51
|
Matelski L, Keil Stietz KP, Sethi S, Taylor SL, Van de Water J, Lein PJ. The influence of sex, genotype, and dose on serum and hippocampal cytokine levels in juvenile mice developmentally exposed to a human-relevant mixture of polychlorinated biphenyls. Curr Res Toxicol 2020; 1:85-103. [PMID: 34296199 PMCID: PMC8294704 DOI: 10.1016/j.crtox.2020.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) are pervasive environmental contaminants implicated as risk factors for neurodevelopmental disorders (NDDs). Immune dysregulation is another NDD risk factor, and developmental PCB exposures are associated with early life immune dysregulation. Studies of the immunomodulatory effects of PCBs have focused on the higher-chlorinated congeners found in legacy commercial mixtures. Comparatively little is known about the immune effects of contemporary, lower-chlorinated PCBs. This is a critical data gap given recent reports that lower-chlorinated congeners comprise >70% of the total PCB burden in serum of pregnant women enrolled in the MARBLES study who are at increased risk for having a child with an NDD. To examine the influence of PCBs, sex, and genotype on cytokine levels, mice were exposed throughout gestation and lactation to a PCB mixture in the maternal diet, which was based on the 12 most abundant PCBs in sera from MARBLES subjects. Using multiplex array, cytokines were quantified in the serum and hippocampus of weanling mice expressing either a human gain-of-function mutation in ryanodine receptor 1 (T4826I mice), a human CGG premutation repeat expansion in the fragile X mental retardation gene 1 (CGG mice), or both mutations (DM mice). Congenic wildtype (WT) mice were used as controls. There were dose-dependent effects of PCB exposure on cytokine concentrations in the serum but not hippocampus. Differential effects of genotype were observed in the serum and hippocampus. Hippocampal cytokines were consistently elevated in T4826I mice and also in WT animals for some cytokines compared to CGG and DM mice, while serum cytokines were usually elevated in the mutant genotypes compared to the WT group. Males had elevated levels of 19 cytokines in the serum and 4 in the hippocampus compared to females, but there were also interactions between sex and genotype for 7 hippocampal cytokines. Only the chemokine CCL5 in the serum showed an interaction between PCB dose, genotype, and sex. Collectively, these findings indicate differential influences of PCB exposure and genotype on cytokine levels in serum and hippocampal tissue of weanling mice. These results suggest that developmental PCB exposure has chronic effects on baseline serum, but not hippocampal, cytokine levels in juvenile mice.
Collapse
Affiliation(s)
- Lauren Matelski
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Kimberly P. Keil Stietz
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Sunjay Sethi
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Sandra L. Taylor
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Judy Van de Water
- MIND Institute, University of California, Davis, School of Medicine, Sacramento, CA 95817, USA,Division of Rheumatology, Allergy, and Clinical Immunology, Department of Internal Medicine, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA,MIND Institute, University of California, Davis, School of Medicine, Sacramento, CA 95817, USA,Corresponding author at: Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA.
| |
Collapse
|
52
|
Porzionato A, Emmi A, Stocco E, Barbon S, Boscolo-Berto R, Macchi V, De Caro R. The potential role of the carotid body in COVID-19. Am J Physiol Lung Cell Mol Physiol 2020; 319:L620-L626. [PMID: 32755325 PMCID: PMC7516384 DOI: 10.1152/ajplung.00309.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The carotid body (CB) plays a contributory role in the pathogenesis of various respiratory, cardiovascular, renal, and metabolic diseases through reflex changes in ventilation and sympathetic output. On the basis of available data about peripheral arterial chemoreception and severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), a potential involvement in the coronavirus disease 2019 (COVID-19) may be hypothesized through different mechanisms. The CB could be a site of SARS-CoV-2 invasion, due to local expression of its receptor [angiotensin-converting enzyme (ACE) 2] and an alternative route of nervous system invasion, through retrograde transport along the carotid sinus nerve. The CB function could be affected by COVID-19-induced inflammatory/immune reactions and/or ACE1/ACE2 imbalance, both at local or systemic level. Increased peripheral arterial chemosensitivity and reflex sympatho-activation may contribute to the increased morbidity and mortality in COVID-19 patients with respiratory, cardiovascular, renal, or metabolic comorbidities.
Collapse
Affiliation(s)
- Andrea Porzionato
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Aron Emmi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Elena Stocco
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Silvia Barbon
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Rafael Boscolo-Berto
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Veronica Macchi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| |
Collapse
|
53
|
Porzionato A, Emmi A, Barbon S, Boscolo-Berto R, Stecco C, Stocco E, Macchi V, De Caro R. Sympathetic activation: a potential link between comorbidities and COVID-19. FEBS J 2020; 287:3681-3688. [PMID: 32779891 PMCID: PMC7405290 DOI: 10.1111/febs.15481] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022]
Abstract
In coronavirus disease 2019 (COVID-19), higher morbidity and mortality are associated with age, male gender, and comorbidities, such as chronic lung diseases, cardiovascular pathologies, hypertension, kidney diseases, diabetes mellitus, and obesity. All of the above conditions are characterized by increased sympathetic discharge, which may exert significant detrimental effects on COVID-19 patients, through actions on the lungs, heart, blood vessels, kidneys, metabolism, and/or immune system. Furthermore, COVID-19 may also increase sympathetic discharge, through changes in blood gases (chronic intermittent hypoxia, hyperpnea), angiotensin-converting enzyme (ACE)1/ACE2 imbalance, immune/inflammatory factors, or emotional distress. Nevertheless, the potential role of the sympathetic nervous system has not yet been considered in the pathophysiology of COVID-19. In our opinion, sympathetic overactivation could represent a so-far undervalued mechanism for a vicious circle between COVID-19 and comorbidities.
Collapse
Affiliation(s)
- Andrea Porzionato
- Section of Anatomy, Department of Neuroscience, University of Padova, Italy
| | - Aron Emmi
- Section of Anatomy, Department of Neuroscience, University of Padova, Italy
| | - Silvia Barbon
- Section of Anatomy, Department of Neuroscience, University of Padova, Italy
| | | | - Carla Stecco
- Section of Anatomy, Department of Neuroscience, University of Padova, Italy
| | - Elena Stocco
- Section of Anatomy, Department of Neuroscience, University of Padova, Italy
| | - Veronica Macchi
- Section of Anatomy, Department of Neuroscience, University of Padova, Italy
| | - Raffaele De Caro
- Section of Anatomy, Department of Neuroscience, University of Padova, Italy
| |
Collapse
|
54
|
Vitiello A, Ferrara F. Correlation between renin-angiotensin system and Severe Acute Respiratory Syndrome Coronavirus 2 infection: What do we know? Eur J Pharmacol 2020; 883:173373. [PMID: 32679185 PMCID: PMC7361104 DOI: 10.1016/j.ejphar.2020.173373] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 01/06/2023]
Abstract
The first cases of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2 or COVID-19) infections were recorded in China in November 2019. Since its appearance in China at the end of last year, the virus has spread to all continents causing a “global pandemic”. To date, some aspects remain to be investigate about the pathophysiology of this viral infection. One of the aspects to be still clarified is the correlation between the renin-angiotensin system (RAS) and SARS-CoV-2 infection. RAS is a physiological system playing a key role in different human body functions regulation. SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE-2), a component of RAS, as a potential factor of cell penetration and infectivity; in addition, in the different infection stages, a functional variation of the RAS has been noted. In this article, we discuss the correlation between the role of RAS and system-modifying agents, angiotensin-converting enzyme inhibitors (ACEIs), angiotensin II receptor blockers (ARBs) and direct renin inhibitors (DRIs), with SARS-CoV-2 infection.
Collapse
|
55
|
Tang J, Tang Y, Yi I, Chen DF. The role of commensal microflora-induced T cell responses in glaucoma neurodegeneration. PROGRESS IN BRAIN RESEARCH 2020; 256:79-97. [PMID: 32958216 DOI: 10.1016/bs.pbr.2020.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the last decade, new evidence has become increasingly more compelling that commensal microflora profoundly influences the maturation and function of resident immune cells in host physiology. The concept of gut-retina axis is actively being explored. Studies have revealed a critical role of commensal microbes linked with neuronal stress, immune responses, and neurodegeneration in the retina. Microbial dysbiosis changes the blood-retina barrier permeability and modulates T cell-mediated autoimmunity to contribute to the pathogenesis of retinal diseases, such as glaucoma. Heat shock proteins (HSPs), which are evolutionarily conserved, are thought to function both as neuroprotectant and pathogenic antigens of T cells contributing to cell protection and tissue damage, respectively. Activated microglia recruit and interact with T cells during this process. Glaucoma, characterized by the progressive loss of retinal ganglion cells, is the leading cause of irreversible blindness. With nearly 70 million people suffering glaucoma worldwide, which doubles the number of patients with Alzheimer's disease, it represents the most frequent neurodegenerative disease of the central nervous system (CNS). Thus, understanding the mechanism of neurodegeneration in glaucoma and its association with the function of commensal microflora may help unveil the secrets of many neurodegenerative disorders in the CNS and develop novel therapeutic interventions.
Collapse
Affiliation(s)
- Jing Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Sichuan, China; Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Yizhen Tang
- Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Irvin Yi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Dong Feng Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
56
|
Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med 2020; 76:14-20. [PMID: 32336612 PMCID: PMC7167588 DOI: 10.1016/j.ejim.2020.04.037] [Citation(s) in RCA: 871] [Impact Index Per Article: 174.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
Angiotensin converting enzyme-2 (ACE2) receptors mediate the entry into the cell of three strains of coronavirus: SARS-CoV, NL63 and SARS-CoV-2. ACE2 receptors are ubiquitous and widely expressed in the heart, vessels, gut, lung (particularly in type 2 pneumocytes and macrophages), kidney, testis and brain. ACE2 is mostly bound to cell membranes and only scarcely present in the circulation in a soluble form. An important salutary function of membrane-bound and soluble ACE2 is the degradation of angiotensin II to angiotensin1-7. Consequently, ACE2 receptors limit several detrimental effects resulting from binding of angiotensin II to AT1 receptors, which include vasoconstriction, enhanced inflammation and thrombosis. The increased generation of angiotensin1-7 also triggers counter-regulatory protective effects through binding to G-protein coupled Mas receptors. Unfortunately, the entry of SARS-CoV2 into the cells through membrane fusion markedly down-regulates ACE2 receptors, with loss of the catalytic effect of these receptors at the external site of the membrane. Increased pulmonary inflammation and coagulation have been reported as unwanted effects of enhanced and unopposed angiotensin II effects via the ACE→Angiotensin II→AT1 receptor axis. Clinical reports of patients infected with SARS-CoV-2 show that several features associated with infection and severity of the disease (i.e., older age, hypertension, diabetes, cardiovascular disease) share a variable degree of ACE2 deficiency. We suggest that ACE2 down-regulation induced by viral invasion may be especially detrimental in people with baseline ACE2 deficiency associated with the above conditions. The additional ACE2 deficiency after viral invasion might amplify the dysregulation between the 'adverse' ACE→Angiotensin II→AT1 receptor axis and the 'protective' ACE2→Angiotensin1-7→Mas receptor axis. In the lungs, such dysregulation would favor the progression of inflammatory and thrombotic processes triggered by local angiotensin II hyperactivity unopposed by angiotensin1-7. In this setting, recombinant ACE2, angiotensin1-7 and angiotensin II type 1 receptor blockers could be promising therapeutic approaches in patients with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Paolo Verdecchia
- Fondazione Umbra Cuore e Ipertensione-ONLUS and Struttura Complessa di Cardiologia, Ospedale S. Maria della Misericordia, Perugia..
