nuclear genome of rnh201-G42S-mutant cells, and an elevated rCMP content in both mutants, reflecting preferential cleavage of RNase H2 at rGMP. We discovered unique rNMP patterns in each mutant, showing differential activity of the AGS mutants on the leading or lagging replication strands. This study guides future research on rNMP characteristics in human genomes with AGS mutations.
Collapse
Affiliation(s)
- Deepali L. Kundnani
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Taehwan Yang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alli L. Gombolay
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Bacterial Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Kuntal Mukherjee
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Gary Newnam
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Chance Meers
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Ishika Verma
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kirti Chhatlani
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Zeel H. Mehta
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Celine Mouawad
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
54
|
Adang LA, D'Aiello R, Takanohashi A, Woidill S, Gavazzi F, Behrens EM, Sullivan KE, Goldbach-Mansky R, de Jesus AA, Vanderver A, Shults J. IFN-signaling gene expression as a diagnostic biomarker for monogenic interferonopathies. JCI Insight 2024; 9:e178456. [PMID: 38885315 PMCID: PMC11383167 DOI: 10.1172/jci.insight.178456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
IFN-signaling gene (ISG) expression scores are potential markers of inflammation with significance from cancer to genetic syndromes. In Aicardi Goutières Syndrome (AGS), a disorder of abnormal DNA and RNA metabolism, this score has potential as a diagnostic biomarker, although the approach to ISG calculation has not been standardized or validated. To optimize ISG calculation and validate ISG as a diagnostic biomarker, mRNA levels of 36 type I IFN response genes were quantified from 997 samples (including 334 AGS), and samples were randomized into training and test data sets. An independent validation cohort (n = 122) was also collected. ISGs were calculated using all potential combinations up to 6 genes. A 4-gene approach (IFI44L, IFI27, USP18, IFI6) was the best-performing model (AUC of 0.8872 [training data set], 0.9245 [test data set]). The majority of top-performing gene combinations included IFI44L. Performance of IFI44L alone was 0.8762 (training data set) and 0.9580 (test data set) by AUC. The top approaches were able to discriminate individuals with genetic interferonopathy from control samples. This study validates the context of use for the ISG score as a diagnostic biomarker and underscores the importance of IFI44L in diagnosis of genetic interferonopathies.
Collapse
Affiliation(s)
- Laura A Adang
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Asako Takanohashi
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
| | - Sarah Woidill
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
| | - Francesco Gavazzi
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
| | | | - Kathleen E Sullivan
- Department of Allergy Immunology, Department of Pediatrics, CHOP, Philadelphia, Pennsylvania, USA
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Adriana A de Jesus
- Translational Autoinflammatory Diseases Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Adeline Vanderver
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Justine Shults
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA
- Department of Pediatrics, CHOP, Philadelphia, Pennsylvania, USA
| |
Collapse
|
55
|
Guillet S, Lazarov T, Jordan N, Boisson B, Tello M, Craddock B, Zhou T, Nishi C, Bareja R, Yang H, Rieux-Laucat F, Lorenzo RIF, Dyall SD, Isenberg D, D’Cruz D, Lachmann N, Elemento O, Viale A, Socci ND, Abel L, Nagata S, Huse M, Miller WT, Casanova JL, Geissmann F. ACK1 and BRK non-receptor tyrosine kinase deficiencies are associated with familial systemic lupus and involved in efferocytosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.15.24302255. [PMID: 38883731 PMCID: PMC11177913 DOI: 10.1101/2024.02.15.24302255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Systemic Lupus Erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with systemic lupus erythematosus (SLE) we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, non-receptor tyrosine kinases (NRTKs) regulate activation, migration, and proliferation of immune cells. We found that the patients' ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced Pluripotent Stem Cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.
Collapse
Affiliation(s)
- Stephanie Guillet
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Ecole doctorale Bio Sorbonne Paris Cité, Université Paris Descartes-Sorbonne Paris Cité.Paris, France
| | - Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of MedicalSciences, New York, New York 10065, USA
| | - Natasha Jordan
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King’s College London and Louise Coote Lupus Unit, Guy’s and Thomas’ Hospitals, London SE1 1UL, UK
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
- University of Paris Cité, Imagine Institute, Paris, France
| | - Maria Tello
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Barbara Craddock
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, 11794-8661
| | - Ting Zhou
- SKI Stem Cell Research Core, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Chihiro Nishi
- Laboratory of Biochemistry & Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871
| | - Rohan Bareja
- Cary and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Meyer Cancer Center Weill Cornell Medical College, New York, New York 10065, USA
| | - Hairu Yang
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | | | | | - Sabrina D. Dyall
- Department of Biosciences and Ocean Studies, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - David Isenberg
- Centre for Rheumatology, Division of Medicine, University College London, The Rayne Building, University College London
| | - David D’Cruz
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King’s College London and Louise Coote Lupus Unit, Guy’s and Thomas’ Hospitals, London SE1 1UL, UK
| | - Nico Lachmann
- Institute of Experimental Hematology, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover 30625, Germany
| | - Olivier Elemento
- Cary and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Meyer Cancer Center Weill Cornell Medical College, New York, New York 10065, USA
| | - Agnes Viale
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Nicholas D. Socci
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
- University of Paris Cité, Imagine Institute, Paris, France
| | - Shigekazu Nagata
- Laboratory of Biochemistry & Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871
| | - Morgan Huse
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - W. Todd Miller
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, 11794-8661
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
- University of Paris Cité, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, 10065 NY, USA
- Lab of Human Genetics of Infectious Diseases, INSERM, Necker Hospital for Sick Children, Paris, France, EU
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France, EU
| | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of MedicalSciences, New York, New York 10065, USA
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King’s College London and Louise Coote Lupus Unit, Guy’s and Thomas’ Hospitals, London SE1 1UL, UK
| |
Collapse
|
56
|
Lim J, Rodriguez R, Williams K, Silva J, Gutierrez AG, Tyler P, Baharom F, Sun T, Lin E, Martin S, Kayser BD, Johnston RJ, Mellman I, Delamarre L, West NR, Müller S, Qu Y, Heger K. The Exonuclease TREX1 Constitutes an Innate Immune Checkpoint Limiting cGAS/STING-Mediated Antitumor Immunity. Cancer Immunol Res 2024; 12:663-672. [PMID: 38489753 PMCID: PMC11148535 DOI: 10.1158/2326-6066.cir-23-1078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/15/2024] [Accepted: 03/15/2024] [Indexed: 03/17/2024]
Abstract
The DNA exonuclease three-prime repair exonuclease 1 (TREX1) is critical for preventing autoimmunity in mice and humans by degrading endogenous cytosolic DNA, which otherwise triggers activation of the innate cGAS/STING pathway leading to the production of type I IFNs. As tumor cells are prone to aberrant cytosolic DNA accumulation, we hypothesized that they are critically dependent on TREX1 activity to limit their immunogenicity. Here, we show that in tumor cells, TREX1 restricts spontaneous activation of the cGAS/STING pathway, and the subsequent induction of a type I IFN response. As a result, TREX1 deficiency compromised in vivo tumor growth in mice. This delay in tumor growth depended on a functional immune system, systemic type I IFN signaling, and tumor-intrinsic cGAS expression. Mechanistically, we show that tumor TREX1 loss drove activation of CD8+ T cells and NK cells, prevented CD8+ T-cell exhaustion, and remodeled an immunosuppressive myeloid compartment. Consequently, TREX1 deficiency combined with T-cell-directed immune checkpoint blockade. Collectively, we conclude that TREX1 is essential to limit tumor immunogenicity, and that targeting this innate immune checkpoint remodels the tumor microenvironment and enhances antitumor immunity by itself and in combination with T-cell-targeted therapies. See related article by Toufektchan et al., p. 673.
Collapse
Affiliation(s)
| | | | | | - John Silva
- Genentech Inc., South San Francisco, California
| | | | - Paul Tyler
- Genentech Inc., South San Francisco, California
| | | | - Tao Sun
- Genentech Inc., South San Francisco, California
| | - Eva Lin
- Genentech Inc., South San Francisco, California
| | | | | | | | - Ira Mellman
- Genentech Inc., South San Francisco, California
| | | | | | | | - Yan Qu
- Genentech Inc., South San Francisco, California
| | - Klaus Heger
- Genentech Inc., South San Francisco, California
| |
Collapse
|
57
|
Liu X, Lei M, Xue Y, Li H, Yin J, Li D, Shu J, Cai C. Multi-dimensional Insight into the Coexistence of Pathogenic Genes for ADAR1 and TSC2: Careful Consideration is Essential for Interpretation of ADAR1 Variants. Biochem Genet 2024; 62:1811-1826. [PMID: 37740860 DOI: 10.1007/s10528-023-10488-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/06/2023] [Indexed: 09/25/2023]
Abstract
Aicardi-Goutières syndrome 6 (AGS6) is a serious auto-immunization-associated acute neurologic decompensation. AGS6 manifests as acute onset of severe generalized dystonia of limbs and developmental regression secondary to febrile illness mostly. Dyschromatosis symmetrica hereditaria (DSH), as pigmentary genodermatosis, is a characterized mixture of hyperpigmented and hypopigmented macules. Both AGS6 and DSH are associated with ADAR1 pathogenic variants. To explore the etiology of a proband with developmental regression with mixture of hyperpigmentation and hypopigmentation macules, we used the trio-WES. Later, to clarify the association between variants and diseases, we used guidelines of ACMG for variants interpretation and quantitative Real-time PCR for verifying elevated expression levels of interferon-stimulated genes, separately. By WES, we detected 2 variants in ADAR1 and a variant in TSC2, respectively, were NM_001111.5:c.1096_1097del, NM_001111.5:c.518A>G, and NM_000548.5:c.1864C>T. Variants interpretation suggested that these 3 variants were both pathogenic. Expression levels of interferon-stimulated genes also elevated as expected. We verified the co-occurrence of pathogenic variants of ADAR1 and TSC2 in AGS6 patients with DSH. Our works contributed to the elucidation of ADAR1 pathogenic mechanism, given the specific pathogenic mechanism of ADAR1, and it is necessary to consider with caution when variants were found in ADAR1.
Collapse
Affiliation(s)
- Xiangyu Liu
- Graduate College of Tianjin Medical University, Tianjin, 300070, China
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China
| | - Meifang Lei
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China
- Department of Neurology, Tianjin Children's Hospital (Tianjin University Children's Hospital), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
| | - Yan Xue
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Beichen District, No. 238 Longyan Road, Tianjin, 300134, China
| | - Hong Li
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China
- Department of Neurology, Tianjin Children's Hospital (Tianjin University Children's Hospital), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
| | - Jing Yin
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China
- Department of Immunology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China
| | - Dong Li
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China.
- Department of Neurology, Tianjin Children's Hospital (Tianjin University Children's Hospital), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China.
| | - Jianbo Shu
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China.
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Beichen District, No. 238 Longyan Road, Tianjin, 300134, China.
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, 300134, China.
| | - Chunquan Cai
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China.
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Beichen District, No. 238 Longyan Road, Tianjin, 300134, China.
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, 300134, China.
| |
Collapse
|
58
|
Pemov A, Kim J, Luo W, Liu J, Graham C, Jones K, DeMangel D, Freedman ND, Dumontet C, Zhu B, McMaster ML, Stewart DR. The landscape of rare genetic variants in familial Waldenström macroglobulinemia. BLOOD NEOPLASIA 2024; 1:100013. [PMID: 39036705 PMCID: PMC11258892 DOI: 10.1016/j.bneo.2024.100013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Waldenström macroglobulinemia (WM) is a rare hematological malignancy. Risk for WM is elevated 20-fold among first-degree relatives of patients with WM. However, the list of variants and genes that cause WM remains incomplete. In this study we analyzed exomes from 64 WM pedigrees for evidence of genetic susceptibility for this malignancy. We determined the frequency of pathogenic (P) or likely pathogenic (LP) variants among patients with WM; performed variant- and gene-level association analyses with the set of 166 WM cases and 681 unaffected controls; and examined the segregation pattern of deleterious variants among affected members in each pedigree. We identified P/LP variants in TREX1 and SAMHD1 (genes that function at the interface between innate immune response, genotoxic surveillance, and DNA repair) segregating in patients with WM from 2 pedigrees. There were additional P/LP variants in cancer-predisposing genes (eg, POT1, RECQL4, PTPN11, PMS2). In variant- and gene-level analyses, no associations were statistically significant after multiple testing correction. On a pathway level, we observed involvement of genes that play a role in telomere maintenance (q-value = 0.02), regulation of innate immune response (q-value = 0.05), and DNA repair (q-value = 0.08). Affected members of each pedigree shared multiple deleterious variants (median, n = 18), but the overlap between the families was modest. In summary, P/LP variants in highly penetrant genes constitute a modest proportion of the deleterious variants; each pedigree is largely unique in its genetic architecture, and multiple genes are likely involved in the etiology of WM.
