51
|
Abstract
E1B-55K-associated protein 5 (E1B-AP5) is a cellular, heterogeneous nuclear ribonucleoprotein that is targeted by adenovirus (Ad) E1B-55K during infection. The function of E1B-AP5 during infection, however, remains largely unknown. Given the role of E1B-55K targets in the DNA damage response, we examined whether E1B-AP5 function was integral to these pathways. Here, we show a novel role for E1B-AP5 as a key regulator of ATR signaling pathways activated during Ad infection. E1B-AP5 is recruited to viral replication centers during infection, where it colocalizes with ATR-interacting protein (ATRIP) and the ATR substrate replication protein A 32 (RPA32). Indeed, E1B-AP5 associates with ATRIP and RPA complex component RPA70 in both uninfected and Ad-infected cells. Additionally, glutathione S-transferase pull-downs show that E1B-AP5 associates with RPA components RPA70 and RPA32 directly in vitro. E1B-AP5 is required for the ATR-dependent phosphorylation of RPA32 during infection and contributes to the Ad-induced phosphorylation of Smc1 and H2AX. In this regard, it is interesting that Ad5 and Ad12 differentially promote the phosphorylation of RPA32, Rad9, and Smc1 during infection such that Ad12 promotes a significant phosphorylation of RPA32 and Rad9, whereas Ad5 only weakly promotes RPA32 phosphorylation and does not induce Rad9 phosphorylation. These data suggest that Ad5 and Ad12 have evolved different strategies to regulate DNA damage signaling pathways during infection in order to promote viral replication. Taken together, our results define a role for E1B-AP5 in ATR signaling pathways activated during infection. This might have broader implications for the regulation of ATR activity during cellular DNA replication or in response to DNA damage.
Collapse
|
52
|
Manthey KC, Opiyo S, Glanzer JG, Dimitrova D, Elliott J, Oakley GG. NBS1 mediates ATR-dependent RPA hyperphosphorylation following replication-fork stall and collapse. J Cell Sci 2007; 120:4221-9. [PMID: 18003706 DOI: 10.1242/jcs.004580] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Post-translational phosphorylation of proteins provides a mechanism for cells to switch on or off many diverse processes, including responses to replication stress. Replication-stress-induced phosphorylation enables the rapid activation of numerous proteins involved in DNA replication, DNA repair and cell cycle checkpoints, including replication protein A (RPA). Here, we report that hydroxyurea (HU)-induced RPA phosphorylation requires both NBS1 (NBN) and NBS1 phosphorylation. Transfection of both phosphospecific and nonphosphospecific anti-NBS1 antibodies blocked hyperphosphorylation of RPA in HeLa cells. Nijmegen breakage syndrome (NBS) cells stably transfected with an empty vector or with S343A-NBS1 or S278A/S343A phospho-mutants were unable to hyperphosphorylate RPA in DNA-damage-associated foci following HU treatment. The stable transfection of fully functional NBS1 in NBS cells restored RPA hyperphosphorylation. Retention of ATR on chromatin in both NBS cells and in NBS cells expressing S278A/S343A NBS1 mutants decreased after DNA damage, suggesting that ATR is the kinase responsible for RPA phosphorylation. The importance of RPA hyperphosphorylation is demonstrated by the ability of cells expressing a phospho-mutant form of RPA32 (RPA2) to suppress and delay HU-induced apoptosis. Our findings suggest that RPA hyperphosphorylation requires NBS1 and is important for the cellular response to DNA damage.
Collapse
Affiliation(s)
- Karoline C Manthey
- Department of Oral Biology, University of Nebraska Medical Center College of Dentistry and Nebraska Center for Cellular Signaling, Lincoln, NE 68583, USA
| | | | | | | | | | | |
Collapse
|
53
|
Deng X, Habel JE, Kabaleeswaran V, Snell EH, Wold MS, Borgstahl GEO. Structure of the full-length human RPA14/32 complex gives insights into the mechanism of DNA binding and complex formation. J Mol Biol 2007; 374:865-76. [PMID: 17976647 DOI: 10.1016/j.jmb.2007.09.074] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2007] [Revised: 09/22/2007] [Accepted: 09/26/2007] [Indexed: 11/16/2022]
Abstract
Replication protein A (RPA) is the ubiquitous, eukaryotic single-stranded DNA (ssDNA) binding protein and is essential for DNA replication, recombination, and repair. Here, crystal structures of the soluble RPA heterodimer, composed of the RPA14 and RPA32 subunits, have been determined for the full-length protein in multiple crystal forms. In all crystals, the electron density for the N-terminal (residues 1-42) and C-terminal (residues 175-270) regions of RPA32 is weak and of poor quality indicating that these regions are disordered and/or assume multiple positions in the crystals. Hence, the RPA32 N terminus, that is hyperphosphorylated in a cell-cycle-dependent manner and in response to DNA damaging agents, appears to be inherently disordered in the unphosphorylated state. The C-terminal, winged helix-loop-helix, protein-protein interaction domain adopts several conformations perhaps to facilitate its interaction with various proteins. Although the ordered regions of RPA14/32 resemble the previously solved protease-resistant core crystal structure, the quaternary structures between the heterodimers are quite different. Thus, the four-helix bundle quaternary assembly noted in the original core structure is unlikely to be related to the quaternary structure of the intact heterotrimer. An organic ligand binding site between subunits RPA14 and RPA32 was identified to bind dioxane. Comparison of the ssDNA binding surfaces of RPA70 with RPA14/32 showed that the lower affinity of RPA14/32 can be attributed to a shallower binding crevice with reduced positive electrostatic charge.
Collapse
Affiliation(s)
- Xiaoyi Deng
- The Eppley Institute for Research in Cancer and Allied Diseases, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | | | | | | | | | | |
Collapse
|
54
|
Stillman B, Bell SP, Dutta A, Marahrens Y. DNA replication and the cell cycle. CIBA FOUNDATION SYMPOSIUM 2007; 170:147-56; discussion 156-60. [PMID: 1336449 DOI: 10.1002/9780470514320.ch10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The replication of DNA in the eukaryotic cell cycle is one of the most highly regulated events in cell growth and division. Biochemical studies on the replication of the genome of the small DNA virus simian virus 40 (SV40) have resulted in the identification of a number of DNA replication proteins from human cells. One of these, Replication Protein A (RPA), was phosphorylated in a cell cycle-dependent manner, beginning at the onset of DNA replication. RPA was phosphorylated in vitro by the cell cycle-regulated cdc2 protein kinase. This kinase also stimulated the unwinding of the SV40 origin of DNA replication during initiation of DNA replication in vitro, suggesting a mechanism by which cdc2 kinase may regulate DNA replication. Functional homologues of the DNA replication factors have been identified in extracts from the yeast Saccharomyces cerevisiae, enabling a genetic characterization of the role of these proteins in the replication of cellular DNA. A cellular origin binding protein had not been characterized. To identify proteins that function like T antigen at cellular origins of DNA replication, we examined the structure of a yeast origin of DNA replication in detail. This origin consists of four separate functional elements, one of which is essential. A multiprotein complex that binds to the essential element has been identified and purified. This protein complex binds to all known cellular origins from S. cerevisiae and may function as an origin recognition complex.
Collapse
Affiliation(s)
- B Stillman
- Cold Spring Harbor Laboratory, New York 11724
| | | | | | | |
Collapse
|
55
|
Taneja P, Boche I, Hartmann H, Nasheuer HP, Grosse F, Fanning E, Weisshart K. Different activities of the largest subunit of replication protein A cooperate during SV40 DNA replication. FEBS Lett 2007; 581:3973-8. [PMID: 17673209 PMCID: PMC2045582 DOI: 10.1016/j.febslet.2007.07.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 07/06/2007] [Accepted: 07/16/2007] [Indexed: 11/23/2022]
Abstract
Replication protein A (RPA) is a stable heterotrimeric complex consisting of p70, p32 and p14 subunits. The protein plays a crucial role in SV40 minichromosome replication. Peptides of p70 representing interaction sites for the smaller two subunits, DNA as well as the viral initiator protein large T-antigen (Tag) and the cellular DNA polymerase alpha-primase (Pol) all interfered with the replication process indicating the importance of the different p70 activities in this process. Inhibition by the peptide disrupting protein-protein interactions was observed only during the pre-initiation stage prior to primer synthesis, suggesting the formation of a stable initiation complex between RPA, Tag and Pol at the primer end.
Collapse
Affiliation(s)
- Poonam Taneja
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | | | | | | | |
Collapse
|
56
|
Ishibashi T, Kimura S, Sakaguchi K. A higher plant has three different types of RPA heterotrimeric complex. J Biochem 2007; 139:99-104. [PMID: 16428324 DOI: 10.1093/jb/mvj014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Replication protein A (RPA) is a protein complex composed of three subunits known as RPA70, RPA32, and RPA14. Generally, only one version of each of the three RPA genes is present in animals and yeast (with the exception of the human RPA32 ortholog). In rice (Oryza sativa L.), however, two paralogs of RPA70 have been reported. We screened the rice genome for RPA subunit genes, and identified three OsRPA70 (OsRPA70a, OsRPA70b and OsRPA70c), three OsRPA32 (OsRPA32-1, OsRPA32-2 and OsRPA32-3), and one OsRPA14. Through two-hybrid assays and pull down analyses, we showed that OsRPA70a interacted preferentially with OsRPA32-2, OsRPA70b with OsRPA32-1, and OsRPA70c with OsRPA32-3. OsRPA14 interacted with all OsRPA32 paralogs. Thus, rice has three types of RPA complex: OsRPA70a-OsRPA32-2-OsRPA14 (type A), OsRPA70b-OsRPA32-1-OsRPA14 (type B), and OsRPA70c-OsRPA32-3-OsRPA14 (type C). Subcellular localization analysis suggested that the type-A RPA complex is required for chloroplast DNA metabolism, whereas types B and C function in nuclear DNA metabolism.