| | - Claudio Cavallini
- Fondazione Umbra Cuore e Ipertensione-ONLUS and Struttura Complessa di Cardiologia, Ospedale S. Maria della Misericordia, Perugia
| | - Antonio Spanevello
- Dipartimento di Medicina e Chirurgia, Università degli Studi dell'Insubria, Varese; Dipartimento di Medicina e Riabilitazione Cardio-Respiratoria, Istituti Clinici Scientici Maugeri, IRCCS Tradate (VA)
| | - Fabio Angeli
- Dipartimento di Medicina e Chirurgia, Università degli Studi dell'Insubria, Varese; Dipartimento di Medicina e Riabilitazione Cardio-Respiratoria, Istituti Clinici Scientici Maugeri, IRCCS Tradate (VA)
| |
Collapse
|
57
|
Yuan Y, Wu C, Ling EA. Heterogeneity of Microglia Phenotypes: Developmental, Functional and Some Therapeutic Considerations. Curr Pharm Des 2020; 25:2375-2393. [PMID: 31584369 DOI: 10.2174/1381612825666190722114248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Microglia play a pivotal role in maintaining homeostasis in complex brain environment. They first exist as amoeboid microglial cells (AMCs) in the developing brain, but with brain maturation, they transform into ramified microglial cells (RMCs). In pathological conditions, microglia are activated and have been classified into M1 and M2 phenotypes. The roles of AMCs, RMCs and M1/M2 microglia phenotypes especially in pathological conditions have been the focus of many recent studies. METHODS Here, we review the early development of the AMCs and RMCs and discuss their specific functions with reference to their anatomic locations, immunochemical coding etc. M1 and M2 microglia phenotypes in different neuropathological conditions are also reviewed. RESULTS Activated microglia are engaged in phagocytosis, production of proinflammatory mediators, trophic factors and synaptogenesis etc. Prolonged microglia activation, however, can cause damage to neurons and oligodendrocytes. The M1 and M2 phenotypes featured prominently in pathological conditions are discussed in depth. Experimental evidence suggests that microglia phenotype is being modulated by multiple factors including external and internal stimuli, local demands, epigenetic regulation, and herbal compounds. CONCLUSION Prevailing views converge that M2 polarization is neuroprotective. Thus, proper therapeutic designs including the use of anti-inflammatory drugs, herbal agents may be beneficial in suppression of microglial activation, especially M1 phenotype, for amelioration of neuroinflammation in different neuropathological conditions. Finally, recent development of radioligands targeting 18 kDa translocator protein (TSPO) in activated microglia may hold great promises clinically for early detection of brain lesion with the positron emission tomography.
Collapse
Affiliation(s)
- Yun Yuan
- Department of Anatomy and Histology/Embryology, Kunming Medical University, 1168 West Chunrong Road, Kunming, China
| | - Chunyun Wu
- Department of Anatomy and Histology/Embryology, Kunming Medical University, 1168 West Chunrong Road, Kunming, China
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, 4 Medical Drive, MD10, National University of Singapore, 117594, Singapore
| |
Collapse
|
58
|
Antonini R, Scaini G, Michels M, Matias MBD, Schuck PF, Ferreira GC, de Oliveira J, Dal-Pizzol F, Streck EL. Effects of omega-3 fatty acids supplementation on inflammatory parameters after chronic administration of L-tyrosine. Metab Brain Dis 2020; 35:295-303. [PMID: 31828693 DOI: 10.1007/s11011-019-00525-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/01/2019] [Indexed: 12/18/2022]
Abstract
Tyrosinemia type II is an autosomal recessive inborn error of metabolism caused by hepatic cytosolic tyrosine aminotransferase deficiency. Importantly, this disease is associated with neurological and developmental abnormalities in many patients. Considering that the mechanisms underlying neurological dysfunction in hypertyrosinemic patients are poorly understood, in the present work we investigated the levels of cytokines - tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6 and IL-10 - in cerebellum, hippocampus, striatum of young rats exposed to chronic administration of L-tyrosine. In addition, we also investigated the impact of the supplementation with Omega-3 fatty acids (n-3 PUFA) on the rodent model of Tyrosinemia. Notably, previous study demonstrated an association between L-tyrosine toxicity and n-3 PUFA deficiency. Our results showed a significant increase in the levels of pro- and anti-inflammatory cytokines in brain structures when animals were administered with L-tyrosine. Cerebral cortex and striatum seem to be more susceptible to the inflammation induced by tyrosine toxicity. Importantly, n-3 PUFA supplementation attenuated the alterations on cytokines levels induced by tyrosine exposure in brain regions of infant rats. In conclusion, the brain inflammation is also an important process related to tyrosine neurotoxicity observed in the experimental model of Tyrosinemia. Finally, n-3 PUFA supplementation could be considered as a potential neuroprotective adjunctive therapy for Tyrosinemias, especially type II.
Collapse
Affiliation(s)
- Rafaela Antonini
- Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Porto Alegre, RS, Brazil
- Center of Excellence in Applied Neuroscience of Santa Catarina (NENASC), Criciúma, Brazil
| | - Giselli Scaini
- Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Porto Alegre, RS, Brazil
- Center of Excellence in Applied Neuroscience of Santa Catarina (NENASC), Criciúma, Brazil
| | - Monique Michels
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Porto Alegre, RS, Brazil
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Mariane B D Matias
- Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
| | - Patrícia F Schuck
- Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
| | - Gustavo C Ferreira
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jade de Oliveira
- Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Felipe Dal-Pizzol
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Porto Alegre, RS, Brazil
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Emilio L Streck
- Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil.
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Porto Alegre, RS, Brazil.
- Center of Excellence in Applied Neuroscience of Santa Catarina (NENASC), Criciúma, Brazil.
| |
Collapse
|
59
|
Grattan DR, Ladyman SR. Neurophysiological and cognitive changes in pregnancy. HANDBOOK OF CLINICAL NEUROLOGY 2020; 171:25-55. [PMID: 32736755 DOI: 10.1016/b978-0-444-64239-4.00002-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The hormonal fluctuations in pregnancy drive a wide range of adaptive changes in the maternal brain. These range from specific neurophysiological changes in the patterns of activity of individual neuronal populations, through to complete modification of circuit characteristics leading to fundamental changes in behavior. From a neurologic perspective, the key hormone changes are those of the sex steroids, estradiol and progesterone, secreted first from the ovary and then from the placenta, the adrenal glucocorticoid cortisol, as well as the anterior pituitary peptide hormone prolactin and its pregnancy-specific homolog placental lactogen. All of these hormones are markedly elevated during pregnancy and cross the blood-brain barrier to exert actions on neuronal populations through receptors expressed in specific regions. Many of the hormone-induced changes are in autonomic or homeostatic systems. For example, patterns of oxytocin and prolactin secretion are dramatically altered to support novel physiological functions. Appetite is increased and feedback responses to metabolic hormones such as leptin and insulin are suppressed to promote a positive energy balance. Fundamental physiological systems such as glucose homeostasis and thermoregulation are modified to optimize conditions for fetal development. In addition to these largely autonomic changes, there are also changes in mood, behavior, and higher processes such as cognition. This chapter summarizes the hormonal changes associated with pregnancy and reviews how these changes impact on brain function, drawing on examples from animal research, as well as available information about human pregnancy.
Collapse
Affiliation(s)
- David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| | - Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
60
|
Angeli F, Reboldi G, Verdecchia P. Hypertensive urgencies and emergencies: Misconceptions and pitfalls. Eur J Intern Med 2020; 71:15-17. [PMID: 31706707 DOI: 10.1016/j.ejim.2019.10.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Fabio Angeli
- Department of Medicine and Surgery, University of Insubria, Varese and Maugeri Care and Research Institute, IRCCS Tradate, Tradate Italy.
| | | | - Paolo Verdecchia
- Fondazione Umbra Cuore e Ipertensione-ONLUS and Division of Cardiology, Hospital S. Maria della Misericordia, Perugia Italy
| |
Collapse
|
61
|
Wallet C, De Rovere M, Van Assche J, Daouad F, De Wit S, Gautier V, Mallon PWG, Marcello A, Van Lint C, Rohr O, Schwartz C. Microglial Cells: The Main HIV-1 Reservoir in the Brain. Front Cell Infect Microbiol 2019; 9:362. [PMID: 31709195 PMCID: PMC6821723 DOI: 10.3389/fcimb.2019.00362] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Despite efficient combination of the antiretroviral therapy (cART), which significantly decreased mortality and morbidity of HIV-1 infection, a definitive HIV cure has not been achieved. Hidden HIV-1 in cellular and anatomic reservoirs is the major hurdle toward a functional cure. Microglial cells, the Central Nervous system (CNS) resident macrophages, are one of the major cellular reservoirs of latent HIV-1. These cells are believed to be involved in the emergence of drugs resistance and reseeding peripheral tissues. Moreover, these long-life reservoirs are also involved in the development of HIV-1-associated neurocognitive diseases (HAND). Clearing these infected cells from the brain is therefore crucial to achieve a cure. However, many characteristics of microglial cells and the CNS hinder the eradication of these brain reservoirs. Better understandings of the specific molecular mechanisms of HIV-1 latency in microglial cells should help to design new molecules and new strategies preventing HAND and achieving HIV cure. Moreover, new strategies are needed to circumvent the limitations associated to anatomical sanctuaries with barriers such as the blood brain barrier (BBB) that reduce the access of drugs.
