51
|
Mohmmad Abdul H, Sultana R, Keller JN, St Clair DK, Markesbery WR, Butterfield DA. Mutations in amyloid precursor protein and presenilin-1 genes increase the basal oxidative stress in murine neuronal cells and lead to increased sensitivity to oxidative stress mediated by amyloid beta-peptide (1-42), HO and kainic acid: implications for Alzheimer's disease. J Neurochem 2006; 96:1322-35. [PMID: 16478525 DOI: 10.1111/j.1471-4159.2005.03647.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Oxidative stress is observed in Alzheimer's disease (AD) brain, including protein oxidation and lipid peroxidation. One of the major pathological hallmarks of AD is the brain deposition of amyloid beta-peptide (Abeta). This 42-mer peptide is derived from the beta-amyloid precursor protein (APP) and is associated with oxidative stress in vitro and in vivo. Mutations in the PS-1 and APP genes, which increase production of the highly amyloidogenic amyloid beta-peptide (Abeta42), are the major causes of early onset familial AD. Several lines of evidence suggest that enhanced oxidative stress, inflammation, and apoptosis play important roles in the pathogenesis of AD. In the present study, primary neuronal cultures from knock-in mice expressing mutant human PS-1 and APP were compared with those from wild-type mice, in the presence or absence of various oxidizing agents, viz, Abeta(1-42), H2O2 and kainic acid (KA). APP/PS-1 double mutant neurons displayed a significant basal increase in oxidative stress as measured by protein oxidation, lipid peroxidation, and 3-nitrotyrosine when compared with the wild-type neurons (p < 0.0005). Elevated levels of human APP, PS-1 and Abeta(1-42) were found in APP/PS-1 cultures compared with wild-type neurons. APP/PS-1 double mutant neuron cultures exhibited increased vulnerability to oxidative stress, mitochondrial dysfunction and apoptosis induced by Abeta(1-42), H2O2 and KA compared with wild-type neuronal cultures. The results are consonant with the hypothesis that Abeta(1-42)-associated oxidative stress and increased vulnerability to oxidative stress may contribute significantly to neuronal apoptosis and death in familial early onset AD.
Collapse
Affiliation(s)
- Hafiz Mohmmad Abdul
- Department of Chemistry and Center of Membrane Sciences, University of Kentucky, Lexington, Kentucky 40506, USA
| | | | | | | | | | | |
Collapse
|
52
|
Hauptmann S, Keil U, Scherping I, Bonert A, Eckert A, Müller WE. Mitochondrial dysfunction in sporadic and genetic Alzheimer's disease. Exp Gerontol 2006; 41:668-73. [PMID: 16677790 DOI: 10.1016/j.exger.2006.03.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 03/15/2006] [Accepted: 03/17/2006] [Indexed: 11/16/2022]
Abstract
Increasing evidence suggests an important role of mitochondrial dysfunction in the pathogenesis of many common age-related neurodegenerative diseases, including Alzheimer's disease (AD). AD is the most common neurodegenerative disorder characterized by dementia, memory loss, neuronal apoptosis and eventually death of the affected individuals. AD is characterized by two pathologic hallmark lesions that consist of extracellular plaques of amyloid-beta peptides and intracellular neurofibrillary tangles composed of hyperphosphorylated microtubular protein tau. Even though the idea that amyloid beta peptide accumulation is the primary event in the pathogenesis of Alzheimer's disease has become the leading hypothesis, the causal link between aberrant amyloid precursor protein and tau alterations in this type of dementia remains controversial.
Collapse
Affiliation(s)
- Susanne Hauptmann
- Department of Pharmacology Biocentrs, University of Frankfurt, 60439 Frankfurt, Germany.
| | | | | | | | | | | |
Collapse
|
53
|
Bürklen TS, Schlattner U, Homayouni R, Gough K, Rak M, Szeghalmi A, Wallimann T. The creatine kinase/creatine connection to Alzheimer's disease: CK-inactivation, APP-CK complexes and focal creatine deposits. J Biomed Biotechnol 2006; 2006:35936. [PMID: 17047305 PMCID: PMC1510941 DOI: 10.1155/jbb/2006/35936] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 02/28/2006] [Accepted: 02/28/2006] [Indexed: 12/12/2022] Open
Abstract
Cytosolic brain-type creatine kinase (BB-CK), which is coexpressed with ubiquitous mitochondrial uMtCK, is significantly inactivated by oxidation, in Alzheimer's disease (AD) patients. Since CK has been shown to play a fundamental role in cellular energetics of the brain, any disturbance of this enzyme may exasperate the AD disease process. Mutations in amyloid precursor protein (APP) are associated with early onset AD and result in abnormal processing of APP, and accumulation of A beta peptide, the main constituent of amyloid plaques in AD brain. Recent data on a direct interaction between APP and the precursor of uMtCK support an emerging relationship between AD, cellular energy levels and mitochondrial function. In addition, recently discovered creatine (Cr) deposits in the brain of transgenic AD mice, as well as in the hippocampus from AD patients, indicate a direct link between perturbed energy state, Cr metabolism and AD. Here, we review the roles of Cr and Cr-related enzymes and consider the potential value of supplementation with Cr, a potent neuroprotective substance. As a hypothesis, we consider whether Cr, if given at an early time point of the disease, may prevent or delay the course of AD-related neurodegeneration.
