51
|
Wang J, Hao L, Zhou X, He W, Hu M. Clinical application of traditional Chinese medicine moisture exposed burn ointment in the treatment of facial soft tissue defect. J Cosmet Dermatol 2021; 21:2481-2487. [PMID: 34536323 DOI: 10.1111/jocd.14404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/06/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To introduce a new method of treating facial soft tissue defect by observing the clinical curative effects of traditional Chinese medicine moisture exposed burn ointment in treating facial soft tissue defect. METHODS A total of 85 patients with facial soft tissue defects were treated with traditional Chinese medicine moisture exposed burn ointment, and the clinical therapeutic effects were analyzed by observing the wound healing time, scar formation and changes of facial appearance and functions. RESULTS Of the 85 patients, the shortest wound healing time was 12 days and the longest was 72 days; the facial appearance and functions restored to be normal in 74 patients, with good skin elasticity and mild scar formation in the wound area; 11 patients were lost to the follow-up; two patients suffered from the longest wound healing time due to their skin defect of nasal tip and nasal columella and the cartilage defect of nasal wings, and V-shaped defects were left at the edge of the left nostrils after the wound healing, which may be attributed to the ineffectiveness of MEBT/MEBO on cartilage. CONCLUSION Traditional Chinese medicine moisture exposed burn ointment can realize more satisfying healing effects when applied in the treatment of facial soft tissue defects, including user-friendly operation, no special requirements for medical devices, obviously lower treatment cost, etc., and thus it is an easy-to-operate and effective way for such patients, especially for elderly patients, patients with poor body conditions and patients unbearable to undergo complicated operations.
Collapse
Affiliation(s)
- Jun Wang
- Department of Stomatology, Ankang Hospital of Traditional Chinese Medicine, Shaanxi Ankang, China
| | - Lanqing Hao
- Department of Stomatology, Ankang Hospital of Traditional Chinese Medicine, Shaanxi Ankang, China
| | - Xiaolong Zhou
- Department of Stomatology, Ankang Hospital of Traditional Chinese Medicine, Shaanxi Ankang, China
| | - Wanggang He
- Department of Stomatology, Ankang Hospital of Traditional Chinese Medicine, Shaanxi Ankang, China
| | - Ming Hu
- Department of Stomatology, Ankang Hospital of Traditional Chinese Medicine, Shaanxi Ankang, China
| |
Collapse
|
52
|
Islam MA, Jeong BG, Kerr WL, Chun J. Validation of phytosterol analysis by alkaline hydrolysis and trimethylsilyl derivatization coupled with gas chromatography for rice products. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
53
|
Manivannan V, Johnson MAA, Almeida RS, Coutinho HD. Chemical profiling of Tectaria paradoxa (Fee.) Sledge and Bolbitis appendiculata (Willd.) K. Iwats using UHPLC. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
54
|
Rabah S, Kouachi K, Ramos PAB, Gomes AP, Almeida A, Haddadi-Guemghar H, Madani K, Silvestre AJD, Santos SAO. Unveiling the bioactivity of Allium triquetrum L. lipophilic fractions: chemical characterization and in vitro antibacterial activity against methicillin-resistant Staphylococcus aureus. Food Funct 2021; 11:5257-5265. [PMID: 32458905 DOI: 10.1039/d0fo00769b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The lipophilic composition of Allium triquetrum L. bulbs, flowers and leaves was studied for the first time by GC-MS. Sixty compounds were firstly identified in A. triquetrum L. Fatty acids represented the major lipophilic family among the studied extracts, with (9Z,12Z,15Z)-octadeca-9,12,15-trienoic and (9Z,12Z)-octadeca-9,12-dienoic acids being the major constituents of this family. A long chain aliphatic ketone, namely hentriacontan-16-one, was mainly found in flowers and leaves. Flowers and leaves were also found to be rich in long chain aliphatic alkanes and alcohols, respectively. Sterols, monoglycerides, aromatic compounds and long chain aliphatic aldehydes were found in lower amounts. The antibacterial activity of A. triquetrum bulb, flower and leaf extracts against methicillin-resistant Staphylococcus aureus (MRSA) growth was in vitro assessed. Bulb and flower extracts showed significant MRSA growth inhibition. Overall, these valuable findings can contribute to the valorization of A. triquetrum L. as a source of value-added phytochemicals, specifically as antibacterial agents and for nutraceutical applications.
Collapse
Affiliation(s)
- Samia Rabah
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algérie
| | - Kahina Kouachi
- Faculté des Sciences de la Nature et de la Vie, Département des Troncs Communs, Université de Bejaia, 06000 Bejaia, Algérie and Laboratoire de Physico-Chimie des Matériaux et Catalyse, Faculté des Sciences Exactes, Université de Bejaia, 06000 Bejaia, Algérie
| | - Patrícia A B Ramos
- CICECO - Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal. and LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Peixoto Gomes
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Hayate Haddadi-Guemghar
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algérie
| | - Khodir Madani
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algérie and Centre de recherche en technologie agro-alimentaire, Route de Targua-ouzemour, 06000 Bejaia, Algérie
| | - Armando J D Silvestre
- CICECO - Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Sónia A O Santos
- CICECO - Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
55
|
β-Sitosterol Alters the Inflammatory Response in CLP Rat Model of Sepsis by Modulation of NF κB Signaling. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5535562. [PMID: 33997001 PMCID: PMC8105092 DOI: 10.1155/2021/5535562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/29/2021] [Accepted: 04/17/2021] [Indexed: 11/20/2022]
Abstract
Purpose Sepsis originates from the host inflammatory response, especially to bacterial infections, and is considered one of the main causes of death in intensive care units. Various agents have been developed to inhibit mediators of the inflammatory response; one prospective agent is β-sitosterol (βS), a phytosterol with a structure similar to cholesterol. This study is aimed at evaluating the effects of βS on the biomarkers of inflammation and liver function in cecal ligation and puncture- (CLP-) induced septic rats. Methods Thirty male Wistar rats were divided equally into six groups as follows: sham, CLP, CLP+dexamethasone (DX, 0.2 mg/kg), CLP+βS (1 mg/kg), CLP+imipenem (IMI, 20 mg/kg), and CLP+IMI (20 mg/kg)+βS (1 mg/kg). Serum levels of IL-1β, IL-6, IL-10, AST, ALT, and liver glutathione (GSH) were assessed by ELISA. Liver expression levels of TNF-α and NF-κBi mRNAs were evaluated by RT-qPCR. Results Serum concentrations of IL-1β, IL-6, IL-10, ALT, and AST and mRNA levels of TNF-α and NF-κBi were all significantly higher in septic rats than in normal rats (p < 0.05). Liver GSH content was markedly lower in the CLP group than that in the sham group. βS-treated rats had remarkably lower levels of IL-1β, IL-6, IL-10, TNF-α, NF-κBi, AST, and ALT (51.79%, 62.63%, 41.46%, 54.35%, 94.37%, 95.30%, 34.87%, and 46.53% lower, respectively) and greater liver GSH content (35.71% greater) compared to the CLP group (p < 0.05). Conclusion βS may play a protective role in the septic process by mitigating inflammation. This effect is at least partly mediated by inhibition of the NF-κB signaling pathway. Thus, βS can be considered as a supplementary treatment in septic patients.
Collapse
|
56
|
Chen J, Zhang Y, Wang Y, Jiang P, Zhou G, Li Z, Yang J, Li X. Potential mechanisms of Guizhi decoction against hypertension based on network pharmacology and Dahl salt-sensitive rat model. Chin Med 2021; 16:34. [PMID: 33906674 PMCID: PMC8077739 DOI: 10.1186/s13020-021-00446-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
Background Guizhi decoction (GZD), a classical Chinese herbal formula, has been widely used to treat hypertension, but its underlying mechanisms remain elusive. The present study aimed to explore the potential mechanisms and therapeutic effects of GZD on hypertension by integrating network pharmacology and experimental validation. Methods The active ingredients and corresponding targets were collected from the Traditional Chinese Medicine Systems Pharmacology database and Analysis Platform (TCMSP). The targets related to hypertension were identified from the CTD, GeneCards, OMIM and Drugbank databases. Multiple networks were constructed to identify the key compounds, hub targets, and main biological processes and pathways of GZD against hypertension. The Surflex-Dock software was used to validate the binding affinity between key targets and their corresponding active compounds. The Dahl salt-sensitive rat model was used to evaluate the therapeutic effects of GZD against hypertension. Results A total of 112 active ingredients, 222 targets of GZD and 341 hypertension-related targets were obtained. Furthermore, 56 overlapping targets were identified, five of which were determined as the hub targets for experimental verification, including interleukin 6 (IL-6), C–C motif chemokine 2 (CCL2), IL-1β, matrix metalloproteinase 2 (MMP-2), and MMP-9. Pathway enrichment analysis results indicated that 56 overlapping targets were mainly enriched in several inflammation pathways such as the tumor necrosis factor (TNF) signaling pathway, Toll-like receptor (TLR) signaling pathway and nuclear factor kappa-B (NF-κB) signaling pathway. Molecular docking confirmed that most active compounds of GZD could bind tightly to the key targets. Experimental studies revealed that the administration of GZD improved blood pressure, reduced the area of cardiac fibrosis, and inhibited the expression of IL-6, CCL2, IL-1β, MMP-2 and MMP-9 in rats. Conclusion The potential mechanisms and therapeutic effects of GZD on hypertension may be attributed to the regulation of cardiac inflammation and fibrosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00446-x.
Collapse
Affiliation(s)
- Jiye Chen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yongjian Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yongcheng Wang
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Ping Jiang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Guofeng Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Zhaoyu Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jinlong Yang
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Xiao Li
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China.
| |
Collapse
|
57
|
Dash R, Mitra S, Ali MC, Oktaviani DF, Hannan MA, Choi SM, Moon IS. Phytosterols: Targeting Neuroinflammation in Neurodegeneration. Curr Pharm Des 2021; 27:383-401. [PMID: 32600224 DOI: 10.2174/1381612826666200628022812] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/02/2020] [Indexed: 11/22/2022]
Abstract
Plant-derived sterols, phytosterols, are well known for their cholesterol-lowering activity in serum and their anti-inflammatory activities. Recently, phytosterols have received considerable attention due to their beneficial effects on various non-communicable diseases, and recommended use as daily dietary components. The signaling pathways mediated in the brain by phytosterols have been evaluated, but little is known about their effects on neuroinflammation, and no clinical studies have been undertaken on phytosterols of interest. In this review, we discuss the beneficial roles of phytosterols, including their attenuating effects on inflammation, blood cholesterol levels, and hallmarks of the disease, and their regulatory effects on neuroinflammatory disease pathways. Despite recent advancements made in phytosterol pharmacology, some critical questions remain unanswered. Therefore, we have tried to highlight the potential of phytosterols as viable therapeutics against neuroinflammation and to direct future research with respect to clinical applications.
