51
|
Ullah R, Rauf N, Nabi G, Ullah H, Shen Y, Zhou YD, Fu J. Role of Nutrition in the Pathogenesis and Prevention of Non-alcoholic Fatty Liver Disease: Recent Updates. Int J Biol Sci 2019; 15:265-276. [PMID: 30745819 PMCID: PMC6367556 DOI: 10.7150/ijbs.30121] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/24/2018] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an acquired metabolic disease characterized by triglycerides (TGs) deposition in liver induced by other factors rather than alcohol consumption. NAFLD significantly contributes to liver diseases in children and adults. NAFLD pathogenesis is associated with age, gender, race and ethnicity. Insulin resistance, hyperinsulinemia, elevated plasma free fatty acids (FFAs), fatty liver, hepatocyte injury, liver inflammation, oxidative stress, mitochondrial dysfunction, imbalanced pro-inflammatory cytokines, and fibrosis are the characteristics of NAFLD. Factors including genetic and epigenetic pathways, sedentary lifestyle, sleep, and diet composition affect NAFLD pathogenesis. In this review, we discuss the aetiology, risk factors and pathogenesis of NAFLD. Special focus is given to macro and micro nutrition as causing factors and their role in the prevention of NAFLD pathogenesis.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310051, China.,Department of Neurobiology, Institute of Neuroscience, and the Collaborative Innovation Center for Brain Science, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Naveed Rauf
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310051, China.,Department of Neurobiology, Institute of Neuroscience, and the Collaborative Innovation Center for Brain Science, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ghulam Nabi
- Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Hamid Ullah
- Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yi Shen
- Department of Neurobiology, Institute of Neuroscience, and the Collaborative Innovation Center for Brain Science, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yu-Dong Zhou
- Department of Neurobiology, Institute of Neuroscience, and the Collaborative Innovation Center for Brain Science, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310051, China
| |
Collapse
|
52
|
Current Models of Fatty Liver Disease; New Insights, Therapeutic Targets and Interventions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1134:33-58. [PMID: 30919331 DOI: 10.1007/978-3-030-12668-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of disorders ranging from simple steatosis to steatosis with inflammation and fibrosis. NAFLD is currently the most prevalent chronic liver disease worldwide, with a global prevalence of 25%, and is soon projected to be the leading cause for liver transplantation in the US. Alarmingly, few effective pharmacotherapeutic approaches are currently available to block or attenuate development and progression of NAFLD. Preclinical models are critical for unraveling the complex and multi-factorial etiology of NAFLD and for testing potential therapeutics. Here we review preclinical models that have been instrumental in highlighting molecular and cellular mechanisms underlying the pathogenesis of NAFLD and in facilitating early proof-of-concept investigations into novel intervention strategies.
Collapse
|
53
|
Álvarez D, Ceballo K, Olguín S, Martinez-Pinto J, Maliqueo M, Fernandois D, Sotomayor-Zárate R, Cruz G. Prenatal metformin treatment improves ovarian function in offspring of obese rats. J Endocrinol 2018; 239:325-338. [PMID: 30334444 DOI: 10.1530/joe-18-0352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/10/2018] [Indexed: 01/05/2023]
Abstract
Maternal obesity causes a wide range of impairment in offspring, such as metabolic and reproductive dysfunctions. We previously demonstrated that female offspring of obese rats have increased serum estradiol levels during early postnatal life, probably because of decreased hepatic cytochrome P450 3A2 levels, which could lead to early onset of puberty and polycystic ovary condition in adulthood. Using metformin during pregnancy and nursing to improve the metabolic status of obese mothers could prevent the sequence of events that lead to an increase in postnatal serum estradiol levels in female offspring and, hence, reproductive dysfunction. We found that metformin prevented an increase in serum estradiol levels at postnatal day 14 in female offspring of obese mothers, which was associated with a restoration of hepatic cytochrome P450 3A2 levels to control values. Treatment using metformin could not prevent advanced puberty, but we observed that the number of antral follicles, follicular cysts and multi-oocyte follicles returned to control values in the female offspring of obese mothers treated with metformin. We also observed an increase in the levels of norepinephrine and the norepinephrine metabolite 3-methoxy-4-hydroxyphenylglycol in the ovaries, indicating increased sympathetic activity in female offspring induced by an obesogenic uterine environment. We found that this effect was prevented by metformin administration. From the results of this study, we concluded that metformin administration to obese mothers during pregnancy and nursing partially prevents ovarian dysfunction in female offspring during adulthood.
Collapse
Affiliation(s)
- Daniela Álvarez
- Laboratorio de Alteraciones Reproductivas y Metabólicas, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Karina Ceballo
- Laboratorio de Alteraciones Reproductivas y Metabólicas, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Sofía Olguín
- Laboratorio de Alteraciones Reproductivas y Metabólicas, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jonathan Martinez-Pinto
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Manuel Maliqueo
- Department of Medicine West Division, Endocrinology and Metabolism Laboratory, School of Medicine, University of Chile, Santiago, Chile
| | - Daniela Fernandois
- Laboratorio de Alteraciones Reproductivas y Metabólicas, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ramón Sotomayor-Zárate
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Gonzalo Cruz
- Laboratorio de Alteraciones Reproductivas y Metabólicas, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
54
|
Wankhade UD, Zhong Y, Kang P, Alfaro M, Chintapalli SV, Piccolo BD, Mercer KE, Andres A, Thakali KM, Shankar K. Maternal High-Fat Diet Programs Offspring Liver Steatosis in a Sexually Dimorphic Manner in Association with Changes in Gut Microbial Ecology in Mice. Sci Rep 2018; 8:16502. [PMID: 30405201 PMCID: PMC6220325 DOI: 10.1038/s41598-018-34453-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022] Open
Abstract
The contributions of maternal diet and obesity in shaping offspring microbiome remain unclear. Here we employed a mouse model of maternal diet-induced obesity via high-fat diet feeding (HFD, 45% fat calories) for 12 wk prior to conception on offspring gut microbial ecology. Male and female offspring were provided access to control or HFD from weaning until 17 wk of age. Maternal HFD-associated programming was sexually dimorphic, with male offspring from HFD dams showing hyper-responsive weight gain to postnatal HFD. Likewise, microbiome analysis of offspring cecal contents showed differences in α-diversity, β-diversity and higher Firmicutes in male compared to female mice. Weight gain in offspring was significantly associated with abundance of Lachnospiraceae and Clostridiaceae families and Adlercreutzia, Coprococcus and Lactococcus genera. Sex differences in metagenomic pathways relating to lipid metabolism, bile acid biosynthesis and immune response were also observed. HFD-fed male offspring from HFD dams also showed worse hepatic pathology, increased pro-inflammatory cytokines, altered expression of bile acid regulators (Cyp7a1, Cyp8b1 and Cyp39a1) and serum bile acid concentrations. These findings suggest that maternal HFD alters gut microbiota composition and weight gain of offspring in a sexually dimorphic manner, coincident with fatty liver and a pro-inflammatory state in male offspring.
Collapse
Affiliation(s)
- Umesh D Wankhade
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ying Zhong
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ping Kang
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Maria Alfaro
- Molecular Genetic Pathology Laboratory, Arkansas Children's Hospital, Little Rock, Arkansas, USA
| | - Sree V Chintapalli
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Brian D Piccolo
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kelly E Mercer
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Aline Andres
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Keshari M Thakali
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kartik Shankar
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA. .,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| |
Collapse
|
55
|
Soderborg TK, Clark SE, Mulligan CE, Janssen RC, Babcock L, Ir D, Young B, Krebs N, Lemas DJ, Johnson LK, Weir T, Lenz LL, Frank DN, Hernandez TL, Kuhn KA, D'Alessandro A, Barbour LA, El Kasmi KC, Friedman JE. The gut microbiota in infants of obese mothers increases inflammation and susceptibility to NAFLD. Nat Commun 2018; 9:4462. [PMID: 30367045 PMCID: PMC6203757 DOI: 10.1038/s41467-018-06929-0] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022] Open
Abstract
Maternal obesity is associated with increased risk for offspring obesity and non-alcoholic fatty liver disease (NAFLD), but the causal drivers of this association are unclear. Early colonization of the infant gut by microbes plays a critical role in establishing immunity and metabolic function. Here, we compare germ-free mice colonized with stool microbes (MB) from 2-week-old infants born to obese (Inf-ObMB) or normal-weight (Inf-NWMB) mothers. Inf-ObMB-colonized mice demonstrate increased hepatic gene expression for endoplasmic reticulum stress and innate immunity together with histological signs of periportal inflammation, a histological pattern more commonly reported in pediatric cases of NAFLD. Inf-ObMB mice show increased intestinal permeability, reduced macrophage phagocytosis, and dampened cytokine production suggestive of impaired macrophage function. Furthermore, exposure to a Western-style diet in Inf-ObMB mice promotes excess weight gain and accelerates NAFLD. Overall, these results provide functional evidence supporting a causative role of maternal obesity-associated infant dysbiosis in childhood obesity and NAFLD.
Collapse
Affiliation(s)
- Taylor K Soderborg
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Sarah E Clark
- Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Christopher E Mulligan
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Rachel C Janssen
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Lyndsey Babcock
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Diana Ir
- Department of Medicine, Division of Infectious Disease, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Bridget Young
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA.,Department of Pediatrics; Allergy and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Nancy Krebs
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Dominick J Lemas
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA.,Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainsville, FL, 32610, USA
| | - Linda K Johnson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Tiffany Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, 80523, CO, USA
| | - Laurel L Lenz
- Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Daniel N Frank
- Department of Medicine, Division of Infectious Disease, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Teri L Hernandez
- Department of Medicine, Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA.,College of Nursing, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Kristine A Kuhn
- Department of Medicine, Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Linda A Barbour
- Department of Medicine, Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA.,Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Karim C El Kasmi
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Jacob E Friedman
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA. .,Department of Medicine, Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA. .,Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA.
| |
Collapse
|
56
|
Maternal high-fat diet consumption induces sex-dependent alterations of the endocannabinoid system and redox homeostasis in liver of adult rat offspring. Sci Rep 2018; 8:14751. [PMID: 30282988 PMCID: PMC6170403 DOI: 10.1038/s41598-018-32906-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/17/2018] [Indexed: 01/23/2023] Open
Abstract
Maternal diet plays a critical role in health development. Perinatal overnutrition induces metabolic dysfunctions and obesity in the offspring. Obesity is associated with endocannabinoid system (ECS) over activation and oxidative stress. Liver ECS activation induces hepatic steatosis, inflammation and fibrosis while the antagonism of cannabinoid receptors ameliorates these alterations. Here, we investigated the effect of perinatal maternal high-fat diet (HF, 29% of calories as fat) on the ECS and antioxidant system in liver of male and female adult rat offspring (180 days old). Maternal HF diet increased hepatic cannabinoid receptors, ECS metabolizing enzymes and triglyceride content, with male offspring more affected. ECS changes are likely independent of estradiol serum levels but associated with increased hepatic content of estrogen receptor, which can stimulate the expression of ECS components. Differently, maternal HF diet decreased the activity of the antioxidant enzymes glutathione peroxidase, superoxide dismutase and catalase, and increased oxidative stress markers in both sexes. Alterations in the redox homeostasis were associated with mitochondria damage but not with liver fibrosis. Our data suggest that maternal HF diet induces ECS over activation in adulthood, and that male offspring are at higher risk to develop liver disease compared with female rats.
Collapse
|
57
|
Wesolowski SR, Mulligan CM, Janssen RC, Baker PR, Bergman BC, D'Alessandro A, Nemkov T, Maclean KN, Jiang H, Dean TA, Takahashi DL, Kievit P, McCurdy CE, Aagaard KM, Friedman JE. Switching obese mothers to a healthy diet improves fetal hypoxemia, hepatic metabolites, and lipotoxicity in non-human primates. Mol Metab 2018; 18:25-41. [PMID: 30337225 PMCID: PMC6308036 DOI: 10.1016/j.molmet.2018.09.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/12/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
Objective Non-alcoholic fatty liver disease (NAFLD) risk begins in utero in offspring of obese mothers. A critical unmet need in this field is to understand the pathways and biomarkers underlying fetal hepatic lipotoxicity and whether maternal dietary intervention during pregnancy is an effective countermeasure. Methods We utilized a well-established non-human primate model of chronic, maternal, Western-style diet induced obesity (OB-WSD) compared with mothers on a healthy control diet (CON) or a subset of OB-WSD mothers switched to the CON diet (diet reversal; OB-DR) prior to and for the duration of the next pregnancy. Fetuses were studied in the early 3rd trimester. Results Fetuses from OB-WSD mothers had higher circulating triglycerides (TGs) and lower arterial oxygenation suggesting hypoxemia, compared with fetuses from CON and OB-DR mothers. Hepatic TG content, oxidative stress (TBARs), and de novo lipogenic genes were increased in fetuses from OB-WSD compared with CON mothers. Fetuses from OB-DR mothers had lower lipogenic gene expression and TBARs yet persistently higher TGs. Metabolomic profiling of fetal liver and serum (umbilical artery) revealed distinct separation of CON and OB-WSD groups, and an intermediate phenotype in fetuses from OB-DR mothers. Pathway analysis identified decreased tricarboxylic acid cycle intermediates, increased amino acid (AA) metabolism and byproducts, and increased gluconeogenesis, suggesting an increased reliance on AA metabolism to meet energy needs in the liver of fetuses from OB-WSD mothers. Components in collagen synthesis, including serum protein 5-hydroxylysine and hepatic lysine and proline, were positively correlated with hepatic TGs and TBARs, suggesting early signs of fibrosis in livers from the OB-WSD group. Importantly, hepatic gluconeogenic and arginine related intermediates and serum levels of lactate, pyruvate, several AAs, and nucleotide intermediates were normalized in the OB-DR group. However, hepatic levels of CDP-choline and total ceramide levels remained high in fetuses from OB-DR mothers. Conclusions Our data provide new metabolic evidence that, in addition to fetal hepatic steatosis, maternal WSD creates fetal hypoxemia and increases utilization of AAs for energy production and early activation of gluconeogenic pathways in the fetal liver. When combined with hyperlipidemia and limited antioxidant activity, the fetus suffers from hepatic oxidative stress and altered intracellular metabolism which can be improved with maternal diet intervention. Our data reinforce the concept that multiple “first hits” occur in the fetus prior to development of obesity and demonstrate new biomarkers with potential clinical implications for monitoring NAFLD risk in offspring. Maternal WSD increases fetal hypoxemia and utilization of AAs for gluconeogenesis. Maternal WSD increases fetal oxidative stress and precursors to liver fibrosis. Carnosine and l-proline uniquely correlated with fetal TG and oxidative stress. Fetal TGs were correlated with fetal arterial oxygen saturation. Diet reversal in obese WSD mothers prevents fetal hypoxemia and oxidative stress.