Collapse
Affiliation(s)
- Tanja S. Bürklen
- Institute of Cell Biology, ETH Zurich,
Hönggerberg HPM, 8093 Zurich, Switzerland
| | - Uwe Schlattner
- Institute of Cell Biology, ETH Zurich,
Hönggerberg HPM, 8093 Zurich, Switzerland
- Laboratory of Fundamental and Applied Bioenergetics,
INSERM E0221, Joseph Fourier University, 38041 Grenoble, Cedex 9, France
| | - Ramin Homayouni
- Department of Neurology, University of Tennessee
Health Science Center, Memphis, TN 38163, USA
| | - Kathleen Gough
- Department of Chemistry, University of Manitoba,
Winnipeg, Manitoba, Canada R3T 2N2
| | - Margaret Rak
- Department of Chemistry, University of Manitoba,
Winnipeg, Manitoba, Canada R3T 2N2
| | - Adriana Szeghalmi
- Department of Chemistry, University of Manitoba,
Winnipeg, Manitoba, Canada R3T 2N2
| | - Theo Wallimann
- Institute of Cell Biology, ETH Zurich,
Hönggerberg HPM, 8093 Zurich, Switzerland
| |
Collapse
|
54
|
Shamoto-Nagai M, Maruyama W, Yi H, Akao Y, Tribl F, Gerlach M, Osawa T, Riederer P, Naoi M. Neuromelanin induces oxidative stress in mitochondria through release of iron: mechanism behind the inhibition of 26S proteasome. J Neural Transm (Vienna) 2005; 113:633-44. [PMID: 16362626 DOI: 10.1007/s00702-005-0410-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2005] [Accepted: 10/20/2005] [Indexed: 01/01/2023]
Abstract
Parkinson's disease is characterized by the selective depletion of dopamine neurons in the substantia nigra, particular those containing neuromelanin. Involvement of neuromelanin in the pathogenesis may be either cytotoxic or protective. Recently we found that neuromelanin reduces the activity of 26S proteasome. In this paper, the detailed mechanisms behind the reduced activity were studied using neuromelanin isolated from the human brain. Neuromelanin increased the oxidative stress, but synthetic melanin did not. Superoxide dismutase and deferoxamine completely suppressed the increase, indicating that superoxide produced by an iron-mediated reaction plays a central role. Iron was shown to reduce in situ 26S proteasome activity in SH-SY5Y cells and the reduction was protected by antioxidants. These results suggest that iron released from neuromelanin increases oxidative stress in mitochondria, and then causes mitochondrial dysfunction and reduces proteasome function. The role of neuromelanin is discussed in relation to the selective vulnerability of dopamine neurons in Parkinson's disease.
Collapse
Affiliation(s)
- M Shamoto-Nagai
- Department of Geriatric Medicine, National Institute for Geriatrics and Gerontology, Obu, Aichi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Yi H, Akao Y, Maruyama W, Chen K, Shih J, Naoi M. Type A monoamine oxidase is the target of an endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol, leading to apoptosis in SH-SY5Y cells. J Neurochem 2005; 96:541-9. [PMID: 16336631 DOI: 10.1111/j.1471-4159.2005.03573.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mitochondrial monoamine oxidase (MAO) has been considered to be involved in neuronal degeneration either by increased oxidative stress or protection with the inhibitors of type B MAO (MAO-B). In this paper, the role of type A MAO (MAO-A) in apoptosis was studied using human neuroblastoma SH-SY5Y cells, where only MAO-A is expressed. An endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol, an MAO-A inhibitor, reduced membrane potential, DeltaPsim, in isolated mitochondria, and induced apoptosis in the cells, which 5-hydroxytryptamine, an MAO-A substrate, prevented. In contrast, beta-phenylethylamine, an MAO-B substrate, did not suppress the DeltaPsim decline by N-methyl(R)salsolinol. The binding of N-methyl(R)salsolinol to mitochondria was inhibited by clorgyline, a MOA-A inhibitor, but not by (-)deprenyl, an MAO-B inhibitor. RNA interference targeting MAO-A significantly reduced the binding of N-methyl(R)salsolinol with simultaneous reduction in the MAO activity. To examine the intervention of MAO-B in the apoptotic process, human MAO-B was transfected to SH-SY5Y cells, but the sensitivity to N-methyl(R)salsolinol was not affected, even although the activity and protein of MAO increased markedly. These results demonstrate a novel function of MAO-A in the binding of neurotoxins and the induction of apoptosis, which may account for neuronal cell death in neurodegenerative disorders, including Parkinson's disease.
Collapse
Affiliation(s)
- Hong Yi
- Department of Neurosciences, Gifu International Institute of Biotechnology, Kakamigahara, Gifu, Japan
| | | | | | | | | | | |
Collapse
|
56
|
Crack PJ, Cimdins K, Ali U, Hertzog PJ, Iannello RC. Lack of glutathione peroxidase-1 exacerbates Abeta-mediated neurotoxicity in cortical neurons. J Neural Transm (Vienna) 2005; 113:645-57. [PMID: 16252075 DOI: 10.1007/s00702-005-0352-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 06/18/2005] [Indexed: 10/25/2022]
Abstract
The aetiologies of Alzheimer's disease (AD) are complex and multifactorial. Current therapies are largely ineffective, as the pathophysiological pathways are poorly understood. Observations in AD autopsies, as well as in vivo and in vitro observations in transgenic mice, have implicated oxidative stress as pathogenic in AD. This study used the Glutathione Peroxidase-1 knockout mouse (Gpx1--/--) model to investigate the role of antioxidant disparity in neuropathologies. Cultured neurons from control and Gpx1--/-- embryos were treated with AD-related peptides and the degree of cell loss compared. Results show that antioxidant disparity makes Gpx1--/-- cells more susceptible to Abeta toxicity. Surrogate replacement of Gpx1 with the reactive oxygen species scavenger N-acetyl cysteine and the Gpx1 mimetic ebselen, reverses the Gpx1--/-- increased susceptibility to Abeta toxicity. Such results support a role for oxidative stress in AD-related neuronal loss. This study is the first to report such findings using the Gpx1--/-- model, and supports a role for oxidative stress as one of the contributing factors, in development of AD-like pathologies.