Collapse
Affiliation(s)
- Clementine Wallet
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Marco De Rovere
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Jeanne Van Assche
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Fadoua Daouad
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Stéphane De Wit
- Division of Infectious Diseases, Saint-Pierre University Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Virginie Gautier
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick W G Mallon
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Olivier Rohr
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Christian Schwartz
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| |
Collapse
|
62
|
Gogoleva VS, Drutskaya MS, Atretkhany KSN. The Role of Microglia in the Homeostasis of the Central Nervous System and Neuroinflammation. Mol Biol 2019. [DOI: 10.1134/s0026893319050054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
63
|
Laffer B, Bauer D, Wasmuth S, Busch M, Jalilvand TV, Thanos S, Meyer Zu Hörste G, Loser K, Langmann T, Heiligenhaus A, Kasper M. Loss of IL-10 Promotes Differentiation of Microglia to a M1 Phenotype. Front Cell Neurosci 2019; 13:430. [PMID: 31649508 PMCID: PMC6794388 DOI: 10.3389/fncel.2019.00430] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
Microglia represent the primary resident immune cells of the central nervous system (CNS) and modulate local immune responses. Depending on their physiological functions, microglia can be classified into pro- (M1) and anti-inflammatory (M2) phenotype. Interleukin (IL)-10 is an important modulator of neuronal homeostasis, with anti-inflammatory and neuroprotective functions, and can be released by microglia. Here, we investigated how IL-10 deficiency affected the M1/2 polarization of primary microglia upon lipopolysaccharide (LPS) stimulation in vitro. Microglia phenotypes were analyzed via flow cytometry. Cytokine and chemokine secretion were examined by ELISA and bead-based multiplex LEGENDplexTM. Our results showed that genetic depletion of IL-10 led to elevated M1 like phenotype (CD86+ CD206−) under pro-inflammatory conditions associated with increased frequency of IL-6+, TNF-α+ cells and enhanced release of several pro-inflammatory chemokines. Absence of IL-10 led to an attenuated M2 like phenotype (CD86− CD206+) and a reduced secretion of TGF-β1 upon LPS stimulation. In conclusion, IL-10 deficiency may promote the polarization of microglia into M1-prone phenotype under pro-inflammatory conditions.
Collapse
Affiliation(s)
- Björn Laffer
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany.,Department of Ophthalmology, University of Duisburg-Essen, Essen, Germany
| | - Dirk Bauer
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany
| | - Susanne Wasmuth
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany
| | - Martin Busch
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany
| | - Tida Viola Jalilvand
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany.,Department of Experimental Ophthalmology, Westphalian Wilhelms University of Münster, Münster, Germany
| | - Solon Thanos
- Department of Experimental Ophthalmology, Westphalian Wilhelms University of Münster, Münster, Germany
| | - Gerd Meyer Zu Hörste
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Karin Loser
- Department of Dermatology - Experimental Dermatology and Immunobiology of the Skin, University of Münster, Münster, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Arnd Heiligenhaus
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany.,University of Duisburg-Essen, Essen, Germany
| | - Maren Kasper
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany
| |
Collapse
|
64
|
Sahley TL, Anderson DJ, Hammonds MD, Chandu K, Musiek FE. Evidence for a dynorphin-mediated inner ear immune/inflammatory response and glutamate-induced neural excitotoxicity: an updated analysis. J Neurophysiol 2019; 122:1421-1460. [DOI: 10.1152/jn.00595.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acoustic overstimulation (AOS) is defined as the stressful overexposure to high-intensity sounds. AOS is a precipitating factor that leads to a glutamate (GLU)-induced Type I auditory neural excitotoxicity and an activation of an immune/inflammatory/oxidative stress response within the inner ear, often resulting in cochlear hearing loss. The dendrites of the Type I auditory neural neurons that innervate the inner hair cells (IHCs), and respond to the IHC release of the excitatory neurotransmitter GLU, are themselves directly innervated by the dynorphin (DYN)-bearing axon terminals of the descending brain stem lateral olivocochlear (LOC) system. DYNs are known to increase GLU availability, potentiate GLU excitotoxicity, and induce superoxide production. DYNs also increase the production of proinflammatory cytokines by modulating immune/inflammatory signal transduction pathways. Evidence is provided supporting the possibility that the GLU-mediated Type I auditory neural dendritic swelling, inflammation, excitotoxicity, and cochlear hearing loss that follow AOS may be part of a brain stem-activated, DYN-mediated cascade of inflammatory events subsequent to a LOC release of DYNs into the cochlea. In support of a DYN-mediated cascade of events are established investigations linking DYNs to the immune/inflammatory/excitotoxic response in other neural systems.
Collapse
Affiliation(s)
- Tony L. Sahley
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio
- School of Health Sciences, Cleveland State University, Cleveland, Ohio
| | - David J. Anderson
- Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | | | - Karthik Chandu
- Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | - Frank E. Musiek
- Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson, Arizona
| |
Collapse
|
65
|
Altered microglia and neurovasculature in the Alzheimer's disease cerebellum. Neurobiol Dis 2019; 132:104589. [PMID: 31454549 DOI: 10.1016/j.nbd.2019.104589] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/30/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Traditionally regarded to coordinate movement, the cerebellum also exerts non-motor functions including the regulation of cognitive and behavioral processing, suggesting a potential role in neurodegenerative conditions affecting cognition, such as Alzheimer's disease (AD). This study aims to investigate neuropathology and AD-related molecular changes within the neocerebellum using post-mortem human brain tissue microarrays (TMAs). Immunohistochemistry was conducted on neocerebellar paraffin-embedded TMAs from 24 AD and 24 matched control cases, and free-floating neocerebellar sections from 6 AD and 6 controls. Immunoreactivity was compared between control and AD groups for neuropathological hallmarks (amyloid-β, tau, ubiquitin), Purkinje cells (calbindin), microglia (IBA1, HLA-DR), astrocytes (GFAP) basement-membrane associated molecules (fibronectin, collagen IV), endothelial cells (CD31/PECAM-1) and mural cells (PDGFRβ, αSMA). Amyloid-β expression (total immunolabel intensity) and load (area of immunolabel) was increased by >4-fold within the AD cerebellum. Purkinje cell counts, ubiquitin and tau immunoreactivity were unchanged in AD. IBA1 expression and load was increased by 91% and 69%, respectively, in AD, with no change in IBA1-positive cell number. IBA1-positive cell process length and branching was reduced by 22% and 41%, respectively, in AD. HLA-DR and GFAP immunoreactivity was unchanged in AD. HLA-DR-positive cell process length and branching was reduced by 33% and 49%, respectively, in AD. Fibronectin expression was increased by 27% in AD. Collagen IV, PDGFRβ and αSMA immunoreactivity was unchanged in AD. The number of CD31-positive vessels was increased by 98% in AD, suggesting the increase in CD31 expression and load in AD is due to greater vessel number. The PDGFRβ/CD31 load ratio was reduced by 59% in AD. These findings provide evidence of molecular changes affecting microglia and the neurovasculature within the AD neocerebellum. These changes, occurring without overt neuropathology, support the hypothesis of microglial and neurovascular dysfunction as drivers of AD, which has implications on the neocerebellar contribution to AD symptomatology and pathophysiology.
Collapse
|
66
|
Wessler LB, de Miranda Ramos V, Bittencourt Pasquali MA, Fonseca Moreira JC, de Oliveira J, Scaini G, Streck EL. Administration of branched-chain amino acids increases the susceptibility to lipopolysaccharide-induced inflammation in young Wistar rats. Int J Dev Neurosci 2019; 78:210-214. [PMID: 31330240 DOI: 10.1016/j.ijdevneu.2019.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/23/2022] Open
Abstract
Maple Syrup Urine Disease (MSUD) is an inborn error of the metabolism caused by defects in the branched a-ketoacid dehydrogenase complex (BCKDC), leading to the accumulation of branched chain amino acids (BCAAs) (leucine, isoleucine and valine). Patients with MSUD present a series of neurological dysfunction. Recent studies have been associated the brain damage in the MSUD with inflammation and immune system activation. MSUD patients die within a few months of life due to recurrent metabolic crises and neurologic deterioration, often precipitated by infection or other stresses. In this regard, our previous results showed that the inflammatory process, induced by lipopolysaccharide (LPS), associated with high levels of BCAAs causes blood-brain barrier (BBB) breakdown due to hyperactivation of MMPs. Thus, we hypothesize that the synergistic action between high concentrations of BCAAs (H-BCAAs) and LPS on BBB permeability and hyperactivation of MMPs could be through an increase in the production of cytokines and RAGE protein levels. We observed that high levels of BCAA in infant rats are related to increased brain inflammation induced by LPS administration. In addition, BCAA exposure led to an increase on brain RAGE expression of young rats. The brain inflammation was characterized by enhanced levels of interleukin 1 β (IL-1β), interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α) and Interferon- γ (IFN-γ), and decreased content of interleukin-10 (IL-10). Therefore, MSUD is associated with a more intense neuroinflammation induced by LPS infection.
Collapse
Affiliation(s)
- Leticia B Wessler
- Laboratório de Neurologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Vitor de Miranda Ramos
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - José Cláudio Fonseca Moreira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jade de Oliveira
- Laboratório de Neurologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Giselli Scaini
- Laboratório de Neurologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Emilio L Streck
- Laboratório de Neurologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| |
Collapse
|
67
|
Lin YY, Lee KY, Ro LS, Lo YS, Huang CC, Chang KH. Clinical and cytokine profile of adult acute necrotizing encephalopathy. Biomed J 2019; 42:178-186. [PMID: 31466711 PMCID: PMC6717751 DOI: 10.1016/j.bj.2019.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/26/2018] [Accepted: 01/22/2019] [Indexed: 01/09/2023] Open
Abstract
Background Acute necrotizing encephalopathy (ANE), a fulminant encephalopathy, is often found in childhood. It is still uncertain whether adult patients with ANE display clinical features different from patients with typical pediatric onset. Furthermore, alterations in neuroinflammatory factors in patients with ANE have not been well-characterized. Here, we present an adult patient with ANE, and review all reported adult ANE cases in the literature. Methods Serum levels of five cytokines were checked in an adult patient with ANE and compared with gender/age-matched controls. Literature search was performed with PubMed, using the term as “acute necrotizing encephalopathy” with the filter of adult 19 + years. Results A total of 13 adult patients were reviewed. Compared with pediatric patients, adult ANE patients had similar clinical symptoms, biochemical data, and neuroimage findings, whereas adult ANE were more female-biased (female:male, 9:4) with a worse prognosis. Elevated cytokine levels in the serum and/or CSF is found in both adult-onset and pediatric-onset ANE. We found significantly elevated serum levels of IL-6 (17.17 pg/mL; healthy control: 1.43 ± 1.22 pg/mL) and VCAM-1 (3033.92 ng/mL; healthy control: 589.71 ± 133.13 ng/mL), and decreased serum TGF-β1 level (14.78 ng/mL, healthy controls: 25.81 ± 6.97 ng/mL) in our patient. Conclusions Our findings clearly delineate the clinical features and further indicate the potential change in cytokine levels in adult patients with ANE, advancing our understanding of this rare disease.