Collapse
Affiliation(s)
- Toyotaka Ishibashi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510
| | | | | |
Collapse
|
57
|
Singh DK, Islam MN, Choudhury NR, Karjee S, Mukherjee SK. The 32 kDa subunit of replication protein A (RPA) participates in the DNA replication of Mung bean yellow mosaic India virus (MYMIV) by interacting with the viral Rep protein. Nucleic Acids Res 2006; 35:755-70. [PMID: 17182628 PMCID: PMC1807949 DOI: 10.1093/nar/gkl1088] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 11/22/2006] [Accepted: 11/23/2006] [Indexed: 11/17/2022] Open
Abstract
Mung bean yellow mosaic India virus (MYMIV) is a member of genus begomoviridae and its genome comprises of bipartite (two components, namely DNA-A and DNA-B), single-stranded, circular DNA of about 2.7 kb. During rolling circle replication (RCR) of the DNA, the stability of the genome and maintenance of the stem-loop structure of the replication origin is crucial. Hence the role of host single-stranded DNA-binding protein, Replication protein A (RPA), in the RCR of MYMIV was examined. Two RPA subunits, namely the RPA70 kDa and RPA32 kDa, were isolated from pea and their roles were validated in a yeast system in which MYMIV DNA replication has been modelled. Here, we present evidences that only the RPA32 kDa subunit directly interacted with the carboxy terminus of MYMIV-Rep both in vitro as well as in yeast two-hybrid system. RPA32 modulated the functions of Rep by enhancing its ATPase and down regulating its nicking and closing activities. The possible role of these modulations in the context of viral DNA replication has been discussed. Finally, we showed the positive involvement of RPA32 in transient replication of the plasmid DNA bearing MYMIV replication origin using an in planta based assay.
Collapse
Affiliation(s)
- Dharmendra Kumar Singh
- Plant Molecular Biology Group, International Centre for Genetic Engineering and BiotechnologyAruna Asaf Ali Marg, New Delhi-110 067, India
| | - Mohammad Nurul Islam
- Plant Molecular Biology Group, International Centre for Genetic Engineering and BiotechnologyAruna Asaf Ali Marg, New Delhi-110 067, India
| | - Nirupam Roy Choudhury
- Plant Molecular Biology Group, International Centre for Genetic Engineering and BiotechnologyAruna Asaf Ali Marg, New Delhi-110 067, India
| | - Sumona Karjee
- Plant Molecular Biology Group, International Centre for Genetic Engineering and BiotechnologyAruna Asaf Ali Marg, New Delhi-110 067, India
| | - Sunil Kumar Mukherjee
- Plant Molecular Biology Group, International Centre for Genetic Engineering and BiotechnologyAruna Asaf Ali Marg, New Delhi-110 067, India
| |
Collapse
|
58
|
Crest J, Oxnard N, Ji JY, Schubiger G. Onset of the DNA replication checkpoint in the early Drosophila embryo. Genetics 2006; 175:567-84. [PMID: 17151243 PMCID: PMC1800604 DOI: 10.1534/genetics.106.065219] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Drosophila embryo is a promising model for isolating gene products that coordinate S phase and mitosis. We have reported before that increasing maternal Cyclin B dosage to up to six copies (six cycB) increases Cdk1-Cyclin B (CycB) levels and activity in the embryo, delays nuclear migration at cycle 10, and produces abnormal nuclei at cycle 14. Here we show that the level of CycB in the embryo inversely correlates with the ability to lengthen interphase as the embryo transits from preblastoderm to blastoderm stages and defines the onset of a checkpoint that regulates mitosis when DNA replication is blocked with aphidicolin. A screen for modifiers of the six cycB phenotypes identified 10 new suppressor deficiencies. In addition, heterozygote dRPA2 (a DNA replication gene) mutants suppressed only the abnormal nuclear phenotype at cycle 14. Reduction of dRPA2 also restored interphase duration and checkpoint efficacy to control levels. We propose that lowered dRPA2 levels activate Grp/Chk1 to counteract excess Cdk1-CycB activity and restore interphase duration and the ability to block mitosis in response to aphidicolin. Our results suggest an antagonistic interaction between DNA replication checkpoint activation and Cdk1-CycB activity during the transition from preblastoderm to blastoderm cycles.
Collapse
Affiliation(s)
- Justin Crest
- Department of Biology, University of Washington, Seattle, Washington 98195-1800, USA.
| | | | | | | |
Collapse
|
59
|
Gaur RK. Helicase: mystery of progression. Mol Biol Rep 2006; 34:161-4. [PMID: 17120115 DOI: 10.1007/s11033-006-9029-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 09/11/2006] [Indexed: 10/23/2022]
Abstract
Helicases mode of unwinding the nucleic acids and translocation along single stranded nucleic acids is still a subject of great curiosity. Based on the energy transduction and electrophilic interactions, we present a model to explain the mode of action of active helicases. This model considers that both strand separation as well as translocation is active processes fueled by NTP hydrolysis. The model proposes that the translocation appears to involve creeping of helicase over the ssNA lattice rather than inchworm movement.
Collapse
|
60
|
Clérot D, Bernardi F. DNA helicase activity is associated with the replication initiator protein rep of tomato yellow leaf curl geminivirus. J Virol 2006; 80:11322-30. [PMID: 16943286 PMCID: PMC1642161 DOI: 10.1128/jvi.00924-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rep protein of tomato yellow leaf curl Sardinia virus (TYLCSV), a single-stranded DNA virus of plants, is the replication initiator essential for virus replication. TYLCSV Rep has been classified among ATPases associated with various cellular activities (AAA+ ATPases), in superfamily 3 of small DNA and RNA virus replication initiators whose paradigmatic member is simian virus 40 large T antigen. Members of this family are DNA- or RNA-dependent ATPases with helicase activity necessary for viral replication. Another distinctive feature of AAA+ ATPases is their quaternary structure, often composed of hexameric rings. TYLCSV Rep has ATPase activity, but the helicase activity, which is instrumental in further characterization of the mechanism of rolling-circle replication used by geminiviruses, has been a longstanding question. We present results showing that TYLCSV Rep lacking the 121 N-terminal amino acids has helicase activity comparable to that of the other helicases: requirements for a 3' overhang and 3'-to-5' polarity of unwinding, with some distinct features and with a minimal AAA+ ATPase domain. We also show that the helicase activity is dependent on the oligomeric state of the protein.
Collapse
Affiliation(s)
- Danielle Clérot
- Institut des Sciences du Végétal, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | | |
Collapse
|
61
|
Zou Y, Liu Y, Wu X, Shell SM. Functions of human replication protein A (RPA): from DNA replication to DNA damage and stress responses. J Cell Physiol 2006; 208:267-73. [PMID: 16523492 PMCID: PMC3107514 DOI: 10.1002/jcp.20622] [Citation(s) in RCA: 282] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Human replication protein A (RPA), a heterotrimeric protein complex, was originally defined as a eukaryotic single-stranded DNA binding (SSB) protein essential for the in vitro replication of simian virus 40 (SV40) DNA. Since then RPA has been found to be an indispensable player in almost all DNA metabolic pathways such as, but not limited to, DNA replication, DNA repair, recombination, cell cycle, and DNA damage checkpoints. Defects in these cellular reactions may lead to genome instability and, thus, the diseases with a high potential to evolve into cancer. This extensive involvement of RPA in various cellular activities implies a potential modulatory role for RPA in cellular responses to genotoxic insults. In support, RPA is hyperphosphorylated upon DNA damage or replication stress by checkpoint kinases including ataxia telangiectasia mutated (ATM), ATR (ATM and Rad3-related), and DNA-dependent protein kinase (DNA-PK). The hyperphosphorylation may change the functions of RPA and, thus, the activities of individual pathways in which it is involved. Indeed, there is growing evidence that hyperphosphorylation alters RPA-DNA and RPA-protein interactions. In addition, recent advances in understanding the molecular basis of the stress-induced modulation of RPA functions demonstrate that RPA undergoes a subtle structural change upon hyperphosphorylation, revealing a structure-based modulatory mechanism. Furthermore, given the crucial roles of RPA in a broad range of cellular processes, targeting RPA to inhibit its specific functions, particularly in DNA replication and repair, may serve a valuable strategy for drug development towards better cancer treatment.
Collapse
Affiliation(s)
- Yue Zou
- Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, USA.
| | | | | | | |
Collapse
|
62
|
Doneanu CE, Gafken PR, Bennett SE, Barofsky DF. Mass spectrometry of UV-cross-linked protein-nucleic acid complexes: identification of amino acid residues in the single-stranded DNA-binding domain of human replication protein A. Anal Chem 2006; 76:5667-76. [PMID: 15456284 DOI: 10.1021/ac049547c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photochemical cross-linking of human replication protein A (hRPA) to oligonucleotide dT30 was performed to enable identification of amino acid sequences that reside in the DNA-binding domain. A nucleoprotein complex, with a 1:1 protein/DNA stoichiometry, was separated from unreacted enzyme and oligonucleotide by SDS-polyacrylamide gel electrophoresis and subjected to in-gel digestion with trypsin. Three cross-linked tryptic peptides (nucleopeptides) of hRPA70xdT30 (T43, T28/29, and a truncated T24/25) were isolated. Combined mass spectrometric and C-terminal proteolysis experiments showed that at least one amino acid in the segment 235-ATAFNE-240 (located in T24/25), at least one out of the two residues sequence 269-FT-270 (located in T28/29), and at least one from the sequence 383-VSDF-386 (located in T43) were involved in cross-linking. These peptides contained aromatic residues (F238, F269, and F386 respectively) that can form base-stacking interactions with the DNA and were, therefore, most likely to be involved in cross-linking. The results obtained in this study demonstrate that a combination of exhaustive proteolysis and MALDI TOF MS can localize the sites of DNA binding to very short sequences of amino acids. Data so acquired can confirm or amend information obtained from site-directed mutagenesis and X-ray crystallography.
Collapse
Affiliation(s)
- Catalin E Doneanu
- Department of Chemistry, Department of Environmental & Molecular Toxicology, and Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 USA
| | | | | | | |
Collapse
|
63
|
Fan J, Matsumoto Y, Wilson DM. Nucleotide sequence and DNA secondary structure, as well as replication protein A, modulate the single-stranded abasic endonuclease activity of APE1. J Biol Chem 2005; 281:3889-98. [PMID: 16356936 DOI: 10.1074/jbc.m511004200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A major role of the multifunctional human Ape1 protein is to incise at apurinic/apyrimidinic (AP) sites in DNA via site-specific endonuclease activity. This nuclease function has been well characterized on double-stranded (ds) DNA substrates, where the complementary strand provides a template for subsequent base excision repair events. Recently, Ape1 was found to incise efficiently at AP sites positioned within the single-stranded (ss) regions of various biologically relevant DNA configurations. The studies within indicated that the ss endonuclease activity of Ape1 is poorly active on ss AP site-containing polyadenine or polythymine oligonucleotides, suggesting a requirement for some form of DNA secondary structure for efficient cleavage. Computational, footprinting, and biochemical analyses indicated that the nature of the secondary structure and the proximity of the AP site influence Ape1 incision efficiency significantly. Replication protein A (RPA), the major ssDNA-binding protein in mammalian cells, was found to bind ss AP-DNA with similar affinity as unmodified ssDNA and ds AP-DNA with lower affinity. Consistent with their known relative DNA binding affinities, RPA blocks/inhibits the ss, but not ds, AP endonuclease function of Ape1. Moreover, RPA inactivates Ape1 incision activity at an AP site within the ss region of a fork duplex, but not a transcription-like bubble intermediate. The data herein suggested a model whereby RPA selectively suppresses the nontemplated ss cleavage activity of Ape1 in vivo, particularly at sites of ongoing replication/recombination, by coating the ssDNA.