Collapse
Affiliation(s)
- P J Crack
- Centre for Functional Genomics and Human Disease, Monash Institute of Reproduction and Development, Monash University, Melbourne, Australia.
| | | | | | | | | |
Collapse
|
57
|
Caspersen C, Wang N, Yao J, Sosunov A, Chen X, Lustbader JW, Xu HW, Stern D, McKhann G, Yan SD. Mitochondrial Abeta: a potential focal point for neuronal metabolic dysfunction in Alzheimer's disease. FASEB J 2005; 19:2040-1. [PMID: 16210396 DOI: 10.1096/fj.05-3735fje] [Citation(s) in RCA: 576] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although amyloid-beta peptide (Abeta) is the neurotoxic species implicated in the pathogenesis of Alzheimer's disease (AD), mechanisms through which intracellular Abeta impairs cellular properties, resulting in neuronal dysfunction, remain to be clarified. Here we demonstrate that intracellular Abeta is present in mitochondria from brains of transgenic mice with targeted neuronal overexpression of mutant human amyloid precursor protein and AD patients. Abeta progressively accumulates in mitochondria and is associated with diminished enzymatic activity of respiratory chain complexes (III and IV) and a reduction in the rate of oxygen consumption. Importantly, mitochondria-associated Abeta, principally Abeta42, was detected as early as 4 months, before extensive extracellular Abeta deposits. Our studies delineate a new means through which Abeta potentially impairs neuronal energetics, contributing to cellular dysfunction in AD.
Collapse
Affiliation(s)
- Casper Caspersen
- Department of Surgery, College of Physicians & Surgeons of Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Kögel D, Schomburg R, Copanaki E, Prehn JHM. Regulation of gene expression by the amyloid precursor protein: inhibition of the JNK/c-Jun pathway. Cell Death Differ 2005; 12:1-9. [PMID: 15592359 DOI: 10.1038/sj.cdd.4401495] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The amyloid precursor protein (APP) has been suggested to regulate gene expression. GeneChip analysis and in vitro kinase assays revealed potent APP-dependent repression of c-Jun, its target gene SPARC and reduced basal c-Jun N-terminal kinase (JNK) activity in PC12 cells overexpressing APP. UV-induced activation of the JNK signalling pathway and subsequent apoptosis were likewise reduced by APP and this effect could be mimicked by the indirect JNK inhibitor CEP-11004. Treatment with a gamma-secretase inhibitor did not affect APP-mediated downmodulation of the JNK signalling pathway, suggesting that the effects might be mediated via alpha-secretase processing of APP. In support of these data, overexpression of the Swedish mutant of APP did not inhibit SPARC expression, UV-induced JNK activation and cell death. Our data suggest an important physiological role of APP and alpha-secretase activity in the control of JNK/c-Jun signalling, target gene expression and cell death activation in response to cytotoxic stress.
Collapse
Affiliation(s)
- D Kögel
- Experimental Neurosurgery, Center for Neurology and Neurosurgery, Johann Wolfgang Goethe University Clinics, D-60590 Frankfurt, Germany.
| | | | | | | |
Collapse
|
59
|
Yan SD, Stern DM. Mitochondrial dysfunction and Alzheimer's disease: role of amyloid-beta peptide alcohol dehydrogenase (ABAD). Int J Exp Pathol 2005; 86:161-71. [PMID: 15910550 PMCID: PMC2517415 DOI: 10.1111/j.0959-9673.2005.00427.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
An important means of determining how amyloid-beta peptide (Abeta) affects cells is to identify specific macromolecular targets and assess how Abeta interaction with such targets impacts on cellular functions. On the one hand, cell surface receptors interacting with extracellular Abeta have been identified, and their engagement by amyloid peptide can trigger intracellular signaling cascades. Recent evidence has indicated a potentially significant role for deposition of intracellular Abeta in cell stress associated with amyloidosis. Thus, specific intracellular targets of Abeta might also be of interest. Our review evaluates the potential significance of Abeta interaction with a mitochondrial enzyme termed Abeta-binding alcohol dehydrogenase (ABAD), a member of the short-chain dehydrogenase-reductase family concentrated in mitochondria of neurones. Binding of Abeta to ABAD distorts the enzyme's structure, rendering it inactive with respect to its metabolic properties, and promotes mitochondrial generation of free radicals. Double transgenic mice in which increased levels of ABAD are expressed in an Abeta-rich environment, the latter provided by a mutant amyloid precursor protein transgene, demonstrate accelerated decline in spatial learning/memory and pathologic changes. These data suggest that mitochondria ABAD, ordinarily a contributor to metabolic homeostasis, has the capacity to become a pathogenic factor in an Abeta-rich environment.
Collapse
Affiliation(s)
- Shi Du Yan
- Departments of Pathology, Surgery, Taub Institute for Research on Alzheimer's Disease and the Ageing Brain, College of Physicians & Surgeons of Columbia University, 650 West 168th Street, Black Building Rm. 17-01, New York, NY 10032, USA.
| | | |
Collapse
|
60
|
Vaisid T, Kosower NS, Barnoy S. Caspase-1 activity is required for neuronal differentiation of PC12 cells: cross-talk between the caspase and calpain systems. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1743:223-30. [PMID: 15843036 DOI: 10.1016/j.bbamcr.2005.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 01/11/2005] [Accepted: 01/11/2005] [Indexed: 01/29/2023]
Abstract
Previously, we have found that caspase-1 activity is increased during myoblast differentiation to myotubes. Here we show that caspase-1 activity is required for PC12 differentiation to neuronal-like cells. Caspase-1 is shown to be activated (by immunoblotting and by assessing activity in cell extracts) in the PC12 cells following the initial stage of differentiation. The inhibition of caspase-1 arrests PC12 cells at an intermediate stage of differentiation and prevents neurite outgrowth in these cells; the inhibition is reversed upon the removal of the inhibitor. Calpastatin (calpain endogenous specific inhibitor, and a known caspase substrate) is diminished at the later stages of PC12 cell differentiation, and diminution is prevented by caspase-1 inhibition. The degradation of fodrin (a known caspase and calpain substrate) is found in the advanced stage of differentiation. Caspase-1 has been implicated in the activation of proinflammatory cytokines, and in cell apoptosis. The involvement of caspase-1 in two distinct differentiation processes (myoblast fusion and neuronal differentiation of PC12 cells) indicates a function for this caspase in differentiation processes, and suggests some common mechanisms underlying caspase roles in such processes.