Collapse
Affiliation(s)
- Alexander Pemov
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD
| | - Jung Kim
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD
| | - Wen Luo
- Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, National Cancer Institute, Rockville, MD
| | - Jia Liu
- Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, National Cancer Institute, Rockville, MD
| | - Cole Graham
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD
| | - Kristine Jones
- Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, National Cancer Institute, Rockville, MD
| | - Delphine DeMangel
- Department of Hematology, Hospices Civils de Lyon, University of Lyon, Lyon, France
| | - Neal D. Freedman
- Division of Cancer Epidemiology and Genetics, Metabolic Epidemiology Branch
| | - Charles Dumontet
- Department of Hematology, Hospices Civils de Lyon, University of Lyon, Lyon, France
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, Biostatistics Branch, National Cancer Institute, Bethesda, MD
| | - Mary L. McMaster
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD
| | - Douglas R. Stewart
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, Bethesda, MD
| |
Collapse
|
59
|
Dorrity TJ, Shin H, Gertie JA, Chung H. The Sixth Sense: Self-nucleic acid sensing in the brain. Adv Immunol 2024; 161:53-83. [PMID: 38763702 PMCID: PMC11186578 DOI: 10.1016/bs.ai.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Our innate immune system uses pattern recognition receptors (PRRs) as a first line of defense to detect microbial ligands and initiate an immune response. Viral nucleic acids are key ligands for the activation of many PRRs and the induction of downstream inflammatory and antiviral effects. Initially it was thought that endogenous (self) nucleic acids rarely activated these PRRs, however emerging evidence indicates that endogenous nucleic acids are able to activate host PRRs in homeostasis and disease. In fact, many regulatory mechanisms are in place to finely control and regulate sensing of self-nucleic acids by PRRs. Sensing of self-nucleic acids is particularly important in the brain, as perturbations to nucleic acid sensing commonly leads to neuropathology. This review will highlight the role of nucleic acid sensors in the brain, both in disease and homeostasis. We also indicate the source of endogenous stimulatory nucleic acids where known and summarize future directions for the study of this growing field.
Collapse
Key Words
- Brain
- DNA sensing PRRs: cGAS, AIM2, TLR9
- Neurodegeneration: Aicardi-Goutieres syndrome (AGS), Alzheimer's disease, Amyotrophic lateral sclerosis, Stroke, Traumatic brain injury
- Neurodevelopment
- Neuroinflammation
- Nuecleic acid immunity
- Pattern recognition receptors (PRRs)
- RNA sensing PRRs: MDA5, RIG-I, PKR, TLR3, TLR7/8
Collapse
Affiliation(s)
- Tyler J Dorrity
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States
| | - Heegwon Shin
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States
| | - Jake A Gertie
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States; Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States; Medical Scientist Training Program, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Hachung Chung
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States.
| |
Collapse
|
60
|
de Barcelos IP, Woidill S, Gavazzi F, Modesti NB, Sevagamoorthy A, Vanderver A, Adang L. Systematic analysis of genotype-phenotype variability in siblings with Aicardi Goutières Syndrome (AGS). Mol Genet Metab 2024; 142:108346. [PMID: 38368708 PMCID: PMC11431181 DOI: 10.1016/j.ymgme.2024.108346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/11/2023] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
OBJECTIVE Aicardi Goutières Syndrome (AGS) is a genetic interferonopathy associated with multisystemic heterogeneous disease and neurologic dysfunction. AGS includes a broad phenotypic spectrum which is only partially explained by genotype. To better characterize this variability, we will perform a systematic analysis of phenotypic variability in familial cases of AGS. METHODS Among thirteen families, twenty-six siblings diagnosed with AGS were identified from the Myelin Disorders and Biorepository Project (MDBP) at the Children's Hospital of Philadelphia. Data were collected on the age of onset, genotype, neurologic impairment, and systemic complications. Neurologic impairment was assessed by a disease-specific scale (AGS Severity Scale) at the last available clinical encounter (range: 0-11 representing severe - attenuated phenotypes). The concordance of clinical severity within sibling pairs was categorized based on the difference in AGS Scale (discordant defined as >2-unit difference). The severity classifications were compared between sibling sets and by genotype. RESULTS Five genotypes were represented: TREX1 (n = 4 subjects), RNASEH2B (n = 8), SAMHD1 (n = 8) ADAR1 (n = 4), and IFIH1 (n = 2). The older sibling was diagnosed later relative to the younger affected sibling (median age 7.32 years [IQR = 14.1] compared to 1.54 years [IQR = 10.3]). Common presenting neurologic symptoms were tone abnormalities (n = 10/26) and gross motor dysfunction (n = 9/26). Common early systemic complications included dysphagia and chilblains. The overall cohort median AGS severity score at the last encounter was 8, while subjects presenting with symptoms before one year had a median score of 5. The TREX1 cohort presented at the youngest age and with the most severe phenotype on average. AGS scores were discordant for 5 of 13 sibling pairs, most commonly in the SAMHD1 pairs. Microcephaly, feeding tube placement, seizures and earlier onset sibling were associated with lower AGS scores (respectively, Wilcoxon rank sum: p = 0.0001, p < 0.0001, p = 0.0426, and Wilcoxon signed rank: p = 0.0239). CONCLUSIONS In this systematic analysis of phenotypic variability in familial cases, we found discordance between siblings affected by AGS. Our results underscore the heterogeneity of AGS and suggest factors beyond AGS genotype may affect phenotype. Understanding the critical variables associated with disease onset and severity can guide future therapeutic interventions and clinical monitoring. This report reinforces the need for further studies to uncover potential factors to better understand this phenotypic variability, and consequently identify potential targets for interventions in attempt to change the natural history of the disease.
Collapse
Affiliation(s)
| | - Sarah Woidill
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Francesco Gavazzi
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nicholson B Modesti
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anjana Sevagamoorthy
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Adeline Vanderver
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, usa
| | - Laura Adang
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, usa.
| |
Collapse
|
61
|
Greatbatch CJ, Lu Q, Hung S, Barnett AJ, Wing K, Liang H, Han X, Zhou T, Siggs OM, Mackey DA, Cook AL, Senabouth A, Liu GS, Craig JE, MacGregor S, Powell JE, Hewitt AW. High throughput functional profiling of genes at intraocular pressure loci reveals distinct networks for glaucoma. Hum Mol Genet 2024; 33:739-751. [PMID: 38272457 PMCID: PMC11031357 DOI: 10.1093/hmg/ddae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/18/2023] [Accepted: 04/06/2024] [Indexed: 01/27/2024] Open
Abstract
INTRODUCTION Primary open angle glaucoma (POAG) is a leading cause of blindness globally. Characterized by progressive retinal ganglion cell degeneration, the precise pathogenesis remains unknown. Genome-wide association studies (GWAS) have uncovered many genetic variants associated with elevated intraocular pressure (IOP), one of the key risk factors for POAG. We aimed to identify genetic and morphological variation that can be attributed to trabecular meshwork cell (TMC) dysfunction and raised IOP in POAG. METHODS 62 genes across 55 loci were knocked-out in a primary human TMC line. Each knockout group, including five non-targeting control groups, underwent single-cell RNA-sequencing (scRNA-seq) for differentially-expressed gene (DEG) analysis. Multiplexed fluorescence coupled with CellProfiler image analysis allowed for single-cell morphological profiling. RESULTS Many gene knockouts invoked DEGs relating to matrix metalloproteinases and interferon-induced proteins. We have prioritized genes at four loci of interest to identify gene knockouts that may contribute to the pathogenesis of POAG, including ANGPTL2, LMX1B, CAV1, and KREMEN1. Three genetic networks of gene knockouts with similar transcriptomic profiles were identified, suggesting a synergistic function in trabecular meshwork cell physiology. TEK knockout caused significant upregulation of nuclear granularity on morphological analysis, while knockout of TRIOBP, TMCO1 and PLEKHA7 increased granularity and intensity of actin and the cell-membrane. CONCLUSION High-throughput analysis of cellular structure and function through multiplex fluorescent single-cell analysis and scRNA-seq assays enabled the direct study of genetic perturbations at the single-cell resolution. This work provides a framework for investigating the role of genes in the pathogenesis of glaucoma and heterogenous diseases with a strong genetic basis.
Collapse
Affiliation(s)
- Connor J Greatbatch
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Qinyi Lu
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Sandy Hung
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St, East Melbourne 3002, Australia
| | - Alexander J Barnett
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Kristof Wing
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Helena Liang
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St, East Melbourne 3002, Australia
| | - Xikun Han
- QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane 4006, Australia
| | - Tiger Zhou
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, 1 Flinders Dr, Bedford Park, South Australia 5042, Australia
| | - Owen M Siggs
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, Short Street, St George Hospital KOGARAH UNSW, Sydney 2217, Australia
| | - David A Mackey
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
- Lions Eye Institute, Centre for Vision Sciences, University of Western Australia, 2 Verdun Street Nedlands WA 6009, Australia
| | - Anthony L Cook
- Wicking Dementia Research and Education Centre, University of Tasmania, 17 Liverpool Street, Hobart, TAS 7000, Australia
| | - Anne Senabouth
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, 1 Flinders Dr, Bedford Park, South Australia 5042, Australia
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane 4006, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- UNSW Cellular Genomics Futures Institute, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St, East Melbourne 3002, Australia
| |
Collapse
|
62
|
Jarmoskaite I, Li JB. Multifaceted roles of RNA editing enzyme ADAR1 in innate immunity. RNA (NEW YORK, N.Y.) 2024; 30:500-511. [PMID: 38531645 PMCID: PMC11019752 DOI: 10.1261/rna.079953.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Innate immunity must be tightly regulated to enable sensitive pathogen detection while averting autoimmunity triggered by pathogen-like host molecules. A hallmark of viral infection, double-stranded RNAs (dsRNAs) are also abundantly encoded in mammalian genomes, necessitating surveillance mechanisms to distinguish "self" from "nonself." ADAR1, an RNA editing enzyme, has emerged as an essential safeguard against dsRNA-induced autoimmunity. By converting adenosines to inosines (A-to-I) in long dsRNAs, ADAR1 covalently marks endogenous dsRNAs, thereby blocking the activation of the cytoplasmic dsRNA sensor MDA5. Moreover, beyond its editing function, ADAR1 binding to dsRNA impedes the activation of innate immune sensors PKR and ZBP1. Recent landmark studies underscore the utility of silencing ADAR1 for cancer immunotherapy, by exploiting the ADAR1-dependence developed by certain tumors to unleash an antitumor immune response. In this perspective, we summarize the genetic and mechanistic evidence for ADAR1's multipronged role in suppressing dsRNA-mediated autoimmunity and explore the evolving roles of ADAR1 as an immuno-oncology target.
Collapse
Affiliation(s)
- Inga Jarmoskaite
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- AIRNA Corporation, Cambridge, Massachusetts 02142, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
63
|
Tran DT, Batchu SN, Advani A. Interferons and interferon-related pathways in heart disease. Front Cardiovasc Med 2024; 11:1357343. [PMID: 38665231 PMCID: PMC11043610 DOI: 10.3389/fcvm.2024.1357343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Interferons (IFNs) and IFN-related pathways play key roles in the defence against microbial infection. However, these processes may also be activated during the pathogenesis of non-infectious diseases, where they may contribute to organ injury, or function in a compensatory manner. In this review, we explore the roles of IFNs and IFN-related pathways in heart disease. We consider the cardiac effects of type I IFNs and IFN-stimulated genes (ISGs); the emerging role of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway; the seemingly paradoxical effects of the type II IFN, IFN-γ; and the varied actions of the interferon regulatory factor (IRF) family of transcription factors. Recombinant IFNs and small molecule inhibitors of mediators of IFN receptor signaling are already employed in the clinic for the treatment of some autoimmune diseases, infections, and cancers. There has also been renewed interest in IFNs and IFN-related pathways because of their involvement in SARS-CoV-2 infection, and because of the relatively recent emergence of cGAS-STING as a pattern recognition receptor-activated pathway. Whether these advances will ultimately result in improvements in the care of those experiencing heart disease remains to be determined.