Collapse
Affiliation(s)
- Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Sarmistha Mitra
- Plasma Bioscience Research Center, Plasma Bio-display, Kwangwoon University, Seoul-01897, Korea
| | - Md Chayan Ali
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia-7003, Bangladesh
| | - Diyah Fatimah Oktaviani
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Sung Min Choi
- Department of Pediatrics, Dongguk University College of Medicine, Gyeongju-38066, Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| |
Collapse
|
58
|
Chen YH, Lei SS, Li B, Luo R, He X, Wang YZ, Zhou FC, Lv GY, Chen SH. Systematic Understanding of the Mechanisms of Flos Chrysanthemi Indici-mediated Effects on Hypertension via Computational Target Fishing. Comb Chem High Throughput Screen 2021; 23:92-110. [PMID: 31969096 DOI: 10.2174/1386207323666200122105410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 02/08/2023]
Abstract
AIMS AND OBJECTIVE Hypertension-induced stroke and coronary artery disease are significant causes of global morbidity and mortality. Metabolic hypertension has recently become the leading cause of hypertension. Flos Chrysanthemi Indici (CIF) has a long history as a treatment of hypertension as part of traditional Chinese medicine. However, its mechanisms of activity remain largely unknown. This study was aimed to uncover the potential anti-hypertensive mechanisms of CIF based on network pharmacology. MATERIALS AND METHODS In this research, a systems pharmacology approach integrating the measurement of active compounds, target fishing, gene screening, Gene Ontology (GO) pathway analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology Based Annotation System (KOBAS) database analysis, and compound-target network construction were performed to explore the anti-hypertensive mechanisms of CIF. RESULTS These studies revealed that 12 bioactive compounds in CIF had good druggability, 5 of which were flavonoids. After screening, 8 of those 12 bioactive compounds interacted with 118 hypertensionrelated target genes, which were mapped to 218 signal pathways. Network analysis showed that these targets were associated with improving insulin resistance, improving vascular function, inhibiting renninangiotensin- aldosterone system (RAAS), inhibiting the sympathetic nervous system (SNS) and regulating other physiological processes. CONCLUSION In summary, CIF is predicted to target multiple proteins and pathways to form a network that exerts systematic pharmacological effects in order to regulate blood pressure and metabolic disorder.
Collapse
Affiliation(s)
- Ye-Hui Chen
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Shan-Shan Lei
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Bo Li
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Rong Luo
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xinglishang He
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yu-Zhi Wang
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Fu-Chen Zhou
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Gui-Yuan Lv
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Su-Hong Chen
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
59
|
Lytra K, Tomou EM, Chrysargyris A, Christofi MD, Miltiadous P, Tzortzakis N, Skaltsa H. Bio-Guided Investigation of Sideritis cypria Methanol Extract Driven by in Vitro Antioxidant and Cytotoxic Assays. Chem Biodivers 2021; 18:e2000966. [PMID: 33594798 DOI: 10.1002/cbdv.202000966] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Sideritis cypria Post is an endemic and endangered species of Northern Cyprus. The overall aim of the present study was to evaluate the total phenolic content, the antioxidant, the cytotoxic and the antimicrobial activity of the methanol extract obtained from the aerial parts of cultivated S. cypria. A bio-guided approach led to the isolation of 27 chemical compounds by using various analytical techniques. Their structures were elucidated on the basis of 1D and 2D NMR spectroscopy. The crude extract exerted strong antioxidant activity (DPPH and FRAP assays) which was attributed to its high total phenolic content. Furthermore, groups rich in phenolic content showed highest antioxidant property, whereas groups with phytosterols, diterpenoids and apigenin derivatives exerted cytotoxic effects in MDA-MB231 cancer cell line by the MTT method. Moreover, the cytotoxic activity of four isolated apigenin derivatives was evaluated in the same cancer cells. The antimicrobial activity of the extract and groups were measured, demonstrating lack of activity. To the best of our knowledge, this survey is the first report on the biological activities of the methanol extract of S. cypria.
Collapse
Affiliation(s)
- Krystalia Lytra
- Department of Pharmacognosy and Chemistry of Natural Products, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Ekaterina-Michaela Tomou
- Department of Pharmacognosy and Chemistry of Natural Products, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Antonios Chrysargyris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036, Limassol, Cyprus
| | - Maria-Dolores Christofi
- Department of Nursing, School of Health Sciences, Cyprus University of Technology, 3041, Limassol, Cyprus
| | - Panagiota Miltiadous
- Department of Nursing, School of Health Sciences, Cyprus University of Technology, 3041, Limassol, Cyprus
| | - Nikolaos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036, Limassol, Cyprus
| | - Helen Skaltsa
- Department of Pharmacognosy and Chemistry of Natural Products, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| |
Collapse
|
60
|
Qiu C, Lei M, Lee WJ, Zhang N, Wang Y. Fabrication and characterization of stable oleofoam based on medium-long chain diacylglycerol and β-sitosterol. Food Chem 2021; 350:129275. [PMID: 33601090 DOI: 10.1016/j.foodchem.2021.129275] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/08/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
Oleofoams have emerged as attractive low-calorie aeration systems, but saturated lipids or large amount of surfactants are commonly required. Herein, an innovative strategy was proposed to create oleofoams using medium-long chain diacylglycerol (MLCD) and β-sitosterol (St). The oleofoams prepared using MLCD and St in ratios of 15:5 and 12:8 exhibited smaller bubble size and much higher stability. MLCD crystals formed rigid Pickering shell, whereby air bubbles acted as "active fillers" leading to enhanced rigidity. Both Pickering and network stabilization for the MLCD-St oleofoam provided a steric hindrance against coalescence. The gelators interacted via hydrogen bonding, causing a condensing effect in improving the gel elasticity. The oleofoams and foam-based emulsions exhibited a favorable capacity in controlling volatile release where the maximum headspace concentrations and partition coefficients showed a significantly decrease. Overall, the oleofoams have shown great potential for development of low-calorie foods and delivery systems with enhanced textural and nutritional features.
Collapse
Affiliation(s)
- Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Mengting Lei
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Wan Jun Lee
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Ning Zhang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China.
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China.
| |
Collapse
|
61
|
Jie F, Yang X, Wu L, Wang M, Lu B. Linking phytosterols and oxyphytosterols from food to brain health: origins, effects, and underlying mechanisms. Crit Rev Food Sci Nutr 2021; 62:3613-3630. [PMID: 33397124 DOI: 10.1080/10408398.2020.1867819] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phytosterols and their oxidation products, namely oxyphytosterols, are natural compounds present in plant foods. With increased intake of phytosterol-enriched functional food products, the exposure of both phytosterols and oxyphytosterols is rising. Over the past ten years, researches have been focused on their absorption and metabolism in human body, as well as their biological effects. More importantly, recent studies showed that phytosterols and oxyphytosterols can traverse the blood-brain barrier and accumulate in the brain. As brain health problems resulting from ageing being more serious, attenuating central nervous system (CNS) disorders with active compounds in food are becoming a hot topic. Phytosterols and oxyphytosterols have been shown to implicated in cognition altering and the pathologies of several CNS disorders, including Alzheimer's disease and multiple sclerosis. We will overview these findings with a focus on the contents of phytosterols and oxyphytosterols in food and their dietary intake, as well as their origins in the brain, and illustrate molecular pathways through which they affect brain health, in terms of inflammation, cholesterol homeostasis, oxidative stress, and mitochondria function. The existing scientific gaps of phytosterols and oxyphytosterols to brain health in knowledge are also discussed, highlighting research directions in the future.
Collapse
Affiliation(s)
- Fan Jie
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xuan Yang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Lipeng Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Mengmeng Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
62
|
Kavithaa K, Paulpandi M, Ramya S, Ramesh M, Balachandar V, Ramasamy K, Narayanasamy A. Sitosterol-fabricated chitosan nanocomplex induces apoptotic cell death through mitochondrial dysfunction in lung cancer animal model: an enhanced synergetic drug delivery system for lung cancer therapy. NEW J CHEM 2021. [DOI: 10.1039/d1nj00913c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lung carcinoma is an aggressive form of cancer, with an increasing rate of morbidity, dismal outlook, poor prognosis and limited therapeutic approaches.
Collapse
Affiliation(s)
- Krishnamoorthy Kavithaa
- Disease Proteomics Laboratory
- Department of Zoology
- Bharathiar University
- Coimbatore-641046
- India
| | - Manickam Paulpandi
- Disease Proteomics Laboratory
- Department of Zoology
- Bharathiar University
- Coimbatore-641046
- India
| | - Sennimalai Ramya
- Disease Proteomics Laboratory
- Department of Zoology
- Bharathiar University
- Coimbatore-641046
- India
| | - Mathan Ramesh
- Unit of Toxicology
- Department of Zoology
- School of Life Sciences
- Bharathiar University
- Coimbatore
| | - Vellingiri Balachandar
- Human Molecular Cytogenetics and Stem Cell Laboratory
- Department of Human Genetics and Molecular Biology
- Bharathiar University
- Coimbatore-641046
- India
| | - Karthikeyan Ramasamy
- Department of Biochemistry and Biotechnology
- Annamalai University
- Tamil Nadu – 608002
- India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory
- Department of Zoology
- Bharathiar University
- Coimbatore-641046
- India
| |
Collapse
|
63
|
V. E, Krishnan K, Bhattacharyya A, R. S. Advances in Ayurvedic medicinal plants and nanocarriers for arthritis treatment and management: A review. J Herb Med 2020. [DOI: 10.1016/j.hermed.2020.100412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
64
|
Chen Z, Wu A, Jin H, Liu F. β-Sitosterol attenuates liver injury in a rat model of chronic alcohol intake. Arch Pharm Res 2020; 43:1197-1206. [PMID: 33155166 DOI: 10.1007/s12272-020-01271-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 10/13/2020] [Indexed: 12/17/2022]
Abstract
Liver disease associated with long-term drinking is one of the leading causes of death. There is an urgent need for more effective drugs to reduce alcoholic liver damage. Yin Chen Hao, a traditional Chinese herbal medicine, is widely used for liver diseases. Here, we aimed to explore the protective effect of β-sitosterol (the active ingredient of Artemisia spp.) on alcoholic liver injuries. We treated the rats with alcohol and different dosages of β-sitosterol to detect the expression levels of liver function indicators in serum. The functions of β-sitosterol were evaluated based on variations in histology, liver function indicators and DNA oxidative damages. The underlying mechanism was investigated by measuring lipid peroxidation, the antioxidant, the expression of cytochrome P450 2E1 and the expression of apoptosis related genes. The results showed that β-sitosterol could improve liver histology and suppress biochemical indicators caused by alcohol in serum. In addition, β-sitosterol alleviates alcohol-induced oxidative stress, such as restoring erythrocyte membrane fluidity, reducing glutathione depletion, restoring antioxidant enzyme activity and reducing malondialdehyde overproduction. Furthermore, β-sitosterol downregulated the expression of apoptosis-related genes through the PI3K/Akt pathway. In conclusion, β-sitosterol has a protective effect on chronic alcoholism and has broad clinical application prospects in the treatment of alcohol-induced liver damage.