Collapse
Affiliation(s)
- Jinshui Fan
- Laboratory of Molecular Gerontology, NIA, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
64
|
Park J, Seo T, Kim H, Choe J. Sumoylation of the novel protein hRIP{beta} is involved in replication protein A deposition in PML nuclear bodies. Mol Cell Biol 2005; 25:8202-14. [PMID: 16135809 PMCID: PMC1234305 DOI: 10.1128/mcb.25.18.8202-8214.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replication protein A (RPA) is a single-stranded-DNA-binding protein composed of three subunits with molecular masses of 70, 32, and 14 kDa. The protein is involved in multiple processes of eukaryotic DNA metabolism, including DNA replication, repair, and recombination. In Xenopus, Xenopus RPA-interacting protein alpha has been identified as a carrier molecule of RPA into the nucleus. In this study, human RPA-interacting protein alpha (hRIPalpha) and five novel splice isoforms (named hRIPalpha, hRIPbeta, hRIPgamma, hRIPdelta1, hRIPdelta2, and hRIPdelta3 according to the lengths of their encoding peptides) were cloned. Among hRIP isoforms, hRIPalpha and hRIPbeta were found to be the major splice isoforms and to show different subcellular localizations. While hRIPalpha localized to the cytoplasm, hRIPbeta was found in the PML nuclear body. Modification of hRIPbeta by sumoylation was found to be required for localization to the PML nuclear body. The results of the present work demonstrate that hRIPbeta transports RPA into the PML nuclear body and releases RPA upon UV irradiation. hRIPbeta thus plays an important role in RPA deposition in PML nuclear bodies and thereby supplements RPA for DNA metabolism.
Collapse
Affiliation(s)
- Junsoo Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejon 305-701, South Korea
| | | | | | | |
Collapse
|
65
|
Ishibashi T, Koga A, Yamamoto T, Uchiyama Y, Mori Y, Hashimoto J, Kimura S, Sakaguchi K. Two types of replication protein A in seed plants. FEBS J 2005; 272:3270-81. [PMID: 15978034 DOI: 10.1111/j.1742-4658.2005.04719.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Replication protein A (RPA), a heterotrimeric protein composed of 70, 32 and 14-kDa subunits, has been shown to be essential for DNA replication, repair, recombination, and transcription. Previously, we found that, in two seed plants, rice and Arabidopsis, there are two different types of RPA70-kDa subunit. Substantial biochemical and genetic characterization of these two subunits, termed OsRPA70a and OsRPA70b or AtRPA70a and AtRPA70b, respectively, is described in this report. Inactivation of AtRPA70a by transfer DNA insertion or RNA interference is lethal, so the complex containing RPA70a may be essential for DNA replication. Transfer DNA insertion and RNAi lines for AtRPA70b are morphologically normal, albeit hypersensitive to certain mutagens, such as UV-B and methyl methanesulfonate, suggesting that RPA70b functions mostly in DNA repair. In two-hybrid, pull-down and coexpression analysis, OsRPA70b was found to interact more selectively than OsRPA70a with OsRPA32. The data suggest that two different types of RPA heterotrimer are present in seed plants, and that there may be additional 32 and 14-kDa subunit homologs that interact with OsRPA70a. Each of the two probable plant RPA complexes may have different roles in DNA metabolism.
Collapse
Affiliation(s)
- Toyotaka Ishibashi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Japan
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Yoo E, Kim BU, Lee SY, Cho CH, Chung JH, Lee CH. 53BP1 is associated with replication protein A and is required for RPA2 hyperphosphorylation following DNA damage. Oncogene 2005; 24:5423-30. [PMID: 15856006 DOI: 10.1038/sj.onc.1208710] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
p53-binding protein 1 (53BP1) acts as an 'adaptor/mediator' for transducing DNA damage signals, especially following detection of DNA double-strand breaks. In an effort to broaden our understanding of the protein network surrounding 53BP1, we isolated possible 53BP1 binding partners by co-immunoprecipitation, and identified them via tandem mass spectrometric analysis. The 53BP1-associated proteins included RPA1 and RPA2, two components of the replication protein A (RPA) complex. The presence of RPA components in the immunoprecipitates was confirmed by immunoblotting, and we found that the association between 53BP1 and RPA2 was disrupted following DNA damage induced by treatment with camptothecin, a topoisomerase I inhibitor. To investigate the functional meaning of the 53BP1 and RPA interaction, we established U2OS osteosarcoma cell lines stably expressing dominant-negative fragments of 53BP1. We found that camptothecin-induced RPA2 phosphorylation was inhibited in these cells, and also following 53BP1 knockdown by siRNA transfection. On the cellular level, camptothecin-induced apoptosis was augmented in the dominant-negative cell lines, resulting in increased chemosensitivity to this drug. Taken together, these results suggest that 53BP1 is involved in DNA damage-induced RPA2 hyperphosphorylation, and inhibition of 53BP1 function may sensitize cancer cells to camptothecin treatment.
Collapse
Affiliation(s)
- Eunjae Yoo
- Research Institute, National Cancer Center, 809 Madu-dong, Ilsan-gu, Goyang, Gyeonggi 411-769, Korea
| | | | | | | | | | | |
Collapse
|
67
|
Nuss JE, Alter GM. Denaturation of replication protein A reveals an alternative conformation with intact domain structure and oligonucleotide binding activity. Protein Sci 2004; 13:1365-78. [PMID: 15096638 PMCID: PMC2286763 DOI: 10.1110/ps.04616304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Replication protein A (RPA) is a heterotrimeric, multidomain, single-stranded DNA-binding protein. Using spectroscopic methods and methylene carbene-based chemical modification methods, we have identified conformational intermediates in the denaturation pathway of RPA. Intrinsic protein fluorescence studies reveal unfolding profiles composed of multiple transitions, with midpoints at 1.5, 2.7, 4.2, and 5.3 M urea. CD profiles of RPA unfolding are characterized by a single transition. RPA is stabilized with respect to the CD-monitored transition when bound to a dA15 oligonucleotide. However, oligonucleotide binding appears to exert little, if any, effect on the first fluorescence transition. Methylene carbene chemical modification, coupled with MALDI-TOF mass spectrometry analysis, was also used to monitor unfolding of several specific RPA folds of the protein. The unfolding profiles of the individual structures are characterized by single transitions similar to the CD-monitored transition. Each fold, however, unravels with different individual characteristics, suggesting significant autonomy. Based on results from chemical modification and spectroscopic analyses, we conclude the initial transition observed in fluorescence experiments represents a change in the juxtaposition of binding folds with little unraveling of the domain structures. The second transition represents the unfolding of the majority of fold structure, and the third transition observed by fluorescence correlates with the dissociation of the 70- and 32-kD subunits.
Collapse
Affiliation(s)
- Jonathan E Nuss
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio 45435-0001, USA
| | | |
Collapse
|
68
|
Chaudhuri J, Khuong C, Alt FW. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature 2004; 430:992-8. [PMID: 15273694 DOI: 10.1038/nature02821] [Citation(s) in RCA: 300] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Accepted: 07/12/2004] [Indexed: 01/20/2023]
Abstract
Activation-induced cytidine deaminase (AID) is a single-stranded (ss) DNA deaminase required for somatic hypermutation (SHM) and class switch recombination of immunoglobulin genes. Class switch recombination involves transcription through switch regions, which generates ssDNA within R loops. However, although transcription through immunoglobulin variable region exons is required for SHM, it does not generate stable ssDNA, which leaves the mechanism of AID targeting unresolved. Here we characterize the mechanism of AID targeting to in-vitro-transcribed substrates harbouring SHM motifs. We show that the targeting activity of AID is due to replication protein A (RPA), a ssDNA-binding protein involved in replication, recombination and repair. The 32-kDa subunit of RPA interacts specifically with AID from activated B cells in a manner that seems to be dependent on post-translational AID modification. Thus, our study implicates RPA as a novel factor involved in immunoglobulin diversification. We propose that B-cell-specific AID-RPA complexes preferentially bind to ssDNA of small transcription bubbles at SHM 'hotspots', leading to AID-mediated deamination and RPA-mediated recruitment of DNA repair proteins.
Collapse
Affiliation(s)
- Jayanta Chaudhuri
- Howard Hughes Medical Institute, Children's Hospital, Center for Blood Research and Department of Genetics, Harvard University Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
69
|
Millership JJ, Cai X, Zhu G. Functional characterization of replication protein A2 (RPA2) from Cryptosporidium parvum. MICROBIOLOGY-SGM 2004; 150:1197-1205. [PMID: 15133081 DOI: 10.1099/mic.0.26833-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Replication protein A (RPA) is a heterotrimeric complex of single-stranded DNA-binding proteins that play multiple roles in eukaryotic DNA metabolism. The RPA complex is typically composed of heterologous proteins (termed RPA1, RPA2 and RPA3) in animals, plants and fungi, which possess different functions. Previously, two distinct, short-type RPA large subunits (CpRPA1 and CpRPA1B) from the apicomplexan parasite Cryptosporidium parvum were characterized. Here are reported the identification and characterization of a putative middle RPA subunit (CpRPA2) from this unicellular organism. Although the CpRPA2 gene encodes a predicted 40.1 kDa peptide, which is larger than other RPA2 subunits characterized to date, Western blot analysis of oocyst preparations detected a native CpRPA2 protein with a molecular mass of approximately 32 kDa, suggesting that CpRPA2 might undergo post-translational cleavage or the gene was translated at an alternative start codon. Immunofluorescence microscopy using a rabbit anti-CpRPA2 antibody revealed that CpRPA2 protein was mainly distributed in the cytosol (rather than the nuclei) of C. parvum sporozoites. Semi-quantitative RT-PCR data indicated that CpRPA2 was differentially expressed in a tissue culture model with highest expression in intracellular parasites infecting HCT-8 cells for 36 and 60 h. Sequence comparison suggests that RPA2 is a group of poorly conserved proteins. Nonetheless, functional analyses of recombinant proteins confirmed that CpRPA2 is a single-stranded DNA-binding protein and that it could serve as an in vitro phosphorylation target by a DNA-dependent protein kinase. The minimal length of poly(dT) required for CpRPA2 binding is 17 nucleotides, and the DNA-binding capability was inhibited by phosphorylation in vitro. These observations provide additional evidence on the divergence of RPA proteins between C. parvum and host, implying that the parasite DNA replication machinery could be explored as a chemotherapeutic target.