Collapse
Affiliation(s)
| | | | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
64
|
Zhang L, Wang W, Chen T, Cui J, Li X, Liu A, Liu R, Fang L, Jiang J, Yang L, Wu D, Ying S. SAMHD1 dysfunction induces IL-34 expression via NF-κB p65 in neuronal SH-SY5Y cells. Mol Immunol 2024; 168:1-9. [PMID: 38367301 DOI: 10.1016/j.molimm.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
Dysfunctional mutations in SAMHD1 cause Aicardi-Goutières Syndrome, an autoinflammatory encephalopathy with elevated interferon-α levels in the cerebrospinal fluid. Whether loss of function mutations in SAMHD1 trigger the expression of other cytokines apart from type I interferons in Aicardi-Goutières Syndrome is largely unclear. This study aimed to explore whether SAMHD1 dysfunction regulated the expression of IL-34, a key cytokine controlling the development and maintenance of microglia, in SH-SY5Y neural cells. We found that downregulation of SAMHD1 in SH-SY5Y cells resulted in the upregulation of IL-34 expression. The protein and mRNA levels of NF-κB p65, the transactivating subunit of a transcription factor NF-κB, were also upregulated in SAMHD1-knockdown SH-SY5Y cells. It was further found SAMHD1 knockdown in SH-SY5Y cells induced an upregulation of IL-34 expression through the canonical NF-κB-dependent pathway in which NF-κB p65, IKKα/β and the NF-κB inhibitor IκBα were phosphorylated. Moreover, knockdown of SAMHD1 in SH-SY5Y cells led to the translocation of NF-κB p65 into the nucleus and promoted NF-κB transcriptional activity. In conclusion, we found SAMHD1 dysfunction induced IL-34 expression via NF-κB p65 in neuronal SH-SY5Y cells. This finding could lay the foundation for exploring the role of IL-34-targeting microglia in the pathogenesis of Aicardi-Goutières Syndrome.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Wenjing Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China; First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Ting Chen
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Jiuhao Cui
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Xin Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China; First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Anran Liu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China; First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Rumeng Liu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China; First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Liwei Fang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China; Department of Paediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China
| | - Junhong Jiang
- Department of Paediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China
| | - Li Yang
- Department of Paediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China
| | - De Wu
- Department of Paediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, China.
| |
Collapse
|
65
|
Karla AR, Pinard A, Boerio ML, Hemelsoet D, Tavernier SJ, De Pauw M, Vereecke E, Fraser S, Bamshad MJ, Guo D, Callewaert B, Milewicz DM. SAMHD1 compound heterozygous rare variants associated with moyamoya and mitral valve disease in the absence of other features of Aicardi-Goutières syndrome. Am J Med Genet A 2024; 194:e63486. [PMID: 38041217 PMCID: PMC11700514 DOI: 10.1002/ajmg.a.63486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023]
Abstract
Aicardi-Goutières syndrome (AGS) is an autosomal recessive inflammatory syndrome that manifests as an early-onset encephalopathy with both neurologic and extraneurologic clinical findings. AGS has been associated with pathogenic variants in nine genes: TREX1, RNASEH2B, RNASEH2C, RNASEH2A, SAMHD1, ADAR, IFIH1, LSM11, and RNU7-1. Diagnosis is established by clinical findings (encephalopathy and acquired microcephaly, intellectual and physical impairments, dystonia, hepatosplenomegaly, sterile pyrexia, and/or chilblains), characteristic abnormalities on cranial CT (calcification of the basal ganglia and white matter) and MRI (leukodystrophic changes), or the identification of pathogenic/likely pathogenic variants in the known genes. One of the genes associated with AGS, SAMHD1, has also been associated with a spectrum of cerebrovascular diseases, including moyamoya disease (MMD). In this report, we describe a 31-year-old male referred to genetics for MMD since childhood who lacked the hallmark features of AGS patients but was found to have compound heterozygous SAMHD1 variants. He later developed mitral valve insufficiency due to recurrent chordal rupture and ultimately underwent a heart transplant at 37 years of age. Thus, these data suggest that SAMHD1 pathogenic variants can cause MMD without typical AGS symptoms and support that SAMHD1 should be assessed in MMD patients even in the absence of AGS features.
Collapse
Affiliation(s)
- Aamuktha R. Karla
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Amélie Pinard
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Maura L. Boerio
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| | | | - Simon J. Tavernier
- Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center; Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Michel De Pauw
- Department of Cardiology, Ghent University Hospital, Ghent, Belgium
| | - Elke Vereecke
- Department of Radiology, Ghent University Hospital, Ghent, Belgium
| | - Stuart Fraser
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Michael J. Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Dongchuan Guo
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Bert Callewaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Dianna M. Milewicz
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| |
Collapse
|
66
|
Yeo NKW, Lim CK, Yaung KN, Khoo NKH, Arkachaisri T, Albani S, Yeo JG. Genetic interrogation for sequence and copy number variants in systemic lupus erythematosus. Front Genet 2024; 15:1341272. [PMID: 38501057 PMCID: PMC10944961 DOI: 10.3389/fgene.2024.1341272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
Early-onset systemic lupus erythematosus presents with a more severe disease and is associated with a greater genetic burden, especially in patients from Black, Asian or Hispanic ancestries. Next-generation sequencing techniques, notably whole exome sequencing, have been extensively used in genomic interrogation studies to identify causal disease variants that are increasingly implicated in the development of autoimmunity. This Review discusses the known casual variants of polygenic and monogenic systemic lupus erythematosus and its implications under certain genetic disparities while suggesting an age-based sequencing strategy to aid in clinical diagnostics and patient management for improved patient care.
Collapse
Affiliation(s)
- Nicholas Kim-Wah Yeo
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Che Kang Lim
- Duke-NUS Medical School, Singapore, Singapore
- Department of Clinical Translation Research, Singapore General Hospital, Singapore, Singapore
| | - Katherine Nay Yaung
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Nicholas Kim Huat Khoo
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Thaschawee Arkachaisri
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Rheumatology and Immunology Service, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Salvatore Albani
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Rheumatology and Immunology Service, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Joo Guan Yeo
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Rheumatology and Immunology Service, KK Women’s and Children’s Hospital, Singapore, Singapore
| |
Collapse
|
67
|
Goldberg G, Coelho L, Mo G, Adang LA, Patne M, Chen Z, Garcia-Bassets I, Mesci P, Muotri AR. TREX1 is required for microglial cholesterol homeostasis and oligodendrocyte terminal differentiation in human neural assembloids. Mol Psychiatry 2024; 29:566-579. [PMID: 38129659 PMCID: PMC11153041 DOI: 10.1038/s41380-023-02348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Three Prime Repair Exonuclease 1 (TREX1) gene mutations have been associated with Aicardi-Goutières Syndrome (AGS) - a rare, severe pediatric autoimmune disorder that primarily affects the brain and has a poorly understood etiology. Microglia are brain-resident macrophages indispensable for brain development and implicated in multiple neuroinflammatory diseases. However, the role of TREX1 - a DNase that cleaves cytosolic nucleic acids, preventing viral- and autoimmune-related inflammatory responses - in microglia biology remains to be elucidated. Here, we leverage a model of human embryonic stem cell (hESC)-derived engineered microglia-like cells, bulk, and single-cell transcriptomics, optical and transmission electron microscopy, and three-month-old assembloids composed of microglia and oligodendrocyte-containing organoids to interrogate TREX1 functions in human microglia. Our analyses suggest that TREX1 influences cholesterol metabolism, leading to an active microglial morphology with increased phagocytosis in the absence of TREX1. Notably, regulating cholesterol metabolism with an HMG-CoA reductase inhibitor, FDA-approved atorvastatin, rescues these microglial phenotypes. Functionally, TREX1 in microglia is necessary for the transition from gliogenic intermediate progenitors known as pre-oligodendrocyte precursor cells (pre-OPCs) to precursors of the oligodendrocyte lineage known as OPCs, impairing oligodendrogenesis in favor of astrogliogenesis in human assembloids. Together, these results suggest routes for therapeutic intervention in pathologies such as AGS based on microglia-specific molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Gabriela Goldberg
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Cellular & Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Biomedical Sciences Graduate Program, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Luisa Coelho
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Guoya Mo
- Universal Sequencing Technology Corporation, Carlsbad, CA, 92011, USA
| | - Laura A Adang
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Meenakshi Patne
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Zhoutao Chen
- Universal Sequencing Technology Corporation, Carlsbad, CA, 92011, USA
| | | | - Pinar Mesci
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
- Axiom Space, Houston, TX, 77058, USA.
| | - Alysson R Muotri
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Cellular & Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, 92093, USA.
- Center for Academic Research and Training in Anthropogeny (CARTA) and Archealization (ArchC), University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
68
|
Karki A, Campbell KB, Mozumder S, Fisher AJ, Beal PA. Impact of Disease-Associated Mutations on the Deaminase Activity of ADAR1. Biochemistry 2024; 63:282-293. [PMID: 38190734 PMCID: PMC10872254 DOI: 10.1021/acs.biochem.3c00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The innate immune system relies on molecular sensors to detect distinctive molecular patterns, including viral double-stranded RNA (dsRNA), which triggers responses resulting in apoptosis and immune infiltration. Adenosine Deaminases Acting on RNA (ADARs) catalyze the deamination of adenosine (A) to inosine (I), serving as a mechanism to distinguish self from non-self RNA and prevent aberrant immune activation. Loss-of-function mutations in the ADAR1 gene are one cause of Aicardi Goutières Syndrome (AGS), a severe autoimmune disorder in children. Although seven out of the eight AGS-associated mutations in ADAR1 occur within the catalytic domain of the ADAR1 protein, their specific effects on the catalysis of adenosine deamination remain poorly understood. In this study, we carried out a biochemical investigation of four AGS-causing mutations (G1007R, R892H, K999N, and Y1112F) in ADAR1 p110 and truncated variants. These studies included adenosine deamination rate measurements with two different RNA substrates derived from human transcripts known to be edited by ADAR1 p110 (glioma-associated oncogene homologue 1 (hGli1), 5-hydroxytryptamine receptor 2C (5-HT2cR)). Our results indicate that AGS-associated mutations at two amino acid positions directly involved in stabilizing the base-flipped conformation of the ADAR-RNA complex (G1007R and R892H) had the most detrimental impact on catalysis. The K999N mutation, positioned near the RNA binding interface, altered catalysis contextually. Finally, the Y1112F mutation had small effects in each of the assays described here. These findings shed light on the differential effects of disease-associated mutations on adenosine deamination by ADAR1, thereby advancing our structural and functional understanding of ADAR1-mediated RNA editing.
Collapse
Affiliation(s)
- Agya Karki
- Department of Chemistry, University of California, Davis, CA, USA 95616
| | | | - Sukanya Mozumder
- Department of Chemistry, University of California, Davis, CA, USA 95616
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA 95616
| | - Andrew J. Fisher
- Department of Chemistry, University of California, Davis, CA, USA 95616
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA 95616
| | - Peter A. Beal
- Department of Chemistry, University of California, Davis, CA, USA 95616
| |
Collapse
|
69
|
Garcia L, Gonzalez CD, Gagne A, McGuire JA, French D, Takanohashi A, Almad A, Vanderver A, Sase S. Generation of three induced pluripotent stem cell lines from individuals with Aicardi-Goutières syndrome caused by a c.3019G>A (p.G1007R) autosomal dominant pathogenic variant in ADAR1. Stem Cell Res 2024; 74:103299. [PMID: 38181636 PMCID: PMC10836393 DOI: 10.1016/j.scr.2023.103299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024] Open
Abstract
Mutations in Adenosine deaminase acting on RNA 1 (ADAR1) gene encoding RNA editing enzyme ADAR1 results in the neuroinflammatory leukodystrophy Aicardi Goutières Syndrome (AGS). AGS is an early onset leukoencephalopathy with an exacerbated interferon response leading to neurological regression with intellectual disability, spasticity, and motor deficits. We have generated three induced pluripotent stem cell (iPSC) lines from peripheral blood mononuclear cells (PBMCs) of individuals with ADAR1G1007R mutation. The generated iPSCs were investigated to confirm a normal karyotype, pluripotency, and trilineage differentiation potential. The reprogrammed iPSCs will allow us to model AGS, dissect the cellular mechanisms and testing different treatment targets.
Collapse
Affiliation(s)
- Luis Garcia
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | | | - Alyssa Gagne
- Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jean Ann McGuire
- Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Deborah French
- Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Asako Takanohashi
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Akshata Almad
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Adeline Vanderver
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| | - Sunetra Sase
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
70
|
Thakkar RN, Patel D, Kioutchoukova IP, Al-Bahou R, Reddy P, Foster DT, Lucke-Wold B. Leukodystrophy Imaging: Insights for Diagnostic Dilemmas. Med Sci (Basel) 2024; 12:7. [PMID: 38390857 PMCID: PMC10885080 DOI: 10.3390/medsci12010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 02/24/2024] Open
Abstract
Leukodystrophies, a group of rare demyelinating disorders, mainly affect the CNS. Clinical presentation of different types of leukodystrophies can be nonspecific, and thus, imaging techniques like MRI can be used for a more definitive diagnosis. These diseases are characterized as cerebral lesions with characteristic demyelinating patterns which can be used as differentiating tools. In this review, we talk about these MRI study findings for each leukodystrophy, associated genetics, blood work that can help in differentiation, emerging diagnostics, and a follow-up imaging strategy. The leukodystrophies discussed in this paper include X-linked adrenoleukodystrophy, metachromatic leukodystrophy, Krabbe's disease, Pelizaeus-Merzbacher disease, Alexander's disease, Canavan disease, and Aicardi-Goutières Syndrome.
Collapse
Affiliation(s)
- Rajvi N. Thakkar
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Drashti Patel
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | - Raja Al-Bahou
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Pranith Reddy
- College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Devon T. Foster
- College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, 1600 SW Archer Rd., Gainesville, FL 32610, USA
| |
Collapse
|
71
|
Viengkhou B, Hong C, Mazur C, Damle S, Gallo NB, Fang TC, Henry K, Campbell IL, Kamme F, Hofer MJ. Interferon-α receptor antisense oligonucleotides reduce neuroinflammation and neuropathology in a mouse model of cerebral interferonopathy. J Clin Invest 2024; 134:e169562. [PMID: 38357922 PMCID: PMC10869178 DOI: 10.1172/jci169562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024] Open
Abstract
Chronic and elevated levels of the antiviral cytokine IFN-α in the brain are neurotoxic. This is best observed in patients with genetic cerebral interferonopathies such as Aicardi-Goutières syndrome. Cerebral interferonopathies typically manifest in early childhood and lead to debilitating disease and premature death. There is no cure for these diseases with existing treatments largely aimed at managing symptoms. Thus, an effective therapeutic strategy is urgently needed. Here, we investigated the effect of antisense oligonucleotides targeting the murine IFN-α receptor (Ifnar1 ASOs) in a transgenic mouse model of cerebral interferonopathy. Intracerebroventricular injection of Ifnar1 ASOs into transgenic mice with brain-targeted chronic IFN-α production resulted in a blunted cerebral interferon signature, reduced neuroinflammation, restoration of blood-brain barrier integrity, absence of tissue destruction, and lessened neuronal damage. Remarkably, Ifnar1 ASO treatment was also effective when given after the onset of neuropathological changes, as it reversed such disease-related features. We conclude that ASOs targeting the IFN-α receptor halt and reverse progression of IFN-α-mediated neuroinflammation and neurotoxicity, opening what we believe to be a new and promising approach for the treatment of patients with cerebral interferonopathies.