Collapse
Affiliation(s)
- Zhenjuan Chen
- Hepatology Department, Qingdao No.6 People's Hospital, No.9, Fushun Road, Shibei District, Qingdao, Shandong, 266033, People's Republic of China
| | - Ancheng Wu
- Hepatology Department, Qingdao No.6 People's Hospital, No.9, Fushun Road, Shibei District, Qingdao, Shandong, 266033, People's Republic of China
| | - Hongmei Jin
- Hepatology Department, Qingdao No.6 People's Hospital, No.9, Fushun Road, Shibei District, Qingdao, Shandong, 266033, People's Republic of China
| | - Fuhui Liu
- Hepatology Department, Qingdao No.6 People's Hospital, No.9, Fushun Road, Shibei District, Qingdao, Shandong, 266033, People's Republic of China.
| |
Collapse
|
65
|
Dar KB, Khan IS, Amin S, Ganie AH, Bhat AH, Dar SA, Reshi BA, Ganie SA. Active Cousinia thomsonii Extracts Modulate Expression of Crucial Proinflammatory Mediators/Cytokines and NFκB Cascade in Lipopolysaccharide-Induced Albino Wistar Rat Model. J Inflamm Res 2020; 13:829-845. [PMID: 33173324 PMCID: PMC7646511 DOI: 10.2147/jir.s272539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 08/28/2020] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Chronic inflammation is implicated in a multitude of diseases, including arthritis, neurodegeneration, autoimmune myositis, type 2 diabetes, rheumatic disorders, spondylitis, and cancer. Therefore, strategies to explore potent anti-inflammatory regimens are pivotal from a human-health perspective. Medicinal plants represent a vast unexplored treasure trove of therapeutically active constituents with diverse pharmacological activities, including anti-inflammatory properties. Herein, we evaluated Cousinia thomsonii, an edible medicinal herb, for its anti-inflammatory/immunomodulatory properties. METHODS Soxhlet extraction was used to obtain different solvent extracts (hexane, ethyl acetate, ethanol, methanol, and aqueous extract) in increasing order of polarity. In vitro anti-inflammatory assays were performed to investigate the effects of extracts on protein denaturation, proteinase activity, nitric oxide surge, and erythrocyte-membrane stabilization. The most effective extracts, ie, ethyl acetate (CTEA) and ethanol (CTE) extracts (150-200 g) were selected for further in vivo analysis using albino Wistar rats. Wistar rats received varying concentrations of CTEA and CTE (25, 50, and 100 mg/kg) for 3 weeks, followed by a single subplantar injection of lipopolysaccharide. Dexamethasone served as positive control. Blood was obtained from the retro-orbital plexus and serum separated for estimation of proinflammatory cytokines (IL6, IL1β, IFNγ and TNFα). Western blotting was performed to study expression patterns of crucial proteins implicated in the NFκB pathway, ie, NFκB p65, NFκB1 p50, and NFκB2 p52. Histopathological examination was done and gas chromatography-mass spectrometry (GC-MS) carried out to reveal the identity of compounds responsible for ameliorating effects of C. thomsonii. RESULTS Among five tested extracts, CTEA and CTE showed marked inhibition of protein denaturation, proteinase activity, nitric oxide surge and erythrocyte-membrane hemolysis at 600 μg/mL (P<0.001). Both these extracts showed no toxic effects up to a dose of 2,500 mg/kg. Extracts exhibited concentration-dependent reductions in expression of IL6, IL1β, IFNγ, TNFα, NFκB-p65, NFκB1, and NFκB2 (P<0.05). Healing effects of extracts were evident from histopathological investigation. GC-MS analysis revealed the presence of important anti-inflammatory compounds, notably stigmast-5-en-3-ol, oleate, dotriacontane, ascorbic acid, n-hexadecanoic acid, and α-tocopherol, in C. thomsonii. CONCLUSION C. thomsonii possesses significant anti-inflammatory/immunomodulatory potential by virtue of modifying levels of proinflammatory cytokines/markers and NFκB proteins.
Collapse
Affiliation(s)
- Khalid Bashir Dar
- Department of Clinical Biochemistry/Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Ishfaq Shafi Khan
- Centre of Research for Development, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Shajrul Amin
- Department of Clinical Biochemistry/Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Aijaz Hassan Ganie
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Aashiq Hussain Bhat
- Cancer Research and Diagnostic Centre, SKIMS, Srinagar, Jammu and Kashmir, India
| | - Showkat Ahmad Dar
- Regional Research Institute of Unani Medicine, Srinagar, Jammu and Kashmir, India
| | - Bilal Ahmad Reshi
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Showkat Ahmad Ganie
- Department of Clinical Biochemistry/Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
66
|
Consumption of avocado oil (Persea americana) improves the biochemical profile of rats submitted to long-term androgenic stimulation. NUTR HOSP 2020; 37:1033-1038. [PMID: 32960628 DOI: 10.20960/nh.03155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction Introduction: indiscriminate use of anabolic steroids is associated with cardiovascular diseases, renal damage, and hepatic toxicity. Contrastingly, nutraceutical foods such as avocados prevent and control several diseases, as they can reduce the effects of oxidative stress. Objective: this study evaluates the benefits of consuming an avocado oil-based diet to attenuate the systemic damage caused by supraphysiological doses of testosterone, by analyzing the biochemical profile of 28 42-day-old male Wistar rats. Methods: silicone pellets containing testosterone were surgically implanted, and they received control or avocado oil-based feed. After 20 weeks, all the male rats were anesthetized and their blood samples collected. Results: although the high hormone concentration had a negative influence on the biochemical profile of these animals, the groups that consumed avocado oil exhibited a reduction in serum triacylglycerols (-21 %; p = 0.0001), VLDL (-20 %; p = 0.0085), LDL (-78 %; p < 0.0001), and total cholesterol (-12 %; p < 0.0001), along with positive changes in their HDL concentrations (+7 %; p = 0.001). The avocado oil groups also manifested a reduction in the total concentration of serum proteins (-24 %; p = 0.0357), albumin (-26 %; p = 0.0015), urea (-14 %; p = 0.04), and creatinine (-33 %; p < 0.0001). The concentration of liver transaminases was found to be higher in the animals included in the induced group (ALT, +66 %; p = 0.0005, and AST, +23 %; p = 0.0021), whereas they remained stable in the avocado oil group. Conclusion: from the above, it may be concluded that supraphysiological doses of testosterone are related to increased risk factors for cardiovascular, renal, and hepatic diseases, and that the consumption of avocado oil shields the biochemical profile, thus reducing the associated risk factors.
Collapse
|
67
|
Mabvuure NT, Brewer CF, Gervin K, Duffy S. The use of moist exposed burn ointment (MEBO) for the treatment of burn wounds: a systematic review. J Plast Surg Hand Surg 2020; 54:337-343. [PMID: 32876517 DOI: 10.1080/2000656x.2020.1813148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Moist exposed burn ointment (MEBO) is an oil-based herbal paste, purported to be efficacious in managing burn wounds and more commonly used in Asia and the Middle East. A PRISMA-compliant systematic review was performed to analyse the evidence for the use of MEBO on burn wounds. Wound healing rate was the primary outcome of interest. PubMed-listed randomised controlled trials (RCTs) comparing the efficacy of MEBO with placebo, standard care or other therapies in the treatment of partial thickness burns in adults and children were eligible for inclusion (November 2019). Six RCTs were eligible. The majority of trials comparing wound healing between MEBO and SSD favoured MEBO (two of three). There may be improved healing in MEBO-treated wounds vs. those treated with povidone-iodine + bepanthenol cream. There was no difference between MEBO and Acquacel Ag, but Helix Aspersa had faster healing rates than MEBO. However, all evidence was from moderately to poorly reported trials with a high risk of bias, thereby limiting the strength of this evidence. In conclusion, the evidence for MEBO in English-language literature was poor and inconsistent with respect to wound healing rate and analgesis compared to 1% SSD, Acquacel Ag, Helix aspersa cream and povidone-iodine + bepanthenol cream. Blinded RCTs comparing MEBO to both placebo and other common topical treatments may further improve the confidence in concluding their analysis. There is some evidence that MEBO is as safe as its comparators as shown by the low complication rate.
Collapse
Affiliation(s)
| | | | - Kevin Gervin
- Belfast Health and Social Care Trust, Belfast City Hospital, Belfast, UK
| | - Siobhan Duffy
- Greater Glasgow and Clyde NHS Health Board, Glasgow, UK
| |
Collapse
|
68
|
Park SH, Kim HK. Antibacterial activity of emulsions containing unsaturated fatty acid ergosterol esters synthesized by lipase-mediated transesterification. Enzyme Microb Technol 2020; 139:109581. [DOI: 10.1016/j.enzmictec.2020.109581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 12/29/2022]
|
69
|
Leitão MM, Radai JAS, Ferrari IC, Negrão FJ, Silva-Filho SE, Oliveira RJ, Mota JDS, Kassuya CAL. Effects of an ethanolic extract and fractions from Piper glabratum (Piperaceae) leaves on pain and inflammation. Regul Toxicol Pharmacol 2020; 117:104762. [PMID: 32805323 DOI: 10.1016/j.yrtph.2020.104762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/26/2022]
Abstract
In the state of Mato Grosso do Sul, Brazil, Piper glabratum leaves are used as a popular medicine for pain and inflammation. We performed a phytochemical analysis and evaluated the effects of ethanolic extract (EEPG) obtained from leaves of P. glabratum on toxicity as well as the effects of application of the hexanic fraction (HXPG) and the hydroalcoholic fraction (HAPG) obtained from the EEPG on inflammatory parameters and pain in mice. Swiss mice were treated with EEPG (30-300 mg/kg body weight (b.w.)), HXPG (19.5 mg/kg b.w.) or HAPG (83.37 mg/kg b.w.) and then subjected to carrageenan-induced pleurisy and paw oedema tests, the spontaneous pain, and zymosan-induced intra-articular inflammation. Wistar rats were treated with EEPG to assess acute toxicity. Phytochemical analysis of the fractions demonstrated the presence of phytol and mixture of stigmasterol and β-sitosterol in the fractions. In the acute toxicity test, LD50 above 2000 mg/kg b.w. was observed. The treatments reduced oedema, cold and mechanical hyperalgesia, leukocyte migration and protein exudation. The antihyperalgesic and anti-inflammatory properties of EEPG and fractions were demonstrated in the present study. These results from EEPG and HXPG may be related, at least in part, to modulation of the inflammatory mediators by phytol, stigmasterol and β-sitosterol.
Collapse
Affiliation(s)
- Maicon M Leitão
- Faculty of Health Science, Federal University of Grande Dourados, Highway Dourados/Itahum, Km 12 - Unity II, 79, 804-970, Dourados, MS, Brazil.
| | - Joyce A S Radai
- Faculty of Health Science, Federal University of Grande Dourados, Highway Dourados/Itahum, Km 12 - Unity II, 79, 804-970, Dourados, MS, Brazil.
| | - Idalina C Ferrari
- Faculty of Health Science, Federal University of Grande Dourados, Highway Dourados/Itahum, Km 12 - Unity II, 79, 804-970, Dourados, MS, Brazil.
| | - Fábio J Negrão
- Faculty of Health Science, Federal University of Grande Dourados, Highway Dourados/Itahum, Km 12 - Unity II, 79, 804-970, Dourados, MS, Brazil.
| | - Saulo E Silva-Filho
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Av. Costa e Silva, University District, 79070-900, Campo Grande, MS, Brazil.
| | - Rodrigo J Oliveira
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Av. Costa e Silva, University District, 79070-900, Campo Grande, MS, Brazil.
| | - Jonas da S Mota
- Department of Chemistry, State University of Mato Grosso do Sul, University City of Dourados, 79804-97, Dourados, MS, Brazil.
| | - Candida A L Kassuya
- Faculty of Health Science, Federal University of Grande Dourados, Highway Dourados/Itahum, Km 12 - Unity II, 79, 804-970, Dourados, MS, Brazil.
| |
Collapse
|
70
|
The Use of Harpagophytum Procumbens (Martynia Fragrans) in Rheumatology: a Look through the Prism of Comorbidity (Literature Review). Fam Med 2020. [DOI: 10.30841/2307-5112.3.2020.212043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
71
|
Wang D, Tian L, Shi C, Wei YX, Wang H, Liu TT, Gong M, Zhang YW, Yu RG, Wu XH. Network pharmacology-based prediction of the active ingredients and mechanism of Shen Gui capsule for application to coronary heart disease. Comput Biol Med 2020; 122:103825. [PMID: 32658730 DOI: 10.1016/j.compbiomed.2020.103825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Shen Gui capsule (SGC) is a new national drug in China that is widely used in clinical practice and has significant therapeutic effects on coronary heart disease (CHD). However, its active ingredients and mechanism of action for treating coronary heart disease remain unknown. Therefore, the purpose of this paper is to systematically explore the mechanism and efficacy of SGC in the "multicomponent-multitarget- multipathway" treatment for CHD using network pharmacology technology. METHODS The potential active ingredients of SGC were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and screened by pharmacokinetic parameters. Their possible targets were predicted using the TCMSP and DrugBank database. The CHD-related targets were identified from Comparative Toxicogenomics Database (CTD), UniProt, and PharmGKB database. The compound-target-disease network was constructed using Cytoscape for visualization. Additionally, the protein functional annotation and identification of signaling pathways of potential targets were performed by Gene Ontology (GO) and KEGG enrichment analysis using the Metascape platform. RESULTS The 61 active ingredients of SGC were found to regulate neuroactive ligand-receptor interaction, fluid shear stress and atherosclerosis, estrogen signaling pathway and other pathways through 62 targets. SGC is involved in regulating the circulatory system, nervous system and immune system and other aspects of the body, and thus plays a significant role in the treatment of CHD and its complications, showing the mechanism of SGC's "multicomponent, multitarget, and multipathway" prevention and treatment of CHD. In addition, three predictive components were first found to have potential biological activity by this method. CONCLUSION The studies we have performed successfully predict the effective components and potential targets of SGC in the prevention and treatment of CHD, which helped to systematically clarify its mechanism of action and provided a direction for future research on the modern mechanism of SGC in the treatment of CHD.