Collapse
Affiliation(s)
- Jason J Millership
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, 4467 TAMU, College Station, TX 77843, USA
| | - Xiaomin Cai
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, 4467 TAMU, College Station, TX 77843, USA
| | - Guan Zhu
- Faculty of Genetics Program, Texas A&M University, 4467 TAMU, College Station, TX 77843, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, 4467 TAMU, College Station, TX 77843, USA
| |
Collapse
|
70
|
Wyka IM, Dhar K, Binz SK, Wold MS. Replication protein A interactions with DNA: differential binding of the core domains and analysis of the DNA interaction surface. Biochemistry 2004; 42:12909-18. [PMID: 14596605 DOI: 10.1021/bi034930h] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human replication protein A (RPA) is a heterotrimeric (70, 32, and 14 kDa subunits), eukaryotic single-stranded DNA (ssDNA) binding protein required for DNA recombination, repair, and replication. The three subunits of human RPA are composed of six conserved DNA binding domains (DBDs). Deletion and mutational studies have identified a high-affinity DNA binding core in the central region of the 70 kDa subunit, composed of DBDs A and B. To define the roles of each DBD in DNA binding, monomeric and tandem DBD A and B domain chimeras were created and characterized. Individually, DBDs A and B have a very low intrinsic affinity for ssDNA. In contrast, tandem DBDs (AA, AB, BA, and BB) bind ssDNA with moderate to high affinity. The AA chimera had a much higher affinity for ssDNA than did the other tandem DBDs, demonstrating that DBD A has a higher intrinsic affinity for ssDNA than DBD B. The RPA-DNA interface is similar in both DBD A and DBD B. Mutational analysis was carried out to probe the relative contributions of the two domains to DNA binding. Mutation of polar residues in either core DBD resulted in a significant decrease in the affinity of the RPA complex for ssDNA. RPA complexes with pairs of mutated polar residues had lower affinities than those with single mutations. The decrease in affinity observed when polar mutations were combined suggests that multiple polar interactions contribute to the affinity of the RPA core for DNA. These results indicate that RPA-ssDNA interactions are the result of binding of multiple nonequivalent domains. Our data are consistent with a sequential binding model for RPA, in which DBD A is responsible for positioning and initial binding of the RPA complex while DBD A together with DBD B direct stable, high-affinity binding to ssDNA.
Collapse
Affiliation(s)
- Iwona M Wyka
- Department of Biochemistry, University of Iowa College of Medicine, 51 Newton Road, Iowa City, Iowa 52242-1109, USA
| | | | | | | |
Collapse
|
71
|
Lo T, Pellegrini L, Venkitaraman AR, Blundell TL. Sequence fingerprints in BRCA2 and RAD51: implications for DNA repair and cancer. DNA Repair (Amst) 2003; 2:1015-28. [PMID: 12967658 DOI: 10.1016/s1568-7864(03)00097-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In humans, the interactions between the breast cancer susceptibility protein, BRCA2, and the RAD51 recombinase are essential for DNA repair by homologous recombination (HR), failure of which can predispose to cancer. The interactions occur through conserved BRC repeat motifs, encoded in BRCA2, binding directly to RAD51. Here, we describe full and partial BRCA2 homologues from a wide range of eukaryotes, including Drosophila melanogaster and two Plasmodium species. The crystal structure of the human BRC4-RAD51 complex allows identification of residues that are important for protein-protein interaction, and defines interaction sequence fingerprints for the BRC repeat and for RAD51. These allow us to predict that most eukaryotic RAD51 and BRC repeat orthologues should be capable of mutual interactions. We find no evidence for the presence of BRC repeats in yeast, Archaea and bacteria, and their RAD51 orthologues do not fulfil the criteria for binding the BRC repeat. Similarly, human RAD51 paralogues, including RAD51B, RAD51C, RAD51D, XRCC2, XRCC3 and DMC1, are not predicted to bind the BRC repeat. Conservation of the BRC repeat and RAD51 sequence fingerprints across a wide range of eukaryotic species substantiates the functional significance of the BRCA2-RAD51 interactions. The idea of multiple BRC repeats with binding specificity towards RAD51 leads us to suggest a possible model for the participation of BRCA2 in RAD51 nucleoprotein filament formation.
Collapse
Affiliation(s)
- Thomas Lo
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | |
Collapse
|
72
|
Binz SK, Lao Y, Lowry DF, Wold MS. The phosphorylation domain of the 32-kDa subunit of replication protein A (RPA) modulates RPA-DNA interactions. Evidence for an intersubunit interaction. J Biol Chem 2003; 278:35584-91. [PMID: 12819197 DOI: 10.1074/jbc.m305388200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replication protein A (RPA) is a heterotrimeric (subunits of 70, 32, and 14 kDa) single-stranded DNA-binding protein that is required for DNA replication, recombination, and repair. The 40-residue N-terminal domain of the 32-kDa subunit of RPA (RPA32) becomes phosphorylated during S-phase and after DNA damage. Recently it has been shown that phosphorylation or the addition of negative charges to this N-terminal phosphorylation domain modulates RPA-protein interactions and increases cell sensitivity to DNA damage. We found that addition of multiple negative charges to the N-terminal phosphorylation domain also caused a significant decrease in the ability of a mutant form of RPA to destabilize double-stranded (ds) DNA. Kinetic studies suggested that the addition of negative charges to the N-terminal phosphorylation domain caused defects in both complex formation (nucleation) and subsequent destabilization of dsDNA by RPA. We conclude that the N-terminal phosphorylation domain modulates RPA interactions with dsDNA. Similar changes in DNA interactions were observed with a mutant form of RPA in which the N-terminal domain of the 70-kDa subunit was deleted. This suggested a functional link between the N-terminal domains of the 70- and 32-kDa subunits of RPA. NMR experiments provided evidence for a direct interaction between the N-terminal domain of the 70-kDa subunit and the negatively charged N-terminal phosphorylation domain of RPA32. These findings suggest that phosphorylation causes a conformational change in the RPA complex that regulates RPA function.
Collapse
Affiliation(s)
- Sara K Binz
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, Iowa 52242-1109, USA
| | | | | | | |
Collapse
|
73
|
Roy R, Trowbridge P, Yang Z, Champoux JJ, Simmons DT. The cap region of topoisomerase I binds to sites near both ends of simian virus 40 T antigen. J Virol 2003; 77:9809-16. [PMID: 12941889 PMCID: PMC224608 DOI: 10.1128/jvi.77.18.9809-9816.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two independent binding sites on simian virus 40 (SV40) T antigen for topoisomerase I (topo I) were identified. One was mapped to the N-terminal domain (residues 83 to 160) by a combination of enzyme-linked immunosorbent assays (ELISAs) and glutathione S-transferase (GST) pull-down assays performed with various T antigen deletion mutants. The second was mapped to the C-terminal domain (residues 602 to 708). The region in human topo I that binds to both sites in T antigen was identified by ELISAs, GST pull-down assays, and double-hexamer binding assays with topo I deletion mutants. This region corresponds to a distinct domain on topo I known as the cap region that maps from residues 175 to 433. By combining these data with information about the structure of T-antigen double hexamers associated with origin DNA, we propose that the cap region of topo I associates specifically with both ends of the double hexamer bound to the SV40 origin to initiate DNA replication.
Collapse
Affiliation(s)
- Rupa Roy
- Department of Biological Sciences, University of Delaware, Newark, DE 19716-2590, USA
| | | | | | | | | |
Collapse
|
74
|
Thoma BS, Vasquez KM. Critical DNA damage recognition functions of XPC-hHR23B and XPA-RPA in nucleotide excision repair. Mol Carcinog 2003; 38:1-13. [PMID: 12949838 DOI: 10.1002/mc.10143] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It has been reported that 80-90% of human cancers may result, in part, from DNA damage. Cell survival depends critically on the stability of our DNA and exquisitely sensitive DNA repair mechanisms have developed as a result. In humans, nucleotide excision repair (NER) protects the DNA against the mutagenic effects of carcinogens and ultraviolet (UV) radiation from sun exposure. By preventing mutations from forming in the DNA, the repair machinery ultimately protects us from developing cancers. DNA damage recognition is the rate-limiting step in repair, and although many details of NER have been elucidated, the mechanisms by which DNA damage is recognized remain to be fully determined. Two primary protein complexes have been proposed as the damaged DNA recognition factor in NER: xeroderma pigmentosum protein A-replication protein A (XPA-RPA) and xeroderma pigmentosum protein C-human homolog of RAD23B (XPC-hHR23B). Here we compare the evidence that supports damage detection by these protein complexes and propose a model for DNA damage recognition in NER based on the current understanding of the roles these proteins may play in the processing of DNA lesions.
Collapse
Affiliation(s)
- Brian S Thoma
- Department of Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas, USA
| | | |
Collapse
|
75
|
Jiang HY, Hickey RJ, Abdel-Aziz W, Tom TD, Wills PW, Liu J, Malkas LH. Human cell DNA replication is mediated by a discrete multiprotein complex. J Cell Biochem 2002; 85:762-74. [PMID: 11968016 DOI: 10.1002/jcb.10182] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A discrete high molecular weight multiprotein complex containing DNA polymerase alpha has been identified by a native Western blotting technique. An enrichment of this complex was seen at each step in its purification. Further purification of this complex by ion-exchange chromatography indicates that the peak of DNA polymerase alpha activity co-purifies with the peak of in vitro SV40 DNA replication activity eluting from the column. The complex has a sedimentation coefficient of 18S in sucrose density gradients. We have designated this complex as the DNA synthesome. We further purified the DNA synthesome by electroeluting this complex from a native polyacrylamide gel. The eluted complex retains in vitro DNA synthetic activity, and by Western blot analysis, contains DNA polymerase delta, proliferating cell nuclear antigen, and replication protein A. Enzymatic analysis of the electroeluted DNA synthesome indicates that the synthesome contains topoisomerase I and II activities, and SDS-PAGE analysis of the electroeluted DNA synthesome revealed the presence of at least 25 major polypeptides with molecular weights ranging from 20 to 240 kDa. Taken together, our evidence suggests that the DNA synthesome may represent the minimal DNA replication unit of the human cell.