Collapse
Affiliation(s)
- Barney Viengkhou
- School of Life and Environmental Sciences and the Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Curt Mazur
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Sagar Damle
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | | | | | - Kate Henry
- Biogen Inc, Cambridge, Massachusetts, USA
| | - Iain L. Campbell
- School of Life and Environmental Sciences and the Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Markus J. Hofer
- School of Life and Environmental Sciences and the Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
72
|
Shim A, Luan X, Zhou W, Crow Y, Maciejowski J. Mutations in the non-catalytic polyproline motif destabilize TREX1 and amplify cGAS-STING signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574136. [PMID: 38260344 PMCID: PMC10802300 DOI: 10.1101/2024.01.04.574136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The cGAS-STING pathway detects cytosolic DNA and activates a signaling cascade that results in a type I interferon (IFN) response. The endoplasmic reticulum (ER)-associated exonuclease TREX1 suppresses cGAS-STING by eliminating DNA from the cytosol. Mutations that compromise TREX1 function are linked to autoinflammatory disorders, including systemic lupus erythematosus (SLE) and Aicardi-Goutières syndrome (AGS). Despite key roles in regulating cGAS-STING and suppressing excessive inflammation, the impact of many disease-associated TREX1 mutations - particularly those outside of the core catalytic domains - remains poorly understood. Here, we characterize a recessive AGS-linked TREX1 P61Q mutation occurring within the poorly characterized polyproline helix (PPII) motif. In keeping with its position outside of the catalytic core or ER targeting motifs, neither the P61Q mutation, nor aggregate proline-to-alanine PPII mutation, disrupt TREX1 exonuclease activity, subcellular localization, or cGAS-STING regulation in overexpression systems. Introducing targeted mutations into the endogenous TREX1 locus revealed that PPII mutations destabilize the protein, resulting in impaired exonuclease activity and unrestrained cGAS-STING activation. Overall, these results demonstrate that TREX1 PPII mutations, including P61Q, impair proper immune regulation and lead to autoimmune disease through TREX1 destabilization.
Collapse
Affiliation(s)
- Abraham Shim
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiaohan Luan
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wen Zhou
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yanick Crow
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
73
|
Livingston JH. Childhood-inherited white matter disorders with calcification. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:95-109. [PMID: 39322397 DOI: 10.1016/b978-0-323-99209-1.00013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Intracranial calcification (ICC) occurs in many neurologic disorders both acquired and genetic. In some inherited white matter disorders, it is a common or even invariable feature where the presence and pattern of calcification provides an important pointer to the specific diagnosis. This is particularly the case for the Aicardi-Goutières syndrome (AGS) and for Coats plus (CP) and leukoencephalopathy with calcifications and cysts (LCC), which are discussed in detail in this chapter. AGS is a genetic disorder of type 1 interferon regulation, caused by mutations in any of the nine genes identified to date. In its classic form, AGS has very characteristic clinical and neuroimaging features which will be discussed here. LCC is a purely neurologic disorder caused by mutations in the SNORD118 gene, whereas CP is a multisystem disorder of telomere function that may result from mutations in the CTC1, POT1, or STN genes. In spite of the different pathogenetic basis for LCC and CP, they share remarkably similar neuroimaging and neuropathologic features. Cockayne syndrome, in which ICC is usually present, is discussed elsewhere in this volume. ICC may occur as an occasional feature of many other white matter diseases, including Alexander disease, Krabbe disease, X-ALD, and occulodentodigital dysplasia.
Collapse
Affiliation(s)
- John H Livingston
- Professor of Paediatric Neurology, University of Leeds, Leeds, United Kingdom; Department of Paediatric Neurology, Leeds Teaching Hospitals, Leeds, United Kingdom.
| |
Collapse
|
74
|
Mura E, Parazzini C, Tonduti D. Rare forms of hypomyelination and delayed myelination. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:225-252. [PMID: 39322381 DOI: 10.1016/b978-0-323-99209-1.00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Hypomyelination is defined by the evidence of an unchanged pattern of deficient myelination on two MRIs performed at least 6 months apart in a child older than 1 year. When the temporal criteria are not fulfilled, and the follow-up MRI shows a progression of the myelination even if still not adequate for age, hypomyelination is excluded and the pattern is instead consistent with delayed myelination. This can be mild and nonspecific in some cases, while in other cases there is a severe delay that in the first disease stages could be difficult to differentiate from hypomyelination. In hypomyelinating leukodystrophies, hypomyelination is due to a primary impairment of myelin deposition, such as in Pelizaeus Merzabcher disease. Conversely, myelin lack is secondary, often to primary neuronal disorders, in delayed myelination and some condition with hypomyelination. Overall, the group of inherited white matter disorders with abnormal myelination has expanded significantly during the past 20 years. Many of these disorders have only recently been described, for many of them only a few patients have been reported and this contributes to make challenging the diagnostic process and the interpretation of Next Generation Sequencing results. In this chapter, we review the clinical and radiologic features of rare and lesser known forms of hypomyelination and delayed myelination not mentioned in other chapters of this handbook.
Collapse
Affiliation(s)
- Eleonora Mura
- Unit of Pediatric Neurology, Department of Biomedical and Clinical Sciences, V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy; C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy
| | - Cecilia Parazzini
- C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy; Pediatric Radiology and Neuroradiology Department, V. Buzzi Children's Hospital, Milan, Italy
| | - Davide Tonduti
- Unit of Pediatric Neurology, Department of Biomedical and Clinical Sciences, V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy; C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
75
|
Sharifian-Dorche M, La Piana R. General approach to treatment of genetic leukoencephalopathies in children and adults. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:335-354. [PMID: 39322388 DOI: 10.1016/b978-0-323-99209-1.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Despite the enormous advancements seen in recent years, curative therapies for patients with genetic leukoencephalopathies are available for only a relatively small number of disorders. Therefore, symptomatic treatment and preventive management of the multiple clinical manifestations of patients with genetic leukoencephalopathies are critical in their care. The goals of the symptomatic treatment are to improve patients' quality of life, increase their survival, and reduce the impact on medical resources and related expenses. The coordinated work of a multidisciplinary team, including all specialists involved in the care of these patients, is the gold standard approach to manage and treat their complex and evolving clinical picture. Along with a multidisciplinary team, the relationship and close collaboration with the patient and their caregivers are essential. Their insight into the disease manifestations and management of the different issues should be integrated with the assessments of the multidisciplinary team to prevent clinical complications and preserve the quality of life of patients and their caregivers. Genetic leukoencephalopathies are very heterogeneous in terms of age of onset, clinical features, and disease course. However, many clinical features and problems are shared by most forms. Consequently, common therapeutic strategies apply to the majority of these diseases. This chapter presents the symptomatic approach for shared core clinical features presented by patients with genetic leukoencephalopathies divided by systems and, for each system, the specificities of some genetic leukoencephalopathies.
Collapse
Affiliation(s)
- Maryam Sharifian-Dorche
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Roberta La Piana
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Department of Diagnostic Radiology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
76
|
Nakano H. Necroptosis and Its Involvement in Various Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:129-143. [PMID: 38467977 DOI: 10.1007/978-981-99-9781-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Necroptosis is a regulated form of cell death involved in the development of various pathological conditions. In contrast to apoptosis, plasma membrane rupture (PMR) occurs in cells in the relatively early stage of necroptosis; therefore, necroptosis induces a strong inflammatory response. Stimuli, including tumor necrosis factor (TNF), interferon (IFN)α/β, lipopolysaccharide, polyI:C, and viral infection, induce the formation of necrosomes that lead to membrane rupture and the release of intracellular contents, termed danger-associated molecular patterns (DAMPs). DAMPs are the collective term for molecules that normally reside in the cytoplasm or nucleus in living cells without inducing inflammation but induce strong inflammatory responses when released outside cells. Recent studies have provided a better understanding of the mechanisms underlying PMR and the release of DAMPs. Moreover, necroptosis is involved in various pathological conditions, and mutations in necroptosis-related genes can cause hereditary autoinflammatory syndromes. Thus, manipulating necroptosis signaling pathways may be useful for treating diseases involving necroptosis.
Collapse
Affiliation(s)
- Hiroyasu Nakano
- Department of Biochemistry, Faculty of Medicine, Toho University School of Medicine, Tokyo, Japan.
| |
Collapse
|
77
|
Markovic I, Jocic-Jakubi B, Milenkovic Z. Early arteriopathy in Aicardi-Goutières syndrome 5. Case report and review of literature. Neuroradiol J 2023; 36:740-745. [PMID: 36722173 PMCID: PMC10649525 DOI: 10.1177/19714009231154677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Aicardi-Goutières syndrome (AGS) is an autosomal recessive disease that mimics congenital viral infection and mainly affects the brain, immune system, and skin. The dominant clinical symptom is the subacute onset of severe encephalopathy, which manifests as irritability, loss of ability, slowing of head growth, and poor nutrition. Arteriopathy in AGS is an uncommon manifestation usually associated with mutations in the SAMHD1 gene. We present a rare case of a 3-year-old male due to failure to thrive, global developmental delay, microcephaly, poor vision, upper and lower limbs spasticity, and gastroesophageal reflux disease (GERD), who harbored early stenotic lesions of the large and medium intracranial arteries with ischemic sequelae in the early postnatal life. Performed genetic testing confirmed homozygous gene mutation, SAMHD1 associated with AGS type 5. By reviewing the available literature, we were able to find only one patient whose arterial lesions were diagnosed after 6 months.
Collapse
Affiliation(s)
- Ivana Markovic
- Department of Radiology and Molecular Imaging, Sultan Qaboos University Hospital, Muscat, Oman
| | | | | |
Collapse
|
78
|
Abstract
Systemic autoinflammatory diseases (SAIDs) are a heterogeneous group of disorders caused by excess activation of the innate immune system in an antigen-independent manner. Starting with the discovery of the causal gene for familial Mediterranean fever, more than 50 monogenic SAIDs have been described. These discoveries, paired with advances in immunology and genomics, have allowed our understanding of these diseases to improve drastically in the last decade. The genetic causes of SAIDs are complex and include both germline and somatic pathogenic variants that affect various inflammatory signaling pathways. We provide an overview of the acquired SAIDs from a genetic perspective and summarize the clinical phenotypes and mechanism(s) of inflammation, aiming to provide a comprehensive understanding of the pathogenesis of autoinflammatory diseases.
Collapse
Affiliation(s)
- Jiahui Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA;
| | - Qing Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China;
| |
Collapse
|
79
|
Świerczyńska M, Tronina A, Filipek E. Aicardi-Goutières Syndrome with Congenital Glaucoma Caused by Novel TREX1 Mutation. J Pers Med 2023; 13:1609. [PMID: 38003924 PMCID: PMC10672266 DOI: 10.3390/jpm13111609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Aicardi-Goutières syndrome (AGS) is a rare genetic disorder characterized by microcephaly, white matter lesions, numerous intracranial calcifications, chilblain skin lesions and high levels of interferon-α (IFN-α) in the cerebrospinal fluid (CSF). However, ocular involvement is reported significantly less frequently. CASE PRESENTATION We present a case of a neonate with hypotrophy, microcephaly, frostbite-like skin lesions, thrombocytopenia, elevated liver enzymes and hepatosplenomegaly. Magnetic resonance imaging (MRI) of the brain showed multiple foci of calcification, white matter changes, cerebral atrophy, and atrophic dilatation of the ventricular system. The inflammatory parameters were not elevated, and the infectious etiology was excluded. Instead, elevated levels of IFN-α in the serum were detected. Based on the related clinical symptoms, imaging and test findings, the diagnosis of AGS was suspected. Genetic testing revealed two pathogenic mutations, c.490C>T and c.222del (novel mutation), in the three prime repair exonuclease 1 (TREX1) gene, confirming AGS type 1 (AGS1). An ophthalmologic examination of the child at 10 months of age revealed an impaired pupillary response to light, a corneal haze with Haab lines in the right eye (RE), pale optic nerve discs and neuropathy in both eyes (OU). The intraocular pressure (IOP) was 51 mmHg in the RE and 49 in the left eye (LE). The flash visual evoked potential (FVEP) showed prolonged P2 latencies of up to 125% in the LE and reduced amplitudes of up to approximately 10% OU. This girl was diagnosed with congenital glaucoma, and it was managed with a trabeculectomy with a basal iridectomy of OU, resulting in a reduction and stabilization in the IOP to 12 mmHg in the RE and 10 mmHg in the LE without any hypotensive eyedrops. CONCLUSIONS We present the clinical characteristics, electrophysiological and imaging findings, as well as the genetic test results of a patient with AGS1. Our case contributes to the extended ophthalmic involvement of the pathogenic c.490C>T and c.222del mutations in TREX1.
Collapse
Affiliation(s)
- Marta Świerczyńska
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-514 Katowice, Poland
- Department of Ophthalmology, Kornel Gibiński University Clinical Center, Medical University of Silesia, 40-514 Katowice, Poland
| | - Agnieszka Tronina
- Department of Pediatric Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-514 Katowice, Poland; (A.T.); (E.F.)