Collapse
Affiliation(s)
| | | | | | - Peter R Baker
- Department of Pediatrics, Section of Genetics and Metabolism, USA
| | - Bryan C Bergman
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, USA
| | - Angelo D'Alessandro
- Department of Biochemistry & Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Travis Nemkov
- Department of Biochemistry & Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | | | - Hua Jiang
- Department of Pediatrics, Section of Genetics and Metabolism, USA
| | - Tyler A Dean
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Diana L Takahashi
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Paul Kievit
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, OR, 97403, USA
| | - Kjersti M Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jacob E Friedman
- Department of Pediatrics, Section of Neonatology, USA; Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, USA; Department of Biochemistry & Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
58
|
Baker PR, Friedman JE. Mitochondrial role in the neonatal predisposition to developing nonalcoholic fatty liver disease. J Clin Invest 2018; 128:3692-3703. [PMID: 30168806 DOI: 10.1172/jci120846] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global epidemic in obese children and adults, and the onset might have fetal origins. A growing body of evidence supports the role of developmental programming, whereby the maternal environment affects fetal and infant development, altering the risk profile for disease later in life. Human and nonhuman primate studies of maternal obesity demonstrate that risk factors for pediatric obesity and NAFLD begin in utero. The pathologic mechanisms for NAFLD are multifactorial but have centered on altered mitochondrial function/dysfunction that might precede insulin resistance. Compared with the adult liver, the fetal liver has fewer mitochondria, low activity of the fatty acid metabolic enzyme carnitine palmitoyl-CoA transferase-1, and little or no gluconeogenesis. Exposure to excess maternal fuels during fetal life uniquely alters hepatic fatty acid oxidation, tricarboxylic acid cycle activity, de novo lipogenesis, and mitochondrial health. These events promote increased oxidative stress and excess triglyceride storage, and, together with altered immune function and epigenetic changes, they prime the fetal liver for NAFLD and might drive the risk for nonalcoholic steatohepatitis in the next generation.
Collapse
Affiliation(s)
- Peter R Baker
- Section of Clinical Genetics and Metabolism, Department of Pediatrics
| | - Jacob E Friedman
- Section of Neonatology, Department of Pediatrics.,Department of Biochemistry and Molecular Genetics, and.,Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
59
|
Lomas-Soria C, Reyes-Castro LA, Rodríguez-González GL, Ibáñez CA, Bautista CJ, Cox LA, Nathanielsz PW, Zambrano E. Maternal obesity has sex-dependent effects on insulin, glucose and lipid metabolism and the liver transcriptome in young adult rat offspring. J Physiol 2018; 596:4611-4628. [PMID: 29972240 DOI: 10.1113/jp276372] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/15/2018] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS Maternal high-fat diet consumption predisposes to metabolic dysfunction in male and female offspring at young adulthood. Maternal obesity programs non-alcoholic fatty liver disease (NAFLD) in a sex-dependent manner. We demonstrate sex-dependent liver transcriptome profiles in rat offspring of obese mothers. In this study, we focused on pathways related to insulin, glucose and lipid signalling. These results improve understanding of the mechanisms by which a maternal high-fat diet affects the offspring. ABSTRACT Maternal obesity (MO) predisposes offspring (F1) to obesity, insulin resistance (IR) and non-alcoholic fatty liver disease (NAFLD). MO's effects on the F1 liver transcriptome are poorly understood. We used RNA-seq to determine the liver transcriptome of male and female F1 of MO and control-fed mothers. We hypothesized that MO-F1 are predisposed to sex-dependent adult liver dysfunction. Female Wistar rat mothers ate a control (C) or obesogenic (MO) diet from the time they were weaned through breeding at postnatal day (PND) 120, delivery and lactation. After weaning, all male and female F1 ate a control diet. At PND 110, F1 serum, liver and fat were collected to analyse metabolites, histology and liver differentially expressed genes. Male and female MO-F1 showed increased adiposity index, triglycerides, insulin and homeostatic model assessment vs. C-F1 with similar body weight and glucose serum concentrations. MO-F1 males presented greater physiological and histological NAFLD characteristics than MO-F1 females. RNA-seq revealed 1365 genes significantly changed in male MO-F1 liver and only 70 genes in female MO-F1 compared with controls. GO and KEGG analysis identified differentially expressed genes related to metabolic processes. Male MO-F1 liver showed the following altered pathways: insulin signalling (22 genes), phospholipase D signalling (14 genes), NAFLD (13 genes) and glycolysis/gluconeogenesis (7 genes). In contrast, few genes were altered in these pathways in MO-F1 females. In summary, MO programs sex-dependent F1 changes in insulin, glucose and lipid signalling pathways, leading to liver dysfunction and insulin resistance.
Collapse
Affiliation(s)
- Consuelo Lomas-Soria
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez, Tlalpan, México, D.F., 14080, México.,CONACyT, Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SZ, México
| | - Luis A Reyes-Castro
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez, Tlalpan, México, D.F., 14080, México
| | - Guadalupe L Rodríguez-González
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez, Tlalpan, México, D.F., 14080, México
| | - Carlos A Ibáñez
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez, Tlalpan, México, D.F., 14080, México
| | - Claudia J Bautista
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez, Tlalpan, México, D.F., 14080, México
| | - Laura A Cox
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Peter W Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, WY, USA.,Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Elena Zambrano
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez, Tlalpan, México, D.F., 14080, México
| |
Collapse
|
60
|
Cai J, Zhang XJ, Li H. Progress and challenges in the prevention and control of nonalcoholic fatty liver disease. Med Res Rev 2018; 39:328-348. [PMID: 29846945 DOI: 10.1002/med.21515] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/02/2018] [Accepted: 05/12/2018] [Indexed: 12/17/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is rapidly becoming the most common liver disease worldwide. Individuals with NAFLD have a high frequency of developing progressive liver disease and metabolism-related comorbidities, which result from of a lack of awareness and poor surveillance of the disease and a paucity of approved and effective therapies. Managing the complications of NAFLD has already begun to place a tremendous burden on health-care systems. Although efforts to identify effective therapies are underway, the lack of validated preclinical NAFLD models that represent the biology and outcomes of human disease remains a major barrier. This review summarizes the characteristics and prevalence of the disease and the status of our understanding of its mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Jingjing Cai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China
| |
Collapse
|
61
|
Monks J, Orlicky DJ, Stefanski AL, Libby AE, Bales ES, Rudolph MC, Johnson GC, Sherk VD, Jackman MR, Williamson K, Carlson NE, MacLean PS, McManaman JL. Maternal obesity during lactation may protect offspring from high fat diet-induced metabolic dysfunction. Nutr Diabetes 2018; 8:18. [PMID: 29695710 PMCID: PMC5916951 DOI: 10.1038/s41387-018-0027-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/17/2017] [Accepted: 02/07/2018] [Indexed: 01/21/2023] Open
Abstract
Background/Objectives The current obesity epidemic has spurred exploration of the developmental origin of adult heath and disease. A mother’s dietary choices and health can affect both the early wellbeing and lifelong disease-risk of the offspring. Subjects/Methods To determine if changes in the mother’s diet and adiposity have long-term effects on the baby’s metabolism, independently from a prenatal insult, we utilized a mouse model of diet-induced-obesity and cross-fostering. All pups were born to lean dams fed a low fat diet but were fostered onto lean or obese dams fed a high fat diet. This study design allowed us to discern the effects of a poor diet from those of mother’s adiposity and metabolism. The weaned offspring were placed on a high fat diet to test their metabolic function. Results In this feeding challenge, all male (but not female) offspring developed metabolic dysfunction. We saw increased weight gain in the pups nursed on an obesity-resistant dam fed a high fat diet, and increased pathogenesis including liver steatosis and adipose tissue inflammation, when compared to pups nursed on either obesity-prone dams on a high fat diet or lean dams on a low fat diet. Conclusion Exposure to maternal over-nutrition, through the milk, is sufficient to shape offspring health outcomes in a sex- and organ-specific manner, and milk from a mother who is obesity-prone may partially protect the offspring from the insult of a poor diet.
Collapse
Affiliation(s)
- Jenifer Monks
- Division of Reproductive Sciences, Department of Obstetrics & Gynecology, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - David J Orlicky
- Pathology Department, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Adrianne L Stefanski
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Andrew E Libby
- Division of Reproductive Sciences, Department of Obstetrics & Gynecology, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Elise S Bales
- Division of Reproductive Sciences, Department of Obstetrics & Gynecology, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Michael C Rudolph
- Division of Endocrinology, Metabolism, & Diabetes, Department of Medicine, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ginger C Johnson
- Division of Endocrinology, Metabolism, & Diabetes, Department of Medicine, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Vanessa D Sherk
- Division of Endocrinology, Metabolism, & Diabetes, Department of Medicine, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Matthew R Jackman
- Division of Endocrinology, Metabolism, & Diabetes, Department of Medicine, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kayla Williamson
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nichole E Carlson
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paul S MacLean
- Division of Endocrinology, Metabolism, & Diabetes, Department of Medicine, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - James L McManaman
- Division of Reproductive Sciences, Department of Obstetrics & Gynecology, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
62
|
Friedman JE, Dobrinskikh E, Alfonso‐Garcia A, Fast A, Janssen RC, Soderborg TK, Anderson AL, Reisz JA, D'Alessandro A, Frank DN, Robertson CE, de la Houssaye BA, Johnson LK, Orlicky DJ, Wang XX, Levi M, Potma EO, El Kasmi KC, Jonscher KR. Pyrroloquinoline quinone prevents developmental programming of microbial dysbiosis and macrophage polarization to attenuate liver fibrosis in offspring of obese mice. Hepatol Commun 2018; 2:313-328. [PMID: 29507905 PMCID: PMC5831029 DOI: 10.1002/hep4.1139] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/02/2017] [Accepted: 12/05/2017] [Indexed: 12/17/2022] Open
Abstract
Increasingly, evidence suggests that exposure to maternal obesity creates an inflammatory environment in utero, exerting long-lasting postnatal signatures on the juvenile innate immune system and microbiome that may predispose offspring to development of fatty liver disease. We found that exposure to a maternal Western-style diet (WD) accelerated fibrogenesis in the liver of offspring and was associated with early recruitment of proinflammatory macrophages at 8-12 weeks and microbial dysbiosis as early as 3 weeks of age. We further demonstrated that bone marrow-derived macrophages (BMDMs) were polarized toward an inflammatory state at 8 weeks of age and that a potent antioxidant, pyrroloquinoline quinone (PQQ), reversed BMDM metabolic reprogramming from glycolytic toward oxidative metabolism by restoring trichloroacetic acid cycle function at isocitrate dehydrogenase. This resulted in reduced inflammation and inhibited collagen fibril formation in the liver at 20 weeks of age, even when PQQ was withdrawn at 3 weeks of age. Beginning at 3 weeks of age, WD-fed mice developed a decreased abundance of Parabacteroides and Lactobacillus, together with increased Ruminococcus and decreased tight junction gene expression by 20 weeks, whereas microbiota of mice exposed to PQQ retained compositional stability with age, which was associated with improved liver health. Conclusion: Exposure to a maternal WD induces early gut dysbiosis and disrupts intestinal tight junctions, resulting in BMDM polarization and induction of proinflammatory and profibrotic programs in the offspring that persist into adulthood. Disrupted macrophage and microbiota function can be attenuated by short-term maternal treatment with PQQ prior to weaning, suggesting that reshaping the early gut microbiota in combination with reprogramming macrophages during early weaning may alleviate the sustained proinflammatory environment, preventing the rapid progression of nonalcoholic fatty liver disease to nonalcoholic steatohepatitis in offspring of obese mothers. (Hepatology Communications 2018;2:313-328).