Collapse
Affiliation(s)
- T Vaisid
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
| | | | | |
Collapse
|
61
|
Yi H, Maruyama W, Akao Y, Takahashi T, Iwasa K, Youdim MBH, Naoi M. N-Propargylamine protects SH-SY5Y cells from apoptosis induced by an endogenous neurotoxin, N-methyl(R)salsolinol, through stabilization of mitochondrial membrane and induction of anti-apoptotic Bcl-2. J Neural Transm (Vienna) 2005; 113:21-32. [PMID: 15843867 DOI: 10.1007/s00702-005-0299-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 02/26/2005] [Indexed: 10/25/2022]
Abstract
Propargylamine derivatives, rasagiline and (-)deprenyl, are anti-Parkinson agents and protect neurons from cell death as shown by in vivo and in vitro experiments. The studies on the chemical structure-activity relationship proved that the propargyl moiety is essentially required for the neuroprotective function. In this paper, neuroprotective activity of free N-propargylamine was studied using SH-SY5Y cells expressing only type A monoamine oxidase (MAO) against apoptosis induced by an endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol. N-Propargylamine prevented apoptosis, whereas N-methylpropargylamine and propiolaldehyde did not. N-Propargylamine stabilized mitochondrial membrane potential and induced anti-apoptotic Bcl-2 at 1 microM-10 nM. N-Propargylamine inhibited MAO-A in competition to substrate with the apparent K(i) value of 28 microM, which was significantly higher than the concentration required for neuroprotection. It indicates that MAO inhibition is not prerequisite for the protective function of N-propargylamine. The anti-apoptotic function of N-propargylamine is discussed in terms of neuroprotection by propargylamines in neurodegenerative diseases, including Parkinson's disease.
Collapse
Affiliation(s)
- H Yi
- Department of Neurosciences, Gifu International Institute of Biotechnology, Kakamigahara, Gifu, Japan
| | | | | | | | | | | | | |
Collapse
|
62
|
Nunomura A, Chiba S, Lippa CF, Cras P, Kalaria RN, Takeda A, Honda K, Smith MA, Perry G. Neuronal RNA oxidation is a prominent feature of familial Alzheimer's disease. Neurobiol Dis 2004; 17:108-13. [PMID: 15350971 DOI: 10.1016/j.nbd.2004.06.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2003] [Revised: 02/19/2004] [Accepted: 06/03/2004] [Indexed: 11/24/2022] Open
Abstract
An in situ approach was used to identify the oxidized RNA nucleoside 8-hydroxyguanosine (8OHG) in the frontal cortex of familial Alzheimer's disease (FAD) with a mutation in presenilin-1 (PS-1) or amyloid beta protein precursor (AbetaPP) gene (n = 13, age 47-81 years). Neurons with marked 8OHG immunoreaction in the cytoplasm were widely distributed in the superior/middle frontal gyrus of FAD. Relative intensity measurements of neuronal 8OHG immunoreactivity showed that there was a significant increase in FAD compared with controls (n = 15, age 59-81 years), while there was no difference in relative 8OHG between the PS-1 and the AbetaPP FAD. Interestingly, a presymptomatic case carrying a PS-1 mutation showed a considerable level of relative 8OHG, and the increased levels of neuronal 8OHG in FAD were more prominent in cases with a lower percentage area of Abeta42 burden. These results suggest that oxidative stress is an early event involved in the pathological cascade of FAD.
Collapse
Affiliation(s)
- Akihiko Nunomura
- Department of Psychiatry and Neurology, Asahikawa Medical College, Asahikawa 078-8510, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Keil U, Bonert A, Marques CA, Scherping I, Weyermann J, Strosznajder JB, Müller-Spahn F, Haass C, Czech C, Pradier L, Müller WE, Eckert A. Amyloid beta-induced changes in nitric oxide production and mitochondrial activity lead to apoptosis. J Biol Chem 2004; 279:50310-20. [PMID: 15371443 DOI: 10.1074/jbc.m405600200] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence suggests an important role of mitochondrial dysfunction in the pathogenesis of Alzheimer's disease. Thus, we investigated the effects of acute and chronic exposure to increasing concentrations of amyloid beta (Abeta) on mitochondrial function and nitric oxide (NO) production in vitro and in vivo. Our data demonstrate that PC12 cells and human embryonic kidney cells bearing the Swedish double mutation in the amyloid precursor protein gene (APPsw), exhibiting substantial Abeta levels, have increased NO levels and reduced ATP levels. The inhibition of intracellular Abeta production by a functional gamma-secretase inhibitor normalizes NO and ATP levels, indicating a direct involvement of Abeta in these processes. Extracellular treatment of PC12 cells with comparable Abeta concentrations only leads to weak changes, demonstrating the important role of intracellular Abeta. In 3-month-old APP transgenic (tg) mice, which exhibit no plaques but already detectable Abeta levels in the brain, reduced ATP levels can also be observed showing the in vivo relevance of our findings. Moreover, we could demonstrate that APP is present in the mitochondria of APPsw PC12 cells. This presence might be directly involved in the impairment of cytochrome c oxidase activity and depletion of ATP levels in APPsw PC12 cells. In addition, APPsw human embryonic kidney cells, which produce 20-fold increased Abeta levels compared with APPsw PC12 cells, and APP tg mice already show a significantly decreased mitochondrial membrane potential under basal conditions. We suggest a hypothetical sequence of pathogenic steps linking mutant APP expression and amyloid production with enhanced NO production and mitochondrial dysfunction finally leading to cell death.