- Department of Pediatric Ophthalmology, Kornel Gibiński University Clinical Center, Medical University of Silesia, 40-514 Katowice, Poland
| | - Erita Filipek
- Department of Pediatric Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-514 Katowice, Poland; (A.T.); (E.F.)
- Department of Pediatric Ophthalmology, Kornel Gibiński University Clinical Center, Medical University of Silesia, 40-514 Katowice, Poland
| |
Collapse
|
80
|
Bradley L, Savage KI. 'From R-lupus to cancer': Reviewing the role of R-loops in innate immune responses. DNA Repair (Amst) 2023; 131:103581. [PMID: 37832251 DOI: 10.1016/j.dnarep.2023.103581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
Cells possess an inherent and evolutionarily conserved ability to detect and respond to the presence of foreign and pathological 'self' nucleic acids. The result is the stimulation of innate immune responses, signalling to the host immune system that defence mechanisms are necessary to protect the organism. To date, there is a vast body of literature describing innate immune responses to various nucleic acid species, including dsDNA, ssDNA and ssRNA etc., however, there is limited information available on responses to R-loops. R-loops are 3-stranded nucleic acid structures that form during transcription, upon DNA damage and in various other settings. Emerging evidence suggests that innate immune responses may also exist for the detection of R-loop related nucleic acid structures, implicating R-loops as drivers of inflammatory states. In this review, we aim to summarise the evidence indicating that R-loops are immunogenic species that can trigger innate immune responses in physiological and pathological settings and discuss the implications of this in the study of various diseases and therapeutic development.
Collapse
Affiliation(s)
- Leanne Bradley
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Rd, Belfast, United Kingdom
| | - Kienan I Savage
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Rd, Belfast, United Kingdom.
| |
Collapse
|
81
|
Yang S, Winstone L, Mondal S, Wu Y. Helicases in R-loop Formation and Resolution. J Biol Chem 2023; 299:105307. [PMID: 37778731 PMCID: PMC10641170 DOI: 10.1016/j.jbc.2023.105307] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023] Open
Abstract
With the development and wide usage of CRISPR technology, the presence of R-loop structures, which consist of an RNA-DNA hybrid and a displaced single-strand (ss) DNA, has become well accepted. R-loop structures have been implicated in a variety of circumstances and play critical roles in the metabolism of nucleic acid and relevant biological processes, including transcription, DNA repair, and telomere maintenance. Helicases are enzymes that use an ATP-driven motor force to unwind double-strand (ds) DNA, dsRNA, or RNA-DNA hybrids. Additionally, certain helicases have strand-annealing activity. Thus, helicases possess unique positions for R-loop biogenesis: they utilize their strand-annealing activity to promote the hybridization of RNA to DNA, leading to the formation of R-loops; conversely, they utilize their unwinding activity to separate RNA-DNA hybrids and resolve R-loops. Indeed, numerous helicases such as senataxin (SETX), Aquarius (AQR), WRN, BLM, RTEL1, PIF1, FANCM, ATRX (alpha-thalassemia/mental retardation, X-linked), CasDinG, and several DEAD/H-box proteins are reported to resolve R-loops; while other helicases, such as Cas3 and UPF1, are reported to stimulate R-loop formation. Moreover, helicases like DDX1, DDX17, and DHX9 have been identified in both R-loop formation and resolution. In this review, we will summarize the latest understandings regarding the roles of helicases in R-loop metabolism. Additionally, we will highlight challenges associated with drug discovery in the context of targeting these R-loop helicases.
Collapse
Affiliation(s)
- Shizhuo Yang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lacey Winstone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sohaumn Mondal
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yuliang Wu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
82
|
Wang CS. Type I Interferonopathies: A Clinical Review. Rheum Dis Clin North Am 2023; 49:741-756. [PMID: 37821193 DOI: 10.1016/j.rdc.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
This review will discuss when clinicians should consider evaluating for Type I interferonopathies, review clinical phenotypes and molecular defects of Type I interferonopathies, and discuss current treatments.
Collapse
Affiliation(s)
- Christine S Wang
- Department of Pediatric Rheumatology, C.S. Mott Children's Hospital, University of Michigan, 1500 East Medical Center Drive SPC 5718, Ann Arbor, MI 48109, USA.
| |
Collapse
|
83
|
Weiden C, Saers M, Schwarz T, Hinze T, Wittkowski H, Kessel C, Masjosthusmann K, Mohr M, Evers G, Oesingmann-Weirich S, Foell D, Hinze CH. Type 1 Interferon-Stimulated Gene Expression and Disease Activity in Pediatric Rheumatic Diseases: No Composite Scores Needed? ACR Open Rheumatol 2023. [PMID: 37786243 DOI: 10.1002/acr2.11618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 10/04/2023] Open
Abstract
OBJECTIVE Rheumatic diseases are characterized by different patterns of immune overactivation. This study investigated the correlation of whole blood type 1 interferon (IFN) stimulated gene (ISG), IL18, and CXCL9 expression with clinical disease activity in pediatric rheumatic diseases and assessed the required number of ISGs to be included in a composite type 1 IFN score. METHODS Whole blood-derived RNA and clinical data were collected from 171 mostly pediatric patients with connective tissue diseases (CTDs), systemic autoinflammatory diseases (SAIDs), monogenic interferonopathies (IFNPs) and other inflammatory diseases, and from 38 controls. The expression of six previously established ISGs, IL18, and CXCL9 was assessed by real-time polymerase chain reaction (471 samples). Individual and composite gene expression was assessed, and correlation and threshold analyses were performed. RESULTS Correlation between ISG expression and clinical disease activity was strongest in CTD, especially in juvenile dermatomyositis (JDM) and IFNP, and modest in patients with SAID. Threshold ISG expression levels for the detection of at least mild clinical disease activity were substantially higher in patients with systemic lupus erythematosus compared with JDM. The correlation of expression levels of limited sets of ISGs and even individual ISGs with clinical disease activity were not inferior to a composite score of six ISGs. CONCLUSION In a real-world cohort, individual ISG expression levels robustly reflected clinical disease activity in CTD and IFNP, especially in JDM, which would simplify such analyses in clinical routine and be more cost-effective. Threshold levels varied across diseases, potentially reflecting different mechanisms of type 1 IFN overactivation.
Collapse
Affiliation(s)
| | | | | | - Tanja Hinze
- University Hospital Muenster, Muenster, Germany
| | | | | | | | | | - Georg Evers
- University Hospital Muenster, Muenster, Germany
| | | | - Dirk Foell
- University Hospital Muenster, Muenster, Germany
| | | |
Collapse
|
84
|
Ait El Cadi C, Dafrallah L, Amalou G, Charif M, Charoute H, Araqi-Houssaini A, Lakhiari H, Lenaers G, Barakat A. A case report of two Moroccan patients with hereditary neurological disorders and molecular modeling study on the S72L de novo PMP22 variant. Rev Neurol (Paris) 2023; 179:902-909. [PMID: 37296061 DOI: 10.1016/j.neurol.2023.01.728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/21/2022] [Accepted: 01/11/2023] [Indexed: 06/12/2023]
Abstract
Hereditary neurological disorders represent a wild group of hereditary illnesses affecting mainly the nervous system, the majority of which have a Mendelian inheritance pattern. Here we present the case of two Moroccan patients each affected by a different hereditary neurological disorder. In the first patient WES analysis revealed the presence of the p.Ser72Leu de novo mutation in the PMP22 gene reported for the first time in Africa, specifically in Morocco. This variant is predicted to be in a mutation "hot-spot" region causing Dejerine-Sottas syndrome called also Charcot-Marie-Tooth type 3. The molecular modeling study suggests an important alteration of hydrogen and hydrophobic interactions between the residue in position 72 of the PMP22 protein and its surrounding amino acids. On the other hand, the p.Ala177Thr mutation on the RNASEH2B gene, responsible of Aicardi-Goutières syndrome 2, was carried in a homozygous state by the second patient descending from a consanguineous family. This mutation is common among the Moroccan population as well as in other North African countries. The present results contributed to a better follow-up of both cases allowing better symptom management with convenient treatments.
Collapse
Affiliation(s)
- C Ait El Cadi
- Human Molecular Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco; Laboratoire de virologie, microbiologie, qualité et biotechnologies/eco-toxicologie et biodiversité, faculté des sciences et techniques de Mohammedia, BP 146, 28806 Mohammedia, Morocco
| | - L Dafrallah
- Human Molecular Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco; Laboratoire de virologie, microbiologie, qualité et biotechnologies/eco-toxicologie et biodiversité, faculté des sciences et techniques de Mohammedia, BP 146, 28806 Mohammedia, Morocco
| | - G Amalou
- Human Molecular Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - M Charif
- MitoLab team, institut MitoVasc, UMR CNRS 6015, Inserm U1083, université d'Angers, Angers, France; Laboratory of Physiology, Genetics and Ethnopharmacology, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - H Charoute
- Human Molecular Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - A Araqi-Houssaini
- Cabinet neurologie Dr. Adil Araqi-Houssaini, résidence Infitah, 3, rue Nahass Nahoui Maarif, Casablanca, Morocco
| | - H Lakhiari
- Laboratoire de virologie, microbiologie, qualité et biotechnologies/eco-toxicologie et biodiversité, faculté des sciences et techniques de Mohammedia, BP 146, 28806 Mohammedia, Morocco
| | - G Lenaers
- MitoLab team, institut MitoVasc, UMR CNRS 6015, Inserm U1083, université d'Angers, Angers, France
| | - A Barakat
- Human Molecular Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.
| |
Collapse
|
85
|
Thomas KN, Aggarwal A. Childhood rheumatic diseases: bites not only the joint, but also the heart. Clin Rheumatol 2023; 42:2703-2715. [PMID: 37160484 PMCID: PMC10169151 DOI: 10.1007/s10067-023-06621-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
Cardiovascular involvement in juvenile rheumatic diseases is the primary manifestation in paediatric vasculitis and a major organ manifestation in paediatric connective tissue diseases. Though coronary vasculitis is the prototypical manifestation of Kawasaki disease, it can also be seen in patients with polyarteritis nodosa. Pericarditis is the most common manifestation seen in juvenile rheumatic diseases like systemic onset JIA, and lupus. Cardiac tamponade, valvular insufficiency, aortic root dilatation and arrhythmias are seen rarely. Cardiac involvement is often recognized late in children. The development of cardiac disease in juvenile systemic sclerosis is associated with a poor outcome. In long term, childhood onset of rheumatic diseases predisposes to diastolic dysfunction and premature atherosclerosis during adulthood. Key Points • Pericarditis is the most common cardiac manifestation in SLE and can lead to tamponade. • Conduction defects are common in juvenile mixed connective tissue disease and systemic sclerosis. • Pulmonary hypertension is a significant contributor to mortality in juvenile systemic sclerosis. • In Kawasaki disease, early treatment can reduce risk of coronary artery aneurysms.
Collapse
Affiliation(s)
- Koshy Nithin Thomas
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Amita Aggarwal
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India.
| |
Collapse
|
86
|
Liu A, Ying S. Aicardi-Goutières syndrome: A monogenic type I interferonopathy. Scand J Immunol 2023; 98:e13314. [PMID: 37515439 DOI: 10.1111/sji.13314] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/26/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
Aicardi-Goutières syndrome (AGS) is a rare monogenic autoimmune disease that primarily affects the brains of children patients. Its main clinical features include encephalatrophy, basal ganglia calcification, leukoencephalopathy, lymphocytosis and increased interferon-α (IFN-α) levels in the patient's cerebrospinal fluid (CSF) and serum. AGS may be caused by mutations in any one of nine genes (TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1, IFIH1, LSM11 and RNU7-1) that result in accumulation of self-nucleic acids in the cytoplasm or aberrant sensing of self-nucleic acids. This triggers overproduction of type I interferons (IFNs) and subsequently causes AGS, the prototype of type I interferonopathies. This review describes the discovery history of AGS with various genotypes and provides the latest knowledge of clinical manifestations and causative genes of AGS. The relationship between AGS and type I interferonopathy and potential therapeutic methods for AGS are also discussed in this review.
Collapse
Affiliation(s)
- Anran Liu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
87
|
Fan X, Song X, Chen W, Liang H, Nakatsukasa H, Zhang D. cGAS‐STING signaling in cancer: Regulation and therapeutic targeting. MEDCOMM – ONCOLOGY 2023; 2. [DOI: 10.1002/mog2.49] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/24/2023] [Indexed: 01/04/2025]
Abstract
AbstractImmunotherapy has revolutionized antitumor therapy. Since the discovery of stimulators of interferon genes (STING), efforts have been made to elucidate their mechanisms and physiological functions and explore the potential of STING as a therapeutic target in immune‐related diseases and malignant tumors. In recent years, STING agonists have become a popular research topic. Activation of the cyclic GMP–AMP synthase (cGAS)‐STING pathway produces large amounts of type I interferons, which play key roles in activating innate and acquired immune responses. The cGAS‐STING pathway influences almost all aspects of tumorigenesis and has great antitumor potential. In addition, the activation of the cGAS‐STING pathway is associated with tumor regression, prolonged survival of patients with cancer, and enhanced immunotherapy. Given the positive role of STING in antitumor immunity, the development of STING‐targeted drugs is important. In this review, we summarize the activation and potential mechanisms of the cGAS‐STING pathway, discuss the association of the cGAS‐STING pathway with tumors and autoimmune diseases, and highlight research progress, clinical applications, and combination drug strategies for STING agonists.