Collapse
Affiliation(s)
- Dan Wang
- College of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Li Tian
- College of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Chang Shi
- College of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Yu-Xi Wei
- College of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Han Wang
- College of Pharmacy, Tianjin Medical University, Tianjin, 300070, China; Department of Pharmacy, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
| | - Tian-Tian Liu
- College of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Ming Gong
- College of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Yan-Wen Zhang
- College of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Rong-Guo Yu
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| | - Xiao-Hui Wu
- College of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
72
|
Reyes AWB, Arayan LT, Huy TXN, Vu SH, Min W, Hur J, Kim S. β-Sitosterol Contributes in the Resistance to Invasion and Survival of Brucella abortus 544 within RAW264.7 Cells, and Cytokine Production with Reduced Susceptibility to Infection in BALB/c Mice. J Microbiol Biotechnol 2020; 30:482-489. [PMID: 31893609 PMCID: PMC9728205 DOI: 10.4014/jmb.1909.09052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We previously identified β-sitosterol (BS) as one of the most abundant compounds found in Korean red ginseng oil. BS is a widely prevalent vegetable-derived phytosterol with many known health benefits. Here, we investigated the efficacy of BS against Brucella (B.) abortus infection. BS showed no effect on bacterial growth but attenuated internalization, intracellular survival and MAPKs-linked intracellular signaling in RAW264.7 cells. BS treatment in cells is also associated with increased nitrite concentration during infection at 24 h. Slightly enhanced resistance to B. abortus infection was observed in mice orally given BS, which could be mediated by induced production of proinflammatory cytokines. Taken together, our study demonstrates the contribution of BS treatment against B. abortus infection although further investigation is encouraged to maximize its beneficial effects against intracellular infection.
Collapse
Affiliation(s)
| | - Lauren Togonon Arayan
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Tran Xuan Ngoc Huy
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Son Hai Vu
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Wongi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jin Hur
- Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea,Corresponding author Phone: +82-55-772-2359 Fax: +82-55-772-2349 E-mail:
| |
Collapse
|
73
|
Ruangsuriya J, Charumanee S, Jiranusornkul S, Sirisa-Ard P, Sirithunyalug B, Sirithunyalug J, Pattananandecha T, Saenjum C. Depletion of β-sitosterol and enrichment of quercetin and rutin in Cissus quadrangularis Linn fraction enhanced osteogenic but reduced osteoclastogenic marker expression. BMC Complement Med Ther 2020; 20:105. [PMID: 32245457 PMCID: PMC7119164 DOI: 10.1186/s12906-020-02892-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 03/11/2020] [Indexed: 11/10/2022] Open
Abstract
Background Cissus quadrangularis Linn. (CQ) has been used in Indian and Thai traditional medicine for healing bone fractures because of numerous active ingredients in CQ. It is still unclear which compounds are the active ingredients for bone formation. Methods The molecular docking technique, the ethanolic extraction along with hexane fractionation, and an in vitro experiment with a human osteoblast cell line (MG-63) were used to narrow down the active compounds, to prepare the CQ extract, and to test biological activities, respectively. Results The molecular docking technique revealed that quercetin and β-sitosterol had highest and lowest potential to bind to estrogen receptors, respectively. Compared to the crude ethanol extract (P1), the ethanolic fraction (P2) was enriched with rutin and quercetin at 65.36 ± 0.75 and 1.06 ± 0.12 mg/g, respectively. Alkaline phosphatase (ALP) activity was significantly enhanced in osteoblasts exposed to the P2 in both tested concentrations. The amount of hydroxyproline was slightly increased in the P1 treatment, while osteocalcin was inhibited. Moreover, the P2 significantly activated osteoprotegerin (OPG) and inhibited receptor activator of nuclear factor κ ligand (RANKL) expression. Conclusions Taken together, the enriched rutin and quercetin fraction of CQ triggered the molecules involved in bone formation and the molecules inhibiting bone resorption.
Collapse
Affiliation(s)
- Jetsada Ruangsuriya
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cluster of Excellence on Biodiversity based Economic and Society (B.BES-CMU), Chiang Mai University, Chiang Mai, Thailand
| | - Suporn Charumanee
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Supat Jiranusornkul
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Panee Sirisa-Ard
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Busaban Sirithunyalug
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jakkapan Sirithunyalug
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thanawat Pattananandecha
- Cluster of Excellence on Biodiversity based Economic and Society (B.BES-CMU), Chiang Mai University, Chiang Mai, Thailand.,Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chalermpong Saenjum
- Cluster of Excellence on Biodiversity based Economic and Society (B.BES-CMU), Chiang Mai University, Chiang Mai, Thailand. .,Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
74
|
Salazar JR, Loza-Mejía MA, Soto-Cabrera D. Chemistry, Biological Activities and In Silico Bioprospection of Sterols and Triterpenes from Mexican Columnar Cactaceae. Molecules 2020; 25:molecules25071649. [PMID: 32260146 PMCID: PMC7180492 DOI: 10.3390/molecules25071649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
The Cactaceae family is an important source of triterpenes and sterols. The wide uses of those plants include food, gathering, medicinal, and live fences. Several studies have led to the isolation and characterization of many bioactive compounds. This review is focused on the chemistry and biological properties of sterols and triterpenes isolated mainly from some species with columnar and arborescent growth forms of Mexican Cactaceae. Regarding the biological properties of those compounds, apart from a few cases, their molecular mechanisms displayed are not still fully understand. To contribute to the above, computational chemistry tools have given a boost to traditional methods used in natural products research, allowing a more comprehensive exploration of chemistry and biological activities of isolated compounds and extracts. From this information an in silico bioprospection was carried out. The results suggest that sterols and triterpenoids present in Cactaceae have interesting substitution patterns that allow them to interact with some bio targets related to inflammation, metabolic diseases, and neurodegenerative processes. Thus, they should be considered as attractive leads for the development of drugs for the management of chronic degenerative diseases.
Collapse
Affiliation(s)
- Juan Rodrigo Salazar
- Correspondence: (J.R.S.); (M.A.L.-M.); Tel.: +52-55-5278-9500 (J.R.S. & M.A.L.-M.)
| | - Marco A. Loza-Mejía
- Correspondence: (J.R.S.); (M.A.L.-M.); Tel.: +52-55-5278-9500 (J.R.S. & M.A.L.-M.)
| | | |
Collapse
|
75
|
Liu TH, Chen WH, Chen XD, Liang QE, Tao WC, Jin Z, Xiao Y, Chen LG. Network Pharmacology Identifies the Mechanisms of Action of TaohongSiwu Decoction Against Essential Hypertension. Med Sci Monit 2020; 26:e920682. [PMID: 32187175 PMCID: PMC7102407 DOI: 10.12659/msm.920682] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND TaohongSiwu decoction (THSWT), a traditional herbal formula, has been used to treat cardiovascular and cerebrovascular diseases such as essential hypertension (EH) in China. However, the pharmacological mechanism is not clear. To investigate the mechanisms of THSWT in the treatment of EH, we performed compounds, targets prediction and network analysis using a network pharmacology method. MATERIAL AND METHODS We selected chemical constituents and targets of THSWT according to TCMSP and UniProtKB databases and collected therapeutic targets on EH from Online Mendelian Inheritance in Man (OMIM), Drugbank and DisGeNET databases. The protein-protein interaction (PPI) was analyzed by using String database. Then network was constructed by using Cytoscape_v3.7.1, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment was performed by using Database for Annotation, Visualization and Integrated Discovery (DAVID) software. RESULTS The results of our network pharmacology research showed that the THSWT, composed of 6 Chinese herbs, contained 15 compounds, and 23 genes regulated the main signaling pathways related to EH. Moreover, the PPI network based on targets of THSWT on EH revealed the interaction relationship between targets. These core compounds were 6 of the 15 disease-related compounds in the network, kaempferol, quercetin, luteolin, Myricanone, beta-sitosterol, baicalein, and the core genes contained ADRB2, CALM1, HMOX1, JUN, PPARG, and VEGFA, which were regulated by more than 3 compounds and significantly associated with Calcium signaling pathway, cGMP-PKG signaling pathway, cAMP signaling pathway, PI3K-Akt signaling pathway, Rap1 signaling pathway, and Ras signaling pathway. CONCLUSIONS This network pharmacological study can reveal potential mechanisms of multi-target and multi-component THSWT in the treatment of EH, provide a scientific basis for studying the mechanism.
Collapse
Affiliation(s)
- Tian-Hao Liu
- Chinese Medicine College, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Wei-Hao Chen
- Chinese Medicine College, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Xu-Dong Chen
- Chinese Medicine College, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Qiu-Er Liang
- Chinese Medicine College, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Wen-Cong Tao
- Chinese Medicine College, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Zhen Jin
- Chinese Medicine College, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Ya Xiao
- Chinese Medicine College, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Li-Guo Chen
- Chinese Medicine College, Jinan University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
76
|
Cheng Y, Chen Y, Li J, Qu H, Zhao Y, Wen C, Zhou Y. Dietary β-sitosterol regulates serum lipid level and improves immune function, antioxidant status, and intestinal morphology in broilers. Poult Sci 2020; 99:1400-1408. [PMID: 32111314 PMCID: PMC7587718 DOI: 10.1016/j.psj.2019.10.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/08/2019] [Accepted: 10/13/2019] [Indexed: 12/15/2022] Open
Abstract
This research investigated effects of dietary β-sitosterol addition at different levels on serum lipid levels, immune function, oxidative status, and intestinal morphology in broilers. One-day-old broiler chicks were allocated to 5 groups of 6 replicates. Chickens in the 5 groups were fed a basal diet supplemented with 0 (control group), 40, 60, 80, and 100 mg/kg of β-sitosterol for 42 D, respectively. β-Sitosterol linearly decreased (P < 0.05) concentrations of serum total cholesterol, jejunal tumor necrosis factor α (TNF-α), and ileal interleukin 1β (IL-1β) and mRNA relative expressions levels of jejunal TLR4 and ileal MyD88, whereas it linearly increased (P < 0.05) contents of jejunal immunoglobulin G (IgG), ileal secreted IgA and glutathione, jejunal catalase activity and Nrf2 mRNA relative expression level, villus height (VH), and VH-to-crypt depth (CD) ratio (VH:CD) in the jejunum and ileum. Linear and quadratic increases (P < 0.05) in absolute and relative spleen weight were observed by dietary β-sitosterol, whereas malondialdehyde (MDA) concentration in the jejunum and ileum followed the opposite trend (P < 0.05). Compared with the control group, dietary β-sitosterol at higher than or equal to 60 mg/kg level decreased (P < 0.05) contents of serum total cholesterol, ileal MDA, and jejunal TLR4 mRNA relative expression level, whereas it increased (P < 0.05) absolute spleen weight and ileal glutathione content. Higher than or equal to 80 mg/kg level of β-sitosterol enhanced (P < 0.05) jejunal IgG concentration, VH, catalase activity, and Nrf2 relative expression level and ileal secreted IgA content, but reduced (P < 0.05) ileal IL-1β content and MyD88 mRNA relative expression level. β-Sitosterol addition at 60 and 80 mg/kg levels increased (P < 0.05) relative spleen weight, whereas it decreased (P < 0.05) jejunal MDA accumulation. Moreover, 100 mg/kg level of β-sitosterol reduced (P < 0.05) jejunal TNF-α level, but it increased (P < 0.05) VH in the jejunum and VH:CD in the jejunum and ileum. Accordingly, dietary β-sitosterol supplementation could regulate serum cholesterol level, promote immune function, and improve intestinal oxidative status and morphology in broilers.