Collapse
Affiliation(s)
- Uta Keil
- Department of Pharmacology, Biocenter, University of Frankfurt, 60439 Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Eckert A, Marques CA, Keil U, Schüssel K, Müller WE. Increased apoptotic cell death in sporadic and genetic Alzheimer's disease. Ann N Y Acad Sci 2004; 1010:604-9. [PMID: 15033800 DOI: 10.1196/annals.1299.113] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mounting evidence indicates increased susceptibility to cell death and increased oxidative damage as common features in neurons from sporadic Alzheimer's disease (AD) patients but also from familial AD (FAD) cases. Autosomal dominant forms of FAD are caused by mutations of the amyloid precursor protein (APP) gene and by mutations of the genes encoding for presenilin 1 or presenilin 2 (PS1/2). We investigated the effect of the Swedish APP double mutation (APPsw) on oxidative stress-induced cell death mechanisms in PC12 cells. This mutation results in from three- to sixfold increased beta-amyloid (Abeta) production compared with wild-type APP (APPwt). Because APPsw cells secrete low Abeta levels similar to the situation in FAD brains, our cell model represents a very suitable approach to elucidate the AD-specific cell death pathways under more likely physiological conditions. We found that APPsw-bearing cells show decreased mitochondrial membrane potential after exposure to hydrogen peroxide. In addition, activity of the executor caspase 3 after treatment with hydrogen peroxide was elevated in APPsw cells, which seems to be the result of an enhanced activation of both intrinsic and extrinsic apoptosis pathways. Our findings provide evidence that the massive neurodegeneration in early age of FAD patients could be a consequence of an increased vulnerability of neurons by mitochondrial abnormalities resulting in activation of different apoptotic pathways as a consequence to elevated oxidative stress levels. Finally, we propose a hypothetical sequence of the pathogenic steps linking sporadic AD, FAD, Abeta production, mitochondrial dysfunction with caspase pathway, and neuronal loss.
Collapse
Affiliation(s)
- Anne Eckert
- Department of Pharmacology, Biocenter, University of Frankfurt, 60439 Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
65
|
Abstract
There are many lines of evidence showing that oxidative stress and aberrant mitogenic changes have important roles in the pathogenesis of Alzheimer's disease (AD). However, although both oxidative stress and cell cycle-related abnormalities are early events, occurring before any cytopathology, the relation between these two events, and their role in pathophysiology was, until recently, unclear. However, on the basis of studies of mitogenic and oxidative stress signalling pathways in AD, we proposed a "two-hit hypothesis" which states that although either oxidative stress or abnormalities in mitotic signalling can independently serve as initiators, both processes are necessary to propagate disease pathogenesis. In this paper, we summarise evidence for oxidative stress and abnormal mitotic alterations in AD and explain the two-hit hypothesis by describing how both mechanisms are necessary and invariant features of disease.
Collapse
Affiliation(s)
- Xiongwei Zhu
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
66
|
Reddy PH, McWeeney S, Park BS, Manczak M, Gutala RV, Partovi D, Jung Y, Yau V, Searles R, Mori M, Quinn J. Gene expression profiles of transcripts in amyloid precursor protein transgenic mice: up-regulation of mitochondrial metabolism and apoptotic genes is an early cellular change in Alzheimer's disease. Hum Mol Genet 2004; 13:1225-40. [PMID: 15115763 DOI: 10.1093/hmg/ddh140] [Citation(s) in RCA: 260] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the impairment of cognitive functions and by beta amyloid (Abeta) plaques in the cerebral cortex and the hippocampus. Our objective was to determine genes that are critical for cellular changes in AD progression, with particular emphasis on changes early in disease progression. We investigated an established amyloid precursor protein (APP) transgenic mouse model (the Tg2576 mouse model) for gene expression profiles at three stages of disease progression: long before (2 months of age), immediately before (5 months) and after (18 months) the appearance of Abeta plaques. Using cDNA microarray techniques, we measured mRNA levels in 11 283 cDNA clones from the cerebral cortex of Tg2576 mice and age-matched wild-type (WT) mice at each of the three time points. This gene expression analysis revealed that the genes related to mitochondrial energy metabolism and apoptosis were up-regulated in 2-month-old Tg2576 mice and that the same genes were up-regulated at 5 and 18 months of age. These microarray results were confirmed using northern blot analysis. Results from in situ hybridization of mitochondrial genes-ATPase-6, heat-shock protein 86 and programmed cell death gene 8-suggest that the granule cells of the hippocampal dentate gyrus and the pyramidal neurons in the hippocampus and the cerebral cortex are up-regulated in Tg2576 mice compared with WT mice. Results from double-labeling in situ hybridization suggest that in Tg2576 mice only selective, over-expressed neurons with the mitochondrial gene ATPase-6 undergo oxidative damage. These results, therefore, suggest that mitochondrial energy metabolism is impaired by the expression of mutant APP and/or Abeta, and that the up-regulation of mitochondrial genes is a compensatory response. These findings have important implications for understanding the mechanism of Abeta toxicity in AD and for developing therapeutic strategies for AD.