Collapse
Affiliation(s)
- Xinzou Fan
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital Sichuan University Chengdu Sichuan China
| | - Xiaoshuang Song
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital Sichuan University Chengdu Sichuan China
| | - Wenjing Chen
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital Sichuan University Chengdu Sichuan China
| | - Hantian Liang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital Sichuan University Chengdu Sichuan China
| | - Hiroko Nakatsukasa
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences Chiba University Chiba Japan
| | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital Sichuan University Chengdu Sichuan China
| |
Collapse
|
88
|
Vinuesa CG, Shen N, Ware T. Genetics of SLE: mechanistic insights from monogenic disease and disease-associated variants. Nat Rev Nephrol 2023; 19:558-572. [PMID: 37438615 DOI: 10.1038/s41581-023-00732-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 07/14/2023]
Abstract
The past few years have provided important insights into the genetic architecture of systemic autoimmunity through aggregation of findings from genome-wide association studies (GWAS) and whole-exome or whole-genome sequencing studies. In the prototypic systemic autoimmune disease systemic lupus erythematosus (SLE), monogenic disease accounts for a small fraction of cases but has been instrumental in the elucidation of disease mechanisms. Defects in the clearance or digestion of extracellular or intracellular DNA or RNA lead to increased sensing of nucleic acids, which can break B cell tolerance and induce the production of type I interferons leading to tissue damage. Current data suggest that multiple GWAS SLE risk alleles act in concert with rare functional variants to promote SLE development. Moreover, introduction of orthologous variant alleles into mice has revealed that pathogenic X-linked dominant and recessive SLE can be caused by novel variants in TLR7 and SAT1, respectively. Such bespoke models of disease help to unravel pathogenic pathways and can be used to test targeted therapies. Cell type-specific expression data revealed that most GWAS SLE risk genes are highly expressed in age-associated B cells (ABCs), which supports the view that ABCs produce lupus autoantibodies and contribute to end-organ damage by persisting in inflamed tissues, including the kidneys. ABCs have thus emerged as key targets of promising precision therapeutics.
Collapse
Affiliation(s)
- Carola G Vinuesa
- The Francis Crick Institute, London, UK.
- University College London, London, UK.
- China Australia Centre for Personalized Immunology (CACPI), Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- Center for Autoimmune Genomics and Aetiology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Paediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Thuvaraka Ware
- The Francis Crick Institute, London, UK
- University College London, London, UK
| |
Collapse
|
89
|
Gagne S, Sivaraman V, Akoghlanian S. Interferonopathies masquerading as non-Mendelian autoimmune diseases: pattern recognition for early diagnosis. Front Pediatr 2023; 11:1169638. [PMID: 37622085 PMCID: PMC10445166 DOI: 10.3389/fped.2023.1169638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/05/2023] [Indexed: 08/26/2023] Open
Abstract
Type I interferonopathies are a broad category of conditions associated with increased type I interferon gene expression and include monogenic autoinflammatory diseases and non-Mendelian autoimmune diseases such as dermatomyositis and systemic lupus erythematosus. While a wide range of clinical presentations among type I interferonopathies exists, these conditions often share several clinical manifestations and implications for treatment. Presenting symptoms may mimic non-Mendelian autoimmune diseases, including vasculitis and systemic lupus erythematosus, leading to delayed or missed diagnosis. This review aims to raise awareness about the varied presentations of monogenic interferonopathies to provide early recognition and appropriate treatment to prevent irreversible damage and improve quality of life and outcomes in this unique patient population.
Collapse
Affiliation(s)
- Samuel Gagne
- Division of Pediatric Rheumatology, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Vidya Sivaraman
- Division of Pediatric Rheumatology, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Shoghik Akoghlanian
- Division of Pediatric Rheumatology, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
90
|
Natoli V, Charras A, Hahn G, Hedrich CM. Neuropsychiatric involvement in juvenile-onset systemic lupus erythematosus (jSLE). Mol Cell Pediatr 2023; 10:5. [PMID: 37556020 PMCID: PMC10412509 DOI: 10.1186/s40348-023-00161-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a rare autoimmune/inflammatory disease with significant morbidity and mortality. Approximately 15-20% of SLE patients develop the disease during childhood or adolescence (juvenile-onset SLE/jSLE). Patients with jSLE exhibit more variable and severe disease when compared to patients with disease-onset during adulthood. Neuropsychiatric (NP) involvement is a clinically heterogenous and potentially severe complication. Published reports on the incidence and prevalence of NP-jSLE are scarce, and the exact pathophysiology is poorly understood.This manuscript provides a review of the existing literature, suggesting NP involvement in 13.5-51% of jSLE patients. Among patients with NP-jSLE affecting the CNS, we propose two main subgroups: (i) a chronic progressive, predominantly type 1 interferon-driven form that poorly responds to currently used treatments, and (ii) an acutely aggressive form that usually presents early during the disease that may be primarily mediated by auto-reactive effector lymphocytes. While this hypothesis requires to be tested in large collaborative international cohort studies, it may offer future patient stratification and individualised care.
Collapse
Affiliation(s)
- Valentina Natoli
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Department of Rheumatology, Institute in the Park, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili, Università degli Studi di Genova, Genoa, Italy
| | - Amandine Charras
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Gabriele Hahn
- Department of Radiology, Universitätsklinikum Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Christian M Hedrich
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
- Department of Rheumatology, Institute in the Park, Alder Hey Children's NHS Foundation Trust, Liverpool, UK.
| |
Collapse
|
91
|
Peixoto de Barcelos I, Bueno C, S. Godoy LF, Pessoa A, A. Costa L, C. Monti F, Souza-Cabral K, Listik C, Castro D, Della-Ripa B, Freua F, C. Pires L, T. Krüger L, D. Gherpelli JL, B. Piazzon F, P. Monteiro F, T. Lucato L, Kok F. Subacute Partially Reversible Leukoencephalopathy Expands the Aicardi-Goutières Syndrome Phenotype. Brain Sci 2023; 13:1169. [PMID: 37626525 PMCID: PMC10452434 DOI: 10.3390/brainsci13081169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
OBJECTIVE To report a series of atypical presentations of Aicardi-Goutières syndrome. METHODS Clinical, neuroimaging, and genetic data. RESULTS We report a series of six unrelated patients (five males) with a subacute loss of developmental milestones, pyramidal signs, and regression of communication abilities, with onset at ages ranging from 7 to 20 months, reaching a nadir after 4 to 24 weeks. A remarkable improvement of lost abilities occurred in the follow-up, and they remained with residual spasticity and dysarthria but preserved cognitive function. Immunization or febrile illness occurred before disease onset in all patients. CSF was normal in two patients, and in four, borderline or mild lymphocytosis was present. A brain CT scan disclosed a subtle basal ganglia calcification in one of six patients. Brain MRI showed asymmetric signal abnormalities of white matter with centrum semi-ovale involvement in five patients and a diffuse white matter abnormality with contrast enhancement in one. Four patients were diagnosed and treated for acute demyelinating encephalomyelitis (ADEM). Brain imaging was markedly improved with one year or more of follow-up (average of 7 years), but patients remained with residual spasticity and dysarthria without cognitive impairment. Demyelination relapse occurred in a single patient four years after the first event. Whole-exome sequencing (WES) was performed in all patients: four of them disclosed biallelic pathogenic variants in RNASEH2B (three homozygous p.Ala177Thr and one compound heterozygous p.Ala177Thr/p.Gln58*) and in two of them the same homozygous deleterious variants in RNASEH2A (p.Ala249Val). CONCLUSIONS This report expands the phenotype of AGS to include subacute developmental regression with partial clinical and neuroimaging improvement. Those clinical features might be misdiagnosed as ADEM.
Collapse
Affiliation(s)
- Isabella Peixoto de Barcelos
- Child Neurology Service, Department of Neurology, University of São Paulo School of Medicine, Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, São Paulo 05403-000, SP, Brazil; (I.P.d.B.); (C.B.); (A.P.); (F.C.M.); (K.S.-C.); (C.L.); (D.C.); (B.D.-R.); (F.F.); (J.L.D.G.); (F.B.P.)
| | - Clarissa Bueno
- Child Neurology Service, Department of Neurology, University of São Paulo School of Medicine, Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, São Paulo 05403-000, SP, Brazil; (I.P.d.B.); (C.B.); (A.P.); (F.C.M.); (K.S.-C.); (C.L.); (D.C.); (B.D.-R.); (F.F.); (J.L.D.G.); (F.B.P.)
| | - Luís Filipe S. Godoy
- Department of Radiology, University of São Paulo School of Medicine, São Paulo 05403-000, SP, Brazil; (L.F.S.G.)
| | - André Pessoa
- Child Neurology Service, Department of Neurology, University of São Paulo School of Medicine, Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, São Paulo 05403-000, SP, Brazil; (I.P.d.B.); (C.B.); (A.P.); (F.C.M.); (K.S.-C.); (C.L.); (D.C.); (B.D.-R.); (F.F.); (J.L.D.G.); (F.B.P.)
- Albert Sabin Children’s Hospital, Ceara State University, Fortaleza 60714-903, CE, Brazil
| | - Larissa A. Costa
- Mendelics Genomic Analysis, São Paulo 02511-000, SP, Brazil; (L.A.C.); (F.P.M.)
| | - Fernanda C. Monti
- Child Neurology Service, Department of Neurology, University of São Paulo School of Medicine, Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, São Paulo 05403-000, SP, Brazil; (I.P.d.B.); (C.B.); (A.P.); (F.C.M.); (K.S.-C.); (C.L.); (D.C.); (B.D.-R.); (F.F.); (J.L.D.G.); (F.B.P.)
| | - Katiane Souza-Cabral
- Child Neurology Service, Department of Neurology, University of São Paulo School of Medicine, Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, São Paulo 05403-000, SP, Brazil; (I.P.d.B.); (C.B.); (A.P.); (F.C.M.); (K.S.-C.); (C.L.); (D.C.); (B.D.-R.); (F.F.); (J.L.D.G.); (F.B.P.)
| | - Clarice Listik
- Child Neurology Service, Department of Neurology, University of São Paulo School of Medicine, Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, São Paulo 05403-000, SP, Brazil; (I.P.d.B.); (C.B.); (A.P.); (F.C.M.); (K.S.-C.); (C.L.); (D.C.); (B.D.-R.); (F.F.); (J.L.D.G.); (F.B.P.)
| | - Diego Castro
- Child Neurology Service, Department of Neurology, University of São Paulo School of Medicine, Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, São Paulo 05403-000, SP, Brazil; (I.P.d.B.); (C.B.); (A.P.); (F.C.M.); (K.S.-C.); (C.L.); (D.C.); (B.D.-R.); (F.F.); (J.L.D.G.); (F.B.P.)
| | - Bruno Della-Ripa
- Child Neurology Service, Department of Neurology, University of São Paulo School of Medicine, Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, São Paulo 05403-000, SP, Brazil; (I.P.d.B.); (C.B.); (A.P.); (F.C.M.); (K.S.-C.); (C.L.); (D.C.); (B.D.-R.); (F.F.); (J.L.D.G.); (F.B.P.)
| | - Fernando Freua
- Child Neurology Service, Department of Neurology, University of São Paulo School of Medicine, Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, São Paulo 05403-000, SP, Brazil; (I.P.d.B.); (C.B.); (A.P.); (F.C.M.); (K.S.-C.); (C.L.); (D.C.); (B.D.-R.); (F.F.); (J.L.D.G.); (F.B.P.)
| | - Laís C. Pires
- Paulo Niemeyer State Institute of Brain, Rio de Janeiro 20230-024, RJ, Brazil; (L.C.P.); (L.T.K.)
| | - Lia T. Krüger
- Paulo Niemeyer State Institute of Brain, Rio de Janeiro 20230-024, RJ, Brazil; (L.C.P.); (L.T.K.)
| | - José Luiz D. Gherpelli
- Child Neurology Service, Department of Neurology, University of São Paulo School of Medicine, Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, São Paulo 05403-000, SP, Brazil; (I.P.d.B.); (C.B.); (A.P.); (F.C.M.); (K.S.-C.); (C.L.); (D.C.); (B.D.-R.); (F.F.); (J.L.D.G.); (F.B.P.)
- Albert Einstein Hospital, São Paulo 05652-900, SP, Brazil
| | - Flavia B. Piazzon
- Child Neurology Service, Department of Neurology, University of São Paulo School of Medicine, Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, São Paulo 05403-000, SP, Brazil; (I.P.d.B.); (C.B.); (A.P.); (F.C.M.); (K.S.-C.); (C.L.); (D.C.); (B.D.-R.); (F.F.); (J.L.D.G.); (F.B.P.)
| | - Fabiola P. Monteiro
- Mendelics Genomic Analysis, São Paulo 02511-000, SP, Brazil; (L.A.C.); (F.P.M.)
| | - Leandro T. Lucato
- Department of Radiology, University of São Paulo School of Medicine, São Paulo 05403-000, SP, Brazil; (L.F.S.G.)
| | - Fernando Kok
- Child Neurology Service, Department of Neurology, University of São Paulo School of Medicine, Dr. Enéas de Carvalho Aguiar, 255, 5th Floor, São Paulo 05403-000, SP, Brazil; (I.P.d.B.); (C.B.); (A.P.); (F.C.M.); (K.S.-C.); (C.L.); (D.C.); (B.D.-R.); (F.F.); (J.L.D.G.); (F.B.P.)