Collapse
Affiliation(s)
| | - Evgenia Dobrinskikh
- Division of Renal Diseases and Hypertension, Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraCO
| | - Alba Alfonso‐Garcia
- Department of Biomedical Engineering and Beckman Laser InstituteUniversity of CaliforniaIrvine, IrvineCA
| | - Alexander Fast
- Department of Biomedical Engineering and Beckman Laser InstituteUniversity of CaliforniaIrvine, IrvineCA
| | | | | | - Aimee L. Anderson
- Children's Hospital Colorado, Digestive Disease Institute and Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics
| | | | | | | | | | | | | | | | - Xiaoxin X. Wang
- Division of Renal Diseases and Hypertension, Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraCO
| | - Moshe Levi
- Division of Renal Diseases and Hypertension, Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraCO
| | - Eric O. Potma
- Department of Biomedical Engineering and Beckman Laser InstituteUniversity of CaliforniaIrvine, IrvineCA
| | - Karim C. El Kasmi
- Children's Hospital Colorado, Digestive Disease Institute and Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics
| | - Karen R. Jonscher
- Department of AnesthesiologyUniversity of Colorado Anschutz Medical CampusAuroraCO
| |
Collapse
|
63
|
Maternal high-fat diet associated with altered gene expression, DNA methylation, and obesity risk in mouse offspring. PLoS One 2018; 13:e0192606. [PMID: 29447215 PMCID: PMC5813940 DOI: 10.1371/journal.pone.0192606] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/28/2018] [Indexed: 12/18/2022] Open
Abstract
We investigated maternal obesity in inbred SM/J mice by assigning females to a high-fat diet or a low-fat diet at weaning, mating them to low-fat-fed males, cross-fostering the offspring to low-fat-fed SM/J nurses at birth, and weaning the offspring onto a high-fat or low-fat diet. A maternal high-fat diet exacerbated obesity in the high-fat-fed daughters, causing them to weigh more, have more fat, and have higher serum levels of leptin as adults, accompanied by dozens of gene expression changes and thousands of DNA methylation changes in their livers and hearts. Maternal diet particularly affected genes involved in RNA processing, immune response, and mitochondria. Between one-quarter and one-third of differentially expressed genes contained a differentially methylated region associated with maternal diet. An offspring high-fat diet reduced overall variation in DNA methylation, increased body weight and organ weights, increased long bone lengths and weights, decreased insulin sensitivity, and changed the expression of 3,908 genes in the liver. Although the offspring were more affected by their own diet, their maternal diet had epigenetic effects lasting through adulthood, and in the daughters these effects were accompanied by phenotypic changes relevant to obesity and diabetes.
Collapse
|
64
|
Du J, Cao X, Diao J, Zhang Q, Peng C, Li J, Xiao X. Neonatal overfeeding in mice aggravates the development of methionine and choline-deficient diet-induced steatohepatitis in adulthood. Genes Dis 2018; 6:68-77. [PMID: 30906835 PMCID: PMC6411625 DOI: 10.1016/j.gendis.2017.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/23/2017] [Indexed: 12/01/2022] Open
Abstract
Overfeeding in early life is associated with obesity and insulin resistance in adulthood. In the present study, a well-characterized mouse model was used to investigate whether neonatal overfeeding increases susceptibility to the development of non-alcoholic steatohepatitis (NASH) following feeding with a methionine and choline- deficient (MCD) diet. Neonatal overfeeding was induced by adjusting litters to 3 pups per dam (small litter size, SL) in contrast to 10 pups per dam as control (normal litter size, NL). At 11 weeks of age, mice were fed with standard (S) or a methionine and choline-deficient (MCD) diet for 4 weeks. Glucose tolerance tests, tissue staining with haematoxylin and eosin, oil-red O and immunohistochemistry for F4/80, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting were performed. Compared with NL mice, SL mice exhibited higher body weight gain from 2 weeks of age throughout adulthood, and more profound glucose intolerance as adults. Sterol regulatory element-binding protein 1c and fatty acid synthase mRNA expression levels in liver were upregulated in SL mice at 3 weeks of age. MCD diet induced typical NASH, especially in SL-MCD mice, evidenced by marked fat accumulation, macrovescular steatosis, ballooned hepatocytes, inflammatory cells infiltration and tumour necrosis factor-α mRNA upregulation in the liver, as well as increased alanine aminotransferase and aspartate aminotransferase levels in the serum. There were no significant differences in liver fibrosis in all groups. Overfeeding during early life exhibited effect with administration of MCD diet in inducing adverse effects on the metabolic function and in promoting the progression of NASH in mice, possibly mediated through dysregulated lipid metabolism in hepatocytes and aggravated hepatic inflammation.
Collapse
Affiliation(s)
- Juan Du
- Laboratory of Lipid & Glucose Metabolism, PR China
| | - Xuemei Cao
- Laboratory of Lipid & Glucose Metabolism, PR China
| | - Junlin Diao
- Laboratory of Lipid & Glucose Metabolism, PR China
| | - Qijuan Zhang
- Department of Clinical Nutrition, The First Affiliated Hospital of Chongqing Medical University, PR China
| | - Chuan Peng
- Laboratory of Lipid & Glucose Metabolism, PR China
| | - Jibin Li
- School of Public Health and Management, Chongqing Medical University, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing, 400016, PR China
| | - Xiaoqiu Xiao
- Laboratory of Lipid & Glucose Metabolism, PR China
| |
Collapse
|
65
|
Itoh H, Kanayama N. Developmental Origins of Nonalcoholic Fatty Liver Disease (NAFLD). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1012:29-39. [PMID: 29956192 DOI: 10.1007/978-981-10-5526-3_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic syndrome. Its prevalence is currently increasing not only in developed obese countries but also in developing countries. Recent findings from human cohorts and animal studies suggest that a nutritional imbalance in the early critical period is causatively associated with the incidence of NAFLD in later life. Based on the current theory of the developmental origins of health and disease (DOHaD), undernourishment and overnourishment in utero are both hypothesized to prime the predisposition for hepatic fat storage. Current knowledge on the developmental origins of NAFLD is introduced in this chapter.
Collapse
Affiliation(s)
- Hiroaki Itoh
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan.
| | - Naohiro Kanayama
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| |
Collapse
|
66
|
Cordero P, Li J, Nguyen V, Pombo J, Maicas N, Novelli M, Taylor PD, Samuelsson AM, Vinciguerra M, Oben JA. Developmental Programming of Obesity and Liver Metabolism by Maternal Perinatal Nutrition Involves the Melanocortin System. Nutrients 2017; 9:E1041. [PMID: 28930194 PMCID: PMC5622801 DOI: 10.3390/nu9091041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022] Open
Abstract
Maternal obesity predisposes offspring to metabolic dysfunction and Non-Alcoholic Fatty Liver Disease (NAFLD). Melanocortin-4 receptor (Mc4r)-deficient mouse models exhibit obesity during adulthood. Here, we aim to determine the influence of the Mc4r gene on the liver of mice subjected to perinatal diet-induced obesity. Female mice heterozygous for Mc4r fed an obesogenic or a control diet for 5 weeks were mated with heterozygous males, with the same diet continued throughout pregnancy and lactation, generating four offspring groups: control wild type (C_wt), control knockout (C_KO), obese wild type (Ob_wt), and obese knockout (Ob_KO). At 21 days, offspring were genotyped, weaned onto a control diet, and sacrificed at 6 months old. Offspring phenotypic characteristics, plasma biochemical profile, liver histology, and hepatic gene expression were analyzed. Mc4r_ko offspring showed higher body, liver and adipose tissue weights respect to the wild type animals. Histological examination showed mild hepatic steatosis in offspring group C_KO. The expression of hepatic genes involved in regulating inflammation, fibrosis, and immune cell infiltration were upregulated by the absence of the Mc4r gene. These results demonstrate that maternal obesogenic feeding during the perinatal period programs offspring obesity development with involvement of the Mc4r system.
Collapse
Affiliation(s)
- Paul Cordero
- Institute for Liver and Digestive Health, University College London, London NW3 2PF, UK.
| | - Jiawei Li
- Institute for Liver and Digestive Health, University College London, London NW3 2PF, UK.
| | - Vi Nguyen
- Institute for Liver and Digestive Health, University College London, London NW3 2PF, UK.
| | - Joaquim Pombo
- Division of Women's Health, Faculty of Life Sciences & Medicine, King's College London, London SE1 7EH, UK.
| | - Nuria Maicas
- Division of Women's Health, Faculty of Life Sciences & Medicine, King's College London, London SE1 7EH, UK.
| | - Marco Novelli
- Department of Pathology, University College London, London WC1E 6JJ, UK.
| | - Paul D Taylor
- Division of Women's Health, Faculty of Life Sciences & Medicine, King's College London, London SE1 7EH, UK.
| | - Anne-Maj Samuelsson
- Division of Women's Health, Faculty of Life Sciences & Medicine, King's College London, London SE1 7EH, UK.
| | - Manlio Vinciguerra
- Institute for Liver and Digestive Health, University College London, London NW3 2PF, UK.
- Center for Translational Medicine, International Clinical Research Center (FNUSA-ICRC), Brno 65691, Czech Republic.
| | - Jude A Oben
- Institute for Liver and Digestive Health, University College London, London NW3 2PF, UK.
- Department of Gastroenterology and Hepatology, Guy's and St Thomas' Hospital, NHS Foundation Trust, London SE1 7EH, UK.
| |
Collapse
|
67
|
Ayonrinde OT, Oddy WH, Adams LA, Mori TA, Beilin LJ, de Klerk N, Olynyk JK. Infant nutrition and maternal obesity influence the risk of non-alcoholic fatty liver disease in adolescents. J Hepatol 2017; 67:568-576. [PMID: 28619255 DOI: 10.1016/j.jhep.2017.03.029] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 03/23/2017] [Accepted: 03/29/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The pathway to non-alcoholic fatty liver disease (NAFLD) in adolescents may have its origins in adiposity gains, nutrition and sedentary lifestyle established during childhood. There is inadequate knowledge regarding the associations between infant nutrition and subsequent NAFLD. We examined the association of maternal factors and infant nutrition, with the subsequent diagnosis of NAFLD in adolescents. METHODS Adolescents aged 17years in the Western Australian Pregnancy (Raine) Cohort study had fatty liver assessment using liver ultrasound. Prospectively recorded data on maternal pregnancy and infant feeding were examined against a NAFLD outcome during late adolescence. RESULTS NAFLD was diagnosed in 15.2% of the 1,170 adolescents examined. Ninety-four percent had been breastfed as infants. The duration of breastfeeding before starting supplementary milk was ⩾4months in 54.4% and ⩾6months in 40.6%. Breastfeeding without supplementary milk ⩾6months (adjusted odds ratio [OR]: 0.64; 95% confidence interval [CI]: 0.43-0.94, p=0.02), maternal pre-pregnancy obesity (adjusted OR: 2.29; 95% CI: 1.21-4.32, p=0.01) and adolescent obesity (adjusted OR: 9.08; 95% CI: 6.26-13.17, p<0.001) were associated with NAFLD independent of a Western dietary pattern at 17years of age. Adolescents with NAFLD who had been breastfed for ⩾6months had a less adverse metabolic profile compared with adolescents breastfed for <6months. Supplementary milk intake starting before 6months was associated with a higher prevalence and ultrasound severity of NAFLD compared with intake starting after 6months (17.7% vs. 11.2%, p=0.003 and 7.8% vs. 3.4%, p=0.005 respectively). CONCLUSION Though NAFLD is generally mediated through adiposity gains, breastfeeding for at least 6months, avoidance of early supplementary formula milk feeding, and normal maternal pre-pregnancy BMI may reduce the odds of a NAFLD diagnosis during adolescence. LAY SUMMARY Non-alcoholic fatty liver disease (NAFLD) is a common liver disorder in which there is too much fat in the liver of people who do not consume excessive amounts of alcohol. In this large study, we found that infants who consumed breast milk for less than 6months before starting infant formula milk, infants who were obese as teenagers or had mothers who were obese at the start of pregnancy, were much more likely to have NAFLD at 17years of age. Based on our findings we consider that reducing the risk of NAFLD in teenagers needs to start before birth, by encouraging normal body mass index before pregnancy, as well as breastfeeding without infant formula milk consumption for the first 6months of life.
Collapse
Affiliation(s)
- Oyekoya T Ayonrinde
- School of Medicine and Pharmacology, The University of Western Australia, Perth, WA, Australia; Department of Gastroenterology and Hepatology, Fiona Stanley Hospital, Murdoch, WA, Australia; Faculty of Health Sciences, Curtin University, Bentley, WA, Australia.
| | - Wendy H Oddy
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia; Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Leon A Adams
- School of Medicine and Pharmacology, The University of Western Australia, Perth, WA, Australia; Department of Hepatology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Trevor A Mori
- School of Medicine and Pharmacology, The University of Western Australia, Perth, WA, Australia
| | - Lawrence J Beilin
- School of Medicine and Pharmacology, The University of Western Australia, Perth, WA, Australia
| | - Nicholas de Klerk
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - John K Olynyk
- Department of Gastroenterology and Hepatology, Fiona Stanley Hospital, Murdoch, WA, Australia; Faculty of Health Sciences, Curtin University, Bentley, WA, Australia; Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
68
|
Abstract
A growing epidemic of nonalcoholic fatty liver disease (NAFLD) is paralleling the increase in the incidence of obesity and diabetes mellitus in countries that consume a Western diet. As NAFLD can lead to life-threatening conditions such as cirrhosis and hepatocellular carcinoma, an understanding of the factors that trigger its development and pathological progression is needed. Although by definition this disease is not associated with alcohol consumption, exposure to environmental agents that have been linked to other diseases might have a role in the development of NAFLD. Here, we focus on one class of these agents, endocrine-disrupting chemicals (EDCs), and their potential to influence the initiation and progression of a cascade of pathological conditions associated with hepatic steatosis (fatty liver). Experimental studies have revealed several potential mechanisms by which EDC exposure might contribute to disease pathogenesis, including the modulation of nuclear hormone receptor function and the alteration of the epigenome. However, many questions remain to be addressed about the causal link between acute and chronic EDC exposure and the development of NAFLD in humans. Future studies that address these questions hold promise not only for understanding the linkage between EDC exposure and liver disease but also for elucidating the molecular mechanisms that underpin NAFLD, which in turn could facilitate the development of new prevention and treatment opportunities.