Collapse
Affiliation(s)
- P Hemachandra Reddy
- Neurogenetics Laboratory, Neurological Sciences Institute, Oregon Health and Science University, Beaverton, OR 97006, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Dong H, Goico B, Martin M, Csernansky CA, Bertchume A, Csernansky JG. Modulation of hippocampal cell proliferation, memory, and amyloid plaque deposition in APPsw (Tg2576) mutant mice by isolation stress. Neuroscience 2004; 127:601-9. [PMID: 15283960 DOI: 10.1016/j.neuroscience.2004.05.040] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2004] [Indexed: 12/29/2022]
Abstract
Tg2576 transgenic mice (mice overexpressing the "Swedish" mutation in the human amyloid precursor protein 695) demonstrated a decreased capacity for cell proliferation in the dentate gyrus of the hippocampus compared with non-transgenic littermates at 3 months, 6 months and 9 months of age. Isolation stress induced by individually housing each mouse from the time of weaning further decreased hippocampal cell proliferation in Tg2576 mice as well as in non-transgenic littermates at 6 months of age. Decreases in hippocampal cell proliferation in isolated Tg2576 mice were associated with impairments in contextual but not cued memory. Fluoxetine administration increased cell proliferation and improved contextual memory in isolated Tg2576 mice. Further, isolation stress accelerated the age-dependent deposition of beta-amyloid 42 plaques in Tg2576 mice. Numerous beta-amyloid plaques were found in isolated but not non-isolated Tg2576 mice at 6 months of age. These results suggest that Tg2576 mice, a mouse model of Alzheimer disease, have an impaired ability to generate new cells in the dentate gyrus of the hippocampus and that the magnitude of this impairment can be modulated by behavioral interventions and drugs known to have effects on hippocampal neurogenesis in normal rodents. Unexpectedly, isolation stress also appeared to accelerate the underlying process of beta-amyloid plaque deposition in Tg2576 mice. These results suggest that stress may have an impact on the underlying disease process associated with Alzheimer's disease.
Collapse
Affiliation(s)
- H Dong
- Department of Psychiatry, Washington University School of Medicine, Campus Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
68
|
Froestl B, Steiner B, Müller WE. Enhancement of proteolytic processing of the β-amyloid precursor protein by hyperforin. Biochem Pharmacol 2003; 66:2177-84. [PMID: 14609742 DOI: 10.1016/j.bcp.2003.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We studied the effect of hyperforin, a component of St. John's wort (Hypericum perforatum) extracts, on the processing of the amyloid precursor protein (APP) in rat pheochromocytoma PC12 cells, stably transfected with human wildtype APP. We observed transiently increased release of secretory APP fragments upon hyperforin treatment. Unique features, like a strong reduction of intracellular APP and the time course of soluble APP release, distinguished the effects of hyperforin from those of alkalizing agents and phorbol esters, well known activators of secretory processing of APP. Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), a protonophore, induced an almost identical decrease in intracellular pH in PC12 cells as does hyperforin. Despite this, FCCP induced a less pronounced release of soluble APP fragments and only slightly reduced intracellular APP levels. These results suggest that hyperforin is an activator of secretory processing of APP with a novel mechanism of action not solely dependent on its effects on intracellular pH.
Collapse
Affiliation(s)
- Bettina Froestl
- Department of Pharmacology, Biocenter, University of Frankfurt, Marie-Curie-Str. 9, D-60439 Frankfurt, Germany
| | | | | |
Collapse
|
69
|
Kögel D, Schomburg R, Schürmann T, Reimertz C, König HG, Poppe M, Eckert A, Müller WE, Prehn JHM. The amyloid precursor protein protects PC12 cells against endoplasmic reticulum stress-induced apoptosis. J Neurochem 2003; 87:248-56. [PMID: 12969271 DOI: 10.1046/j.1471-4159.2003.02000.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum (ER) stress is believed to play an important role in neurodegenerative disorders such as Alzheimer's disease. In the present study, we investigated the effect of the human amyloid precursor protein (APP) on the ER stress response in PC12 cells. Tunicamycin, an inhibitor of N-glycosylation, rapidly induced the expression of the ER-resident chaperone Bip/grp78, a known target gene of the unfolded protein response. Prolonged treatment with tunicamycin (>/= 12 h) resulted in the activation of executioner caspases 3 and 7. Interestingly, PC12 cells overexpressing human wild-type APP (APPwt) showed increased resistance to tunicamycin-induced apoptosis compared with empty vector-transfected controls. This neuroprotective effect was significantly diminished in cells expressing the Swedish mutation of APP (KM670/671NL). Similar effects were observed when ER stress was induced with brefeldin A, an inhibitor of ER-to-Golgi protein translocation. Of note, APP-mediated neuroprotection was not associated with altered expression of Bip/grp78 or transcription factor C/EBP homologous protein-10 (CHOP/GADD153), suggesting that APP acted either downstream or independently of ER-to-nucleus signaling. Our data indicate that APP plays an important physiological role in protecting neurons from the consequences of prolonged ER stress, and that APP mutations associated with familial Alzheimer's disease may impair this protective activity.