- Mendelics Genomic Analysis, São Paulo 02511-000, SP, Brazil; (L.A.C.); (F.P.M.)
| |
Collapse
|
92
|
Frémond ML, Hully M, Fournier B, Barrois R, Lévy R, Aubart M, Castelle M, Chabalier D, Gins C, Sarda E, Al Adba B, Couderc S, D' Almeida C, Berat CM, Durrleman C, Espil C, Lambert L, Méni C, Périvier M, Pillet P, Polivka L, Schiff M, Todosi C, Uettwiller F, Lepelley A, Rice GI, Seabra L, Sanquer S, Hulin A, Pressiat C, Goldwirt L, Bondet V, Duffy D, Moshous D, Bader-Meunier B, Bodemer C, Robin-Renaldo F, Boddaert N, Blanche S, Desguerre I, Crow YJ, Neven B. JAK Inhibition in Aicardi-Goutières Syndrome: a Monocentric Multidisciplinary Real-World Approach Study. J Clin Immunol 2023; 43:1436-1447. [PMID: 37171742 PMCID: PMC10175907 DOI: 10.1007/s10875-023-01500-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
The paradigm type I interferonopathy Aicardi-Goutières syndrome (AGS) is most typically characterized by severe neurological involvement. AGS is considered an immune-mediated disease, poorly responsive to conventional immunosuppression. Premised on a chronic enhancement of type I interferon signaling, JAK1/2 inhibition has been trialed in AGS, with clear improvements in cutaneous and systemic disease manifestations. Contrastingly, treatment efficacy at the level of the neurological system has been less conclusive. Here, we report our real-word approach study of JAK1/2 inhibition in 11 patients with AGS, providing extensive assessments of clinical and radiological status; interferon signaling, including in cerebrospinal fluid (CSF); and drug concentrations in blood and CSF. Over a median follow-up of 17 months, we observed a clear benefit of JAK1/2 inhibition on certain systemic features of AGS, and reproduced results reported using the AGS neurologic severity scale. In contrast, there was no change in other scales assessing neurological status; using the caregiver scale, only patient comfort, but no other domain of everyday-life care, was improved. Serious bacterial infections occurred in 4 out of the 11 patients. Overall, our data lead us to conclude that other approaches to treatment are urgently required for the neurologic features of AGS. We suggest that earlier diagnosis and adequate central nervous system penetration likely remain the major factors determining the efficacy of therapy in preventing irreversible brain damage, implying the importance of early and rapid genetic testing and the consideration of intrathecal drug delivery.
Collapse
Affiliation(s)
- Marie-Louise Frémond
- Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, APHP Centre, Université Paris Cité, 149 rue de Sèvres, 75015, Paris, France
- Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, Inserm UMR 1163, Université Paris Cité, 24 boulevard du Montparnasse, 75015, Paris, France
| | - Marie Hully
- Paediatric Neurology Department, Necker Hospital, APHP Centre, Université Paris Cité, 75015, Paris, France
| | - Benjamin Fournier
- Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, APHP Centre, Université Paris Cité, 149 rue de Sèvres, 75015, Paris, France
| | - Rémi Barrois
- Paediatric Neurology Department, Necker Hospital, APHP Centre, Université Paris Cité, 75015, Paris, France
| | - Romain Lévy
- Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, APHP Centre, Université Paris Cité, 149 rue de Sèvres, 75015, Paris, France
| | - Mélodie Aubart
- Paediatric Neurology Department, Necker Hospital, APHP Centre, Université Paris Cité, 75015, Paris, France
| | - Martin Castelle
- Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, APHP Centre, Université Paris Cité, 149 rue de Sèvres, 75015, Paris, France
| | - Delphine Chabalier
- Paediatric Neurology Department, Necker Hospital, APHP Centre, Université Paris Cité, 75015, Paris, France
| | - Clarisse Gins
- Paediatric Neurology Department, Necker Hospital, APHP Centre, Université Paris Cité, 75015, Paris, France
| | - Eugénie Sarda
- Paediatric Neurology Department, Necker Hospital, APHP Centre, Université Paris Cité, 75015, Paris, France
| | - Buthaina Al Adba
- Department of Paediatric Rheumatology, Sidra Medicine, Doha, Qatar
| | - Sophie Couderc
- Neonatal Department, Poissy Saint-Germain Hospital, Poissy, France
| | - Céline D' Almeida
- Paediatrics Department, Castres-Mazamet Intercommunal Hospital, Castres, France
| | - Claire-Marine Berat
- Reference Center of Inherited Metabolic Disorders, Necker Hospital, APHP, Université Paris Cité, 75015, Paris, France
| | - Chloé Durrleman
- Paediatric Neurology Department, Necker Hospital, APHP Centre, Université Paris Cité, 75015, Paris, France
| | - Caroline Espil
- Paediatric Neurology Department, Bordeaux University Hospital, Bordeaux, France
| | - Laetitia Lambert
- Genetics Department, Nancy University Hospital, 54000, Nancy, France
| | - Cécile Méni
- Paediatric Dermatology Department, Necker Hospital, APHP Centre, Université Paris Cité, 75015, Paris, France
| | | | - Pascal Pillet
- Paediatric Rheumatology Department, Bordeaux University Hospital, Bordeaux, France
| | - Laura Polivka
- Paediatric Dermatology Department, Necker Hospital, APHP Centre, Université Paris Cité, 75015, Paris, France
| | - Manuel Schiff
- Reference Center of Inherited Metabolic Disorders, Necker Hospital, APHP, Université Paris Cité, 75015, Paris, France
- Imagine Institute, Inserm UMR 1163, 75015, Paris, France
| | - Calina Todosi
- Paediatric Neurology Unit, Children's Medicine Department, Children's Hospital, Nancy University Hospital, 54000, Nancy, France
| | - Florence Uettwiller
- Paediatric Rheumatology Department, Tours University Hospital, Tours, France
| | - Alice Lepelley
- Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, Inserm UMR 1163, Université Paris Cité, 24 boulevard du Montparnasse, 75015, Paris, France
| | - Gillian I Rice
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Luis Seabra
- Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, Inserm UMR 1163, Université Paris Cité, 24 boulevard du Montparnasse, 75015, Paris, France
| | - Sylvia Sanquer
- Biochemistry, Metabolomics and Proteomics Department, Necker Hospital, AP-HP Centre, Université Paris Cité, 75015, Paris, France
| | - Anne Hulin
- Pharmacology and Toxicology Laboratory, Henri Mondor University Hospital, APHP, 94000, Créteil, France
| | - Claire Pressiat
- Pharmacology and Toxicology Laboratory, Henri Mondor University Hospital, APHP, 94000, Créteil, France
| | - Lauriane Goldwirt
- Pharmacology Department, Saint-Louis University Hospital, APHP, 75010, Paris, France
| | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Université de Paris Cité, F75015, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université de Paris Cité, F75015, Paris, France
| | - Despina Moshous
- Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, APHP Centre, Université Paris Cité, 149 rue de Sèvres, 75015, Paris, France
- Imagine Institute, Inserm UMR 1163, 75015, Paris, France
| | - Brigitte Bader-Meunier
- Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, APHP Centre, Université Paris Cité, 149 rue de Sèvres, 75015, Paris, France
| | - Christine Bodemer
- Genetics Department, Nancy University Hospital, 54000, Nancy, France
| | - Florence Robin-Renaldo
- Paediatric Neurology Department, Trousseau Hospital, APHP, Sorbonne Université, 75012, Paris, France
| | - Nathalie Boddaert
- Paediatric Radiology Department, AP-HP, Hôpital Necker Enfants Malades, Université Paris cité, Institut Imagine INSERM U1163 and U1299, 75015, Paris, France
| | - Stéphane Blanche
- Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, APHP Centre, Université Paris Cité, 149 rue de Sèvres, 75015, Paris, France
| | - Isabelle Desguerre
- Paediatric Neurology Department, Necker Hospital, APHP Centre, Université Paris Cité, 75015, Paris, France
| | - Yanick J Crow
- Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, Inserm UMR 1163, Université Paris Cité, 24 boulevard du Montparnasse, 75015, Paris, France.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh, UK.
| | - Bénédicte Neven
- Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, APHP Centre, Université Paris Cité, 149 rue de Sèvres, 75015, Paris, France.
- Imagine Institute, Laboratory of Immunogenetics of Paediatric Autoimmunity, INSERM UMR 1163, Université Paris Cité, 75015, Paris, France.
| |
Collapse
|
93
|
Gavazzi F, Glanzman AM, Woidill S, Formanowski B, Dixit A, Isaacs D, Kornafel T, Balance E, Pierce SR, Modesti N, Barcelos I, Cusack SV, Jan AK, Flores Z, Sherbini O, Vincent A, D’Aiello R, Lorch SA, DeMauro SB, Jawad A, Vanderver A, Adang L. Exploration of Gross Motor Function in Aicardi-Goutières Syndrome. J Child Neurol 2023; 38:518-527. [PMID: 37499181 PMCID: PMC10530058 DOI: 10.1177/08830738231188753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background: Aicardi-Goutières syndrome (AGS) is a rare genetic disorder characterized by a spectrum of motor abilities. While the Aicardi-Goutières syndrome severity score favors severely impacted individuals, there is an unmet need to define tools measuring function across the Aicardi-Goutières syndrome spectrum as potential outcome assessments for future clinical trials. Methods: Gross Motor Function Measure-88 (GMFM-88) and AGS Severity Scale were administered in individuals affected by Aicardi-Goutières syndrome (n = 71). We characterized the performance variability by genotype. Derived versions of the GMFM-88, including the GMFM-66, GMFM-66 item set (GMFM-66IS), and GMFM-66 Basal&Ceiling (GMFM-66BC) were calculated. The Aicardi-Goutières syndrome cohort was divided into severe (AGS Severity Scale score <4) or attenuated (≥4). Performance on the AGS Severity Scale highly correlated with total GMFM-88 scores (Spearman Correlation: R = 0.91). To assess variability of the GMFM-88 within genotypic subcohorts, interquartile ranges (IQRs) were compared. Results: GMFM-88 performance in the TREX1 cohort had least variability while the SAMHD1 cohort had the largest IQR (4.23 vs 81.8). Floor effect was prominent, with most evaluations scoring below 20% (n = 46, 64.79%), particularly in TREX1- and RNASEH2-cohorts. Performance by the GMFM-66, GMFM-66IS, and GMFM-66BC highly correlated with the full GMFM-88. The Aicardi-Goutières syndrome population represents a broad range of gross motor skills. Conclusions: This work identified the GMFM-88 as a potential clinical outcome assessment in subsets of the Aicardi-Goutières syndrome population but underscores the need for additional validation of outcome measures reflective of the diverse gross motor function observed in this population, including low motor function. When time is limited by resources or patient endurance, shorter versions of the GMFM-88 may be a reasonable alternative.
Collapse
Affiliation(s)
- Francesco Gavazzi
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Allan M. Glanzman
- Department of Physical Therapy, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Sarah Woidill
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brielle Formanowski
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Agrani Dixit
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - David Isaacs
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tracy Kornafel
- Department of Physical Therapy, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Elizabeth Balance
- Department of Physical Therapy, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Samuel R. Pierce
- Department of Physical Therapy, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Nicholson Modesti
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Isabella Barcelos
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stacy V Cusack
- Department of Occupational Therapy, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Amanda K. Jan
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Zaida Flores
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Omar Sherbini
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ariel Vincent
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Russell D’Aiello
- Department of Biomedical & Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Scott A. Lorch
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Sara B. DeMauro
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Abbas Jawad
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Adeline Vanderver
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Laura Adang
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
94
|
Crow MK. Pathogenesis of systemic lupus erythematosus: risks, mechanisms and therapeutic targets. Ann Rheum Dis 2023; 82:999-1014. [PMID: 36792346 DOI: 10.1136/ard-2022-223741] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023]
Abstract
Research elucidating the pathogenesis of systemic lupus erythematosus (SLE) has defined two critical families of mediators, type I interferon (IFN-I) and autoantibodies targeting nucleic acids and nucleic acid-binding proteins, as fundamental contributors to the disease. On the fertile background of significant genetic risk, a triggering stimulus, perhaps microbial, induces IFN-I, autoantibody production or most likely both. When innate and adaptive immune system cells are engaged and collaborate in the autoimmune response, clinical SLE can develop. This review describes recent data from genetic analyses of patients with SLE, along with current studies of innate and adaptive immune function that contribute to sustained IFN-I pathway activation, immune activation and autoantibody production, generation of inflammatory mediators and tissue damage. The goal of these studies is to understand disease mechanisms, identify therapeutic targets and stimulate development of therapeutics that can achieve improved outcomes for patients.
Collapse
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
95
|
Guo X, Liu S, Sheng Y, Zenati M, Billiar T, Herbert A, Wang Q. ADAR1 Zα domain P195A mutation activates the MDA5-dependent RNA-sensing signaling pathway in brain without decreasing overall RNA editing. Cell Rep 2023; 42:112733. [PMID: 37421629 PMCID: PMC10691306 DOI: 10.1016/j.celrep.2023.112733] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 05/03/2023] [Accepted: 06/16/2023] [Indexed: 07/10/2023] Open
Abstract
Variants of the RNA-editing enzyme ADAR1 cause Aicardi-Goutières syndrome (AGS), in which severe inflammation occurs in the brain due to innate immune activation. Here, we analyze the RNA-editing status and innate immune activation in an AGS mouse model that carries the Adar P195A mutation in the N terminus of the ADAR1 p150 isoform, the equivalent of the P193A human Zα variant causal for disease. This mutation alone can cause interferon-stimulated gene (ISG) expression in the brain, especially in the periventricular areas, reflecting the pathologic feature of AGS. However, in these mice, ISG expression does not correlate with an overall decrease in RNA editing. Rather, the enhanced ISG expression in the brain due to the P195A mutant is dose dependent. Our findings indicate that ADAR1 can regulate innate immune responses through Z-RNA binding without changing overall RNA editing.