Collapse
Affiliation(s)
- Hai Yan Jiang
- Department of Medicine, Hematology/Oncology Division, Indiana Cancer Research Institute, Indiana University Purdue University, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | |
Collapse
|
76
|
Nasheuer HP, Smith R, Bauerschmidt C, Grosse F, Weisshart K. Initiation of eukaryotic DNA replication: regulation and mechanisms. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 72:41-94. [PMID: 12206458 DOI: 10.1016/s0079-6603(02)72067-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The accurate and timely duplication of the genome is a major task for eukaryotic cells. This process requires the cooperation of multiple factors to ensure the stability of the genetic information of each cell. Mutations, rearrangements, or loss of chromosomes can be detrimental to a single cell as well as to the whole organism, causing failures, disease, or death. Because of the size of eukaryotic genomes, chromosomal duplication is accomplished in a multiparallel process. In human somatic cells between 10,000 and 100,000 parallel synthesis sites are present. This raises fundamental problems for eukaryotic cells to coordinate the start of DNA replication at each origin and to prevent replication of already duplicated DNA regions. Since these general phenomena were recognized in the middle of the 20th century the regulation and mechanisms of the initiation of eukaryotic DNA replication have been intensively investigated. These studies were carried out to find the essential factors involved in the process and to determine their functions during DNA replication. These studies gave rise to a model of the organization and the coordination of DNA replication within the eukaryotic cell. The elegant experiments carried out by Rao and Johnson (1970) (1), who fused cells in different phases of the cell cycle, showed that G1 cells are competent for replication of their chromosomes, but lack a specific diffusible factor required to activate their replicaton machinery and showed that G2 cells are incompetent for DNA replication. These findings suggested that eukaryotic cells exist in two states. In G1 phase, cells are competent to initiate DNA replication, which is subsequently triggered in S phase. After completion of S phase, cells in G2 are no longer able to initiate DNA replication and they require a transition through mitosis to reenable initiation of DNA replication to take place in the next S phase. The Xenopus cell-free replication system has proved a good model system in which to study DNA replication in vitro as well as the mechanism preventing rereplication within a single cell cycle (2). Studies using this system resulted in the development of a model postulating the existence of a replication licensing factor, which binds to chromatin before the G1-S transition and which is displaced during replication (2, 3). These results were supported by genetic and biochemical experiments in Saccharomyces cerevisiae (budding yeast) and Schizosaccharomyces pombe (fission yeast) (4, 5). The investigation of cell division cycle mutants and the budding yeast origin of replication resulted in the concept of a prereplicative and a postreplicative complex of initiation proteins (6-9). These three individual concepts have recently started to merge and it has become obvious that initiation in eukaryotes is generally governed by the same ubiquitous mechanisms.
Collapse
|
77
|
Kobayashi T, Tada S, Tsuyama T, Murofushi H, Seki M, Enomoto T. Focus-formation of replication protein A, activation of checkpoint system and DNA repair synthesis induced by DNA double-strand breaks in Xenopus egg extract. J Cell Sci 2002; 115:3159-69. [PMID: 12118071 DOI: 10.1242/jcs.115.15.3159] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The response to DNA damage was analyzed using a cell-free system consisting of Xenopus egg extract and demembranated sperm nuclei. In the absence of DNA-damaging agents, detergent-resistant accumulation of replication protein A appeared in nuclei after a 30 minute incubation, and a considerable portion of the replication protein A signals disappeared during a further 30 minute incubation. Similar replication protein A accumulation was observed in the nuclei after a 30 minute incubation in the extract containing camptothecin, whereas a further 30 minute incubation generated discrete replication protein A foci. The addition of camptothecin also induced formation of γ-H2AX foci, which have been previously shown to localize at sites of DSBs. Analysis of the time course of DNA replication and results obtained using geminin, an inhibitor of licensing for DNA replication, suggest that the discrete replication protein A foci formed in response to camptothecin-induced DNA damage occur in a DNA-replication-dependent manner. When the nuclei were incubated in the extract containing EcoRI,discrete replication protein A foci were observed at 30 minutes as well as at 60 and 90 minutes after incubation, and the focus-formation of replication protein A was not sensitive to geminin. DNA replication was almost completely inhibited in the presence of EcoRI and the inhibition was sensitive to caffeine, an inhibitor of ataxia telangiectasia mutated protein (ATM) and ATM- and Rad3-related protein (ATR). However, the focus-formation of replication protein A in the presence of EcoRI was not influenced by caffeine treatment. EcoRI-induced incorporation of biotin-dUTP into chromatin was observed following geminin-mediated inhibition of DNA replication, suggesting that the incorporation was the result of DNA repair. The biotin-dUTP signal co-localized with replication protein A foci and was not significantly suppressed or stimulated by the addition of caffeine.
Collapse
Affiliation(s)
- Takayuki Kobayashi
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | | | | | | | | | |
Collapse
|
78
|
Voss TS, Mini T, Jenoe P, Beck HP. Plasmodium falciparum possesses a cell cycle-regulated short type replication protein A large subunit encoded by an unusual transcript. J Biol Chem 2002; 277:17493-501. [PMID: 11880371 DOI: 10.1074/jbc.m200100200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
DNA replication in Plasmodium parasites takes place at multiple distinct points during their complex life cycle in the mosquito and vertebrate hosts. Although several parasite proteins involved in DNA replication have been described, the various mechanisms engaged in DNA metabolism of this major pathogen remain largely unexplored. As a step toward understanding this complex network, we describe the identification of Plasmodium falciparum replication protein A large subunit (pfRPA1) through affinity purification and mass spectral analysis of a purified 55-kDa factor. Gel retardation experiments revealed that pfRPA is the major single-stranded DNA binding activity in parasite protein extracts. The activity was expressed in a cell cycle-dependent manner with peak activities in late trophozoites and schizonts, thus correlating with the beginning of chromosomal DNA replication. Accordingly, the pfrpa1 message was detected in parasites 20-24 h post-invasion which is in agreement with the expression of other P. falciparum DNA replication genes. Our results show that pfRPA1 is encoded by an unusual 6.5-kb transcript containing a single open reading frame of which only the C-terminal 42% of the deduced protein sequence shows homologies to other reported RPA1s. Like the orthologues of other protozoan parasites, pfRPA1 lacks the N-terminal protein interaction domain and is thus remarkably smaller than the RPA1s of higher eukaryotes.
Collapse
Affiliation(s)
- Till S Voss
- Swiss Tropical Institute, Socinstrasse 59, 4051 Basel, Switzerland
| | | | | | | |
Collapse
|
79
|
Ramilo C, Gu L, Guo S, Zhang X, Patrick SM, Turchi JJ, Li GM. Partial reconstitution of human DNA mismatch repair in vitro: characterization of the role of human replication protein A. Mol Cell Biol 2002; 22:2037-46. [PMID: 11884592 PMCID: PMC133689 DOI: 10.1128/mcb.22.7.2037-2046.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
DNA mismatch repair (MMR) is a critical genome-stabilization system. However, the molecular mechanism of MMR in human cells remains obscure because many of the components have not yet been identified. Using a functional in vitro reconstitution system, this study identified three HeLa cell fractions essential for in vitro MMR. These fractions divide human MMR into two distinct stages: mismatch-provoked excision and repair synthesis. In vitro dissection of the MMR reaction and crucial intermediates elucidated biochemical functions of individual fractions in human MMR and identified hitherto unknown functions of human replication protein A (hRPA) in MMR. Thus, one fraction carries out nick-directed and mismatch-dependent excision; the second carries out DNA repair synthesis and DNA ligation; and the third provides hRPA, which plays multiple roles in human MMR by protecting the template DNA strand from degradation, enhancing repair excision, and facilitating repair synthesis. It is anticipated that further analysis of these fractions will identify additional MMR components and enable the complete reconstitution of the human MMR pathway with purified proteins.
Collapse
Affiliation(s)
- Cecilia Ramilo
- Department of Pathology and Laboratory Medicine, Lucille P. Markey Cancer Center, University of Kentucky Medical Center, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Kersemaekers AMF, Mayer F, Molier M, van Weeren PC, Oosterhuis JW, Bokemeyer C, Looijenga LHJ. Role of P53 and MDM2 in treatment response of human germ cell tumors. J Clin Oncol 2002; 20:1551-61. [PMID: 11896104 DOI: 10.1200/jco.2002.20.6.1551] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Testicular germ cell tumors (TGCTs) of adolescents and adults are very sensitive to systemic treatment. The exquisite chemosensitivity of these cancers has been attributed to a high level of wild-type P53. MATERIALS AND METHODS To clarify the role of P53 in treatment sensitivity and resistance of TGCTs, we performed immunohistochemistry and Western blotting analysis on a series of 39 fresh-frozen primary TGCTs before therapy (unselected series). In a series of formalin-fixed paraffin-embedded TGCTs of patients with fully documented clinical course, including treatment-sensitive (n = 17) and -resistant (n = 18) tumors, P53 status was assessed by immunohistochemistry and mutation analysis. In addition, the involvement of MDM2, a P53 antagonist, was investigated by immunohistochemistry, reverse transcriptase polymerase chain reaction, and in situ hybridization. RESULTS Immunohistochemistry demonstrated absence of staining for P53 in 36%, 41%, and 17% of the unselected, responding, and nonresponding TGCTs, respectively. Of the positive TGCTs, most tumors, ie, 49%, 41%, and 33%, showed 1% to 10% positive nuclei. This overall low level of P53 was confirmed by Western blotting. Mutation analysis revealed only one silent P53 mutation in one of the responding patients. All embryonal carcinomas were homogeneously positive for MDM2, encoded by the full length mRNA, while a heterogeneous pattern was found for the other histologic components. Amplification of MDM2 was detected in one out of 12 embryonal carcinomas. CONCLUSION Although our results are in line with previous findings of the presence of wild-type P53 in TGCTs, they show that a high level of P53 does not relate directly to treatment sensitivity of these tumors, and inactivation of P53 is not a common event in the development of cisplatin resistance.
Collapse
Affiliation(s)
- Anne-Marie F Kersemaekers
- Department of Pathology/Laboratory for Experimental Patho-Oncology, University Hospital Rotterdam/Daniel, Josephine Nefkens Institute, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
81
|
Hayashi H, Tominaga Y, Hirano S, McKenna AE, Nakabeppu Y, Matsumoto Y. Replication-associated repair of adenine:8-oxoguanine mispairs by MYH. Curr Biol 2002; 12:335-9. [PMID: 11864576 DOI: 10.1016/s0960-9822(02)00686-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cellular DNA is constantly exposed to the risk of oxidation. 8-oxoguanine (8-oxoG) is one of the major DNA lesions generated by oxidation, which is primarily corrected by base excision repair. When it is not repaired prior to replication, replicative DNA polymerases yield misinsertion of an adenine (A) opposite the 8-oxoG on the template strand, generating an A:8-oxoG mispair. MYH, a mammalian homolog of Escherichia coli MutY, is a DNA glycosylase responsible for initiating base excision repair of such a mispair by excising the adenine opposite 8-oxoG. Here, using an in vivo repair system, we show that DNA replication enhances the repair of the A:8-oxoG mispair. Repair efficiency was lower in MYH-deficient murine cells than in MYH-proficient cells. Transfection of the MYH-deficient cells with a wild-type MYH expression vector increased the efficiency of A:8-oxoG repair, indicating that a significant part of this replication-associated repair depends on MYH. Expression of a mutant MYH in which the PCNA binding motif was disrupted did not increase the repair efficiency, thus suggesting that the interaction between PCNA and MYH is critical for MYH-initiated repair of A:8-oxoG.