Collapse
Affiliation(s)
- Charles E Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine
- Center for Precision Environmental Health, Baylor College of Medicine
| | - Lindsey S Treviño
- Department of Molecular and Cellular Biology, Baylor College of Medicine
- Center for Precision Environmental Health, Baylor College of Medicine
| | - Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine
- Dan L. Duncan Cancer Center, Baylor College of Medicine
| | - Cheryl L Walker
- Department of Molecular and Cellular Biology, Baylor College of Medicine
- Center for Precision Environmental Health, Baylor College of Medicine
- Dan L. Duncan Cancer Center, Baylor College of Medicine
- Department of Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA
| |
Collapse
|
69
|
Shi X, Li X, Hou Y, Cao X, Zhang Y, Wang H, Wang H, Peng C, Li J, Li Q, Wu C, Xiao X. Paternal hyperglycemia in rats exacerbates the development of obesity in offspring. J Endocrinol 2017; 234:175-186. [PMID: 28533422 DOI: 10.1530/joe-17-0082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 12/25/2022]
Abstract
Parental history with obesity or diabetes will increase the risk for developing metabolic diseases in offspring. However, literatures as to transgenerational inheritance of metabolic dysfunctions through male lineage are relatively scarce. In the current study, we aimed to evaluate influences of paternal hyperglycemia on metabolic phenotypes in offspring. Male SD rats were i.p. injected with streptozotocin (STZ) or citrate buffer (CB, as control). STZ-injected rats with glucose levels higher than 16.7 mM were selected to breed with normal female rats. Offspring from STZ or CB treated fathers (STZ-O and CB-O) were maintained in the identical condition. We monitored body weight and food intake, and tests of glucose and insulin tolerance (GTTs and ITTs), fasting-refeeding and cold exposure were performed. Expression of factors involved in hypothalamic feeding and brown adipose tissue (BAT) thermogenic activity was performed by real-time PCR and Western blot. Adult STZ-O were heavier than CB-O. Impairment of GTTs was observed in STZ-O compared with CB-O at 22 and 32 weeks of age; ITTs results showed decreased insulin sensitivity in STZ-O. Daily food intake and accumulated food intake during 12-h refeeding after fasting were significantly higher in STZ-O. UCP1 levels were downregulated in BAT from STZ-O at room temperature and cold exposure. Finally, STZ-O rats showed suppressed leptin signaling in the hypothalamus as evidenced by upregulated SOCS3, reduced phosphorylation of STAT3, impaired processing POMC and decreased α-MSH production. Our study revealed that paternal hyperglycemia predisposes offspring to developing obesity, which is possibly associated with impaired hypothalamic leptin signaling.
Collapse
Affiliation(s)
- Xiaoqin Shi
- Laboratory of Lipid & Glucose MetabolismThe First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyu Li
- Laboratory of Lipid & Glucose MetabolismThe First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Hou
- Laboratory of Lipid & Glucose MetabolismThe First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Cao
- Laboratory of Lipid & Glucose MetabolismThe First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuyao Zhang
- Laboratory of Lipid & Glucose MetabolismThe First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Heng Wang
- Laboratory of Lipid & Glucose MetabolismThe First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongyin Wang
- Laboratory of Lipid & Glucose MetabolismThe First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chuan Peng
- Laboratory of Lipid & Glucose MetabolismThe First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of EndocrinologyThe First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jibin Li
- Department of Nutrition and Food HygieneSchool of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Qifu Li
- Department of EndocrinologyThe First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chaodong Wu
- Department of Nutrition and Food ScienceTexas A&M University, College Station, Texas, USA
| | - Xiaoqiu Xiao
- Laboratory of Lipid & Glucose MetabolismThe First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of EndocrinologyThe First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Canada-China-New Zealand Joint Laboratory of Maternal and Fetal MedicineChongqing Medical University, Chongqing, China
| |
Collapse
|
70
|
Kereliuk SM, Brawerman GM, Dolinsky VW. Maternal Macronutrient Consumption and the Developmental Origins of Metabolic Disease in the Offspring. Int J Mol Sci 2017; 18:E1451. [PMID: 28684678 PMCID: PMC5535942 DOI: 10.3390/ijms18071451] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/14/2017] [Accepted: 06/30/2017] [Indexed: 12/18/2022] Open
Abstract
Recent research aimed at understanding the rise in obesity and cardiometabolic disease in children suggests that suboptimal maternal nutrition conditions organ systems and physiological responses in the offspring contributing to disease development. Understanding the mechanisms by which the macronutrient composition of the maternal diet during pregnancy or lactation affects health outcomes in the offspring may lead to new maternal nutrition recommendations, disease prevention strategies and therapies that reduce the increasing incidence of cardiometabolic disease in children. Recent mechanistic animal model research has identified how excess fats and sugars in the maternal diet alter offspring glucose tolerance, insulin signaling and metabolism. Maternal nutrition appears to influence epigenetic alterations in the offspring and the programming of gene expression in key metabolic pathways. This review is focused on experimental studies in animal models that have investigated mechanisms of how maternal consumption of macronutrients affects cardiometabolic disease development in the offspring. Future research using "-omic" technologies is essential to elucidate the mechanisms of how altered maternal macronutrient consumption influences the development of disease in the offspring.
Collapse
Affiliation(s)
- Stephanie M Kereliuk
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Gabriel M Brawerman
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Vernon W Dolinsky
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
71
|
Wankhade UD, Zhong Y, Kang P, Alfaro M, Chintapalli SV, Thakali KM, Shankar K. Enhanced offspring predisposition to steatohepatitis with maternal high-fat diet is associated with epigenetic and microbiome alterations. PLoS One 2017; 12:e0175675. [PMID: 28414763 PMCID: PMC5393586 DOI: 10.1371/journal.pone.0175675] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/29/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) is an important co-morbidity associated with obesity and a precursor to steatohepatitis. However, the contributions of gestational and early life influences on development of NAFLD and NASH remain poorly appreciated. METHODS Two independent studies were performed to examine whether maternal over-nutrition via exposure to high fat diet (HFD) leads to exacerbated hepatic responses to post-natal HFD and methionine choline deficient (MCD) diets in the offspring. Offspring of both control diet- and HFD-fed dams were weaned onto control and HFD, creating four groups. RESULTS When compared to their control diet-fed littermates, offspring of HF-dams weaned onto HFD gained greater body weight; had increased relative liver weight and showed hepatic steatosis and inflammation. Similarly, this group revealed significantly greater immune response and pro-fibrogenic gene expression via RNA-seq. In parallel, 7-8 week old offspring were challenged with either control or MCD diets for 3 weeks. Responses to MCD diets were also exacerbated due to maternal HFD as seen by gene expression of classical pro-fibrogenic genes. Quantitative genome-scale DNA methylation analysis of over 1 million CpGs showed persistent epigenetic changes in key genes in tissue development and metabolism (Fgf21, Ppargc1β) with maternal HFD and in cell adhesion and communication (VWF, Ephb2) in the combination of maternal HFD and offspring MCD diets. Maternal HFD also influenced gut microbiome profiles in offspring leading to a decrease in α-diversity. Linear regression analysis revealed association between serum ALT levels and Coprococcus, Coriobacteriacae, Helicobacterioceae and Allobaculum. CONCLUSION Our findings indicate that maternal HFD detrimentally alters epigenetic and gut microbiome pathways to favor development of fatty liver disease and its progressive sequelae.
Collapse
Affiliation(s)
- Umesh D. Wankhade
- Arkansas Children’s Nutrition Center, Little Rock, Arkansas, United States of America
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Ying Zhong
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Ping Kang
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Maria Alfaro
- Molecular Genetic Pathology Laboratory, Arkansas Children’s Hospital, Little Rock, Arkansas, United States of America
| | - Sree V. Chintapalli
- Arkansas Children’s Nutrition Center, Little Rock, Arkansas, United States of America
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Keshari M. Thakali
- Arkansas Children’s Nutrition Center, Little Rock, Arkansas, United States of America
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Kartik Shankar
- Arkansas Children’s Nutrition Center, Little Rock, Arkansas, United States of America
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| |
Collapse
|
72
|
Zmora N, Bashiardes S, Levy M, Elinav E. The Role of the Immune System in Metabolic Health and Disease. Cell Metab 2017; 25:506-521. [PMID: 28273474 DOI: 10.1016/j.cmet.2017.02.006] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/04/2017] [Accepted: 02/10/2017] [Indexed: 12/15/2022]
Abstract
In addition to the immune system's traditional roles of conferring anti-infectious and anti-neoplastic protection, it has been recently implicated in the regulation of systemic metabolic homeostasis. This cross-talk between the immune and the metabolic systems is pivotal in promoting "metabolic health" throughout the life of an organism and plays fundamental roles in its adaptation to ever-changing environmental makeups and nutritional availability. Perturbations in this intricate immune-metabolic cross-talk contribute to the tendency to develop altered metabolic states that may culminate in metabolic disorders such as malnutrition, obesity, type 2 diabetes mellitus (T2DM), and other features of the metabolic syndrome. Regulators of immune-metabolic interactions include host genetics, nutritional status, and the intestinal microbiome. In this Perspective, we highlight current understanding of immune-metabolism interactions, illustrate differences among individuals and between populations in this respect, and point toward future avenues of research possibly enabling immune harnessing as means of personalized treatment for common metabolic disorders.
Collapse
Affiliation(s)
- Niv Zmora
- Immunology Department, Weizmann Institute of Science, Rehovot 7610001, Israel; Internal Medicine Department, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Stavros Bashiardes
- Immunology Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maayan Levy
- Immunology Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
73
|
Kasch J, Schumann S, Schreiber S, Klaus S, Kanzleiter I. Beneficial effects of exercise on offspring obesity and insulin resistance are reduced by maternal high-fat diet. PLoS One 2017; 12:e0173076. [PMID: 28235071 PMCID: PMC5325607 DOI: 10.1371/journal.pone.0173076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/14/2017] [Indexed: 11/19/2022] Open
Abstract
SCOPE We investigated the long-term effects of maternal high-fat consumption and post-weaning exercise on offspring obesity susceptibility and insulin resistance. METHODS C57BL/6J dams were fed either a high-fat (HFD, 40% kcal fat) or low-fat (LFD, 10% kcal fat) semi-synthetic diet during pregnancy and lactation. After weaning, male offspring of both maternal diet groups (mLFD; mHFD) received a LFD. At week 7, half of the mice got access to a running wheel (+RW) as voluntary exercise training. To induce obesity, all offspring groups (mLFD +/-RW and mHFD +/-RW) received HFD from week 15 until week 25. RESULTS Compared to mLFD, mHFD offspring were more prone to HFD-induced body fat gain and exhibited an increased liver mass which was not due to increased hepatic triglyceride levels. RW improved the endurance capacity in mLFD, but not in mHFD offspring. Additionally, mHFD offspring +RW exhibited higher plasma insulin levels during glucose tolerance test and an elevated basal pancreatic insulin production compared to mLFD offspring. CONCLUSION Taken together, maternal HFD reduced offspring responsiveness to the beneficial effects of voluntary exercise training regarding the improvement of endurance capacity, reduction of fat mass gain, and amelioration of HFD-induced insulin resistance.
Collapse
Affiliation(s)
- Juliane Kasch
- Department Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Sara Schumann
- Department Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- * E-mail: (SS); (SK)
| | - Saskia Schreiber
- Department Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Susanne Klaus
- Department Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- * E-mail: (SS); (SK)
| | - Isabel Kanzleiter
- Department Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| |
Collapse
|
74
|
Wesolowski SR, El Kasmi KC, Jonscher KR, Friedman JE. Developmental origins of NAFLD: a womb with a clue. Nat Rev Gastroenterol Hepatol 2017; 14:81-96. [PMID: 27780972 PMCID: PMC5725959 DOI: 10.1038/nrgastro.2016.160] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Changes in the maternal environment leading to an altered intrauterine milieu can result in subtle insults to the fetus, promoting increased lifetime disease risk and/or disease acceleration in childhood and later in life. Particularly worrisome is that the prevalence of NAFLD is rapidly increasing among children and adults, and is being diagnosed at increasingly younger ages, pointing towards an early-life origin. A wealth of evidence, in humans and non-human primates, suggests that maternal nutrition affects the placenta and fetal tissues, leading to persistent changes in hepatic metabolism, mitochondrial function, the intestinal microbiota, liver macrophage activation and susceptibility to NASH postnatally. Deleterious exposures in utero include fetal hypoxia, increased nutrient supply, inflammation and altered gut microbiota that might produce metabolic clues, including fatty acids, metabolites, endotoxins, bile acids and cytokines, which prime the infant liver for NAFLD in a persistent manner and increase susceptibility to NASH. Mechanistic links to early disease pathways might involve shifts in lipid metabolism, mitochondrial dysfunction, pioneering gut microorganisms, macrophage programming and epigenetic changes that alter the liver microenvironment, favouring liver injury. In this Review, we discuss how maternal, fetal, neonatal and infant exposures provide developmental clues and mechanisms to help explain NAFLD acceleration and increased disease prevalence. Mechanisms identified in clinical and preclinical models suggest important opportunities for prevention and intervention that could slow down the growing epidemic of NAFLD in the next generation.