Collapse
Affiliation(s)
- Xinfeng Guo
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yi Sheng
- Magee-Women's Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mazen Zenati
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Timothy Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | - Qingde Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
96
|
Al Khatib I, Deng J, Lei Y, Torres-Odio S, Rojas GR, Newman LE, Chung BK, Symes A, Zhang H, Huang SYN, Pommier Y, Khan A, Shadel GS, West AP, Gibson WT, Shutt TE. Activation of the cGAS-STING innate immune response in cells with deficient mitochondrial topoisomerase TOP1MT. Hum Mol Genet 2023; 32:2422-2440. [PMID: 37129502 PMCID: PMC10360396 DOI: 10.1093/hmg/ddad062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 03/22/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023] Open
Abstract
The recognition that cytosolic mitochondrial DNA (mtDNA) activates cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) innate immune signaling has unlocked novel disease mechanisms. Here, an uncharacterized variant predicted to affect TOP1MT function, P193L, was discovered in a family with multiple early onset autoimmune diseases, including Systemic Lupus Erythematosus (SLE). Although there was no previous genetic association between TOP1MT and autoimmune disease, the role of TOP1MT as a regulator of mtDNA led us to investigate whether TOP1MT could mediate the release of mtDNA to the cytosol, where it could then activate the cGAS-STING innate immune pathway known to be activated in SLE and other autoimmune diseases. Through analysis of cells with reduced TOP1MT expression, we show that loss of TOP1MT results in release of mtDNA to the cytosol, which activates the cGAS-STING pathway. We also characterized the P193L variant for its ability to rescue several TOP1MT functions when expressed in TOP1MT knockout cells. We show that the P193L variant is not fully functional, as its re-expression at high levels was unable to rescue mitochondrial respiration deficits, and only showed partial rescue for other functions, including repletion of mtDNA replication following depletion, nucleoid size, steady state mtDNA transcripts levels and mitochondrial morphology. Additionally, expression of P193L at endogenous levels was unable to rescue mtDNA release-mediated cGAS-STING signaling. Overall, we report a link between TOP1MT and mtDNA release leading to cGAS-STING activation. Moreover, we show that the P193L variant has partial loss of function that may contribute to autoimmune disease susceptibility via cGAS-STING mediated activation of the innate immune system.
Collapse
Affiliation(s)
- Iman Al Khatib
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Jingti Deng
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Yuanjiu Lei
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, USA
| | - Sylvia Torres-Odio
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, USA
| | - Gladys R Rojas
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Laura E Newman
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Brian K Chung
- Norwegian PSC Research Center, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Andrew Symes
- Department of Geomatics Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Hongliang Zhang
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shar-yin N Huang
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aneal Khan
- Discovery DNA, Calgary, Alberta T2L 1Y8, Canada
- M.A.G.I.C. Clinic Ltd. (Metabolics and Genetics in Calgary)
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Alberta Children's Hospital Research Institute, Calgary, Alberta T2M OL6, Canada
| | - Gerald S Shadel
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Andrew Phillip West
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, USA
| | - William T Gibson
- Department of Medical Genetics, Faculty of Medicine, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Timothy E Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
97
|
Dell'Isola GB, Dini G, Culpepper KL, Portwood KE, Ferrara P, Di Cara G, Verrotti A, Lodolo M. Clinical spectrum and currently available treatment of type I interferonopathy Aicardi-Goutières syndrome. World J Pediatr 2023; 19:635-643. [PMID: 36650407 PMCID: PMC10258176 DOI: 10.1007/s12519-022-00679-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Aicardi-Goutières syndrome (AGS) is a genetically determined disorder with a variable phenotype. Since the original description of AGS, advances in gene sequencing techniques have resulted in a significant broadening of the phenotypic spectrum associated with AGS genes, and new clinical pictures have emerged beyond the classic presentation. The aim of this review is to provide a comprehensive analysis of the clinical spectrum of AGS and report currently available treatments and new immunosuppressive strategies. DATA SOURCES Literature reviews and original research articles were collected from databases, including PubMed and ClinicalTrials.gov. Relevant articles about AGS were included. RESULTS The involvement of the nervous system certainly represents the major cause of mortality and morbidity in AGS patients. However, other clinical manifestations, such as chilblains, hepatosplenomegaly, and hematological disturbances, may lead to the diagnosis and considerably impact the prognosis and overall quality of life of these patients. Therapeutic approaches of AGS are limited to interventions aimed at specific symptoms and the management of multiple comorbidities. However, advances in understanding the pathogenesis of AGS could open new and more effective therapies. CONCLUSIONS The over-activation of innate immunity due to upregulated interferon production plays a critical role in AGS, leading to multi-organ damage with the main involvement of the central nervous system. To date, there is no specific and effective treatment for AGS. New drugs specifically targeting the interferon pathway may bring new hope to AGS patients.
Collapse
Affiliation(s)
| | - Gianluca Dini
- Department of Pediatrics, University of Perugia, Giorgio Menghini Square, 06129, Perugia, Italy
| | | | - Katherin Elizabeth Portwood
- Department of Pediatrics, Division of Child Neurology, University of Florida, UF Health Shands Children's Hospital, Gainesville, FL, USA
| | - Pietro Ferrara
- Unit of Pediatrics, Campus Bio-Medico University, Rome, Italy
| | - Giuseppe Di Cara
- Department of Pediatrics, University of Perugia, Giorgio Menghini Square, 06129, Perugia, Italy
| | - Alberto Verrotti
- Department of Pediatrics, University of Perugia, Giorgio Menghini Square, 06129, Perugia, Italy
| | - Mauro Lodolo
- Department of Pediatrics, Division of Child Neurology, University of Florida, UF Health Shands Children's Hospital, Gainesville, FL, USA
| |
Collapse
|
98
|
Lažetić V, Blanchard MJ, Bui T, Troemel ER. Multiple pals gene modules control a balance between immunity and development in Caenorhabditis elegans. PLoS Pathog 2023; 19:e1011120. [PMID: 37463170 PMCID: PMC10353827 DOI: 10.1371/journal.ppat.1011120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
The immune system continually battles against pathogen-induced pressures, which often leads to the evolutionary expansion of immune gene families in a species-specific manner. For example, the pals gene family expanded to 39 members in the Caenorhabditis elegans genome, in comparison to a single mammalian pals ortholog. Our previous studies have revealed that two members of this family, pals-22 and pals-25, act as antagonistic paralogs to control the Intracellular Pathogen Response (IPR). The IPR is a protective transcriptional response, which is activated upon infection by two molecularly distinct natural intracellular pathogens of C. elegans-the Orsay virus and the fungus Nematocida parisii from the microsporidia phylum. In this study, we identify a previously uncharacterized member of the pals family, pals-17, as a newly described negative regulator of the IPR. pals-17 mutants show constitutive upregulation of IPR gene expression, increased immunity against intracellular pathogens, as well as impaired development and reproduction. We also find that two other previously uncharacterized pals genes, pals-20 and pals-16, are positive regulators of the IPR, acting downstream of pals-17. These positive regulators reverse the effects caused by the loss of pals-17 on IPR gene expression, immunity, and development. We show that the negative IPR regulator protein PALS-17 and the positive IPR regulator protein PALS-20 colocalize inside and at the apical side of intestinal epithelial cells, which are the sites of infection for IPR-inducing pathogens. In summary, our study demonstrates that several pals genes from the expanded pals gene family act as ON/OFF switch modules to regulate a balance between organismal development and immunity against natural intracellular pathogens in C. elegans.
Collapse
Affiliation(s)
- Vladimir Lažetić
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Michael J. Blanchard
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Theresa Bui
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Emily R. Troemel
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
99
|
Espada CE, Sari L, Cahill MP, Yang H, Phillips S, Martinez N, Kenney AD, Yount JS, Xiong Y, Lin MM, Wu L. SAMHD1 impairs type I interferon induction through the MAVS, IKKε, and IRF7 signaling axis during viral infection. J Biol Chem 2023; 299:104925. [PMID: 37328105 PMCID: PMC10404699 DOI: 10.1016/j.jbc.2023.104925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023] Open
Abstract
Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) restricts human immunodeficiency virus type 1 (HIV-1) infection by reducing the intracellular dNTP pool. We have shown that SAMHD1 suppresses nuclear factor kappa-B activation and type I interferon (IFN-I) induction by viral infection and inflammatory stimuli. However, the mechanism by which SAMHD1 inhibits IFN-I remains unclear. Here, we show that SAMHD1 inhibits IFN-I activation induced by the mitochondrial antiviral-signaling protein (MAVS). SAMHD1 interacted with MAVS and suppressed MAVS aggregation in response to Sendai virus infection in human monocytic THP-1 cells. This resulted in increased phosphorylation of TANK binding kinase 1 (TBK1), inhibitor of nuclear factor kappa-B kinase epsilon (IKKε), and IFN regulatory factor 3 (IRF3). SAMHD1 suppressed IFN-I activation induced by IKKε and prevented IRF7 binding to the kinase domain of IKKε. We found that SAMHD1 interaction with the inhibitory domain (ID) of IRF7 (IRF7-ID) was necessary and sufficient for SAMHD1 suppression of IRF7-mediated IFN-I activation in HEK293T cells. Computational docking and molecular dynamics simulations revealed possible binding sites between IRF7-ID and full-length SAMHD1. Individual substitution of F411, E416, or V460 in IRF7-ID significantly reduced IRF7 transactivation activity and SAMHD1 binding. Furthermore, we investigated the role of SAMHD1 inhibition of IRF7-mediated IFN-I induction during HIV-1 infection. We found that THP-1 cells lacking IRF7 expression had reduced HIV-1 infection and viral transcription compared to control cells, indicating a positive role of IRF7 in HIV-1 infection. Our findings suggest that SAMHD1 suppresses IFN-I induction through the MAVS, IKKε, and IRF7 signaling axis.
Collapse
Affiliation(s)
- Constanza E Espada
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Levent Sari
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Michael P Cahill
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Hua Yang
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Stacia Phillips
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Nicholas Martinez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Adam D Kenney
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Milo M Lin
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Li Wu
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
100
|
Xu H, Pu J, Lin S, Hu R, Yao J, Li X. Preimplantation genetic testing for Aicardi-Goutières syndrome induced by novel compound heterozygous mutations of TREX1: an unaffected live birth. Mol Cytogenet 2023; 16:9. [PMID: 37277873 DOI: 10.1186/s13039-023-00641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Aicardi-Goutières syndrome (AGS) is a rare, autosomal recessive, hereditary neurodegenerative disorder. It is characterized mainly by early onset progressive encephalopathy, concomitant with an increase in interferon-α levels in the cerebrospinal fluid. Preimplantation genetic testing (PGT) is a procedure that could be used to choose unaffected embryos for transfer after analysis of biopsied cells, which prevents at-risk couples from facing the risk of pregnancy termination. METHODS Trio-based whole exome sequencing, karyotyping and chromosomal microarray analysis were used to determine the pathogenic mutations for the family. To block the inheritance of the disease, multiple annealing and looping-based amplification cycles was used for whole genome amplification of the biopsied trophectoderm cells. Sanger sequencing and next-generation sequencing (NGS)-based single nucleotide polymorphism (SNP) haplotyping were used to detect the state of the gene mutations. Copy number variation (CNV) analysis was also carried out to prevent embryonic chromosomal abnormalities. Prenatal diagnosis was preformed to verify the PGT outcomes. RESULTS A novel compound heterozygous mutation in TREX1 gene was found in the proband causing AGS. A total of 3 blastocysts formed after intracytoplasmic sperm injection were biopsied. After genetic analyses, an embryo harbored a heterozygous mutation in TREX1 and without CNV was transferred. A healthy baby was born at 38th weeks and prenatal diagnosis results confirmed the accuracy of PGT. CONCLUSIONS In this study, we identified two novel pathogenic mutations in TREX1, which has not been previously reported. Our study extends the mutation spectrum of TREX1 gene and contributes to the molecular diagnosis as well as genetic counseling for AGS. Our results demonstrated that combining NGS-based SNP haplotyping for PGT-M with invasive prenatal diagnosis is an effective approach to block the transmission of AGS and could be applied to prevent other monogenic diseases.
Collapse
Affiliation(s)
- Huiling Xu
- Department of Reproductive Medicine, Southern Medical University Affiliated Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| | - Jiajie Pu
- Department of Bioinformatics, 01life Institute, Shenzhen, 518000, Guangdong, China
| | - Suiling Lin
- Department of Reproductive Medicine, Southern Medical University Affiliated Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| | - Rui Hu
- Department of Reproductive Medicine, Southern Medical University Affiliated Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| | - Jilong Yao
- Department of Reproductive Medicine, Southern Medical University Affiliated Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| | - Xuemei Li
- Department of Reproductive Medicine, Southern Medical University Affiliated Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|