Collapse
Affiliation(s)
- Donat Kögel
- Interdisciplinary Center for Clinical Research (IZKF), Research Group Apoptosis and Cell Death, University Münster Clinics, Münster, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Eckert A, Keil U, Marques CA, Bonert A, Frey C, Schüssel K, Müller WE. Mitochondrial dysfunction, apoptotic cell death, and Alzheimer’s disease. Biochem Pharmacol 2003; 66:1627-34. [PMID: 14555243 DOI: 10.1016/s0006-2952(03)00534-3] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Being major sources of reactive oxygen species (ROS), mitochondrial structures are exposed to high concentrations of ROS and might therefore be particularly susceptible to oxidative injury. Mitochondrial damage may play a pivotal role in the cell death decision. Bolstered evidence indicates that mitochondrial abnormalities might be part of the spectrum of chronic oxidative stress occurring in Alzheimer's disease (AD) finally contributing to synaptic failure and neuronal degeneration. Accumulation and oligomerization of amyloid beta (Abeta) is also thought to play a central role in the pathogenesis of this disease by probably directly leading to mitochondrial dysfunction. Moreover, numerous lines of findings indicate increased susceptibility to apoptotic cell death and increased oxidative damage as common features in neurons from sporadic AD patients but also from familial AD (FAD) cases. Here we provide a summary of recent work demonstrating some key abnormalities that may initiate and promote pathological events in AD. Finally, we emphasize a hypothetical sequence of the pathogenic steps linking sporadic AD, FAD, and Abeta production with mitochondrial dysfunction, caspase pathway, and neuronal loss.
Collapse
Affiliation(s)
- Anne Eckert
- Department of Pharmacology, Biocenter, J.W. Goethe University of Frankfurt, Marie-Curie-Str. 9, D-60439 Frankfurt am Main, Germany.
| | | | | | | | | | | | | |
Collapse
|
71
|
Marques CA, Keil U, Bonert A, Steiner B, Haass C, Muller WE, Eckert A. Neurotoxic mechanisms caused by the Alzheimer's disease-linked Swedish amyloid precursor protein mutation: oxidative stress, caspases, and the JNK pathway. J Biol Chem 2003; 278:28294-302. [PMID: 12730216 DOI: 10.1074/jbc.m212265200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Autosomal dominant forms of familial Alzheimer's disease (FAD) are caused by mutations of the amyloid precursor protein (APP) gene and by mutations of the genes encoding for presenilin 1 or presenilin 2. Simultaneously, evidence is provided that increased oxidative stress might play a crucial role in the rapid progression of the Swedish FAD. Here we investigated the effect of the Swedish double mutation (K670M/N671L) in the beta-amyloid precursor protein on oxidative stress-induced cell death mechanisms in PC12 cells. Western blot analysis and cleavage studies of caspase substrates revealed an elevated activity of the executor caspase 3 after treatment with hydrogen peroxide in cells containing the Swedish APP mutation. This elevated activity is the result of the enhanced activation of both intrinsic and extrinsic apoptosis pathways, including activation of caspase 2 and caspase 8. Furthermore, we observed an enhanced activation of JNK pathway and an attenuation of apoptosis by SP600125, a JNK inhibitor, through protection of mitochondrial dysfunction and reduction of caspase 9 activity. Our findings provide evidence that the massive neurodegeneration in early age of FAD patients could be a result of an increased vulnerability of neurons through activation of different apoptotic pathways as a consequence of elevated levels of oxidative stress.
Collapse
Affiliation(s)
- Celio A Marques
- Department of Pharmacology, Biocenter, University of Frankfurt, 60439 Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
72
|
Kashour T, Burton T, Dibrov A, Amara FM. Late Simian virus 40 transcription factor is a target of the phosphoinositide 3-kinase/Akt pathway in anti-apoptotic Alzheimer's amyloid precursor protein signalling. Biochem J 2003; 370:1063-75. [PMID: 12472467 PMCID: PMC1223229 DOI: 10.1042/bj20021197] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2002] [Revised: 12/02/2002] [Accepted: 12/10/2002] [Indexed: 12/11/2022]
Abstract
The association of familial Alzheimer's disease (FAD) with mutations in Alzheimer's amyloid precursor protein (APP) suggests important functions for APP in the central nervous system. Mutations in APP impair its function to confer resistance to apoptosis in cells under stress, and this may contribute to neurodegeneration in Alzheimer's disease (AD) brain, but the mechanisms involved are unknown. We examined the role of the late Simian virus 40 transcription factor (LSF), in anti-apoptotic APP pathways. We show that in APP-deficient B103 cells, expression of wild-type human APP (hAPPwt), but not of FAD-mutant APP, inhibited staurosporine (STS)-induced apoptosis. This inhibition was further enhanced by expression of LSFwt, although LSFwt alone was not sufficient to inhibit STS-induced apoptosis. In contrast, expression of dominant-negative LSF led to a marked increase in STS-induced cell death that was significantly blocked by hAPPwt. These effects of APP were accompanied by LSF nuclear translocation and dependent gene transcription. The activation of LSF is dependent on the expression of hAPPwt and is inhibited by the expression of dominant-negative forms of either phosphoinositide 3-kinase or Akt. These results demonstrate that LSF activation is required for the neuroprotective effects of APP via phosphoinositide 3-kinase/Akt signalling. Alterations in this pathway by aberrations in APP and/or LSF could promote neuronal loss in AD brain, due to secondary insults. Thus a link is established between APP and LSF and AD.