Collapse
Affiliation(s)
| | - Karim C. El Kasmi
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Colorado
| | | | - Jacob E. Friedman
- Department of Pediatrics, Section of Neonatology, University of Colorado,Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado, Anschutz Medical Campus, 12801 East 17th Avenue, MS 8106, Aurora, Colorado 80045, USA
| |
Collapse
|
75
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) is associated with obesity, insulin resistance, type 2 diabetes and cardiovascular disease and can be considered the hepatic manifestation of the metabolic syndrome. NAFLD represents a spectrum of disease, from the relatively benign simple steatosis to the more serious non-alcoholic steatohepatitis, which can progress to liver cirrhosis, hepatocellular carcinoma and end-stage liver failure, necessitating liver transplantation. Although the increasing prevalence of NAFLD in developed countries has substantial implications for public health, many of the precise mechanisms accounting for the development and progression of NAFLD are unclear. The environment in early life is an important determinant of cardiovascular disease risk in later life and studies suggest this also extends to NAFLD. Here we review data from animal models and human studies which suggest that fetal and early life exposure to maternal under- and overnutrition, excess glucocorticoids and environmental pollutants may confer an increased susceptibility to NAFLD development and progression in offspring and that such effects may be sex-specific. We also consider studies aimed at identifying potential dietary and pharmacological interventions aimed at reducing this risk. We suggest that further human epidemiological studies are needed to ensure that data from animal models are relevant to human health.
Collapse
|
76
|
Afrin R, Arumugam S, Rahman A, Wahed MII, Karuppagounder V, Harima M, Suzuki H, Miyashita S, Suzuki K, Yoneyama H, Ueno K, Watanabe K. Curcumin ameliorates liver damage and progression of NASH in NASH-HCC mouse model possibly by modulating HMGB1-NF-κB translocation. Int Immunopharmacol 2017; 44:174-182. [PMID: 28110063 DOI: 10.1016/j.intimp.2017.01.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/22/2016] [Accepted: 01/10/2017] [Indexed: 12/21/2022]
Abstract
Curcumin, a phenolic compound, has a wide spectrum of therapeutic effects such as antitumor, anti-inflammatory, anti-cancer and so on. The study aimed to investigate the underlying mechanisms of curcumin to protect liver damage and progression of non-alcoholic steatohepatitis (NASH) in a novel NASH-hepatocellular carcinoma (HCC) mouse model. To induce this model neonatal C57BL/6J male mice were exposed to low-dose streptozotocin and were fed a high-fat diet (HFD) from the age of 4weeks to 14weeks. Curcumin was given at 100mg/kg dose daily by oral gavage started at the age of 10weeks and continued until 14weeks along with HFD feeding. We found that curcumin improved the histopathological changes of the NASH liver via reducing the level of steatosis, fibrosis associated with decreasing serum aminotransferases. In addition, curcumin treatment markedly reduced the hepatic protein expression of oxidative stress, pro-inflammatory cytokines, and chemokines including interferon (IFN) γ, interleukin-1β and IFNγ-inducible protein 10, in NASH mice. Furthermore, curcumin treatment significantly reduced the cytoplasmic translocation of high mobility group box 1 (HMGB1) and the protein expression of toll like receptor 4. Nuclear translocation of nuclear factor kappa B (NF-κB) was also dramatically attenuated by the curcumin in NASH liver. Curcumin treatment effectively reduced the progression of NASH to HCC by suppressing the protein expression of glypican-3, vascular endothelial growth factor, and prothrombin in the NASH liver. Our data suggest that curcumin reduces the progression of NASH and liver damage, which may act via inhibiting HMGB1-NF-κB translocation.
Collapse
Affiliation(s)
- Rejina Afrin
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Somasundaram Arumugam
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Azizur Rahman
- Department of Immunology and Medical Zoology, Faculty of Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata City 951-8510, Japan
| | - Mir Imam Ibne Wahed
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan; Department of Pharmacy, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Vengadeshprabhu Karuppagounder
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Meilei Harima
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Hiroshi Suzuki
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Shizuka Miyashita
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Kenji Suzuki
- Department of Clinical Engineering and Medical Technology, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | | | - Kazuyuki Ueno
- Department of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Kenichi Watanabe
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan.
| |
Collapse
|
77
|
Jonscher KR, Stewart MS, Alfonso-Garcia A, DeFelice BC, Wang XX, Luo Y, Levi M, Heerwagen MJR, Janssen RC, de la Houssaye BA, Wiitala E, Florey G, Jonscher RL, Potma EO, Fiehn O, Friedman JE. Early PQQ supplementation has persistent long-term protective effects on developmental programming of hepatic lipotoxicity and inflammation in obese mice. FASEB J 2016; 31:1434-1448. [PMID: 28007783 DOI: 10.1096/fj.201600906r] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is widespread in adults and children. Early exposure to maternal obesity or Western-style diet (WD) increases steatosis and oxidative stress in fetal liver and is associated with lifetime disease risk in the offspring. Pyrroloquinoline quinone (PQQ) is a natural antioxidant found in soil, enriched in human breast milk, and essential for development in mammals. We investigated whether a supplemental dose of PQQ, provided prenatally in a mouse model of diet-induced obesity during pregnancy, could protect obese offspring from progression of NAFLD. PQQ treatment given pre- and postnatally in WD-fed offspring had no effect on weight gain but increased metabolic flexibility while reducing body fat and liver lipids, compared with untreated obese offspring. Indices of NAFLD, including hepatic ceramide levels, oxidative stress, and expression of proinflammatory genes (Nos2, Nlrp3, Il6, and Ptgs2), were decreased in WD PQQ-fed mice, concomitant with increased expression of fatty acid oxidation genes and decreased Pparg expression. Notably, these changes persisted even after PQQ withdrawal at weaning. Our results suggest that supplementation with PQQ, particularly during pregnancy and lactation, protects offspring from WD-induced developmental programming of hepatic lipotoxicity and may help slow the advancing epidemic of NAFLD in the next generation.-Jonscher, K. R., Stewart, M. S., Alfonso-Garcia, A., DeFelice, B. C., Wang, X. X., Luo, Y., Levi, M., Heerwagen, M. J. R., Janssen, R. C., de la Houssaye, B. A., Wiitala, E., Florey, G., Jonscher, R. L., Potma, E. O., Fiehn, O. Friedman, J. E. Early PQQ supplementation has persistent long-term protective effects on developmental programming of hepatic lipotoxicity and inflammation in obese mice.
Collapse
Affiliation(s)
- Karen R Jonscher
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA;
| | - Michael S Stewart
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | | | - Brian C DeFelice
- West Coast Metabolomics Center, University of California, Davis, Davis, CA USA
| | - Xiaoxin X Wang
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yuhuan Luo
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Moshe Levi
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Margaret J R Heerwagen
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | - Rachel C Janssen
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | - Becky A de la Houssaye
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | - Ellen Wiitala
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | - Garrett Florey
- Department of Integrative Biology, University of Colorado, Denver, Denver, Colorado, USA; and
| | - Raleigh L Jonscher
- Department of Integrative Biology, University of Colorado, Denver, Denver, Colorado, USA; and
| | - Eric O Potma
- Beckman Laser Institute, and.,Department of Biomedical Engineering,University of California, Irvine, Irvine, California, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, Davis, CA USA.,Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jacob E Friedman
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| |
Collapse
|
78
|
Soeda J, Cordero P, Li J, Mouralidarane A, Asilmaz E, Ray S, Nguyen V, Carter R, Novelli M, Vinciguerra M, Poston L, Taylor PD, Oben JA. Hepatic rhythmicity of endoplasmic reticulum stress is disrupted in perinatal and adult mice models of high-fat diet-induced obesity. Int J Food Sci Nutr 2016; 68:455-466. [PMID: 27899042 PMCID: PMC5399811 DOI: 10.1080/09637486.2016.1261086] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We investigated the regulation of hepatic ER stress in healthy liver and adult or perinatally programmed diet-induced non-alcoholic fatty liver disease (NAFLD). Female mice were fed either obesogenic or control diet before mating, during pregnancy and lactation. Post-weaning, offspring from each maternal group were divided into either obesogenic or control diet. At six months, offspring were sacrificed at 4-h intervals over 24 h. Offspring fed obesogenic diets developed NAFLD phenotype, and the combination of maternal and offspring obesogenic diets exacerbated this phenotype. UPR signalling pathways (IREα, PERK, ATF6) and their downstream regulators showed different basal rhythmicity, which was modified in offspring exposed to obesogenic diet and maternal programming. The double obesogenic hit increased liver apoptosis measured by TUNEL staining, active caspase-3 and phospho-JNK and GRP78 promoter methylation levels. This study demonstrates that hepatic UPR is rhythmically activated. The combination of maternal obesity (MO) and obesogenic diets in offspring triggered altered UPR rhythmicity, DNA methylation and cellular apoptosis.
Collapse
Affiliation(s)
- Junpei Soeda
- a Institute for Liver and Digestive Health, University College London , London , UK
| | - Paul Cordero
- a Institute for Liver and Digestive Health, University College London , London , UK
| | - Jiawei Li
- a Institute for Liver and Digestive Health, University College London , London , UK
| | | | - Esra Asilmaz
- a Institute for Liver and Digestive Health, University College London , London , UK
| | - Shuvra Ray
- a Institute for Liver and Digestive Health, University College London , London , UK
| | - Vi Nguyen
- a Institute for Liver and Digestive Health, University College London , London , UK
| | - Rebeca Carter
- a Institute for Liver and Digestive Health, University College London , London , UK
| | - Marco Novelli
- b Department of Pathology , University College London , London , UK
| | - Manlio Vinciguerra
- a Institute for Liver and Digestive Health, University College London , London , UK.,c Fondazione Italiana Fegato , Area Science Park , Basovizza , Trieste , Italy.,d Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St. Anne's University Hospital , Brno , Czech Republic
| | - Lucilla Poston
- e Division of Women's Health , King's College London , London , UK
| | - Paul D Taylor
- e Division of Women's Health , King's College London , London , UK
| | - Jude A Oben
- a Institute for Liver and Digestive Health, University College London , London , UK.,f Department of Gastroenterology and Hepatology , Guy's and St Thomas' Hospital, NHS Foundation Trust , London , UK
| |
Collapse
|
79
|
In utero exposure to gestational diabetes mellitus conditions TLR4 and TLR2 activated IL-1beta responses in spleen cells from rat offspring. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2137-2146. [DOI: 10.1016/j.bbadis.2016.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 07/10/2016] [Accepted: 08/09/2016] [Indexed: 12/18/2022]
|
80
|
Ambrosetti V, Guerra M, Ramírez LA, Reyes A, Álvarez D, Olguín S, González-Mañan D, Fernandois D, Sotomayor-Zárate R, Cruz G. Increase in endogenous estradiol in the progeny of obese rats is associated with precocious puberty and altered follicular development in adulthood. Endocrine 2016; 53:258-70. [PMID: 26767652 DOI: 10.1007/s12020-016-0858-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/04/2016] [Indexed: 01/07/2023]
Abstract
Maternal obesity during pregnancy has been related with several pathological states in offspring. However, the impact of maternal obesity on reproductive system on the progeny is beginning to be elucidated. In this work, we characterize the effect of maternal obesity on puberty onset and follicular development in adult offspring in rats. We also propose that alterations in ovarian physiology observed in offspring of obese mothers are due to increased levels of estradiol during early development. Offspring of control dams and offspring of dams exposed to a high-fat diet (HF) were studied at postnatal days (PND) 1, 7, 14, 30, 60, and 120. Body weight and onset of puberty were measured. Counting of ovarian follicles was performed at PND 60 and 120. Serum estradiol, estriol, androstenedione, FSH, LH, and insulin levels were measured by ELISA. Hepatic CYP3A2 expression was determined by Western blot. HF rats had a higher weight than controls at all ages and they also had a precocious puberty. Estradiol levels were increased while CYP3A2 expression was reduced from PND 1 until PND 60 in HF rats compared to controls. Estriol was decreased at PND60 in HF rats. Ovaries from HF rats had a decrease in antral follicles at PND60 and PND120 and an increase in follicular cysts at PND60 and PND120. In this work, we demonstrated that maternal obesity in rats alters follicular development and induces follicular cysts generation in the adult offspring. We observed that maternal obesity produces an endocrine disruption through increasing endogenous estradiol in early life. A programmed failure in hepatic metabolism of estradiol is probably the cause of its increase.