Collapse
Affiliation(s)
- Harutoshi Hayashi
- Division of Medical Science, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | |
Collapse
|
82
|
Reddy MS, Guhan N, Muniyappa K. Characterization of single-stranded DNA-binding proteins from Mycobacteria. The carboxyl-terminal of domain of SSB is essential for stable association with its cognate RecA protein. J Biol Chem 2001; 276:45959-68. [PMID: 11577073 DOI: 10.1074/jbc.m103523200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Single-stranded DNA-binding proteins (SSB) play an important role in most aspects of DNA metabolism including DNA replication, repair, and recombination. We report here the identification and characterization of SSB proteins of Mycobacterium smegmatis and Mycobacterium tuberculosis. Sequence comparison of M. smegmatis SSB revealed that it is homologous to M. tuberculosis SSB, except for a small spacer connecting the larger amino-terminal domain with the extreme carboxyl-terminal tail. The purified SSB proteins of mycobacteria bound single-stranded DNA with high affinity, and the association and dissociation constants were similar to that of the prototype SSB. The proteolytic signatures of free and bound forms of SSB proteins disclosed that DNA binding was associated with structural changes at the carboxyl-terminal domain. Significantly, SSB proteins from mycobacteria displayed high affinity for cognate RecA, whereas Escherichia coli SSB did not under comparable experimental conditions. Accordingly, SSB and RecA were coimmunoprecipitated from cell lysates, further supporting an interaction between these proteins in vivo. The carboxyl-terminal domain of M. smegmatis SSB, which is not essential for interaction with ssDNA, is the site of binding of its cognate RecA. These studies provide the first evidence for stable association of eubacterial SSB proteins with their cognate RecA, suggesting that these two proteins might function together during DNA repair and/or recombination.
Collapse
Affiliation(s)
- M S Reddy
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
83
|
Zhang X, Kiechle FL. Disruption of replication protein A/single-stranded DNA complexes during apoptosis in HL-60 cells. Biochem Biophys Res Commun 2001; 287:865-9. [PMID: 11573944 DOI: 10.1006/bbrc.2001.5676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Replication protein A (RPA) is a single-stranded DNA-binding protein which plays a role in DNA replication, repair, and recombination. We used gel mobility shift, super gel mobility shift, and Western blot to determine the fate of RPA during Hoechst 33342-induced apoptosis in HL-60 cells. Multiple bands were detected by gel mobility shift after the incubation of single-stranded gamma-(32)P-labeled oligo(dT)(30) with the nuclear extracts of HL-60 cells. Super gel mobility shift results indicated that only the highest molecular weight protein/oligo(dT)(30) complexes bound with anti-human RPA-32 and/or anti-human RPA-70 antibodies forming RPA/oligo(dT)(30) complexes. After the treatment of HL-60 cells with 15 microg/ml Hoechst 33342 for 3 h, the bands of RPA/oligo(dT)(30) complexes were decreased and bands of the lowest molecular weight protein/oligo(dT)(30) complexes were significantly increased when compared to the control group. These low-molecular-weight bands did not bind with RPA-32 or RPA-70 antibodies. Western blotting results showed that both RPA-32 and RPA-70 were decreased significantly in a time-dependent manner after 1 h of incubation with Hoechst 33342. These results demonstrate that in HL-60 cells, Hoechst 33342-induced apoptosis is associated with a rapid loss of the binding capacity of RPA to oligo(dT)(30) as well as immunoactive RPA-70 and RPA-32.
Collapse
Affiliation(s)
- X Zhang
- Department of Clinical Pathology, William Beaumont Hospital, 3601 West 13 Mile Road, Royal Oak, MI 48073, USA
| | | |
Collapse
|
84
|
Bastin-Shanower SA, Brill SJ. Functional analysis of the four DNA binding domains of replication protein A. The role of RPA2 in ssDNA binding. J Biol Chem 2001; 276:36446-53. [PMID: 11479296 PMCID: PMC2796477 DOI: 10.1074/jbc.m104386200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replication Protein A (RPA), the heterotrimeric single-stranded DNA (ssDNA)-binding protein of eukaryotes, contains four ssDNA binding domains (DBDs) within its two largest subunits, RPA1 and RPA2. We analyzed the contribution of the four DBDs to ssDNA binding affinity by assaying recombinant yeast RPA in which a single DBD (A, B, C, or D) was inactive. Inactivation was accomplished by mutating the two conserved aromatic stacking residues present in each DBD. Mutation of domain A had the most severe effect and eliminated binding to a short substrate such as (dT)12. RPA containing mutations in DBDs B and C bound to substrates (dT)12, 17, and 23 but with reduced affinity compared with wild type RPA. Mutation of DBD-D had little or no effect on the binding of RPA to these substrates. However, mutations in domain D did affect the binding to oligonucleotides larger than 23 nucleotides (nt). Protein-DNA cross-linking indicated that DBD-A (in RPA1) is essential for RPA1 to interact efficiently with substrates of 12 nt or less and that DBD-D (RPA2) interacts efficiently with oligonucleotides of 27 nt or larger. The data support a sequential model of binding in which DBD-A is responsible for the initial interaction with ssDNA, that domains A, B, and C (RPA1) contact 12-23 nt of ssDNA, and that DBD-D (RPA2) is needed for RPA to interact with substrates that are 23-27 nt in length.
Collapse
Affiliation(s)
| | - Steven J. Brill
- To whom correspondence should be addressed: Tel: 732-235-4197 Fax: 732-235-4880
| |
Collapse
|
85
|
Grandi P, Eltsov M, Nielsen I, Raska I. DNA double-strand breaks induce formation of RP-A/Ku foci on in vitro reconstituted Xenopus sperm nuclei. J Cell Sci 2001; 114:3345-57. [PMID: 11591822 DOI: 10.1242/jcs.114.18.3345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replication protein A (RP-A) is involved in DNA replication, repair and recombination. It has been demonstrated that RP-A clusters in foci prior to DNA replication and redistributes over chromatin during S-phase. Here, we show that RP-A foci also form in response to DNA double-strand (ds) breaks produced on Xenopus laevis sperm nuclei by restriction enzymes and then reconstituted with Xenopus egg high-speed extracts. Ku86 co-localizes with RP-A in the same foci. An unscheduled RP-A-dependent DNA synthesis takes place overlapping with RP-A and Ku86 foci. Immunoelectron-microscopy analysis reveals that these foci correspond to spherical bodies up to 300 nm in diameter, which contain RP-A, Ku86 and DNA. In an independent in vitro assay, we incubated linear dsDNA bound to magnetic beads with Xenopus egg extracts. Here, also RP-A and Ku cluster in foci as seen through immunofluorescence. Both proteins appear to enrich themselves in sequences near the ends of the DNA molecules and influence ligation efficiency of ds linear DNA to these ends. Thus, the Xenopus in vitro system allows for the generation of specific DNA ds breaks, RP-A and Ku can be used as markers for these lesions and the repair of this type of DNA damage can be studied under conditions of a normal nuclear environment.
Collapse
Affiliation(s)
- P Grandi
- Department of Biochemistry and Molecular Biology, University of Geneva, CH1211-Geneva 4, Switzerland
| | | | | | | |
Collapse
|
86
|
Wang Y, Guan J, Wang H, Wang Y, Leeper D, Iliakis G. Regulation of dna replication after heat shock by replication protein a-nucleolin interactions. J Biol Chem 2001; 276:20579-88. [PMID: 11389152 DOI: 10.1074/jbc.m100874200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heat shock inhibits replicative DNA synthesis, but the underlying mechanism remains unknown. We investigated mechanistic aspects of this regulation in melanoma cells using a simian virus 40 (SV40)-based in vitro DNA replication assay. Heat shock (44 degrees C) caused a monotonic inhibition of cellular DNA replication following exposures for 5-90 min. SV40 DNA replication activity in extracts of similarly heated cells also decreased after 5-30 min of exposure, but returned to near control levels after 60-90 min of exposure. This transient inhibition of SV40 DNA replication was eliminated by recombinant replication protein A (rRPA), suggesting a regulatory process targeting this key DNA replication factor. SV40 DNA replication inhibition was associated with a transient increase in the interaction between nucleolin and RPA that peaked at 20-30 min. Because binding to nucleolin compromises the ability of RPA to support SV40 DNA replication, we suggest that the observed interaction reflects a mechanism whereby DNA replication is regulated after heat shock. The relevance of this interaction to the regulation of cellular DNA replication is indicated by the transient translocation in heated cells of nucleolin from the nucleolus into the nucleoplasm with kinetics very similar to those of SV40 DNA replication inhibition and of RPA-nucleolin interaction. Because the targeting of RPA by nucleolin in heated cells occurs in an environment that preserves the activity of several essential DNA replication factors, active processes may contribute to DNA replication inhibition to a larger degree than presently thought. RPA-nucleolin interactions may reflect an early step in the regulation of DNA replication, as nucleolin relocalized into the nucleolus 1-2 h after heat exposure but cellular DNA replication remained inhibited for up to 8 h. We propose that the nucleolus functions as a heat sensor that uses nucleolin as a signaling molecule to initiate inhibitory responses equivalent to a checkpoint.
Collapse
Affiliation(s)
- Y Wang
- Department of Radiation Oncology, Division of Experimental Radiation Oncology, Kimmel Cancer Center, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
87
|
Kim HS, Brill SJ. Rfc4 interacts with Rpa1 and is required for both DNA replication and DNA damage checkpoints in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:3725-37. [PMID: 11340166 PMCID: PMC87010 DOI: 10.1128/mcb.21.11.3725-3737.2001] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The large subunit of replication protein A (Rpa1) consists of three single-stranded DNA binding domains and an N-terminal domain (Rpa1N) of unknown function. To determine the essential role of this domain we searched for mutations that require wild-type Rpa1N for viability in yeast. A mutation in RFC4, encoding a small subunit of replication factor C (RFC), was found to display allele-specific interactions with mutations in the gene encoding Rpa1 (RFA1). Mutations that map to Rpa1N and confer sensitivity to the DNA synthesis inhibitor hydroxyurea, such as rfa1-t11, are lethal in combination with rfc4-2. The rfc4-2 mutant itself is sensitive to hydroxyurea, and like rfc2 and rfc5 strains, it exhibits defects in the DNA replication block and intra-S checkpoints. RFC4 and the DNA damage checkpoint gene RAD24 were found to be epistatic with respect to DNA damage sensitivity. We show that the rfc4-2 mutant is defective in the G(1)/S DNA damage checkpoint response and that both the rfc4-2 and rfa1-t11 strains are defective in the G(2)/M DNA damage checkpoint. Thus, in addition to its essential role as part of the clamp loader in DNA replication, Rfc4 plays a role as a sensor in multiple DNA checkpoint pathways. Our results suggest that a physical interaction between Rfc4 and Rpa1N is required for both roles.