Collapse
Affiliation(s)
- Yefei Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hengman Qu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yurui Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
77
|
Dierckx T, Bogie JFJ, Hendriks JJA. The Impact of Phytosterols on the Healthy and Diseased Brain. Curr Med Chem 2020; 26:6750-6765. [PMID: 29984647 DOI: 10.2174/0929867325666180706113844] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/28/2018] [Accepted: 03/07/2018] [Indexed: 02/07/2023]
Abstract
The central nervous system (CNS) is the most cholesterol-rich organ in mammals. Cholesterol homeostasis is essential for proper brain functioning and dysregulation of cholesterol metabolism can lead to neurological problems. Multiple sclerosis (MS) and Alzheimer's disease (AD) are examples of neurological diseases that are characterized by a disturbed cholesterol metabolism. Phytosterols (PS) are plant-derived components that structurally and functionally resemble cholesterol. PS are known for their cholesterol-lowering properties. Due to their ability to reach the brain, researchers have started to investigate the physiological role of PS in the CNS. In this review, the metabolism and function of PS in the diseased and healthy CNS are discussed.
Collapse
Affiliation(s)
- Tess Dierckx
- Biomedical Research Institute, Hasselt University, Diepenbeek, Hassett, Belgium
| | - Jeroen F J Bogie
- Biomedical Research Institute, Hasselt University, Diepenbeek, Hassett, Belgium
| | - Jerome J A Hendriks
- Biomedical Research Institute, Hasselt University, Diepenbeek, Hassett, Belgium
| |
Collapse
|
78
|
Multiple Targets Directed Multiple Ligands: An In Silico and In Vitro Approach to Evaluating the Effect of Triphala on Angiogenesis. Biomolecules 2020; 10:biom10020177. [PMID: 31979409 PMCID: PMC7072423 DOI: 10.3390/biom10020177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis is critical in both physiological and pathological conditions and targeting angiogenesis is a promising strategy for the development of therapies against cancer; however, cells develop resistance to anti-angiogenic therapy, necessitating a more effective strategy. Natural medicines have been used in anti-cancer therapy for many years, but the mechanisms behind these have not generally been explored. Triphala churna (THL), an Indian ayurvedic herbal formulation made from the dried fruits of three medicinal plants, is used as a herbal drug for the treatment of various diseases, including cancer. THL contains over fifteen phytochemicals with different pharmacological effects, especially inhibition of tumor progression. In this study, we examined the effect of these compounds against different targets using docking and in vitro studies. Results showed that THL has a prediction efficacy of (−)436.7, and it inhibited angiogenesis by blocking multiple components of the VEGF/VEGFR2 signaling pathway. The anti-angiogenic effect was mediated by the combined effect of the two top ranked phytochemicals, punicalagin (−424.8) and chebulagic acid (−414.8). The new approach developed in this study to determine the potential efficacy of herbal formulation could be a useful strategy to assess the efficacy of different herbal formulations.
Collapse
|
79
|
Couder-García BDC, Jacobo-Herrera NJ, Zentella-Dehesa A, Rocha-Zavaleta L, Tavarez-Santamaría Z, Martínez-Vázquez M. The Phytosterol Peniocerol Inhibits Cell Proliferation and Tumor Growth in a Colon Cancer Xenograft Model. Front Oncol 2019; 9:1341. [PMID: 31850224 PMCID: PMC6901603 DOI: 10.3389/fonc.2019.01341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022] Open
Abstract
Objective: This study aimed to evaluate the cytotoxic activity of peniocerol against human colon cancer cell lines and its antitumor effect in vivo in a xenograft model using nu/nu mice. Materials and Methods: SW-620, HCT-15, and HCT-116 colon cancer cell lines were treated with peniocerol for cytotoxicity by crystal violet technique. Cell apoptosis induction was detected by flow cytometry, and the antitumor activity of peniocerol was evaluated in a xenograft model of HCT-116 in nu/nu mice. After treatment, the effect of peniocerol was analyzed in histological sections of tumors by immunohistochemistry using DAPI, anti-PCNA, and PARP-1 antibodies. Results: Peniocerol inhibited cell growth and induced apoptosis in vitro in a time and dose-dependent manner. Besides, peniocerol administration (30 or 15 mg/kg) inhibited tumor growth and induced apoptosis in the xenograft mice. The lack of peniocerol toxicity was proved by a biochemical blood analysis of healthy nu/nu mice administrated with this sterol. Conclusions: Our results proved that peniocerol induces apoptosis in vitro and in vivo assays.
Collapse
Affiliation(s)
| | - Nadia J Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Alejandro Zentella-Dehesa
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Medicina Genómica y Toxicología Ambiental & Programa Institucional de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Mexico
| | - Leticia Rocha-Zavaleta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de Mexico, Coyoacán, Mexico
| | - Zaira Tavarez-Santamaría
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de Mexico, Coyoacán, Mexico
| | - Mariano Martínez-Vázquez
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de Mexico, Coyoacán, Mexico
| |
Collapse
|
80
|
Identification and Quantification of β-Sitosterol β-d-Glucoside of an Ethanolic Extract Obtained by Microwave-Assisted Extraction from Agave angustifolia Haw. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24213926. [PMID: 31683500 PMCID: PMC6864453 DOI: 10.3390/molecules24213926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
Abstract
β-sitosterol β-d-glucoside (BSSG) was extracted from “piña” of the Agave angustifolia Haw plant by microwave-assisted extraction (MAE) with a KOH solution such as a catalyst and a conventional maceration method to determine the best technique in terms of yield, extraction time, and recovery. The quantification and characterization of BSSG were done by high-performance thin layer chromatography (HPTLC), Fourier-transform infrared spectroscopy (FT-IR), and high-performance liquid chromatography−electrospray ionization−mass spectrometry (HPLC-ESI-MS). With an extraction time of 5 s by MAE, a higher amount of BSSG (124.76 mg of β-sitosterol β-d-glucoside/g dry weight of the extract) than those for MAE extraction times of 10 and 15 s (106.19 and 103.97 mg/g dry weight respectively) was shown. The quantification of BSSG in the extract obtained by 48 h of conventional maceration was about 4–5 times less (26.67 mg/g dry weight of the extract) than the yields reached by the MAE treatments. MAE achieved the highest amount of BSSG, in the shortest extraction time while preserving the integrity of the compound’s structure.
Collapse
|
81
|
Sudeep HV, Venkatakrishna K, Amrutharaj B, Anitha, Shyamprasad K. A phytosterol-enriched saw palmetto supercritical CO 2 extract ameliorates testosterone-induced benign prostatic hyperplasia by regulating the inflammatory and apoptotic proteins in a rat model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:270. [PMID: 31623582 PMCID: PMC6798398 DOI: 10.1186/s12906-019-2697-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/26/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is a pathological condition affecting older men. BPH complications often lead to deterioration in the quality of life. Serenoa repens (Saw Palmetto) is used for treating lower urinary tract infections in traditional medicine. METHODS This study was performed to compare the efficacy of β-sitosterol enriched saw palmetto oil (VISPO) and conventional saw palmetto oil (SPO) extracted using supercritical fluid extraction, in alleviating the BPH complications using testosterone-induced BPH model rats. The animals received testosterone (5 mg/kg s.c.) with or without SPO and VISPO (200 and 400 mg/kg b.w.) or Finasteride (1 mg/kg b.w.) p.o. for 28 days. At the end of the experiment, overnight fasted animals were euthanized, blood samples collected for serum analysis of testosterone. Prostate tissue histomorphology was examined by hematoxylin and eosin (H&E) staining. Western blot analysis was performed using prostate tissue homogenates. RESULTS VISPO exhibited superior efficacy compared to SPO as evident from the significant decrease in prostate weight to body weight ratio, serum testosterone level and increase in growth inhibition of prostate tissue compared to BPH group (p < 0.001). Histological examination of prostate tissue samples showed that VISPO treatment was comparatively better than SPO in improving the hyperplastic patterns. Further, VISPO significantly regulated the expression of inflammatory and apoptotic marker proteins in BPH rats. CONCLUSION Our data provide experimental evidence that β-sitosterol enriched saw palmetto oil could be higher efficacious in treating the BPH complications compared to the conventional saw palmetto oil preparations.
Collapse
Affiliation(s)
- Heggar V. Sudeep
- R&D Center for Excellence, Vidya Herbs Pvt. Ltd, Jigani Industrial Area, Anekal Taluk, #14A, KIADB, Jigani I phase, Bangalore, Karnataka 560 105 India
| | - Karempudi Venkatakrishna
- R&D Center for Excellence, Vidya Herbs Pvt. Ltd, Jigani Industrial Area, Anekal Taluk, #14A, KIADB, Jigani I phase, Bangalore, Karnataka 560 105 India
| | - Ballal Amrutharaj
- R&D Center for Excellence, Vidya Herbs Pvt. Ltd, Jigani Industrial Area, Anekal Taluk, #14A, KIADB, Jigani I phase, Bangalore, Karnataka 560 105 India
| | - Anitha
- R&D Center for Excellence, Vidya Herbs Pvt. Ltd, Jigani Industrial Area, Anekal Taluk, #14A, KIADB, Jigani I phase, Bangalore, Karnataka 560 105 India
| | - Kodimule Shyamprasad
- R&D Center for Excellence, Vidya Herbs Pvt. Ltd, Jigani Industrial Area, Anekal Taluk, #14A, KIADB, Jigani I phase, Bangalore, Karnataka 560 105 India
| |
Collapse
|
82
|
Hamad KM, Sabry MM, Elgayed SH, El Shabrawy AR, El-Fishawy AM, Abdel Jaleel GA. Anti-inflammatory and phytochemical evaluation of Combretum aculeatum Vent growing in Sudan. JOURNAL OF ETHNOPHARMACOLOGY 2019; 242:112052. [PMID: 31265886 DOI: 10.1016/j.jep.2019.112052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/06/2019] [Accepted: 06/29/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Combretum aculeatum Vent was traditionally used in Sudan, Eretria and Ethiopia as anti-inflammatory in case of skin inflammation, catarrh, wounds, scorpion stings and snake bites. Nevertheless, there is no scientific information regarding this activity. AIM OF STUDY The present study aimed to evaluate the phytochemical constituents and the scientific basis for the traditional use of Combretum aculeatum Vent through studying its anti-inflammatory properties for the first time to illustrate the putative mechanisms behind this bioactivity. MATERIALS AND METHODS the ethanolic extract was partitioned by petroleum ether, methylene chloride, ethyl acetate, and n-butanol saturated with water. The petroleum ether fraction was saponified and the saponifiable and unsaponifiable fractions were analyzed on GC/MS. The different fractions were subjected to phytochemical investigation to isolate pure compounds. In-vivo anti-inflammatory activity of the ethanolic extract was evaluated using carrageenan induced rat paws edema method at doses of 200, 400 and 600 mg/kg and proved based on histopathological and biochemical parameters. RESULTS Five known compounds were isolated for the first time from the aerial parts of Combretum aculeatum Vent: quercetin, vitexin, isorhamnetin 3-O-β-glucoside, isovitexin and rutin, in addition to two previously isolated ones: β-sitosterol and its glucoside. The ethanolic extract evidenced in-vivo anti-inflammatory activity by oral intake of 400 mg/kg of the ethanolic extract significantly (P ≥ 0.05) decreased the paw edema (only 32±1.9% increase in paw weight after 4 h) compared to indomethacin (28.6±2.5%). Moreover, it significantly suppressed the serum malondialdehyde (MDA) and nitric oxide (NO) and increased the GSH to be 11.76±0.85, 5.13±0.62 μmol/mL and 5.66±0.28 μM/mL, respectively. It diminished the serum cytokines TNF-α, IL-6 and IL-1β levels to be 39.1±1.2, 32.6±1.1 and 37.5±1.2 pg/mL, respectively. Results are accompanied by histopathological examination. CONCLUSION Overall, the results herein presented significant anti-inflammatory properties traditionally ascribed to Combretum aculeatum Vent. Moreover, the biochemical mechanisms associated to this action were highlighted, introducing new prospects for the development of effective anti-inflammatory herbal medicinal products.