Collapse
Affiliation(s)
- Valery Ambrosetti
- Laboratorio de Alteraciones Reproductivas y Metabólicas, Facultad de Ciencias, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, 2360102, Valparaiso, Chile
| | - Marcelo Guerra
- Laboratorio de Alteraciones Reproductivas y Metabólicas, Facultad de Ciencias, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, 2360102, Valparaiso, Chile
| | - Luisa A Ramírez
- Laboratorio de Alteraciones Reproductivas y Metabólicas, Facultad de Ciencias, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, 2360102, Valparaiso, Chile
| | - Aldo Reyes
- Laboratorio de Alteraciones Reproductivas y Metabólicas, Facultad de Ciencias, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, 2360102, Valparaiso, Chile
| | - Daniela Álvarez
- Laboratorio de Alteraciones Reproductivas y Metabólicas, Facultad de Ciencias, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, 2360102, Valparaiso, Chile
| | - Sofía Olguín
- Laboratorio de Alteraciones Reproductivas y Metabólicas, Facultad de Ciencias, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, 2360102, Valparaiso, Chile
| | - Daniel González-Mañan
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, 8380492, Santiago, Chile
| | - Daniela Fernandois
- Programa de Doctorado en Farmacología, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380492, Santiago, Chile
| | - Ramón Sotomayor-Zárate
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Facultad de Ciencias, Instituto de Fisiología, Universidad de Valparaíso, 2360102, Valparaiso, Chile
| | - Gonzalo Cruz
- Laboratorio de Alteraciones Reproductivas y Metabólicas, Facultad de Ciencias, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, 2360102, Valparaiso, Chile.
| |
Collapse
|
81
|
Yanai S, Tokuhara D, Tachibana D, Saito M, Sakashita Y, Shintaku H, Koyama M. Diabetic pregnancy activates the innate immune response through TLR5 or TLR1/2 on neonatal monocyte. J Reprod Immunol 2016; 117:17-23. [PMID: 27351455 DOI: 10.1016/j.jri.2016.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 05/09/2016] [Accepted: 06/20/2016] [Indexed: 11/28/2022]
Abstract
Diabetes mellitus (DM) during pregnancy causes congenital malformation, macrosomia, respiratory distress syndrome, and other abnormalities in neonates, but whether maternal DM affects the neonatal innate immune system is unknown. Therefore we aimed to reveal the influence of DM in pregnancy on the toll-like receptor (TLR)-mediated innate immune response in neonates. Cord blood was collected after full-term vaginal or cesarean delivery and classified into a DM group (n=8) and non-DM (control) group (n=7). Mononuclear cells were harvested from cord blood by using density gradient centrifugation, after which anti-CD14 magnetic beads were used to isolate monocytes from the mononuclear population. After monocytes were cultured with lipopolysaccharide (TLR4 ligand), flagellin (TLR5 ligand), Pam3CSK4 (TLR1/TLR2 ligand), zymosan (TLR2/TLR6 ligand), or macrophage-activating lipopeptide (TLR2/TLR6 ligand) for 12h, the cytokine levels (interleukin [IL]-8, IL-6, IL-1β, IL-10, tumor necrosis factor alpha and IL-12) in the culture supernatants were measured. Compared with the control group, the DM group had higher concentrations of IL-8 (P=0.01) and tumor necrosis factor alpha (P=0.02) after monocyte cultures were stimulated with Pam3CSK4 and higher concentrations of IL-8 (P=0.01) after flagellin treatment. In contrast, stimulation with lipopolysaccharide, zymosan, or macrophage-activating lipopeptide did not lead to any difference in cytokine profiles between the two groups. These data indicate that maternal DM induces excessive inflammatory activation in neonates via a TLR5- or TLR1/2-mediated innate immune response.
Collapse
Affiliation(s)
- Sakika Yanai
- Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan
| | - Daisuke Tokuhara
- Department of Pediatrics, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan.
| | - Daisuke Tachibana
- Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan
| | - Mika Saito
- Department of Pediatrics, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan
| | - Yuko Sakashita
- Department of Pediatrics, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan
| | - Haruo Shintaku
- Department of Pediatrics, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan
| | - Masayasu Koyama
- Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan
| |
Collapse
|
82
|
A Guide to Non-Alcoholic Fatty Liver Disease in Childhood and Adolescence. Int J Mol Sci 2016; 17:ijms17060947. [PMID: 27314342 PMCID: PMC4926480 DOI: 10.3390/ijms17060947] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 02/07/2023] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is now the most prevalent form of chronic liver disease, affecting 10%–20% of the general paediatric population. Within the next 10 years it is expected to become the leading cause of liver pathology, liver failure and indication for liver transplantation in childhood and adolescence in the Western world. While our understanding of the pathophysiological mechanisms underlying this disease remains limited, it is thought to be the hepatic manifestation of more widespread metabolic dysfunction and is strongly associated with a number of metabolic risk factors, including insulin resistance, dyslipidaemia, cardiovascular disease and, most significantly, obesity. Despite this, ”paediatric” NAFLD remains under-studied, under-recognised and, potentially, undermanaged. This article will explore and evaluate our current understanding of NAFLD in childhood and adolescence and how it differs from adult NAFLD, in terms of its epidemiology, pathophysiology, natural history, diagnosis and clinical management. Given the current absence of definitive radiological and histopathological diagnostic tests, maintenance of a high clinical suspicion by all members of the multidisciplinary team in primary and specialist care settings remains the most potent of diagnostic tools, enabling early diagnosis and appropriate therapeutic intervention.
Collapse
|
83
|
Li J, Cordero P, Nguyen V, Oben JA. The Role of Vitamins in the Pathogenesis of Non-alcoholic Fatty Liver Disease. INTEGRATIVE MEDICINE INSIGHTS 2016; 11:19-25. [PMID: 27147819 PMCID: PMC4849418 DOI: 10.4137/imi.s31451] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/19/2015] [Accepted: 11/24/2015] [Indexed: 02/06/2023]
Abstract
The incidence of non-alcoholic fatty liver disease (NAFLD) is rising rapidly in parallel with obesity rates. The underlying pathogenesis of NAFLD remains an enigma but is largely influenced by individual lifestyle choices involving diet and exercise. Therefore, studies have highlighted the importance of calorie reduction and macronutrient composition (eg, carbohydrate and fat) in modifying disease outcomes. Micronutrients are also believed to play a role in disease progression. There are now an increasing number of studies linking vitamins with NAFLD, particularly vitamin E, and the supplementation of several different vitamins has been demonstrated as a promising therapeutic option in the treatment of NAFLD. This review provides a broad overview of the potential role of vitamins in NAFLD development and disease management.
Collapse
Affiliation(s)
- Jiawei Li
- Institute for Liver and Digestive Health, University College London, London, UK
| | - Paul Cordero
- Institute for Liver and Digestive Health, University College London, London, UK
| | - Vi Nguyen
- Institute for Liver and Digestive Health, University College London, London, UK.; Department of Gastroenterology and Hepatology, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Jude A Oben
- Institute for Liver and Digestive Health, University College London, London, UK.; Department of Gastroenterology and Hepatology, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
84
|
Patel S, Lawlor DA, Callaway M, Macdonald-Wallis C, Sattar N, Fraser A. Association of maternal diabetes/glycosuria and pre-pregnancy body mass index with offspring indicators of non-alcoholic fatty liver disease. BMC Pediatr 2016; 16:47. [PMID: 27036545 PMCID: PMC4818433 DOI: 10.1186/s12887-016-0585-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 03/18/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Little is known about early life determinants of non-alcoholic fatty liver disease (NAFLD). We examined associations of maternal pregnancy diabetes/glycosuria and pre-pregnancy body mass index (BMI) with offspring markers of NAFLD and liver pathology and examined mediation by birthweight and concurrent offspring adiposity. METHODS We used data from a UK prospective pregnancy cohort. Offspring underwent abdominal ultrasonography (USS) at mean age 17.8 years. Outcomes included USS-assessed fatty liver, estimated liver volume and shear velocity, a variant of elastography (a marker of liver fibrosis) (N = 1 215) and blood-based markers of liver pathology [alanine amino transferase, aspartate amino transferase, gamma- glutamyltransferase and haptoglobin] (N = 2 359). RESULTS 2.1 % (N = 25) of participants had USS-assessed fatty liver [maternal diabetes/glycosuria (N = 7) and no diabetes/glycosuria (N = 18)]. Maternal diabetes/glycosuria was associated with greater odds of offspring USS fatty liver in confounder adjusted models [adjusted odds ratio (aOR) 6.74 (95 % confidence interval (CI) 2.47, 18.40)] and higher shear velocity [adjusted ratio of geometric mean (aRGM):1.10 (95 % CI 1.05, 1.15)]. These associations were not mediated by offspring birthweight or concurrent adiposity. Maternal diabetes/glycosuria was not associated with liver volume or blood-based outcomes. Greater maternal pre-pregnancy BMI was associated with greater odds of offspring USS fatty liver [aOR 2.72 (95 % CI: 1.20, 6.15)], higher liver volume [aRGM 1.03 (95 % CI 1.00, 1.07)] and shear velocity [aRGM1.03 (95 % CI: 1.01, 1.06)] in confounder adjusted models. These associations were largely mediated by offspring adiposity. Maternal pre-pregnancy BMI was not consistently associated with blood-based outcomes. CONCLUSIONS Results suggest that maternal pregnancy diabetes/glycosuria is associated with offspring NAFLD through mechanisms other than offspring's own adiposity.
Collapse
Affiliation(s)
- Sumaiya Patel
- School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Road, Bristol, UK
| | - Debbie A Lawlor
- School of Social and Community Medicine, University of Bristol, UK & MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
| | - Mark Callaway
- University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Corrie Macdonald-Wallis
- School of Social and Community Medicine, University of Bristol, UK & MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
| | - Naveed Sattar
- Institute of Cardiovascular & Medical Sciences, BHF Glasgow Cardiovascular Research Centre, Faculty of Medicine, University of Glasgow, Glasgow, UK
| | - Abigail Fraser
- School of Social and Community Medicine, University of Bristol, UK & MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK.
| |
Collapse
|
85
|
Lie S, Morrison JL, Williams-Wyss O, Suter CM, Humphreys DT, Ozanne SE, Zhang S, MacLaughlin SM, Kleemann DO, Walker SK, Roberts CT, McMillen IC. Impact of maternal undernutrition around the time of conception on factors regulating hepatic lipid metabolism and microRNAs in singleton and twin fetuses. Am J Physiol Endocrinol Metab 2016; 310:E148-59. [PMID: 26487010 PMCID: PMC4719029 DOI: 10.1152/ajpendo.00600.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 08/31/2015] [Indexed: 01/11/2023]
Abstract
We have investigated the effects of embryo number and maternal undernutrition imposed either around the time of conception or before implantation on hepatic lipid metabolism in the sheep fetus. We have demonstrated that periconceptional undernutrition and preimplantation undernutrition each resulted in decreased hepatic fatty acid β-oxidation regulators, PGC-1α (P < 0.05), PDK2 (P < 0.01), and PDK4 (P < 0.01) mRNA expression in singleton and twin fetuses at 135-138 days gestation. In singletons, there was also lower hepatic PDK4 (P < 0.01), CPT-1 (P < 0.01), and PKCζ (P < 0.01) protein abundance in the PCUN and PIUN groups and a lower protein abundance of PDPK-1 (P < 0.05) in the PCUN group. Interestingly, in twins, the hepatic protein abundance of p-AMPK (Ser(485)) (P < 0.01), p-PDPK-1 (Ser(41)) (P < 0.05), and PKCζ (P < 0.05) was higher in the PCUN and PIUN groups, and hepatic PDK4 (P < 0.001) and CPT-1 (P < 0.05) protein abundance was also higher in the PIUN twin fetus. We also found that the expression of a number of microRNAs was altered in response to PCUN or PIUN and that there is evidence that these changes may underlie the changes in the protein abundance of key regulators of hepatic fatty acid β-oxidation in the PCUN and PIUN groups. Therefore, embryo number and the timing of maternal undernutrition in early pregnancy have a differential impact on hepatic microRNA expression and on the factors that regulate hepatic fatty acid oxidation and lipid synthesis.
Collapse
Affiliation(s)
- Shervi Lie
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Janna L Morrison
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Olivia Williams-Wyss
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia; Discipline of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Catherine M Suter
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia; Faculty of Medicine, University of New South Wales, Kensington, Australia
| | | | - Susan E Ozanne
- University of Cambridge, Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Song Zhang
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Severence M MacLaughlin
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - David O Kleemann
- South Australian Research and Development Institute, Turretfield Research Centre, Rosedale, Australia
| | - Simon K Walker
- South Australian Research and Development Institute, Turretfield Research Centre, Rosedale, Australia
| | - Claire T Roberts
- Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, Australia; and
| | - I Caroline McMillen
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia; The Chancellery, University of Newcastle, Newcastle, Australia
| |
Collapse
|
86
|
Thompson MD, Cismowski MJ, Trask AJ, Lallier SW, Graf AE, Rogers LK, Lucchesi PA, Brigstock DR. Enhanced Steatosis and Fibrosis in Liver of Adult Offspring Exposed to Maternal High-Fat Diet. Gene Expr 2016; 17:47-59. [PMID: 27342733 PMCID: PMC5611859 DOI: 10.3727/105221616x692135] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Early life exposures can increase the risk of developing chronic diseases including nonalcoholic fatty liver disease. Maternal high-fat diet increases susceptibility to development of steatosis in the offspring. We determined the effect of maternal high-fat diet exposure in utero and during lactation on offspring liver histopathology, particularly fibrosis. Female C57Bl/6J mice were fed a control or high-fat diet (HFD) for 8 weeks and bred with lean males. Nursing dams were continued on the same diet with offspring sacrificed during the perinatal period or maintained on either control or high-fat diet for 12 weeks. Increased hepatocyte proliferation and stellate cell activation were observed in the liver of HFD-exposed pups. Offspring exposed to perinatal high-fat diet and high-fat diet postweaning showed extensive hepatosteatosis compared to offspring on high-fat diet after perinatal control diet. Offspring exposed to perinatal high-fat diet and then placed on control diet for 12 weeks developed steatosis and pericellular fibrosis. Importantly, we found that exposure to perinatal high-fat diet unexpectedly promotes more rapid disease progression of nonalcoholic fatty liver disease, with a sustained fibrotic phenotype, only in adult offspring fed a postweaning control diet.