Collapse
Affiliation(s)
- H S Kim
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
88
|
Ola A, Waga S, Ellison V, Stillman B, McGurk M, Leigh IM, Waseem NH, Waseem A. Human-Saccharomyces cerevisiae proliferating cell nuclear antigen hybrids: oligomeric structure and functional characterization using in vitro DNA replication. J Biol Chem 2001; 276:10168-77. [PMID: 11094057 DOI: 10.1074/jbc.m008929200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proliferating cell nuclear antigen (PCNA) is a highly conserved protein required for the assembly of the DNA polymerase delta (pol delta) holoenzyme. Because PCNAs from Saccharomyces cerevisiae and human do not complement each other using in vitro or in vivo assays, hybrids of the two proteins would help identify region(s) involved in the assembly of the pol delta holoenzyme. Two mutants of human PCNA, HU1 (D21E) and HU3 (D120E), and six hybrids of human and S. cerevisiae PCNA, HC1, HC5, CH2, CH3, CH4, and CH5, were prepared by swapping corresponding regions between the two proteins. In solution, all PCNA assembled into trimers, albeit to different extents. These PCNA variants were tested for stimulation of pol delta and in vitro replication of M13 and SV40 DNA as well as to stimulate the ATPase activity of replication factor C (RF-C). Our data suggest that in addition to the interdomain connecting loop and C terminus, an additional site in the N terminus is required for pol delta interaction. PCNA mutants and hybrids that stimulated pol delta and RF-C were deficient in M13 and SV40 DNA replication assays, indicating that PCNA-induced pol delta stimulation and RF-C-mediated loading are not sufficient for coordinated DNA synthesis at a replication fork.
Collapse
Affiliation(s)
- A Ola
- Head and Neck Cancer Research Program, Guys, King's, and St. Thomas' Dental Institute, Guy's Campus, King's College London, London SE1 9RT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Kalma Y, Marash L, Lamed Y, Ginsberg D. Expression analysis using DNA microarrays demonstrates that E2F-1 up-regulates expression of DNA replication genes including replication protein A2. Oncogene 2001; 20:1379-87. [PMID: 11313881 DOI: 10.1038/sj.onc.1204230] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2000] [Revised: 12/19/2000] [Accepted: 01/03/2001] [Indexed: 02/02/2023]
Abstract
The transcription factor E2F-1 plays a pivotal role in the regulation of G1/S transition in higher eukaryotes cell cycle. We used a cell line containing an inducible E2F-1 and oligonucleotide microarray analysis to identify novel E2F target genes. We show that E2F-1 up-regulates the expression of a number of genes coding for components of the DNA replication machinery. Among them is the gene coding for the 32 Kd subunit of replication protein A (RPA2). Replication protein A is the most abundant single strand DNA binding complex and it is essential for DNA replication. We demonstrate that RPA2 is a novel E2F target gene whose expression can be directly regulated by E2F-1 via E2F binding sites in its promoter. In addition, expression of Topoisomerase IIalpha and subunit IV of DNA polymerase alpha is also up-regulated upon E2F-1 induction. Taken together, these results provide novel links between components of the DNA replication machinery and the cell growth regulatory pathway involving the Rb tumor suppressor and E2F.
Collapse
Affiliation(s)
- Y Kalma
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
90
|
Ashley T, Walpita D, de Rooij DG. Localization of two mammalian cyclin dependent kinases during mammalian meiosis. J Cell Sci 2001; 114:685-93. [PMID: 11171374 DOI: 10.1242/jcs.114.4.685] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Mammalian meiotic progression, like mitotic cell cycle progression, is regulated by cyclins and cyclin dependent kinases (CDKs). However, the unique requirements of meiosis (homologous synapsis, reciprocal recombination and the dual divisions that segregate first homologues, then sister chromatids) have led to different patterns of CDK expression. Here we show that Cdk4 colocalizes with replication protein A (RPA) on the synaptonemal complexes (SCs) of newly synapsed axes of homologously pairing bivalents, but disappears from these axes by mid-pachynema. The switch from the mitotic pattern of expression occurs during the last two spermatogonial divisions. Cdk2 colocalizes with MLH1, a mismatch repair protein at sites of reciprocal recombination in mid-late pachynema. In addition Cdk2 localizes to the telomeres of chromosomal bivalents throughout meiotic prophase. The mitotic pattern of expression of Cdk2 remains unchanged throughout the spermatogonial divisions, but is altered in meiosis of the spermatocytes.
Collapse
Affiliation(s)
- T Ashley
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
91
|
Tang Q, Bell P, Tegtmeyer P, Maul GG. Replication but not transcription of simian virus 40 DNA is dependent on nuclear domain 10. J Virol 2000; 74:9694-700. [PMID: 11000241 PMCID: PMC112401 DOI: 10.1128/jvi.74.20.9694-9700.2000] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2000] [Accepted: 07/17/2000] [Indexed: 12/15/2022] Open
Abstract
DNA viruses from several families including herpes simplex virus type 1, adenovirus type 5, and simian virus 40 (SV40), start their transcription and replication adjacent to a specific nuclear domain, ND10. We asked whether a specific viral DNA sequence determines the location of these synthetic activities at such restricted nuclear sites. Partial and overlapping SV40 sequences were introduced into a beta-galactosidase expression vector, and the beta-galactosidase transcripts were localized by in situ hybridization. Transcripts derived from control plasmids were found throughout the nucleus and at highly concentrated sites but not at ND10. SV40 genomic segments supported ND10-associated transcription only when the origin and the coding sequence for the large T antigen were present. When the large T-antigen coding sequence was eliminated but the T antigen was constitutively expressed in COS-7 cells, the viral origin was sufficient to localize transcription and replication to ND10. Deletion analysis showed that only the large T-antigen binding site II (the core origin) was required but the T antigen was needed for detectable transcription at ND10. Large T antigen expressed from plasmids without the viral core origin did not bind or localize to ND10. Blocking of DNA replication prevented the accumulation of transcripts at ND10, indicating that only sites with replicating templates accumulated transcripts. Transcription at ND10 did not enhance total protein synthesis of plasmid transcripts. These findings suggest that viral transcription at ND10 may only be a consequence of viral genomes directed to ND10 for replication. Although plasmid transcription can take place anywhere in the nucleus, T-antigen-directed replication is apparently restricted to ND10.
Collapse
Affiliation(s)
- Q Tang
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
92
|
Gai D, Roy R, Wu C, Simmons DT. Topoisomerase I associates specifically with simian virus 40 large-T-antigen double hexamer-origin complexes. J Virol 2000; 74:5224-32. [PMID: 10799598 PMCID: PMC110876 DOI: 10.1128/jvi.74.11.5224-5232.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/1999] [Accepted: 03/14/2000] [Indexed: 11/20/2022] Open
Abstract
Topoisomerase I (topo I) is required for releasing torsional stress during simian virus 40 (SV40) DNA replication. Recently, it has been demonstrated that topo I participates in initiation of replication as well as in elongation. Although T antigen and topo I can bind to one another in vitro, there is no direct evidence that topo I is a component of the replication initiation complex. We demonstrate in this report that topo I associates with T-antigen double hexamers bound to SV40 origin DNA (T(DH)) but not to single hexamers. This association has the same nucleotide and DNA requirements as those for the formation of double hexamers on DNA. Interestingly, topo I prefers to bind to fully formed T(DH) complexes over other oligomerized forms of T antigen associated with the origin. High ratios of topo I to origin DNA destabilize T(DH). The partial unwinding of a small-circular-DNA substrate is dependent on the presence of both T antigen and topo I but is inhibited at high topo I concentrations. Competition experiments with a topo I-binding fragment of T antigen indicate that an interaction between T antigen and topo I occurs during the unwinding reaction. We propose that topo I is recruited to the initiation complex after the assembly of T(DH) and before unwinding to facilitate DNA replication.
Collapse
Affiliation(s)
- D Gai
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716-2590, USA
| | | | | | | |
Collapse
|
93
|
Daniely Y, Borowiec JA. Formation of a complex between nucleolin and replication protein A after cell stress prevents initiation of DNA replication. J Cell Biol 2000; 149:799-810. [PMID: 10811822 PMCID: PMC2174572 DOI: 10.1083/jcb.149.4.799] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/1999] [Accepted: 04/07/2000] [Indexed: 12/02/2022] Open
Abstract
We used a biochemical screen to identify nucleolin, a key factor in ribosome biogenesis, as a high-affinity binding partner for the heterotrimeric human replication protein A (hRPA). Binding studies in vitro demonstrated that the two proteins physically interact, with nucleolin using an unusual contact with the small hRPA subunit. Nucleolin significantly inhibited both simian virus 40 (SV-40) origin unwinding and SV-40 DNA replication in vitro, likely by nucleolin preventing hRPA from productive interaction with the SV-40 initiation complex. In vivo, use of epifluorescence and confocal microscopy showed that heat shock caused a dramatic redistribution of nucleolin from the nucleolus to the nucleoplasm. Nucleolin relocalization was concomitant with a tenfold increase in nucleolin-hRPA complex formation. The relocalized nucleolin significantly overlapped with the position of hRPA, but only poorly with sites of ongoing DNA synthesis. We suggest that the induced nucleolin-hRPA interaction signifies a novel mechanism that represses chromosomal replication after cell stress.
Collapse
Affiliation(s)
- Yaron Daniely
- Department of Biochemistry, and Kaplan Comprehensive Cancer Center, New York University School of Medicine, New York, New York 10016
| | - James A. Borowiec
- Department of Biochemistry, and Kaplan Comprehensive Cancer Center, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
94
|
Rodrigo G, Roumagnac S, Wold MS, Salles B, Calsou P. DNA replication but not nucleotide excision repair is required for UVC-induced replication protein A phosphorylation in mammalian cells. Mol Cell Biol 2000; 20:2696-705. [PMID: 10733572 PMCID: PMC85485 DOI: 10.1128/mcb.20.8.2696-2705.2000] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Exposure of mammalian cells to short-wavelength light (UVC) triggers a global response which can either counteract the deleterious effect of DNA damage by enabling DNA repair or lead to apoptosis. Several stress-activated protein kinases participate in this response, making phosphorylation a strong candidate for being involved in regulating the cellular damage response. One factor that is phosphorylated in a UVC-dependent manner is the 32-kDa subunit of the single-stranded DNA-binding replication protein A (RPA32). RPA is required for major cellular processes like DNA replication, and removal of DNA damage by nucleotide excision repair (NER). In this study we examined the signal which triggers RPA32 hyperphosphorylation following UVC irradiation in human cells. Hyperphosphorylation of RPA was observed in cells from patients with either NER or transcription-coupled repair (TCR) deficiency (A, C, and G complementation groups of xeroderma pigmentosum and A and B groups of Cockayne syndrome, respectively). This exclude both NER intermediates and TCR as essential signals for RPA hyperphosphorylation. However, we have observed that UV-sensitive cells deficient in NER and TCR require lower doses of UV irradiation to induce RPA32 hyperphosphorylation than normal cells, indicating that persistent unrepaired lesions contribute to RPA phosphorylation. Finally, the results of UVC irradiation experiments on nonreplicating cells and S-phase-synchronized cells emphasize a major role for DNA replication arrest in the presence of UVC lesions in RPA UVC-induced hyperphosphorylation in mammalian cells.