Collapse
Affiliation(s)
- Yi-Ying Lin
- Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuang-Yung Lee
- Department of Neurology, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Long-Sun Ro
- Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yen-Shi Lo
- Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chin-Chang Huang
- Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
68
|
Liu Q, Chen W, Fan X, Wang J, Fu S, Cui S, Liao F, Cai J, Wang X, Huang Y, Su L, Zhong L, Yi M, Liu F, Wan Y. Upregulation of interleukin-6 on Cav3.2 T-type calcium channels in dorsal root ganglion neurons contributes to neuropathic pain in rats with spinal nerve ligation. Exp Neurol 2019; 317:226-243. [DOI: 10.1016/j.expneurol.2019.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/22/2019] [Accepted: 03/09/2019] [Indexed: 10/27/2022]
|
69
|
Sherer ML, Khanal P, Talham G, Brannick EM, Parcells MS, Schwarz JM. Zika virus infection of pregnant rats and associated neurological consequences in the offspring. PLoS One 2019; 14:e0218539. [PMID: 31220154 PMCID: PMC6586346 DOI: 10.1371/journal.pone.0218539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 06/04/2019] [Indexed: 12/20/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus associated with microcephaly and other neurological disorders in infants born to infected mothers. Despite being declared an international emergency by the World Health Organization, very little is known about the mechanisms of ZIKV pathogenesis or the long-term consequences of maternal ZIKV infection in the affected offspring, largely due to the lack of appropriate rodent models. To address this issue, our lab has developed a working model of prenatal ZIKV infection in rats. In this study, we infected immune competent pregnant female rats with 105-107 PFU of ZIKV (PRVABC59, Puerto Rico/Human/Dec 2015) in order to examine its pathogenesis in the dams and pups. We examined the febrile response and sickness behavior in the dams, in addition to neonatal mortality, microglia morphology, cortical organization, apoptosis, and brain region-specific volumes in the offspring. Here, we demonstrate that pregnant and non-pregnant female rats have a distinct febrile response to ZIKV infection. Moreover, prenatal ZIKV infection increased cell death and reduced tissue volume in the hippocampus and cortex in the neonatal offspring. For the first time, we demonstrate the efficacy and validity of an immunocompetent rat model for maternal ZIKV infection that results in significant brain malformations in the neonatal offspring.
Collapse
Affiliation(s)
- Morgan L. Sherer
- University of Delaware, Department of Psychological and Brain Sciences, Newark, Delaware, United States of America
| | - Pragyan Khanal
- University of Delaware, Department of Psychological and Brain Sciences, Newark, Delaware, United States of America
| | - Gwen Talham
- University of Delaware, Office of Laboratory Animal Medicine, Newark, Delaware, United States of America
| | - Erin M. Brannick
- University of Delaware, Department of Animal and Food Sciences, Newark, Delaware, United States of America
| | - Mark S. Parcells
- University of Delaware, Department of Animal and Food Sciences, Newark, Delaware, United States of America
| | - Jaclyn M. Schwarz
- University of Delaware, Department of Psychological and Brain Sciences, Newark, Delaware, United States of America
| |
Collapse
|
70
|
Evidences Suggesting that Distinct Immunological and Cellular Responses to Light Damage Distinguishes Juvenile and Adult Rat Retinas. Int J Mol Sci 2019; 20:ijms20112744. [PMID: 31167447 PMCID: PMC6600267 DOI: 10.3390/ijms20112744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 11/29/2022] Open
Abstract
To unravel the mechanisms behind the higher resistance to light damage of juvenile (JR) versus adult (AR) rats, Sprague Dawley rats were exposed to a bright luminous environment of 10, 000 lux. The light-induced retinopathy (LIR) was assessed with histology, electroretinography and immunohistochemistry (IHC). In JR, 2 days of exposure induced the typical LIR, while >3 days added little LIR. IHC revealed a subtle migration of microglia (Iba1 marker) from the inner to the outer retina after 3 days of exposure in JR contrasting with the stronger reaction seen after 1 day in AR. Similarly, in JR, the Müller cells expressed less intense GFAP, CNTF and FGF2 staining compared to AR. Our results suggest that in JR the degree of retinal damage is not proportional to the duration of light exposure (i.e., dose-independent retinopathy), contrasting with the dose-dependent LIR reported in AR. The immature immune system in JR may explain the delayed and/or weaker inflammatory response compared to AR, a finding that would also point to the devastating contribution of the immune system in generating the LIR phenotype, a claim also advanced to explain the pathophysiology of other retinal degenerative disorders such as Age-related Macular Degeneration, Diabetic Retinopathy and Retinitis Pigmentosa.
Collapse
|
71
|
Fanelli G, Benedetti F, Wang SM, Lee SJ, Jun TY, Masand PS, Patkar AA, Han C, Serretti A, Pae CU, Fabbri C. Reduced CXCL1/GRO chemokine plasma levels are a possible biomarker of elderly depression. J Affect Disord 2019; 249:410-417. [PMID: 30826620 DOI: 10.1016/j.jad.2019.02.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Depression is the single largest contributor to non-fatal health loss worldwide. A role of inflammation in major depressive disorder (MDD) was suggested, and we sought to determine if cytokine levels predict the severity of depressive symptomatology or distinguish MDD patients from healthy controls (HCs). METHODS The severity of depressive symptoms and cognitive impairment were assessed by the Korean version of the Geriatric Depression Scale (GDS-K) and Mini-Mental State Examination (MMSE-KC) in 152 elderly subjects (76 with MDD). Plasma levels of 28 cytokines were measured and analysed as continuous predictors or dichotomized using the median value. The association between individual cytokines, MDD risk and depressive symptoms severity was investigated using multiple logistic and linear regressions that included the relevant covariates. A Cytokine Weighted Score (CWS) was calculated by weighting cytokines according to previously reported effect sizes on MDD risk. Sensitivity analyses were performed excluding subjects with significant cognitive impairment. RESULTS CXCL10/IP-10 levels were higher in subjects with MDD vs. HCs while the opposite was observed for CXCL1/GRO. Only the second association survived after adjusting for possible confounders and excluding subjects with severe cognitive impairment. Using dichotomized cytokine levels, CXCL1/GRO and TNF-α were negatively associated with MDD. The CWS was also negatively associated with MDD. Cytokine levels did not predict the severity of depressive symptoms. LIMITATIONS Our cross-sectional approach was not able to longitudinally evaluate any temporal fluctuations in the considered cytokine levels. CONCLUSIONS This study found significantly lower CXCL1/GRO chemokine plasma levels in elderly subjects with MDD compared to HCs.
Collapse
Affiliation(s)
- Giuseppe Fanelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Sheng-Min Wang
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Soo-Jung Lee
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tae-Youn Jun
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | - Ashwin A Patkar
- Department of Psychiatry and Behavioural Sciences, Duke University Medical Center, Durham, NC, USA
| | - Changsu Han
- Department of Psychiatry, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Chi-Un Pae
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Psychiatry and Behavioural Sciences, Duke University Medical Center, Durham, NC, USA; Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
72
|
Zhao J, Bi W, Xiao S, Lan X, Cheng X, Zhang J, Lu D, Wei W, Wang Y, Li H, Fu Y, Zhu L. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Sci Rep 2019; 9:5790. [PMID: 30962497 PMCID: PMC6453933 DOI: 10.1038/s41598-019-42286-8] [Citation(s) in RCA: 522] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/17/2019] [Indexed: 01/19/2023] Open
Abstract
In this study, we investigated lipopolysaccharide (LPS)-induced cognitive impairment and neuroinflammation in C57BL/6J mice by using behavioral tests, immunofluorescence, enzyme-linked immunosorbent assay (ELISA) and Western blot. We found that LPS treatment leads to sickness behavior and cognitive impairment in mice as shown in the Morris water maze and passive avoidance test, and these effects were accompanied by microglia activation (labeled by ionized calcium binding adaptor molecule-1, IBA-1) and neuronal cell loss (labeled by microtubule-associated protein 2, MAP-2) in the hippocampus. The levels of interleukin-4 (IL-4) and interleukin-10 (IL-10) in the serum and brain homogenates were reduced by the LPS treatment, while the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), prostaglandin E2 (PGE2) and nitric oxide (NO) were increased. In addition, LPS promoted the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in the brain homogenates. The Western blot analysis showed that the nuclear factor kappa B (NF-κB) signaling pathway was activated in the LPS groups. Furthermore, VIPER, which is a TLR-4-specific inhibitory peptide, prevented the LPS-induced neuroinflammation and cognitive impairment. These data suggest that LPS induced cognitive impairment and neuroinflammation via microglia activation by activating the NF-kB signaling pathway; furthermore, we compared the time points, doses, methods and outcomes of LPS administration between intraperitoneal and intracerebroventricular injections of LPS in LPS-induced neuroinflammation and cognitive impairment, and these data may provide additional insight for researchers performing neuroinflammation research.
Collapse
Affiliation(s)
- Jiayi Zhao
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Wei Bi
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Shu Xiao
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xin Lan
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xiaofeng Cheng
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Jiawei Zhang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Daxiang Lu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Wei Wei
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yanping Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Hongmei Li
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yongmei Fu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Lihong Zhu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
73
|
Antineuroinflammatory and Neuroprotective Effects of Gyejibokryeong-Hwan in Lipopolysaccharide-Stimulated BV2 Microglia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7585896. [PMID: 31057653 PMCID: PMC6463633 DOI: 10.1155/2019/7585896] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/23/2019] [Accepted: 02/10/2019] [Indexed: 11/29/2022]
Abstract
Microglia, the central nervous system's innate immune cells, mediate neuroinflammation and are implicated in a variety of neuropathologies. The present study investigated the antineuroinflammatory and neuroprotective effects of Gyejibokryeong-hwan (GBH), a traditional Korean medicine, in lipopolysaccharide- (LPS-) stimulated murine BV2 microglia. BV2 cells were pretreated with GBH, fluoxetine (FXT), or amitriptyline (AMT) for 1 h and then stimulated with LPS (100 ng/mL). The expression levels of nitric oxide (NO), cytokines, and chemokines were determined by the Griess method, ELISA, or real-time PCR. Western blotting was used to measure various transcription factors and mitogen activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/Akt activity. GBH significantly reduced the levels of NO, inducible nitric oxide synthase (iNOS), cyclooxygenase- (COX-) 2, tumor necrosis factor- (TNF-) α, interleukin- (IL-) 1β, IL-6, macrophage inhibitory protein- (MIP-) 1α, macrophage chemoattractant protein- (MCP-) 1, and IFN-γ inducible protein- (IP-) 10, regulated upon activation normal T cell expressed sequence (RANTES) in a dose-dependent manner. Expression of nuclear factor- (NF-) κB p65 was significantly decreased and phosphorylation of extracellular signal-regulated kinase (Erk), c-Jun NH2-terminal kinase (JNK), and PI3K/Akt by GBH, but not p38 MAPK, was decreased. Furthermore, production of anti-inflammatory cytokine IL-10 was increased and Heme oxygenase-1 (HO-1) was upregulated via the nuclear factor-E2-related factor 2 (NRF2)/cAMP response element-binding protein (CREB) pathway, collectively indicating the neuroprotective effects of GBH. We concluded that GBH may suppress neuroinflammatory responses by inhibiting NF-κB activation and upregulating the neuroprotective factor, HO-1. These results suggest that GBH has potential as anti-inflammatory and neuroprotective agents against microglia-mediated neuroinflammatory disorders.