Collapse
Affiliation(s)
- Tarek Kashour
- Section of Cardiology, Department of Medicine, St. Boniface General Hospital, The University of Manitoba, 770 Bannatyne Avenue, Winnipeg, MB, Canada R3E 0W3
| | | | | | | |
Collapse
|
73
|
Burton TR, Dibrov A, Kashour T, Amara FM. Anti-apoptotic wild-type Alzheimer amyloid precursor protein signaling involves the p38 mitogen-activated protein kinase/MEF2 pathway. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 108:102-20. [PMID: 12480183 DOI: 10.1016/s0169-328x(02)00519-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer amyloid precursor protein (APP) effectively protects against apoptosis in neuronal cells under stress, but the mechanisms of this anti-apoptotic effect remain largely unknown. Transcription factors act as critical molecular switches in promoting neuronal survival. The myocyte enhancer factor-2 (MEF2) is a transcription factor, and is known to be necessary for neurogenesis and activity-dependent neuronal survival. This study examined the possible role of MEF2 in the anti-apoptotic signaling pathways activated by APP. We report that expression of wild-type human APP (hAPPwt) but not familial Alzheimer's disease mutant APP (FAD-hAPPmut) in APP-deficient rat B103 cells led to a significant increase in the level of phosphorylated MEF2. This differential phosphorylation was dependent on enhanced activation of p38 mitogen-activated protein kinase (p38 MAPK). Also, expression of hAPPwt mediated an increase in MEF2 DNA binding affinity that correlated with p38 MAPK-dependent trans-activation of a MEF2-responsive reporter gene. Furthermore, over-expression of dominant negative MEF2 in hAPPwt-expressing cells enhanced staurosporine-induced apoptosis, in contrast MEF2wt enhanced the capacity of hAPPwt to confer resistance to apoptosis. Thus, MEF2 plays a critical role in APP-mediated signaling pathways that inhibit neuronal apoptosis. A model of anti-apoptotic APP signaling is proposed where APP mediates p38 MAPK-dependent phosphorylation and activation of MEF2. Once activated MEF2 regulates neuronal survival by stimulation of MEF2-dependent gene transcriptions. Alteration of this function by mutations in APP and aberrant APP processing could contribute to neuronal degeneration seen in AD.
Collapse
Affiliation(s)
- Teralee R Burton
- The Dr. John Foerster Center for Health Research on Aging, St. Boniface General Hospital Research Center, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada
| | | | | | | |
Collapse
|
74
|
Onoue S, Endo K, Ohshima K, Yajima T, Kashimoto K. The neuropeptide PACAP attenuates beta-amyloid (1-42)-induced toxicity in PC12 cells. Peptides 2002; 23:1471-8. [PMID: 12182949 DOI: 10.1016/s0196-9781(02)00085-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) modulates neurotransmission in the central and peripheral nervous systems. In vitro and in vivo studies have shown the protective effects of PACAP against neuronal damage induced by ischemia and agonists of NMDA-type glutamate receptors. Here, we demonstrated that PACAP also protected against neuronal toxicity induced by beta-amyloid (Abeta) peptide, aggregation of which is a causative factor for Alzheimer's disease. PACAP (10(-9)M) rescued 80% of decreased cell viability and 50% of elevated caspase-3 activity that resulted from exposure of PC12 cells to Abeta. PACAP was at least 10(4)-fold more effective than other neuropeptides including vasoactive intestinal peptide (VIP) and humanin, which correlated with the level of cAMP accumulation. Thus, our results suggested that PACAP attenuates Abeta-induced cell death in PC12 cells through an increase in cAMP and that caspase-3 deactivation by PACAP is involved in the signaling pathway for this neuroprotection.
Collapse
Affiliation(s)
- Satomi Onoue
- Health Science Division, Central Research Institute Itoham Foods Inc., 1-2-1 Kubogaoka, Moriya, Ibaraki 302-0104, Japan.
| | | | | | | | | |
Collapse
|
75
|
Sennvik K, Nilsberth C, Stenh C, Lannfelt L, Benedikz E. The Arctic Alzheimer mutation enhances sensitivity to toxic stress in human neuroblastoma cells. Neurosci Lett 2002; 326:51-5. [PMID: 12052536 DOI: 10.1016/s0304-3940(02)00305-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The E693G (Arctic) mutation of the amyloid precursor protein was recently found to lead to early-onset Alzheimer's disease in a Swedish family. In the present study, we report that the Arctic mutation decreases cell viability in human neuroblastoma cells. The cell viability, as measured by the MTT assay and propidium iodide staining, was further compromised following exposure to calcium ionophore A23187, microtubule-binding colchicine or oxidative stress inducer hydrogen peroxide. The manner of cell death was found to be apoptotic. During apoptosis, cells with the Arctic mutation also decreased their secretion of beta-secretase cleaved amyloid precursor protein. The enhanced sensitivity to toxic stress in cells with the Arctic mutation most likely contributes to the pathogenic pathway leading to Alzheimer's disease.
Collapse
Affiliation(s)
- Kristina Sennvik
- Section of Experimental Geriatrics, Neurotec, Karolinska Institutet, KFC Novum, plan 4, 141 86 Huddinge, Sweden.
| | | | | | | | | |
Collapse
|
76
|
Gibson GE. Interactions of oxidative stress with cellular calcium dynamics and glucose metabolism in Alzheimer's disease. Free Radic Biol Med 2002; 32:1061-70. [PMID: 12031890 DOI: 10.1016/s0891-5849(02)00802-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Considerable evidence suggests that oxidative stress (elevated levels of reactive oxygen species), altered energy metabolism, and changes in calcium dynamics are central to Alzheimer's disease (AD). Abnormalities in each of these processes occur in AD, and they can be plausibly linked to the pathology and clinical outcome of the disease. Abnormalities in these same processes in peripheral tissues, such as fibroblasts, indicate that these are inherent properties of AD cells and are not merely a secondary response to neurodegeneration. Results in cultured cells including fibroblasts demonstrate that oxidative stress can lead to the AD-related changes in calcium and energy metabolism. Data also suggest that abnormalities in the cellular calcium stores, the ability to handle oxidative stress, and to respond to metabolic impairment link the AD-causing gene mutations to the disease process. Abnormal metabolism and oxidative stress alter the proteins and cellular processes that are modified in AD, and can be readily linked to neuronal death and brain dysfunction. Prevention and/or correction of these abnormalities are appropriate therapeutic targets.
Collapse
Affiliation(s)
- Gary E Gibson
- Weill Medical College of Cornell University, Burke Medical Research Institute, White Plains, NY 10605, USA.
| |
Collapse
|