Collapse
Affiliation(s)
- Kamal M Hamad
- Department of Pharmacognosy, Faculty of Pharmacy Cairo University, Cairo, 11562, Egypt
| | - Manal M Sabry
- Department of Pharmacognosy, Faculty of Pharmacy Cairo University, Cairo, 11562, Egypt.
| | - Sabah H Elgayed
- Department of Pharmacognosy, Faculty of Pharmacy Cairo University, Cairo, 11562, Egypt
| | | | - Ahlam M El-Fishawy
- Department of Pharmacognosy, Faculty of Pharmacy Cairo University, Cairo, 11562, Egypt
| | | |
Collapse
|
83
|
Antimicrobial Activity, Antioxidant Potential, Cytotoxicity and Phytochemical Profiling of Four Plants Locally Used against Skin Diseases. PLANTS 2019; 8:plants8090350. [PMID: 31540194 PMCID: PMC6783968 DOI: 10.3390/plants8090350] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 01/13/2023]
Abstract
Although orthodox medications are available for skin diseases, expensive dermatological services have necessitated the use of medicinal plants as a cheaper alternative. This study evaluated the pharmacological and phytochemical profiles of four medicinal plants (Drimia sanguinea, Elephantorrhiza elephantina, Helichrysum paronychioides, and Senecio longiflorus) used for treating skin diseases. Petroleum ether and 50% methanol extracts of the plants were screened for antimicrobial activity against six microbes: Bacillus cereus, Shigella flexneri, Candida glabrata, Candida krusei, Trichophyton rubrum and Trichophyton tonsurans using the micro-dilution technique. Antioxidant activity was conducted using 2,2-diphenyl-1-picryhydrazyl (DPPH) free radical scavenging and β-carotene linoleic acid models. Cytotoxicity was determined against African green monkey Vero kidney cells based on the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. Spectrophotometric and Gas Chromatography-Mass Spectrometry (GC-MS) methods were used to evaluate the phytochemical constituents. All the extracts demonstrated varying degrees of antimicrobial potencies. Shigella flexneri, Candida glabrata, Trichophyton rubrum and Trichophyton tonsurans were most susceptible at 0.10 mg/mL. In the DPPH test, EC50 values ranged from approximately 6–93 µg/mL and 65%–85% antioxidant activity in the β-carotene linoleic acid antioxidant activity model. The phenolic and flavonoid contents ranged from 3.5–64 mg GAE/g and 1.25–28 mg CE/g DW, respectively. The LC50 values of the cytotoxicity assay ranged from 0.015–5622 µg/mL. GC-MS analysis revealed a rich pool (94–198) of bioactive compounds including dotriacontane, benzothiazole, heptacosane, bumetrizole, phthalic acid, stigmasterol, hexanoic acid and eicosanoic acid, which were common to the four plants. The current findings provide some degree of scientific evidence supporting the use of these four plants in folk medicine. However, the plants with high cytotoxicity need to be used with caution.
Collapse
|
84
|
Du H, Kuang TT, Qiu S, Xu T, Gang Huan CL, Fan G, Zhang Y. Fecal medicines used in traditional medical system of China: a systematic review of their names, original species, traditional uses, and modern investigations. Chin Med 2019; 14:31. [PMID: 31528199 PMCID: PMC6743172 DOI: 10.1186/s13020-019-0253-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/02/2019] [Indexed: 01/28/2023] Open
Abstract
In China, the medical use of fecal matter (fresh fecal suspension or dry feces) can be dated back to the fourth century, approximately 1700 years ago. In long-term clinical practice, Chinese doctors have accumulated unique and invaluable medical experience in the use of fecal materials. In view of their good curative effect and medicinal potential, fecal medicines should be paid much attention. This study aimed to provide the first comprehensive data compilation of fecal medicines used in various Chinese traditional medical systems by bibliographic investigation of 31 medicine monographs and standards. A total of 54 fecal medicines were found to be used in 14 traditional Chinese medical systems. Their names, original species, medicinal forms, and traditional uses were described in detail. These fecal medicines were commonly used to treat gastrointestinal, nervous system, skin, and gynecological diseases. Commonly used fecal medicines include Wu-Ling-Zhi, Jiu-Fen and Hei-Bing-Pian. The information summarized in this study can provide a good reference for the development and utilization of fecal medicines. Further studies are necessary to prove their medicinal value, identify their active ingredients, and elucidate their mechanisms of action so that more people can accept these special medicines.
Collapse
Affiliation(s)
- Huan Du
- 1School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 China
| | - Ting-Ting Kuang
- 2School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 China
| | - Shuang Qiu
- 3School of Foreign Language, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 China
| | - Tong Xu
- 2School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 China
| | - Chen-Lei Gang Huan
- 2School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 China
| | - Gang Fan
- 2School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 China
| | - Yi Zhang
- 2School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 China
| |
Collapse
|
85
|
Styrczewska M, Zuk M, Boba A, Zalewski I, Kulma A. Use of Natural Components Derived from Oil Seed Plants for Treatment of Inflammatory Skin Diseases. Curr Pharm Des 2019; 25:2241-2263. [PMID: 31333096 DOI: 10.2174/1381612825666190716111700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/01/2019] [Indexed: 12/28/2022]
Abstract
The incidence of inflammatory skin diseases is increasing, so the search for relevant therapeutics is of major concern. Plants are rich in phytochemicals which can alleviate many symptoms. In this review, we concentrate on compounds found in the seeds of widely cultivated plants, regularly used for oil production. The oils from these plants are often used to alleviate the symptoms of inflammatory diseases through synergetic action of unsaturated fatty acids and other phytochemicals most commonly derived from the terpenoid pathway. The knowledge of the chemical composition of oil seeds and the understanding of the mechanisms of action of single components should allow for a more tailored approach for the treatment for many diseases. In many cases, these seeds could serve as an efficient material for the isolation of pure phytochemicals. Here we present the content of phytochemicals, assumed to be responsible for healing properties of plant oils in a widely cultivated oil seed plants and review the proposed mechanism of action for fatty acids, selected mono-, sesqui-, di- and triterpenes, carotenoids, tocopherol and polyphenols.
Collapse
Affiliation(s)
- Monika Styrczewska
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Wroclaw, Poland
| | - Magdalena Zuk
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Wroclaw, Poland
| | - Aleksandra Boba
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Wroclaw, Poland
| | - Iwan Zalewski
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Wroclaw, Poland
| | - Anna Kulma
- Department of Genetic Biochemistry, Faculty of Biotechnology, Wroclaw University, Wroclaw, Poland
| |
Collapse
|
86
|
Extraction Process, Identification of Fatty Acids, Tocopherols, Sterols and Phenolic Constituents, and Antioxidant Evaluation of Seed Oils from Five Fabaceae Species. Processes (Basel) 2019. [DOI: 10.3390/pr7070456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present study aimed to extract seed oils and characterize the chemical composition, including fatty acid profiles, tocopherols, sterols, and total phenolics of oils and extracts from five Fabaceae seeds: Glycine soja, Vigna angularis, Phaseolus lunatus, Phaseolus vulgarisand, and Phaseolus coccineus. The composition and content of all substance layers in total lipids of the extracted seed oils from five Fabaceae species contain: polar lipid (PL), sterol (ST), diacylglycerol (DG), triacylglycerol (TG), free fatty acid (FFA), and hydrocarbon and wax (HC + W). Antioxidant activity determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method was also estimated. Among these examined samples, Phaseolus vulgarisand and Phaseolus coccineus seed oils showed high content of α-linolenic acid (59.39% and 49.38%, respectively). Linoleic acid was abundantly found in Vigna angularis (49.01%). Ferunic and caffeic acid, γ-tocopherol, and β-sistosterol were the main ingredients present in the species studied. The V. angularis seed extract displayed significant antioxidant activity.
Collapse
|
87
|
Zhang L, Virgous C, Si H. Synergistic anti-inflammatory effects and mechanisms of combined phytochemicals. J Nutr Biochem 2019; 69:19-30. [DOI: 10.1016/j.jnutbio.2019.03.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/22/2019] [Accepted: 03/14/2019] [Indexed: 12/31/2022]
|
88
|
Nelumbo nucifera Receptaculum Extract Suppresses Angiotensin II-Induced Cardiomyocyte Hypertrophy. Molecules 2019; 24:molecules24091647. [PMID: 31027372 PMCID: PMC6539488 DOI: 10.3390/molecules24091647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/12/2022] Open
Abstract
Nelumbo nucifera Gaertn. (lotus) is an important medicinal plant, and many parts of the plant have been investigated for their therapeutic effects. However, the therapeutic effect of receptacles of lotuses on pathological cardiomyocyte hypertrophy has not been investigated yet. Therefore, the current study aimed to determine the protective effect of lotus against angiotensin II (Ang II)-induced cardiomyocyte hypertrophy in vitro. Ang II was used to induce hypertrophy of H9c2 cells. The lotus receptacle powder (MeOH extract of receptaculum Nelumbinis; MRN) used in the experiments was prepared by MeOH extraction and subsequent evaporation. To evaluate the effect of MRN on cardiomyocyte hypertrophy, cell size, protein synthesis, and hypertrophic marker expressions were examined. The antioxidant ability of MRN was determined by using CM-H2DCFDA, a general oxidative stress indicator. Ang II-induced cardiomyocyte hypertrophy was significantly attenuated by 5 µg/mL of MRN, as confirmed by the reductions in cell size, protein synthesis, and hypertrophic marker expression. MRN also attenuated Ang II-induced excessive intracellular reactive oxygen species (ROS) production through the suppression of protein kinase C (PKC), extracellular-signal-regulated kinase (ERK), and NF-κB activation and subsequent type I angiotensin receptor (AT1R), receptor for advanced glycation end products (RAGE), and NADPH oxidase (NOX) expression. MRN exerted a significant protective effect against Ang II-induced cardiomyocyte hypertrophy through suppression of PKC–ERK signaling, and this subsequently led to attenuation of intracellular ROS production.