Collapse
|
74
|
Amanat M, Vaccaro AR. Reducing alpha-synuclein in spinal cord injury: A new strategy of treatment. J Neurosci Res 2019; 97:729-732. [PMID: 30916814 DOI: 10.1002/jnr.24406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Man Amanat
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alexander R Vaccaro
- Department of Orthopaedics, Rothman Orthopaedic Institute, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
75
|
Dursun E, Gezen-Ak D. Vitamin D basis of Alzheimer's disease: from genetics to biomarkers. Hormones (Athens) 2019; 18:7-15. [PMID: 30484096 DOI: 10.1007/s42000-018-0086-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder seen mostly in the elderly population. While to date AD research has focused on either neurochemical disruptions, genetic studies, or the pathological hallmarks, little has been done to establish a novel approach that would encompass all three aspects, one that would overcome the current barriers in AD research and determine the cause of AD and, eventually, discover a treatment. Meanwhile, there have been strong indications in recent years that vitamin D, a secosteroid hormone, and its receptors are fundamentally involved in neurodegenerative mechanisms. Observational studies have pointed to vitamin D deficiency as a genetic risk factor for AD, Parkinson's disease (PD), vascular dementia, and multiple sclerosis (MS), as well as other neurological disorders, brought about by alterations in genes involved in metabolism, transportation, and actions of vitamin D. Molecular studies have demonstrated that vitamin D treatments prevent amyloid production while also increasing its clearance from the brain in AD. Finally, recent vitamin D intervention studies have reported significant improvement in cognitive performance in subjects with senile dementia, mild cognitive impairment, and AD. This review aims to describe how a vitamin D research strategy, fully integrating all aspects of present-day AD research, would elucidate the genetic, molecular, and biochemical background of the disease.
Collapse
Affiliation(s)
- Erdinç Dursun
- Brain and Neurodegenerative Disorders Research Laboratory, Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, 34098, Istanbul, Turkey.
| | - Duygu Gezen-Ak
- Brain and Neurodegenerative Disorders Research Laboratory, Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, 34098, Istanbul, Turkey
| |
Collapse
|
76
|
Brain Functional Reserve in the Context of Neuroplasticity after Stroke. Neural Plast 2019; 2019:9708905. [PMID: 30936915 PMCID: PMC6415310 DOI: 10.1155/2019/9708905] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/03/2019] [Indexed: 12/18/2022] Open
Abstract
Stroke is the second cause of death and more importantly first cause of disability in people over 40 years of age. Current therapeutic management of ischemic stroke does not provide fully satisfactory outcomes. Stroke management has significantly changed since the time when there were opened modern stroke units with early motor and speech rehabilitation in hospitals. In recent decades, researchers searched for biomarkers of ischemic stroke and neuroplasticity in order to determine effective diagnostics, prognostic assessment, and therapy. Complex background of events following ischemic episode hinders successful design of effective therapeutic strategies. So far, studies have proven that regeneration after stroke and recovery of lost functions may be assigned to neuronal plasticity understood as ability of brain to reorganize and rebuild as an effect of changed environmental conditions. As many neuronal processes influencing neuroplasticity depend on expression of particular genes and genetic diversity possibly influencing its effectiveness, knowledge on their mechanisms is necessary to understand this process. Epigenetic mechanisms occurring after stroke was briefly discussed in this paper including several mechanisms such as synaptic plasticity; neuro-, glio-, and angiogenesis processes; and growth of axon.
Collapse
|
77
|
Leclaire MD, Nettels-Hackert G, König J, Höhn A, Grune T, Uhlig CE, Hansen U, Eter N, Heiduschka P. Lipofuscin-dependent stimulation of microglial cells. Graefes Arch Clin Exp Ophthalmol 2019; 257:931-952. [PMID: 30693383 DOI: 10.1007/s00417-019-04253-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 01/10/2023] Open
Abstract
PURPOSE To examine the reaction of microglial cells (MG) when incubated with lipofuscin (LP) in vitro with emphasis on the immunological reaction of the MG toward LP and the suppression of this reaction by immunomodulatory agents. MG are involved in the pathogenesis of degenerative eye disorders such as age-related macular degeneration (AMD). LP is a heterogeneous waste material that accumulates in the retinal pigment epithelium (RPE) cells with advancing age. LP is known to have toxic effects on RPE cells and therefore an elevated LP-derived fundus autofluorescence is a risk factor for AMD development. MG in the subretinal space have been reported in eyes affected by AMD. Moreover, in senescent mice, subretinal MG were found, which display an autofluorescence that may be derived from LP uptake. METHODS In this study, we incubated MG (BV-2 cell line and primary cells from murine brain) in vitro with LP isolated from the human RPE. We observed phagocytosis, studied cell morphologies, and analyzed the cell culture supernatants. We also investigated the effect of the immunomodulatory agents hydrocortisone (HC), minocycline, and the tripeptide TKP. RESULTS The MG phagocytosed the LP quickly and completely. We detected highly elevated levels of pro-inflammatory cytokines (especially of IL-6, IL-23p19, TNF-α, KC, RANTES, and IL-1α) in the cell culture supernatants. Furthermore, levels of vascular endothelial growth factor (VEGF) were raised in BV-2 cells. Anti-inflammatory agents added to the cell cultures inhibited the inflammatory reaction, in particular hydrocortisone (HC). Minocycline and TKP had less impact on the cytokine release. CONCLUSION The interaction of MG and LP could play a role in the development of retinal degeneration by triggering an inflammatory reaction and angiogenesis.
Collapse
Affiliation(s)
- Martin Dominik Leclaire
- Research Laboratory, Department of Ophthalmology, University Medical Center, Domagkstr. 15, D-48149, Münster, Germany
| | - Gerburg Nettels-Hackert
- Research Laboratory, Department of Ophthalmology, University Medical Center, Domagkstr. 15, D-48149, Münster, Germany
| | - Jeannette König
- German Institute of Human Nutrition, Potsdam-Rehbrücke, Germany
| | - Annika Höhn
- German Institute of Human Nutrition, Potsdam-Rehbrücke, Germany
| | - Tilman Grune
- German Institute of Human Nutrition, Potsdam-Rehbrücke, Germany
| | - Constantin E Uhlig
- Cornea Bank Münster, Department of Ophthalmology, University Medical Center, Münster, Germany
| | - Uwe Hansen
- Institute of Experimental Musculoskeletal Medicine, Medical Faculty, University of Münster, Münster, Germany
| | - Nicole Eter
- Research Laboratory, Department of Ophthalmology, University Medical Center, Domagkstr. 15, D-48149, Münster, Germany
| | - Peter Heiduschka
- Research Laboratory, Department of Ophthalmology, University Medical Center, Domagkstr. 15, D-48149, Münster, Germany.
| |
Collapse
|
78
|
Wallet C, De Rovere M, Van Assche J, Daouad F, De Wit S, Gautier V, Mallon PWG, Marcello A, Van Lint C, Rohr O, Schwartz C. Microglial Cells: The Main HIV-1 Reservoir in the Brain. Front Cell Infect Microbiol 2019. [PMID: 31709195 DOI: 10.3389/fcimb.2019.00362/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023] Open
Abstract
Despite efficient combination of the antiretroviral therapy (cART), which significantly decreased mortality and morbidity of HIV-1 infection, a definitive HIV cure has not been achieved. Hidden HIV-1 in cellular and anatomic reservoirs is the major hurdle toward a functional cure. Microglial cells, the Central Nervous system (CNS) resident macrophages, are one of the major cellular reservoirs of latent HIV-1. These cells are believed to be involved in the emergence of drugs resistance and reseeding peripheral tissues. Moreover, these long-life reservoirs are also involved in the development of HIV-1-associated neurocognitive diseases (HAND). Clearing these infected cells from the brain is therefore crucial to achieve a cure. However, many characteristics of microglial cells and the CNS hinder the eradication of these brain reservoirs. Better understandings of the specific molecular mechanisms of HIV-1 latency in microglial cells should help to design new molecules and new strategies preventing HAND and achieving HIV cure. Moreover, new strategies are needed to circumvent the limitations associated to anatomical sanctuaries with barriers such as the blood brain barrier (BBB) that reduce the access of drugs.
Collapse
Affiliation(s)
- Clementine Wallet
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Marco De Rovere
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Jeanne Van Assche
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Fadoua Daouad
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Stéphane De Wit
- Division of Infectious Diseases, Saint-Pierre University Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Virginie Gautier
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick W G Mallon
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Olivier Rohr
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Christian Schwartz
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| |
Collapse
|
79
|
Yan L, Yang J, Yu M, Lu Y, Huang L, Wang J, Lu X, Jin C, Wu S, Cai Y. Lanthanum chloride induces neuron damage by activating the nuclear factor-kappa B signaling pathway in activated microglia. Metallomics 2019; 11:1277-1287. [DOI: 10.1039/c9mt00108e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lanthanum is a rare earth element which can have adverse effects on the central nervous system (CNS).
Collapse
|
80
|
Klein C, Jonas W, Wiedmer P, Schreyer S, Akyüz L, Spranger J, Hellweg R, Steiner B. High-fat Diet and Physical Exercise Differentially Modulate Adult Neurogenesis in the Mouse Hypothalamus. Neuroscience 2018; 400:146-156. [PMID: 30599265 DOI: 10.1016/j.neuroscience.2018.12.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
The hypothalamus has emerged as a novel neurogenic niche in the adult brain during the past decade. However, little is known about its regulation and the role hypothalamic neurogenesis might play in body weight and appetite control. High-fat diet (HFD) has been demonstrated to induce an inflammatory response and to alter neurogenesis in the hypothalamus and functional outcome measures, e.g. body weight. Such modulation poses similarities to what is known from adult hippocampal neurogenesis, which is highly responsive to lifestyle factors, such as nutrition or physical exercise. With the rising question of a principle of neurogenic stimulation by lifestyle in the adult brain as a physiological regulatory mechanism of central and peripheral functions, exercise is interventionally applied in obesity and metabolic syndrome conditions, promoting weight loss and improving glucose tolerance and insulin sensitivity. To investigate the potential pro-neurogenic cellular processes underlying such beneficial peripheral outcomes, we exposed adult female mice to HFD together with physical exercise and evaluated neurogenesis and inflammatory markers in the arcuate nucleus (ArcN) of the hypothalamus. We found that HFD increased neurogenesis, whereas physical exercise stimulated cell proliferation. HFD also increased the amount of microglia, which was counteracted by physical exercise. Physiologically, exercise increased food and fat intake but reduced HFD-induced body weight gain. These findings support the hypothesis that hypothalamic neurogenesis may represent a counter-regulatory mechanism in response to environmental or physiological insults to maintain energy balance.