Collapse
Affiliation(s)
- G Rodrigo
- Institut de Pharmacologie et de Biologie Structurale, CNRS UPR 9062, F-31077 Toulouse Cedex, France
| | | | | | | | | |
Collapse
|
95
|
Dimitrova DS, Gilbert DM. Stability and nuclear distribution of mammalian replication protein A heterotrimeric complex. Exp Cell Res 2000; 254:321-7. [PMID: 10640430 DOI: 10.1006/excr.1999.4770] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Replication protein A (RPA), a stable complex of three polypeptides, is the single-stranded DNA-binding protein essential for DNA replication in eukaryotic cells. Previous studies of the subcellular distribution and stability of the RPA heterotrimer during the mammalian cell cycle have produced conflicting results. Here, we present evidence that these inconsistencies can be accounted for by the presence of an extractable pool of soluble RPA within the nucleus. Indirect immunofluorescence experiments in both CHO and HeLa cells showed that all three RPA subunits associated specifically with sites of ongoing DNA synthesis, similar to the replication fork protein proliferating cell nuclear antigen. Furthermore, we found no evidence for disassembly of the chromatin-bound heterotrimeric RPA complex in vivo. Our results are consistent with a role for RPA in the initiation and elongation steps of replication, as previously defined in the viral in vitro replication systems.
Collapse
Affiliation(s)
- D S Dimitrova
- Department of Biochemistry and Molecular Biology, State University of New York Health Sciences Center, 750 East Adams Street, Syracuse, New York 13210, USA.
| | | |
Collapse
|
96
|
Smith J, Zou H, Rothstein R. Characterization of genetic interactions with RFA1: the role of RPA in DNA replication and telomere maintenance. Biochimie 2000; 82:71-8. [PMID: 10717390 DOI: 10.1016/s0300-9084(00)00183-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Replication protein A (RPA) is a heterotrimeric single-stranded DNA binding protein whose role in DNA replication, recombination and repair has been mainly elucidated through in vitro biochemical studies utilizing the mammalian complex. However, the identification of homologs of all three subunits in Saccharomyces cerevisiae offers the opportunity of examining the in vivo role of RPA. In our laboratory, we have previously isolated a missense allele of the RFA1 gene, encoding the p70 subunit of the RPA complex. Strains containing this mutant allele, rfa1-D228Y, display increased levels of direct-repeat recombination, decreased levels of heteroallelic recombination, UV sensitivity and a S-phase delay. In this study, we have characterized further the role of RPA by screening other replication and repair mutants for a synthetic lethal phenotype in combination with the rfa1-D228Y allele. Among the replication mutants examined, only one displayed a synthetic lethal phenotype, pol12-100, a conditional allele of the B subunit of pol alpha-primase. In addition, a delayed senescence phenotype was observed in raf1-D228Y strains containing a null mutation of HDF1, the S. cerevisiae homolog of the 70 kDa subunit of Ku. Interestingly, a synergistic reduction in telomere length observed in the double mutants suggests that the shortening of telomeres may be the cause of the decreased viability in these strains. Furthermore, this result represents the first evidence of a role for RPA in telomere maintenance.
Collapse
Affiliation(s)
- J Smith
- Department of Genetics & Development, Columbia University College of Physicians & Surgeons, New York, NY 10032-2704, USA
| | | | | |
Collapse
|
97
|
Park JS, Park SJ, Peng X, Wang M, Yu MA, Lee SH. Involvement of DNA-dependent protein kinase in UV-induced replication arrest. J Biol Chem 1999; 274:32520-7. [PMID: 10542299 DOI: 10.1074/jbc.274.45.32520] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cells exposed to UV irradiation are predominantly arrested at S-phase as well as at the G(1)/S boundary while repair occurs. It is not known how UV irradiation induces S-phase arrest and yet permits DNA repair; however, UV-induced inhibition of replication is efficiently reversed by the addition of replication protein A (RPA), suggesting a role for RPA in this regulatory event. Here, we show evidence that DNA-dependent protein kinase (DNA-PK), plays a role in UV-induced replication arrest. DNA synthesis of M059K (DNA-PK catalytic subunit-positive (DNA-PKcs(+))), as measured by [(3)H]thymidine incorporation, was significantly arrested by 4 h following UV irradiation, whereas M059J (DNA-PKcs(-)) cells were much less affected. Similar results were obtained with the in vitro replication reactions where immediate replication arrest occurred in DNA-PKcs(+) cells following UV irradiation, and only a gradual decrease in replication activity was observed in DNA-PKcs(-) cells. Reversal of replication arrest was observed at 8 h following UV irradiation in DNA-PKcs(+) cells but not in DNA-PKcs(-) cells. Reversal of UV-induced replication arrest was also observed in vitro by the addition of a DNA-PK inhibitor, wortmannin, or by immunodepletion of DNA-PKcs, supporting a positive role for DNA-PK in damage-induced replication arrest. The RPA-containing fraction from UV-irradiated DNA-PKcs(+) cells poorly supported DNA replication, whereas the replication activity of the RPA-containing fraction from DNA-PKcs(-) cells was not affected by UV, suggesting that DNA-PKcs may be involved in UV-induced replication arrest through modulation of RPA activity. Together, our results strongly suggest a role for DNA-PK in S-phase (replication) arrest in response to UV irradiation.
Collapse
Affiliation(s)
- J S Park
- Department of Biochemistry and Molecular Biology, the Indiana University Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | |
Collapse
|
98
|
Basilion JP, Schievella AR, Burns E, Rioux P, Olson JC, Monia BP, Lemonidis KM, Stanton VP, Housman DE. Selective killing of cancer cells based on loss of heterozygosity and normal variation in the human genome: a new paradigm for anticancer drug therapy. Mol Pharmacol 1999; 56:359-69. [PMID: 10419555 DOI: 10.1124/mol.56.2.359] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Most drugs for cancer therapy are targeted to relative differences in the biological characteristics of cancer cells and normal cells. The therapeutic index of such drugs is theoretically limited by the magnitude of such differences, and most anticancer drugs have considerable toxicity to normal cells. Here we describe a new approach for developing anticancer drugs. This approach, termed variagenic targeting, exploits the absolute difference in the genotype of normal cells and cancer cells arising from normal gene sequence variation in essential genes and loss of heterozygosity (LOH) occurring during oncogenesis. The technology involves identifying genes that are: 1) essential for cell survival; 2) are expressed as multiple alleles in the normal population because of the presence of one or more nucleotide polymorphisms; and 3) are frequently subject to LOH in several common cancers. An allele-specific drug inhibiting the essential gene remaining in cancer cells would be lethal to the malignant cell and would have minimal toxicity to the normal heterozygous cell that retains the drug-insensitive allele. With antisense oligonucleotides designed to target two alternative alleles of replication protein A, 70-kDa subunit (RPA70) we demonstrate in vitro selective killing of cancer cells that contain only the sensitive allele of the target gene without killing cells expressing the alternative RPA70 allele. Additionally, we identify several other candidate genes for variagenic targeting. This technology represents a new approach for the discovery of agents with high therapeutics indices for treating cancer and other proliferative disorders.
Collapse
|
99
|
Jacobs DM, Lipton AS, Isern NG, Daughdrill GW, Lowry DF, Gomes X, Wold MS. Human replication protein A: global fold of the N-terminal RPA-70 domain reveals a basic cleft and flexible C-terminal linker. JOURNAL OF BIOMOLECULAR NMR 1999; 14:321-31. [PMID: 10526407 DOI: 10.1023/a:1008373009786] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Human Replication Protein A (hsRPA) is required for multiple cellular processes in DNA metabolism including DNA repair, replication and recombination. It binds single-stranded DNA with high affinity and interacts specifically with multiple proteins. hsRPA forms a heterotrimeric complex composed of 70-, 32- and 14-kDa subunits (henceforth RPA70, RPA32, and RPA14). The N-terminal 168 residues of RPA70 form a structurally distinct domain that stimulates DNA polymerase alpha activity, interacts with several transcriptional activators including tumor suppressor p53, and during the cell cycle it signals escape from the DNA damage induced G2/M checkpoint. We have solved the global fold of the fragment corresponding to this domain (RPA70 delta 169) and we find residues 8-108 of the N-terminal domain are structured. The remaining C-terminal residues are unstructured and may form a flexible linker to the DNA-binding domain of RPA70. The globular region forms a five-stranded anti-parallel beta-barrel. The ends of the barrel are capped by short helices. Two loops on one side of the barrel form a large basic cleft which is a likely site for binding the acidic motifs of transcriptional activators. Many lethal or conditional lethal yeast point mutants map to this cleft, whereas no mutations with severe phenotype have been found in the linker region.
Collapse
Affiliation(s)
- D M Jacobs
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | | | | | |
Collapse
|
100
|
Wang Y, Zhou XY, Wang H, Huq MS, Iliakis G. Roles of replication protein A and DNA-dependent protein kinase in the regulation of DNA replication following DNA damage. J Biol Chem 1999; 274:22060-4. [PMID: 10419533 DOI: 10.1074/jbc.274.31.22060] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exposure of mammalian cells to DNA damage-inducing agents (DDIA) inhibits ongoing DNA replication. The molecular mechanism of this inhibition remains to be elucidated. We employed a simian virus 40 (SV40) based in vitro DNA replication assay to study biochemical aspects of this inhibition. We report here that the reduced DNA replication activity in extracts of DDIA-treated cells is partly caused by a reduction in the amount of replication protein A (RPA). We also report that the dominant inhibitory effect is caused by the DNA-dependent protein kinase (DNA-PK) which inactivates SV40 T antigen (TAg) by phosphorylation. The results demonstrate that RPA and DNA-PK are involved in the regulation of viral DNA replication after DNA damage and suggest that analogous processes regulate cellular DNA replication with the DNA-PK targeting the functional homologues of TAg.
Collapse
Affiliation(s)
- Y Wang
- Department of Radiation Oncology, Kimmel Cancer Center of Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | |
Collapse
|