Collapse
|
89
|
The Antimicrobial and Wound Healing Potential of Opuntia ficus indica L. inermis Extracted Oil from Tunisia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9148782. [PMID: 31097975 PMCID: PMC6487086 DOI: 10.1155/2019/9148782] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/13/2019] [Accepted: 04/04/2019] [Indexed: 11/17/2022]
Abstract
Introduction Opuntia ficus indica L. inermis (OFI) is used in traditional medicine pharmacopeia for its richness in natural bioactive compounds. It has been proven to be effective in the improvement of the healing of laser-induced skin burns. The aim of the present study was to investigate the wound healing effect of OFI extracted oil on full-thickness skin wound. Materials and Methods The OFI seeds were firstly isolated from mature prickly pears, washed, dried, and then cold-pressed. The antimicrobial activities of OFI seed oil were estimated in vitro against bacteria, yeast, and fungi. Minimum Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) were calculated. Skin wound healing was investigated using an excisional wound healing model in rats. The skin wounds of three experimental groups of rats were topically treated once/day with saline solution (control group), 0.15 mg/mm2 of a reference drug Esth'Elle Pharma Cicaplaie cream (reference group), and 0.6 μl/mm2 of OFI seed oil (OFI oil group). The healing process was monitored daily and the percentage of wound contraction was calculated. A histological study was carried on skin biopsies. Results The extracted oil has shown an interesting antimicrobial effect on Enterobacter cloacae, antiyeast effect against Candida parapsilosis and Candida sake, and antifungal activity against three opportunistic cutaneous molds (Penicillium, Aspergillus, and Fusarium). Moreover, OFI oil has shown a good wound healing effect. It prevents cutaneous infections and reduces the reepithelialization phase. Conclusion OFI extracted oil has in vitro antimicrobial/fungal properties and in vivo wound healing activity. It seems to be efficient in the treatment of cutaneous infections and the promoting of the scarring process.
Collapse
|
90
|
Kim D, Yoon J, Kim S, Choi H, Han I. A Novel Transdermal Delivery System based on a Bile Acid- Conjugated Nanoparticle Model for Cosmetics. ACTA ACUST UNITED AC 2019. [DOI: 10.20402/ajbc.2018.0265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
91
|
Liu Y, Wang Y, Xia Z, Wang Y, Wu Y, Gong Z. Rapid determination of phytosterols by NIRS and chemometric methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 211:336-341. [PMID: 30583164 DOI: 10.1016/j.saa.2018.12.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/10/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
Phytosterols have been extensively studied because it plays essential roles in the physiology of plants and can be used as nutritional supplement to promote human health. We use a rapid method by coupling near-infrared spectroscopy (NIRS) and chemometric techniques to quickly and efficiently determine three essential phytosterols (β-sitosterol, campesterol and stigmasterol) in vegetable oils. Continuous wavelet transform (CWT) method was adopted to remove the baseline shift in the spectra. The quantitative analysis models were constructed by partial least squares (PLS) regression and randomization test (RT) method was used to further improve the models. The optimized models were used to calculate the phytosterol contents in prediction set in order to evaluate their predictability. We have found that the phytosterol contents obtained by the optimized models and Gas Chromatography/Mass Spectrometry (GC/MS) analysis are almost consistent. The root mean square error of prediction (RMSEP) and ratio of prediction to deviation (RPD) for the three phytosterols are 525.7590, 212.2245, 65.1611 and 4.0060, 4.7195 and 3.5441, respectively. The results have proved the feasibility of the proposed method for rapid and non-destructive analysis of phytosterols in edible oils.
Collapse
Affiliation(s)
- Yan Liu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Yixin Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zhenzhen Xia
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Science, Wuhan 430064, PR China
| | - Yingjie Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yongning Wu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zhiyong Gong
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| |
Collapse
|
92
|
Truong VL, Bak MJ, Jeong WS. Chemopreventive Activity of Red Ginseng Oil in a Mouse Model of Azoxymethane/Dextran Sulfate Sodium-Induced Inflammation-Associated Colon Carcinogenesis. J Med Food 2019; 22:578-586. [PMID: 30864851 DOI: 10.1089/jmf.2018.4328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Our previous studies have demonstrated antioxidant and cytoprotective properties of red ginseng oil (RGO). However, the role of RGO in models of intestinal inflammation has not been elucidated. In this study, we evaluated the chemopreventive effect of RGO in a mouse model of azoxymethane/dextran sulfate sodium (AOM/DSS)-induced colitis and explored its underlying mechanisms. Male C57BL/6 mice were intraperitoneally injected with a single dose of AOM (10 mg/kg), followed by 1.5% DSS in drinking water for 7 days to produce colon carcinogenesis. RGO at 10 or 100 mg/kg was orally given for 17 weeks. RGO supplementation reduced the plasma nitric oxide (NO) concentration as well as lipid peroxidation and inhibited the production of proinflammatory factors such as inducible NO synthase, cyclooxygenase-2, interleukin 1β, IL-6, and tumor necrosis factor-α in the mouse colitis tissue. Increased phosphorylation levels of p65 and IκB by AOM/DSS exposure were attenuated by the presence of RGO. In addition, RGO supplementation induced the activity of primary antioxidant enzymes such as superoxide dismutase and catalase as well as the expression of nuclear factor erythroid 2-related factor 2-mediated antioxidant enzyme hemeoxygenase-1 in the colons of AOM/DSS-treated mice. These findings indicate that RGO may be a potent natural chemopreventive agent for ameliorating inflammatory bowel diseases.
Collapse
Affiliation(s)
- Van-Long Truong
- 1 Department of Food and Life Sciences, College of BNIT, Inje University, Gimhae, Korea
| | - Min Ji Bak
- 1 Department of Food and Life Sciences, College of BNIT, Inje University, Gimhae, Korea.,2 Department of Chemical Biology, Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Woo-Sik Jeong
- 1 Department of Food and Life Sciences, College of BNIT, Inje University, Gimhae, Korea
| |
Collapse
|
93
|
Yao LJ, Jalil J, Attiq A, Hui CC, Zakaria NA. The medicinal uses, toxicities and anti-inflammatory activity of Polyalthia species (Annonaceae). JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:303-325. [PMID: 30316887 DOI: 10.1016/j.jep.2018.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/04/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polyalthia is one of the largest and notable genera in Annonaceae family. Polyalthia species have been widely used in folklore medicine for the treatment of rheumatic fever, gastrointestinal ulcer and generalized body pain. Numerous in vitro and in vivo studies on Polyalthia Species have also corroborated the significant anti-inflammatory potential of its extracts and secondary metabolites. AIM OF THE STUDY This review is an attempt to assess the anti-inflammatory activity of Polyalthia species by giving critical appraisal and establishing evidences of their traditional uses. Moreover this review will highlight the lead compounds for future drug development that can serve as a potential anti-inflammatory drug with comparative efficacy and minimum side effects. MATERIALS AND METHODS An extensive literature review, focusing the anti-inflammatory potential of Polyalthia species was conducted using the following databases:PubMed, ScienceDirect, SpringerLink, Ovid, Scopus and ProQuest, as well as the locally available books, journals and relevant documents. The reference lists of retrieved papers were also searched for additional studies. RESULTS The Polyalthia species have shown significant anti-inflammatory activity through various mechanism of action. The most significant anti-inflammatory mechanism includes the inhibition of nuclear factor kappa B (NF-κB), prostaglandins (PGs), pro-inflammatory cytokines, inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS). The data suggests that hydroxycleroda-3,13-dien-15,16-olide and 16-oxocleroda-3,13-dien-15-oic acid, quercetin, rutin, spinasterol, α-spinasterol, goniothalamin and (-)-5-hydroxygoniothalamin are the most potent anti-inflammatory compounds from Polyalthia species with comparable IC50 with positive controls. CONCLUSIONS Numerous pharmacological studies have supported the use of Polyalthia species against pain, rheumatic fever, haemorrhages and inflammation in traditional medicine. Flavonoids, diterpenoids, sterols and styrylpyrones from genus Polyalthia are the most significant class of compounds with potent anti-inflammatory activity. Secondary metabolites from these classes should be brought into further research to fill the gaps of knowledge in pharmacokinetics, pharmacodynamics, bioavailability, and toxicity in order to convert the pre-clinical results into clinical data for further investigation.
Collapse
Affiliation(s)
- Lui Jin Yao
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Juriyati Jalil
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Ali Attiq
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chiew Chia Hui
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul Aimi Zakaria
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
94
|
Álvarez-Gómez F, Korbee N, Casas-Arrojo V, Abdala-Díaz RT, Figueroa FL. UV Photoprotection, Cytotoxicity and Immunology Capacity of Red Algae Extracts. Molecules 2019; 24:molecules24020341. [PMID: 30669361 PMCID: PMC6359249 DOI: 10.3390/molecules24020341] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/30/2022] Open
Abstract
This study was designed to evaluate the potential use of algal extracts in cosmeceuticals, including factors related to biosecurity. The aqueous crude extracts of Hydropuntia cornea and Gracilariopsis longissima showed a good photoprotective capacity (Sun Protection Factor, SPF) due to, among other reasons, the presence of five types of mycosporine-like amino acids (MAAs) detected by high pressure liquid chromatography-photodiode array detector (HPLC-PDA) and electrospray ionization mass spectrometry (ESI-MS) (Palythine, Asterina-330, Shinorine, Porphyra-334, and Palythinol). The toxicity of the extracts was evaluated by the MTT assay, which is based on the metabolic reduction of MTT [3-(4,5-dimethylthiazol-2yl)-diphenyl tetrazolium bromide] by the action of the mitochondrial enzyme succinate dehydrogenase. This assay was carried out in vitro in three cell lines: one related to the immune system (murine macrophages of the immune system: RAW264.7) and two human cell lines related to the skin (gingival fibroblasts: HGF, and immortalized human keratinocytes: HaCaT). Both extracts showed no cytotoxic activity in both types of human cells, whereas they showed cytotoxicity in murine tumor cells of the immune system (macrophages: RAW264.7). On the other hand, the immunological activity in the murine macrophage RAW264.7 was studied at a concentration lower than 100 μg mL-1 and lower than the EC50, and evaluated by the production of pro-inflammatory compounds through an immunosorbent assay linked to enzymes such as tumor necrosis factor-α (TNF-α) or anti-inflammatory/proinflammatory enzymes such as interleukin-6 (IL-6). Both algae extracts induced the biosynthesis of TNF-α and IL-6. The production of TNF-α was much higher than that observed in the control (at a concentration of the aqueous extract higher than 5 μg mL-1). These results support the theory that the extracts of H. cornea and G. longissima actively induce the production of cytokines. In summary, the extracts of these species did not show cytotoxicity in human cells, and they present with immunomodulatory and photoprotection capacity.
Collapse
Affiliation(s)
- Félix Álvarez-Gómez
- Department of Ecology, Faculty of Sciences, Campus Universitario de Teatinos s/n, Malaga University, 29071 Malaga, Spain.
| | - Nathalie Korbee
- Department of Ecology, Faculty of Sciences, Campus Universitario de Teatinos s/n, Malaga University, 29071 Malaga, Spain.
| | - Virginia Casas-Arrojo
- Department of Ecology, Faculty of Sciences, Campus Universitario de Teatinos s/n, Malaga University, 29071 Malaga, Spain.
| | - Roberto T Abdala-Díaz
- Department of Ecology, Faculty of Sciences, Campus Universitario de Teatinos s/n, Malaga University, 29071 Malaga, Spain.
| | - Félix L Figueroa
- Department of Ecology, Faculty of Sciences, Campus Universitario de Teatinos s/n, Malaga University, 29071 Malaga, Spain.
| |
Collapse
|
95
|
Ramadan AM, Azeiz AA, Baabad S, Hassanein S, Gadalla NO, Hassan S, Algandaby M, Bakr S, Khan T, Abouseadaa HH, Ali HM, Al-Ghamdi A, Osman G, Edris S, Eissa H, Bahieldin A. Control of β-sitosterol biosynthesis under light and watering in desert plant Calotropis procera. Steroids 2019; 141:1-8. [PMID: 30414421 DOI: 10.1016/j.steroids.2018.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/23/2018] [Accepted: 11/02/2018] [Indexed: 01/13/2023]
Abstract
Most scientific studies on Calotropis procera refer to the plant as an important source of pharmaceutical compounds and its valuable benefits in medicine. One of the most important substances in this plant is the potential immunostimulant β-sitosterol (BS) that acts in improving human health. This study focused on the effects of lighting before and after irrigation on the BS accumulation pathway namely steroid biosynthesis. Studying the enzymes in BS biosynthetic pathway indicated the upregulation at dawn and predusk of the SMT2 and SMO2 genes encoding sterol methyltransferase 2 and methylsterol monooxygenase, two key enzymes in BS accumulation in C. procera. The results almost indicated no regulation at the different time points of the CYP710A gene encoding sterol 22-desaturase, an enzyme that acts in depleting β-sitosterol towards the biosynthesis of stigmasterol. RNA-Seq data was validated via quantitative RT-PCR and results were positive. The data of ultra-performance liquid chromatography-tandem mass spectrometry analysis with regard to BS accumulation also aligned with those of RNA-Seq analysis. We focused on the effects of light before and after watering on BS accumulation in C. procera. Our results show that BS accumulation is high at dawn in both dehydrated and well-watered condition. While, the BS was dramatically decrease at midday in well-watered plants. This increase/decrease in BS content is correlated with rates of expression of SMT 2 gene. This gene is a key convertor between the different branches in the cardiac glycoside biosynthesis. Accordingly, it could be suggested that BS (or one of the descendent product) may play an important role in C. procera tolerance to drought/light intensity conditions.