Collapse
Affiliation(s)
- C Klein
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Germany
| | - W Jonas
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbrücke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - P Wiedmer
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbrücke, Germany
| | - S Schreyer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Germany
| | - L Akyüz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Germany
| | - J Spranger
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of Health, Department of Endocrinology, Diabetes and Nutritional Medicine, Berlin, Germany
| | - R Hellweg
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of Health, Department of Psychiatry, Berlin, Germany
| | - B Steiner
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Germany.
| |
Collapse
|
81
|
Younger D, Murugan M, Rama Rao KV, Wu LJ, Chandra N. Microglia Receptors in Animal Models of Traumatic Brain Injury. Mol Neurobiol 2018; 56:5202-5228. [PMID: 30554385 DOI: 10.1007/s12035-018-1428-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
|
82
|
Aliseychik MP, Andreeva TV, Rogaev EI. Immunogenetic Factors of Neurodegenerative Diseases: The Role of HLA Class II. BIOCHEMISTRY (MOSCOW) 2018; 83:1104-1116. [DOI: 10.1134/s0006297918090122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
83
|
Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2018; 4:575-590. [PMID: 30406177 PMCID: PMC6214864 DOI: 10.1016/j.trci.2018.06.014] [Citation(s) in RCA: 1374] [Impact Index Per Article: 196.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by cognitive decline and the presence of two core pathologies, amyloid β plaques and neurofibrillary tangles. Over the last decade, the presence of a sustained immune response in the brain has emerged as a third core pathology in AD. The sustained activation of the brain's resident macrophages (microglia) and other immune cells has been demonstrated to exacerbate both amyloid and tau pathology and may serve as a link in the pathogenesis of the disorder. In the following review, we provide an overview of inflammation in AD and a detailed coverage of a number of microglia-related signaling mechanisms that have been implicated in AD. Additional information on microglia signaling and a number of cytokines in AD are also reviewed. We also review the potential connection of risk factors for AD and how they may be related to inflammatory mechanisms.
Collapse
Affiliation(s)
- Jefferson W. Kinney
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Shane M. Bemiller
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew S. Murtishaw
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Amanda M. Leisgang
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Arnold M. Salazar
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Bruce T. Lamb
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
84
|
Wang E, Zhu H, Wang X, Gower AC, Wallack M, Blusztajn JK, Kowall N, Qiu WQ. Amylin Treatment Reduces Neuroinflammation and Ameliorates Abnormal Patterns of Gene Expression in the Cerebral Cortex of an Alzheimer's Disease Mouse Model. J Alzheimers Dis 2018; 56:47-61. [PMID: 27911303 DOI: 10.3233/jad-160677] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Our recent study has demonstrated that peripheral amylin treatment reduces the amyloid pathology in the brain of Alzheimer's disease (AD) mouse models, and improves their learning and memory. We hypothesized that the beneficial effects of amylin for AD was beyond reducing the amyloids in the brain, and have now directly tested the actions of amylin on other aspects of AD pathogenesis, especially neuroinflammation. A 10-week course of peripheral amylin treatment significantly reduced levels of cerebral inflammation markers, Cd68 and Iba1, in amyloid precursor protein (APP) transgenic mice. Mechanistic studies indicated the protective effect of amylin required interaction with its cognate receptor because silencing the amylin receptor expression blocked the amylin effect on Cd68 in microglia. Using weighted gene co-expression network analysis, we discovered that amylin treatment influenced two gene modules linked with amyloid pathology: 1) a module related to proinflammation and transport/vesicle process that included a hub gene of Cd68, and 2) a module related to mitochondria function that included a hub gene of Atp5b. Amylin treatment restored the expression of most genes in the APP cortex toward levels observed in the wild-type (WT) cortex in these two modules including Cd68 and Atp5b. Using a human dataset, we found that the expression levels of Cd68 and Atp5b were significantly correlated with the neurofibrillary tangle burden in the AD brain and with their cognition. These data suggest that amylin acts on the pathological cascade in animal models of AD, and further supports the therapeutic potential of amylin-type peptides for AD.
Collapse
Affiliation(s)
- Erming Wang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Haihao Zhu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Xiaofan Wang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Adam C Gower
- Clinical and Translational Science Institute, Boston University School of Medicine, Boston, MA, USA
| | - Max Wallack
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Jan Krzysztof Blusztajn
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Neil Kowall
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.,Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA
| | - Wei Qiao Qiu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.,Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
85
|
Obad A, Peeran A, Little JI, Haddad GE, Tarzami ST. Alcohol-Mediated Organ Damages: Heart and Brain. Front Pharmacol 2018; 9:81. [PMID: 29487525 PMCID: PMC5816804 DOI: 10.3389/fphar.2018.00081] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/24/2018] [Indexed: 12/12/2022] Open
Abstract
Alcohol is one of the most commonly abused substances in the United States. Chronic consumption of ethanol has been responsible for numerous chronic diseases and conditions globally. The underlying mechanism of liver injury has been studied in depth, however, far fewer studies have examined other organs especially the heart and the central nervous system (CNS). The authors conducted a narrative review on the relationship of alcohol with heart disease and dementia. With that in mind, a complex relationship between inflammation and cardiovascular disease and dementia has been long proposed but inflammatory biomarkers have gained more attention lately. In this review we examine some of the consequences of the altered cytokine regulation that occurs in alcoholics in organs other than the liver. The article reviews the potential role of inflammatory markers such as TNF-α in predicting dementia and/or cardiovascular disease. It was found that TNF-α could promote and accelerate local inflammation and damage through autocrine/paracrine mechanisms. Unraveling the mechanisms linking chronic alcohol consumption with proinflammatory cytokine production and subsequent inflammatory signaling pathways activation in the heart and CNS, is essential to improve our understanding of the disease and hopefully facilitate the development of new remedies.
Collapse
Affiliation(s)
| | | | | | | | - Sima T. Tarzami
- Department of Physiology and Biophysics, Howard University, Washington, DC, United States
| |
Collapse
|
86
|
Lin CI, Tsai CH, Sun YL, Hsieh WY, Lin YC, Chen CY, Lin CS. Instillation of particulate matter 2.5 induced acute lung injury and attenuated the injury recovery in ACE2 knockout mice. Int J Biol Sci 2018; 14:253-265. [PMID: 29559844 PMCID: PMC5859472 DOI: 10.7150/ijbs.23489] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/09/2018] [Indexed: 01/22/2023] Open
Abstract
Inhaled particulate matter 2.5 (PM2.5) can cause lung injury by inducing serious inflammation in lung tissue. Renin-angiotensin system (RAS) is involved in the pathogenesis of inflammatory lung diseases and regulates inflammatory response. Angiotensin-converting enzyme II (ACE2), which is produced through the angiotensin-converting enzyme (ACE)/angiotensin II (Ang II) axis, protects against lung disease. However, few studies have focused on the relationships between PM2.5 and ACE2. Therefore, we aimed to explore the role of ACE2 in PM2.5-induced acute lung injury (ALI). An animal model of PM2.5-induced ALI was established with wild type (C57BL/6, WT) and ACE2 gene knockout (ACE2 KO) mice. The mice were exposed to PM2.5 through intratracheal instillation once a day for 3 days (6.25 mg/kg/day) and then sacrificed at 2 days and 5 days after PM2.5 instillation. The results show that resting respiratory rate (RRR), levels of inflammatory cytokines, ACE and MMPs in the lungs of WT and ACE2 KO mice were significantly increased at 2 days postinstillation. At 5 days postinstillation, the PM2.5-induced ALI significantly recovered in the WT mice, but only partially recovered in the ACE2 KO mice. The results hint that PM2.5 could induce severe ALI through pulmonary inflammation, and the repair after acute PM2.5 postinstillation could be attenuated in the absence of ACE2. Additionally, our results show that PM2.5-induced ALI is associated with signaling p-ERK1/2 and p-STAT3 pathways and ACE2 knockdown could increase pulmonary p-STAT3 and p-ERK1/2 levels in the PM2.5-induced ALI.
Collapse
Affiliation(s)
- Chung-I Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.,Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Chin-Hung Tsai
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan
| | - Yu-Ling Sun
- Aquatic Technology Laboratories, Agricultural Technology Research Institute, Hsinchu, Taiwan
| | - Wen-Yeh Hsieh
- Division of Chest Medicine, Department of Internal Medicine, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan.,Department of Senior Citizen Service Management, Minghsin University of Science and Technology, Hsinchu, Taiwan
| | - Yi-Chang Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Cheng-Yi Chen
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.,Division of Nephrology, Department of Internal Medicine, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
87
|
Zhang Y, Zheng Y, Xu Y, Sheng H, Ni X. Corticotropin-Releasing Hormone Suppresses Synapse Formation in the Hippocampus of Male Rats via Inhibition of CXCL5 Secretion by Glia. Endocrinology 2018; 159:622-638. [PMID: 29126185 DOI: 10.1210/en.2017-00336] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 11/01/2017] [Indexed: 12/23/2022]
Abstract
Corticotropin-releasing hormone (CRH) is believed to play a critical role in stress-induced synaptic formation and modification. In the current study, we explored the mechanisms underlying CRH modulation of synaptic formation in the hippocampus by using various models in vitro. In cultured hippocampal slices, CRH treatment decreased synapsin I and postsynaptic density protein 95 (PSD95) levels via CRH receptor type 1 (CRHR1). In isolated hippocampal neurons, however, it increased synapsin I-labeled presynaptic terminals and PSD95-labeled postsynaptic terminals via CRHR1. Interestingly, the inhibitory effect of CRH on synapsin I-labeled and PSD95-labeled terminals occurred in the model of neuron-glia cocultures. These effects were prevented by CRHR1 antagonist. Moreover, treatment of the neurons with the media of CRH-treated glia led to a decrease in synaptic terminal formation. The media collected from CRH-treated glial cells with CRHR1 knockdown did not show an inhibitory effect on synaptic terminals in hippocampal neurons. Unbiased cytokine array coupled with confirmatory enzyme-linked immunosorbent assay revealed that CRH suppressed C-X-C motif chemokine 5 (CXCL5) production in glia via CRHR1. Administration of CXCL5 reversed the inhibitory effects of CRH-treated glia culture media on synaptic formation. Our data suggest that CRH suppresses synapse formation through inhibition of CXCL5 secretion from glia in the hippocampus. Our study indicates that glia-neuron intercommunication is one of the mechanisms responsible for neuronal circuit remodeling during stress.