Collapse
Affiliation(s)
- Michael D. Thompson
- *Division of Endocrinology, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Mary J. Cismowski
- †Center for Cardiovascular and Pulmonary Research, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Aaron J. Trask
- †Center for Cardiovascular and Pulmonary Research, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Scott W. Lallier
- ‡Center for Perinatal Research, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Amanda E. Graf
- ‡Center for Perinatal Research, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Lynette K. Rogers
- ‡Center for Perinatal Research, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Pamela A. Lucchesi
- †Center for Cardiovascular and Pulmonary Research, Nationwide Children’s Hospital, Columbus, OH, USA
- §Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA
| | - David R. Brigstock
- ¶Center for Clinical and Translational Research, Nationwide Children’s Hospital, Columbus, OH, USA
| |
Collapse
|
87
|
Boone-Heinonen J, Messer LC, Fortmann SP, Wallack L, Thornburg KL. From fatalism to mitigation: A conceptual framework for mitigating fetal programming of chronic disease by maternal obesity. Prev Med 2015; 81:451-9. [PMID: 26522092 PMCID: PMC4679670 DOI: 10.1016/j.ypmed.2015.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 10/21/2015] [Accepted: 10/23/2015] [Indexed: 02/07/2023]
Abstract
Prenatal development is recognized as a critical period in the etiology of obesity and cardiometabolic disease. Potential strategies to reduce maternal obesity-induced risk later in life have been largely overlooked. In this paper, we first propose a conceptual framework for the role of public health and preventive medicine in mitigating the effects of fetal programming. Second, we review a small but growing body of research (through August 2015) that examines interactive effects of maternal obesity and two public health foci - diet and physical activity - in the offspring. Results of the review support the hypothesis that diet and physical activity after early life can attenuate disease susceptibility induced by maternal obesity, but human evidence is scant. Based on the review, we identify major gaps relevant for prevention research, such as characterizing the type and dose response of dietary and physical activity exposures that modify the adverse effects of maternal obesity in the offspring. Third, we discuss potential implications of interactions between maternal obesity and postnatal dietary and physical activity exposures for interventions to mitigate maternal obesity-induced risk among children. Our conceptual framework, evidence review, and future research directions offer a platform to develop, test, and implement fetal programming mitigation strategies for the current and future generations of children.
Collapse
Affiliation(s)
| | - Lynne C Messer
- School of Community Health, College of Urban and Public Affairs, Portland State University, Portland, OR, USA
| | | | - Lawrence Wallack
- School of Community Health, College of Urban and Public Affairs, Portland State University, Portland, OR, USA
| | - Kent L Thornburg
- Bob and Charlee Moore Institute for Nutrition and Wellness, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
88
|
Pereira TJ, Moyce BL, Kereliuk SM, Dolinsky VW. Influence of maternal overnutrition and gestational diabetes on the programming of metabolic health outcomes in the offspring: experimental evidence. Biochem Cell Biol 2015; 93:438-451. [PMID: 25673017 DOI: 10.1139/bcb-2014-0141] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2023] Open
Abstract
The incidence of obesity and type 2 diabetes mellitus have risen across the world during the past few decades and has also reached an alarming level among children. In addition, women are currently more likely than ever to enter pregnancy obese. As a result, the incidence of gestational diabetes mellitus is also on the rise. While diet and lifestyle contribute to these trends, population health data show that maternal obesity and diabetes during pregnancy during critical stages of development are major factors that contribute to the development of chronic disease in adolescent and adult offspring. Fetal programming of metabolic function, through physiological and (or) epigenetic mechanisms, may also have an intergenerational effect, and as a result may perpetuate metabolic disorders in the next generation. In this review, we summarize the existing literature that characterizes how maternal obesity and gestational diabetes mellitus contribute to metabolic and cardiovascular disorders in the offspring. In particular, we focus on animal studies that investigate the molecular mechanisms that are programmed by the gestational environment and lead to disease phenotypes in the offspring. We also review interventional studies that prevent disease with a developmental origin in the offspring.
Collapse
Affiliation(s)
- Troy J Pereira
- University of Manitoba, Department of Pharmacology and Therapeutics, Children's Hospital Research Institute of Manitoba, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
- University of Manitoba, Department of Pharmacology and Therapeutics, Children's Hospital Research Institute of Manitoba, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| | - Brittany L Moyce
- University of Manitoba, Department of Pharmacology and Therapeutics, Children's Hospital Research Institute of Manitoba, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
- University of Manitoba, Department of Pharmacology and Therapeutics, Children's Hospital Research Institute of Manitoba, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| | - Stephanie M Kereliuk
- University of Manitoba, Department of Pharmacology and Therapeutics, Children's Hospital Research Institute of Manitoba, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
- University of Manitoba, Department of Pharmacology and Therapeutics, Children's Hospital Research Institute of Manitoba, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| | - Vernon W Dolinsky
- University of Manitoba, Department of Pharmacology and Therapeutics, Children's Hospital Research Institute of Manitoba, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
- University of Manitoba, Department of Pharmacology and Therapeutics, Children's Hospital Research Institute of Manitoba, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
89
|
Mouralidarane A, Soeda J, Sugden D, Bocianowska A, Carter R, Ray S, Saraswati R, Cordero P, Novelli M, Fusai G, Vinciguerra M, Poston L, Taylor PD, Oben JA. Maternal obesity programs offspring non-alcoholic fatty liver disease through disruption of 24-h rhythms in mice. Int J Obes (Lond) 2015; 39:1339-48. [PMID: 25971926 DOI: 10.1038/ijo.2015.85] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 03/25/2015] [Accepted: 05/06/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Maternal obesity increases offspring propensity to metabolic dysfunctions and to non-alcoholic fatty liver disease (NAFLD), which may lead to cirrhosis or liver cancer. The circadian clock is a transcriptional/epigenetic molecular machinery synchronising physiological processes to coordinate energy utilisation within a 24-h light/dark period. Alterations in rhythmicity have profound effects on metabolic pathways, which we sought to investigate in offspring with programmed NAFLD. METHODS Mice were fed a standard or an obesogenic diet (OD), before and throughout pregnancy, and during lactation. Offspring were weaned onto standard or an OD at 3 weeks postpartum and housed in 12:12 light/dark conditions. Biochemical and histological indicators of NAFLD and fibrosis, analysis of canonical clock genes with methylation status and locomotor activity were investigated at 6 months. RESULTS We show that maternal obesity interacts with an obesogenic post-weaning diet to promote the development of NAFLD with disruption of canonical metabolic rhythmicity gene expression in the liver. We demonstrate hypermethylation of BMAL-1 (brain and muscle Arnt like-1) and Per2 promoter regions and altered 24-h rhythmicity of hepatic pro-inflammatory and fibrogenic mediators. CONCLUSIONS These data implicate disordered circadian rhythms in NAFLD and suggest that disruption of this system during critical developmental periods may be responsible for the onset of chronic liver disease in adulthood.
Collapse
Affiliation(s)
- A Mouralidarane
- Institute for Liver and Digestive Health, University College London, Royal Free Hospital, London, UK
- Women's Health Academic Centre, King's College London, St Thomas' Hospital, London, UK
| | - J Soeda
- Institute for Liver and Digestive Health, University College London, Royal Free Hospital, London, UK
| | - D Sugden
- Women's Health Academic Centre, King's College London, St Thomas' Hospital, London, UK
| | - A Bocianowska
- Women's Health Academic Centre, King's College London, St Thomas' Hospital, London, UK
| | - R Carter
- Institute for Liver and Digestive Health, University College London, Royal Free Hospital, London, UK
| | - S Ray
- Institute for Liver and Digestive Health, University College London, Royal Free Hospital, London, UK
| | - R Saraswati
- Histopathology Department, University College Hospital, University College London, London, UK
| | - P Cordero
- Institute for Liver and Digestive Health, University College London, Royal Free Hospital, London, UK
| | - M Novelli
- Histopathology Department, University College Hospital, University College London, London, UK
| | - G Fusai
- Department of Liver Medicine and Transplant, Sheila Sherlock Liver Centre, University College London, Royal Free Hospital, London, UK
| | - M Vinciguerra
- Institute for Liver and Digestive Health, University College London, Royal Free Hospital, London, UK
- Gastroenterology Unit, Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - L Poston
- Women's Health Academic Centre, King's College London, St Thomas' Hospital, London, UK
| | - P D Taylor
- Women's Health Academic Centre, King's College London, St Thomas' Hospital, London, UK
| | - J A Oben
- Institute for Liver and Digestive Health, University College London, Royal Free Hospital, London, UK
| |
Collapse
|
90
|
Ingvorsen C, Brix S, Ozanne SE, Hellgren LI. The effect of maternal Inflammation on foetal programming of metabolic disease. Acta Physiol (Oxf) 2015; 214:440-9. [PMID: 26011013 DOI: 10.1111/apha.12533] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/03/2015] [Accepted: 05/19/2015] [Indexed: 02/02/2023]
Abstract
Maternal obesity during pregnancy increases the child's risk of developing obesity and obesity-related diseases later in life. Key components in foetal programming of metabolic risk remain to be identified; however, chronic low-grade inflammation associated with obesity might be responsible for metabolic imprinting in the offspring. We have therefore surveyed the literature to evaluate the role of maternal obesity-induced inflammation in foetal programming of obesity and related diseases. The literature on this topic is limited, so this review also includes animal models where maternal inflammation is mimicked by single injections with lipopolysaccharide (LPS). An LPS challenge results in an immunological response that resembles the obesity-induced immune profile, although LPS injections provoke a stronger response than the subclinical obesity-associated response. Maternal LPS or cytokine exposures result in increased adiposity and impaired metabolic homeostasis in the offspring, similar to the phenotype observed after exposure to maternal obesity. The cytokine levels might be specifically important for the metabolic imprinting, as cytokines are both transferable from maternal to foetal circulation and have the capability to modulate placental nutrient transfer. However, the immune response associated with obesity is moderate and therefore potentially weakened by the pregnancy-driven immune modulation, dominated by anti-inflammatory Treg and Th2 cells. We know from other low-grade inflammatory diseases, such as rheumatoid arthritis, that pregnancy can improve disease state. If pregnancy is also capable of suppressing the obesity-associated inflammation, the immunological markers might be less likely to affect metabolic programming in the developing foetus than otherwise implied.
Collapse
Affiliation(s)
- C Ingvorsen
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Kgs. Lyngby, Denmark.,Center for Fetal Programming, Copenhagen, Denmark
| | - S Brix
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - S E Ozanne
- Metabolic Research Laboratories, University of Cambridge, UK
| | - L I Hellgren
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Kgs. Lyngby, Denmark.,Center for Fetal Programming, Copenhagen, Denmark
| |
Collapse
|
91
|
Jovicic N, Jeftic I, Jovanovic I, Radosavljevic G, Arsenijevic N, Lukic ML, Pejnovic N. Differential Immunometabolic Phenotype in Th1 and Th2 Dominant Mouse Strains in Response to High-Fat Feeding. PLoS One 2015; 10:e0134089. [PMID: 26218873 PMCID: PMC4517873 DOI: 10.1371/journal.pone.0134089] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 07/06/2015] [Indexed: 12/14/2022] Open
Abstract
Immune reactivity plays an important role in obesity-associated metabolic disorders. We investigated immunometabolic phenotype of C57Bl/6 and BALB/c mice, prototypical Th1 and Th2-type strains, fed chow or high-fat diet (HFD) for 24 weeks. In comparison to C57Bl/6 mice, chow-fed BALB/c mice had higher body weight and weight gain, lower glycemia, more pronounced liver steatosis, but less inflammation and collagen deposition in liver. In response to HFD C57Bl/6 mice exhibited higher weight gain, higher glycemia, HbA1c and liver glycogen content, increased amount of visceral adipose tissue (VAT) and number of VAT associated CD3+CXCR3+ T cells, CD11c+ dendritic cells (DCs) and F4/80+ macrophages than BALB/c mice. More numerous CD3+ and CD8+ T lymphocytes, myeloid DCs, proinflammatory macrophages (F4/80+CD11b+CD11+ and F4/80+IL-1β+) and CD11b+Ly6Chigh monocytes and higher levels of proinflammatory IL-6, TNF-α and IFN-γ were present in liver in HFD-fed C57Bl/6 mice compared with diet-matched BALB/c mice. As opposed to C57Bl/6 mice, HFD induced marked liver steatosis and upregulated the hepatic LXRα and PPARγ genes in BALB/c mice. C57Bl/6 mice fed HFD developed liver fibrosis and increased hepatic procollagen and TGF-β mRNA expression, and IL-33, IL-13 and TGF-β levels in liver homogenates, while BALB/c mice fed HFD had scarce collagen deposition in liver. The obtained results suggest inherent immunometabolic differences in C57Bl/6 and BALB/c mice. Moreover, HFD Th1-type mice on high fat diet regimen are more susceptible to adiposity, liver inflammation and fibrosis, while Th2-type mice to liver steatosis, which is associated with differential immune cell composition in metabolic tissues. Strain-dependent differences in immunometabolic phenotype may be relevant for studies of obesity-associated metabolic diseases in humans.
Collapse
Affiliation(s)
- Nemanja Jovicic
- Center for Molecular Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Institute of Histology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Ilija Jeftic
- Center for Molecular Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Institute of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Ivan Jovanovic
- Center for Molecular Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Gordana Radosavljevic
- Center for Molecular Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Miodrag L. Lukic
- Center for Molecular Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nada Pejnovic
- Center for Molecular Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Institute of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
92
|
Abstract
Within nucleosomes, canonical histones package the genome, but they can be opportunely replaced with histone variants. The incorporation of histone variants into the nucleosome is a chief cellular strategy to regulate transcription and cellular metabolism. In pathological terms, cellular steatosis is an abnormal accumulation of lipids, which reflects impairment in the turnover of triacylglycerols, affecting any organ but mainly the liver. The present review aims to summarize the experimental evidence for histone variant functions in lipid metabolism.