Collapse
Affiliation(s)
- Ahmed M Ramadan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Plant Molecular Biology Department, Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt.
| | - Ahmed Abdel Azeiz
- College of Biotechnology, Misr University for Science and Technology (MUST), 6th October City, Egypt
| | - Saeed Baabad
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sameh Hassanein
- College of Biotechnology, Misr University for Science and Technology (MUST), 6th October City, Egypt; Bioinformatics Department, Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center(ARC), Giza, Egypt
| | - Nour O Gadalla
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia; Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Sabah Hassan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Mardi Algandaby
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salwa Bakr
- Department of Clinical Pathology, Hematology, College of Medicine, Fayoum University, Fayoum, Egypt; College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Thana Khan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Heba H Abouseadaa
- Department of Botany, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hani Mohammed Ali
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Areej Al-Ghamdi
- Physics Department, Faculty of Science, Jeddah University, Jeddah, Saudi Arabia
| | - Gamal Osman
- Department of Biology, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Microbial genetics, Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt.
| | - Sherif Edris
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Hala Eissa
- Plant Molecular Biology Department, Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt; College of Biotechnology, Misr University for Science and Technology (MUST), 6th October City, Egypt
| | - Ahmed Bahieldin
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| |
Collapse
|
96
|
Vázquez L, Corzo-Martínez M, Arranz-Martínez P, Barroso E, Reglero G, Torres C. Bioactive Lipids. BIOACTIVE MOLECULES IN FOOD 2019. [DOI: 10.1007/978-3-319-78030-6_58] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
97
|
Ding K, Tan YY, Ding Y, Fang Y, Yang X, Fang J, Xu DC, Zhang H, Lu W, Li M, Huang SC, Cai ML, Song Y, Ding YJ, Zhang SM. β-Sitosterol improves experimental colitis in mice with a target against pathogenic bacteria. J Cell Biochem 2018; 120:5687-5694. [PMID: 30548286 DOI: 10.1002/jcb.27853] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/19/2018] [Indexed: 01/02/2023]
Abstract
In this article, we aim to examine the novel effects of β-sitosterol on murine experimental colitis. β-Sitosterol significantly reduces the weight loss, colon length, and alleviated microscopic appearances of colitis induced by dextran sulfate sodium. This compound also decreases the levels of TNF-α, IL-6, and IL-1β in intestinal tissue of mice with experimental colitis in a concentration-dependent manner. β-Sitosterol treatment to intestinal epithelial cells significantly increases expression of antimicrobial peptides and reduces survival of intracellular Salmonella typhimurium. These results showed the multiple effects of β-sitosterol against pathogenic bacteria for a novel approach to the treatment of colonic inflammation.
Collapse
Affiliation(s)
- Kang Ding
- Department of Colorectal Surgery, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan-Yan Tan
- Department of Colorectal Surgery, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yang Ding
- First Clinical Medical College,Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuan Fang
- First Clinical Medical College,Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xu Yang
- Department of Colorectal Surgery, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jian Fang
- Department of Colorectal Surgery, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Da-Chao Xu
- Department of Colorectal Surgery, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hui Zhang
- Clinical Lab,The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wei Lu
- First Clinical Medical College,Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Meng Li
- First Clinical Medical College,Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shi-Cai Huang
- First Clinical Medical College,Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Meng-Ling Cai
- First Clinical Medical College,Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan Song
- First Clinical Medical College,Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yi-Jiang Ding
- Department of Colorectal Surgery, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Su-Min Zhang
- Department of Colorectal Surgery, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
98
|
Lee S, Youn K, Jun M. Major compounds of red ginseng oil attenuate Aβ 25-35-induced neuronal apoptosis and inflammation by modulating MAPK/NF-κB pathway. Food Funct 2018; 9:4122-4134. [PMID: 30014084 DOI: 10.1039/c8fo00795k] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
β-Amyloid (Aβ)-induced neuronal toxicity in Alzheimer's disease (AD) is associated with complex mechanisms. Thus, a multi-target approach might be suitable for AD treatment. Following our previous study on the neuroprotective effects of red ginseng oil extract, its major compounds, including linoleic acid (LA), β-sitosterol (BS), and stigmasterol (SS), were examined to elucidate the mechanism of anti-apoptosis and anti-inflammation in Aβ25-35-stimulated PC12 cells. The results showed that the three compounds mitigated Aβ25-35 toxicity by regulating oxidative stress, apoptotic responses, and pro-inflammatory mediators. LA and SS strongly regulated intrinsic apoptosis markers, such as mitochondrial membrane potential, intracellular Ca2+, Bax/Bcl-2 ratio, and caspases-9, -3, and -8. However, BS blocked only the intrinsic apoptotic pathway, particularly by suppressing Ca2+ accumulation. Furthermore, all three compounds downregulated iNOS and phospho-nuclear factor-κB, but only LA and SS inhibited the expression of cyclooxygenase-2 and phospho-IκB. In assays to evaluate MAPK expression for confirming upstream signal pathways, BS decreased the phosphorylation of p38 and ERK, but not JNK, while SS markedly decreased the phosphorylation of all three MAPKs, and LA clearly decreased the phosphorylation of ERK and JNK, but not p38. These results indicate that LA, BS, and SS act as neuroprotectives against Aβ25-35-induced injury by distinct molecular mechanisms, indicating their preventive and/or therapeutic potential to treat AD.
Collapse
Affiliation(s)
- Seonah Lee
- Department of Food Science and Nutrition, Dong-A University, Busan 604-714, Korea.
| | | | | |
Collapse
|
99
|
Liao PC, Lai MH, Hsu KP, Kuo YH, Chen J, Tsai MC, Li CX, Yin XJ, Jeyashoke N, Chao LKP. Identification of β-Sitosterol as in Vitro Anti-Inflammatory Constituent in Moringa oleifera. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10748-10759. [PMID: 30280897 DOI: 10.1021/acs.jafc.8b04555] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
β-Sitosterol is a well known phytosterol in plants, but owing to its poor solubility in typical media, determining its cellular mechanisms has been proven to be difficult. In this study, we investigated the anti-inflammatory activity of β-sitosterol (BSS) isolated from Moringa oleifera in two cell lines. Over a dose range of 7.5 to 30 μM, BSS dispersed well in the medium as nanoparticles with diameters of 50 ± 5 nm and suppressed the secretion of inflammatory factors from keratinocytes and macrophages induced by PGN, TNF-α, or LPS, such as TNF-α, IL-1β, IL-6, IL-8, and ROS, separately. In addition, BSS significantly reduced the expression of NLRP3, a key component of NLRP3 inflammasomes, and inhibited the activation of caspase-1. There was partial inhibition of NF-κB in macrophages. This is the first study to report an increase in the solubility of nearly water-insoluble phytosterols via the formation of nanoparticles and to delineate the formulation's capacity to inhibit the signal transduction pathways of inflammation in macrophages.
Collapse
Affiliation(s)
- Pei-Chun Liao
- Department of Cosmeceutics , China Medical University , Taichung 404 , Taiwan
| | - Ming-Hoang Lai
- Department of Nursing , Cardinal Tien Junior College of Healthcare and Management , Sindian District, New Taipei City 23143 , Taiwan
| | - Kuang-Ping Hsu
- Division of Wood Cellulose , Taiwan Forestry Research Institute , Taipei 100 , Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources , China Medical University , Taichung 404 , Taiwan
| | - Jie Chen
- Department of Cosmeceutics , China Medical University , Taichung 404 , Taiwan
| | - Ming-Chih Tsai
- Advanced Packaging Technology Department , Winbond Electronics , Taichung 42881 , Taiwan
| | - Chun-Xiang Li
- Advanced Materials Technology Centre , Singapore Polytechnic , 500 Dover Road , 139651 , Singapore
| | - Xi-Jiang Yin
- Advanced Materials Technology Centre , Singapore Polytechnic , 500 Dover Road , 139651 , Singapore
| | - Narumon Jeyashoke
- School of Bioresources and Technology , King Mongkut'sUniversity of Technology Thonburi , Bangkok 10150 , Thailand
| | - Louis Kuo-Ping Chao
- Department of Cosmeceutics , China Medical University , Taichung 404 , Taiwan
| |
Collapse
|
100
|
Philip S, Tom G, Vasumathi AV. Evaluation of the anti-inflammatory activity of Tinospora cordifolia (Willd.) Miers chloroform extract – a preclinical study. J Pharm Pharmacol 2018; 70:1113-1125. [DOI: 10.1111/jphp.12932] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 04/16/2018] [Indexed: 12/25/2022]
Abstract
Abstract
Objectives
Tinospora cordifolia (Willd.) Miers is an inevitable ingredient of Ayurvedic rasayanas for the treatment of disorders with unregulated inflammation. However, studies regarding the mechanism of anti-inflammatory potential of this plant at the molecular level are lacking.
Methods
In vitro evaluations were conducted in RAW264.7 macrophages which were preincubated with chloroform extract of T. cordifolia (CETC) and subsequently stimulated with LPS. The expressions of COX-2, TNF-α and iNOS genes were analysed by SQRT-PCR and Western blot, cytokines (IL-6, IL-1β and PGE2) levels by ELISA, NF-κB activation and p38 MAPK phosphorylation by Immunoblot and confocal imaging. Anti-inflammatory potential of CETC was validated further in a rat model of carrageenan-induced hind paw edema. Phytochemical characterisation was carried out using the HPLC technique.
Key findings
The LPS-induced upregulation of proinflammatory biomarkers was significantly prevented by CETC, without inhibiting COX-1. CETC- and LPS-incubated cells showed reduced phosphorylated p38 MAPK levels, and higher levels NF-κB were retained in cytoplasm. Rats pretreated with CETC showed a statistically significant decrease in paw oedema (P ≤ 0.05), and HPLC characterisation detected stigmasterol and β-sitosterol. The LD50 of CETC lies above 2000 mg/Kg body weight.
Conclusions
These findings encourage us strongly to focus on CETC to develop anti-inflammatory drugs with lower degree of inhibition to the constitutively expressing COX-1.
Collapse
Affiliation(s)
- Sheena Philip
- Plant Based Bioactives and Disease Biology Laboratory , Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- University of Kerala, Thiruvananthapuram, India
| | - Greeshma Tom
- Plant Based Bioactives and Disease Biology Laboratory , Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- University of Kerala, Thiruvananthapuram, India
| | - Asha V Vasumathi
- Plant Based Bioactives and Disease Biology Laboratory , Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|