Collapse
Affiliation(s)
- Yanmin Zhang
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - You Zheng
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Yongjun Xu
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Hui Sheng
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Xin Ni
- Department of Physiology, Second Military Medical University, Shanghai, China
| |
Collapse
|
88
|
Hopperton KE, Mohammad D, Trépanier MO, Giuliano V, Bazinet RP. Markers of microglia in post-mortem brain samples from patients with Alzheimer's disease: a systematic review. Mol Psychiatry 2018; 23:177-198. [PMID: 29230021 PMCID: PMC5794890 DOI: 10.1038/mp.2017.246] [Citation(s) in RCA: 347] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/15/2017] [Accepted: 09/14/2017] [Indexed: 02/07/2023]
Abstract
Neuroinflammation is proposed as one of the mechanisms by which Alzheimer's disease pathology, including amyloid-β plaques, leads to neuronal death and dysfunction. Increases in the expression of markers of microglia, the main neuroinmmune cell, are widely reported in brains from patients with Alzheimer's disease, but the literature has not yet been systematically reviewed to determine whether this is a consistent pathological feature. A systematic search was conducted in Medline, Embase and PsychINFO for articles published up to 23 February 2017. Papers were included if they quantitatively compared microglia markers in post-mortem brain samples from patients with Alzheimer's disease and aged controls without neurological disease. A total of 113 relevant articles were identified. Consistent increases in markers related to activation, such as major histocompatibility complex II (36/43 studies) and cluster of differentiation 68 (17/21 studies), were identified relative to nonneurological aged controls, whereas other common markers that stain both resting and activated microglia, such as ionized calcium-binding adaptor molecule 1 (10/20 studies) and cluster of differentiation 11b (2/5 studies), were not consistently elevated. Studies of ionized calcium-binding adaptor molecule 1 that used cell counts almost uniformly identified no difference relative to control, indicating that increases in activation occurred without an expansion of the total number of microglia. White matter and cerebellum appeared to be more resistant to these increases than other brain regions. Nine studies were identified that included high pathology controls, patients who remained free of dementia despite Alzheimer's disease pathology. The majority (5/9) of these studies reported higher levels of microglial markers in Alzheimer's disease relative to controls, suggesting that these increases are not solely a consequence of Alzheimer's disease pathology. These results show that increased markers of microglia are a consistent feature of Alzheimer's disease, though this seems to be driven primarily by increases in activation-associated markers, as opposed to markers of all microglia.
Collapse
Affiliation(s)
- K E Hopperton
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - D Mohammad
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - M O Trépanier
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - V Giuliano
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - R P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College Street, Room 306, Toronto, ON M5S 3E2, Canada. E-mail:
| |
Collapse
|
89
|
Koper OM, Kamińska J, Sawicki K, Reszeć J, Rutkowski R, Jadeszko M, Mariak Z, Dymicka-Piekarska V, Kemona H. Cerebrospinal fluid and serum IL-8, CCL2, and ICAM-1 concentrations in astrocytic brain tumor patients. Ir J Med Sci 2017; 187:767-775. [PMID: 29086194 DOI: 10.1007/s11845-017-1695-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/04/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND The aim of the study was the evaluation of serum and CSF concentrations of CCL2, IL-8, and sICAM-1 in patients with astrocytic tumors as compared to a group of non-tumoral patients. METHODS Chemokine concentrations were measured using the ELISA method. RESULTS Regardless of the parameter tested and the patient group (brain tumor or non-tumoral patients), statistical differences (P < 0.05) were found between concentrations obtained in CSF compared to values obtained in serum for all proteins tested. CSF IL-8 concentrations were significantly elevated in CNS tumor patients as compared to non-tumoral individuals (P = 0.000); serum CCL2 and sICAM-1 concentrations were significantly decreased in CNS tumors in comparison with the comparative group (P = 0.002 and P = 0.026, respectively). Among proteins tested in the serum, a higher area under the ROC curve (AUC) revealed CCL2 compared to sICAM-1 in differentiating subjects with CNS brain tumors from non-tumoral subjects. AUC for CSF IL-8 was higher than for its index (CSF IL-8/serum IL-8). CONCLUSIONS For individual biomarkers (IL-8 and CCL2, sICAM-1), measured in CNS brain tumor patients, the appropriate material, respectively CSF or serum, should be chosen and quantitatively tested. Increased cerebrospinal fluid IL-8 with decreased serum CCL2 create a pattern of biomarkers, which may be helpful in the management of CNS astrocytic brain tumors.
Collapse
Affiliation(s)
- O M Koper
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15A, 15-269, Białystok, Poland.
| | - J Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15A, 15-269, Białystok, Poland
| | - K Sawicki
- Department of Neurosurgery, Clinical Hospital of the Medical University of Bialystok, Białystok, Poland
| | - J Reszeć
- Department of Pathomorphology, Medical University of Bialystok, Białystok, Poland
| | - R Rutkowski
- Department of Neurosurgery, Clinical Hospital of the Medical University of Bialystok, Białystok, Poland
| | - M Jadeszko
- Department of Neurosurgery, Clinical Hospital of the Medical University of Bialystok, Białystok, Poland
| | - Z Mariak
- Department of Neurosurgery, Clinical Hospital of the Medical University of Bialystok, Białystok, Poland
| | - V Dymicka-Piekarska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15A, 15-269, Białystok, Poland
| | - H Kemona
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15A, 15-269, Białystok, Poland
| |
Collapse
|
90
|
RAGE-Specific Inhibitor FPS-ZM1 Attenuates AGEs-Induced Neuroinflammation and Oxidative Stress in Rat Primary Microglia. Neurochem Res 2017; 42:2902-2911. [DOI: 10.1007/s11064-017-2321-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/22/2017] [Accepted: 06/02/2017] [Indexed: 12/13/2022]
|
91
|
Richter F, Eitner A, Leuchtweis J, Bauer R, Lehmenkühler A, Schaible HG. Effects of interleukin-1ß on cortical spreading depolarization and cerebral vasculature. J Cereb Blood Flow Metab 2017; 37:1791-1802. [PMID: 27037093 PMCID: PMC5435277 DOI: 10.1177/0271678x16641127] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/26/2016] [Accepted: 02/22/2016] [Indexed: 11/16/2022]
Abstract
During brain damage and ischemia, the cytokine interleukin-1ß is rapidly upregulated due to activation of inflammasomes. We studied whether interleukin-1ß influences cortical spreading depolarization, and whether lipopolysaccharide, often used for microglial stimulation, influences cortical spreading depolarizations. In anaesthetized rats, cortical spreading depolarizations were elicited by microinjection of KCl. Interleukin-1ß, the IL-1 receptor 1 antagonist, the GABAA receptor blocker bicuculline, and lipopolysaccharide were administered either alone or combined (interleukin-1ß + IL-1 receptor 1 antagonist; interleukin-1ß + bicuculline; lipopolysaccharide + IL-1 receptor 1 antagonist) into a local cortical treatment area. Using microelectrodes, cortical spreading depolarizations were recorded in a non-treatment and in the treatment area. Plasma extravasation in cortical grey matter was assessed with Evans blue. Local application of interleukin-1ß reduced cortical spreading depolarization amplitudes in the treatment area, but not at a high dose. This reduction was prevented by IL-1 receptor 1 antagonist and by bicuculline. However, interleukin-1ß induced pronounced plasma extravasation independently on cortical spreading depolarizations. Application of lipopolysaccharide reduced cortical spreading depolarization amplitudes but prolonged their duration; EEG activity was still present. These effects were also blocked by IL-1 receptor 1 antagonist. Interleukin-1ß evokes changes of neuronal activity and of vascular functions. Thus, although the reduction of cortical spreading depolarization amplitudes at lower doses of interleukin-1ß may reduce deleterious effects of cortical spreading depolarizations, the sum of interleukin-1ß effects on excitability and on the vasculature rather promote brain damaging mechanisms.
Collapse
Affiliation(s)
- Frank Richter
- Institute of Physiology I/Neurophysiology, Jena University Hospital – Friedrich Schiller University Jena, Jena, Germany
| | - Annett Eitner
- Institute of Physiology I/Neurophysiology, Jena University Hospital – Friedrich Schiller University Jena, Jena, Germany
| | - Johannes Leuchtweis
- Institute of Physiology I/Neurophysiology, Jena University Hospital – Friedrich Schiller University Jena, Jena, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital – Friedrich Schiller University Jena, Jena, Germany
| | | | - Hans-Georg Schaible
- Institute of Physiology I/Neurophysiology, Jena University Hospital – Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
92
|
Zhao XJ, Zhao Z, Yang DD, Cao LL, Zhang L, Ji J, Gu J, Huang JY, Sun XL. Activation of ATP-sensitive potassium channel by iptakalim normalizes stress-induced HPA axis disorder and depressive behaviour by alleviating inflammation and oxidative stress in mouse hypothalamus. Brain Res Bull 2017; 130:146-155. [DOI: 10.1016/j.brainresbull.2017.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/24/2017] [Accepted: 01/30/2017] [Indexed: 12/19/2022]
|
93
|
Mani R, Natesan V, Arumugam R. Neuroprotective effect of chrysin on hyperammonemia mediated neuroinflammatory responses and altered expression of astrocytic protein in the hippocampus. Biomed Pharmacother 2017; 88:762-769. [DOI: 10.1016/j.biopha.2017.01.081] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/12/2017] [Accepted: 01/12/2017] [Indexed: 01/19/2023] Open
|
94
|
Sterile Neuroinflammation and Strategies for Therapeutic Intervention. Int J Inflam 2017; 2017:8385961. [PMID: 28127491 PMCID: PMC5239986 DOI: 10.1155/2017/8385961] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022] Open
Abstract
Sterile neuroinflammation is essential for the proper brain development and tissue repair. However, uncontrolled neuroinflammation plays a major role in the pathogenesis of various disease processes. The endogenous intracellular molecules so called damage-associated molecular patterns or alarmins or damage signals that are released by activated or necrotic cells are thought to play a crucial role in initiating an immune response. Sterile inflammatory response that occurs in Alzheimer's disease (AD), Parkinson's disease (PD), stroke, hemorrhage, epilepsy, or traumatic brain injury (TBI) creates a vicious cycle of unrestrained inflammation, driving progressive neurodegeneration. Neuroinflammation is a key mechanism in the progression (e.g., AD and PD) or secondary injury development (e.g., stroke, hemorrhage, stress, and TBI) of multiple brain conditions. Hence, it provides an opportunity for the therapeutic intervention to prevent progressive tissue damage and loss of function. The key for developing anti-neuroinflammatory treatment is to minimize the detrimental and neurotoxic effects of inflammation while promoting the beneficial and neurotropic effects, thereby creating ideal conditions for regeneration and repair. This review outlines how inflammation is involved in the pathogenesis of major nonpathogenic neuroinflammatory conditions and discusses the complex response of glial cells to damage signals. In addition, emerging experimental anti-neuroinflammatory drug treatment strategies are discussed.