Collapse
|
93
|
Developmental Programming of Nonalcoholic Fatty Liver Disease: The Effect of Early Life Nutrition on Susceptibility and Disease Severity in Later Life. BIOMED RESEARCH INTERNATIONAL 2015; 2015:437107. [PMID: 26090409 PMCID: PMC4450221 DOI: 10.1155/2015/437107] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/15/2015] [Indexed: 12/20/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is fast becoming the most common liver disease globally and parallels rising obesity rates. The developmental origins of health and disease hypothesis have linked alterations in the early life environment to an increased risk of metabolic disorders in later life. Altered early life nutrition, in addition to increasing risk for the development of obesity, type 2 diabetes, and cardiovascular disease in offspring, is now associated with an increased risk for the development of NAFLD. This review summarizes emerging research on the developmental programming of NAFLD by both maternal obesity and undernutrition with a particular focus on the possible mechanisms underlying the development of hepatic dysfunction and potential strategies for intervention.
Collapse
|
94
|
Immunomodulatory and antioxidant function of albumin stabilises the endothelium and improves survival in a rodent model of chronic liver failure. J Hepatol 2015; 62:799-806. [PMID: 25450713 DOI: 10.1016/j.jhep.2014.10.031] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 09/29/2014] [Accepted: 10/16/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Liver failure is characterized by endothelial dysfunction, which results in hemodynamic disturbances leading to renal failure. Albumin infusion improves hemodynamics and prevents renal dysfunction in advance liver failure. These effects are only partly explained by the oncotic properties of albumin. This study was designed to test the hypothesis that albumin exerts its beneficial effects by stabilising endothelial function. METHODS In vivo: systemic hemodynamics, renal function, markers of endothelial dysfunction (ADMA) and inflammation were studied in analbuminaemic and Sprague-Dawley rats, 6-weeks after sham/bile duct ligation surgery. In vitro: human umbilical vein endothelial cells were stimulated with LPS with or without albumin. We studied protein expression and gene expression of adhesion molecules, intracellular reactive oxygen species, and cell stress markers. RESULTS Compared to controls, analbuminaemic rats had significantly greater hemodynamic deterioration after bile duct ligation, resulting in worse renal function and shorter survival. This was associated with significantly greater plasma renin activity, worse endothelial function, and disturbed inflammatory response. In vitro studies showed that albumin was actively taken up by endothelial cells. Incubation of albumin pre-treated endothelial cells with LPS was associated with significantly less activation compared with untreated cells, decreased intracellular reactive oxygen species, and markers of cell stress. CONCLUSIONS These results show, for the first time, that absence of albumin is characterised by worse systemic hemodynamics, renal function and higher mortality in a rodent model of chronic liver failure and illustrates the important non-oncotic properties of albumin in protecting against endothelial dysfunction.
Collapse
|
95
|
Zhang X, Zhang JH, Chen XY, Hu QH, Wang MX, Jin R, Zhang QY, Wang W, Wang R, Kang LL, Li JS, Li M, Pan Y, Huang JJ, Kong LD. Reactive oxygen species-induced TXNIP drives fructose-mediated hepatic inflammation and lipid accumulation through NLRP3 inflammasome activation. Antioxid Redox Signal 2015; 22:848-70. [PMID: 25602171 PMCID: PMC4367240 DOI: 10.1089/ars.2014.5868] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIMS Increased fructose consumption predisposes the liver to nonalcoholic fatty liver disease (NAFLD), but the mechanisms are elusive. Thioredoxin-interacting protein (TXNIP) links oxidative stress to NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation and this signaling axis may be involved in fructose-induced NAFLD. Here, we explore the role of reactive oxygen species (ROS)-induced TXNIP overexpression in fructose-mediated hepatic NLRP3 inflammasome activation, inflammation, and lipid accumulation. RESULTS Rats were fed a 10% fructose diet for 8 weeks and treated with allopurinol and quercetin during the last 4 weeks. Five millimolars of fructose-exposed hepatocytes (primary rat hepatocytes, rat hepatic parenchymal cells [RHPCs], HLO2, HepG2) were co-incubated with antioxidants or caspase-1 inhibitor or subjected to TXNIP or NLRP3 siRNA interference. Fructose induced NLRP3 inflammasome activation and pro-inflammatory cytokine secretion, janus-activated kinase 2/signal transducers and activators of transcription 3-mediated inflammatory signaling, and expression alteration of lipid metabolism-related genes in cultured hepatocytes and rat livers. NLRP3 silencing and caspase-1 suppression blocked these effects in primary rat hepatocytes and RHPCs, confirming that inflammasome activation alters hepatocyte lipid metabolism. Hepatocellular ROS and TXNIP were increased in animal and cell models. TXNIP silencing blocked NLRP3 inflammasome activation, inflammation, and lipid metabolism perturbations but not ROS induction in fructose-exposed hepatocytes, whereas antioxidants addition abrogated TXNIP induction and diminished the detrimental effects in fructose-exposed hepatocytes and rat livers. INNOVATION AND CONCLUSIONS This study provides a novel mechanism for fructose-induced NAFLD pathogenesis by which the ROS-TXNIP pathway mediates hepatocellular NLRP3 inflammasome activation, inflammation and lipid accumulation. Antioxidant-based interventions can inhibit the ROS-TXNIP pathway.
Collapse
Affiliation(s)
- Xian Zhang
- 1 State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University , Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Amphiregulin activates human hepatic stellate cells and is upregulated in non alcoholic steatohepatitis. Sci Rep 2015; 5:8812. [PMID: 25744849 PMCID: PMC4351520 DOI: 10.1038/srep08812] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 02/04/2015] [Indexed: 01/11/2023] Open
Abstract
Amphiregulin (AR) involvement in liver fibrogenesis and hepatic stellate cells (HSC) regulation is under study. Non-alcoholic fatty liver disease (NAFLD) and its more severe form non-alcoholic steatohepatitis (NASH) may progress to cirrhosis and hepatocellular cancer (HCC). Our aim was to investigate ex vivo the effect of AR on human primary HSC (hHSC) and verify in vivo the relevance of AR in NAFLD fibrogenesis. hHSC isolated from healthy liver segments were analyzed for expression of AR and its activator, TNF-α converting enzyme (TACE). AR induction of hHSC proliferation and matrix production was estimated in the presence of antagonists. AR involvement in fibrogenesis was also assessed in a mouse model of NASH and in humans with NASH. hHSC time dependently expressed AR and TACE. AR increased hHSC proliferation through several mitogenic signaling pathways such as EGFR, PI3K and p38. AR also induced marked upregulation of hHSC fibrogenic markers and reduced hHSC death. AR expression was enhanced in the HSC of a murine model of NASH and of severe human NASH. In conclusion, AR induces hHSC fibrogenic activity via multiple mitogenic signaling pathways, and is upregulated in murine and human NASH, suggesting that AR antagonists may be clinically useful anti-fibrotics in NAFLD.
Collapse
|
97
|
Mazzoccoli G, Vinciguerra M, Oben J, Tarquini R, De Cosmo S. Non-alcoholic fatty liver disease: the role of nuclear receptors and circadian rhythmicity. Liver Int 2014; 34:1133-52. [PMID: 24649929 DOI: 10.1111/liv.12534] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/16/2014] [Indexed: 12/22/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the accumulation of triglycerides in the hepatocytes in the absence of excess alcohol intake, and is caused by an imbalance between hepatic synthesis and breakdown of fats, as well as fatty acid storage and disposal. Liver metabolic pathways are driven by circadian biological clocks, and hepatic health is maintained by proper timing of circadian patterns of metabolic gene expression with the alternation of anabolic processes corresponding to feeding/activity during wake times, and catabolic processes characterizing fasting/resting during sleep. A number of nuclear receptors in the liver are expressed rhythmically, bind hormones and metabolites, sense energy flux and expenditure, and connect the metabolic pathways to the molecular clockwork throughout the 24-h day. In this review, we describe the role played by the nuclear receptors in the genesis of NAFLD in relationship with the circadian clock circuitry.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Division of Internal Medicine and Chronobiology Unit, Department of Medical Sciences, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | | | | | | | | |
Collapse
|
98
|
Thorn SR, Baquero KC, Newsom SA, El Kasmi KC, Bergman BC, Shulman GI, Grove KL, Friedman JE. Early life exposure to maternal insulin resistance has persistent effects on hepatic NAFLD in juvenile nonhuman primates. Diabetes 2014; 63:2702-13. [PMID: 24705404 PMCID: PMC4113070 DOI: 10.2337/db14-0276] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The origins of nonalcoholic fatty liver disease (NAFLD) may lie in early intrauterine exposures. Here we examined the maternal response to chronic maternal high-fat (HF) diet and the impact of postweaning healthy diet on mechanisms for NAFLD development in juvenile nonhuman primate (NHP) offspring at 1 year of age. Pregnant females on HF diet were segregated as insulin resistant (IR; HF+IR) or insulin sensitive (IS; HF+IS) compared with control (CON)-fed mothers. HF+IR mothers have increased body mass, higher triglycerides, and increased placental cytokines. At weaning, offspring were placed on a CON or HF diet. Only offspring from HF+IR mothers had increased liver triglycerides and upregulated pathways for hepatic de novo lipid synthesis and inflammation that was irreversible upon switching to a healthy diet. These juvenile livers also showed a combination of classical and alternatively activated hepatic macrophages and natural killer T cells, in the absence of obesity or insulin resistance. Our findings suggest that maternal insulin resistance, including elevated triglycerides, insulin, and weight gain, initiates dysregulation of the juvenile hepatic immune system and development of de novo lipogenic pathways that persist in vitro and may be an irreversible "first hit" in the pathogenesis of NAFLD in NHP.
Collapse
Affiliation(s)
- Stephanie R Thorn
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Karalee C Baquero
- Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR
| | - Sean A Newsom
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Karim C El Kasmi
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Bryan C Bergman
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Kevin L Grove
- Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR
| | - Jacob E Friedman
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
99
|
Alfaradhi MZ, Fernandez-Twinn DS, Martin-Gronert MS, Musial B, Fowden A, Ozanne SE. Oxidative stress and altered lipid homeostasis in the programming of offspring fatty liver by maternal obesity. Am J Physiol Regul Integr Comp Physiol 2014; 307:R26-34. [PMID: 24789994 PMCID: PMC4080277 DOI: 10.1152/ajpregu.00049.2014] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/29/2014] [Indexed: 12/19/2022]
Abstract
Changes in the maternal nutritional environment during fetal development can influence offspring's metabolic risk in later life. Animal models have demonstrated that offspring of diet-induced obese dams develop metabolic complications, including nonalcoholic fatty liver disease. In this study we investigated the mechanisms in young offspring that lead to the development of nonalcoholic fatty liver disease (NAFLD). Female offspring of C57BL/6J dams fed either a control or obesogenic diet were studied at 8 wk of age. We investigated the roles of oxidative stress and lipid metabolism in contributing to fatty liver in offspring. There were no differences in body weight or adiposity at 8 wk of age; however, offspring of obese dams were hyperinsulinemic. Oxidative damage markers were significantly increased in their livers, with reduced levels of the antioxidant enzyme glutathione peroxidase-1. Mitochondrial complex I and II activities were elevated, while levels of mitochondrial cytochrome c were significantly reduced and glutamate dehydrogenase was significantly increased, suggesting mitochondrial dysfunction. Offspring of obese dams also had significantly greater hepatic lipid content, associated with increased levels of PPARγ and reduced triglyceride lipase. Liver glycogen and protein content were concomitantly reduced in offspring of obese dams. In conclusion, offspring of diet-induced obese dams have disrupted liver metabolism and develop NAFLD prior to any differences in body weight or body composition. Oxidative stress may play a mechanistic role in the progression of fatty liver in these offspring.
Collapse
Affiliation(s)
- Maria Z Alfaradhi
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom; and
| | - Denise S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom; and
| | - Malgorzata S Martin-Gronert
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom; and
| | - Barbara Musial
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Abigail Fowden
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom; and
| |
Collapse
|
100
|
Hou M, Chu Z, Liu T, Lv H, Sun L, Wang B, Huang J, Yan W. A high-fat maternal diet decreases adiponectin receptor-1 expression in offspring. J Matern Fetal Neonatal Med 2014; 28:216-21. [PMID: 24724805 DOI: 10.3109/14767058.2014.914489] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In early life, over-nutrition may increase the risk of insulin resistance in the adult stage. Adiponectin and its receptor may play a key role in this process. This study aimed to identify the effect of a high-fat (HF) maternal diet on metabolic parameters and muscle adiponectin signaling in young adult offspring. We found that offspring born to dams fed HF chow (HF; 31% of calories from fat) had elevated body and adipose tissue weight and higher serum glucose levels after glucose challenge at three weeks (W3) and eight weeks (W8) of age. Offspring exposed to a HF diet also had higher serum adiponectin levels at W3 compared to controls. However, adiponectin levels were significantly decreased compared to controls by W8. Adiponectin receptor 1 mRNA expression in skeletal muscle was decreased in the HF group at W3 and W8, and there was no difference between the two groups in adiponectin receptor 2 expression. Furthermore, glucose transporter 4 mRNA and protein expression was decreased in the skeletal muscle of the HF group at W3 and W8. Our results suggest that a HF maternal diet decreases adiponectin receptor 1 expression in the offspring, which could contribute to reduced sensitivity to adiponectin and to adverse nutritional programing outcomes.
Collapse
Affiliation(s)
- Miao Hou
- Department of Cardiology, Soochow University Affiliated Children's Hospital , Suzhou , China and
| | | | | | | | | | | | | | | |
Collapse
|