Collapse
|
95
|
Volk DW. Role of microglia disturbances and immune-related marker abnormalities in cortical circuitry dysfunction in schizophrenia. Neurobiol Dis 2016; 99:58-65. [PMID: 28007586 DOI: 10.1016/j.nbd.2016.12.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/14/2016] [Accepted: 12/18/2016] [Indexed: 11/19/2022] Open
Abstract
Studies of genetics, serum cytokines, and autoimmune illnesses suggest that immune-related abnormalities are involved in the disease process of schizophrenia. Furthermore, direct evidence of cortical immune activation, including markedly elevated levels of many immune-related markers, have been reported in the prefrontal cortex in multiple cohorts of schizophrenia subjects. Within the prefrontal cortex in schizophrenia, deficits in the basilar dendritic spines of layer 3 pyramidal neurons and disturbances in inhibitory inputs to pyramidal neurons have also been commonly reported. Interestingly, microglia, the resident immune-related cells of the brain, also regulate excitatory and inhibitory input to pyramidal neurons. Consequently, in this review, we describe the cytological and molecular evidence of immune activation that has been reported in the brains of individuals with schizophrenia and the potential links between these immune-related disturbances with previously reported disturbances in pyramidal and inhibitory neurons in the disorder. Finally, we discuss the role that activated microglia may play in connecting these observations and as potential therapeutic treatment targets in schizophrenia.
Collapse
Affiliation(s)
- David W Volk
- Department of Psychiatry, University of Pittsburgh, W1655 BST, 3811 O'Hara St, Pittsburgh, PA 15213, United States.
| |
Collapse
|
96
|
Garcia-Mesa Y, Jay TR, Checkley MA, Luttge B, Dobrowolski C, Valadkhan S, Landreth GE, Karn J, Alvarez-Carbonell D. Immortalization of primary microglia: a new platform to study HIV regulation in the central nervous system. J Neurovirol 2016; 23:47-66. [PMID: 27873219 PMCID: PMC5329090 DOI: 10.1007/s13365-016-0499-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/03/2016] [Accepted: 11/09/2016] [Indexed: 12/17/2022]
Abstract
The major reservoirs for HIV in the CNS are in the microglia, perivascular macrophages, and to a lesser extent, astrocytes. To study the molecular events controlling HIV expression in the microglia, we developed a reliable and robust method to immortalize microglial cells from primary glia from fresh CNS tissues and commercially available frozen glial cells. Primary human cells, including cells obtained from adult brain tissue, were transformed with lentiviral vectors expressing SV40 T antigen or a combination of SVR40 T antigen and hTERT. The immortalized cells have microglia-like morphology and express key microglial surface markers including CD11b, TGFβR, and P2RY12. Importantly, these cells were confirmed to be of human origin by sequencing. The RNA expression profiles identified by RNA-seq are also characteristic of microglial cells. Furthermore, the cells demonstrate the expected migratory and phagocytic activity, and the capacity to mount an inflammatory response characteristic of primary microglia. The immortalization method has also been successfully applied to a wide range of microglia from other species (macaque, rat, and mouse). To investigate different aspects of HIV molecular regulation in CNS, the cells have been superinfected with HIV reporter viruses and latently infected clones have been selected that reactive HIV in response to inflammatory signals. The cell lines we have developed and rigorously characterized will provide an invaluable resource for the study of HIV infection in microglial cells as well as studies of microglial cell function.
Collapse
Affiliation(s)
- Yoelvis Garcia-Mesa
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Taylor R. Jay
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Mary Ann Checkley
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Benjamin Luttge
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Curtis Dobrowolski
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Saba Valadkhan
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Gary E. Landreth
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - David Alvarez-Carbonell
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106 USA
| |
Collapse
|
97
|
Eugenín J, Vecchiola A, Murgas P, Arroyo P, Cornejo F, von Bernhardi R. Expression Pattern of Scavenger Receptors and Amyloid-β Phagocytosis of Astrocytes and Microglia in Culture are Modified by Acidosis: Implications for Alzheimer’s Disease. J Alzheimers Dis 2016; 53:857-73. [DOI: 10.3233/jad-160083] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jaime Eugenín
- Laboratory of Neural Systems, Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Andrea Vecchiola
- Laboratory of Neuroscience, Department of Neurology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Endocrinology, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Paola Murgas
- Laboratory of Neuroscience, Department of Neurology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Arroyo
- Laboratory of Neuroscience, Department of Neurology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisca Cornejo
- Laboratory of Neuroscience, Department of Neurology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rommy von Bernhardi
- Laboratory of Neuroscience, Department of Neurology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
98
|
Abstract
Macrophages and their counterparts in the central nervous system, the microglia, detect and subsequently clear microbial pathogens and injured tissue. These phagocytic cells alter and adapt their phenotype depending on their prime activity, i.e., whether they participate in acute defence against pathogenic organisms ('M1'-phenotype) or in clearing damaged tissues and performing repair activities ('M2'-phenotype). Stimulation of pattern recognition receptors by viruses (vaccines), bacterial membrane components (e.g., LPS), alcohol, or long-chain saturated fatty acids promotes M1-polarization. Vaccine or LPS administration to healthy human subjects can result in sickness symptoms and low mood. Alcohol abuse and abdominal obesity are recognized as risk factors for depression. In the M1-polarized form, microglia and macrophages generate reactive oxygen and nitrogen radicals to eradicate microbial pathogens. Inadvertently, also tetrahydrobiopterin (BH4) may become oxidized. This is an irreversible reaction that generates neopterin, a recognized biomarker for depression. BH4 is a critical cofactor for the synthesis of dopamine, noradrenaline, and serotonin, and its loss could explain some of the symptoms of depression. Based on these aspects, the suppression of M1-polarization would limit the inadvertent catabolism of BH4. In the current review, we evaluate the evidence that antidepressant treatments (monoamine reuptake inhibitors, PDE4 inhibitors, lithium, valproate, agomelatine, tianeptine, electroconvulsive shock, and vagus nerve stimulation) inhibit LPS-induced microglia/macrophage M1-polarization. Consequently, we propose that supplementation with BH4 could limit the reduction in central monoamine synthesis and might represent an effective treatment for depressed mood.
Collapse
Affiliation(s)
- Hans O Kalkman
- Neuroscience Research, NIBR, Fabrikstrasse 22-3.001.02, Basel 4002, Switzerland.
| | - Dominik Feuerbach
- Neuroscience Research, NIBR, Fabrikstrasse 22-3.001.02, Basel 4002, Switzerland
| |
Collapse
|
99
|
Abstract
Tumor necrosis factor-α (TNFα) is a prototypic inflammatory cytokine up-regulated in most if not all neurodegenerative diseases. Many studies have reported variable roles in the adult or pathological brain. In contrast, the implication of TNFα in developmental neuronal cell death has been well documented in few studies. In sympathetic and trigeminal neurons, TNFα acts in an autocrine manner to induce immediate cell death on neurotrophic factor deprivation. In the spinal cord, TNFα is transiently produced by macrophages and commits motoneurons to become competent to die 2 days later. TNFα is also likely to induce immediate and delayed prodeath effects in adult and pathological tissues. Data obtained in embryonic systems will thus help to develop new therapeutic approaches to pathological neuronal death in adults.
Collapse
Affiliation(s)
- Alain Bessis
- Laboratoire de Biologie Cellulaire de la Synapse Normale et Pathologique, INSERM U497 Ecole Normale Supérieure, Paris, France.
| | | | | |
Collapse
|
100
|
Lindsay SL, Johnstone SA, McGrath MA, Mallinson D, Barnett SC. Comparative miRNA-Based Fingerprinting Reveals Biological Differences in Human Olfactory Mucosa- and Bone-Marrow-Derived Mesenchymal Stromal Cells. Stem Cell Reports 2016; 6:729-742. [PMID: 27117785 PMCID: PMC4940454 DOI: 10.1016/j.stemcr.2016.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 12/22/2022] Open
Abstract
Previously we reported that nestin-positive human mesenchymal stromal cells (MSCs) derived from the olfactory mucosa (OM) enhanced CNS myelination in vitro to a greater extent than bone-marrow-derived MSCs (BM-MSCs). miRNA-based fingerprinting revealed the two MSCs were 64% homologous, with 26 miRNAs differentially expressed. We focused on miR-146a-5p and miR-140-5p due to their reported role in the regulation of chemokine production and myelination. The lower expression of miR-140-5p in OM-MSCs correlated with higher secretion of CXCL12 compared with BM-MSCs. Addition of CXCL12 and its pharmacological inhibitors to neural co-cultures supported these data. Studies on related miR-146a-5p targets demonstrated that OM-MSCs had lower levels of Toll-like receptors and secreted less pro-inflammatory cytokines, IL-6, IL-8, and CCL2. OM-MSCs polarized microglia to an anti-inflammatory phenotype, illustrating potential differences in their inflammatory response. Nestin-positive OM-MSCs could therefore offer a cell transplantation alternative for CNS repair, should these biological behaviors be translated in vivo. OM-MSCs share 64% miRNA homology to BM-MSCs and differentially express 26 miRNAs CXCL12 promotes CNS myelination and is negatively regulated by miR-140-5p in BM-MSCs miR-146a-5p negatively regulates IL-6, IL-8, TLR2, and TLR4 on OM-MSCs These properties make OM-MSCs a suitable candidate for transplant-mediated CNS repair
Collapse
Affiliation(s)
- Susan Louise Lindsay
- Institute of Infection, Inflammation and Immunity, Glasgow Biomedical Research Centre, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Steven Andrew Johnstone
- Institute of Infection, Inflammation and Immunity, Glasgow Biomedical Research Centre, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Michael Anthony McGrath
- Institute of Infection, Inflammation and Immunity, Glasgow Biomedical Research Centre, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - David Mallinson
- Institute of Infection, Inflammation and Immunity, Glasgow Biomedical Research Centre, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK; Sistemic UK, Kelvin Campus, Maryhill Road, Glasgow G20 0SP, UK
| | - Susan Carol Barnett
- Institute of Infection, Inflammation and Immunity, Glasgow Biomedical Research Centre, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|